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Abstract

Clinical management of cancer has continuously evolved for several decades. Biochemical, molecular

and genomics approaches have brought and still bring numerous insights into cancerous diseases. It is now

accepted that some phenomena, allowed by favorable biological conditions, emerge via mechanical signaling

at the cellular scale and via mechanical forces at the macroscale. Mechanical phenomena in cancer have

been studied in-depth over the last decades, and their clinical applications are starting to be understood. If

numerous models and experimental setups have been proposed, only a few have led to clinical applications.

The objective of this contribution is to propose to review a large scope of mechanical findings which have

consequences on the clinical management of cancer. This review is mainly addressed to doctoral candidates

in mechanics and applied mathematics who are faced with the challenge of the mechanics-based modeling of

cancer with the aim of clinical applications. We show that the collaboration of the biological and mechanical

approaches has led to promising advances in terms of modeling, experimental design and therapeutic targets.

Additionally, a specific focus is brought on imaging-informed mechanics-based models, which we believe can

further the development of new therapeutic targets and the advent of personalized medicine. We study in

detail several successful workflows on patient-specific targeted therapies based on mechanistic modeling.
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Introduction

Cancer is one name for numerous diseases. Each location leads to a unique physiological framework;

within each location, different forms of cancer are identified, and this diversity is subdivided toward patient

specific cases. Additionally to individual diversity, cancer should be considered as a multiscale disease at

the cellular and sub-cellular scales, where the micro-environment recruitment by tumor cells and genetic

instabilities play an equally important role [1, 2].

Despite the challenges posed by the heterogeneous and multiscale nature of cancer diseases, the recent

decades have witnessed much progress in their clinical management, as shown in the global cancer statistics

for 2020 [3]. Firstly, there has been a reduction in the incidence thanks to the prevention of risk factors

present in the lifestyle of transitioned countries, such as tobacco, alcohol and obesity. These risk factors

participate in the most common cancers of the lung, colorectal, liver, stomach and bladder. Cancer inci-

dence has also been reduced by treatment of biological causes like bacterial and virus infection, hormone

exposure, poor hygiene or flawed food storage. Before these treatments, these factors contributed to cancers

of the lower stomach, bladder, liver, breast and cervix. Secondly, cancer mortality has also decreased thanks

to the multiple advances in clinical management of tumors, such as the early detection of prostate and

breast cancers, treatment breakthroughs in breast cancer and metastatic melanoma, and active surveillance

in various cancers (for instance, lung, breast and thyroid). In addition to prevention and biological manage-

ment, genetics has brought considerable insights and effects on treatment outcomes in specific locations (e.g.

breast cancer stem cells [4], lung biomarkers [5]). Thanks to the recent advances in the understanding and

treatment of cancer, many recent battles have been won against cancer. Childhood cancer (mostly leukemia)

mortality rates have been halved in thirty years despite an increasing incidence [6]. Cervical cancer is now

considered almost 100% preventable, thanks to the human papillomavirus vaccine and population screening

[3]. Early detection of prostate cancer has lowered the mortality by 21% in ten years [7]. Thanks to early

detection and breakthroughs in the treatment of breast cancer (inhibition of human epidermal growth factor

receptor 2 (HER2) by monoclonal antibodies [8]), 5-year survival reaches 90% - all stages∗1 averaged - since

2014 in high-income countries.

In spite of this immense progress, cancer remains an important burden for societies worldwide. The

changing lifestyle of economically transitioning countries will increase their relative cancer incidence. Some

cancers still have a poor prognosis∗ (pancreas) or their etiology∗ is poorly understood (prostate or thyroid),

with the exception of environmental and genetic risk factors. The authors of [3] predicted that by 2025

1all the words marked with a ∗ are in a glossary at the end of this review
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the worldwide incidence of pancreatic cancer will be higher than that of breast cancer. There is currently

no effective treatment, and pancreatic adenocarcinoma∗ has a 5-year survival rate of only 9% [9]. Strongly

correlated with socio-economic development, the incidence of colorectal cancer will rise in the economically

transitioning countries within the next decades, and probably cause important damage. In economically

transitioned countries, where screening and treatments are in the state of the art, the 5-year survival rate is

near 90% for benign stage∗ I, but below 10% for metastatic stage∗ IV [10].

The biological approach, in its broad sense including biochemistry, molecular, genomics and phenotypic∗

aspects, has brought and still brings numerous insights into cancerous diseases, which have contributed to

the aforementioned advances in the clinical management of these pathologies. The mechanical approach, at

the tissue and cellular levels, includes solid, fluid, porous medium and electrophysics show effective ways to

clinical applications in oncology. In this review, we understand mechanics by its two common definitions:

the science of systems which are subjected to the fundamental principles of Newtonian mechanics and the

science of building machine, as the design of experimental setups is from end to end a critical part of the

clinical applications we present.

From the experimental side, following a biological approach and ignoring structural mechanical effects

could conceal some phenomena. For instance, the wound healing, chronic fibrosis and cancer progression

‘triad’, comprehensively reviewed by Rybinski et al. in [11], implies that stroma∗ mechanics are a funda-

mental part of many cancers progression. The mechanical phenomena, implied in stroma∗ mechano-biology,

cannot be reproduced in classical Petri dish 2D cultures [12]. The structural effects of these interplay emerge

only in 3D cell cultures, as multi-cellular tumor spheroids [13]. Several phenomena, allowed by favorable bio-

logical conditions (genetic, immune or environmental), emerge via mechanical signaling at the cell’s scale and

via mechanical forces at the macroscale: epithelial∗ to mesenchymal∗ transition (EMT) [14, 15], metastatic

cell advection by lymphatic and blood fluxes [16], or tumor cell growth inhibition and necrosis∗ induced by

mechanical stress [13, 17]. Among complementary approaches of cancer description, mechanics is now well

accepted. For four decades, mechanical phenomena that emerge from cancer have been widely studied: in

2014 a seminal review was produced by Jain et al. [18] for the meso and macroscale, and at the cell scale,

a recent review has been provided by Northcott et al. [19]. In 2020, the review of Jain et al. has been

augmented by Nia et al. [20] to encompass several new multiscale phenomena. This long-term research has

matured enough to provide clinical applications and some inspiring examples are given in section 3.

It is now established that mechanical stress influences tumor growth, as shown by a range of sources from

early in vitro studies [21] in 1997 to encapsulated multi-cellular spheroids [13]. This fundamental mechanism
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is explained in section 1.1. Computational fluid dynamics (CFD) describes viscous flow in compressible ves-

sels [22] and is the basis of the design of microfluidic devices to isolate metastatic cells in blood samples [16].

Already effective clinical applications of CFD are presented section 3.2. Stroma∗ mechano-biology, focusing

on the extra-cellular matrix∗ (ECM), fibroblasts∗ and their interplay with tumor cells, has been an active

research field for several years (reviewed in [19], in vitro [23], [24], [25], and in vivo [15]). These investiga-

tions, presented section 1.2, enable the design of new targeted drugs, such as focal adhesion∗ kinases (FAKs)

inhibitor [26], and a new clinical prognosis∗ tool [15], which are presented section 3.1. The more mature

mechanical field with experimental devices applied to oncology in the physics of electricity. In this review,

we will mainly focus on the non-thermal irreversible electroporation. The reader will find the history of this

field in the book chapter of Rolong et al. [27]. Since the first landmark study in animal models, published

in 1957 [28], irreversible electroporation has evolved to a well-established clinical practice for unresectable

tumors. Recent developments led to the coupling of irreversible electroporation and immunotherapy with

promising clinical applications in pancreatic cancer [29]. Section 3.3 of clinical applications of electrophysics

is complemented by the presentation of a new paradigm: tumor-treating fields, which open promising op-

portunities in the standard of care of glioblastoma∗ multiforme.

Mechanical-based modeling considers the cancer dynamics as a physical system subjected to the funda-

mental principles, as balance laws. In solid mechanics, the in vitro findings of tumor growth inhibition now

play a part in patient-specific modeling [30, 31, 32]. As a wide majority of living tissue may be modeled as a

composite system of fluids and solids, with a variable permeability, they can be described by poromechanics.

This strong coupling of a solid network of fibers saturated by fluids can describe permeable tissue, such

as pancreas, liver, brain or lymph node. In this modeling framework, the infiltration of tumor cells or the

diffusion of drugs within the tissue can be explicitly modeled in vitro [33, 34] and in vivo [35, 36, 37]. This

emerging framework is presented in section 1.3. The interested reader will find in the supporting information

(section 5) a brief presentation of the constitutive equations of the tumor growth, its different inhibitions

and specificity of poromechanics.

The progress in the understanding of the multiscale mechanisms, and the numerous hypotheses of math-

ematical models, have led to a consequent increase of potential therapeutic targets. But these advances

created new problems: comprehensive clinical trials or patient adapted therapeutic scenario become vir-

tually impossible, the number of parameters to control being overwhelming. Thus, the necessity appears

of a systemic in silico exploration of therapeutic targets and patient scenarii against clinical evidence. To

address this challenge, tumor forecasting has emerged as a viable option [38]. This strategy combines the

integration of patient-specific standard clinical and imaging data with biomechanical models to predict the
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growth and treatment response for individual patients via computer simulations. Indeed, this approach can

be compared to the well-established methods of weather forecasting. Since the 2010s, progress in medical

imaging has enabled a wide range of translational advances for biomechanical modeling of the growth and

therapeutic response of tumors. As claimed in the seminal paper of Yankeelov et al. in 2013 [39]: “Magnetic

resonance imaging (MRI) and positron emission tomography (PET) have matured to the point where they

offer patient-specific measures of tumor status at the physiological, cellular, and molecular levels”. Patient-

specific clinical data can give information at the gene scale, the micro-scale (cells and capillaries) and the

macro-scale. Hence multi-scale models can be initialized by clinical data.

