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Entanglement of Local Hidden States
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Steering criteria are conditions whose
violation excludes the possibility of de-
scribing the observed measurement statis-
tics with local hidden state (LHS) models.
When the available data do not allow to
exclude arbitrary LHS models, it may still
be possible to exclude LHS models with
a specific separability structure. Here, we
derive experimentally feasible criteria that
put quantitative bounds on the multipar-
tite entanglement of LHS. Our results re-
veal that separable states may contain hid-
den entanglement that can be unlocked by
measurements on another system, even if
no steering between the two systems is
possible.

1 Introduction

The classification of quantum correlations is cru-
cial for our understanding of the resources that
enable quantum information tasks [1, 2, 3, 4, 5,
6, 7]. Two of the main challenges in this field are
the characterization of entanglement in multipar-
tite systems [8, 9, 10, 11, 12| and the identification
of nonclassical correlations stronger than entan-
glement that allow to relax the assumptions to be
made about the system of interest 3, 4, 5, 7]. Bell
nonlocality, the strongest form of quantum cor-
relations, allow for fully device-independent en-
tanglement detection [13, 4]. Einstein-Podolsky-
Rosen (EPR) steering represents an interme-
diate notion between entanglement and nonlo-
cality [14], and it allows for one-sided device-
independent entanglement |15, 7).
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The observation of an EPR paradox [16], or
more generally of steering, formally excludes the
possibility to describe the observed data in terms
of a local hidden state (LHS) model that as-
signs local quantum states to one of the subsys-
tems |14]. Steering criteria rule out LHS descrip-
tions by verifying a local complementarity prin-
ciple in form of an uncertainty relation [17] or a
metrological bound [18]. Uncertainty-based cri-
teria formulated in terms of variances are most
widely used in experiments and are particularly
suited to reveal the steering of approximately
Gaussian states [3]. Metrological approaches [18,
19|, as well as entropic relations [20, 21, 22, 23],
have particular advantages for detecting steering
of non-Gaussian states. So far, despite advances
in multipartite steering |24, 25, 26, 28, 27, 22, 23,
29|, these criteria are mostly applied in bipartite
settings. Because of the weaker assumptions that
can be made about the system, detecting steer-
ing is generally challenging and requires a higher
degree of control than entanglement detection.

In this work we show that even if the recorded
data is unable to rule out all LHS descriptions, it
may still pose limitations on the classes of LHS
that are capable of reproducing the observed cor-
relations. We focus on multipartite settings with
one untrusted party (A) that may share quantum
correlations with another multipartite quantum
system (B), on which LHS models can be classi-
fied according to their multipartite entanglement.
We derive families of criteria that exclude LHS
models with specific separability properties. In
the limit when even genuine multipartite entan-
gled LHS are excluded these criteria converge to
metrological steering criteria that can be approx-
imated to yield uncertainty-based bounds. By
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resolving the substructure of LHS models our re-
sults provide further insight into the manifesta-
tions of nonclassical correlations in multipartite
systems. For instance, we show that if a LHS
model for B exists, this model cannot always be
constructed from separable LHS, even if B is sep-
arable. This implies that quantum information
processing assisted by measurements on A can
unlock hidden entanglement of B even in the ab-
sence of steering. Our criteria can be tested with
state-of-the-art experimental setups and provide
quantitative bounds on the multipartite entangle-
ment of LHS models.

2 Separable LHS models

We consider a multipartite setting with one un-
trusted party A (Alice), and a multipartite quan-
tum system B (Bob). The joint measurement
statistics can be modeled in terms of the assem-
blage A(a, X) = p(a|X)pf‘X, where a is the re-
sult of measuring X on A, and pﬁ x are condi-
tional quantum states for B [5]. EPR steering
from A to B is observed as an assemblage which
fails a description in terms of a LHS model [14] of
the form A(a, X) = 3, p(AN)p(a| X, N\)o?, where
p(A) is a probability distribution for a local hid-
den variable A that determines both Alice’s local
probability distribution p(a|X, ) and Bob’s LHS
o5,

