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Summary 
 

Breast cancer is the most common cancer amongst women. As for most solid tumours, breast 

cancer-related deaths are the result of metastasis, a succession of complex steps leading to the 

dissemination of cancer cells and colonization of distant organs. The heterogeneity and plasticity 

of cancer cells facilitate the selection of clones that withstand the harsh conditions encountered 

during their journey as circulating tumour cells and invading a foreign microenvironment. While 

the main steps of the metastatic cascade have been described, the precise cellular and molecular 

mechanisms underlying each of its steps remain poorly understood.  

In my PhD studies, I aimed to identify metastasis drivers in breast cancer using in vivo 

models of metastasis and RNA-Seq. This overarching goal materialised into two different projects. 

The first part of my work leveraged bulk RNA-sequencing of matched primary tumours 

and metastases in different sites to identify molecular processes potentially involved in metastasis. 

Our initial findings identified glucocorticoid signalling as promoting lung metastasis. NR3C1, also 

known as the glucocorticoid receptor (GR), mediates the effect of stress hormones. We showed 

that upon stimulation, GR controls processes involved in steps of the metastatic cascade.  

Mechanistically this control translates into an up-regulation of the kinase ROR1, a WNT5A 

receptor, modulating the Wnt and Hippo pathways. We showed how GR and ROR1 ablation 

decrease metastasis. Our studies highlight the importance of glucocorticoid signalling in triple-

negative breast cancer and call for caution when using activators of GR such as Dexamethasone 

to combat the side effects of chemotherapy. 

In the second part of my work, we compared matched primary tumours and lung metastases 

of different breast cancer PDX models using single-cell RNA-seq. This technique allowed us to 

assess potential mechanisms driving metastases at the level of single cells, probing biological 

processes occurring in specific subpopulations of cancer cells. Our data highlight the significant 

inter and intra-patient heterogeneity of breast cancer. We found that cell populations in primary 

tumours and lung macrometastases are transcriptionally similar, but that three main phenotypes 

are making up lesions in both sites. Each of these phenotypes appears to be engaged in the 
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epithelial-to-mesenchymal transition (EMT), yet at varying levels, as indicated by canonical EMT 

and proliferation markers. We show that the top differentially expressed genes differentiating each 

of these phenotypes are controlled via partial EMT transcription factors (TFs). This finding argues 

for the importance of partial EMT in the metastatic process and sheds further light on the processes 

underlying the metastatic cascade. 
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1. Introduction 

 

1.1 Breast cancer  
 

1.1.1 Breast cancer epidemiology 

 

Breast cancer has the highest incidence worldwide, accounting for 11.7% of the 19.3 million new 

cancer cases reported globally in 2020(Sung et al., 2021). It is the leading cause of cancer-related 

mortality for women, with close to 700.000 annual deaths. The incidence of breast cancer keeps 

increasing globally and is notably higher in high-income countries, making it a concern for 

healthcare systems worldwide. 

Breast cancer has a good prognosis, assuming an early diagnosis is made and appropriate 

treatment is available. Unfortunately, the heterogeneity of this disease, which includes several 

subtypes, means that not all breast cancer patients can benefit from an equally efficacious 

therapeutic regimen. Resistance to the standard of care and progression of the disease is to be 

expected of the most aggressive subtypes. 

 

1.1.2 Breast cancer classification 

 

Breast cancer is an umbrella denomination for a diverse group of neoplasms sharing little other 

than their tissue of origin. The different subtypes of breast cancers, whose names vary depending 

on the classification used, are diverse in morphologies, molecular phenotypes, treatments, and 

outcomes. Additionally, significant inter-patient and intra-tumour heterogeneity have been 

described, complicating patient stratification and therapeutic solutions.  

Over time several classifications of breast cancer subtypes emerged following our 

understanding of the disease and the technologies available. Breast cancer may be classified 

according to histological features, expression of a set of specific molecular biomarkers or via gene 

expression profiling. 
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Breast tumour histology has been extensively studied and led to the description of 19 

histological subtypes(WHO Classification of Tumours Editorial Board, 2019). Arising from the 

rich architecture of the mammary gland, the two main histological subtypes are ductal and lobular 

carcinomas(Harbeck et al., 2019). The structure of origin and invasiveness of the lesion has 

significant implications for the staging of the disease and therapeutic choices.  

 

Figure 1.1 | Breast architecture and breast cancer structures of origin. The breast comprises two main elements, 

the milk-producing lobules, drained by ducts. As an epithelial structure, luminal cells are surrounded by a layer of 

basal cells and a basement membrane. When a cell acquires oncogenic traits, it starts to proliferate inside the structure, 

forming a restricted lesion contained by the basement membrane (Lobular or Ductal Carcinoma in situ). As the cancer 

cells continue to proliferate, they start the invasion process by breaching the basement membrane and spreading in the 

surrounding tissue (Invasive Lobular of Ductal Carcinoma).  

 

With increasing biological insights about the disease, the characterisation of biomarkers 

via immunochemistry allowed to classify breast cancers according to the expression of key 

proteins. The Estrogen Receptor (ER), the Progesterone Receptor (PR), the human epidermal 

growth factor receptor 2 (HER2), and the proliferation marker Ki67 became the basis for the 

molecular classification of breast cancers.  
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Gene-profiling technologies such as microarrays and next-generation sequencing then 

allowed finer and unbiased molecular classification, resulting in so-called intrinsic subtypes(Perou 

et al., 2000; Parker et al., 2009).  

The classification currently used in the clinic relies on these different systems to establish 

clinically relevant surrogate intrinsic subtypes. This classification reflects the dependencies, 

prognosis, and treatment options for each subtype of breast cancer: 

 - Luminal A 

Strong co-expression of ER and PR but with low Ki67 and no HER2. Typically, low grade. 

Referred to as hormone-dependent, they respond to endocrine therapy targeting ER. 

 - Luminal B 

ER-positive but at a lower level, with optional PR expression. Higher Ki67 and grade than Luminal 

A tumours. Still responsive to endocrine therapy, but to a lower degree. Some Luminal B may 

express HER2, sharing some characteristics of the HER2-enriched category. 

Luminal tumours make the bulk of breast cancer cases (approx. 75%) and are regarded as 

cancers with a good prognosis, benefitting from an extensive range of therapies available. 

- HER2-enriched 

Typically, ER and PR-negative but over-expressing HER2 and with high Ki67. High grade. Their 

reliance on HER2 signalling allows the use of targeted therapies against this receptor.  

Once known for its bad prognosis due to its aggressiveness, a better understanding of the driver 

of this subtype allowed the emergence of one of the first targeted therapies (Herceptin, an anti-

HER2 antibody). It drastically improved the outcome of the patients affected by this 

subtype(Siddhartha Mukherjee, 2010). 
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- Triple-Negative 

Characterised by their non-expression of ER, PR, nor HER2 associated with high Ki67. Regarded 

as the most aggressive subtype, with the poorest prognosis. The lack of understanding of the 

mechanisms driving this subtype limits first line therapeutic options to chemotherapy. 

 

 

Figure 1.2 | Overview of breast cancer subtypes. Intrinsic and intrinsic surrogate subtypes, with their main 

characteristics (genomic alterations, biomarkers expression), frequencies, hormone-dependency, grade, and prognosis.  

 

1.1.3 Treatments 

 

Breast cancer treatment is based on the surrogate subtypes and clinical parameters such as the age, 

menopausal status of the patient, and tumour burden. The size of the tumour and lymph node status 

inform the type of surgery best suited to remove the primary tumour. After decades of 

controversy(Siddhartha Mukherjee, 2010) breast-conserving surgery has been shown to be 

beneficial in terms of survival for the patients. The alternative, mastectomy, is still indicated for 
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the most advanced tumours(Cardoso et al., 2019). Breast surgery may be preceded by neo-adjuvant 

therapy to reduce tumour size ahead of surgery.  

After surgery, systemic adjuvant treatment intended to treat potential metastases is 

administered, based on the surrogate subtype classification and their molecular drivers. Luminal 

subtypes are treated with endocrine therapies targeting ER. A whole range of therapies based on 

different mechanisms targets ER and its signalling. Selective estrogen receptor modulators 

(SERMs) and degraders (SERDs) such as Tamoxifen and Fulvestrant, respectively, are small 

molecule inhibitors. Tamoxifen is a competitive inhibitor of ER, preventing estrogen to bind and 

trigger downstream signalling. Fulvestrant induces ER degradation upon binding. Postmenopausal 

patients may be prescribed aromatase inhibitors in various settings. These drugs prevent estrogen 

production by the adipose tissue, slowing the proliferation of hormone-dependent luminal breast 

cancers. This subtype is usually not treated with chemotherapy, except for the most advanced (high 

tumour burden) or aggressive (unusually high Ki67) cases. 

HER2-overexpressing breast cancers are treated with Herceptin, a monoclonal antibody 

directed against the product of the ERBB2 gene commonly amplified in this subtype. Different 

regimens of chemotherapy are usually associated with this treatment. 

Finally, TNBCs are treated solely with first-line chemotherapy due to the lack of identified 

drivers to target. This partially explains their poor prognosis, which HER-2 positive patients once 

shared until the advent of Herceptin. Fortunately for TNBC patients new therapeutic solutions are 

being trialled. 

New therapies have been emerging for all subtypes in recent years. Luminal breast cancer 

patients may now benefit from CDK4/6 inhibitors targeting kinases involved in the cell cycle or 

PI3K inhibitors targeting the phosphoinositide 3 kinase, the product of one of the most mutated 

gene (PI3KCA) in breast cancers. Advanced TNBC patients with BRCA1/2 mutations are eligible 

to PARP inhibitors targeting DNA repair enzymes, and recent trials have shown promising results 

for PARP inhibitors as first line treatment of chemotherapy naïve TNBCs(Barchiesi et al., 2021; 

Eikesdal et al., 2021). A range of antibody-drug conjugates (ADCs) are also in development, with 

a Trop2-targeted antibody linked to a topoisomerase being recently granted accelerated approval 
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by the FDA for metastatic TNBC treatment(Bardia et al., 2019; Bianchini et al., 2022). 

Immunotherapy, such as PD-1/PD-L1 checkpoint inhibitors, have shown great success in other 

cancer types over recent years. One such treatment, Atezolizumab, has been trialled with 

encouraging yet mixed results on patients with PD-L1 positive TBNCs(Tarantino et al., 2022). 

With increasing knowledge about breast cancer and its microenvironments and new 

innovative treatments such as immunotherapies or ADCs, the management of metastatic breast 

cancer will hopefully improve in the coming years(Bianchini et al., 2022). 

 

 

Figure 1.3 | Overview of treatment options for breast cancers. While Luminal and HER2-enriched subtypes benefit 

from targeted therapies in the neo-adjuvant and adjuvant settings, TNBCs are solely treated with chemotherapy in first 

line. Treatment of metastatic disease benefit from additional drugs but remains incurable. Metastatic patients usually 

also receive a variant of the first line therapy, to counter the emergence of resistance and fully exploit the potential of 

a drug class (example: switch between ER-targeting drugs or use of docetaxel instead of paclitaxel).  
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1.2 The Metastatic Cascade 
 

In developed countries breast cancer primary tumours are generally well managed. The 

combination of early detection achieved through regular screening of at-risk demographics and 

access to proper treatments allow for early surgical removal of the tumour, usually associated with 

neoadjuvant and/or adjuvant treatments. As for most solid tumour type, cancer-associated 

mortality results from metastasis (Gupta and Qin, 2003; Dillekås, Rogers and Straume, 2019). 

Patients commonly develop metastases in the lungs, liver, brain, and bones(Jin and Mu, 2015) as 

a result of a dissemination process spanning over years(Hosseini et al., 2016). 

The metastatic cascade is a complex and inefficient succession of specific events(Massagué 

and Obenauf, 2016). Cancer cells leave the primary tumour by invading their surrounding micro-

environment, intravasate into the encountered vasculature and disseminate to a distant organ as 

circulating tumour cells in the bloodstream. Once at destination they extravasate into a foreign 

micro-environment where they may stay dormant for years(Sosa, Bragado and Aguirre-Ghiso, 

2014) before eventually colonizing the organ by forming micro- then macrometastases(Baumann, 

Auf der Maur and Bentires-Alj, 2022). At each of these steps cancer cells display different 

properties enabling them to disseminate, survive cellular stress, evade the immune system, and 

then eventually proliferate. The plastic properties of cancer cells will allow a minority of them to 

form metastases.  
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Figure 1.4 | Overview of the metastatic cascade. Steps a cancer cell go through during its dissemination to a distant 

site.  Cancer cells start by invading (1) the surroundings of the primary lesion, eventually encountering vasculature. 

Upon intravasation (2) the cancer cells are taken away as single or clusters of circulating tumour cells (3), assisted by 

other cell types. Once arrived at a distant site, they extravasate into the host organ (4), which may have been turned 

into a favourable premetastatic niche by tumour-secreted exosomes (5). Depending on the predispositions of the 

disseminated cancer cells and their interactions with the micro-environment, micro- then macrometastases may arise 

(5-6). 
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1.2.1 Local invasion and intravasation  

 

As primary tumours grow, cancer cells progressively invade the surrounding microenvironment, 

rupturing the basement membrane containing the initial neoplastic lesion. This invasion is led by 

cancer cells undergoing EMT, which confers them motile properties through cytoskeletal 

rearrangements and extracellular matrix degradation. Primary tumours also recruit their 

microenvironment which favour angiogenesis via secretion of angiogenic factors. This process, 

also termed angiogenic switch(Gupta and Qin, 2003), establishes a vasculature dedicated to 

supplying the primary tumour with oxygen and nutrients. Eventually invasive cancer cells will 

encounter one of these blood vessels and penetrate it. This step is referred to as intravasation and 

consist in the cancer cell breaching the endothelium and detaching into the circulation(Fares et al., 

2020). This process is the first of a stressful series of events, as the cells experience significant 

mechanical stress that can damage the nuclear membrane, leading to DNA damage or even cell 

death(Denais et al., 2016). 

 

1.2.2 Circulation to distant organs  

 

Once in the vasculature, cancer cells are referred to as circulating tumour cells (CTCs). CTCs may 

travel alone or in clusters. These clusters have been shown to increase metastases formation 

compared to single CTCs (Aceto et al., 2014), and may explain the heterogeneity of metastases 

founded by polyclonal clusters. CTCs clusters have also been shown include other cell types, such 

as neutrophils (Szczerba et al., 2019) and platelets(Gay and Felding-Habermann, 2011). These 

cell-cell interactions further increase the heterogeneity and metastatic potential of the clusters by 

protecting them from various threats via immune suppression and structural support(Fares et al., 

2020). CTCs are also supported by chemo- and cytokines alleviating cell death and oxidative stress 

generated by fluid shear stress (Fares et al., 2020; Park, Brown and Kim, 2020). Despite many 

factors protecting CTCs, their journey in the circulation leads to high attrition and is a limiting step 

in the metastatic cascade.  
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Additionally, CTCs may also circulate via the lymphatic system. Lymph node metastases are 

frequent and used for diagnostic and staging purposes. Upon tumour removal, surgeons may excise 

the tumour-draining lymph nodes to assess metastatic dissemination in a patient and inform 

treatment.  

 

1.2.3 Arrest and Extravasation 

 

CTC circulation is arrested in a distant organ, generally due to the reduction in size of micro-

capillaries. This blockade may lead to capillary rupture seeing cancer cells passively penetrating 

the organ. The active process, called extravasation, consists in CTCs once again exploiting the 

migratory properties conferred by EMT and going through the endothelium, invading the 

surrounding tissue. It should be noted that only 0.01% of CTCs successfully infiltrate secondary 

organs(Massagué and Obenauf, 2016). 

A much-discussed topic is the organotropism of cancer cells to specific distant 

organs(Baumann, Auf der Maur and Bentires-Alj, 2022). Part of the tropism towards frequent 

metastatic sites such as the bones and the liver is explained by the high permeability of the 

capillaries in these organs (Fouad and Aanei, 2017). However, the main factor in cancer cells being 

able to form metastasis in a distant organ lies in the next step of the cascade, the colonization step, 

which sees disseminated tumour cells proliferate or not in the microenvironment where they are 

extravasated. 

 

1.2.4 Colonization 

 

The colonization step is the final step of the metastatic cascade. It leads to the establishment of 

micro- then macrometastases in a distant organ, progressively impairing its functions and leading 

to the death of the patient. 

As with the other steps of the cascade, cancer cells face arduous conditions in the foreign 

microenvironment they try to colonize. They may fail to do so, going through apoptosis due to the 
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stressful conditions they are exposed to (and potentially not adapted to). They may also fail to 

evade the immune system in their new host organ, which may be more surveyed by the immune 

system than the primary tumour was. Disseminated tumour cells might also not have the required 

support (vascularization, nutrients, oxygen) necessary for proliferation. 

