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Abstract

IMPORTANCE Antimicrobial resistance continues to spread rapidly at a global scale. Little evidence
exists on the association of antimicrobial stewardship programs (ASPs) with the consumption of
antibiotics across health care and income settings.

OBJECTIVE To synthesize current evidence regarding the association between antimicrobial
stewardship programs and the consumption of antibiotics globally.

DATA SOURCES PubMed, Web of Science, and Scopus databases were searched from August 1,
2010, to Aug 1, 2020. Additional studies from the bibliography sections of previous systematic
reviews were included.

STUDY SELECTION Original studies of the association of ASPs with antimicrobial consumption
across health care and income settings. Animal and environmental studies were excluded.

DATA EXTRACTION AND SYNTHESIS Following the Preferred Reporting Items in Systematic
Reviews and Meta-Analyses guideline, the pooled association of targeted ASPs with antimicrobial
consumption was measured using multilevel random-effects models. The Effective Public Health
Practice Project quality assessment tool was used to assess study quality.

MAIN OUTCOMES AND MEASURES The main outcome measures were proportion of patients
receiving an antibiotic prescription and defined daily doses per 100 patient-days.

RESULTS Overall, 52 studies (with 1 794 889 participants) measured the association between ASPs
and antimicrobial consumption and were included, with 40 studies conducted in high-income
countries and 12 in low- and middle-income countries (LMICs). ASPs were associated with a 10%
(95% CI, 4%-15%) reduction in antibiotic prescriptions and a 28% reduction in antibiotic
consumption (rate ratio, 0.72; 95% CI, 0.56-0.92). ASPs were also associated with a 21% (95% CI,
5%-36%) reduction in antibiotic consumption in pediatric hospitals and a 28% reduction in World
Health Organization watch groups antibiotics (rate ratio, 0.72; 95% CI, 0.56-0.92).

CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis, ASPs appeared to be
effective in reducing antibiotic consumption in both hospital and nonhospital settings. Impact
assessment of ASPs in resource-limited settings remains scarce; further research is needed on how
to best achieve reductions in antibiotic use in LMICs.
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Findings In this systematic review and

meta-analysis of 52 studies with more

than 1.7 million patients conducted in

different health care and income

settings, ASPs were associated with

reduced consumption of antibiotics

overall as well as of antibiotics in the

World Health Organization Watch group.

Meaning The findings of this study

support the use of ASPs to reduce

antibiotic use in both hospital and

nonhospital settings.
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Introduction

Antimicrobial resistance (AMR) continues to spread rapidly at a global scale.1 Recent global estimates
suggest that the disease burden of AMR is at least as high as that of HIV and malaria combined, with
an estimated 4.95 million deaths caused in 2019.1 If not properly addressed, AMR could kill 10 million
people every year and cost the global economy up to $100 trillion by 2050.2

A number of antimicrobial stewardship programs (ASPs) have been introduced in different
settings to optimize antimicrobial use and delay resistance, while at the same time ensuring patient
safety and avoiding additional health care costs.3-9 The latest research suggests that ASPs can reduce
total antibiotic consumption by 19% and the use of restricted antimicrobial drugs by 27% in
hospital.10 The impact of the ASPs on antibiotic use may differ depending on the prevalence of
resistant infections across clinical settings and geographical regions1 as well as on available
resources.11 To date, there is little consolidated evidence on the effectiveness of ASPs in low- and
middle-income countries (LMICs), where antimicrobial use is exceptionally high compared with high-
income countries (HICs).11,12

Moreover, little evidence exists on how targeted interventions can improve the rational use of
specific antibiotic classes in different health care contexts. Existing research on ASPs has been mostly
restricted to limited comparisons in hospital and intensive care settings.4,10,13-16 It is unclear how
ASPs in different contexts affect the consumption of specific antimicrobial agents used in different
health care settings. The main objectives of the present review are (1) to provide up-to-date pooled
estimates of the association of ASPs with antibiotic consumption and (2) to estimate the differential
association of ASPs with the use of different antibiotic classes and across health care and income
settings.