We define separable LHS models as assem-
blages whose LHS are subject to additional sep-
arability constraints. We first focus on separabil-
ity in a specific multipartition, and then discuss
bounds that exclude the convex hull of families
of partitions. Let A = {By,...,Bj|} be a parti-
tion of B into |A| subsets By, each containing |By|
parties such that ZLAZI |Bi| = N. A state op_gep
is separable in the partition A if there exist local
quantum states Uffk and a probability distribu-

tion p(7) such that op_gep = >, p(v)afl -

05 Ml Accordingly, a A-separable LHS model is
described by a LHS model where all LHS U/’\B are
chosen A-separable.

3 Metrological detection of insepara-
ble LHS

In order to witness the separability structure
of LHS models, we derive bounds on the av-

erage metrological sensitivity of Bob. To this
end, we consider measurements of a phase shift
0 generated by the Hamiltonian H = Z'f\il H;,
where each H; acts locally on Bob’s subsystem
B;. Without information from Alice, Bob’s sys-
tem is described by the reduced density matrix
pP = Zap(a|X)pﬁX. By choosing an opti-
mal measurement observable, he is able to ex-
tract the full metrological sensitivity of the state
pP, which is described by the quantum Fisher
information (QFI) Fg[p?, H] [30, 31, 32, 33|.
An upper bound for this sensitivity is given by
FolpB, H] < 4Var[pB, H], which describes a com-
plementarity between Bob’s phase sensitivity and
the fluctuations for measurements of the genera-
tor H [18].

Assume now that Alice performs a measure-
ment X and obtains the result a. This will
project Bob’s system into the conditional state
pﬁ - If the information (a,X) is provided to
Bob, he can adapt the choice of his measure-
ment observable such that it optimally extracts
the sensitivity of the conditional state, leading
to the sensitivity Fg [pﬁ +»H]. Since Alice’s re-
sults occur randomly, Bob’s average sensitivity is
given, after an optimization over Alice’s setting

X, by the quantum conditional Fisher informa-
tion (QCFI) [18]

Fg 1A, H) = migx 3 plalX) Falogl H)- (1)

Similarly, using another measurement setting, Al-
ice may remotely prepare conditional states for
Bob that have small variances for measurements
of the generator H and yield the quantum condi-
tional variance (QCV) [3, 18]

B|A

Varg " [A, H] := m)}an(a|X)Var[pf‘X,H].

(2)

Let us now assume that the correlations in the
multipartite system can be described by a sepa-
rable LHS model. One of our main results is the
upper bound on the QCV for A-separable LHS
models (see the Supplemental Material [34] for
details)

1A
FR YA HY < 43 Vg a, H54. (3)
k=1

Here, Varg"‘A[A, HB¥] describes the QCV for
subsystem Bj. A violation of condition (3) hence
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implies that the observed sensitivity and fluc-
tuations cannot be described in terms of a A-
separable LHS model, either because steering
from A to B is possible, or because only entangled
LHS models are able to account for the correla-
tions.

4 Relation with metrological steering
and entanglement criteria

The existence of a separable LHS model implies
(1) that no steering from Alice to Bob is possible
and (ii) that Bob’s system is separable. It is in-
teresting to observe how independent criteria for
(i) and (ii) can be derived from (3). First, note
that dropping all assumptions about Bob’s sep-
arability properties corresponds to allowing for
A-separable models where A = {Bj...By} is
the trivial partition with only a single system
that contains all of Bob’s subsystems. In this
case, Eq. (3) reduces to the metrological steering
bound FS"PVALA H] < avargtPYA 4, 1]
which indeed holds for arbitrary LHS models [18].

Second, we show that (3) implies a known con-
dition for A-separability of Bob. To this end, we
note that convexity of the QFI and concavity of
the variance imply that assisted measurements al-
ways perform on average at least as good as local
measurements without assistance [18]. More pre-

cisely, we obtain FS‘A[.A, H] > Fglp?, H] and

Vargk‘A[A, HBx) < Var[pB+, HB¥], where pPr is
the reduced density matrix of subsystem By. In-
serting these bounds into (3) yields Fg[p?, H] <
42',521 Var[pBk, HB*], a necessary condition for
the A-separability of Bob [35]. This also implies
that finding a separable LHS model is impossible
if Bob’s reduced state is already entangled.

