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ABSTRACT In the Flexible Manufacturing System (FMS), where material processing is carried out in the
form of tasks from one department to another, the use of Automated Guided Vehicles (AGVs) is significant.
The application of multiple-load AGVs can be understood to boost FMS throughput by multiple orders
of magnitude. For the transportation of materials and items inside a warehouse or manufacturing plant,
an AGV, a mobile robot, offers extraordinary industrial capabilities. The technique of allocating AGVs to
tasks while taking into account the cost and time of operations is known as AGV scheduling. Most research
has exclusively addressed single-objective optimization, whereas multi-objective scheduling of AGVs is a
complex combinatorial process without a single solution, in contrast to single-objective scheduling. This
paper presents the integrated Local Search Probability-based Memetic Water Cycle (LSPM-WC) algorithm
using a spinning mill as a case study. The scheduling model’s goal is to maximize machine efficiency.
The scheduling of the statistical tests demonstrated the applicability of the proposed model in lowering
the makespan and fitness values. The mean AGV operating efficiency was higher than the other estimated
models, and the LSPM-WC surpassed the different algorithms to produce the best result.

INDEX TERMS Manufacturing system, automated guided vehicles, computer integrated manufacturing,
water cycle algorithm, makespan, spinning mill.

I. INTRODUCTION
Industrial Revolution 4.0 technologies have increased Man-
ufacturing System (MS) adaptability. Some emerging tech-
nologies that make MS more versatile are the IoT, big
data, AI, additive manufacturing, cutting-edge robotics, VR,
cloud computing, and simulation. The workstations in the
Flexible Manufacturing System (FMS) is rearranged for
different operations and procedures to its modular architec-
ture [1]. As is evident, FMS are excellent venues for Indus-
trial Revolution 4.0 research since they have features like
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networked interconnection, data collection, and distributed
intelligence [2].

In the manufacturing industry, material handling entails
transporting any material or load inside the confines of the
shop floor, or at themost, to warehouses or vehicles. Themost
recent development in material handling is the use of Auto-
mated Guided Vehicles (AGVs). AGVs seem to be portable
robots that navigate along a predetermined path. It can either
store the material upon these overhead beds during con-
veyance or carry the material stored on them using trolleys
and trailers affixed rearward to them. They transport loads
inside warehouses or manufacturing facilities where there is
a need for continuous material movement with minimal or no

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 9389

https://orcid.org/0000-0002-3617-3590
https://orcid.org/0000-0003-3310-5370
https://orcid.org/0000-0003-4901-1432
https://orcid.org/0000-0002-6025-7858
https://orcid.org/0000-0002-8138-8494
https://orcid.org/0000-0001-5480-8871
https://orcid.org/0000-0003-2934-7983
https://orcid.org/0000-0003-1547-5503


P. Krishnamoorthy et al.: Effective Scheduling of Multi-Load Automated Guided Vehicle in Spinning Mill: A Case Study

FIGURE 1. Flow chart of spinning with the different processes.

human interaction. Today, they are used in almost all indus-
tries, like the food, pharmaceutical, automobile, and textile
sectors, handling anything from raw materials to finished
goods.

The use of AGVs for all material handling requirements
across all industries is increasing daily. The industry has
benefited greatly from it. Some of these are listed below.

(i) Consider a single robot moving a weight of 1000 kg
versus a labourer performing the same task manually.
AGVs are unquestionably superior to manual handling.
They not only save time, but they also savemuch human
effort.

(ii) Comparatively, AGVs are much simpler to install than
conveyor belts. Aside from installing the initial guid-
ance path, they don’t need any machinery or mainte-
nance. Unlike conveyor belts, they do not permanently
block large spaces. If it is not used, it is kept away in a
small area, allowing its movement throughout the entire
shop floor.

(iii) To become a skilled forklift operator, a person must
undergo months of instruction. Due to the absence of
human interference, using the AGVs is simple from the
first day of installation.

AGVs’ safety, which is crucial in every industry, is their
main benefit over other alternatives. Some robots, which have
intelligent safety features and sensors, ensure no damage
is done to the machinery, products, or workers, fostering a
better work environment. The AGVs’ only drawback is their
high capital cost, which makes businesses reluctant to choose
them.

India is one of the world’s top garment and textile pro-
ducers. The Indian domestic textile and garment industry
accounts for 7% of the total industry output and 2% of the
country’s GDP. In 2020–2021, the contribution of apparel,
textile, and handicraft exports made up 11.4% of all Indian
exports. India accounts for 4% of the global textile and

apparel trade. India is the 6th largest exporter of apparel and
textiles worldwide. From fibers, yarns, and fabrics to cloth-
ing, India’s apparel and textile industry has strengths along
the whole value chain. The traditional handloom, handicrafts,
wool, silk products, and organized textile industry in India
make up a large portion of the wide-ranging Indian textile
industry. The automated spinning, weaving, processing, and
textile manufacturing processes used in India’s structured
textile industry are capital-intensive technologies that distin-
guish them from other textile-manufacturing countries. This
paper focuses on the spinning mill industry. Because clothing
is one of the most basic human needs, and spinning is one
of the world’s first industries, it will undoubtedly continue
to boom. The following procedures shown in Figure 1 are
included when this work is spinning.

A. PROCESS DESCRIPTION OF SPINNING
1) BALE MANAGEMENT
The cotton plant is used for fiber collection. All fiber is treated
to eliminate massive dust, such as plant leaves, soil, and
other contaminants. Finally, the fibre bale’s weight (218 to
225 kg) and sizes (1.400 x 0.53 x 0.69 m) are determined.
After ginning, the bale typically consists of compressed lint
that has been secured with wire.