In recent years studies have shown that disseminated cancer cell may also go dormant 

instead of dying or starting to proliferate into a macrometastases. This dormant state, quiescent 

and reversible state is referred to as cellular dormancy. Another type is organ dormancy in which 

there is a balance between slow proliferation and cell death due to stress or the immune 

surveillance(Sosa, Bragado and Aguirre-Ghiso, 2014; Correia et al., 2021; Baumann, Auf der 

Maur and Bentires-Alj, 2022). Combined with early dissemination, dormancy is considered as a 

major therapeutic hurdle. Cancer cells may disseminate early, before primary tumour detection 

and treatment, and stay dormant at a distant site for years if not decades. Hardly detectable, they 

are also potentially well suited to resist systemic therapies targeting cycling cancer cells such as 

chemotherapy. Their awakening, still poorly understood, may result from a favourable balance of 

different signalling pathways, immune evasion as less immunogenic clones are selected over time, 

decreased immune surveillance (ageing), or inflammatory conditions leading to increased 

proliferation(Albrengues et al., 2018; Correia et al., 2021). Fortunately, cancer cell dormancy also 

represents a therapeutic opportunity, as drugs maintaining cancer cells dormant (potentially by 

modulating their microenvironment) could slow down progression.  

The fact that cancer cell colonization of a distant site strongly depends upon their 

adaptation to the conditions in this site, led to the seed and soil hypothesis(Langley and Fidler, 

2011). The emergence of metastases (and by extension metastatic patterns) results from favourable 

interactions between seeds (cancer cells) and soil (the organ microenvironment). This concept has 

been illustrated by studies showing that a premetastatic niche may be primed for the seeds by 

factors secreted by the primary tumour, such as exosomes(Fares et al., 2020). These soluble factors 

prepare a favourable soil, the premetastatic niche (Hanahan and Weinberg, 2011), by coercing 

several microenvironmental compartments. Fibroblasts, hepatocytes, endocytes, and even 

astrocytes have been shown to be hijacked by cancer cells to support subsequent cancer cell 

homing and colonization (Baumann, Auf der Maur and Bentires-Alj, 2022).  
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Assuming cancer cells find suitable conditions or adapt to them, the stemness of CSCs and 

plasticity conferred by the MET allow them to display proliferative properties. A few DTCs will 

proliferate into a micrometastasis, which then repeats the angiogenic process described in the 

primary tumour and fuel the development of the lesion. Micrometastases will then grow into 

macrometastases as they colonize the host organ.  

Cancer cells found in metastases are often therapy-resistant since they evaded the cytotoxic 

treatments given upon primary tumour detection and removal. The heterogeneity of metastatic 

cancer cells, that disseminated to different organs and adapted to different microenvironments 

contributes further to the difficulty of treating metastatic disease.  
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1.3  Cancer properties relevant to metastasis 
 

1.3.1 Hallmarks of cancer  

 

In a series of landmark publications D. Hanahan and B.Weinberg (Hanahan and Weinberg, 2000, 

2011; Hanahan, 2022) defined a set of biological capabilities acquired during the development of 

cancer. These key aspects reflect the ability of cancer to proliferate uncontrollably, invade its 

surroundings, evade the immune system, and recruit other cell types which fuel their growth. More 

recent publications expanded the hallmarks and added enabling characteristics as our knowledge 

of cancer progressed. Taken together, they represent the phenotype of a given cancer cell to resist 

death, proliferate, invade, and eventually form metastases depending on the mutations it carries, 

the epigenetic programs governing its gene expression and the external stimuli it receives. 

 

 

Figure 1.5 | The hallmarks of cancer. (Hanahan, 2022) The most up-to-date hallmarks, supplemented with enabling 

characteristics. The influence of epigenetics and extrinsic factors (immune system, microbiome) were recognized as 

increasingly important to cancer over the years. 
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1.3.2 Heterogeneity  

 

Breast cancer heterogeneity is multifaceted and a significant hurdle for therapy. Heterogeneity can 

manifest at a patient’s level (intra-patient and intra-tumour heterogeneity) or between patients 

(inter-patient heterogeneity).  

 

Figure 1.6 | Heterogeneity of breast cancers. Breast cancers vary at different levels, complicating characterization, 

stratification of patients and ultimately treatment. For example, different patients suffering from a given BC subtype 

will exhibit different mutations (inter-patient variability). Metastases will adapt to the distant site they disseminated 

to, adapting their gene expression and metabolism (intra-patient heterogeneity). A given tumour or metastasis is 

comprised of cancer cell clones sharing a common ancestor but displaying minor genetic and epigenetic alterations 

leading to different phenotypes (intra-tumoral heterogeneity).  

 

Breast cancer cells display molecular and phenotypic diversity. This results from genetic 

and non-genetic factors.  Cancer being a genetic disease, genomic alterations have been 

extensively studied. Tumours arise from the accumulation of mutations over many cell cycles. 

Over time driver (starting and benefiting tumorigenesis) and passengers (mutations without 

advantages for the cancer cell) mutations emerge and accumulate. They progressively confer 

hallmarks capabilities to a normal cell, transforming it into a cancer cell. A Darwinian-like 

selection process leads to the emergence of subpopulations of cancer cells with similar yet different 
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mutational backgrounds(Black and McGranahan, 2021). These alterations lead to clones with 

different proliferative, invasive, and metastatic potentials and may enable resistance to targeted 

therapies. While all these cells share the hallmarks of cancer, their slight differences contribute to 

the heterogeneity of the disease. Clonal diversity is especially problematic for diagnosis as a single 

biopsy may not represent the rest of the tumour or metastatic sites(Koren and Bentires-Alj, 2015). 

This is of particular importance if a targeted therapy aimed at a specific mutation which might not 

be present in all clones is administered to a patient. 

The diverse mutational landscape of breast cancers is also challenging in terms of driver 

mutations. While breast cancer drivers have been identified (TP53, PI3KCA, MYC, PTEN, 

CCND1, for example), their mutations remain relatively rare (Pereira et al, 2016). This results in 

patients with very heterogeneous mutational profiles, where the cumulative effects of multiple low 

penetrance mutations drive the disease (rather than select high penetrance, strong effect 

mutations). The identification of breast cancer driver mutations has nonetheless opened the door 

to targeted therapies aimed at PI3K signalling and the DNA repair mechanism (in the case of 

BRCA1/2 mutations). 

In recent years, the tumour and metastases clonal dynamics have been extensively studied, 

suggesting that genomic alterations are not the main driver of the metastatic process. Metastases-

private mutations were seldom found, and actionable mutations were identical in primary tumours 

and metastases(Hu et al., 2020),(van de Haar et al., 2021). 

Non-genetic heterogeneity in breast cancer is also significant and increasingly regarded for 

its importance in disease progression and therapy. One of the first aspects to consider is epigenetic 

heterogeneity. Epigenetic regulation of gene expression is one of the main drivers behind 

phenotypic diversity. It allows cells sharing a single genome to differentiate into different cell 

types and fulfil different functions in an organism. Such an important mechanism and its roles in 

cancer are to be considered. DNA and histones modifications (such as methylation or acetylation) 

are prime examples of epigenetic modifications occurring during cancer. They modulate chromatin 

conformation and DNA accessibility, mediating gene activation or repression, thereby contributing 

to phenotypic diversity(Harbeck et al., 2019).  



22 

 
 

 

Finally, the microenvironment surrounding cancer cells is also a contributor to cancer 

heterogeneity. During tumorigenesis, cancer cells recruit and thrive among stromal (such as 

cancer-associates fibroblasts (CAF)) and immune cells making up a significant part of the tumour. 

The recruitment of these cells to the lesion lead to a disorganization of the normal tissue 

architecture and abnormal conditions. The extracellular matrix (ECM) is remodelled by CAFs, and 

immune cells may kill cancer cells, or lead to inflammatory conditions benefiting them. Disruption 

of normal vasculature disturbs nutrients and oxygen supply, leading to hypoxic regions in the 

tumour. The immune compartment, initially keeping in check the tumour, may eventually support 

its growth via the production of specific cytokines or attraction of immune-suppressive immune 

cell types (Fares et al., 2020). In other cases, immune cells may be entirely excluded from the 

tumour, leading to “immune cold” lesions(Yao, Li and Wang, 2022). The microenvironment, 

supporting or attacking cancer cells, contributes to the overall heterogeneity. 

All these factors, intrinsic and extrinsic to cancer cells, result in significant heterogeneity 

taking the form of phenotypic diversity. 

 

1.3.3 Plasticity 

 

Another key trait of cancer cells is their phenotypic plasticity. This concept illustrates the ability 

of cancer cells to reversibly switch between different cellular states, each with distinct 

properties(Jehanno et al., 2022). This switch is vital as it has been shown that cancer cells need 

different properties (i.e., proliferation, motility) at different stages of the disease.  

While the precise nature and characteristics of the cellular states in question are still 

debated, they concern at least two main mechanisms.  
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1.3.3.1 Stemness 

 

The first is the differentiation state of the cells and stemness properties of so-called stem cells. In 

normal tissues such as epitheliums, tissue homeostasis is maintained by stem cells able to divide 

into more differentiated cell types. These stem cells can exist in different states, regenerate the 

tissue, or remain quiescent if the tissue renewal is slow or not needed. Studies have suggested the 

existence of cancer stem cells (CSCs), characterized by their ability to self-renew to give rise to a 

new tumour in serial limiting dilution experiments(Clarke et al., 2006;Nguyen et al., 2012). This 

suggests that not all cancer cells have stemness potential, but maybe be in a more differentiated 

state (non-CSC) preventing them from proliferating. Similar to quiescent stem cells, cancer cells 

have been shown to exist in a dormant state after disseminating into a distant organ(Risson et al., 

2020;Correia et al., 2021). These cells would then awaken and give rise to metastases, 

demonstrating their stemness potential. However, the nature of CSCs is still debated. While cell 

surface markers defining CSC populations have been described they have proven highly variable 

depending on the setting (cancer type and subtype). Additionally, cell populations expressing none 

of these markers have also been shown to have tumour-initiating potential in different studies(Tang 

et al., 2012).  

 

1.3.3.2 EMT 

 

The second mechanism comprising different cellular states that are exploited by cancer is the 

epithelial-to-mesenchymal transition (EMT, and conversely MET). This process is heavily 

involved in embryogenesis and wound healing. It is a complex cellular program resulting in the 

epithelial and mesenchymal phenotypes. During embryonic development or wound healing, cells 

reorganize to form new structures or repair injured ones. Genes that are part of the EMT program 

encode for proteins involved in cell-to-cell interactions (tight/adherens/gap junctions, 

desmosomes), cytoskeleton and ECM-related elements. When epithelial cells undergo EMT, 

epithelial genes are repressed, and mesenchymal ones are activated. A newly mesenchymal cell 

hereby acquires motility as cell-to-cell contact molecules are down-regulated, the cytoskeleton 
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reorganized for migration (formation of filopodia, invadopodia) and the ECM sensed via integrins 

and reorganized via matrix metalloproteases (MMPs)(Lamouille, Xu and Derynck, 2014). Once 

the cell homes in a distant organ it can revert to the epithelial state, re-establishing contact with 

surrounding cells. While vital for the development of structures in the embryo, or repair of an 

injury, it is easy to see how EMT may be of similar importance for cancer and the metastatic 

process. Thereby its role has been extensively studied in this context and found to be a major 

source of phenotypic plasticity and stemness for cancer cells (Polyak and Weinberg, 2009; 

Pastushenko and Blanpain, 2019; Lüönd, Tiede and Christofori, 2021). EMT and consecutive 

MET have been shown to be necessary for metastatic seeding(Ocaña et al., 2012; Wei et al., 2015). 

Induction of EMT leads to increased CTCs(Ye et al., 2015; Xu et al., 2017). These findings 

highlight the importance of EMT for dissemination. But cells with a mesenchymal state show little 

stemness and are not able to proliferate. The reverse process, MET, allows the reacquisition of 

epithelial traits and the proliferation of cancer cells, effectively seeding metastases in a distant 

organ. A better understanding of EMT, the TFs responsible for it, and markers associated with its 

two extreme states lead to the concept of partial EMT. Cancer cell populations co-expressing both 

epithelial and mesenchymal markers were found by different studies (Strauss et al., 2009; Yu et 

al., 2013). These hybrid states, laying on a continuum between the epithelial and mesenchymal, 

were found to be associated with stemness, aggressiveness, and poor outcome(Grosse-Wilde et 

al., 2015; Smith and Bhowmick, 2016; Yamashita et al., 2018). 

The intricacies of partial EMT in cancer cells or the existence of malignant stem cells 

remain to be fully understood. However, the plastic properties of cancer cells, demonstrated in the 

light of these concepts, are tangible and represent major mechanisms in the progression of the 

disease. 
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Figure 1.7 | Plasticity in cancer. The ability of cancer cells to display different phenotypes and switch between them 

is pivotal for cancer progression. Different cellular states are adapted to different conditions, allowing cancer cells to 

withstand the harsh conditions of the metastatic cascade and eventually result in metastasis. These different states are 

influenced by many factors, intrinsic to the cancer cells or mediated by external stimuli.  
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2. Rationale of the work 
 

Breast cancer is the most frequent and lethal cancer type among women worldwide(Sung et al., 

2021). Primary tumour surgery and treatments allow good management of the initial lesion. 

However, breast cancers (TNBCs in particular) eventually progress to the metastatic stage and 

metastases are the main cause of cancer-related deaths. The origin of cancer is genetic, with the 

sequential accumulation of genomic alterations leading to the acquisition of malignant properties 

(Hanahan & Weinberg, 2000, 2011). While clonal dynamics studies have shown that cancer cells 

keep accumulating genomic alterations during the metastatic process, they have failed to clearly 

identify genomic drivers of progression. Instead, epigenetic mechanisms of adaptation, and overall 

heterogeneity and plasticity of cancer cells are suspected to be the main culprits behind metastatic 

disease. Studies have suggested that the switch between different cellular states/phenotypes and 

the pathways supporting such states, are vital for metastatic dissemination and colonization. 

However, the underlying cellular and molecular mechanisms enabling and supporting metastasis 

are still only partially understood. 

To identify potential drivers of metastasis we performed unbiased, in vivo RNA-Seq 

screens comparing the gene expression of primary tumours and matched metastases of TNBC 

models.  

In a first project, using bulk RNA-sequencing, we identified the glucocorticoid receptor 

(GR, product from the NR3C1 gene) as a driver of lung metastases in TNBC.  

For a second project, we performed single-cell RNA-Sequencing in a similar setting. The 

deeper insights permitted by single-cell sequencing allowed us to characterize single cell states 

and compare cancer cells against each other, in primary tumours and metastases.  

Specifically, we addressed the following points:  

- What is the effect of glucocorticoid signalling in breast cancer metastasis?  

- What is the single-cell landscape of metastatic breast cancer? 
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3. Results Part I: The effect of the Glucocorticoid receptors in 

breast cancer metastasis 
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3.1 Abstract  

 

Diversity within or between tumours and metastases, known as intra-patient tumour heterogeneity, 

that develops during disease progression is a serious hurdle for therapy,(Almendro, Marusyk and 

Polyak, 2013; Polzer and Klein, 2013; Koren and Bentires-Alj, 2015). Metastasis is the fatal 

hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic 

cascade(Hanahan and Robert A. Weinberg, 2011),(Weinberg, 2014), remain ill-defined. A clearer 

understanding of the cellular and molecular processes underlying both intra-patient tumour 

heterogeneity and metastasis is crucial for the success of personalized cancer therapy. In our study, 

transcriptional profiling of tumours and matched metastases revealed cancer site-specific 

phenotypes and increased glucocorticoid receptor (GR) activity in distant metastases. GR mediates 

the effects of stress hormones and synthetic derivatives used widely in the clinic as anti-

inflammatory and immunosuppressive agents. We show that increase in stress hormones during 

breast cancer (BC) progression results in GR activation at distant metastatic sites, increased 

colonization and, ultimately, reduced survival. Transcriptomics, proteomics and 

phosphoproteomics studies implicated GR in the activation of multiple processes in metastasis and 

in the increased expression of kinase ROR1, which correlate with shorter patient survival. Ablation 

of ROR1 reduced metastatic outgrowth and prolonged survival in preclinical models. Our results 

suggest that GR activation increases heterogeneity and metastasis, which thus calls for cautious 

use of glucocorticoids in the treatment of BC patients with cancer-related complications. 
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3.2 Increase in GR activation in distant metastases  

 

Intra-patient tumour heterogeneity describes a poorly understood phenomenon during malignant 

progression by which cancer cells and patients themselves undergo genetic and epigenetic as well 

as hormonal and immunological changes,(Marusyk, Almendro and Polyak, 2012; Almendro, 

Marusyk and Polyak, 2013; Meacham and Morrison, 2013; Koren and Bentires-Alj, 2015; Chaffer 

et al., 2016)(Meacham and Morrison, 2013). Phenotypic changes in cancer cells are a consequence 

of selection and adaptation that may result in cancer growth at distant sites years after primary 

tumour diagnosis and removal(Vanharanta and Massagué, 2013),(Obenauf and Massagué, 2015). 

Intra-patient tumour heterogeneity is an obstacle to treatment, spawning divergence in diagnostic 

markers between primary tumours and matched metastases that may lead to inadequate 

treatment(Lindström et al., 2012). Our understanding of such global phenotypic changes arising 

at distant metastatic sites is still fragmentary(Alizadeh et al., 2015).  