The association of imaging-informed modeling and computational mechanics brings notable advantages

on a patient-specific basis, for instance a 3D MRI can be converted into a computational domain, and its

segmentation into subdomains. Multi-parametric MRI allows for the monitoring and quantification of many

properties, such as fluid proportion, cellular density, cell metabolism and, using dynamic contrast enhanced

MRI (DCE-MRI), dynamic physical quantities such as the diffusion of chemical species and the vascular

permeability. Since a 3D MRI can be converted into a computational domain, the patient-specific forecast

can be directly compared against further clinical imaging data. The clinical imaging methods that can be

used within this framework are presented section 2.1. Imaging-informed models of cancer growth and ther-

apeutic response can be directly used in the clinic, end-to-end. Model validation can also be assessed using

a combination of the same types of imaging and clinical data used for initialization and parameter identifi-

cation, but collected at one or multiple posterior dates during the course of tumor monitoring or treatment

(for instance, see [31, 40]). Detailed workflows of imaging-informed mechanical-based are provided section 2.2.

This review specifically aims to present the process by which mechanics can step in clinical management

of cancer. We divided the review into three topics:

1. Pre-clinical studies, in vitro, in silico or in an animal model. Mechanical phenomena or mechanical

therapeutic targets can be tested in isolation from their complex micro-environment. These studies

also facilitate the collection of wealth of data to calibrate and validate biomechanical models describing

such phenomena and therapies;

2. Patient-specific tumor forecasting. Computational mechanics can be used as a diagnostic, staging∗ and

prognostic tool. This section is specifically designed for students;

3. Clinical applications on cancer management directly derived from mechanical findings in cellular

mechano-biology, fluid mechanics, and electrophysics.

For each topic, we recommend further specific reviews for the interested reader. At the beginning of each

section, we present the major findings, methods and remaining challenges. At the end of each section, we
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provide a set of short statements to summarize the topic. The review ends with supplementary information

in section 5. It contains an introduction to the different modeling frameworks, a glossary of clinical terms,

and a list of acronyms.

1. Pre-clinical studies

In vitro, in silico and animal models studies share the same goal of reducing the complexity of cancer

phenomena. These simplifications naturally limit the scope of these studies. Nevertheless, some of them

have led to new therapeutic targets, which are through clinical trials. We present three facets of mechan-

ical understandings provided by pre-clinical studies: mechanical inhibition of the tumor growth, stroma∗

mechano-biology and poromechanical modeling of tumor tissue. For each subject, we selected a few studies

which clearly expose the mechanical phenomena at play.

1.1. Growth inhibited by mechanical stress

In ancient Greece, the palpation of stiffened tumor tissue was one of the only accessible diagnosis tools.

This abnormal stiffening is one of the results of mechanical stress concentration. In 1997, the in vitro study

of Helmlinger et al. [21] unveiled part of these mechanisms: high mechanical stress inhibits tumor growth.

Elements of the modeling of this phenomenon are briefly presented in the supplementary information (section

5.1). Nowadays, these results could have consequences on treatment management of solid tumors in clinics,

such as prostate [30] or breast [31] cancers (see section 2.2). The relationships between mechanical stress

and tumor growth are complex and non-linear. If a cell line is subjected to a mechanical load considerably

higher than its usual osmotic pressure, it will almost certainly lead to a growth inhibition. We here select

few examples, each with its specific mechanism:

• non-hypoxic∗ driven apoptosis∗ by Cheng et al. in 2009 [17] (in vitro)

• smooth confinement by spheroid encapsulation by Alessandri et al. in 2013 [13] (in vitro)

• growth inhibition applied as treatment before surgery by Brossel et al. in 2016 [41] (in animal models)

The interested reader could peruse the sections devoted to this topic in the reviews of Jain et al. in [18] and

Nia et al. in [20].

Non-hypoxic∗ driven apoptosis∗. Spheroid growth inhibition in agarose gel is a well-known in vitro experi-

mental protocol, enhanced by Cheng et al. in 2009 [17]. The tumor spheroids are embedded with fluorescent

micro-beads in agarose gel and the 3D distribution of micro-beads surrounding growing spheroids is recorded

using confocal microscopy. The change in micro-bead density is converted to strain in the gel, thus the com-

pressive stress around the spheroids can be estimated.
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There is a strong correlation between the solid stress distribution and spheroid shape. It has been shown that

if compressed, spheroids overexpress anti-apoptotic∗ genes [24]. However, regions of high mechanical stress

induce apoptotic∗ cell death (proliferating and necrotic∗ cells in spheroids were detected with a proliferative

cell fluorescence marker, see Figure 1A). The important implication if this result is that apoptosis∗ via the

mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor

growth is constrained by the balance of apoptosis∗ and proliferation.

Smooth confinement by spheroid encapsulation. Cellular capsule technology is an in vitro experimental pro-

tocol developed in [13] where tumor spheroids were cultured within spherical porous alginate capsules. The

capsules are generated by co-extrusion using a 3D printed device and the alginate pore’s size allows a free

flow of nutrients. The capsule dilatation exhibits an elastic deformation with negligible plasticity and no

hysteresis. As their size and thickness can be precisely controlled and alginate gel has isotropic and incom-

pressible properties, the internal pressure can be analytically retrieved from the capsule deformation. Hence,

when the tumor spheroid comes in contact with the inner wall, the capsule works as a mechanosensor. From

their deformation, one can retrieve the stress state within the tumor spheroids.

In this respect, the post-confluent growing tumor can be regarded as a tumor model that grows against

the surrounding tissues and organs. A digital twin of this technology was created through multiphase

poromechanical modeling by Urcun et al. in [42]. It showed that a poromechanical framework is capable of

reproduced both the capsule evolution and its inner structure.

Growth inhibition applied as treatment before surgery. Gradient of magnetic field is an experimental proto-

col developed in [41] to show, in vivo, the effect of a mechanically constrained tumor growth. The human

breast cancer cell line, MDA MB 231, admixed with ferric nanoparticles is grafted subcutaneously in nude

mice. Two magnets located on either side of the tumor create a gradient in the magnetic field, acting on the

nanoparticles. Through their reaction, the magnetic energy is transformed into mechanical energy, thereby

applying a biomechanical stress to the tumor. The mice are divided into four groups. The first group is

subjected to a 2-hour exposure per day to a magnetic field gradient for 21 days. The three other groups are

control groups: group 2 has a tumor with nanoparticles without exposure to a magnetic field, group 3 has

a tumor without nanoparticles but with the same 21 days treatment as group 1, and group 4 has a tumor

without nanoparticles and without treatment. All mice are sacrificed on Day 74.

There was a significant difference of 61% between the median volume of treated tumors and untreated con-

trols in the mice measured up to Day 74. This demonstration of the effect of stress on tumor growth in vivo

suggests that biomechanical intervention may have a high translational potential as a therapy in locally ad-

vanced tumors (stage∗ II-III). To our knowledge, this experiment is not yet modeled by a mechanical system.
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Mechanically-induced inhibition of tumor growth is a well-known phenomenon that has consequences not

only on in vitro findings, but also in vivo modeling (see section 2.2). Moreover, the effect of mechanical

stress can also be described at the cell’s scale, where interaction between fibrous tissue and carcinoma∗ cells

is a common situation. This microscale description leads to critical in vitro findings and to new clinical

applications (see section 3.1).

1.2. Stroma mechano-biology

The influence of the tumor microenvironment on disease evolution has become central in cancer research

[43]. We focus here on a small part - but critical from the mechanical point of view - of the microenvironment:

stroma∗ cells, precisely fibroblasts∗, and ECM. Generally speaking, fibroblasts∗ associated with tumor cells

will lead to a modified ECM. This ECM is denser and stiffer, due to the abnormal collagen production

of these fibroblasts∗ [44]. As the tumor grows and invades the surrounding tissue, the stroma∗ interplay

with tumor cells dramatically changes. The increase of the mechanical stress due to the proliferation of the

tumor cells and to the stiffer ECM will lead, at the cell’s scale, to internal and external modifications. In

other words, mechanical stress leads to a modification of the tumor cells phenotype∗ [24]. This phenotype∗’s

switch depends on the cancerous cell line, so may take various expressions. We can list several frequently

encountered properties within these cell lines:

• enhanced tumor cell contractility, i.e. the cell’s mobility is increased;

• the polarity of the tumor cell cytoskeleton is altered, which leads to ‘star-shaped’ cells, more adapted

to a dense environment (see Figure 1B);

• inhibition of the tumor cell apoptosis∗, since the mechanical stress is maintained, the programmed

death of cells is stopped;

• alterations on ECM mechanical properties and architecture. The production of collagen-rich ECM by

fibroblasts and matrix metalloproteinase - enzyme which degrades ECM - by cancerous cells deregulates

the composition and the architecture of the ECM.

These changes are of critical importance for the disease evolution, as invasiveness and therapy resistance.

They also constitute new and promising therapeutic targets, which are exposed in section 3.1. The interested

reader would peruse the review of cellular mechano-biology of cancer by Northcott et al. in [19].

Mechanical stress, integrin and malignant phenotype. have been studied by Paszek et al. in 2005 [24].