2) BLOW ROOM
The second spinning phase is the blow room, where the
bales are opened and arranged one at a time for fiber mixing
according to the information on each bale. Information such
as color grade, weight (218 kg to 225 kg), size (1.400 m X
0.53 m X 0.69 m), and batch number are all recorded in the
bale. The objective of this process is to make the fiber lap.

3) CARDING MACHINE
The lap is fed over the carding machine to make a carded
sliver. This procedure aims to straighten the fiber and cut out
any short threads.

4) DRAW FRAME
A draw frame is a machine that produces one drawn sliver
by drafting two or more carded slivers between three drafting
rollers. Of these three rollers, the third is the fastest, followed
by the second, which is the shortest of the three. A second
drawing frame is also used if more drafting is required.

5) SIMPLEX/SPEED FRAME
For producing roving yarn with a greater diameter than fin-
ished yarn, the drawn sliver is treated in the simplex/speed
frame. The roving yarn has relatively little strength and is
factory-made without a twist.

6) RING FRAME
The roving yarn is twisted on a ring frame machine to pro-
duce the finished yarn. This procedure gives the yarn a good
quantity of turning strength.
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FIGURE 2. Spinning Mill process diagram.

7) AUTO CONER
Generally, an auto coner is mainly used to make cone pack-
ages of different dimensions. After that, the yarn is packaged
for use and delivery.

Through Computer Integrated Manufacturing (CIM) in
each production stage, automation in the spinning mill indus-
try is possible. It is possible to monitor/control nearly all
procedures for yarn production, from opening and blending to
spinning, winding, and twisting, using CIM systems, as illus-
trated in Figure 2. Applications range widely, including mill
management, budgeting, order tracking, maintenance, and
inventory control. Most companies today provide advanced
controls for CIM-compatible opening, blending, carding, and
other fibre preparation equipment. There are ring-spinning
machines with separate spindle drives that are highly flex-
ible and easily adaptable to the CIM concept. On-machine
electronics connected to a computer network can regulate
silver weights and modify the levels. In online quality con-
trol for carding and drawing, the frequency analysis of the
defects is used to perform spectral and identify the problem’s
root cause. Because robotic machines perform automatic end
piecing and doffing, a giant spinning mill is run by a limited
number of employees.

Every procedure depends heavily on other departments.
Therefore, a single plant is spread over an area with des-
ignated spaces separating each activity. In any case, trans-
porting such material from one location to another is tedious
because it is bulky. Imagine transporting tonnes of cotton
bales from a warehouse toward a spinning mill or carded
yarn out of a carding department to a drawing frame. Trans-
porting the material for textiles still requires manual labour
in so many industries. However, it becomes nearly impos-
sible to complete these tasks manually when the industries
develop. Pallet trucks, forklifts, and overhead pick-and-place
machines emerged, and many textile industries still use these
types of machinery today. But men still must operate each of
these. Additionally, forklifts and pallet trucks are the primary
causes behind shop floor accidents that Jeopardise workers’
safety at the point of risk.

The AGVs enter this situation because they are 100%
autonomous and don’t require human interaction. The pos-
sibility of errors is significantly minimised as a result. They
require much less maintenance than traditional forklifts and
pallet trucks. It guarantees fully automatic load carriage

between one department and another, including automated
bale, cart, or trolley picking and placing. Yarns and bob-
bins are transported using the AGV bed’s unique mechanism
without hooking or tying. It enables 100% automation by
reducing manual time and effort. AGVs can operate without
issue in such a hot and noisy environment. It also deploys
collision detection sensors, providing 360◦ protection from
safety incidents on the factory floor. Its characteristic accu-
racy and flexibility make it a perfect replacement for bulky,
stationary conveyors or gantries on assembly lines.

To accomplish the task assigned to it, the AGV steers auto-
matically. AGVs are classified into bidirectional, unidirec-
tional, multi-load, and unit-load types. Whereas bidirectional
AGVs can drive in both directions along the same guided
path, unidirectional AGVs can only advance along a guided
approach in three ways [3], [4], or [5]. While a single load
is transported from one work centre to another using unit
AGVs, a multi-load AGV system could pick up and deliver
many shipments in much less time to any work centre, greatly
enhancing the efficiency of the material handling system and
the FMS facility [6], [7]. Multi-load AGVs have the potential
to improve overall FMS productivity and adaptability. The
dispatching and scheduling that include collision-free routing
of AGVs for the work centre are done separately or instanta-
neously. Work centres and AGVs are scheduled concurrently,
which can increase MS throughput, achieve optimal material
handling resource utilization, and reduce AGV arrival times
in either MS.

While simultaneously scheduling task centres and AGVs
is primarily complex, the results are more effective than
separately scheduling work centres and AGVs. If multi-load
AGVs are used for material handling pocess for FMS instead
of unit-load AGVs, the scheduling process becomes more
complex, and the system’s efficiency decreases. A possi-
ble research gap is studied from various research works to
schedule multi-load AGVs and jobs performed at FMS work
centres with the least amount of time travel and waiting time.
The primary use of a multi-load AGV in a spinning mill is to
drop off the processed byproduct automatically, transport it
to the following production department, and then transport
the completed yarn to a warehouse for packaging, which
can cut down on labour and operational costs [8]. The path
prediction strategy of the multi-load AGV in a spinning mill
immediately needs to be studied due to the distinct layout and
production system.