Methods

Search Strategy
This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) reporting guideline.17 The protocol was registered with
PROSPERO (CRD42020206479). We searched PubMed, Web of Science, and Scopus databases
from August 1, 2010, to August 1, 2020, for articles on the association of ASPs with antimicrobial
consumption (eTable 1 in Supplement 1). Additional studies were identified from the bibliography
sections of previous systematic reviews identified in our search. We searched for primary studies
conducted with human participants and excluded studies in animals and the environment (eTable 2
in Supplement 1).

Study Selection
Two independent reviewers (K.Z.Y. and P.T.N.W.) assessed the eligibility of each full-text article; a
third reviewer (M.L.) decided cases without consensus. Two of us (K.Z.Y. and P.T.N.W.) reviewed
identified articles and the data extraction process as suggested by the PRISMA checklist. P.T.N.W.
conducted the quality assessment of all eligible studies. A third author (M.L.) reviewed the articles in
doubt, additional references, and data extraction items.

Risk of Bias Assessment
We used the Effective Public Health Practice Project (EPHPP) quality assessment tool to assess 6
domains of quality: (1) selection bias, (2) design, (3) confounders, (4) blinding, (5) data collection
methods, and (6) withdrawal and dropouts.18 EPHPP is a widely used assessment tool for
quantitative studies designed for systematic literature reviews of effectiveness studies.19 The aim of
the quality assessment was to evaluate the overall quality of evidence and the risk of bias.19 Two
independent reviewers rated all articles as strong, moderate, or weak in each domain (eTable 3 in
Supplement 1). To avoid potential bias through inappropriate study designs, we only included articles
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with high study quality, ie, studies that had strong or moderate ratings in at least 5 of 6 domains.
Disagreements were discussed by reviewers until consensus was reached. In addition, we assessed
publication bias via the Egger test.

Data Extraction
We extracted the following information from all studies: the aim of the study, country, study design,
type of health care facility, study populations, number of health care workers and facilities,
pathogens, antibiotic studied, timeline, duration of the interventions, intervention components, and
quantitative measure of antibiotic consumption before and after intervention whenever possible.
Two separate outcome measures were extracted for preintervention vs postintervention study
designs; 4 outcome measures were extracted for randomized trials with clearly defined control and
treatment groups. When a study reported both antibiotic-specific consumption measures and an
average over all antibiotics, we extracted detailed antibiotic-specific measures. ASPs were defined
broadly to include both single-component and multicomponent interventions (eg, a study that
implements decision support tools only vs a package combining decision support tools with
prospective audit and feedback).

Statistical Analysis
Effect Size Measures
The current literature uses 2 distinct types of outcome measures. First, actual drug consumption is
typically measured either as defined daily dose (DDD) per 100 or 1000 patient-days (PDs) or as days
of therapy (DOT) per 100 or 1000 PDs. DDD measures drugs administered as multiples of the
assumed average maintenance dose per day for a specific patient (typically an adult).20 DOT is the
number of days of antibiotic therapy administered to a patient, regardless of the number of doses
administered or dosage strength.20 Since DDD and DOT are conceptually similar, we pooled them in
the meta-analysis. We standardized all DDD and DOT measures to 100 PDs. The second outcome
often used is the proportion of patients receiving an antibiotic prescription—a separate measure that
does not measure drug consumption directly. For each study we calculated 1 of 2 outcomes: (1) the
change in antibiotic prescriptions after the intervention compared with before or (2) the rate ratio
(RR) of antibiotic consumption after intervention measured in DDD or DOT per 100 PDs compared
with the preintervention period. To calculate standard errors of the rate ratios, we calculated log rate
ratios as an intermediate step.21 Given that these yield asymmetric confidence intervals, we
truncated the upper bounds of the intervals at a value of 20.