Abnormal tissue stiffness has been historically associated with tumors and, nowadays, breast cancer patients

with stiff fibrosis - an excessive activity of fibroblasts - are known to have poor prognosis∗ [45]. The authors

of [24] lead unconfined compression tests by indentors on both sane and malignant mammalian tissues,
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mammalian epithelial∗ cells and fibroblasts∗. The samples are associated to collagen gels of various stiffnesses,

from 170 Pa to 1.2 kPa. This range, at its lower bound, corresponds to the common stiffness of adipose

mammalian tissue and, at its upper bound, to fibrosis. The cell colonies evolve accordingly to the stiffness

of their surrounding environment (for the mammalian epithelial∗ cell case, see Figure 1B, stiffness range

from left to right). The differences between these evolution show, in vitro, the phenotype∗’s switch described

at the beginning of the section. Moreover, the authors of [24] expose the key phenomenon involved in the

mechanical stress signaling. Their study emphasizes the critical role of β1 integrin (wild-type and mutant) in

the abnormal evolution in every kind of sample. Integrin is a transmembrane ECM receptor which functions

as a mechanotransducer. At the outer surface of the cell’s membrane, the integrin protein is bent by the

mechanical compression of the external medium. This deformation provokes, in the inner cell’s medium,

chemical reactions which precede all the biological manifestation of abnormal growth. If the mechanical

downstream signaling - the inner chemical reaction - is maintained for several days, an altered phenotype

will emerge. Two main mechanisms, belonging to the cellular internal medium, are exposed:

• the Rho-dependent cytoskeletal tension. This mechanism is involved in mesenchymal∗ stem cell differ-

entiation. Without the signaling of cytoskeletal proteins as integrin, a mesenchymal∗ stem cell could

evolve into a round-shaped adipose cell. If this alternate cytoskeletal tension is activated, the stem cells

will adopt a ‘spread’ shape characteristic of bone cells. The reader is referred to the work of McBeath

et al. in [46] for a detailed description.

• the epidermal growth factor(EGF)-transformed epithelia. EGF signaling plays a critical role in the

initiation of the epithelial∗ to mesenchymal∗ transition (EMT). EMT is the deregulation of the highly

organized epithelial tissue and is characteristic of malignant carcinoma∗. EGF is a transmembrane

protein which is responsible for the downregulation of E-cadherin. And E-cadherin, like integrin, is

transmembrane protein responsible for cell adhesion. The downregulation of E-cadherin implies an

upregulation of the integrin adhesion. This upregulation will lead to the clustering of integrin on

the cell membrane and deregulation of focal adhesions∗. This specific phenomenon constitutes a new

therapeutic target treated section 3.1. The interested reader is referred to the work of Lindsey et al.

in [47], for the specific role of EGF in this phenomenon.

In the last part of their experiment, Paszek et al. shows that the inhibition of β1 integrin or EGF signaling

can revert to the malignant phenotype expressed in the cell-lines undergoing fibrosis condition. This early

in vitro study pointed out potential therapeutic targets in the malignant evolution of carcinoma∗.

Whatever the scale of interest of these phenomena, macro and micro, they share a common interplay

between fluids, solids, and biochemical reactions. Poromechanics allows for modeling the chemical agent
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transport by the fluids, though the solids. To explicitly model this complex interplay, poromechanics emerges

as particularly adapted framework.

1.3. Reactive poromechanics

This framework allows for explicitly modeling fibrous tissue, cells and surroundings fluids into a strongly

coupled physical system. Used since the XIXth century in soil mechanics, poromechanics now emerges as a

new framework for living tissue modeling (see Encyclodedia of biomedical engineering, chapter Poroelasticity

of living tissue [48]). In poromechanical modeling, the tumor system is considered as a multiphase contin-

uum: a solid scaffold in which and through which fluids flow. This framework is briefly presented in the

supplementary information section 5.1. The flows are driven by pressure gradient, and subjected to the ratio

of the solid’s permeability under the dynamic viscosity of the fluids. This relationship, in its usual form,

is known as Darcy’s law. The solid scaffold may be considered as rigid or deformable. If it is deformable,

the momentum conservation of the porous system is composed of both fluids contributions (usually isostatic

pressure) and solid contribution (elastic, hyperelastic, ...). Living tissue modeling implies reactive biochem-

ical agents, which can be produced or absorbed by both solid and fluid components, and are subjected to

advection-diffusion equations. This complete system is denoted as a reactive porous medium. We highlight

the potential of this framework with two pre-clinical examples:

• Modeling drug resistance in Non-Hodgkin’s lymphoma∗, validated by histological∗ cuts. Tumor inner

structures, accordingly to the cell lines, are accurately modeled by Frieboes et al. in [35] (animal

model);

• Modeling drug delivery in brain by multi-compartment porous medium. In this example, the solid

scaffold is deformable. Provide several qualitative results in anisotropic diffusion and pressure interplay

in brain tissue, by Ehlers and Wagner in [36] (in silico).

Modeling drug resistance in Non-Hodgkin’s lymphoma∗. In the experiment reproduced by Frieboes et al. in

[35] two cell lines of lymphoma∗ are injected into two groups of mice. The first cell line is drug-resistant,

thereafter denoted p53, and the other is drug-sensitive, denoted Arf. On day 0, five histological sections,

equally distributed in space, are performed in three tumors of each type, extracted from sacrificed mice. The

stainings (H&E, Ki-67, HIF-1α among others) give cell viability, necrosis∗, proliferation, apoptosis∗, oxygen

diffusion and blood vessel density. These quantities are used to calibrate the model parameters. On day 21,

the observations are made in vivo by intravital microscopy.

Frieboes et al. build a mechanical model belonging to the hybrid category. In mechanical-based modeling, one

can distinguish three categories: continuous, discrete and hybrid. Continuous - or homogenized - modeling

consider the phenomena at a sufficiently large scale to hypothesize the absence of strong discontinuities within
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the modeled object. Conversely, the working hypotheses of discrete modeling are at the cell’s scale, and each

cell - also denoted agent - has its own characteristics, with possible discontinuities between the cells. While

continuous modeling, by its homogenization, implies a controlled loss of information, the computational cost

of discrete modeling becomes prohibitive as the number of cells grows. Hybrid modeling, a sort of multi-scale

modeling strategy, attempts to make the best of both worlds.

The hybrid system, at the lymph node scale, is governed by advection-diffusion within a continuous domain.

Here, this domain is a porous medium, say the tumor cell infiltration within the extra-vascular space is

governed by Darcy’s law. However, the system parameters are calibrated with information on the cell’s scale

through histological staining and intravital microscopy. This protocol was described in 2012 by Macklin et

al. [49] and applied on ductal adenocarcinoma∗ in situ (a precursor of invasive breast cancer).

The following experimental results are retrieved from the model:

• both types of tumors reach the same size within the lymph node: 5.2 ± 0.5 mm diameter.

• their inner structures of the tumor are different, according to their cell-line. Arf cell-line tumor is

denser in the peripheral region, contrary to p53. The high core density of p53 cell-line tumor could be

associated with its drug resistance, by decreasing the penetration of chemical agent. The p53 cell-line

has a 4-fold higher density of endothelial cells - cells constituting the wall to the blood vessels - in the

core of the tumor than the Arf cell-line. The p53 proliferating cells fraction is 2-fold higher than the

Arf cell-line. Hypoxia∗ is higher in the peripheral region of the p53 tumor. The apoptotic p53 cell

density in the whole tumor is 2-fold higher than the Arf, suggesting a non-hypoxia∗ driven apoptosis∗

in the p53 cell line.

These rich results show the power of this poromechanical multi-scale approach, which could bring considerable

insights into in vivo modeling.

Modeling drug delivery in brain by multi-compartment porous medium. Brain tumors, especially glioblastoma∗,

are still a challenge from the surgery, therapy and modeling points of view. Since 2005, the protocol pre-

sented by Stupp et al. in [50] is the only glioblastoma∗ standard of care. It prescribed maximum surgical

resection followed by concomitant radio-chemo-therapy for 6 weeks and chemotherapy maintenance during

6 or 12 months. Nevertheless, the median survival is only 16 months and the 5-year survival remains at 5%.

Invasive drug delivery is an additional way to decrease the tumor progression, recurrence, and resistance (for

instance, see the Gliadel wafers [51]). The blood-brain barrier is not permeable enough to ensure a proper

drug delivery by intravenous application, hence perfusion by catheter directly into the brain parenchyma∗

is needed. During resection of the tumor, the surgeon drills small holes into the skull and place infusion

catheters directly into the extra-vascular space of the parenchyma∗.

In surgical planning software, solutions are already proposed for the simulation of the chemical agent diffu-
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sion by the catheter. The authors of [36] propose to improve these simulations by taking into account the

porous interplay of the brain and its heterogeneous permeability and diffusion. W. Ehlers and A. Wagner

are the founders of a recent theory of porous medium [52] dedicated to this application. They also worked

on model reduction for clinical applications [53]. In [36], they model the brain parenchyma∗ as a porous

medium with two separated fluid compartments: blood and interstitial fluid.

Grey matter regions may be considered isotropic in terms of permeability and diffusion. Experimental ob-

servations of white matter tracts show anisotropy in permeability and diffusion [54]. The authors assume,

as Tuch et al. in [55], that white matter tracts directions provide the eigenvectors of anisotropy. These

directions can be recovered by the DTI MRI method (see section 2.1, paragraph Imaging methods and phys-

ical quantities). The imaging data of this method are leveraged and used to set, on a tensorial basis, the

heterogeneous permeability and diffusion of the simulation. The other material properties come from the

literature but, as indicated by the authors, they could be provided by other MRI methods.