To explore heterogeneity between tumours and distant metastases in clinically relevant 

models, we implanted 17 primary-derived xenografts (PDX) or cell lines into mammary glands of 

NOD-scid IL2rγnull (NSG) immunodeficient mice, resected the primary tumours, and monitored 

metastasis. Metastases were found in lung, liver, spleen, and ovaries, and as circulating tumour 

cells (CTC) (Fig. 3.1a, Extended Data Fig. 3.1a-e and Supplementary Table 1). To compare 

matched tumours and metastases, we isolated cancer cells by fluorescence-activated cell sorting 

(FACS) based on expression of GFP in the MDA-MB 231 model or of the human specific marker 

CD298(Lawson et al., 2015) in PDX models (Extended Data Fig. 3.1b,e), and performed global 

transcriptional profiling. Principal component analysis (PCA) revealed cancer cell clusters mainly 

according to the site of the metastases (Fig. 3.1b and Extended Data Fig. 3.1f, g-m). The cellular 

processes that differed most frequently between tumours and matched metastases were hypoxia, 

various metabolic processes and mTOR signalling (Extended Data Fig. 3.1g-i and Supplementary 

Table 2).  

Using an integrated system for motif activity response analysis (ISMARA)(Balwierz et al., 

2014), we modelled transcription factor activity in these samples and in publicly available 

datasets(Hosseini et al., 2016). We found a recurrent increase in glucocorticoid receptor (GR) 
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activity in metastases (Extended Data Fig. 3.2a-c). Ingenuity Pathway Analysis (IPA) showed 

correspondence between differential GR expression in tumours and matched metastases and the 

expression profiles evoked by glucocorticoids, such as dexamethasone (DEX) and triamcinolone 

acetonide (Fig. 3.1d and Extended Data Fig. 3.1g-i). In addition, distant lung metastases showed 

GR nuclear localization, a further indication of GR activation in metastases (Extended Data Fig. 

3.2d). The levels of the stress hormones cortisol and corticosterone were higher in the plasma of 

mice with metastases (M1 animals) than in the healthy controls or mice with tumours but no 

metastases (M0) (Fig. 3.1e, f). However, genes involved in stress hormone biosynthesis were not 

expressed in cells isolated from tumours or metastases (Extended Data Fig. 3.2e-h), suggesting 

that the increases in the hormone were not generated by the cancer cells themselves. 

Adrenocorticotropic hormone (ACTH), which promotes the production and release of cortisol and 

corticosterone, was also higher in the plasma of mice with metastases (Fig. 3.1g). Increased 

cortisol and corticosterone levels were associated with increased tumour volume (Extended Data 

Fig. 3.2i-k). Taken together, our data reveal enhanced GR activity in BC metastases, most likely 

due to an increase in glucocorticoids during BC progression.  
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Figure 3.1 - Increase in GR activation in distant metastases. a, Experimental design of the study. PDX models or 

MDA-MB 231 cells were transplanted into mammary fat-pads of female NSG mice. Cells isolated from the “tumour” 

(tumour cells found in the mammary fat-pad after orthotopic injection/transplantation) or matched “metastases” 

(cancer cells found at distant sites such as lungs, liver etc. weeks after tumour resection) were sorted by FACS. b, 

Principal component analysis of tumours and matched metastases in the MDA-MB 231 model: clustered 

transcriptional profiles based on the sites of metastases. The identifiers in the PCA plot represent tumour cells isolated 

from the indicated sites; the numbers within the identifiers indicate a specific mouse; n=3 biological replicates (mice). 

c, Heatmap of genes differentially expressed in tumours, CTC, liver and lung metastases in the MDA-MB 231 model; 

280 genes, yellow = upregulation, blue = downregulation, fold change≥2, FDR<0.05, n=3 biological replicates (details 

on statistical tests are available in the methods section). d, Ingenuity Pathway Analysis revealed GR and GR ligands 

as the upstream regulators of the lung metastatic phenotype, n=3 biological replicates, Fisher’s Exact Test. Increased 

levels of e, cortisol; f, corticosterone (n=8 Normal, n=10 M0, n=12 M1 animals) and g, ACTH (n=7 Normal, n=10 

M0, n=7 M1 animals) in plasma of animals prior to tumour resection (M0) and of animals with distant metastases 

(M1) compared to age-matched tumour-free animals (Normal). Means and single data points are represented, n 

represents biological replicates (mice), two-tailed Student’s t-test. 

 

3.3 GR activation escalates metastatic colonization and reduces survival 
 

Stress hormone levels are also higher in BC patients with metastases than in age-matched healthy 

women or patients without metastases(Van Der Pompe, Antoni and Heijnen, 1996), and abnormal 

or flattened cortisol rhythms correspond with shorter survival of patients with advanced 

BC(Sephton, 2000). We sought to examine the cell autonomous effect of glucocorticoids on 

metastasis. Given the observed GR activation profile in BC metastases, we hypothesized that GR 

activation in cancer cells promotes metastatic colonization in lungs of experimental animals. In 

vitro GR activation of MDA-MB 231 cells by DEX resulted in the anticipated expression of GR 

target genes (GR signature), which was reversible upon DEX withdrawal (Extended Data Fig. 

3.3a, b). We used an experimental metastases assay to test colonization capacity in which 

immunodeficient and immunocompetent mice were injected i.v. with GR-activated or control 

MDA-MB 231 or 4T1 cancer cells, respectively. Notably, GR activation with a clinically relevant 

DEX dose(Pang et al., 2006) increased the colonization capacity of MDA-MB 231 and 4T1 cells 

(Fig. 3.2a,b and Extended Data Fig 3.3c). Next, we downregulated GR in MDA-MB 231 cells 
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using short hairpin RNAs targeting GR (shGR1, shGR2) (Extended Data Figure 3.3d,e). DEX 

treatment had no effect on the expression of GR targets in shGR cells (Extended Data Fig. 3.3f). 

To test whether the observed colonization is evoked by GR activation, DEX-treated shGR and 

control (shCTRL) MDA-MB 231 cells were i.v. inoculated into NSG mice. DEX resulted in 

metastatic escalation in shCTRL but not in shGR cells lacking GR (Extended Data Fig. 3.3g, h). 

The data suggest that the glucocorticoid-mediated escalation of metastasis is GR dependent. 

Interestingly, treatment of MDA-MB 231 cells with the GR antagonist mifepristone decreased 

metastatic colonization relative to vehicle-treated and GR-activated cells (Extended Data Fig. 

3.3i). However, this did not substantially prolong overall survival when compared to vehicle 

treatment, possibly due to the shortness of the mifepristone treatment as against sustained GR 

downregulation by shRNA (Extended Data Fig. 3.3j). Taken together, the enhanced growth of 

cancer cells in lungs upon GR activation and the decreased colonization capacity of GR down-

regulated cells suggest that GR activation enhances the colonization step of metastases via a cancer 

cell-autonomous mechanism. 

Glucocorticoids are widely used in the treatment of metastatic BC to combat side-effects 

of chemotherapy and to treat symptoms related to advanced cancer. To address the effects of GR 

activation on the treatment of BC metastasis, we applied paclitaxel to animals injected i.v. with 

4T1, shCTRL or shGR MDA-MB 231 cells. In the 4T1 model, DEX- and paclitaxel-treated Balb/c 

animals displayed shorter overall survival than animals that received vehicle and paclitaxel 

(Extended Data Figure 3.4a). In the MDA-MB 231 model, paclitaxel treatment reduced metastatic 

progression and survival in shGR1 and shGR2 MDA-MB 231, regardless of DEX application. 

Remarkably, GR activation in shCTRL-injected animals offset the paclitaxel effects, escalating 

metastases and decreasing survival compared to shCTRL non-DEX-treated animals (Extended 

Data Fig. 3.4b-d).  

The experimental metastasis assay recapitulates only the last steps of the metastatic 

cascade(Saxena and Christofori, 2013). Therefore, we assessed the effects of DEX administration 

after resection of orthotopically implanted tumours and found that it precipitated metastasis and 

death of MDA-MB 231, PDX1 and 4T1-bearing animals (Fig. 3.2c, Extended Data Fig. 3.5a, b). 
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The data thus show that DEX enhanced metastases and reduced overall survival of the animals in 

both the experimental and the orthotopic metastasis assays. 

Next, we asked whether GR signalling also affects primary tumour growth. GR 

downregulation had no effect on tumour volume (Extended Data Fig. 3.5c) but increased cancer 

cell motility as shown by two-photon intravital microscopy (Supplementary Data Videos 1-3). 

Moreover, GR knockdown enhanced the number of tumour cells in the circulation and in the lungs 

(Extended Data Fig. 3.5d, e). Yet, this increased dissemination did not translate into a decrease in 

overall survival of the animals (Extended Data Fig. 3.5f) presumably because of the lower 

colonization capacity of cells lacking GR (Extended Data Fig. 3.3f, g). Of note, orthotopic 

injection of DEX- or vehicle-treated cells resulted in a slight increase in tumour volume in shCTRL 

but not in the shGR MDA-MB 231 model (Extended Data Fig. 3.5g). 

 

 

Figure 3.2. GR activation escalates metastatic colonization and reduces survival. a, Experimental design. MDA-

MB 231 cells were propagated in the presence of DEX for 7 days before injection into mice. b, Box plot: GR activation 

increased lung colonization upon i.v. injection with MDA-MB 231 cells. Right, bioluminescence imaging two weeks 

after cell injection, n=7 mice, two-tailed Student’s t-test. Box-plots, centre line- median, box extends from the 25th to 

75th percentiles, whiskers extend to the most extreme data points. c, DEX administration after MDA-MB 231 tumour 

removal (orthotopic model) reduced survival, n=12 DEX and n=18 control (vehicle) treated mice, pooled data from 3 

independent experiments, two-tailed log-rank test. 
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3.4 GR activation induces signalling networks and protein kinases implicated 

in breast cancer progression 
 

We assessed the molecular consequences of GR activation in order to determine the mechanism 

causing escalated metastatic colonization in GR-activated cells. Global proteomic analysis of 

lysates from GR-activated cells revealed 437 up- and 472 downregulated proteins. Markers of GR 

activation and processes such as epithelial–mesenchymal transition (EMT), glucose and 

nicotinamide metabolism, cytoskeleton organization, and pathways involved in metastases (e.g., 

EGFR, Hippo)(Marotta et al., 2011),(Liu et al., 2018),(Li et al., 2017) all increased upon GR 

activation. Sixty-three of the upregulated proteins were kinases, of which six were higher at the 

RNA level in metastases than in tumours of the MDA-MB 231 and PDX models (Fig. 3.3a,b, 

Extended Data Fig. 3.6a-d, Extended Data Fig. 3.7, and Supplementary Table 3). Notably, 

expression levels of GR-upregulated kinases in tumours of BC patients were predictive of 

decreased relapse-free survival (Extended Data Fig. 3.8).  

 

Figure 3.3. GR activation induces signalling networks and protein kinases implicated in breast cancer 

progression. a, Proteomic analysis of DEX GR-activated and vehicle-treated MDA-MB 231 cells (upper panel) and 

String proteome network analysis of differentially regulated networks (lower panel) upon DEX treatment of MDA-

MB 231 cells, n=3 “vehicle” biological replicates, n=4 “DEX” biological replicates, Fisher’s Exact Test (details 
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available in the methods section). b, Overlap of differentially regulated protein kinases in lung metastases of the MDA-

MB 231 model and in vitro propagated cells. List of 13 common kinases in both datasets (the 6 upregulated kinases 

are shown in orange). 

 

3.5 ROR1 mediates GR-induced lung metastatic colonization  

 

One of the kinases upregulated in transcriptome and proteome analyses was ROR1, which has 

been implicated previously in BC(Li et al., 2017),(Cui et al., 2013),(Chien et al., 2016). The ROR1 

signature of tumour samples showing ROR1 amplification(Lorinc Pongor et al., 2015) was 

associated with decreased survival (Extended Data Fig. 3.9a). Transcriptome analyses of recently 

published BC metastasis data(Robinson et al., 2017) revealed a correlation between high ROR1 

levels in distant metastases and the GR activation signature (Fig. 3.4a and Extended Data Fig. 

3.9b). Analysis of published BC datasets(Curtis et al., 2012),(Pereira et al., 2016) indicated co-

expression of GR, the GR signature and ROR1 (Extended Data Fig. 3.9c). Of note, the GR 

signature correlated with the claudin-low intrinsic BC subtype (Extended Data Fig. 3.9d). 

Furthermore, FACS analysis confirmed higher ROR1 levels in metastases of MDA-MB 231 and 

PDX1 than in matched primary tumours (Fig. 3.4b). DEX treatment increased ROR1 levels in 

MDA-MB 231 parental and shCTRL compared to vehicle-treated cells but not in shGR cells 

(Extended Data Fig. 3.10a). Conversely, DEX administration in vivo increased ROR1 levels in 

shCTRL but not in shGR MDA-MB 231 tumours or lung metastases (Extended Data Fig. 3.10b, 

c). GR activation in vitro enhanced the expression and abundance of the ROR1 ligand Wnt5a 

(Extended Data Fig. 3.10d, e). Wnt5a has been implicated in multiple processes in BC and was 

recently reported to be a GR target(West et al., 2018). Wnt5a levels were also higher in MDA-MB 

231 metastases than in primary tumours in shCTRL, shGR1 and shGR2 suggesting that it can be 

induced by additional means than GR activation (Extended Data Fig. 3.10f). Consistently, 

phosphoproteomic analysis revealed higher activities of multiple members of the Wnt and Hippo 

pathways in GR-activated MDA-MB 231 cells than in controls (Extended Data Fig. 3.10g and 

Supplementary Table 5). 
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Next, we addressed the effect of ROR1 knockdown (Extended Data Fig. 3.10h) on 

metastasis using both the experimental metastases and the orthotopic assays. Downregulation of 

ROR1 by two independent inducible shRNAs decreased metastasis and prolonged survival in both 

assays (Fig. 3.4c and d; Extended Data Fig. 3.10i). Notably, ROR1 ablation halted metastases 

evoked by GR activation and prevented the precipitated death of the animals (Fig. 3.4c, Extended 

Data Fig. 3.10j-o). Taken together, the data suggest that increased colonization upon GR activation 

is mediated via ROR1. 

 

Figure 3.4. ROR1 mediates GR-induced lung metastatic colonization. a, GR activation signature (SGR) and ROR1 

correlation in BC metastases, n=88 metastases among them n=7 bone metastases. Pearson correlation. b, Flow 

cytometry analysis of ROR1 levels in tumours and matched metastases of MDA-MB 231 and PDX1, n=3 biological 

replicates. c, Experimental metastases assay and in vivo bioluminescence imaging of animals inoculated i.v. with GR-

activated or control MDA-MB 231 cells downregulated for ROR1 or shCTRL, means ± s.d., n=10 mice, pooled data 

from 2 independent experiments, ns= non-significant, two-tailed Student’s t-test. d, Kaplan-Meier survival analysis 

of animals inoculated i.v. with control or shROR1 MDA-MB 231 cells, n=10 mice per group, two-tailed log-rank test. 

 



37 

 
 

 

3.6 Discussion 
 

Tumour heterogeneity is one of the major obstacles to the treatment of metastatic BC. We show 

here that metastases display distinct phenotypes related to their growth sites. We also find that the 

stress hormone pathway is an effective inducer of colonization and the death of the animals, and 

that ROR1 ablation prevents the deleterious effect of GR activation. The data also reveal that GR 

activation decreases the efficacy of paclitaxel. Corticosteroids such as DEX are widely used in the 

treatment of BC to combat side-effects of chemotherapy and to treat symptoms related to advanced 

cancer. Given that cancer cell dissemination has already occurred by the time of primary tumour 

surgical resection in a substantial number of BC patients(Braun et al., 2005; Hosseini et al., 2016), 

and that GR activation fosters colonization at the distant sites, our results call for caution when 

administering corticosteroids to patients. Of note, GR has been shown to evoke adaptive resistance 

to anti-androgen receptor therapy in prostate tumours(Arora et al., 2013). Thus, assessment of the 

effects of stress hormone pathways on metastasis and response to therapy is also warranted in other 

cancer types. 
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3.7 Extended figures  
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Extended Data Fig. 3.1 | Increase in GR activation in breast cancer metastases. a, Tumours and matched lung, 

liver, ovary and spleen metastases in the MDA-MB 231 model (haematoxylin and eosin staining). Scale bar, 200 μm. 