Unit of Analysis and Synthesis Methods
We estimated 3-level meta-analytical models to get pooled average effectiveness estimates.22 In
contrast to the standard random effects meta-analytical model that accounts for study-level
sampling error and between-study heterogeneity, a 3-level model can account for within-study
heterogeneity.22 With this approach, all reported effect sizes from a single study can be included in
the analysis, but multiple effect sizes from the same study contribute less to the overall estimates
than single effect sizes from other studies.23 The specific weight assigned to each study depends
inversely on how strong the correlations are between all effect sizes derived from the same study.
Two strongly correlated effect sizes from the same study will both receive lower weights than two
weakly correlated effect sizes since they will add little independent information to the pooled effect
size. This will then be reflected in a lower study-specific weight. Restricted maximum likelihood
models with nested 3-level random-effects were estimated, and Cochran’s Q as well as I2 were
computed to assess heterogeneity. R version 4.1.2 (R Project for Statistical Computing) was used to
conduct statistical analysis. Statistical significance was set at P < .05.
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Subgroup Analyses
We stratified results based on the following subgroups: HICs and LMICs based on the World Bank
income group classification

24
; study settings (primary care practice, pediatric hospital, public

hospital); patient settings (outpatient, nursing care, inpatient, intensive care unit [ICU]); antibiotic
restriction (restricted or nonrestricted as per individual protocol); and World Health Organization
Access, Watch, and Reserve (AWaRe) classification antibiotics 2019.24,25 Finally, we stratified results
by individual ASP components when it was possible to obtain their individual associations with
antibiotic consumption.

Results

We identified 4011 citations from PubMed, Scopus, and Web of Science; 5 additional articles were
obtained from the bibliography of older systematic reviews. After removing duplicates, 2940 unique
citations were screened on title and abstract, and 109 citations were included for full-text
review. From these, 52 articles3,5-7,9,26-72 were included in qualitative synthesis, while 34
studies3,5,7,27-30,33,36,38-43,45-48,51,52,54,55,57,58,60,61,63-66,68,69,72 had sufficient data to be included
in the quantitative meta-analysis (Figure 1).

Figure 1. Study Flow Diagram

4006 Records identified
2392 PubMed

940 Scopus
 674 Web of Science

5 Additional references identified

1071 Duplicates excluded

5 Excluded because of low EPHPP ratings

52 Excluded for not reporting ASPs and
antibiotic consumption outcomes

2831 Records excluded
2398 Irrelevant research questions

194 Review articles
152 Treatment articles

81 Animal studies
5 Conference papers
1 Not full text

4011 Total records identified

2940 Records screened

52 Studies included

34 Studies included in quantitative synthesis52 Studies included in qualitative synthesis

109 Full-text articles assessed for eligibility

57 Studies included in EPHPP quality assessment

ASP indicates antibiotic stewardship program; EPHPP,
Effective Public Health Practice Project.
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Characteristics of Included Studies
The final set of studies included in the analysis comprised 19 prospective intervention
studies,6,9,26,27,31,36-39,42,43,48,60,63,66,70,71 12 randomized clinical trials,7,28,29,34,40,46,50,51,54,55,57,61

10 quasi-experimental studies,5,32,41,44,47,53,62,64,65,68 7 nonrandomized controlled trials,30,33,35,

45,49,58,59 and 4 retrospective cohorts.3,67,69,72 Forty studies3,5-7,9,30-35,37-40,42-47,49-55,57-60,64-70,72

were conducted in HICs, and 12 studies26-29,36,41,48,56,61-63,71 in LMICs (eTable 4 in Supplement 1).
Most studies were conducted in tertiary care hospitals (n = 32)3,5,9,26,27,31,32,34,36-39,41-45,

52,53,58-60,62-65,67-72 and primary care sites (n = 11).7,28,29,33,40,47,49,50,54,55,61 The remaining studies
were conducted in general practitioner medical practices (n = 3),46,51,56 ICUs (n = 3),48,66,72 and
nursing homes (n = 3).30,35,57 Participants were typically inpatients, including ICU patients
(n = 32),3,5,6,9,26,27,31,32,34,36-40,42,43,46,50,53,58,59,62-76 followed by outpatients (n = 10),7,28,29,33,

47,49,51,54,55,61 pediatric inpatients (n = 7),41,44,45,48,52,56,60 and nursing home residents (n = 3).30,35,57