The authors do not pretend clinical relevance but propose possible interpretations of their numerical results.

They simulate 2 catheter flows: 0.3 and 0.6 ml · h−1. They retrieve for the case of 0.6 ml · h−1, in accor-

dance with in vivo data, an excess of 1.1kPa (+8mmHg) in interstitial fluid pressure, which could be life

threatening. Due to the interplay between the solid scaffold and the inner fluid, they found that a higher

infusion surface is obtained with a constant application rate. Finally, due to the insertion of the catheter,

the permeability of the damaged tissue dramatically increases. In the simulation, this provokes back-flows

along the catheter shaft and this phenomenon is also acknowledged in vivo. Elhers et al. suggest that the

porous modeling of the brain will help to gain mechanical insights in surgical and therapy management of

glioblastoma∗.

This last example is in a pivotal position between the pre-clinical section and the patient-specific fore-

casting section 2. Even if it does not pretend clinical relevance, it shares common features presented section

2:

• the use of patient imaging data to set the parameters of the mathematical model

• the direct comparison of the model results with in vivo data

Thus, poromechanics could be a suitable framework for imaging-informed modeling presented in the next

section.
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Table 1: Mechanical understandings of cancer in pre-clinical studies. For further readings, the interested reader would
refer to the reviews of Nia et al. [20] and, for mechano-biology specifically, Northcott Nia et al. [19].

Authors Cell line | Model Objective
Cheng et al. 2009 [17] non-metastatic murine mam-

mary carcinoma∗ 67NR | in vitro
Measure of the deformation of
agarose gels by tumor cells

Alessandri et al. 2013 [13] mouse colon carcinoma∗ CT26 |
in vitro

Retrieve inner pressure exerted
by tumor cells on alginate cap-
sules

Brossel et al. 2016 [41] human breast cancer cell line
MDA MB 231 | nude mice

Release internal tumor stress in
animal model by ferromagnetic
particles as bioactuators

Frieboes et al. 2013 [35] lymphoma∗ Eµ-myc Arf-/- and
Eµ-myc p53-/- | mice

Forecast inner structure of tumor
cell line drug resistance or not in
animal model by poromechanical
modeling

Elhers et al. 2015 [36] not specified (patient) | in silico Contribute to the modeling of
anisotropic drug diffusion within
human brain by poromechanics

Paszek et al. 2005 [24] mammalian tissue of MMTV-
Her2/neu, Myc, and Ras
transgenic mice ; nonmalignant
MCF10A ; HMT3522 S-1 MECs
| in vitro

Understanding mechanical sig-
naling involved in tumor cell phe-
notype switch

Pre-clinical studies: key points
•The stripped-down in vitro environments allow for clearly exposing mechanical phenomena in

cancerous disease: mechanically-inhibited tumor growth, mechanically-induced phenotype∗’s switch.

•These findings led to clinical applications [30], prognosis∗ tools [15], and new therapeutic

targets [56].

•Poromechanics is an emerging framework in the mechanistic description of cancer and could

lead to new and rich physical insights.
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Figure 1: In vitro mechano-biology of tumor growth, landmark studies. The two panels illustrate the complex
relationship between mechanical stress and tumor growth. If a cell line is subjected to a mechanical stress considerably higher
than its usual osmotic pressure, it will lead to a growth inhibition. However, for some cell lines, it exists a window where a high
mechanical stress will lead to phenotype alterations and a more aggressive behavior Panel A Mechanical inhibition of tumor
growth by Cheng et al. in 2009 [17]. Cancer cell proliferation (green) in tumor spheroids (red) is suppressed in the direction
of higher mechanical stress (i.e., in the direction of the minor axis of oblate spheroids). On day 30, the compressive stress is
estimated at 3.8 kPa. Arrow heads indicate the regions with more cell proliferation. Scale bar = 50 µm. Panel B Mechanically
induced phenotype switch: matrix rigidity regulates growth, morphogenesis, and integrin adhesions in Paszek et al. in 2005
[24]. Top: phase images and H&E (hematoxylin and eosin) stained tissue showing typical morphology of a mammary gland
duct in a compliant gland (167 Pa), compared with mammalian epithelial∗ cell (MEC) colonies grown in collagen (BM/COL I)
gels of increasing stiffness (170 − 1200 Pa). Bottom: confocal immunofluorescence images of tissue section of a mammary duct
and cryosections of MEC colonies grown as above, stained for β-catenin (green), α6 or β4 integrin (red), and nuclei (blue). The
increasing size of the colonies is directly related to the increasing stiffness of the collagen.
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2. Tumor growth forecasting: imaging-informed patient-specific modeling

This modeling paradigm was first developed by Swanson et al. in [57] in 2002, and after in [58, 59].

In 2013, with the progress of imaging methods, this framework was further extended by many groups

(see the review of Mang et al. in [60]), and especially by Yankeelov et al. [39]. We start with a brief

presentation of the clinical imaging methods that can be used to set the value of the parameters of the

mathematical models. These parameters can define the material properties (diffusion, permeability, stiffness)

or the material component (fluid, solid, cellular density). Moreover, the clinical imaging data provide patient-

specific geometry [39], and this is a crucial gain for the relevance of the model results. However, the challenges

involved in the uncertainty quantification and the use of these imaging methods in certain clinical settings

may reduce their extensive use across different hospitals. Likewise, the adaptability of the mathematical

models to these imaging data sources is still under investigation [61].

The second part of this section is devoted to detailed presentation of three clinically-relevant applications.

In a few words, these models describe tumor growth and therapeutic response by means of reaction-diffusion

equations that are constrained by the mechanical stress field induced by the development of the tumor.While

they share the same modeling core, each model is adapted to the specificity of the cancer location.

2.1. Clinical imaging methods

Imaging methods and physical quantities. Currently, the imaging methods performed in clinical oncology for

diagnosis, monitoring, and assessment of treatment efficacy are:

• Computed tomography (CT) scans, used for cancer early diagnosis. CT scans results from the math-

ematical reconstruction of multiple axial X-ray images [62]. This reconstructed image of a large part

of a body can be created in a few seconds, allowing for cancer detection throughout the body. Apart

from bone material, the contrast of the various soft tissue can be enhanced by a radio-contrast agent

like iodine or barium.

• Positron emission tomography (PET) scans, which consist of an intravenous injection of a positron-

emitting radiopharmaceutical, like 18fluor-fluorodeoxyglucose (F-FDG). The compound is partially

metabolized by cells such that it accumulates mostly in cells with the higher metabolic rate, this

accumulation being then detected [38]. Contrary to CT scans, 3D images are directly obtained in a

PET scan, but the length of diffusion of the degraded compound implies a maximum of 2 millimeters

precision [63]. When a precise measurement is required, a PET scan is complemented by other methods.

• Magnetic resonance imaging (MRI), the most commonly used technique for cancer diagnosis and screen-

ing. The various MRI methods are capable of providing information about anatomic, functional, and

metabolic changes [62]. The signals in MRI originate from stable nuclei with magnetic properties that

can be measured through nuclear magnetic resonance.
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We will mainly focus on the latter, since MRI methods have been extensively used in the context of com-

putational oncology [40, 38, 64, 39]. Usual MRI methods, T1 and T2 sequences, also termed anatomical

methods, allow to coarsely separate solid and fluid phases. The contrast in T1 method is given by the char-

acteristic time it takes for water protons to synchronize, which depends on the surrounding tissue. This time

is denoted inversion time T1. Fluid phase, like cerebrospinal fluid (CSF) in the brain, remains dark with

the short time sequence of radio frequency/echo measurement of T1 method (T1 ≈ 200 ms), but becomes

bright with a very long sequence T1 method (T1 ≈ 3000 ms), denoted FlAIR (standing for fluid attenuated

inversion recovery). Conversely, the contrast of T2 method is given by the loss of synchronicity of protons

(see [62], ch.4). The characteristic time T2 of synchronicity loss depends on the tissue type, for instance,

T2 ≈ 100 ms for fat and T2 ≈ 2000 ms for CSF. The T1 method can be enhanced by the addition of the

vascular network of a radiotracer such as Gadolinium, which remains bright under T1 sequence. This method

is termed T1 contrast enhanced (T1-CE).

Another class of methods used in imaging-informed modeling is the dynamic contrast enhanced MRI

(DCE-MRI). It has been firstly used to obtain information on peripheral perfusion, for vascular-related dis-

ease of brain, heart and muscular system [65]. In DCE-MRI, a Gadolinium-based contrast agent is injected

into the vascular system and T1 sequences are acquired every few seconds before, during, and after the injec-

tion. Specifically on brain tumors, the relative cerebral blood volume (rCBV) method is a class of DCE-MRI

and can be used as a prognosis∗ tool itself [66]. By this method, a leaky vasculature will be revealed. This is

a fundamental feature in the case of brain cancer: the blood-brain barrier, strictly impervious to blood flow,

with an abnormal permeability will indicate a potential tumorous neo-vasculature. From the modeling point

of view, the rCBV method allows quantifying the permeability between intra- and extra-vascular space [67].