Right, frequency of metastases detected in distant organs upon tumour resection. n = 10 from 5 independent 

experiments. b, FACS analysis of organs affected with distant metastases in the MDA-MB 231 model. n = 10. c, 

Tumour growth kinetics after orthotopic transplantation in the MDA-MB 231 model (n = 9) and PDX1, PDX2 and 

PDX3 models (n = 5, 4 and 9 respectively). Mean ± s.e.m. Right, tumour and matched lung metastases in the PDX1 

and PDX2 models (haematoxylin and eosin staining). Scale bar, 200 μm. d, Tumour and matched lung, liver or ovary 

metastases in the PDX3 model (haematoxylin and eosin staining). Scale bar, 200 μm. Right, frequency of metastases 

detected in distant organs upon tumour resection. n = 10. e, FACS analysis of PDX3 tumour and organs with matched 

metastases. n = 5. f, Principal component analysis of PDX3 tumours (n = 4) and matched liver (n = 3) and lung (n = 

3) metastases. g–i, Heat maps of genes that are differentially expressed and upstream regulator analysis, for the MDA-

MB 231 model. n = 3, Fisher’s exact test. g, Tumours and liver metastases. h, Tumours and circulating tumour cells. 

i, Tumour and spleen. j–m, Heat maps of genes that are differentially expressed for PDX models. j, PDX1 tumour (n 

= 4) and lung metastases (n = 3). k, PDX2 tumour and lung metastases (n = 4). l, PDX3 tumour and lung metastases 

(n = 4). m, PDX3 tumour and liver metastases (n = 4). n represents biological replicates (mice) in all panels. Threshold 

criteria for all differential-expression heat map analyses are a fold-change ≥ 2 and FDR < 0.05. The statistical approach 

for differential expression analysis is provided in Methods. 
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Extended Data Fig. 3.2 | GR activation in distant metastases and circulating tumour cells. a, ISMARA 

transcription-factor-activity plot of the tumour, lung, liver metastases and circulating tumour cells in the MDA-MB 

231 model. n = 3 biological replicates. b, ISMARA transcription-factor activity of PDX models. n = 4 (apart from 

PDX1 lung metastases, n = 3) biological replicates (mice). c, GR transcription-factor binding sites in lung metastases 

of PDX1, PDX2, PDX3, MDA-MB 231 and BALB/c–NeuT models14. n = 4 (apart from PDX1 lung metastases, n = 

3) biological replicates (mice). d, GR expression in tumours and matched lung metastases in MDA-MB 231, PDX1, 

PDX2 and PDX3 models. n = 3 biological replicates (mice). Scale bar,100 μm. e–h, Expression of genes involved in 

glucocorticoid synthesis, with HPRT1 as an internal control. e, MDA-MB 231, n = 3. f, PDX1, n = 4 tumours and n = 
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3 lung metastases. g, PDX2, n = 4. h, PDX3 models, n = 4. Mean ± s.d., n indicates biological replicates (mice). i–k, 

Subgroup analysis of plasma hormone levels in mice of the MDA-MB 231 model before tumour resection (M0 mice). 

The M0 group has been split at the median into two groups, one with smaller tumours (mean volume, 446 mm3) and 

the other with larger tumours (mean volume, 692 mm3). i, Cortisol levels. j, Corticosterone levels. k, 

Adrenocorticotropic hormone levels. Means and single data points are represented. n = 5 biological replicates (mice), 

two-tailed Student’s t-test. 
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Extended Data Fig. 3.3 | Glucocorticoids promote colonization via GR. a, Expression of GR targets (qPCR). Mean 

± s.d., n = 6 biological replicates, in technical duplicates; two-tailed Student’s t-test. b, Expression of GR targets three 

weeks after discontinuation of GR activation by dexamethasone. Mean ± s.d., n = 3 biological replicates in technical 

duplicates, two-tailed Student’s t-test. c, Number of metastatic foci in lungs of mice injected with 4T1 dexamethasone 

or vehicle-treated cells. n = 9 mice, two-tailed Student’s t-test. d, GR downregulation in MDA-MB 231 cells (left, 

qPCR; right, immunoblotting). Mean ± s.d., n = 3 biological replicates, two-tailed Student’s t-test. e, MDA-MB 231 

cells were propagated in the presence of dexamethasone or vehicle for seven days. n = 7 biological replicates. f, GR-

downregulated MDA-MB 231 cells did not express the GR-activation marker gene set upon dexamethasone treatment. 

Mean ± s.d., n = 3 biological replicates in technical duplicates, two-tailed Student’s t-test. g, Bioluminescence imaging 

12 h, 24 h and 48 h after intravenous injection of control and dexamethasone-treated MDA-MB 231 cells transduced 

with control or GR shRNA. n represents biological replicates (mice), mean ± s.d., two-tailed Student’s t-test. h, 

Bioluminescence imaging of mice two weeks after intravenous injection. n = 15 for vehicle + control shRNA, 

dexamethasone + control shRNA, and dexamethasone + GR shRNA 2 (shGR2); n = 14 for dexamethasone + GR shRNA 

1 (shGR1); n = 13 for vehicle + GR shRNA 2; n = 12 for vehicle + GR shRNA 1. Three independent experiments; n 

represents biological replicates (mice), two-tailed Student’s t-test. i, Bioluminescence imaging two weeks after 

intravenous injection of GR-activated, mifepristone- or vehicle-treated MDA-MB 231 cells. n = 10 mice, 2 

independent experiments, two-tailed Student’s t-test. j, Kaplan–Meier survival analysis of mice upon intravenous 

injection of GR-activated, mifepristone- or vehicle-treated MDA-MB 231 cells. n = 10 mice for vehicle and 

dexamethasone groups; n = 9 for mifepristone group. Two independent experiments, two-tailed log-rank test, vehicle-

treated versus mifepristone-treated groups, P = 0.054. In box plots, the centre line indicates the median, the box extends 

from the 25th to 75th percentiles and whiskers extend to the most extreme data points. 
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Extended Data Fig. 3.4 | Dexamethasone offsets the response to paclitaxel. a, Kaplan–Meier survival analysis of 

mice intravenously injected with 4T1 GR-activated or control cells. Dexamethasone decreases 4T1 response to 

paclitaxel in vivo. Paclitaxel was administrated five days after 4T1 cell inoculation. n = 9 control; n = 10 

dexamethasone-treated biological replicates (mice) per group; 2 mice were censored; two-tailed log-rank test. b, 

Dexamethasone offsets paclitaxel effect in the MDA-MB 231 model. Analysis of colonization potential under 

paclitaxel treatment of MDA-MB 231 cells transduced with one of the two GR shRNAs or control shRNA, and treated 

with dexamethasone or vehicle, intravenously injected into NSG mice. Two paclitaxel injections (15 and 22 days after 

cell injection). Mean ± s.d., n = 5 mice per group, two-tailed Student’s t-test. c, Bioluminescence imaging 

corresponding to day 21 of b. d, Kaplan–Meier survival analysis of mice shown in b. n = 5 biological replicates (mice) 

per group, two-tailed log-rank test. 
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Extended Data Fig. 3.5 | Dexamethasone reduces overall survival and GR downregulation increases cancer cell 

dissemination from the primary site. a, b, Upon tumour removal from the 4th mammary gland, randomized mice 

were treated with dexamethasone or vehicle on 5 consecutive days (intraperitoneal injection of 0.1 mg kg−1 

dexamethasone once daily). Kaplan–Meier survival analysis in PDX1 model (n = 8 control; n = 7 dexamethasone-

treated biological replicates (mice)) (a) or 4T1 model (n = 8 control; n = 9 dexamethasone-treated biological replicates 

(mice)) (b). Two 4T1 mice were censored. Two-tailed log-rank test (a, b). c, GR downregulation in MDA-MB 231 

cells does not affect tumour volume, relative to tumour cells transduced with control shRNA, at resection. Mean ± 

s.d., n = 14 biological replicates (mice), pooled data from 3 independent experiments, two-tailed Student’s t-test. d, 

Circulating tumour cell count measured by the number of in vitro propagated colonies upon circulating tumour cell 

isolation from peripheral blood of tumour-bearing mice at tumour resection time point. Mean ± s.d., n = 5 biological 

replicates (mice), two-tailed Student’s t-test. e, In vivo bioluminescence imaging upon tumour removal. In the boxplot, 

the centre line is the median, the box extends from the 25th to 75th percentiles, and whiskers extend to the most extreme 
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data points. n = 17 control shRNA; n = 10 GR shRNA 1 and 2 biological replicates (mice), pooled data from 3 

independent experiments, two-tailed Student’s t-test. f, Kaplan–Meier survival analysis of mice upon of removal of 

MDA-MB 231 tumours transduced with control shRNA or one of the two GR shRNAs,  

and treatment with dexamethasone or vehicle. n = 13 biological replicates (mice) per group, pooled data from 3 

independent experiments, two-tailed log-rank test. g, Tumour volumes at resection. In vitro dexamethasone- or 

vehicle-treated MDA-MB 231 cells transduced with control shRNA, GR shRNA 1 or GR shRNA 2 inoculated into 

the mammary fat pad of NSG mice. n = 13 control shRNA; n = 8 GR shRNA 1 and 2 biological replicates (mice), 

pooled data from 2 independent experiments, two-tailed Student’s t-test. All tumours in all experiments were resected 

at the same time point. 

 

 

 

Extended Data Fig. 3.6 | Differential expression of protein kinases in tumours and matched metastases. a–d, 

Expression of protein kinases in MDA-MB 231 model, n = 3 biological replicates (mice) (a); PDX1 model, n = 4 

tumour and n = 3 matched lung metastases; biological replicates (mice) (b); PDX2 model, n = 4 biological replicates 

(mice) (c); and PDX3 model, n = 4 biological replicates (mice) (d). The threshold criteria used for the analysis are 

fold-change ≥ 2 and P < 0.05. Further details of the statistical analysis are provided in Methods. 
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Extended Data Fig. 3.7 | Differential protein abundance upon GR activation. a, Volcano plot of protein abundance 

after GR activation in MDA-MB 231 cells. n = 3 control; n = 4 dexamethasone-treated biological replicates, Bayes-

moderated t-statistics, P values corrected for multiple testing using the Benjamini–Hochberg method, calculations 

performed in R using the LIMMA package, Bioconductor. b, Heat map of differentially abundant proteins in 

dexamethasone-treated and vehicle-treated (control) cells. n = 3 control; n = 4 dexamethasone-treated biological 

replicates; FDR < 0.05, Bayes-moderated t-statistics; P values were corrected for multiple testing using the 

Benjamini–Hochberg method, calculations performed in R using the LIMMA package, Bioconductor. c, Abundance 

of proteins used for generation of the GR activation signature. n = 3 control; n = 4 dexamethasone-treated biological 

replicates, mean ± s.d., two-tailed Student’s t-test. d, Pathway enrichment analysis of all phosphoproteins with 

significant abundance changes against all phospho-proteins quantified as a background using MetaCore (Clarivate 

Analytics). Enrichment P values and FDRs were determined by the software-specific algorithms using default 

parameters. 
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Extended Data Fig. 3.8 | GR activation increases the expression of kinases that are predictive of survival 

in breast cancer. Survival based on the expression of the protein kinase signature that is upregulated in the 

metastases. a, Relapse-free survival, two-tailed log-rank test. b, Distant metastasis-free survival, two-tailed log-rank 

test. c, Postprogression survival, two-tailed log-rank test. Number of patients (n) and P values are presented in the 

panels. d, Individual protein kinases, relapse-free survival, n = 1,764, two-tailed log-rank test. e, Co-occurrence of 

GR and protein kinases in publically available breast cancer datasets, Fisher’s exact test, n = 2,509 (refs. 27,28). 

 

 

Extended Data Fig. 3.9 | ROR1 expression in breast cancer and metastases. a, Relapse-free survival analysis 

of patients with the ROR1 signature (G-2-0, Kaplan–Meier), n = 4,029, two-tailed log-rank test. b, GR-activation 

signature correlates with increased levels of ROR1 in breast cancer metastases. n = 21 lymph node; n = 34 liver 

metastases. Pearson correlation. c, Co-occurrence of GR-activation gene signature with GR and ROR1, n = 2,509 

(refs. 27,28), Fisher’s exact test. d, Breast cancers that express high levels of GR mRNA were enriched in the 

claudinlow profile, n = 299 (refs. 27,28). 
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Extended Data Fig. 3.10 | Dexamethasone increases metastases and precipitates death, via ROR1. a, 

ROR1 expression in in vitro propagated control and GR-downregulated cells. Mean ± s.d., n = 6 biological replicates, 

two-tailed Student’s t-test. b, c, ROR1 qPCR. RNA from tissues of mice injected with control or GR-downregulated 

cells in tumours (n = 4 biological replicates (mice)) (b) and lung metastases (n = 4, vehicle + control shRNA, 

dexamethasone + control shRNA and dexamethasone +GR shRNA 1 or 2; n = 3 vehicle + GR shRNA 1 or 2, biological 

replicates (mice) in technical duplicates or triplicates) (c). Mean ± s.d., two-tailed Student’s t-test. d, Levels of 

WNT5A protein in supernatant of dexamethasone-treated or vehicle-treated MDA-MB 231 cells transduced with 

control or one of the two GR shRNAs. Mean ± s.d., n = 3 biological replicates, two-tailed Student’s t-test. e, WNT5A 

qPCR in dexamethasone-treated or vehicle-treated MDA-MB 231 cells transduced with control or one of the two GR 

shRNAs. Mean ± s.d., n = 4 biological replicates in technical triplicates, two-tailed Student’s t-test. f, Levels of 

WNT5A protein in tumours transduced with control or one of the two GR shRNAs, and their matched metastases. 

Mean ± s.d., n = 3 biological replicates (mice) in technical duplicates, two-tailed Student’s t-test. g, Pearson correlation 

of GR activation, ROR1, WNT5A and Wnt signalling pathway members in breast cancer metastases. n = 88 breast 

cancer metastases; n = 21 lymph node; n = 34 liver; n = 7 bone metastases. h, ROR1 downregulation in MDA-MB 231 

cells. Mean ± s.d., n = 3 biological replicates in technical duplicates, two-tailed Student’s t-test, qPCR (top) and flow 

cytometry (bottom). i–k, Kaplan–Meier survival analysis of mice intravenously inoculated with vehicle-treated or 

dexamethasone-treated MDA-MB 231cells transduced with control shRNA (i), ROR1 shRNA 1 (shROR1-1) (j) or 

ROR1 shRNA 2 (shROR1-2) (k). n = 5, two-tailed log-rank test. l, Kaplan–Meier survival analysis of mice injected in 

the mammary fat pad with MDA-MB 231 cells transduced with control or one of the two ROR1 shRNAs. n = 21 

control shRNA; n = 23 ROR1 shRNA 1 or 2, two-tailed log-rank test. m–o, Kaplan–Meier survival analysis of mice 

inoculated in the mammary fat pad with MDA-MB 231 cells transduced with control shRNA (m), ROR1 shRNA 1 

(n) or ROR1 shRNA 2 (o), propagated in the presence of dexamethasone or vehicle. n = 8 control shRNA; n = 9 ROR1 

shRNA 1 or 2, two-tailed log-rank test. 
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Data availability. All mass spectrometry raw data files have been deposited to the 

ProteomeXchange Consortium, accession code PXD009102, 

http://proteomecentral.proteomexchange.org. The mRNA sequencing data are deposited at the 

Gene Expression Omnibus (GEO) database and have been currently under evaluation. The 

anticipated date of final validation: January 10, 2019. Datasets generated during this study are 

available in the source files and from the corresponding author on reasonable request.  
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analysed the data and interpreted the results. R.O. characterized the metastatic potential of PDX 
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of metastatic breast cancer samples, analysed the data and interpreted the results. H.K. performed 

fluorescence-activated cell sorting experiments, analysed the data and interpreted the results. M.-

M.C. performed intravital imaging, analysed the data and interpreted the results. A. Schmidt 

performed proteomics and phosphoproteomics experiments, analysed the data and interpreted the 

results. M.B.-A. conceived the study, designed the experiments and interpreted the results. All 

authors read and approved the final manuscript. 

 

3.8 Material and Methods  

 

In vivo experiments. All in vivo experiments were performed in accordance with the Swiss animal 

welfare ordinance and approved by the cantonal veterinary office Basel Stadt. Female severe 

combined NOD-scid IL2rγnull (NSG) and Balb/c animals were maintained in the Friedrich 

Miescher Institute for Biomedical Research and the Department of Biomedicine animal facilities 

in accordance with Swiss guidelines on animal experimentation. Animals were maintained in a 

http://proteomecentral.proteomexchange.org/
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sterile environment with light, humidity and temperature-control (light / dark cycle with light from 

7:00 to 17:00, with a gradual change from light to dark), temperature 21-25°C, humidity 45-65%.). 

Before each experiment, animals were allowed to acclimatize for a minimum of 7 days. MDA-MB 

231 cells (10,000 cells) were resuspended in 40 µl Matrigel:PBS (1:1) and injected into the pre-

cleared mammary fat-pads of 4- to 8-week-old female NSG mice. PDX models were transplanted 

into the pre-cleared 4th mammary fat-pads of NSG mice, while 4T1 cells were injected into the 

mammary fat-pads of 4- to 8-week-old female Balb/c mice. Tumours were resected when the 

largest diameter reached 10 mm and mice were monitored regularly for signs of metastatic 

outgrowth and distress. In none of the experiments tumour volumes exceeded approved limits. All 

orthotropic experimental procedures (tumour resection and tumour cell implantation) were 

undertaken on anesthetized animals by a single investigator according to protocols approved by 

the cantonal veterinary office Basel Stadt. Experimental metastases assays were performed by 

injecting 100,000 cells into tail veins. After i.v. injection of MDA-MB 231, we performed in vivo 

bioluminescence imaging to confirm injection and to monitor metastatic outgrowth. 