5 Separable states with inseparable
LHS models

One may wonder whether these conclusions also
hold in the reverse direction, i.e. whether a sep-
arable LHS model can be constructed in the ab-
sence of steering if additionally Bob’s system is
separable. However, a simple counter-example il-
lustrates that even the combination of both con-
ditions does not imply the existence of a separable
LHS model. Let | ) (| })) be the eigenstate of

the o, operator with eigenvalue +1 (—1), and let
|®1)p = (| 44)B £ | 11)8)/V2 denote Bell states
for system B = B1By. Consider the state pAB =
LU @@ ) (@ [5+| D{L 40D )(@_|p).
Clearly, a LHS for B exists and Bob’s reduced
state p? = L (| L)L [+ 1) (11 ]) is separa-
ble. Note that every bipartite separable state
can be interpreted as a mixture of entangled
states [36, 37].

To test the separability of all possible LHS
models that describe the correlations of this state,
we make use of the condition (3) for the biparti-
tion A = {B1, Ba} and the collective spin Hamil-
tonian H = J, = (6P + ¢82)/2. To determine
the left-hand side, we consider measurements of
Alice of X = o,, which leads to the lower bound
FIAL] > (Fol®s, )] + Fol®-, J.])/2 =
4 where A describes the assemblage that is
obtained from the bipartite state pAZ. This
bound is tight because of the generally valid up-
per bound Fg‘A[A, J.] < 4Var[pP, J,] [18] with
Var[p?,J.] = 1. It is easy to see that the mea-
surement of any spin direction by Alice projects
the two subsystems B; and By into maximally
mixed states and we obtain VargiM[A, oBij2] =
1/4 fori=1,2.

The violation of the condition (3) implies that
a separable LHS model for the state pf does
not exist, despite the existence of a general LHS
model and the separability of Bob’s reduced state.
The entanglement of the LHS is generally not
available to Bob, whose system appears separa-
ble under all measurements that are carried out
locally. The fact that the LHS must be entan-
gled now allows Alice to remotely prepare Bob’s
system in an entangled state, conditioned on the
measurement result she observes. If this result
is communicated to Bob, he can exploit the en-
tanglement of his conditional state for the imple-
mentation of quantum information tasks.

6 Noisy GHZ state

To further illustrate these ideas, consider a sys-
tem composed of N + 1 qubits, partitioned into a
single control qubit (Alice) and the remaining N
qubits on Bob’s side. The system is prepared in
a noisy Greenberger-Horne-Zeilinger (GHZ) state
p*P = p|GHZ{ ) (GHZI | + (1 — p)1/2V+,

with [GHZS ) = (| )] DN+ 1) 1Y) /v2
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Figure 1: Inseparable LHS of noisy GHZ states. For GHZ states mixed with white noise with probability 1 — p,
A-separable LHS models are ruled out, according to (3), when the QCFI (the black line represents a lower bound)
surpasses the average QCV (colored lines represent upper bounds). Different partitions A that separate Bob's qubits
into entangled groups of equal size N, = N/k are illustrated by Young diagrams on the left, ranging from fully
separable (blue) to genuine multipartite entangled (violet), the latter representing the steering bound. The right
panel show state-independent bounds on the QCFI for (w, h)-separable LHS with different values of w (see text).

[38]. Note that Bob’s subsystem is always sepa-
rable, independently of p. For the assemblage A
corresponding to the state pAZ, a lower bound to
the QCFI is obtained by considering that Alice
measures in the o,-basis and reads Fg lA[.A, J.] >
p*N?/[p + 2(1 — p)/2N] [18].
ments in the o, basis, we obtain the upper
bound on the QCV of one of Bob’s subsystems as
4Varg’°|A[A, JBr] < (1—p)Ng(1+pNy), where Ny
is the number of qubits contained in Bg. Consid-
ering partitions of Bob into k subsystems of equal
size N, = N/k, we obtain in the limit of large N
the condition p 2 k/(N(k — 1)) for inseparability
of the LHS, whereas steering is only detected for
p > 1/v/N. In Fig. 1 we illustrate the LHS sep-
arability bounds for different subsystem sizes for
a system of N = 16 + 1 qubits.

From measure-

7 Variance-based criteria

For practical implementations it is convenient
to formulate witnesses involving low-order mo-
ments, in particular variances [39, 9, 3, 26, 6, 40].
Our metrological condition for separable LHS im-
plies a weaker variance-based criterion that is
close in spirit to Reid’s seminal condition for ar-
bitrary LHS models [17, 3]. The QCFI can be ap-
proximated from below in terms of first and sec-

2
ond moments as ‘([H, M]>p3’ /Varé'A[A, M] <

FS‘A[A, H] |18], where M is an arbitrary ob-
servable. This approximation converts the con-
dition (3) into the variance condition

|A|
> Vargkm [A, HP*] Varg‘A[.A, M]
k=1

(2, M) ]
4

In the special case of the trivial partition A =
{Bi1...Bn} we are effectively dropping all con-
ditions on the LHS, and condition (4) reduces to
Reid’s criterion [17, 3] whose violation indicates
steering between A and B. For other partitions
A, a violation of (4) indicates that LHS models,
if they exist, must necessarily be entangled in the
partition A.