A third class of MRI is used to set the parameters of mathematical models: the diffusion-weighted MRI

(DW-MRI). This method has been designed to measure the diffusion of water within tissue. This sequence

corresponds to a magnetic field with a linearly varying intensity, which is prescribed successively in two

opposite directions [68]. In short, the respective intensities of the magnetic field can be retrieved in both

directions, and their spatial evolution characterizes the heterogeneous diffusion of water within the excited

tissue. This quantity is expressed as the apparent diffusion coefficient (ADC) of water, and it is inversely

correlated to cellular density [39]. In case of organized fibrous tissue, the water diffusion increases in the

parallel direction of the fiber and decreases in the perpendicular direction [69], such that diffusion is then

denoted as anisotropic. DW-MRI can be extended to the 3D case to render this anisotropy, leading to a

method termed diffusion tensor imaging (DTI). In DTI-MRI, the diffusion is evaluated at the minimum of 6

non-colinear vectors - as the resulting tensor is symmetric - with preferably equal angles [68, 69]. DTI-MRI
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can be used to map the white matter tracts in the brain. However, this method is not used routinely: an

acquisition lasts for more than an hour, and this duration could be an additional burden for the patient.

These mechanical quantities measured by MRI can be completed by measurements of the metabolism

of key chemical quantities, such as oxygen and glucose. The quantification of oxygen levels, and therefore

the hypoxia∗, is a critical feature for cancer staging[70]. On a patient-specific basis, this quantification

may hold importance in future modeling. The PET scan Cu-ATSM - standing for Cu-diacetyl-bis(N4-

methylthiosemicarbazone) - has very promising in vitro results and is still in development for clinical appli-

cations [71]. Cu-ATSM is a radiotracer which accumulates in hypoxic tissue due to the chemical imbalance

of low oxygenation. Among MRI methods, there is the blood oxygen level dependent method which can dis-

tinguish, by modified T2 sequence, oxygenated and non-oxygenated haemoglobin by their different magnetic

properties. However, this method is more useful for acute hypoxia∗ than for chronic hypoxia∗, characteristic

of cancer [70]. To quantify the glucose metabolism of cancer, the PET radiotracer used is F-FDG. Analogous

to glucose, it becomes radioactive by addition of the isotope fluor 18. As tumors have an important con-

sumption of glucose, F-FDG is preferentially trapped by them, even if it does not have the energy properties

of glucose. This method is routinely used for cancer diagnosis and treatment response [72].

Segmentation. This procedure consists of the delineation of different regions of interest in the imaged tissue

and provides the anatomical input to define the geometry and spatial parameter maps in mathematical mod-

els of cancer growth and treatment response. Segmentation has been traditionally performed by radiologists

and specialized physicians. However, manually performing this task can be difficult, time-consuming, and

prone to high intra- and inter-observer variability. During the past two decades, several semi-automatic or

automatic methods have been developed, such as hidden Markov chain in 2001 [73], supervised learning and

convolutional neural network (CNN), which are still under development in 2020 [74]. CNN is now the leading

method for semi-automatic and automatic segmentation. Some examples of its applications are DeepMedic

in the brain [75] and 3D AxelNet in the prostate [74]. These methods are 3D CNN, which means that the

weights within the layers of the neural network are not linked to a specific MRI slice, but directly influence

the treatment of the entire 3D data space. Nevertheless, the training of CNN requires an important amount

of data. A well-known example is the brain tumor segmentation (BraTS) dataset [76], used to benchmark

the brain tumor segmentation. BraTS contains 542 imaging datasets of patients with high- and low-grade

glioma∗, composed of anatomical methods, contrast enhanced and FLAIR sequences. The imaging data are

interpolated to a uniform 3D space with isotropic resolution, allowing for a 3D CNN implementation. The

patient cohort is divided in three subgroups: the training set (242 patients), which is used to calibrate the

weights of the CNN; the validation set (66 patients), which is used to assess the calibrated weights; and the

testing set (191 patients), which is used to evaluate the accuracy of the CNN. Thus, the training of a CNN
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for MRI segmentation - a fortiori for the forecast of cancer evolution (see [77, 78]) -, requires an amount of

homogeneous data which is not always available.

2.2. Patient-specific approaches in clinical scenarios

Computational oncology is becoming an increasingly rich and prominent field of cancer research [39, 38,

64]. Multiple patient-specific biomechanical models have been proposed to reproduce and forecast the growth

and treatment response of different types of cancers in several clinically-relevant applications, e.g., in brain

[79, 32, 60, 80], breast [31, 81], prostate [38, 30], kidney [82], and pancreatic tumors [83]. In this section, we

proceed to describe in detail a small selection of some illustrative recent studies in breast, brain, and prostate

cancer. The examples considered herein share the same framework of tumor growth inhibited by solid stress.

Clinical imaging data from individual patients are used to initialize the model, estimate parameters, and

assess model forecasts after calibration. The integration of clinical data within the mechanistic framework is

briefly described. For a more detailed review of imaging types, clinical applications, modeling paradigms, and

computational methods for patient-specific models of cancer growth and therapeutic response, the interested

reader is referred to [38].

Breast cancer. Neoadjuvant therapy (NAT) is widely regarded as a standard-of-care treatment for locally

advanced breast cancer before surgery [84]. Patients who achieve a pathological complete response (i.e., no

residual disease) at the completion of NAT have a greater likelihood of recurrence-free survival [85]. Thus,

the early determination of response to NAT would enable physicians to modify the therapeutic regimen of

a non-responding patient (e.g., by changing dosage, dose schedule, prescribed drugs), and thereby improve

treatment outcomes while avoiding unnecessary toxicity. To address this challenge, Jarrett et al. [31] propose

to use personalized, computational forecasts of tumor response to NAT regimens obtained with a mechanistic

model calibrated with patient-specific longitudinal quantitative MR data acquired early in the course of NAT.

In [31], Jarrett et al. describe breast cancer growth in terms of tumor cell density as a combination

of tumor cell mobility and proliferation, which are modeled with a diffusion operator and a logistic term,

respectively [86, 87, 88]. Additionally, Jarrett et al. introduce a sum of linear terms in the tumor dynamics

equation to describe the NAT drug-induced death of tumor cells [88]. Each of these therapeutic response

terms corresponds to one drug included in the patient’s NAT regimen and is proportional to the local drug

concentration in the breast tissue and the local tumor cell density. The initial spatial distribution of each

NAT drug concentration in the breast tissue after infusion is estimated from DCE-MRI data and it follows

an exponential decay in time, which reasonably approximates the relevant drug pharmacokinetics during

the time scale of NAT. Additionally, the model presented by Jarrett et al. is coupled with quasistatic linear

mechanics to account for the tumor mass effect. To model the forces exerted by the tumor, the authors use
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a pressure term that is proportional to the local tumor cell density [89, 87]. Then, to model the mechanical

inhibition induced by the tumor mass effect, the authors constrain the tumor cell diffusion coefficient with

an exponentially decaying function of the Von Mises stress [87]. Additionally, an earlier study of a simpler

version of this breast cancer model by Weis et al. explored the differences in tumor forecasting when using

a linear elastic versus a neo-Hookean nonlinear hyperelastic constitutive law, with which they implemented

several highly incompressible cases [90]. Weis et al. reported differences in tumor volume and total tumor

cellularity below 10% with respect to the linear elastic case even in a highly incompressible scenario. As-

suming the same Poisson ratio in both constitutive laws, the differences in these quantities were below 0.5%.

Thus, Weis et al. concluded that the error in assuming a linear elastic constitutive model is admissible

for this tumor forecasting application, especially since it would be included within the uncertainty of MR

measurements of tumor cell density [90, 91, 92].

Jarrett et al. [31] use longitudinal anatomic and quantitative MR imaging datasets to initialize, pa-

rameterize, and assess the predictions of their model for each patient during the course of NAT. To this

end, the authors present a robust imaging preprocessing pipeline. In brief, they first rigidly register the

DCE-MRI and DW-MRI images acquired within each scan session using imregister in MATLAB. Second,

tumor regions of interest are segmented on postcontrast DCE-MRI data from each scan session by means

of a fuzzy c-means-based clustering algorithm developed in MATLAB [93, 94]. In addition, ADC maps are

extracted from DW-MRI data using standard methods [91, 87] and the DCE-MRI data are analyzed using

the Kety-Tofts model [95] to estimate parameters characterizing the local vasculature. Third, the contrast-

enhanced images obtained from DCE-MRI data from each scan session are longitudinally registered using a

non-rigid registration algorithm with a tumor-volume preserving constraint [96]. The resulting deformation

map is applied to the other MRI modalities. Finally, the authors calculate several imaging-based fields that

are required to initialize and parameterize the model: (i) the registered contrast-enhanced images are used

to manually contour the breast domain and to generate adipose and fibroglandular tissue masks by means

of a k-means clustering algorithm, which enable the definition tissue-specific material properties [87]; (ii)

the Kety-Tofts parameters obtained from DCE-MRI data are used to calculate a normalized blood volume

spatial map, which is used to define the initial NAT drug concentration fields mentioned above; and (iii)

tumor cell density maps at each scan date are calculated by leveraging an inverse linear relationship with

the ADC maps extracted from DW-MRI data [86, 87].