Bioluminescence imagining was performed using an IVIS Lumina XR (Caliper LifeSciences) upon 

injection of luciferin (Biosynth; L8220). 

In vivo DEX treatment (water soluble DEX; D2915- Sigma) was performed with clinically relevant 

doses of 0.1 mg/kg for 5 consecutive days as previously described(Pang et al., 2006). Mifepristone 

(Selleckchem, S2606) treatment was performed for 5 consecutive days as previously 

described(Skor et al., 2013). Paclitaxel (T7191- Sigma) was administrated intraperitoneal once a 

week at 20 mg/kg for 2 weeks in the MDA-MB 231 model and 5 days after i.v. cell injection in 

the 4T1 model. DEX was administrated for 5 consecutive days after each paclitaxel injection. 

Paclitaxel, dexamethasone and mifepristone were administrated by a single investigator. For 

overall survival experiments, independent assessments of mouse fitness were performed by 

multiple investigators. 

Cell lines and PDX models. 

Cell lines MDA-MB 231, 4T1 and HEK293T were purchased from ATCC and cultured according 

to ATCC protocols. Cell line identity was confirmed and routinely tested using short tandem repeat 
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(STR) sequencing; all cell lines were routinely tested for mycoplasma contamination. MDA-MB 

231 and 4T1 cells were propagated in monolayer cultures in DMEM supplemented with 10% FCS. 

GR activation experiments were performed in monolayer cultures in DMEM supplemented 

with 2.5% charcoal-stripped FCS (Thermo Fisher Scientific; cat. no. 12676029) in the presence of 

water-soluble dexamethasone (700 nM, Sigma, D2915) or vehicle for 7 consecutive days. All 

experiments were performed with 70-90% confluent cells. 

The PDX used in this study were described earlier(Gao, Joshua M Korn, et al., 

2015),(DeRose et al., 2011). PDX1, PDX2 and PDX4-11 originated from primary breast 

tumours(Gao, Joshua M Korn, et al., 2015). PDX3 was obtained from a pleural effusion of a BC 

patient(DeRose et al., 2011). The metastatic potentials of the examined PDX models were 

analysed by H&E staining and expression of a human-specific CD298 marker(Lawson et al., 

2015). 

Lentiviral vectors, lentivirus and infection. For GR downregulation, we tested 6 shRNA 

constructs: V3LHS_404051, V3LHS_404052, V2LHS_239186, V2LHS_82796, V2LHS_82797, 

V3LHS_326099 (pGIPZ vector from Dharmacon). ROR1 downregulation was performed using 4 

shRNA constructs: V3THS_349217, V3THS_306714, V3THS_306715, V3THS_240995 

(Dharmacon, pTRIPZ). Non-targeting shRNAs (pGIPZ or pTRIPZ) were used as controls. 

Lentiviral batches were produced using PEI transfection on 293T cells as previously 

described(Britschgi et al., 2017). The titre of each lentiviral batch was determined in MDA-MB 

231 cells. Cells were infected for 8 h in the presence of polybrene (8 µg/ml). Selection with 2 

µg/ml puromycin (Sigma) was applied 48 h after infection. 

Immunoblotting. The cells were lysed in RIPA buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 

1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with 1× protease inhibitor 

cocktail (Complete Mini, Roche), 0.2 mM sodium orthovanadate, 20 mM sodium fluoride, and 1 

mM phenylmethylsulfonyl fluoride. The BCA protein assay kit (Thermo Scientific; cat no. 23227) 

was used to measure and equalize the concentrations of extracted proteins. Whole-cell lysates, 

immunoprecipitates or nuclear cell lysates (40 μg) were subjected to 6% SDS–PAGE, transferred 

to PVDF membranes (Immobilon-P, Millipore), and blocked for 1 h at room temperature with 5% 
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milk in PBS–0.1% Tween 20. Membranes were then incubated overnight with antibodies as 

indicated and exposed to secondary HRP-coupled anti-mouse or -rabbit antibody at 1:5,000–

10,000 for 1 h at room temperature. The results shown for each of the blots presented are 

representative of at least three independent experiments. The following antibodies were used: 

glucocorticoid receptor antibody (GeneTex; cat. no. GTX101120), pSer GR antibody (Thermo 

Fisher Scientific; cat. no. PA5-17668). 

Fluorescence-activated cell sorting. Tumours and matched metastases were mechanically and 

enzymatically digested using a collagenase/hyaluronidase solution (Stemcell Technologies; cat. 

no. 07912) at 37°C. Tumour cells were isolated using FACS based on the expression of GFP in 

MDA-MB 231 and the expression of human-specific marker CD298 in PDX models (Biolegend; 

cat. no. 341706). Prior to CTC sorting, erythrocytes were eliminated using “Red blood cell lysis 

buffer” (Sigma; cat. no. R7757). Cells were filtered twice through 40-μm cell strainers (Falcon) to 

obtain single cells. FACS was carried out with a BD FACSAria III (Becton Dickinson) using a 70-

μm nozzle. Single cells were gated on the basis of their forward and side-scatter profiles and pulse-

width was used to exclude doublets. Dead cells (DAPI bright) were gated out. Antibodies: APC 

anti-human CD298 antibody (Biolegend; cat. no. 341706), APC anti-human ROR1 antibody 

(Biolegend; cat. no. 357805). 

RNA preparation, qPCR and sequencing. Isolated cells were sorted in the extraction buffer of 

the Arctutus PicoPure RNA Isolation Kit (cat. no. 12204-01) and mRNA isolated using the 

manufacturer’s protocol. RNA was depleted of rRNA using the Ribo-Zero Magnetic Kit 

(MRZ11124C) from Epicentre and the column purified with the RNA Cleanup & Concentrator 

from Zymo Research. RNA integrity was measured on an Agilent 2100 Bioanalyzer using RNA 

Pico reagents (Agilent Technologies). The library was prepared using the ScriptSeq v2 RNA-Seq 

Library Preparation Kit (Epicentre). Library quality was measured on an Agilent 2100 

Bioanalyzer for product size and concentration. Single-end libraries were sequenced by an 

Illumina HiSeq 2500 (50-nt read length). Quantitative PCR analysis was performed after mRNA 

isolation (Qiagene, RNeasy Plus Mini kit; cat. no. 74136). We used 1 µg of mRNA for cDNA 

generation (BioRad, iScript cDNA synthesis kit; cat. no. 170-8891) and the IDT master mix. 

HPRT1 was used as a housekeeping gene (IDT Hs.PT.58v.45621572). IDT predesigned qPCR 
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assay Ids: NR3C1: Hs.PT.58.27480377, ROR1: Hs.PT.58.39481678, FN1: Hs.PT.58.40005963, 

KLF9: Hs.PT.56A.15636661, SNAI2: Hs.PT.58.177250059, VIM: Hs.PT.58.38906895, POU5F1: 

Hs.PT.58.14494169g, MT2A: Hs.PT.5046709g, human WNT5a: Hs.PT.58.22221435, mouse 

WNT5a: Mm.PT.58.16402801 and taqman probes (Thermo Fisher Scientific) ANKRD1: 

Hs00923599_m1, ID3: Hs00954037_g1. All measurements were performed in technical duplicate 

and triplicate as previously described(Britschgi et al., 2017). Technical duplicates were preferred 

and duplicates were used only in case of limited cDNA material, i.e. lung metastatic cells. The 

arithmetic mean of the Ct values was used for calculations: target gene mean Ct values were 

normalized to the respective housekeeping genes (HPRT1), mean Ct values (internal reference 

gene, Ct), and then to the experimental control. The values obtained were 2−ΔΔCt expressed as 

fold changes in regulation compared to the experimental control using the 2−ΔΔCt method of 

relative quantification. 

Two-photon intravital microscopy. Tumour-bearing animals were anesthetized with isofluran 

and mounted on a custom-made stage 24 days after orthotopic injection of MDA-MB 231 shCTRL, 

shGR1 or shGR2 cells. Tumours were exposed by skin flap surgery(Wyckoff et al., 2011) using a 

custom-made multiphoton microscope(Bonapace et al., 2012). Imaging was performed as 

previously described(Bonapace et al., 2014). Briefly, tumours were imaged at 880 nm with a 

25X/1.05NA water immersion objective (Olympus). Cell motility was observed by time-lapse 

imaging over 30 min at 2-min intervals, where a 100 μm z-series with 5-μm intervals was recorded 

for each frame. Videos were generated using Image J (National Institutes of Health). For 

visualizing vasculature, 100 μl of 20 mg/ml 70-kDa Texas Red-dextran (Invitrogen, Molecular 

Probes, Switzerland) was injected in PBS into the tail vein of the mice before surgery. 

Quantification of cortisol and corticosterone in mouse plasma. Cortisol (≥99%), corticosterone 

(≥98.5%), and formic acid (≥98%) were purchased from Sigma-Aldrich (Buchs, Switzerland). 

Diazepam (≥98%) was acquired from Toronto Research Chemicals (Toronto, Canada). Oasis HLB 

cartridges (1 cc, 30 mg) were from Waters (Milford, MA). Solvents of LC-MS or higher purity 

grade were used. Stock solutions of compounds were prepared in DMSO or methanol and stored 

at –20°C until use. 
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Mouse blood samples were collected by a single investigator in EDTA-coated tubes and 

mice plasma prepared by centrifugation for 15 min at 2,000 g. All subsequent measurements were 

performed blind. Plasma samples were stored at –80 °C until analysis. To precipitate proteins and 

extract cortisol and corticosterone from mice plasma, 50 µl of plasma was mixed with 950 µl of 

acetonitrile. Samples were shaken for 30 min at 10°C, placed at –20°C for 30 min, and then 

centrifuged at 5°C for 20 min at 24,000 g. Supernatants were separated and the pellets reconstituted 

in 100 µl of water and extracted for a second time with 900 µl of acetonitrile. After a second 

centrifugation (20 min at 24,000 g and 5°C), supernatants from two plasma extraction steps were 

combined and vacuum concentrated to an approximate volume of 100 µl. Oasis HLB solid-phase 

extraction cartridges (SPE; 1 cc, 30 mg) were activated with acetonitrile (1 ml) and conditioned 

with 5% acetonitrile in 0.1% formic acid in water (1 ml). Plasma extracts were applied to the SPE 

cartridges and washed with 0.1% formic acid in water (3 × 1 ml). Analytes were eluted from SPE 

cartridges with acetonitrile (3×0.5 ml). Samples were vacuum concentrated, spiked with a solution 

of internal standard (500 nM diazepam) and made up to 500 µl with HPLC mobile phase.  

For quantification of cortisol and corticosterone in mouse plasma, samples were analysed 

with a Quattro Ultima triple-quadruple mass spectrometer equipped with an electro-spray source 

(Waters, Milford, MA) coupled to an Agilent 1200 HPLC system (Agilent, Santa Clara, CA). The 

analytical column was a HALO C18 (100 × 2.1 mm, 2.7 µm; Advanced Materials Technology, 

Wilmington, Delaware). The column flow rate and temperature were 400 µl·min–1 and 50°C. 

Eluents A and B were 0.1% formic acid in water and acetonitrile, respectively. Gradient elution 

was as follows: 0–1 min, 5% B; 1–10 min, 5→100% B; 10–11 min, 100% B, 11–12 min, 100→5% 

B; 12–15 min, 5% B. Source and desolvation temperatures were 140 and 240°C, respectively; cone 

and desolvation gas flows were 50 and 500 l/h. Capillary voltage was 2.5 kV, cone voltage 70 V, 

and collision energy 16–28 eV. Analyte quantification was performed in the positive ionization 

mode, relative to the internal standard (diazepam) using a multiple-reaction monitoring mode. The 

following transitions were used (m/z): cortisol (363.1→121.1, 327.2, 309.2, 345.2), corticosterone 

(347.1→329.2, 311.2, 293.2, 121.1), and diazepam (285→222, 228, 257; internal standard). 

Calibration curves were prepared by spiking the mobile phase with authentic metabolite standards 

in the concentration range of 0.8–1000 nM. Chromatograms were analysed with MassLynx 4.1 
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software (Waters, Milford, MA). Lower limits of detection (LLOD) and quantification (LLOQ) in 

mouse plasma samples were assessed based on signal-to-noise ratios of 3 and 10, respectively. 

Observed LLOD (lower limit of detection) for cortisol and corticosterone were 1.46 and 0.85 

ng/ml. Observed LLOQ (lower limit of quantification) for cortisol and corticosterone were 4.56, 

0.84, and 2.55 ng/ml. 

Phosphoproteomic analysis. MDA-MB 231 cells propagated for 7 days in charcoal-stripped FCS 

in the presence of DEX or vehicle were mechanically detached, washed and snap frozen. Cells 

were lysed in 8 M Urea (Sigma) and 0.1 M ammonium bicarbonate in the presence of phosphatase 

inhibitors (Sigma P5726&P0044) using strong ultra-sonication (Bioruptor, 10 cycles, 30 s on/off, 

Diagenode, Belgium). Protein concentration was determined by BCA assay (Thermo Fisher 

Scientific) using a small sample aliquot. Aliquots of 250 μg of protein were digested as described 

previously(Ahrné et al., 2016), reduced with 5 mM TCEP for 60 min at 37°C and alkylated with 

10 mM chloroacetamide for 30 min at 37°C. After dilution of samples with 100 mM ammonium 

bicarbonate buffer to a final urea concentration of 1.6 M, proteins were digested by incubation 

with sequencing-grade modified trypsin (1/50 w/w; Promega, Madison, WI) overnight at 37°C. 

After acidification by 5% TFA, peptides were desalted on C18 reversed-phase spin columns 

according to the manufacturer’s instructions (Macrospin, Harvard Apparatus) and dried under 

vacuum. 

Peptide samples were enriched for phosphorylated peptides using Fe(III)-IMAC cartridges on an 

AssayMAP Bravo platform as described recently(Post et al., 2017). The setup of the μRPLC-MS 

system was as described previously(Ahrné et al., 2016). Chromatographic separation of peptides 

was carried out using an EASY nano-LC 1000 system (Thermo Fisher Scientific) equipped with a 

heated RP-HPLC column (75 μm x 37 cm) packed in-house with 1.9 μm C18 resin (Reprosil-AQ 

Pur, Dr. Maisch). Aliquots of 1 μg total peptides were analysed per LC-MS/MS run using a linear 

gradient ranging from 95% solvent A (0.15% formic acid, 2% acetonitrile) and 5% solvent B (98% 

acetonitrile, 2% water, 0.15% formic acid) to 30% solvent B over 90 min at a flow rate of 200 

nl/min. Mass spectrometry analysis was performed on a Q-Exactive HF mass spectrometer 

equipped with a nanoelectrospray ion source (both Thermo Fisher Scientific). Each MS1 scan was 

followed by high-collision-dissociation (HCD) of the 10 most abundant precursor ions with 
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dynamic exclusion for 20 s. Total cycle time was approximately 1 s. For MS1, 3e6 ions were 

accumulated in the Orbitrap cell over a maximum time of 100 ms and scanned at a resolution of 

120,000 FWHM (at 200 m/z). MS2 scans were acquired at a target setting of 1e5 ions, 

accumulation time of 100 ms and a resolution of 30,000 FWHM (at 200 m/z). Singly charged ions 

and ions with unassigned charge state were excluded from triggering MS2 events. The normalized 

collision energy was set to 27%, the mass isolation window was set to 1.4 m/z, and one microscan 

was acquired for each spectrum. 

The acquired raw-files were imported into the Progenesis QI software (v2.0, Nonlinear Dynamics 

Limited), which was used to extract peptide precursor ion intensities across all samples applying 

the default parameters. The generated mgf-files were searched using MASCOT as above using the 

following search criteria: full tryptic specificity was required (cleavage after lysine or arginine 

residues, unless followed by proline); 3 missed cleavages were allowed; carbamidomethylation 

(C) was set as fixed modification; oxidation (M) and phosphorylation (STY) were applied as 

variable modifications; mass tolerance of 10 ppm (precursor) and 0.02 Da (fragments). The 

database search results were filtered using the ion score to set the false discovery rate (FDR) to 

1% on the peptide and protein level, respectively, based on the number of reverse protein sequence 

hits in the datasets. The relative quantitative data were normalized and statistically analysed using 

our in-house script as above(Ahrné et al., 2016). 