Presently, [9] has presented an enhanced harmony search
algorithm to handle the task assignment and sequencing
of multiple AGVs in the multi-load AGV’s path plan-
ning problem. For multi-robot systems, [10] suggested a
resource-based task allocation mechanism. The Dijkstra and
Dynamic Time-Window algorithms schedule the shortest and
most conflict-free route in the [11] dynamic routing method
for the AGV system’s fastest path planning and conflict
prevention. A modified Particle Swarm Optimization (PSO)
method was presented by [12] to search shortest path for a
solar-powered Unmanned Ground Vehicle (UGV). A routing
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method using time windows having a vectorial shape was
proposed by [13]. The technique is vulnerable to supplemen-
tary scheduling and routing issues because of the use of time
windows.

In order to create the path planning model, [14] used the
scheduling policy driven by actions like the research method,
a mixed-integer programming model for the scheduling of
the multi-load AGV, the minimum total operational costs as
the planning target, operational constraints, the size of the
time window, as well as load balance as constraint conditions.
Reference [15] developed a finite element model with such a
new objective function that combines two indicators, namely
the standard deviation of the overall travel distance of an
AGV and the waiting time of computer static control material
buffers. Reference [16] examined a multi-objective optimiza-
tion method that measured time costs, the bare minimum of
vehicles, and work schedules. Reference [17] suggested a
technique for deciding on the optimal path in a flexible job
shop with MS, considering two time and cost factors. Refer-
ence [18] has used a mathematical programming method to
choose the optimal route for AGV transportation based on the
BOM while assuming time, costs, and AGV capabilities as a
triple standard.

Much research about the path planning of AGVs, including
static and dynamic planning, has been conducted over the past
few decades by academics at home and abroad. Amulti-AGV
static path model was created by [19] with a time window to
minimise the maximum task volume crossed by each edge
inside the simulation graph. A direct and practically continu-
ous trajectory generation system was put out by [20] to pro-
duce the shortest collision-free path for multi-AGV systems
automatically. The techniques mentioned above exclusively
used static path planning, had weak dynamic adaptability and
failed to take operation time and path length into account,
substantially reducing conflicts. The author [21] applied
dynamic path planning to overcome the drawbacks of static
path planning and developed a conflict-free path approach
for shortest path planning that relied on the evolutionary
algorithm, although this technique had an excessively long
total travel time. The running path and state scheduling of
each AGV were likewise planned by [22] using the frog leap-
ing model. Moreover, this method concentrated on prevent-
ing collisions and failed to consider real-time applications,
avoiding obstacles or flaws like low system efficiency while
collisions occurred continuously.

Several factors, such as guide-path design, AGV schedul-
ing, AGV fleet size, idle-vehicle positioning, vehicle routing,
and battery maintenance, are considered while implement-
ing an AGV system [23]. AGV scheduling is broken down
into two issues: dispatching, routing, and scheduling. Dis-
patching includes task selection and assignments for AGVs;
sequencing such tasks involves choosing specific paths for
reaching assigned destinations; scheduling involves figuring
out the arrival times and the charging period of AGVs [9].
The shipping and scheduling of multi-load AGVs are the

FIGURE 3. AGV path layout in a spinning mill.

main topics of this research (commonly termed ‘‘scheduling
multi-load AGVs’’).

The dynamic nature of MS was considered by [24], who
proposed the multi-agent-based system for instantaneous
scheduling in flexible machine groups and material handling.
The agents in the model are self-sufficient and can work
together and talk with other agents in the system.

Because of this, the scheduling problem has become
harder to handle and more complicated as it has grown.
Due to its effective global optimization capability and sig-
nificant flexibility, the intelligent optimization algorithm
is applied to solving the AGV scheduling problem. The
ant colony algorithm and optimization are used to solve
the AGV multi-objective optimization scheduling problem
to tally workloads across vehicles, material transport con-
sumption time, and AGV use rate. In order to resolve
the multi-objective AGV scheduling optimization problem,
Maryam [16] suggested a hybrid between genetic algorithms
and PSO.

To solve the scheduling problems in the AGV environ-
ment, this paper proposes the Local Search Probability based
Memetic Water Cycle (LSPM-WC) algorithm—a combina-
tion of the Water Cycle Algorithm (WCA) and the Local
Search Probability based Memetic Algorithm (LSPMA)— to
find the best scheduling options for multiple AGVs employed
in the spinning mill industry.

The proposed paper is organized as follows: Section II
presents the problem description; Section III discusses the
proposed methodology; the experimental results and anal-
ysis are presented in Section IV; the work is concluded
in section V.

II. PROBLEM DESCRIPTION
Figure 3 depicts the spinning mill industry’s layout and the
multi-load transportation path. The multi-load Automated
Guided Vehicle (AGV) departs from the warehouse but trav-
els along the path node corresponding to each processing
department using a feasible approach. The AGV automat-
ically loads the bales and then transfers unopened bales
towards the blow room. The AGV handles all loads from
one department to the next and inside the floor after unload-
ing the bales and returning to the blow room workshop to
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transport the finished product towards the following produc-
tion department.

A. ASSUMPTIONS AND LIMITATIONS
The following assumptions are considered:

Depending on the different setups used, the type, as well
as the operation of a selected FMS environment, varies. As a
result, the system setup is accurately determined before AGV
scheduling. The following sections outline the system setup,
underlying assumptions, and objective criteria used in this
study.

(i) A path between two points is not always identical; a
system controller could alter an AGV’s route to one
at the predefined point if the next lane or junction is
congested.