While most patients in the cohort (N = 21) analyzed by Jarrett et al. in [31] received two NAT reg-

imens, the authors center their analysis exclusively on the first one. Hence, Jarrett et al. use the tumor

cell density maps extracted from two consecutive scans for model calibration: one shortly before the onset
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of NAT to set initial conditions, and another within the first cycle of NAT to set a model-data mismatch

functional. Their calibration method consists of a Levenberg-Marquardt least-square algorithm implemented

in MATLAB [97, 31, 87], which aims at minimizing the aforementioned functional and hence yield constant

values of baseline (i.e., unconstrained) tumor cell diffusivity, NAT drug efficacy, and NAT drug temporal

decay along with a spatial map of the tumor cell proliferation rate on a patient-specific basis. The rest of

the model parameters are fixed from the literature or from MRI measurements [31]. The calibrated model

is then initialized using the datasets from the second scan and solved in time until the date of a third scan

after the conclusion of the first NAT regimen. At this time point, the authors assess their model predictions

of tumor cell density by comparing them with the corresponding tumor cell density map extracted from the

third DW-MRI dataset. During both calibration and forecasting, the model is solved by means of a fully

explicit finite-difference scheme implemented in MATLAB [31, 97, 38].

In [31], Jarrett et al. show that the imaging-computational framework described above renders highly

accurate predictions of breast cancer response to NAT. To illustrate this computational technology, Figure 2A

shows an example of a patient-specific model forecast against corresponding imaging data at the same date.

In particular, the authors report a significant correlation between model forecasts and imaging measurements

of total tumor cellularity, tumor volume, and tumor longest axis in a subgroup of 13 patients exclusively

receiving chemotherapy for their first NAT regimen, with corresponding concordance correlation coefficients

above 0.90 (p < 0.01). Additionally, Jarrett et al. leverage their model to explore a clinically feasible strategy

to optimize NAT chemotherapeutic regimens on a patient-specific basis in silico. First, they define a set

of alternative NAT regimens by fixing the total dose prescribed in the standard treatment for each patient

while varying the number of doses, their frequency, and the corresponding drug dosage. In particular, the

authors consider four alternative NAT regimens by equally dividing each original dose in two, three, four,

or daily fractions that are delivered more frequently than in the standard treatment assuming an evenly

distributed schedule based on the original NAT plan. Then, the authors run a simulation of their calibrated

model for each of these alternative regimens accordingly and assess their performance in controlling breast

cancer growth at the conclusion of NAT for each patient. Jarrett et al. report that an additional 0 − 46%

reduction in total cellularity (median 17%) might have been achieved across the patient subgroup (N = 13)

compared to their original chemotherapeutic regimen according to standard-of-care NAT protocols. Indeed,

the authors also report that alternative NAT regimens rendering a superior control of the patient’s breast

tumor were also found to significantly outperform the standard regimens (p < 0.001), thereby suggesting

that standard regimens may not be the most effective for every patient and calling for the personalization

of NAT to optimize therapeutic outcomes.
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Brain cancer. Tumors originating in the brain have received a large attention from the computational oncol-

ogy community since the ability to early identify, or even predict, progression through patient-specific model

forecasts would facilitate treatment personalization of these highly lethal diseases, which would ultimately

translate into a major impact on survival, functional status, and quality of life [79, 32, 60, 80, 98, 89, 58, 99,

100, 101]. Here, we focus on a recent study by Hormuth et al. [80] on high-grade gliomas∗. These brain ma-

lignancies exhibit a very aggressive behavior characterized as a highly heterogeneous and infiltrative disease,

which ultimately influences the high recurrence rates in these tumors despite the advances in therapeutic

strategies combining surgery followed by adjuvant radiotherapy plus chemotherapy [102]. Hormuth et al.

posit that patient-specific computational forecasts of cancer growth and treatment response characterizing

the unique underlying biology of the patient’s tumor could enable the early identification of aggressive disease

progression and the selection of more effective therapies on a personalized basis.

Hormuth et al. [80] present a family of 40 biologically-inspired, MR-informed models to describe the

growth of high-grade gliomas∗ and their response to chemoradiation, which they analyze in a model selec-

tion framework to determine the model that best balances predictive accuracy and formulation complexity.

Each model is constructed by choosing three key components in their formulation: (i) a biomechanical model

describing tumor dynamics, featuring either one or two cancerous species; (ii) a global value versus a spatially

varying map to define the tumor cell proliferation rate; and (iii) one out of ten alternative formulations for the

tumor response to chemoradiation. The model featuring a single cancerous cell species describes the growth

of high-grade gliomas∗ using the same reaction-diffusion paradigm as the breast cancer model [58, 98, 103].

Inspired by an earlier work by Gatenby et al. [104], the authors extend this reaction-diffusion paradigm to a

two-species formulation including both the enhancing tumor fraction observed in post-contrast T1-weighted

MR images as well as the non-enhancing fraction showing an hyperintense signal in T2-FLAIR MR images.

These two fractions are modeled as two different tumor cell densities following reaction-diffusion dynamics

and also featuring a biological competition mechanism within the logistic term that describes tumor cell pro-

liferation. While several alternative biomechanical models have been considered in the literature to describe

the mass effect induced by brain tumors [79, 32, 60], Hormuth et al. follow the same rationale as Jarrett

et al. [31] in their breast cancer model. Hence, both the single and the two-species model are coupled with

quasi-static linear mechanics and their diffusion coefficients are mechanically inhibited through the evalua-

tion of the Von Mises stress. To model the tumor response to concomitant radiotherapy and chemotherapy,

Hormuth et al. assume that either treatment induces an independent and immediate reduction in the tu-

mor cell species in the model (i.e., they do not explicitly introduce any synergistic mechanism). Hence, the

authors propose four alternative formulations of the survival fraction to either treatment: one depending on

the local tumor cell density; two depending on the level of perfusion measured through the enhancement
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ratio; and another that is constant throughout the whole tumor. Then, they select 10 pairs from these four

options to represent chemotherapeutic and radiotherapeutic effects in their model selection study.

Hormuth et al. initialize, calibrate, and assess the performance of their model alternatives by leveraging

longitudinal MRI datasets for each patient (N=9) consisting of two anatomical data types (contrast-enhanced

T1-weighted and T2-FLAIR images) and one quantitative MRI data type (DW-MRI). To prepare the imag-

ing dataset for use within the model, the authors perform a rigid intravisit and intervisit registration by

leveraging imregister in MATLAB. The enhancing and non-enhancing, T2-hyperintense tumor regions are

segmented using a semi-automated approach on the anatomic MRI datasets, consisting of sequential thresh-

olding and manual adjustments by experienced radiologists. The brain-skull interface is manually segmented

on the T2-FLAIR images. Additionally, Hormuth et al. use a k-means clustering algorithm [105] to obtain

masks of white and gray matter to define heterogeneous material properties in the brain tissue. The authors

estimate the tumor cell density in the single-species model and that of the enhancing fraction of the two-

species model from ADC maps using the same approach as in the breast cancer model by Jarrett et al. [31].

In the non-enhancing, T2-hyperintense tumor region, since the relationship between imaging properties and

tumor cell density is less clear, the authors initialize its value to a constant both for the tumor cell density

in the single-species model and that of the non-enhancing fraction in the two-species model, although they

also note that alternative approaches have been proposed in the literature [58, 99]. Hormuth et al. em-

ploy a fully-explicit finite-difference scheme to solve their models and a Levenberg-Marquardt least-square

algorithm to calibrate the relevant patient-specific parameters in each model, similarly to the breast cancer

model above [97]. The rest of the parameters are either taken from the literature or fixed by the authors.

Additionally, Hormuth et al. use the Akaike information criterion (AIC) [106] to select the best model

balancing model-data agreement and complexity in terms of number of calibrated parameters.

Hormuth et al. carry out their modeling selection study in a cohort of 9 high-grade glioma∗ patients

with unresected or partially resected tumors, whose individual imaging datasets consisted of a baseline MRI

study (prior to the onset of chemoradiation) and two to three MRI studies at 1 to 2-month intervals after the

conclusion of their chemoradiotherapeutic plan. They found that the best model across all patients was the

two-species model, with spatially varying proliferation rates, and both chemotherapeutic and radiotherapeu-

tic effects coupled to an estimate of perfusion obtained via the enhancement ratio. Hormuth et al. further

explore the predictive accuracy of this model by considering two to all the datasets for each patient during

calibration, and then forecasting the calibrated model until the date of the remaining datasets (if any). Their

results show a good model-data agreement at the voxel level, while at the global level they report higher

accuracy in terms of the Dice coefficient and tumor volume error in the enhancing region than in the non-

22



enhancing region. Figure 2B shows an example of a model forecast along with the corresponding imaging

data at the same date for a high-grade glioma∗ patient using the computational technology presented in this

study. In particular, the authors show a strong agreement between measured and model predicted tumor vol-

ume and total tumor cell count within the enhancing region, with Kendall rank correlation coefficients above

0.94 and 0.79, respectively. Thus, Hormuth et al. conclude that their methodology is a promising strategy

to integrate multimodal imaging data into personalized biomathematical models of high-grade glioma∗ in

order to forecast spatiotemporal changes in tumor growth and response to therapy.

Prostate cancer. Benign prostatic hyperplasia (BPH) and prostate cancer are two common pathologies

among ageing men [107]. Most new cases of prostate cancer are organ-confined adenocarcinomas, while

BPH consists of the progressive enlargement of the central gland of the prostate and usually provokes both-

ersome urological symptoms [108, 30, 107]. Prostatic tumors originating in larger prostates tend to present

more favorable pathological features [109, 110], but the fundamental mechanisms that explain this interac-

tion between BPH and prostate cancer are largely unknown and much debated in the medical community.

In [30], Lorenzo et al. hypothesize that this phenomenon may be caused by the mechanical inhibition in-

duced by BPH over prostate cancer growth, which the authors explore computationally by leveraging a new

patient-specific model accounting for the mechanical interplay between both diseases.