Proteomics analysis using tandem mass tags. The peptide sample flow-through obtained after 

IMAC enrichment was dried and 25 µg of peptides labelled with tandem mass isobaric tags (TMT 

10-plex, Thermo Fisher Scientific) according to the manufacturer’s instructions. To control for 

ratio distortion during quantification, a peptide calibration mixture consisting of 6 digested 

standard proteins mixed in different amounts was added to each sample before TMT labelling as 

described recently(Ahrné et al., 2016). After pooling the TMT-labelled peptide samples, peptides 

were again desalted on C18 reversed-phase spin columns according to the manufacturer’s 

instructions (Macrospin, Harvard Apparatus) and dried under vacuum. TMT-labeled peptides were 

fractionated by high-pH reversed phase separation using a XBridge Peptide BEH C18 column (3,5 

µm, 130 Å, 1 mm x 150 mm, Waters) on an Agilent 1260 Infinity HPLC system. Peptides were 

loaded on columns in buffer A (20 mM ammonium formate in water, pH 10) and eluted using a 
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two-step linear gradient starting from 2% to 10% in 5 min and then to 50% (v/v) buffer B (90% 

acetonitrile / 10% ammonium formate: 20 mM, pH 10) over 55 min at a flow rate of 42 µl/min. 

Elution of peptides was monitored with a UV detector (215 nm, 254 nm). A total of 36 fractions 

were collected, pooled into 12 fractions using a post-concatenation strategy as described 

previously(Wang et al., 2011) and dried under vacuum. Aliquots (1 µg) of peptides were LC-MS 

analysed as described above with the following changes: the normalized collision energy was set 

to 35% and the mass isolation window was set to 1.1 m/z.  

The acquired raw-files were converted to the mascot generic file (mgf) format using the msconvert 

tool (part of ProteoWizard, version 3.0.4624 (2013-6-3)). Using the MASCOT algorithm (Matrix 

Science, Version 2.4.1), the mgf files were searched against a decoy database containing normal 

and reverse sequences of the predicted SwissProt entries of Homo sapiens (www.ebi.ac.uk, release 

date 2014/11/24), the 6 calibration mix proteins(Ahrné et al., 2016), and commonly observed 

contaminants (in total 84,610 sequences for Homo sapiens) generated using the SequenceReverser 

tool from the MaxQuant software (Version 1.0.13.13). The precursor ion tolerance was set to 10 

ppm and fragment ion tolerance was set to 0.02 Da. The search criteria were set as follows: full 

tryptic specificity was required (cleavage after lysine or arginine residues unless followed by 

proline), three missed cleavages were allowed, carbamidomethylation (C), TMT6plex (K and 

peptide n-terminus) were set as fixed modification and oxidation (M) as a variable modification. 

Next, the database search results were imported to the Scaffold Q+ software (version 4.3.2, 

Proteome Software Inc., Portland, OR) and the protein false identification rate was set to 1% based 

on the number of decoy hits. Proteins that contained similar peptides and could not be 

differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. 

Proteins sharing significant peptide evidence were grouped into clusters. Acquired reporter ion 

intensities in the experiments were employed for automated quantification and statistically 

analysed using a modified version of our in-house developed SafeQuant R script(Ahrné et al., 

2016). This analysis included adjustment of reporter ion intensities, global data normalization by 

equalizing the total reporter ion intensity across all channels, summation of reporter ion intensities 

per protein and channel, calculation of protein abundance ratios, and testing for differential 
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abundance using empirical Bayes moderated t-statistics. Finally, the calculated P-values were 

corrected for multiple testing using the Benjamini−Hochberg method. 

Immunohistochemistry. Tissue was fixed in FormalFix for 24 h at 4°C, washed with 70% 

ethanol, and embedded in paraffin. Sections (3 μm) were prepared and processed for haematoxylin 

and eosin staining and for immunohistochemistry. 

Wnt5a ELISA. Human Wnt5a BioAssay Elisa kits were purchased from US Biological. Elisa was 

performed according to the manufacturer’s protocol. 

Computational analysis. Sequenced reads were aligned against the human genome (hg19) using 

the R/Bioconductor package QuasR(Gaidatzis et al., 2015) with the unspliced option and allowing 

only uniquely mapping reads unless differently specified. Raw gene counts were obtained by using 

the TxDb.Hsapiens.UCSC.hg19.known Gene package in QuasR, counting only alignments on the 

same strand as the query region. Differential gene expression was determined using 

edgeR(Robinson, McCarthy and Smyth, 2010), a cut-off of a linear fold change ≥2 and an adjusted 

FDR≤0.05 (corrected with the Benjamini–Hochberg algorithm method) were used. An integrated 

system for motif activity response analysis (ISMARA) was performed as described(Britschgi et 

al., 2017). For transcription-factor binding-site enrichment, we used oPOSSUM (v1) 

(http://opossum.cisreg.ca/oPOSSUM3/). We used Ingenuity Pathway Analysis (IPA) in the search 

for the Upstream Regulators. MetaCore pathway analysis was used for the analysis of 

phosphoproteomic data and we used String(Szklarczyk et al., 2017) (https://string-

db.org/cgi/input.pl?UserId=input_page_show_search=on) for analysis of proteomic data. 

Statistical analysis for String-related data was derived from the software integrated Fisher's exact 

test followed by a correction for multiple testing. GSEA was performed using the JAVA 

application from the Broad Institute v2.0 (http://www.broadinstitute. org/gsea). We used 

cBioPortal(Gao et al., 2013),(Cerami et al., 2012) for the GR expression correlation study with 

publicly available data(Curtis et al., 2012),(Pereira et al., 2016).  

RFS, DMFS and PPS were generated using the 2017 version of KMplotter(Györffy et al., 2010) 

(http://kmplot.com/analysis/index.php?p=service&cancer=breast) and ROR1 and kinase-based 

signature relapse-free survival was generated using g-2-o platform (http://www.g-2-

http://kmplot.com/analysis/index.php?p=service&cancer=breast
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o.com/?q=G2OBreast). The ROR1 signature represents a set of genes found to be overexpressed 

in breast tumours with ROR1 amplification(Lőrinc Pongor et al., 2015). 

Gene expression data of 88 metastases of breast cancer were obtained from Robinson et al., 

2017(Robinson et al., 2017) (website: https://met500.path.med.umich.edu/). After removing genes 

encoding for mitochondrial and ribosomal proteins, we performed library size normalization and 

log2 transformation of the remaining 18,115 genes. We created a signature of GR activation (SGR) 

by adding the expression of 8 genes (FN1, KLF9, ANKRD1, MT2A, VIM, SNAI2, POU5F1 and 

ID3) and explored the dataset utilizing Pearson correlation. 

Statistical data analysis. The standard laboratory practice randomization procedure was used 

for cell line groups and animals of the same age and sex. The investigators were not blinded to 

allocation during experiments and outcome assessment. The required number of mice was 

calculated by performing power analysis using data from small pilot experiments. Values 

represent means ± s.d, unless differently stated. P values were determined using unpaired two-

tailed t-tests and statistical significance was set at P=0.05. The variance was similar between 

the groups compared. Experimental replicates are independent experiments. Technical replicates 

are tests or assays run on the same sample multiple times. Data were tested for normal distribution 

and Student’s t-tests (if normally distributed) or nonparametric Mann–Whitney U/Wilcoxon-tests 

were applied unless stated otherwise. Kaplan–Meier plots were generated using the survival 

calculation tool from Graphpad Prism and significance was calculated using the two-tailed log-

rank test at P<0.05 
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4. Results Part III: Single-cell analysis reveals inter- and intra-

tumour heterogeneity in metastatic breast cancer 
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4.1 Abstract  

 

Metastasis is the leading cause of cancer-related deaths of breast cancer patients. Some cancer 

cells in a tumour go through successive steps, referred to as the metastatic cascade, and give rise 

to metastases at a distant site. We know that the plasticity and heterogeneity of cancer cells play 

critical roles in metastasis but the precise underlying molecular mechanisms remain elusive. Here 

we aimed to identify molecular mechanisms of metastasis during colonization, one of the most 

important yet poorly understood steps of the cascade. We performed single-cell RNA-Seq 

(scRNA-Seq) on tumours and matched lung macrometastases of patient-derived xenografts of 

breast cancer. After correcting for confounding factors such as the cell cycle and the percentage of 

detected genes (PDG), we identified cells in three states in both tumours and metastases. Gene-set 

Enrichment Analysis revealed biological processes specific to proliferation and invasion in two 

states. Our findings suggest that these states are a balance between epithelial-to-mesenchymal 

(EMT) and mesenchymal-to-epithelial transitions (MET) traits that results in so-called partial 

EMT phenotypes. Analysis of the top Differentially Expressed Genes (DEGs) between these cell 

states revealed a common set of partial EMT Transcriptions Factors (TFs) controlling gene 

expression, including ZNF750, OVOL2, TP63, TFAP2C and HEY2. Our data suggest that the TFs 

related to EMT delineate different cell states in tumours and metastases. The results highlight the 

marked interpatient heterogeneity of breast cancer but identify common features of single cells 

from five models of metastatic breast cancer. 
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4.2 Interpatient heterogeneity is dominant over intrapatient heterogeneity 

 

Breast cancer is the most frequent cancer type in women worldwide, causing about 700,000 deaths 

per year(Sung et al., 2021). Most of these fatalities result from metastasis(Hanahan and Robert A. 

Weinberg, 2011), a multi-step process in which cells from the tumour disseminate and colonize 

distant organs. Previous work has shed light on the different stages undergone by these cancer 

cells: invasion of the tissue surrounding the tumour, intravasation and dissemination as circulating 

tumour cells, extravasation, and colonization of the distant site. This process(Massagué and 

Obenauf, 2016) involves phenotypic changes that increase the resistance of specific cells to the 

conditions of the “foreign” environment and result in metastasis(Fares et al., 2020). Important in 

this regard is the plasticity and stemness of cancer cells, which reversibly result in epithelial, 

mesenchymal or stem cell-like states(Jehanno et al., 2022). Secondly, the inherent heterogeneity 

of cancer cell populations (Almendro, Marusyk and Polyak, 2013),(Koren and Bentires-Alj, 2015) 

at the genetic, epigenetic and microenvironmental levels predisposes some cells to the foreign 

environment. Thus, identifying the molecular mechanisms underlying metastatic progression is 

paramount to understanding this currently incurable disease and improving patient care. New 

technologies have been leveraged to better characterize the drivers of metastasis at various stages 

of the cascade, but some remain elusive due to the lack of granularity of bulk-sequencing 

approaches.  

To better understand heterogeneity at the single-cell level, we orthotopically implanted 

four patient-derived xenografts (PDX)(Gao, Joshua M. Korn, et al., 2015) and a cell line (see 

supplementary table) known for their lung metastatic potential into NOD-SCID-Il2rgnull (NSG) 

mice (Fig. 4.1a). Tumours were resected from the mammary fat pad and the animals were 

monitored for metastasis. Once the animals showed signs of distress (i.e., weight loss, difficulty to 

breath), lungs presenting metastatic lesions were collected and processed for single-cell 

transcriptional profiling. To exclude murine cells from the downstream analysis, human cancer 

cells from the tumours and matched lung metastases were purified via FACS gating GFP-positive 

MDA-MB-231 cells (Fig. 4.1b) or CD298-positive cells for PDX models (Fig. 4.1c). Single cells 

were isolated using a microfluidic device (Fluidigm C1) ahead of library preparation and 
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sequencing. This workflow yielded a total of 1,523 single cells (Supplementary Fig. 4.1a) after 

RNA-Seq and quality control.  

Initial clustering of the quality-controlled data revealed that the cells formed groups 

(clusters) according to the donor models (Fig. 4.1d). Within each cluster, cells did not clearly 

separate based on their origin, tumour, or metastasis (Fig. 4.1e). These observations highlight the 

importance of interpatient over intrapatient heterogeneity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 
 

 

 

Figure 4.1. Interpatient heterogeneity is dominant over intrapatient heterogeneity.  

a, Overview of the experimental setting and models used. Human breast cancer models were implanted in the 

mammary fat pad of NSG mice. Tumours and lung macrometastases were harvested and mechanically and 

enzymatically dissociated. Human cells were purified by FACS using GFP or CD298 staining. Single cells were 

isolated with the Fluidigm C1 microfluidic platform and then sequenced. b, Representative FACS strategy for the 
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isolation of MDA-MB-231 GFP positive. d, tSNE plot showing initial clustering of all the sequenced cells, according 

to models of origin. e, tSNE plot showing initial clustering of all the sequenced cells, according to the site of origin. 

 

4.3 Cell cycle and percentage of detected genes delineate cell clustering 

 

We then asked whether cells gather within each donor-specific cluster by known biological or 

technical features. We projected the percentage of detected genes (PDG) in each single-cell library 

(Fig. 4.2a) onto tSNE and found that the PDG influences the clustering of the cells within each 

given model. This variable potentially represents both biological and technical effects. Next, we 

assessed whether the cell cycle stage influenced the analysis of the data, as this biological variable 

has a broad impact on gene expression(Bristow, Leman and Haase, 2014). We developed a method 

to infer cell cycle stages in single cells (in r package gripgh) and each cell was labelled with one 

of the four labels (G1, G1/S, S/G2, G2/M). We found that the cell cycle stage does influence the 

clustering of the cells within each model (Fig. 4.2b).  

We then applied graph-based clustering to the different models and obtained 16 subclusters 

(Fig. 4.2c). These subclusters were mostly composed of cells in a similar cell cycle stage (Fig. 

4.2d, left bar graph) and with similar PDGs (Fig. 4.2d, left bar graph). The influences of both the 

cell cycle and the PDG were also observed when the models were analysed individually 

(Supplementary Fig. 4.2a, top bar graphs for each model). Marked interpatient heterogeneity also 

led to the clustering of the cells according to models (Supplementary Fig. 4.2b). Altogether the 

data suggest that, in contrast to the site of origin (i.e., primary tumour or metastasis), the PDG and 

the cell cycle both influence the clustering of cells (Fig. 4.1e). 

For the cell cycle stage prediction we considered that the cell cycle is not composed of 

discrete stages but is more a continuum of states. Gene expression is gradually modulated as a cell 

progresses in the cycle. Using this riche single-cell RNA sequencing data and genesets whose 

expression varies in different cell cycle stages, we created a circular trajectory and placed the cells 

in a cycle (Fig. 4.2e). This precise allocation along the cell cycle continuum allowed precise cell 

cycle staging. 
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To observe underlying biological processes involved in different tumour cells and to 

(beyond donor effect, PDG and cell cycle stage) and group biologically similar cells, we needed 

to remove the confounding factors of donor effect, PDG and cell cycle stage. To remove biases 

attributed to these factors, we used a generalized linear model (GLM)(Risso et al, 2014), correcting 

gene expression according to the position of the cell on the cell cycle spectrum and the complexity 

of the RNA-Seq library that it yielded (Fig. 4.3a). 
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Figure 4.2. Cell cycle and percentage of detected genes delineate cell clustering. Single cells within PDX models 

cluster by a, library complexity (PDG) and b, cell cycle similarity. c, Clustering performed via t-SNE produced 16 
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cell clusters. d, Cluster composition according to cell cycle (left) and library complexity (right) e, An in-silico cell 

cycle scoring prediction to arrange single cells on a continuous cell cycle spectrum in addition to distinct cell cycle 

stages. 

4.4 Removal of cell cycle variations and percentage of detected genes reveals 3 

major biological clusters  

 

Initially we performed gene set enrichment analysis (GSEA) with the Hallmarks gene set 

(Liberzon et al., 2015) (Supplementary Fig. 4.3a) on clusters defined for each model on the 

corrected data (Supplementary Fig. 4.2a, bottom bar graphs for each model, named Ax, Bx, Fx, 

Dx, Ex). We observed that cell clusters from different models show enrichment in a common set 

of biological processes. This suggests that each model contains cells in closely related biological 

states that could now be visualized after bias correction. 

We then analysed the cells irrespective of their models or sites of origin. Using the 

corrected gene expression data, the cells formed 14 new clusters (Cx). The compositions of these 

groups were then analysed according to cell cycle stage (Fig. 4.3b, left), PDG (Fig. 4.3b, centre), 

and model (Fig. 4.3b, right). Correcting for these variables led to unbiased clustering of the cells, 

with clusters composed of cells from various cell cycle stages, library complexities, and models. 

We also plotted the composition of each cluster in terms of site of origin before and after correction 

(Supplementary Fig. 4.3b). Corrected clusters exhibited a more balanced composition, with 

roughly equal proportions of cells originating from the tumour and lung metastases. The data 

suggest that populations of cells clustering together due to their biological similarities can be found 

in both the tumour and the metastatic sites, without specificity to one or the other.  

To further investigate the different biological states suggested by the data in Supplementary 

Fig. 4.3a, we performed GSEA on the 14 clusters formed by all the cells, regardless of their model 

of origin. The 14 clusters formed three “super” biological clusters (Fig. 4.3c). Supercluster A (C8 

to C6, Fig. 4.3c left) is characterized by low enrichment for most of the Hallmark geneset 

pathways. Supercluster B (C13 to C2, Fig. 4.3c centre) displays the most heterogeneous regulatory 

landscape, with highly, moderately, and minimally enriched processes. This supercluster is defined 

by highly enriched Hypoxia and TNFα signalling via NFκB. The moderately enriched pathways 
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include relevant processes such as EMT, TGFβ signalling, Interferon Gamma response, or the P53 

Pathway. Finally, the least enriched genesets include MYC signalling, G2M checkpoint, and E2F 

targets. Interestingly these processes are most enriched in supercluster C (C7 to C4, Fig. 4.3c right), 

which also displays marked enrichment of genesets pertaining to oxidative phosphorylation, 

mTOR signalling, fatty acid metabolism, and DNA repair. Genesets enriched in supercluster B 

suggest a phenotype related to EMT, while cells in supercluster C appear to be proliferating while 

still partially enriched for EMT-related pathways. 