(ii) The work centres and locations remain unchanged until
all the jobs under consideration are completed.

(iii) AGVs would not experience delays inside a buffer area
while awaiting jobs; the AGVs, and the machines, will
constantly run without interruption.

(iv) The fleet consists of G=1, 2,. . . |G| AGVs. Each AGV
transports a specific task. The AGVs are usually con-
sidered empty at the start of the process.

(v) All AGVs are reliable, carry a certain weight per unit,
and move at a steady average speed.

(vi) Both the L/U point-to-machine and machine-to-
machine distances are determined.

(vii) No traffic problems, deadlocks, collisions, or conflicts
exist, and no jobs are being preempted.

(viii) Pallets, input and output buffers, and loading and
unloading (L/U) equipment are allotted appropriately.

(ix) At any assumed time, only one product is used per
machine.

(x) The processing time for a job includes the time it con-
sider to load and unload it onto the machine.

(xi) All procedures assume that the setup time on the work
centre is ‘0’.

(xii) AGVs could always park in the designated parking area
or drop-off point (DOP).

(xiii) The AGVs are positioned in the transit or charging
port to load or unload materials from one source to the
destination.

B. PROBLEM STATEMENT
The objective of this scheduling problem would be to imple-
ment the AGVs in a way that satisfies all specified criteria
and results in an optimum schedule with the minimum travel
and waiting time possible. The AGV in this scenario could
be located anywhere within the spinning mill industry. At the
charging port or while transiting between its source and des-
tination, it can be accessible.

(i) Let t denote the volume of work
(ii) Node n and node t + n = the select and delivery place

of the nth task inside the network

(iii) Inside the network, multiple nodes are denote the simi-
lar physical location of the production department

(iv) A node-set is formed by computing node 0 and (2t+1)
to be an AGV’s actual starting and endpoint towards a
network.

T = {0, . . . , t, t + 1, t + 2 . . . , 2t, 2t + 1}.

(v) The choice, and delivery points, are, correspondingly,
comprised of two sets as

L+
= {1, 2 . . . , t}

L̄ = {t + 1, t + 2 . . . , 2t.}

L = L+
∪ L̄

(vi) L = Set of nodes from which to select and delivery
location other than an FMS facility.

(vii) The variables for the notations used in the following
equations have been worked out.

j, Index for Tasks; j = 1, 2, . . . , x
g, Index for AGVs; g = 1, 2, . . . , t
d, d ′ Index for Processing Centre (PC); d = 1, 2, . . . , y;

d ′
= 2, 3, . . . , y
Mj = Selection time interval of the jth job
Mgy = Time at which the AGV, g, sub-nodes the PC
Cg = Size of AGV, g
r = Number of jobs at a task center
ljd = Processing time of job ‘‘j’’ being processed at

PC ‘‘d’’
pj = The task’s limit ‘‘j’’ being processed at PC ‘‘d’’
Fjd = Deadline time for job ‘‘j’’ being processed at

PC ‘‘d’’
Dnm =Travel time from the physical position of node n, Pn

to the physical position of node m, Pm.
Znmg = Measure of AGV, ‘‘g’’ from node ‘‘n’’ to ‘‘m’’.
If, Znmg = 1; AGV ‘‘g’’ moves from node ‘‘n’’ to ‘‘m’’;

else Znmg = 1. So, its domain is {0, 1}.
L = Load
Lgn = Load at AGV ‘‘g’’ when it sub-nodes ‘‘n’’.
Initially Lgy = 0
Mgn = Time at which the AGVg starts service at node ‘‘n’’
M = Makespan
υ = Usage
InitiallyMgy = 0
α; β; δ; = time-related weights applied to the objective

function
From EQU (1) to EQU (14), constraints and objective

functions of an issue have been recognized. The load carried
by the AGV when it departs from the first pickup point (PP)
following the work centre and travels to any other PP or
DOP is depicted by equations. An AGV’s load will increase
or decrease by one if it travels to a PP or DOP, so after
crossing the first PP or DOP, the AGV in a material han-
dling system functions with multiple loads. The scheduling
problem to multi-load AGV presented within this work is
an NP-hard problem based upon satisfying constraints and
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optimised while considering the minimum travel and waiting
time model.

AGV first leaves the work centre before following a
PP. AGVs can travel towards whichever pickup or delivery
point they choose. Before delivery to the last work centre,
a multi-load AGV delivers a job towards the second-last
work centre. The service time of the current node and the
travel time between existing and present nodes are con-
sidered when calculating the starting service time at each
node.

AGV pickup and delivery points are subject to restrictions.
An AGV must leave a node after entering it, and if it visits
the pickup node, it also visits a related delivery node. This
requirement confirms that every PP is to be visited through
an AGV. EQU (1) to EQU (14)(
Z0gl = 1

)
⇒ Lgm = 1; g ∈ Gm ∈ L+ (1)(

Znmg = 1
)

⇒

{
Lgm = Lgn + 1; g ∈ G,m ∈ L+, n ∈ L, n ̸= m
Lgm = Lgn − 1; g ∈ G,m ∈ L−, n ∈ L, n ̸= m

}
(2)(

Z0gl = 1
)

⇒ Mgm = Mg0 + MP0,Pm ,m ∈ L+, g ∈ G (3)(
Znmg = 1

)
⇒ Mgm

= Mgn + MPn,Pm , n,m ∈ L, g ∈ G (4)(
Zn(2t+1)g = 1

)
⇒ Mg(2t+1)