The model proposed by Lorenzo et al. in [30] relies on a phase-field formulation of prostate cancer

growth, whereby a variable termed phase field identifies and describes the joint spatiotemporal evolution of

both healthy and cancerous tissue [108, 30, 111]. In this study, tumor growth is driven by nutrient-dependent

proliferation and apoptosis. The authors consider a generic nutrient that follows reaction-diffusion dynamics.

This model also features a reaction-diffusion equation to describe the local production of a key biomarker

in the clinical management of prostate cancer: the serum Prostate Specific Antigen (PSA) [108]. The in-

tegration of the local PSA field over the prostate volume ultimately yields the usual serum PSA values

that physicians would consider in clinical decision-making. To represent the pathological deformation of

the prostate due to tumor growth and BPH development, Lorenzo et al. follow a similar approach to the

previous brain and breast cancer models [31, 80] that also accounts for the observed higher stiffness of the

prostate central gland with respect to the surrounding peripheral zone [30]. The volumetric expansion in-

duced by BPH is modeled with a time-dependent pressure term that is only defined within the central gland.

Likewise, the tumor mass effect is modeled with another pressure term defined upon the phase field, thereby

coupling tumor dynamics with the mechanical deformation of the prostate. To account for the confinement

of the prostate within the pelvic region, the authors leverage Winkler-inspired boundary conditions over the

external surface of the prostate. Additionally, Lorenzo et al. define a mechano-transductive function in the

phase-field equation that progressively inhibits prostatic tumor growth as the local mechanical stress field
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intensifies. To this end, they use an exponentially decaying formulation of the stress level, similarly to the

models discussed for breast and brain cancer above [31, 80] which, however, accounts for the surrounding

tissue distortion and the usual internal stress state within growing tissue [18, 30].

Lorenzo et al. perform the study in [30] over the anatomy of the BPH-enlarged prostate of a patient

with a tumor in the peripheral zone, which they extracted from MR imaging data available at the Initiative

for Collaborative Computer Vision Benchmarking (I2CVB: i2cvb.github.io) [112]. For each patient with

biopsy-confirmed PCa, this public database features a single-visit dataset including: T2-weighted MR im-

ages, DCE-MR images, DW-MR images, MR spectroscopic images, ADC maps, and the segmentations of

the prostate, its local anatomy (i.e., central gland and peripheral zone), and the tumor delineated by an ex-

perienced radiologist [113]. Lorenzo et al. construct a volumetric Non-Uniform Rational B-spline (NURBS)

mesh of the patient’s prostate by leveraging a parametric mapping method [114, 115], whereby they deform

the outer surface of a torus solid NURBS model to match with a surface model of the patient’s prostate.

To this end, Lorenzo et al. use 3DSlicer [116] to build a triangulated surface model of the patient’s prostate

by leveraging the T2-weighted images and the anatomic segmentations obtained from I2CVB, which they

posteriorly smooth in Meshlab [117]. The resulting solid NURBS model of the patient’s prostate is then

refined by using standard knot insertion to ensure high accuracy in model simulations, which rely on isogeo-

metric analysis (IGA) [118, 119]. Finally, the segmentations of the central gland and the patient’s tumor are

L2-projected over the prostate mesh to define zone-dependent material properties and set the initial condi-

tions of the tumor phase field. To define the BPH load and the parameter describing the Winkler-inspired

boundary conditions, Lorenzo et al. run an inverse calculation that aims at deforming the patient’s prostate

back to a healthy state according to standard anatomical features [107]. This procedure is performed without

considering the tumor. As a by-product, this calculation also renders a rough estimate of the mechanical

stresses that BPH had induced in the patient’s prostate before the diagnosis of prostate cancer at the MRI

date, which is used as a prestress in the simulation study presented in their work [30]. The remainder of the

model parameters are fixed from the literature or computationally estimated [108, 30].

Using the biomechanical approach described above, Lorenzo et al. qualitatively show that the accumula-

tion of mechanical stress due to prolonged BPH in enlarged prostates hinders the growth of prostatic tumors,

which tend to develop more slowly, with limited invasiveness, and maintaining a smaller volume for a longer

time. Thus, the mechanism described in [30] would contribute to explaining the favorable pathological fea-

tures observed in tumors originating in larger prostates [109, 110]. Figure 2C shows an example of a forecast

of prostatic tumor growth over a patient-specific prostate mesh using the methodology proposed by Lorenzo

et al in [30]. Additionally, the mechanism proposed by Lorenzo et al. suggests that medical therapies aiming
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at reducing the volume of the prostate to alleviate BPH symptoms could potentially reduce the mechanical

constraint on the tumor, and ultimately favor its development. Indeed, the authors analyze this possibility

in a posterior study [120], where they explore the effects on prostate cancer of a type of common BPH

drugs known as 5α-reductase inhibitors (e.g., finasteride, dutasteride). These drugs may reduce the prostate

volume by approximately 18% to 26% and can also promote apoptosis in the tumor [121, 122, 123, 124]. In

[120], Lorenzo et al. extend their model to account for these two drug-induced mechanisms by introducing

an additional time-dependent pressure term describing prostate shrinkage and by increasing the apoptotic

rate in the tumor dynamics equation, respectively. In particular, the new pressure term is parameterized by

leveraging population-based observations from two large clinical studies [121, 122]. Lorenzo et al. used the

same patient data from I2CVB to conduct a simulation study that shows that the maintenance of a mechan-

ical constraint on tumor growth ultimately depends on the long-term competition between the apoptotic

boost, which inhibits tumor growth, and the decrease in mechanical stress caused by prostate shrinkage,

which favors tumor growth. In particular, their simulations show that tumors experiencing a major stress

relaxation from drug-induced prostate shrinkage and only a limited upregulation of apoptosis ultimately

exhibit more aggressive dynamics. In [120], the authors further hypothesize that this unfavorable outcome

described by their model may contribute to explaining the larger proportion of higher-risk tumors in the

treatment arm of two critical clinical trials exploring the use of 5α-reductase inhibitors for chemoprevention

of prostate cancer [125, 126], which remains an open medical debate.

Tumor growth forecasting: key points
•Clinical imaging data provide physical measurements that can be leveraged to define the

tumor-bearing organ geometry, initialize a mathematical model, and calibrate its parameters on a

patient-specific basis.

•Once calibrated, computer simulations provide personalized forecasts that can be assessed

against further clinical imaging data collected at posterior dates.

•A general modeling framework is presented: solid mechanics, with mechanically-inhibited

tumor growth, coupled with reaction-diffusion of chemical agents. Clinically-relevant applications of

this framework are provided.

•We identify two key challenges: (1) assessing uncertainty in clinical imaging data and model

outcomes, and (2) transfer these forecasting technologies to the clinic.
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Table 2: Representative studies of mechanically-constrained tumor growth and treatment response studies in
the clinical setting. For further studies and additional details on the underlying modeling framework and computational
technologies, the interested reader is referred to [38, 64, 39]

Authors Framework Location | sub-types Objective Nb. patients
Jarrett et
al. 2020
[31]

Mechanically-constrained
reaction-diffusion dynamics
to describe tumor growth
and neo-adjuvant therapy
(NAT) response. Tissue
deformation is modeled with
linear elasticity.

Breast Forecast patient’s
response to NAT
and explore treat-
ment personaliza-
tion

21

Hormuth
et al.
2021 [80]

40 models evaluated, com-
posed of: mechanically-
constrained reaction-diffusion
dynamics to describe tumor
growth and treatment re-
sponse, tissue deformation
modeled with linear elastic-
ity, one or two tumor cell
species, concomitant chemo-
and radio-therapy.

Brain | high-grade
glioma∗ multiforme

Forecast tumor evo-
lution after surgery
during concomitant
chemo- and radio-
therapy

9

Lorenzo
et al.
2019 [30]

Mechanically-constrained
phase-field model to de-
scribe tumor growth and
reaction-diffusion dynamics
for a generic nutrient and
the prostate-specific antigen.
Tissue deformation is mod-
eled with linear elasticity.

Prostate | Concomi-
tant prostate cancer
and benign prostate
hyperplasia (BPH)

Relationship be-
tween BPH and fa-
vorable prognosis∗

of prostate cancer

1
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Figure 2: Imaging-informed computational forecasting of tumor growth and treatment response in clinical
settings. Anatomic and quantitative clinical imaging data can be leveraged to initialize and parameterize mechanistic math-
ematical models of cancer growth and therapeutic response on a patient-specific basis [39, 40, 38]. The personalized model
can then be used to run computer simulations to forecast the growth of the patient’s tumor and the efficacy of treatments.
These simulations can be further validated by comparison with additional imaging data from the patient at a posterior date.
Panel A illustrates an application of this framework in the setting of NAT of breast cancer by Jarrett et al in 2020 [31]. The
top figure shows a measurement of tumor cell density obtained from an ADC map calculated from DW-MRI data and plotted
within the tumor region of interest identified on DCE-MRI data. The background anatomic image is a contrast-enhanced T1
map of the patient’s breast. The bottom figure provides a model forecast of tumor cell density at the same location and time
as the MR measurement shown above. Panel B illustrates an analogous ADC-based measurement (top) and model forecast
(bottom) of tumor cell density at the same date during the post-surgical chemoradiotherapy of a glioblastoma∗ patient by
Hormuth et al in 2021 [80]. In this case, the background anatomic data is a T2-FLAIR image of the patient’s brain. Panel
C, top figure shows a three-dimensional rendering of an isogeometric mesh of a patient-specific prostatic anatomy extracted
from a T2-weighted MR image along with the L2-projected segmentation of an organ-confined tumor, which was obtained using
the methods described in Lorenzo et al in 2019 [30]. The bottom figure shows a forecast of the tumor morphology at a later
date using the mechanically-constrained model proposed in [30], in which the local mechanical deformation of prostatic tissue
induced by concomitant BPH and prostate cancer exerts an inhibitory effect on tumor growth.
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3. Clinical applications of mechanics in cancer management

Two classes of mechanical effects exposed in vitro transverse this review: i) tumor growth inhibition,

which can help to design clinically-relevant modeling as shown in the previous section, ii) mechanically-

induced phenotype switch via integrin signaling, which have been in-depth studied [127, 24, 128, 19] for

more than twenty years. In the last years, the understanding of this phenotype switch led to new therapeu-

tic targets. In 2020, it also led to an promising prognosis∗ tool [15]. We present these results in this section.