We then plotted the repartition of the cells according to supercluster allocation 

(Supplementary Fig. 4.4a), noticing that cells from superclusters B and C were the most distant, 

with cells from supercluster A in between. We also assessed repartition according to the site of 

origin (Supplementary Fig. 4.4b) and once again found a relative balance between tumour origin 

and lung metastases origin of the cells forming the superclusters. 
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Figure 4.3. Removal of cell cycle variation and percentage of detected genes reveals three major biological 

clusters. a, Generalized linear model approach used to remove biases (cell cycle, and library complexity). b, Post-

correction the new cell clusters have a more balanced distribution of cells from different cell cycles, library complexity 

(PDG), and cell source (PDX model). c, Gene Set Enrichment Analyses (GSEA) of individual clusters reveal common 
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and different Hallmark genesets enriched among clusters. Top 25 of these genesets according to the absolute values 

of the normalized enrichment score (NES) are shown and were used to identify the superclusters. 

4.5 Comparison of major biological superclusters reveal partial EMT states 

regulators  
 

Next, we selected EMT and Proliferation markers significantly altered (FDR<0.05) in pairwise 

comparisons between the superclusters (Fig. 4.4a). Proliferation markers Ki67, MCM3, and 

PCNA(Juríková et al., 2016) confirmed that supercluster C is the most proliferative, followed by 

cluster A, while supercluster B expresses these markers the least. EMT markers indicated that this 

process was taking place at varying levels across the different superclusters. Supercluster A 

displayed the least engagement in the transition according to its low expression of several EMT 

markers (ZEB1, SOX9, SNAI1, FN1, TGFBR1). Superclusters B and C showed increased 

expression of these markers but at varying levels. Such heterogeneity suggests that these 

superclusters may undergo EMT but could be at different stages of the process. Such partial EMT 

has previously been described(Saitoh, 2018; Pastushenko and Blanpain, 2019) and may reflect the 

balance between proliferative potential and migratory capability, both properties being typical of 

different stages of the metastatic cascade. 

To investigate partial EMT states of the superclusters, we selected the top 250 up- and 

downregulated genes of each cluster and performed GSEA as well as Transcription Factor 

Enrichment Analysis (TFEA) with the EnrichR(Xie et al., 2021) platform (Fig. 4.4a, b, c bar plots). 

The “TF Perturbations followed by expression” geneset, which was generated by the 

curation of experiments altering TFs before measuring gene expression, revealed that different TFs 

govern the top differentially expressed genes (DEGs) across the superclusters. These uncommon 

TFs paint a complex picture of the EMT states existing in superclusters A, B, and C. HEY2, 

OVOL2, TFAP2C, and TP63 are TFs described as regulators of partial EMT states in mouse 

models(Pastushenko and Blanpain, 2019). ZNF750 was recently described as an EMT repressor 

in breast cancer(Cassandri et al., 2020), an activity shared by OVOL2(Watanabe et al., 2014), 

TP63(Pastushenko and Blanpain, 2019), and FOXO1(Jiramongkol and Lam, 2020). HEY2, 

TFAP2C (Cyr et al., 2015) (Kim et al., 2016), SOX4, and SOX9(Grimm et al., 2020) are known 
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to promote EMT. U2AF1 is a splicing factor fine-tuning translation with reported effects in 

development and EMT. 

These TFs control the EMT and proliferation state of the superclusters shown in Fig. 4.4a. 

Supercluster A, shown to be mildly proliferative, is controlled by TFs evocating differentiated 

slowly proliferating cells. E2F4 is known to be abundant in differentiated cells and to repress 

proliferative genes(Sun et al., 2019). TP63 and TFAP2C have been described as controlling early 

hybrid EMT states, with cells close to an epithelial state and more prone to proliferate than 

mesenchymal cells. Additionally, KDM5B has been reported to characterize a slow-cycling cell 

subpopulation in melanoma(Roesch et al., 2010), which fits the traits of supercluster A. 

Supercluster B, the least proliferative, is also the one with the strongest expression of canonical 

EMT markers/TFs such as FN1, SNA1, MYC, and SOX9. When compared to superclusters A and 

C, DEGs from supercluster B appear to be under the control of HEY2, a member of the basic 

Helix-Loop-Helix (bHLH) transcription factor family. bHLH have been described as late hybrid 

EMT regulators(Pastushenko and Blanpain, 2019) responsible for mesenchymal phenotypes that 

favour migration and have little proliferation potential. Supercluster C, the most proliferative, is 

controlled by ZNF750, TFAP2C, and OVOL2. These TFs have been described as either EMT 

repressors or regulators of early hybrid EMT stages, corresponding to epithelial-like phenotypes 

permitting proliferation. It should however be noted that the EMT markers are high in this 

supercluster, indicating that the process is ongoing yet likely oriented towards the proliferation of 

cells rather than their migration. 

Next, we analysed individual hits from the pairwise supercluster comparisons (Fig. 

4.4a,b,c, volcano plots). Several members of the Activator Protein 1 (AP1) family of transcription 

factors (JUN, FOS, ATF3) were consistently altered in the different superclusters. This is of 

importance as AP1 has been reported as one of the “core” TFs binding enhancers regulating 

epithelial and mesenchymal states(Sethuraman et al., 2018; Pastushenko and Blanpain, 2019). This 

core is subsequently modulated by other TFs such as those described in the previous paragraph. 

Another element strongly differing between superclusters was BHLHE40, a member of the bHLH 

TF family, which was found strongly downregulated in supercluster A. BHLHE40 has been 

reported to induce EMT as well as tumour growth and lung metastases via HBEGF exosomal 
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release(Sethuraman et al., 2018). Different types of RNA-coding genes are modulated during 

EMT, some of which (NEAT1, MALAT1) figured in the top DEGs across the superclusters. 

NEAT1 was found upregulated in superclusters A and B compared to cluster C. NEAT1 has been 

described as promoting chemoresistance and cancer stemness(Jiang et al., 2018; Shin et al., 2019; 

Park et al., 2021). More importantly, it was found to enhance glycolysis as a scaffold of key 

glycolytic enzymes. Its downregulation in supercluster C, which is enriched for fatty acid 

metabolism and the oxidative phosphorylation process, is notable. This observation may reflect a 

metabolic shift away from glycolysis and towards oxidative phosphorylation that was shown to 

exacerbate breast cancer lung micrometastases. Like NEAT1, MALAT1 is upregulated in 

superclusters A and B compared to C. Its effects are manifold and some controversy exists about 

its activities in different cancer types and settings(Chen, Zhu and Jin, 2020; Shaath et al., 2021). 

It is also interesting to note that MALAT1 has been described to interact with TEAD, which is part 

of the core TFs controlling the EMT process. 

Finally, to relate each of the biological states to patient outcome, we selected the 

upregulated transcripts characteristic of each supercluster by overlapping the different contrasts 

(see Supplementary Table 2). The transcripts defining supercluster A correlate with better relapse-

free survival (RFS) in patients suffering from basal-like breast cancer (Supplementary Fig. 4.4c). 

On the contrary, upregulated transcripts found in superclusters B and C (Supplementary Fig. 4.4d 

and 4.4e respectively) correlated with worse RFS. These results suggest that these cell states may 

exhibit different levels of aggressiveness driven by different sets of transcripts. 
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Figure 4.4. Comparison of major biological superclusters reveals partial EMT state regulators. a, EMT and 

Proliferation markers significantly altered (FDR<0.05) in supercluster pairwise comparisons. b, c and d, Right: 

Transcription Factors Enrichment Analysis of the top 250 up- and downregulated differentially expressed genes of 

each supercluster. Left: Volcano plots highlighting the cell cycle gene set (blue, Bioplanet 2019), the EMT gene set 

(orange, mSigDB) and hits of interest (red) in corresponding supercluster pairwise comparisons. 
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4.6 Discussion 
 

The cellular plasticity arising from the transitions between epithelial and mesenchymal states has 

been recognized as instrumental to metastatic progression(Jehanno et al., 2022). The 

characterization of cancer cells at different stages of the metastatic cascade in terms of canonical 

EMT markers and TFs has recently given rise to the concept of partial EMT(Zhang and Weinberg, 

2018; Pastushenko and Blanpain, 2019). The balanced epithelial and mesenchymal traits in partial 

EMT states results in positive reactions to the conditions imposed by the metastatic process(Lüönd, 

Tiede and Christofori, 2021) such as dissemination as CTCs or colonization of a foreign 

microenvironment. Characterization of these partial EMT states is however delicate, model- and 

context-dependent, and a task for which the use of canonical EMT markers and TFs is not 

sufficient.  

Using scRNA-Seq on tumours and lung macrometastases of PDX models of TNBC, we 

observed marked heterogeneity at the intra- and interpatient levels. After correcting for the two 

confounding factors cell cycle and PDG, we identified three cell states (superclusters) present at 

both sites. These superclusters differ from each other in EMT and proliferation markers. Analysis 

of the top DEGs of each supercluster revealed that the variation between them is controlled by a 

set of TFs (i.e., TFAP2C, ZNF750, OVOL2, TP63, HEY2, bHLHs), which have been recently 

shown to finely modulate partial EMT states in other models(Pastushenko et al., 2018). These TFs 

act by modulating core TFs such as AP-1 (composed of its JUN and FOS subunits), which we also 

found deeply altered across the superclusters. Our findings highlight the presence of partial EMT 

states controlled by the aforementioned TFs in breast cancer PDX models, both in the tumour and 

lung macrometastases. While our data have not yet allowed identification of factors driving lung 

macrometastases specifically, they still shed light on breast cancer tumour and metastases biology 

at this specific stage. Additionally, our results highlight the importance for breast cancer of several 

elements such as NEAT1 or MALAT1. These lncRNAs have been recently implicated in breast 

cancer initiation, growth, metastasis, and chemoresistance(Jiang et al., 2018; Shin et al., 2019; 

Chen, Zhu and Jin, 2020; Shaath et al., 2021; Zhang et al., 2021). Their downregulation in the 

most proliferative supercluster questions their roles in these cells and whether choosing them as 
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therapeutic targets could affect the different cell states identified here. Such dynamics may 

ultimately affect how tumours and metastases respond to treatment. Our results highlight the 

marked heterogeneity of breast cancer cells. They call for further studies at the single-cell level to 

better characterize the different partial EMT states at different stages of the metastatic cascade. 

Future studies, especially those including the stromal and immune compartments, will further our 

knowledge of drivers of metastasis and how to tackle them. 
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4.7 Extended figures  
 

 

Extended Data Figure 4.1. a, Table summarizing the numbers of cells sequenced and processed for analysis for each 

model / site of origin after quality control 
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Extended Data Figure 4.2. a, Clustering and distribution of cells from different cell cycle stages and library 

complexity (PDG) before correction (top row) and after correction (lower row) for each model. b, Clustering 

performed over tSNE produces 16 cell clusters before bias correction 
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Extended Data Figure 4.3. a, Cell clusters identified separately from each individual model, show overlapping 

enrichment in Hallmark genets. b, Corrected clusters generated from all the cells irrespectively of the model of origin, 

showing the cluster composition according to site of origin. c, tSNE plot showing clustering of the corrected clusters 
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Extended Data Figure 4.4. a, tSNE plot showing the cell repartition across the 3 superclusters defined via GSEA. b, 

Barplot showing the supercluster composition according to site of origin. c, Kaplan-Meyer plot showing the RFS in 

patients with basal-like BC (n=442) according to expression of the upregulated transcripts defining supercluster A. d, 

Kaplan-Meyer plot showing the RFS in patients with basal-like BC (n=442) according to expression of the upregulated 

transcripts defining supercluster B. e, Kaplan-Meyer plot showing the RFS in patients with basal-like BC (n=442) 

according to expression of the upregulated transcripts defining supercluster C 
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4.8 Material and Methods  
 

In vivo experiments.  

All in vivo experiments were performed in accordance with the Swiss animal welfare ordinance 

and were approved by the cantonal veterinary office, Basel Stadt. Female NSG and BALB/c mice 

were maintained in the Friedrich Miescher Institute for Biomedical Research and the Department 

of Biomedicine animal facilities, in accordance with Swiss guidelines on animal experimentation. 

Mice were maintained in a sterile environment with light, humidity, and temperature control (light-

dark cycle with light from 7:00 to 17:00, with a gradual change from light to dark), temperature 

21–25 °C, and humidity 45–65%). Before each experiment, mice were allowed to acclimatize for 

a minimum of seven days. MDA-MB 231 cells (10,000 cells) were resuspended in 40 μl 

Matrigel:PBS (1:1) and injected into the pre-cleared mammary fat pads of 4- to 8-week-old female 

NSG mice. PDX models were transplanted into the pre-cleared 4th mammary fat pads of NSG 

mice. Tumours were resected when the largest diameter reached 10 mm, and mice were monitored 

regularly for signs of metastatic outgrowth and distress. In none of the experiments did tumour 

volumes exceed approved limits. All orthotropic experimental procedures (tumour resection and 

tumour cell implantation) were undertaken on anesthetized mice by a single investigator, according 

to protocols approved by the cantonal veterinary office Basel Stadt. Experimental metastasis 

assays were performed by injecting 100,000 cells into tail veins. After intravenous injection of 

MDA-MB 231 cells, we performed in vivo bioluminescence imaging to confirm injection and to 

monitor metastatic outgrowth. Bioluminescence imagining was performed using an IVIS Lumina 

XR (Caliper LifeSciences) upon injection of luciferin (Biosynth; L8220).  

 

Cell lines and PDX models.  

The cell lines MDA-MB 231 and HEK293T were purchased from ATCC and cultured according 

to ATCC protocols. Cell line identity was confirmed and routinely tested using short tandem repeat 

sequencing; all cell lines were routinely tested for mycoplasma contamination. MDA-MB 231 

were propagated in monolayer cultures in DMEM supplemented with 10% FCS. All experiments 
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were performed with 70–90% confluent cells. The PDXs used in this study have previously been 

described(Gao, Joshua M. Korn, et al., 2015). PDX models were passaged in NSG animals, via 

tumour piece implantation in the 4th mammary fat pad. Immunohistochemistry staining was 

performed to ensure the ER/PR/HER2 status. 

Lentiviral vectors, lentivirus, and infection      

Lentiviral batches were produced using PEI transfection on HEK293T cells as previously 

described(Britschgi, Duss, Kim, Couto, Brinkhaus, Koren, de Silva, et al., 2017).The titre of each 

lentiviral batch was determined in MDA-MB 231 cells. Cells were infected for 8 h in the presence 

of polybrene (8 μg/ml). Selection with 2 μg/ml puromycin (Sigma) was applied 48 h after infection. 

Sample preparation 

Tumours and matched lung metastases were dissociated into single cells using mechanical 

disruption followed by enzymatic digestion using a collagenase-hyaluronidase solution (StemCell 

Technologies; 07912) for 1 h at 37°C without mechanical agitation. The resulting material was 

filtered twice on 40µm cell strainers and depleted of erythrocytes using a red blood cell lysis buffer 

(Sigma, R7757). 

 

Fluorescence-activated cell sorting.  

MDA-MB-231 expressing a GFP-Luciferase construct were selected based on GFP expression. 

PDX models cells selection relied on the CD298 human-specific marker. Sorts were performed on 

a BD FACS BD Aria III (70µm nozzle). DAPI staining was used to gate out dead cells. Single 

cells and doublets were respectively selected and excluded based on their forward and side scatter 

profiles and pulse width. The APC anti-human CD298 antibody (Biolegend, 341706) was used. 

scRNA-Seq 

Human cells were processed for single cell isolation and library preparation using the Fluidigm C1 

platform. Single cell capture was performed by microfluidics on medium and large Fluidigm C1 

integrated fluidics chip (IFC) (Fluidigm; PN100-5760 and PN100-5761). Visual quality control by 
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microscopy allowed the assessment of capture efficiency. cDNA was generated from the captured 

cells as per the manufacturer’s protocol using SMART-Seq Ultra Low RNA (Takara Bio; 634833) 

before being processed for Illumina sequencing via the Nextera XT DNA Library Preparation kit 

(Illumina; FC-131-1096). Sequencing was performed on an Illumina platform. 

Computational analysis.  

RNA sequencing data analyses 

Reads were aligned to the human genome (UCSC version hg38AnalysisSet) with STAR. The 

output was sorted and indexed with samtools. Strand-specific coverage tracks per sample were 

generated by tiling the genome in 20 bp windows and counting 5'end of reads per window using 

the function bamCount from the bioconductor package bamsignals. These window counts were 

exported in bigWig format using the bioconductor package rtracklayer. The 

rsubread::featureCounts function was used to count the number of reads (5'ends) overlapping with 

the exons of each gene assuming an exon union model (gene annotation: 

ensembldb_Homo_sapiens_GRCh38_ensembl_96.sqlite).  