Again, we can derive a weaker condition if
we replace the local conditional variances by
their upper bounds without measurement assis-
tance, 7.e. the variance of the local reduced den-
sity matrices. In this case, we recover a modi-
fied uncertainty relation whose violation indicates
the inseparability of Bob’s reduced density ma-
trix [35, 41].

Accepted in { Yuantum 2022-02-10, click title to verify. Published under CC-BY 4.0.



8 State-independent bounds for gen-
uine multipartite entanglement

The criteria presented so far distinguish between
LHS models whose LHS are separable in a specific
partition, but they do not exclude convex combi-
nations of entire families of partitions. For the
characterization of multipartite entanglement, it
is natural to include the convex hull of parti-
tions with similar properties into the same sep-
arability class, e.g. in terms of the largest entan-
gled subset (also called entanglement depth or k-
producibility) or the number of separable subsets
(k-separability) [9, 42]. A systematic classifica-
tion of this kind can be achieved by represent-
ing each partition A by a Young diagram, whose
width w = max A := max{|Bi],...,[Bjy[} and
height h = |A| then identify their w-producibility
and h-separability [12]. Combining these quanti-
ties, we can introduce classes of (w, h)-separable
states whose separable partitions have a width
that does not exceed w and a height no smaller
than h [43]. We can make use of the fact that the
metrological sensitivity of (w, h)-separable states
is limited to derive criteria that test the sepa-
rability properties of LHS models. Here, we fo-
cus on collective rotations of N spin-1/2 particles
generated by J,, but these results can be easily
extended to higher-dimensional systems.

Without assistance from Alice, Bob’s ability to
estimate a local phase shift is determined by the
sensitivity properties of his reduced state p?. If
pP is (w, h)-separable, its sensitivity cannot ex-
ceed the bound Fy[p?, J,] < w(N —h) + N [43].
This bound implies widely used entanglement cri-
teria for w-producible states [45, 44] when the
information provided by A is ignored and demon-
strates, in particular, that fully separable sys-
tems with (w,h) = (1, N) are limited to a sen-
sitivity at the shot-noise limit Fg[p?,J,] < N
whereas genuine N-partite entangled states with
(w, h) = (N, 1) can in principle reach the Heisen-
berg limit Fy[p?, J.] < N? [46].

This paradigm, however, can be broken by as-
sistance from a remote system, Alice. If a (w, h)-
separable LHS model exists, Bob’s assisted sensi-
tivity (1) is bounded by

FH A, ] < w(N — h) + N, (5)

which  follows  using F 5 ‘A[.A, J2] <
SAp(A)FgloB,J.] for LHS models [18], to-

gether with the separability limit for each
conditional state o. The condition (5) can
be violated, allowing Bob to improve his av-
erage phase sensitivity beyond the shot-noise
limit, even if his reduced state p® is separa-
ble. Interestingly, no steering from Alice to
Bob is required (in contrast to the scenario
that was considered in Ref. [47]) and even
purely classical correlations between A and B
are sufficient for quantum-enhanced assisted
metrology. The state-independent bounds for
(w, h)-entanglement are indicated in gray in
Fig. 1.

9 Assisted entanglement

Our approach is not limited to applications in
quantum metrology. In the following, we will
outline how any convex entanglement witness or
quantifier can be converted into a witness or
quantifier of the assisted entanglement that can
be extracted from conditional states if appropri-
ate information about measurements on another
system is made available. Consider a convex func-
tion E(p) < ppk€(Yr), where p = 37 prpr,
with the property £(p) > 0 = p is entangled.
We define the corresponding quantum conditional
function as

G (A) = max Y p(al X)E(pllx).  (6)

Convexity implies that Eg‘A(A) <3 ap(AN)E(on)
whenever a LHS model exists. If additionally, the
o) are separable, we obtain the bound 55 |A(.A) <
0. Hence, we find that

EglA(.A) > 0 = no separable LHS model exists.