= Mgn + MPn,P(2t+1) , n ∈ L−, g ∈ G (5)∑
g∈G

∑
m∈T

Znmg = 1, n ∈ L+ (6)∑
m∈T

Znmg −

∑
jeN

Zmng = 1, n ∈ L, g ∈ G (7)∑
m∈T

Znmg −

∑
jeN

Zm(t+1)g = 1, n ∈ L+, g ∈ G (8)∑
m∈L+

Z0gl = 1, g ∈ G (9)∑
m∈L−

Zn(2t+1) = 1, g ∈ G (10)

Lgn ≤ Cg, g ∈ G, n ∈ L

min time =

∑
g∈G

{
α

∑
n∈L

∑
m∈Lm̸=1

Znmg · Mnm

+

∑
r

(
β

∑
n∈L

∣∣Mn − Mgn
∣∣+

+δ
∑

n∈L

∣∣Mgn − Mn
∣∣+)}

(11)

α =

∑
d=1

∑
j=1

|ljd − pjd |2 (12)

β =

∑
d=1

∑
j=1

|ljd − Fjd |2 (13)

δ =

∑
d=1

∑
j=1

∣∣ljd − Cjd
∣∣2 (14)

1) MINIMIZING THE MAKESPAN
This phase measures the makespan (M), which is the duration
needed for all tasks to be executed. Makespan is expressed by
EQU (15):

M = max{
(
Znmg + ljd

)
} (15)

2) FITNESS VALUE (FV)
Assume FV is used to estimate the authority of task schedul-
ing. Load balancing knowledge is expected to be required for
effective AGV deployment. The fitness function for assigning
an actual task to an AGV is calculated using EQU (16).

FV (g) =
1
M

× max(υ) (16)

Considering the machine’s varying production times, the
average usage of an AGV is premeditated. The operation of
the distinct device is evaluated by using EQU (17)

υ
(
gjd

)
=
Fjd
M

(17)

3) OBJECTIVE FUNCTION (f)
The objective function of this phenomenon is the average
total execution time of all tasks that are given to the AGVs,
and it is found using the EQU (18). G is taken into account
as multiple AGVs in this situation. This value represents the
equilibrium between AGV use and the optimal schedule.

f = min

{∑g
i=1 FV (g)

g

}
(18)

Every AGV’s first visit is to a pickup node, while its last
is to a delivery node. When AGV ‘‘g’’ departs from node
‘‘n,’’ its load cannot be more than its carrying capacity. The
total travel time of the AGVs is computed while considering
their waiting time and their delay time to perform their tasks.
AGV’s waiting time and delay time will affect the objective
function if they are positive.

III. PROPOSED METHODOLOGY
A. LOCAL SEARCH PROBABILITY-BASED MEMETIC
ALGORITHM (LSPMA)
By considering some significant MA-related problems,
possible algorithmic MA improvements are accomplished.
Assuming a local search frequency, or how frequently the
local search occurs, is just one of the initial issues relevant
to a MA model.

Using the problem-specific local search schemes, select
a suitable solution to such a random, definite local search
direction. Also, use only local search on your chosen solution
to make local search more effective. While reducing the
number of solutions over that local search, this article uses
the local search probability or LSP. According to the present
local search direction, the proposed algorithm decides.

The suggested method reduces the production time of a
task scheduling problem, where the pseudocode is shown in
Algorithm 1, by using the local search probability, or LSP, for
choosing individuals during the next population.

1) GENETIC REPRESENTATION
Each task graph node’s start time and AGV allocation make
up the schedule. So, every chromosome is denoted as a group
of genes, or a task-AGV pair (ti, gi), which denotes that
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Algorithm 1 LSPM Algorithm
Step 1: Use population size ‘‘PS’’ as a metric to create

chromosomes and measure their ‘‘FV ’’ ;
Step 2: Set initial solution, Inis := max(FV );
Step 3: Perform LSP over chosen solutions to determine

the best fit value. ‘‘LSbest ’’;
Step 4: UpdateInis := LSbest ;
Step 5: While (True)
Step 6: Crossover ()
Step 7: Mutation ()
Step 8: Execute STEP 3 over again from the population

acquired from STEP 7
Step 9: If FV < LSbest
Step 10: Update LSbest
Step 11: End If
Step 12: End While

FIGURE 4. Chromosomal representation.

task ti is associated with the processor gi in Figure 4. The
positioning of genes on chromosomes regulates the sequence
in which tasks must be carried out.

2) INITIALIZATION
Thus, the generation of the initial population is based upon the
precedence calculation of tasks at all levels. A chromosome’s
fitness is inversely proportional to the length of an associated
schedule because the goal of a task-scheduling problem is to
locate the shortest program possible. Here, the reduced task
completion time is used to find FV.

3) SELECTION
During this step, a population’s chromosomes are ranked
from best to worst in terms of FV. They are then selected for
the pool.

4) RECOMBINATION
New chromosomes are produced by joining two selected
parent chromosomes. The second component of each chro-
mosome is swapped at a randomly chosen point. A crossover
probability is set randomly when alternating between
one-point and two-point crossings.