Most studies analyzed ASPs comprising multiple components. It was therefore not possible to
estimate the associations between most individual components of ASPs and antibiotic consumption,
except for 2 components: (1) training and guidelines and (2) decision support tools (eTable 4 in
Supplement 1). The most common components were (1) training and guidelines, ie, training health
workers on treatment practices, AMR, and updating guidelines; (2) decision support tools, ie,
electronic or paper-based algorithms to assist health workers in treatment decisions; (3) antibiotic
restriction, ie, active restrictions on antibiotic use, eg, via preauthorization; (4) prospective audit and
feedback, ie, expert physicians or pharmacists review patient cases and the antibiotics they have
been prescribed; (5) tracking, ie, monitoring, documenting, and reporting prescription practices and
infection and resistance patterns; (6) pharmacy-based interventions, ie, engaging pharmacists to
document antibiotic indications, dosage adjustment, and drug interactions and, where needed, to
optimize treatment by switching antibiotics; and (7) microbiology-based interventions, ie, antibiotic
susceptibility tests to guide decisions (eTable 5 in Supplement 1).

Pooled Association of ASPs With Antibiotic Consumption
Implementing ASPs was associated with a 10% (95% CI, 4%-15%) decrease in antibiotic prescriptions
overall based on 17 estimates (Figure 2),3,7,28-30,33,40,41,46,47,51,54,55,57,60,61 with substantial
heterogeneity across studies (Q = 75.54; P < .001). The Egger test suggested possible publication
bias (P = .007). Five different antibiotic classes from 10 studies reported RRs of antibiotic
consumption after intervention measured in DDD per 100 PD compared with the preintervention
period. Pooled analysis suggested that, on average, ASPs were associated with a 28% reduction in
antibiotic consumption (RR, 0.72; 95% CI, 0.56-0.92; 34 estimates) (Figure 3A).5,27,38,39,43,64-66,69,72

Evidence for potential publication bias was also found in this subset of studies (Egger test P = .001).
Stratifying results by broad-spectrum antibiotic classes revealed nonstatistically significant pooled
differences between ASPs and consumption. However, these associations were based on a small
number of studies, resulting in large confidence intervals, and the direction of the effect sizes was
systematic: 33 of 34 RRs suggested a reduction in consumption. All class-specific pooled RRs
consistently suggested large reductions in consumption, although the results were not statistically
significant: fluoroquinolones (42% reduction), penicillin and β-lactamase inhibitor combinations
(39% reduction), carbapenems (31% reduction), macrolides (26% reduction), and cephalosporins
(15% reduction) (Figure 3A).5,27,38,39,43,64-66,69,72 Penicillins were less targeted, with 2 studies
actually encouraging their use.64,65 No significant change in pooled penicillin consumption
was identified following ASP implementation (RR, 0.94; 95% CI, 0.62-1.45; 5 estimates)
(Figure 3B).27,64-66,69 Among studies that reported total antibiotic consumption at a given health
facility but did not specify which antibiotic classes were included, results suggested that
reductions in consumption followed the implementation of ASPs; however, the pooled effect
size was not statistically significant (RR, 0.82; 95% CI, 0.66-1.02; 5 estimates) (eFigure 1 in
Supplement 1).45,48,52,58,63 Reductions in the use of antibiotics on the WHO’s AWaRe list were also
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observed, but results were only significant for antibiotics on the Watch list (RR, 0.72; 95% CI, 0.56-
0.92; 34 estimates) (Figure 4).5,27,36,38,39,42,43,64-66,68,69,72

Heterogeneity of Outcomes Associated With ASPs Across Health Care Settings
and Countries
Results stratified by patient setting showed that the largest reductions in antibiotic use were
generally found in pediatric care (21% [95% CI, 5% to 36%] reduction; 6 effect sizes) (Figure 5).
Antibiotic prescriptions in HICs following ASPs were associated with an average reduction of 6%
(95% CI, 2% to 9%; 13 effect sizes) (Figure 5). In contrast, antibiotic consumption in LMICs following
ASPs were associated with an average reduction of 30% (95% CI 10% to 50%; 4 effect sizes)
(Figure 5). ASPs were not associated with a reduction in antibiotic prescriptions for outpatients (–4%;
95% CI, –11% to 3%; 7 effect sizes)33,46,47,51,54,55 or inpatients and nursing home residents (–8%; 95%
CI –20% to 3%; 4 effect sizes),3,30,57,61 although reductions cannot be ruled out due to the small
sample size. Similar nonsignificant results were found across different settings, including public
hospitals (–18%; 95% CI, –54% to 18%; 3 effect sizes) and pediatric hospitals (–15%; 95% CI, –36% to
5%; 4 effect sizes) (Figure 5). Decision support tools were associated with a 16% reduction in
antibiotic prescriptions (95% CI, 2% to 30%; 3 effect sizes), while no significant association was
detected for training and education (–5%; 95% CI, –15% to 6%; 6 effect sizes) and multicomponent
ASPs (–5%; 95% CI, –15% to 6%; 8 effect sizes) (Figure 5D). Detailed forest plots for the results in
Figure 5 can be found in eFigure 2 in Supplement 1. The stratified results and meta-analysis for
antibiotic consumption can also be seen in eFigures 3 and 4 in Supplement 1.