(7)

Independently of whether steering is possible or
not, 5£|A(A) > 0 reveals that entanglement is
present in Bob’s conditional states and that it
can be made available by suitable measurements
on Alice’s possibly remote system. Any quan-
tum information protocol that requires entangle-
ment can be converted into an assisted protocol in
which Alice communicates her measurement set-
ting and result to Bob. The assistance by Alice
may enable Bob to implement a task for which
otherwise he would not possess the required re-
sources, i.e. when his reduced state is separable,
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E(pP) = 0. The existence of inseparable LHS
models further implies that this is possible even
in the absence of steering from Alice to Bob.

The metrological criterion for separable
LHS (5) is a special case of Eq. (7). Other
conceivable applications are assisted quantum
teleportation protocols, where Bob aims to
teleport a state from one of his subsystems
to another using the entanglement [48] that is
made available to him by assistance from Alice,
or similarly the implementation of a secure
quantum key distribution protocol between
subsystems of Bob based on the violation of a
Bell’s inequality [49]. This idea also applies to
quantitative witnesses, entanglement measures
and other quantifiers that may express with
what level of fidelity or security Bob is able to
implement the task at hand [9, 50, 51, 6, 52, 53].
For example, if £ is an entanglement measure,
then 5£|A(A) quantifies the average assisted
entanglement of Bob.

10 Conclusions

We have introduced a classification of LHS mod-
els in terms of their entanglement and proposed
criteria that are able to put quantitative bounds
on the separability properties of LHS. We focused
on metrological criteria that are experimentally
accessible in a variety of experiments, including
cold atoms [54, 55, 56, 57|, trapped ions [58], and
photons [59]. In these experiments, it is often
challenging to meet the demanding requirements
to observe steering. We have derived a family of
weaker bounds whose violation reveals the pres-
ence of entanglement in Bob’s conditional states.
A hierarchy of state-dependent bounds converge
to steering criteria in the limit of genuinely mul-
tipartite entangled, i.e. arbitrary LHS.

The entanglement of LHS has a clear oper-
ational interpretation and can be exploited for
quantum information tasks. Assisted protocols
where Alice carries out a suitable measurement
and communicates her result and setting to Bob
can unlock hidden entanglement from Bob’s sys-
tem. This is possible even if the two share only
classical correlations, and even if Bob’s reduced
state is separable. This approach may also be
extended to other convex properties of interest,
such as quantum non-Gaussianity [60, 61| and co-
herence [62]|. By accessing the substructure of un-

steerable states, our results show that even multi-
partite systems that can be accounted for by LHS
models may contain nontrivial quantum correla-
tions, which can be used for quantum information
tasks.
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11 Appendix: Proof of Eq. (3)

Let us assume a A-separable LHS model, i.e. the assemblage

Ala, X) =" p(\)p(al X, ot PN, (8)
A

where each conditional state is A-separable, namely
Bi..B B B
o)t PN :pr(’y)a)\;@-“@a/\"y . (9)
Bt

In the assisted protocol, Bob’s average sensitivity is bounded by

Fo P4 H] < 3 p() Falo Y, H]

A
Al
<437 p(N) Y- Var[oyk, HP (10)
A k=1
where
B B
oyt =Y (o3t (11)
v

B1..Bn
A )

is the reduced density matrix on subsystem Bj for the state o and

0B = ;pm S pa()eRs, (12)
v

is the corresponding reduced density matrix for the full state oZ. In the first step, we used the convexity
of the QFI, which leads to an upper bound on the QCFI for LHS models [18|. In the second step, we
made use of an upper bound on the QFI for A-separable states in terms of local variances [35]. Finally,
we used the concavity of the variance to obtain a lower bound on the QCV in the presence of LHS
descriptions [18], for each local subsystem.

Finally, consider the measurement of the local generator HB* in subsystem By, assisted by Alice’s
communication about her result a and setting X. The existence of the LHS model (8) between Alice
and all of Bob’s subsystems implies the assemblage A(a, X) = >, p(A)p(a|X, )\)af’“ for each individual
subsystem B, after tracing out the remaining subsystems. Making use of the lower bound on the QCV
for LHS [18, 3] we obtain

VA 5 > 3 p ) Varo 1 1
A

Combining Egs. (10) and (13) we obtain

|A|
FY A H] <4 Varg L, 1), "
k=1

which is the result presented in Eq. (3) of the main text.
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