5) CROSSOVER
By swapping some genes between two chosen chromosomes,
the crossover operator creates two new chromosomes for the

following generation. This investigation uses two crossover
operators—one-point crossover and two-point crossover—
based on the interchange of partial strings. Based on the
Crossover Rate (CR) and Population Size (PS), the number
of crossovers is computed as follows in EQU (19):

No.of crossovers =
(CR× PS)

2
(19)

6) MUTATION OPERATOR
Compared to the crossover operator, such an operator is active
with a lower probability (0.1 or less). Its objective is to
prevent the state search from settling on a locally optimal
solution. The population gradually gets fitness by changing a
randomly chosen gene (ti, gi) to (ti, gj) on each chromosome
in the fittest individuals. As a result, the population steadily
gets better. The proposed algorithm does not set a predeter-
mined probability of crossover and partial-gene mutation.

7) LOCAL SEARCH
During the local search phase, a neighbour is created at ran-
dom from the neighbourhood of a current solution. A recent
solution is substituted if the neighbour is superior, and a local
search for a new current solution is carried out similarly.
When an offspring’s quality is deficient, applying local search
looks like an unwanted computational burden. As a result,
only good offspring are used for local searches.

8) TERMINATION CRITERIA
The algorithm ends if no enhancement solution is observed
during the last ‘n’ iterations. This ranges from 50 to
500 depending on the level of the problem and the required
optimization of a solution.

B. WATER CYCLE ALGORITHM (WCA)
The hydrologic cycle technique, which has five phases and is
based on the nature-inspired algorithm WCA, was first pre-
sented in [25]. Such as (a) transpiration (water from lakes and
rivers evaporates at the same time that plants release water
through photosynthesis), (b) condensation (cloud formation
in the air, which then condenses and cools), (c) precipitation
(discharge of water to earth similar to ice melting), (d) perco-
lation (groundwater, also known as reserved water in a field),
and (e) evaporation (evaporation converts underground water
and releases it to form a stream). The proposedmethod begins
with a total population known as raindrops produced by rain
or other precipitation.

This paper initially anticipates downpours or other pre-
cipitation. This research work shows that rivers are formed
when raindrops are connected to form streams. A portion
of the streams also goes directly into the ocean. Each river
and stream flows into the sea, an ideal spot. Figure 5 shows
the flow of the streams towards a specific river, with the star
representing the river and the circle representing the stream,
respectively.

At first, raindrops are generated at random, and the
integrity of the schedule is selected by computing good
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FIGURE 5. The water cycle: from raindrop to stream, then the river, and
finally ocean.

raindrops. First of all, we acknowledge that there have been
downpours or precipitations. The best person is chosen to
represent an ocean as a raindrop. At that moment, a few
heavy raindrops are selected to represent the river, and the
remaining raindrops are considered streams that flow into
rivers and oceans. After repeatedly running a relatively sim-
ilar system for the predetermined cycles, an optimal solution
is found. The ‘‘guidance points’’ in the suggested technique,
as shown in Figure 5, are the rivers and other well-select
places aside from the best one (ocean), which are used to
steer other member populations in the right direction. Rivers
change direction and flow into the sea. The empty white
outlines depict the shifting of rivers and streams (raindrops).
To simplify the analysis, the WCA steps are presented in
algorithm 2.

Three job subsequence options for every multi-load AGV
are used to provide a neighbourhood solution for such
a WCA.

(i) With each multi-load AGV, the sub-sequence of job
relocation: Incorporates a specific set of tasks per-
formed by an AGV from one route to another.

(ii) Exchange or a subsequence of tasks between two dif-
ferent paths improves the response to the AGV routing
problem for each multi-load AGV.

(iii) This work combines the two methods above, the sub-
sequence of the job mixture to every multi-load AGV
attempt for relocating, exchanging or subsequence of

Algorithm 2 For WCA
Step 1: Choose ‘‘raindrops’’ as the original variables. The

raindrops’ function inside WCA is analogous to a
‘‘chromosome’’ inside GA or a ‘‘particle position’’
inside PSO. A raindrop is stated by one of the following
methods:

A streamorRaind rop = {x1, x2, x3, . . . xn} (20)

Step 2: Consider Npop as the number of raindrops and Nvar
as the number of variables, using EQU (20) creates a
random initial population.

Rpop =


raindrops1
raindrops2
raindrops3

...
raindropsNpop



=


x11 x12 . . . x1NVar
x21
. . .

x
Npop
1

x22 . . . x2NVar
. . . . . . . . .

x
Npop
2 . . . x

Npop
NVar

 (21)

Step 3: Calculate the raindrops’ fitness using: EQU (22)

Cost i = f
(
xi1, x

i
2, · · · , xiNVar

)
i = 1, 2, 3, · · · ,Npop (22)

Step 4: The best Nrs individuals are chosen to represent rivers and
the ocean out of Npop raindrops. Figure out the number
of rivers using EQU (23)

Nrs = No.of Rivers+ 1 (23)

Step 5: The best raindrop is taken to represent the ocean, and
the rest of the population is considered to be streams
or raindrops flowing into the river and ocean
using EQU (24):

NRaindrops = Npop − Nrs (24)

Step 6: Considering the number of streams. ‘‘NSn’’, each one
streams into a specific river and ocean. The following EQU
(25) is used to compute the flow intensity of rivers and oceans

NSn =round

{∣∣∣∣∣ Cost i∑Nrs
i=1 Cost i

∣∣∣∣∣ × NRaindrops

}
,

n = 1, 2, . . . ,Nrs (25)

An individual stream’s separation from a specific river that it
flows into is analysed by EQU (26)

Y ∈ (0,L × s) ,L > 1 (26)

where between 1 and 2 or L = 2 is the user-defined value. s is
the current distance in themiddle of streams aswell as the river.
Y is the number between 0 and (LxS) in each distribution.
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Algorithm 2 (continued.) For WCA
Step 7: EQU (27) determines the rate at which streams flow into

rivers. Rivers and streams’ new locations are
computed as follows:

Y i+1
Stream = Y iStream + rand × L ×

(
Y iRiver − Y iStream

)
(27)

Step 8: In order to determine the rivers’ flow into the ocean (the
most extraordinary downhill location):
EQU (28)

Y i+1
River = Y iRiver + rand × L ×

(
Y iSea − Y iRiver

)
(28)

where the uniformly distributed random number is
0 and 1.