Removal of potential doublets 

Following observation under the microscope, wells containing more than 1 cell or debris were 

marked and removed from further analyses. To further remove potential human and mouse 

multiplets, we used fastq_screen to count reads mapping uniquely to human and mouse genomes 

(human-to-mouse ratio). Libraries with a human-to-mouse ratio >=5 were considered human cells 

and retained for further analyses. Libraries with <= 100,000 reads mapping to human transcriptome 

were also filtered out. Libraries expressing less than 2,346 genes and more than 9,884 genes were 

also filtered out, retaining the cells that expressed 10% - 40% of the total number of unique genes 

observed in all models (23,459 genes). This step removed libraries with low complexity and a few 

outlier libraries where very high number of genes were observed. 
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Inference and correction of cell cycle signal 

The cell cycles of individual cells were inferred using sets of cell cycle-regulated genes known to 

peak in transcription at given cell cycle stages obtained from (PMID: 12058064, 

PMID:11416145). For each cell, five normalized cell cycle stage scores (G1.S, G2, G2.M, M.G1, 

S) were calculated, and the cell assigned to that most closely resembling the expected profile based 

on correlation. Optionally, labels were further refined by iteratively estimating new cell cycle score 

profiles based on estimated cell labels, and re-assigning cells to the profile with the highest 

correlation. The function call predictCellCycle(org = "human.Whitfield", cor_thr = 0.2, refine_iter 

= 200) is available as part of R package griph (https://github.com/ppapasaikas/griph). The cell 

cycle and library complexity (percentage of detected genes) were modeled as covariates and 

regressed out of the log-normalized counts using glm.fit (R package glm).  

Dimensionality reduction, clustering, differential gene expression 

Each library was normalized to 100,000 reads and log transformed adding pseudocount of 1. PCA, 

tSNE, and UMAP projections (on log-normalized data or residuals) were computed with R 

package scater using default parameters. Nearest neighbour graphs were computed using function 

buildSNNGraph (R package scran) with tSNE and UMAP as inputs separately. Function 

cluster_louvain (R package igraph) was used for graph-based clustering. Differential gene 

expression between single cell clusters was performed using pairwise t-test implemented in 

FindMarkers function from R package scran. The values pval.type="some", min.prop=0.2 were 

used as arguments in FindMarkers indicating that the genes considered as marker genes are those 

differentially expressed in at least 20% of the pairwise comparisons, i.e. combined p-value from 

the pairwise comparisons was calculated by taking the minimal value of the top 20% Holm-

corrected p-values for each gene. Genes were ranked by the respective combined logFC 

(summary.logFC) and gene set enrichment was performed with bioconductor packages fgsea and 

msigdb (collections H, C2, C5).  

RFS Analysis 

Kaplan-Meier plots were generated from the KMplotter database using the mRNA Gene Chip 

dataset. Upregulated transcripts specific to a supercluster were isolated (with the Venny online 
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tool) from the different contrasts generated from the analysis of the Top 250 DEGs used for the 

rest of the analysis. The generated lists then served as input to the KMplotter tool, via the Mean 

Expression for Multiple Genes function. RFS analysis was performed on the patients with basal-

like breast cancer (PAM50 classifier, n=442) and with the Autoselect Best Cutoff parameter. 
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5. Conclusion & Perspectives 
 

The phenotypic heterogeneity and plasticity of cancer cells have been described as an important 

driver of the metastatic cascade. In the two projects described we explored the molecular basis of 

heterogeneity and plasticity in breast cancer metastasis using bulk and single-cell RNA-Seq.  

5.1  Glucocorticoids promote breast cancer metastasis   
 

In the first project we leveraged bulk RNA-Seq to compare tumour and matched metastases gene 

expression. We identified an increase in GR signalling in lung metastases. We show that GR 

activation led to the induction of signalling networks implicated in disease progression. Among 

these ROR1 was demonstrated to mediate the effect of GR activation on metastatic colonization. 

These findings are relevant at several levels. First, they demonstrate the heterogeneity of 

breast cancer. Our results show that while GR has little influence on the primary tumour, TNBC 

metastases display a different phenotype and benefit from GR activation in a distant site, leading 

to increased lung colonization.  

Secondly, they raise pertinent questions regarding the proper characterization and care of 

breast cancers.  Our work highlights the effect of the stress hormone pathway in BC progression. 

This signalling is mediated via the glucocorticoid receptor (NR3C1). Upon binding of its ligands, 

GR, a nuclear receptor, is internalized and translocated to the nucleus where it binds GR response 

elements (GRE) in the genome(Scheschowitsch, Leite and Assreuy, 2017). GR signalling is 

implicated in many physiological and pathological settings(Kadmiel and Cidlowski, 2013), with 

sometimes unclear roles(Mayayo-Peralta, Zwart and Prekovic, 2021).  

Stress hormones (such as cortisol) are found to be elevated in BC patients(Van Der Pompe, 

Antoni and Heijnen, 1996). They are a first mean of GR stimulation and represents an 

environmental variable influencing metastatic progression. Stress, which can take many forms, is 

therefore a parameter to consider in the prevention of BC and the care of its patients. 

More importantly, synthetic glucocorticoids are routinely administered in various clinical 

settings. In BC dexamethasone is associated with chemotherapy in the aim of alleviating secondary 
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effects such as nausea. Dex acts by modulating the inflammation caused by the chemotherapy. Our 

findings are particularly relevant in this setting, as Dex is administered to patients in which cancer 

cells most likely already disseminated to distant sites(Hosseini et al., 2016;Braun et al., 2005). 

The administration of Dex in this context may precipitate the relapse of the patient. This is of 

particular concern when treating TNBC patients, who already suffer from a particularly aggressive 

subtype mostly treated with chemotherapy. 

In recent years development of new treatments provided new alternatives but also raised 

new questions. Nab-Paclitaxel, a variant of the classic Paclitaxel heavily used in TNBC treatment, 

is slowly becoming available. It combines the drug with albumin, improving the solubility of the 

taxol molecule and dispensing the need for the inflammation-causing vehicle previously used. This 

led to better tolerance of the chemotherapeutic treatment by the patient hereby dispensing the use 

of Dex. Clinical trials have demonstrated marginal outcome improvements(Lu et al., 2021) 

compared to classic chemotherapies. These improvements may be in part because Dexamethasone 

is not administered anymore to patients receiving Nab-Paclitaxel. Our findings call for caution 

when using Dex to decrease side effects of chemotherapies. 

Another aspect to consider is the influence of GR signalling on the microenvironment, as 

our work mostly focused on cell-autonomous mechanisms. This is especially important when 

considering that immunotherapy is explored to treat TNBCs. Glucocorticoids have anti-

inflammatory and immunosuppressive properties. Notably Dex is used to treat auto-immune 

disorders and some haematological malignancies. Like for chemotherapy, glucocorticoids may be 

used to manage the side effects of immunotherapies. It is therefore of great importance to consider 

the effect of Dex on the immune compartment when exploring the possibility of combining 

standard chemotherapies with immunotherapies in the treatment of TNBCs(Adorisio et al., 

2021;Kalfeist et al., 2022). Studying such dynamics is however arduous (especially considering 

that Dex is used to make treatments tolerable by the patients), and complicated by the heterogeneity 

of BCs immune compartment(Yuan et al., 2021).  

Finally, as our work focused on TNBC, it would be of interest to elucidate the effect of GR 

signalling in luminal BCs. GR and ER are both nuclear receptors and their respective response 
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elements have been shown to overlap (West et al., 2016; Noureddine et al., 2021). While some 

studies assessing the interactions between the two receptors and their respective pathways in BC 

have been done(Noureddine et al., 2021), studies in the metastatic setting remain to be performed. 

 

5.2  Single-cell analysis reveals inter- and intra-tumour heterogeneity in 

metastatic breast cancer  

 

Similar in its approach, the second project leveraged single-cell RNA-Seq to gain more detailed 

insights about breast cancer tumours and lung metastatic cells. After performing cell cycle 

correction and compensating for technical biases, we highlight three major biological clusters, 

present in both primary site and metastases. We showed that each of these clusters top differentially 

expressed genes were under the control of transcription factors related to partial EMT. These 

results highlight the importance of this process in breast cancer metastases and shed light on its 

molecular basis in PDX models.  

One disappointment with this work is that we were not able to identify metastases-specific 

populations or gene expression pattern. This may be due to several factors. First, we chose to study 

macrometastases. These fully developed lesions may be the stage at which metastases resemble 

the tumour the most. Another study using the same setting and technologies as our own focused 

on micrometastases and identified oxidative phosphorylation as a driver and vulnerability of 

TNBC micrometastases(Davis et al., 2020). Secondly our data were generated in the early days of 

single cell RNA-seq, with a technology now obsolete. While allowing relatively high sequencing 

depth and high number of detected transcripts, the Fluidigm platform was limited in throughput, 

limiting the number of cells that could be analyzed. This drawback, coupled to the fact that we 

included 5 different models in the study led to a limited number of cells per model and stage 

(tumour or metastasis) potentially decreasing the resolution of our data. 

This point leads to the current and future state of single cell studies. The Fluidigm platform 

became obsolete compared to droplet-based technologies such as the one commercialized by 10X 

Genomics. Droplet-based solutions allow to capture and analyse a much higher number of cells, 
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at the expense of a marginally lower depth of sequencing and number of detected transcripts. This 

approach nonetheless became the dominating one in the field over recent years. Studies took 

advantages of the high number of cells to paint a broader landscape of breast cancers, including 

the microenvironment and more importantly the immune system(Azizi et al., 2018; Alshetaiwi et 

al., 2020; Ren et al., 2021). The information yielded by such studies may help better understand 

the immune compartment of BCs and enable the use of immunotherapies for at least some 

patients(Yao, Li and Wang, 2022).  

The field is now taking advantage of increasing powerful spatial single-cell transcriptomics 

to analyse gene expression in cells in the context of their neighbouring interactions(Longo et al., 

2021; Marx, 2021). Such approach could yield great insights about critical steps of the metastatic 

cascade such as dormancy. Immune cells have been shown to maintain DTCs dormant and 

contribute to their awakening. Being able to investigate the fine interactions between the cells at 

such stage may also yield tremendous insights into the process and how to harness its therapeutic 

potential.  

It however remains too soon to know if single-cell sequencing will one day be applicable 

in the clinic. Such type of analysis remains relatively expensive and work-intensive, and the 

interpretation is hardly straightforward. The inclusion of patient samples in single-cell studies is 

however increasingly common, allowing to compare single-cell landscapes of clinically relevant 

samples with cell lines and PDX models(Gambardella et al., 2022). One can only contemplate the 

potential of analysing fine-needle biopsy via single-cell sequencing, which could potentially yield 

a lot of information on both cancer and its microenvironment from a very limited amount of 

material(Ahmadi et al., 2022).  

With regards to EMT, our study brought into light transcription factors whose role in partial 

EMT is starting to emerge. Our work, using human models, confirms previous findings in mouse 

models of breast cancer(Pastushenko et al., 2018). It highlights the importance of this process in 

the plasticity of cancer cell populations and its importance in metastases. More mechanistic and 

functional studies are warranted to unravel the effects of each of these less-known TFs in 

metastasis.  
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In addition, we found several lncRNAs in the top differentially expressed genes across the 

different superclusters. LncRNAs effects have been relatively unknown until several studies found 

them to exert control over EMT and be of relevance in TNBC metastasis(Zhang et al., 2021). As 

lncRNAs module signalling pathways involved in metastasis, one could envision their use as 

biomarkers guiding targeted therapies. Novel delivery systems are also considered to deliver 

siRNA targeting the lncRNA themselves(Vaidya et al., 2019). While these options remain in early 

development, they may one day expand the arsenal against metastatic TNBCs. 
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8. Appendix 
 

8.1 Abbreviations 
 

ACTH Adrenocorticotropic hormone  

AP1 Activator Protein 1  

ATF3 Activating Transcription Factor 3 

BC Breast Cancer 

bHLH basic helix–loop–helix 

BHLHE40 Basic Helix-Loop-Helix Family Member E40 

CTC Circulating Tumor Cell 

DEG  Differencially expressed genes 

DEX Dexamethasone 

EMT Epithelial-Mesenchymal Transition 

ER Estrogen receptor 

FACS Fluorescence-Activated Cell Sorting  

FN1 Fibronectin 1 

FOS Fos Proto-Oncogene 

GFP Green fluorescent protein 

GLM Generalized linear model 

GR Glucocorticoid Receptor 

HBEGF Heparin Binding EGF Like Growth Factor 

HER2  Human epidermal growth factor receptor 2  

HEY2 Hes Related Family BHLH Transcription Factor With YRPW 

Motif 2 

i.v intra-veinously 

JUN Jun Proto-Oncogene 

KM Kaplan-Meier 

lncRNA Long non coding RNA 

MALAT1 Metastasis-Related Lung Adenocarcinoma Transcript 1 

MCM3 Minichromosome Maintenance Complex Component 3 

MET  Mesenchymal-Epithelial Transition 

MYC My Proto-Oncogene 

NEAT1 Nuclear Enriched Abundant Transcript 1 

NSG NOD-scid IL2rγnull  

OVOL2 Ovo Like Zinc Finger 2 

PCA Principal Component Analysis 

PCNA Proliferating Cell Nuclear Antigen 



109 

 
 

 

PDG  Percentage of detected genes  

PDX Patient-Derived Xenograft  

PR  Progesterone receptor  

qPCR quantitative Polymerase Chain Reaction 

RFS Relapse free survival 

RNA Ribonucleic acid 

ROR1 Receptor Tyrosine Kinase Like Orphan Receptor 1 

s.d  standard deviation 

sc single cell 

Seq sequencing 

shRNA short hairpin RNA 

SNAI1 Snail Family Transcriptional Repressor 1 

SOX4 SRY-Box Transcription Factor 4 

SOX9 SRY-Box Transcription Factor 9 

TF  Transcription factor 

TGFBR1  Transforming Growth Factor Beta Receptor 1 

TGFβ Transforming Growth Factor β 

TNBC  Triple-Negative Breast Cancer  

TNFα Tumour Necrosis Factor α  

TP53 Tumor Protein P53 

TP63 Tumor Protein P63 

t-SNE t-distributed neighbour embedding method 

U2AF1  U2 Small Nuclear RNA Auxiliary Factor 1 

ZEB1  Zinc Finger E-Box Binding Homeobox 1 

ZNF750 Zinc Finger Protein 750 
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 8.2 List of figures 
 

  8.2.1 Introduction 

 

Figure 1.1 – Breast architecture and breast cancer structures of origin. 

Figure 1.2 – Overview of breast cancer subtypes. 

Figure 1.3 – Overview of treatment options for breast cancers 

Figure 1.4 – Overview of the metastatic cascade 

Figure 1.5 – The hallmarks of cancer 

Figure 1.6 – Heterogeneity of breast cancers 

Figure 1.7 – Plasticity in cancer 

Note: Figures 1.1 to 1.7 were created with BioRender.com. 

  8.2.2 Glucocorticoids promote breast cancer metastasis 

 

Figure 3.1 – Increase in GR activation in distant metastases 

Figure 3.2 – GR activation increases metastatic colonization and reduces survival 

Figure 3.3 – GR activation induces signalling networks and protein kinases that are implicated in 

breast cancer progression 

Figure 3.4 – ROR1 mediates GR-induced lung metastatic colonization 

Extended Data Figure 3.1 – Increase in GR activation in breast cancer metastases  

Extended Data Figure 3.2 – GR activation in distant metastases and circulating tumour cells  

Extended Data Figure 3.3 – Glucocorticoids promote colonization via GR 

Extended Data Figure 3.4 – Dexamethasone offsets the response to paclitaxel 

https://biorender.com/
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Extended Data Figure 3.5 – Dexamethasone reduces overall survival and GR downregulation 

increases cancer cell dissemination from the primary site  

Extended Data Figure 3.6 – Differential expression of protein kinases in tumours and matched 

metastases 

Extended Data Figure 3.7 – Differential protein abundance upon GR activation 

Extended Data Figure 3.8 – GR activation increases the expression of kinases that are predictive 

of survival in breast cancer  

Extended Data Figure 3.9 – ROR1 expression in breast cancer and metastases 

Extended Data Figure 3.10 – Dexamethasone increases metastases and precipitates death, via 

ROR1 

  8.2.3 Single-cell analysis reveals inter- and intra-tumour heterogeneity in 

metastatic breast cancer 

 

Figure 4.1 – Interpatient heterogeneity is dominant over intrapatient heterogeneity. 

Figure 4.2 – Cell cycle and percentage of detected genes delineate cell clustering. 

Figure 4.3 – Removal of cell cycle variations and percentage of detected genes reveals 3 major 

biological clusters. 

Figure 4.4 – Figure 4. Comparison of major biological superclusters reveals partial EMT states 

regulators. 

Extended Data Figure 4.1 

Extended Data Figure 4.2 

Extended Data Figure 4.4 

Extended Data Figure 4.4 
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