Discussion

The results of our meta-analysis presented here suggest that ASPs were associated with a 10%
reduction in antibiotic prescriptions and a 28% reduction in antibiotic consumption rates. Reductions

Figure 2. Proportional Change in Antibiotic Prescription, After Compared With Before Intervention

–0.80 –0.20 20–0.40 0
Proportional change (95% CI)

–0.60

Weight, %Country
Patient
settingsSource

Proportional change
(95% CI)

2.55Iran Pediatric patientsRahbarimanesh et al,41 2019 –0.48 (–0.72 to –0.24)

3.47China InpatientsWei et al,29 2017 –0.37 (–0.55 to –0.18)

4.31China Pediatric patientsWei et al,28 2019 –0.29 (–0.43 to –0.14)

6.61US OutpatientsGonzales et al,55 2013 –0.21 (–0.38 to –0.04)

9.99US OutpatientsGonzales et al,55 2013 –0.14 (–0.22 to –0.05)

6.42US OutpatientsDi Pentima et al,60 2011 –0.12 (–0.18 to –0.06)

6.36Israel Nursing careRegev-Yochay et al,40 2011 –0.11 (–0.17 to –0.04)

3.53Netherlands InpatientsVan Buul et al,30 2015 –0.10 (–0.28 to 0.08)

6.63US OutpatientsGerber et al,7 2013 –0.07 (–0.12 to –0.02)

6.42Italy OutpatientsFortini et al,3 2018 –0.06 (–0.12 to 0.00)

6.46Germany Pediatric patientsStrumann et al,33 2020 –0.06 (–0.12 to 0.00)

6.73Spain Pediatric patientsMarch-López et al,47 2020 –0.05 (–0.09 to 0.00)

7.08France OutpatientsLe Corvoisier et al,51 2013 –0.04 (–0.06 to –0.02)

6.97UK Pediatric patientsMcNulty et al,46 2018 –0.03 (–0.06 to 0.00)

4.69UK Nursing careFleet et al,57 2014 –0.00 (–0.14 to 0.13)

6.39Switzerland OutpatientsHürlimann et al,54 2015 0.08 (0.02 to 0.14)

100.00RE model Q = 75.54, df = 16, P <.001
Between-study I2 = 90.59%

–0.10 (–0.15 to –0.04)

5.40China Pediatric patientsChang et al,61 2020 –0.17 (–0.27 to –0.07)

Change was calculated as the proportion of all patients who received an antibiotic
prescription after the intervention minus the same proportion measured in the
preintervention period. For randomized clinical trials, preintervention differences in the
proportion of prescriptions between treatment and control groups were subtracted

from postintervention differences. A negative effect size indicates that antibiotic
stewardship programs were associated with a reduction in antibiotic prescriptions of a
magnitude equal to the value of the effect size itself. RE indicates random effects.
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Figure 3. Change in Antibiotic Consumption After vs Before Intervention by Antibiotic Class, in Defined Daily
Dose per 100 Patient-Days
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2.25TaiwanWu et al,27 2017 0.91 (0.18-4.44)
2.94SpainRuiz et al,39 2018 0.80 (0.20-3.22)
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Figure 4. Change in the Consumption of World Health Organization Access, Watch, Reserve Antibiotics
After vs Before Intervention, in Defined Daily Dose per 100 Patient-Days
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in consumption were observed across all antibiotic classes, including penicillin and β-lactamase
inhibitor combinations, macrolides, fluoroquinolones, cephalosporins, and carbapenems. The only
exceptions were penicillins, which is not surprising giving that these are not targeted by all
interventions and in some cases even encouraged.64,65 ASPs were also associated with reduced
consumption of antibiotics on the WHO Watch list, with particularly high risk of selection of bacterial
resistance.73 In light of concerning increased use of Watch antibiotics globally, this is good news, as
it suggests that protecting these drugs through appropriate ASPs is possible.73