Step 9: To find the best global solutionGbest , exchange a stream’s
position with the river.

Step 10: While the river fixes a superior solution to the sea, the
location of a river is traded, similar to Step 7.

Step 11: Analyse the evaporation conditions using EQU (29)

if
∣∣∣Y iSea − Y iRiver

∣∣∣ < smax ; i = 1, 2, . . . ,Nrs − 1 (29)

Wherein a smaller value that regulates a search depth
near an ocean is smax ∼= 0 used. The value of smax
drops decrease with each iteration because evaporation
decreases as it rains, EQU (29)

si+1
max = simax −

simax
max iteration

(30)

Step 12: Lower bound values are denoted by the symbol ‘‘LB’’.
The assumed problem characterises the upper determined
value or UB. In specific locations identified using EQU
(31), newly created raindrops produce new
streams arbitrarily.

Y newStream = LB+ rand × (UB− LB) (31)

The algorithm’s optimum point’s computational execution
and convergence rate are defined by EQU
(32)

Y newStream = Ysea +
√

µ × randn (1,Nvar) (32)

Step 13: To lessen the value of smax , EQU (33)

Step 14: Verify the convergence criteria. The process stops if the
halting criteria are met; otherwise, it will return to
Step 7.

tasks, and concurrently assessing the options to discover
the option providing less travel and waiting time.

The subsequence task mix sequence for each AGV was
looked at in this paper because it led to a better solution.

C. TASK SCHEDULING MULTI-LOAD AGV USING
LSP-BASED MEMETIC AND WCA
A technique’s performance is determined by its capacity for
solution exploration (global search) and solution exploitation

Algorithm 3 LSPM-WC Algorithm
Step 1: Initialize the raindrop population, Rpop
Step 2: Using EQU (18), measure the objective function

for scheduling
Step 3: Update the local search solution. Lbest and the

global search solution Gbest
Step 4: Employ the LSP-based memetic algorithm using

the initial population and objective function;
Step 5: For the initial population, recombine p%(Rpop)

Step 6: Calculate new Lbest and Gbest
Step 7: Compare the initial solution with the new search

solution
Step 8: If new Lbest and Gbest is better
Step 9: Replace the search solutions with new values
Step 10: Else
Step 11: Retain the initial solutions
Step 12: Update Scheduling, Lbest and Gbest
Step 13: If the termination condition does not arrive
Step 14: Go to Step 4
Step 15: Else
Step 16: End

(local search). The WCA places less emphasis on the
exploitation process than on the exploration process because
the raindrops under consideration converge prematurely to
specific locations during an early phase due to their attraction
as globally best positions. Using evolutionary algorithms that
have proven helpful in many application areas improves an
algorithm’s capability to use local search data for feasible
outcomes. In order to generate the best solutions, local search
possibilities within optimization are improved. This research
investigation integrates and applies the WCA to the optimal
global solution and the LSPMA to the optimal local solution.
It is done in the spinning mill industry to schedule multi-load
AGVs with less travel and waiting time. LSPM-WC is the
name of the new algorithm 3 proposed. By integrating the
solutions in a manner akin to how a crossover is used in GA,
the LSPM-WC enhances local search capabilities. A random
selection of a population of such solutions is subjected to
a recombination process. Recombining the frequent results
in improved FVs than the initial or prior values; therefore,
the new solutions are implemented for the existing solutions.
The flowchart shows that the algorithm produces reasonable
solutions with less travel time and waiting time, as shown
in Figure 6 because the newly combined solutions produced
by adequate local search balance the algorithm’s exploitation
and exploration processes. For the scheduling of multi-load
AGVs, LSPM-WC produces the best possible results with
less travel and waiting time.

The following three techniques are taken into account to
find the best solution for the WCA and LSPM-WC:
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FIGURE 6. LSPM-WC algorithm flowchart.

1) WCA’S INITIAL DETERMINISTIC FEASIBLE SOLUTION
In this scenario, the number of tasks divided by the total
volume of AGVs determines the travel time for each AGV.

2) WCA’S INITIAL RANDOM FEASIBLE SOLUTION
To accept the principles of probability, a few random tasks are
selected.With this method, the process commences in various
neighbourhoods.

3) SOLUTIONS FROM LSPM-WC
Following the generation of the initial optimal solution
through WCA for the single-loaded condition of AGVs,
LSPM-WC is once again applied to obtain a better solution
for multi-load AGVs.

IV. RESULT AND ANALYSIS
A. EXPERIMENTAL SETTING
This section presents the experimental results. The algorithms
in this comparison are all implemented in MATLAB version
2021a and run on a personal computer with an Intel Core
i7 3610QM CPU running at 2.5 GHz, 16 GB of RAM, and
Microsoft Windows 11 installed as the operating system.
Comparisons against many algorithms are made to confirm
the efficiency of the proposed model.

TABLE 1. Time travelled by AGVs between Pickup and Drop locations
(Example 1).

TABLE 2. Time travelled by AGVs between Pickup and Drop locations
(Example 2).

TABLE 3. Processing time for each process on each machine (Example 1).