Subgroup analysis suggests that ASPs were associated with reductions in antibiotic
prescriptions in pediatric care, where antibiotic use is particularly high.74 Prescriptions for other
inpatient, outpatient, and nursing home patients were generally smaller and often not significant.

Moreover, our pooled analysis suggests that ASPs implemented in HICs were associated with
reduced antibiotic prescriptions by 6%, echoing findings from previous studies.10,14 For the meta-
analysis, we only identified 4 studies in LMICs, 3 of which were from China27-29 and 1 from Iran.41

While ASPs were associated with relatively large reductions in prescriptions in LMICs, this must be
interpreted with caution due to the small number of studies currently available from LMICs.
Uncertainty still remains about the outcomes of ASP in resource-limited settings. One study
conducted in a pediatric tertiary hospital in China56 suggested that a multicomponent ASP package
combining prior authorization, audit and feedback, and pay for performance was more effective than

Figure 5. Proportion Change in Antibiotic Prescriptions After vs Before Intervention: Subgroup Analyses
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a single strategy. A study in multiple primary care institutions in China61 found that physicians’
prescribing behavior did not affect the rate of antibiotic prescriptions, but a computer network-
based feedback intervention was associated with significant reductions in antibiotic prescriptions.

A study conducted in 47 small hospitals in South Africa63 did not report quantitative estimates
of consumption, but it found that introducing pharmacist expertise in a setting with limited infectious
disease resources had substantial consequences for antibiotic use and consumption. Overall, the
evidence from LMICs remains mixed. Given the challenges involved with the implementation of ASP
in LMICs, including often limited availability and access to antibiotics, unavailable diagnostics, and
weak adherence to treatment, further research on how to best implement ASPs without
compromising the quality of care provided to patients in LMICs is urgently needed.11,75-78 While the
present study tried to also analyze the outcome of specific ASP components, the currently available
data are not sufficient to assess the relative effectiveness of each component.

Limitations
This study has limitations. First, the pooled effect sizes cannot be directly interpreted as the causal
effect of ASPs on antibiotic prescription or consumption rates since few of the included studies were
designed as randomized clinical trials. A control group followed up through the baseline and
intervention periods could provide important information on time trends, seasonality, or other
factors, including trends in pathogen prevalence or changes in infection control measures that could
affect antibiotic consumption. Moreover, as already mentioned, we found very few studies from
LMICs. While we may expect the marginal impact of a well-implemented ASP to be larger in an LMIC
than in an HIC, the currently available data are not sufficient to assess these differences
systematically. Furthermore, our review also did not assess the impacts of stewardship programs on
animals and the environment, which are 2 areas that are likely affected and important from one
health approach.

Conclusions

In this systematic review and meta-analysis of the association of ASPs with antimicrobial
consumption, ASPs were associated with reduced antibiotic consumption in both hospital and
nonhospital settings. Our results show that ASPs can reduce the consumption of WHO Watch group
antibiotics with high resistance potential and can potentially contribute to major reductions in
antimicrobial consumption in pediatric patients. Overuse and misuse of antibiotics are the main
drivers of AMR; reducing antimicrobial consumption through ASPs should thus contribute toward
reducing the risk of AMR. This study is limited by the availability of assessments of ASPs in resource-
limited settings. Pragmatic randomized clinical trials of ASPs explicitly linking appropriateness of
antibiotic utilization to resistant bacterial prevalence as an outcome should therefore be a key
research priority. Performance of ASPs might vary considerably in different income settings, and this
warrants a particular focus on LMICs where implementation of ASPs could face operational,
behavioral, and financial challenges.
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