Two static tests were used to validate the model. The first
example involves eight machines (M1, . . . ,M8) Processing
8 tasks (t1, . . . , t8), each of which required multiple opera-
tions. The second example has 12 machines (M1, . . . ,M12)
processing 16 tasks (t1, . . . , t16), with each task requiring
multiple operations. The AGV’s travel time between pickup
and dropping points and machines is shown in Table 1 and
Table 2, and the processing time for each machine operation
is shown in Tables 3 and 4 for both examples.

According to the experimental study, the crossover and
mutation rates were 0.2 and 0.08 for all tests, and the starting
variables for the WCA were selected as 50, 8 and 1 × 10−5,
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TABLE 4. Processing time for each process on each machine (Example 2).

FIGURE 7. (a): Makespan comparison (Example 1) (b): Makespan
comparison (Example 2).

for Npop,Nrs, andSmax. The programs are run 50 times by a
population size of 100 within 100 iterations. The proposed
model is evaluated compared to other task scheduling algo-
rithms based on GA, Swarm Intelligence, and Hybrid.

MODEL#1: ‘‘An improved PSO-based task scheduling
AGV in a resource-constrained environment,’’ proposed
by [15].

FIGURE 8. (a): Fitness comparison (Example 1) (b): Fitness comparison
(Example 2).

MODEL#2: ‘‘A scheduling algorithm based on hybrid GA
and PSO for employing AGV in having workshops’’ pro-
posed by [26].

MODEL#3: ‘‘A harmony search based AGV scheduling
for material transfer in a real-world MS’’ proposed by [27].

MODEL#4: ‘‘A GA + ACO based AGV task scheduling
in FMS’’ proposed by [28].

The makespan results for both examples of all the models
are presented in Figures 7 (a) and 7 (b). It is visible that
Model#1, Model#2 and Model#3 have reduced makespan
efficiently. But when compared with the proposed model,
the proposed LSPM-WC algorithm outperforms all the other
models. EQU 16 has been used to determine the FV and the
results from Figures 8 (a) and 8 (b); it is inferred from both
examples that the proposed model has better performance
than the other models.

ETC and load balance values are shown in
Figures 9 (a) and 9 (b), demonstrating the performance results
of all the compared models and the correlation between ETC
and load balance. All processes over the fitness function show
that the proposed model improved overall efficiency on all
points of interest more than other modelling techniques.

The optimal task and AGV combination can learn the
optimum package transport behaviour. Thus, we’re interested
in evaluating its behaviour to see if it’s sufficient. In addi-
tion, this paper optimizes assessing the system’s scalability
by experimenting with multiple AGVs and observing their
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FIGURE 9. (a): Execution time cost (ETC) and load balance (Example 1)
(b): ETC and load balance (Example 2).

FIGURE 10. (a) AND 10 (b): Number of deliveries for AGVs in the
simulated scenarios A and B 100 episodes of execution has been
performed for each configuration.

behaviour and performance. Given the difficulty of the task at
hand, employing a policy at random, like the baseline, which
cannot transport any load, is not an option (causing the end
of the section within a few simulation steps).

This research work has performed 100 tests for each con-
figuration, such as 3, 4, and 6 cars in the environment,
to confirm the effectiveness of these regulations. To balance
the traffic flow and increase load delivery speed, the AGVs
will be distributed randomly in only one lane. For the used
loading and unloading speeds, it is simple to determine that
the scheduling model can complete a collision-free product
delivery that is close to the theoretical total number of ship-
ments. If we ignore the stop conditions between vehicles, the
maximum delivery formula can be illustrated as follows:

maxdelivery = no. of AGVs ×
no. of simulation steps

|Ta|
(33)

where |Ta| specifies how many cells make up a discretized
track. Figures 10 (a) and (b) display the theoretical maximum
and average loads sent over 100 executions for different
vehicle configurations in the two testing conditions. The
number of transported loads increases linearly, as can be seen,
and the number of packages delivered is nearly equal to the
theoretical maximum. It decodes that the proposed model
performs well.

V. CONCLUSION AND FUTURE WORK
In this work, the Local Search Probability Based Memetic
Water Cycle (LSPM-WC) algorithm—a combination of the
Water Cycle Algorithm and the Local Search Probability
Based Memetic Algorithm—has been used to find the best
scheduling options for multiple AGVs used in the spinning
industry. The results of this proposed work have been eval-
uated against those of other AGV scheduling algorithms.
Despite some work focused on scheduling unit load AGVs
and relatively few studies on multi-load AGV task schedul-
ing, this paper study obtains solutions for multi-load AGV
task scheduling that result in a minimum makespan for han-
dling materials in a spinning mill; this was achieved using the
proposed integrated LSPM-WC algorithm.

When used for material handling in a spinning mill,
the LSPM-WC for multi-load AGVs achieves significant
throughput. The analysis shows that the LSPM-WC can pro-
duce promising results for real-time task scheduling of multi-
load AGVs. When designing a path for several AGVs in
FMS, it is essential to consider not just the fastest route
for the AGVs to take when transporting containers but also
whether the crossing or overlapping of AGV driving trajec-
tories causes a collision, congestion, or other conflict issues.
If the AGVs’ path conflicts aren’t resolved, it’ll slow down
the AGVs’ journey time and raise the waiting time in the
processing department, both of which will reduce operational
efficiency and drive up costs. As a result, one of the primary
research guidelines for the future is AGVs’ dynamic schedul-
ing mixed with AGVs’ active path planning.
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