We should note that, although stroma∗ mechano-biology constitutes a new reservoir of powerful tools, it is

still underrepresented in the modeling community.

Mechanics is not only defined by the building of mathematical problems, it is also the underlying dis-

cipline enabling the design of new experimental setups. In particular, fluid mechanics underlies important

applications in cancer management. Experimental setups for the isolation of circulating tumor cells are built

upon microfluidic devices. The determination of the optimum diameter of a nanocarrier also requires fluid

dynamics, as does the normalization of tumor vasculature induced by drugs. These two examples of clinical

applications are presented into the fluid dynamics subsection.

Non-thermal electrophysics has already matured and journeyed from pre-clinical to clinical. A well-known

application, the irreversible electroporation (IRE) is applied in clinics for fifteen years (see Davalos el al.

[129]). As the in vitro findings date back to 1950, we decide to consider the application of electrophysics

from the clinical side only. IRE applies on unresectable tumors and on poor prognosis∗ location such as the

pancreas. We present section 3.3 the current developments of IRE, such as its coupling with immunotherapy.

To conclude the clinical applications of mechanics in cancer, we present the idea of tumor-treating fields, a

recent development in non-thermal electrophysics, the. Tumor-treating fields were approved in 2019 by US

Federal Drug Agency as a new treatment for recurrent glioblastoma∗ multiforme.

3.1. Mechano-biology

We present the clinical applications derived from the mechano-biological findings presented in section

1.2. For a detailed description of these in vitro experiments, the reader will be referred to the section 1.2.

In vivo mechano-biology of colorectal cancer. Recently, Bauer et al. [15] have proven that stroma∗ mechano-

biology and its consequences can be used for the prognosis∗ of metastasis in colorectal cancer. The cancer-

associated fibroblasts∗ contribute to a stiffer and denser ECM network which surrounds the colorectal can-

cer2. This increasing mechanical stress environment will lead malignant carcinoma∗ cells to an epithelial∗ to

2Stricto sensu, this phenomenon is termed fibrosis. However, in medical vocabulary, it could be reserved for scars and wound
healing. More generally, and in the context of clinical oncology, this phenomenon will be rather termed desmoplasia∗.
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mesenchymal∗ transition (EMT), via integrin downstream signaling (see section 1.2 for a detailed descrip-

tion). Disorganized carcinoma∗ cells after EMT have a metastatic profile. When the ECM becomes stiffer,

the secretion of activin A by intestinal epithelial∗ cells increases. The level of activin A has been measured

in 28 control and 28 patients of the Chicago Colorectal Cancer Consortium. It correlates with stage∗ IV

metastatic cancers, the level of activin A being 4-fold as high as in the control group. Additionally, there is

no significant difference in level between controls and all pre-metastatic stages∗ I-III.

For decades, the integrin downstream signaling and its consequences on EMT have already been studied

in-depth in vitro [24],[128] and with animal model [23], [26]. This direct clinical applications for metastatic

prognosis∗ is one more landmark of the critical importance of the ECM mechano-biology in carcinoma∗

malignant evolution.

Targeted drugs: focal adhesion∗ kinase inhibitor. The mechanical signaling applied by the ECM is received

by cell cytoskeleton through the transmembrane proteins, such as integrin. The cell in return tends to

balance these mechanical stimuli by contractility and to maintain the equilibrium. In these conditions,

the equilibrium is termed the tensional homeostasis. When the stiffness of ECM increases - hence the

corresponding mechanical signaling - the magnitude of the cell mechanical response will increase accordingly.

At the cell surface, this mechanical response is allowed by the clustering of integrin proteins, denoted focal

adhesions∗ (FA). This mechanism is described section 1.2. These FA contain multiple mechanosensors,

where focal adhesion∗ kinases (FAKs) play a specific role. FA allow increasing the generated traction force

by actomyosin activity at the cell’s surface. This instantaneous mechanical response is modified by FAKs.

By altering the phenotype∗ of actomyosin, FAKs provoke a sustained tensional response. This augmented

and sustained cellular tension will ultimately lead to enhanced tumor cell growth, survival, and invasion

[130]. Lindsey et al. described in [47] the consequences of FAKs hyperactivity on well-organized epithelial∗

tissue. As the cell-matrix adhesions increase in number and intensity, the cell-cell adhesions essential to

the organization of epithelial∗ tissue are lost. These cells then gain the ability to move individually, and

this ability is characteristic of carcinoma∗ after EMT. Considering these mechano-biological findings, the

inhibition of FAKs emerge as a potential therapeutic target.

In 2016, Jiang et al. [26] design a pre-clinical study in mouse models of FAKs inhibitor in pancreatic

ductal carcinoma∗ (PDAC). This disease has a specific desmoplastic∗ stroma∗, that acts as a barrier to T

lymphocytes infiltration. At the tumor cell’s level, this abundant and stiffer stroma is sustained by FAKs

hyperactivity. Two groups of mouse models are treated, one with a microscopic early stage∗ PDAC and the

other with a palpable late stage∗. The prescription of a single-agent FAKs inhibition (VS-4718 in this study)

significantly limits the tumor progression and increases responsiveness to immunotherapy PD-1 antagonists.

VS-4718 leads to a significant extension of survival in both early and late treatment groups (4 and 8 months

respectively). Promising results in animal models then authorize clinical trials with patients.
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In 2020, Mohanty et al. reviewed in [56] the progress of FAKs inhibitors in clinical trials. Among these

inhibitors, only 4 (PF-00562271, GSK2256098, VS-6063, and BI 853520) moved to subsequent development

and were tested in clinical trials in solid tumors. These trials demonstrate the cytostatic activity of FAKs

inhibitors. In other words, FAKs inhibitors stop the disease progression, without reducing the tumor volume.

They extend the progression-free survival of 12 weeks in severe advanced solid tumors, as mesothelioma

or PDAC. This extension is not accompanied by a clinical response, that is to say, the disease remains

stable during this extension. The trials also show that the patients response could be correlated with two

biomarkers, E-cadherin and merlin. Concerning the E-cadherin relationship with FA, the reader is referred to

the section 1.2. In these trials, FAKs inhibitors are currently tested in several combinations of chemotherapy

and immunotherapy.

3.2. Microfluidics of metastasis and tumor vasculature

The interplay between circulating fluids and cancer are numerous and his large topic would require a re-

view by itself. The applications of this field in cancer management in particularly inspiring. Indeed, in vitro

findings, modeling framework and adaptation to biological cues work together towards clinical applications.

We selected two paradigmatic examples of fluid mechanics application on cancer management. Over

the last years, nanoparticle delivery has emerged as an important topic in which biomechanical models

can make an important contribution. The seminal review of Jain in 2005 [131] pointed out the critical

aspect of the normalization of the tumor blood vessels. The first example is a direct application of this

principle: the injection of blocking vascular endothelial growth factor will normalize the poorly perfused

tumor vasculature, resulting in an increase in pressure gradient, and in a reduction of the vessels diameter.

These coupled phenomena can be advantageously modeled and exploited by fluid mechanics, to optimally

design the nanocarriers diameter.

The second example belongs to the experimental field of cancer diagnosis of metastasis: the circulating

tumor cells can be filtered or captured by microfluidic designs. Once again, complementary biological and

mechanical approaches lead to successful applications. They overcome the sparsity of metastatic cells in

blood, as well as heterogeneity.

The physical aspects of fluid mechanics in cancer are reviewed in [132]. From a clinical point of view, fluid

mechanics’ applications in cancer are reviewed in [16].

Anti-angiogenic therapy and nanoparticles delivery. In [133], Chauhan et al. study the effect of anti-

angiogenic treatment on the delivery of nanoparticles. The drug is DC101 (ImClone System), a blocking

vascular endothelial growth factor (VEGF) receptor-2, and two nanoparticles are tested: Abraxane, 10 nm

diameter and Doxil 100 nm diameter. The experiments are performed on severe combined immunodeficient
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mice. DC101 and one of the nanoparticles diameter are injected on days 0, 3 and 6 and imaging by intravital

microscopy are performed on days 2, 5 and 8 (imaging is performed through a window earlier implanted into

the animal by surgery). Images are analysed by a custom code in Matlab, developed in a previous work of

Chauhan et al. [134]. The experimental results give that DC101 injections decrease vessels diameters and

enhanced between 2.7 to 3-fold the transvascular flux for the 10 nm particles, but with no change for 100 nm

particles.

The mathematical model assumes classic Poiseuille’s law for the blood flow, Starling’s law for the intra/extra-

vascular exchanges and the interstitial fluid flow follows poromechanics Darcy’s law. The nanoparticles deliv-

ery is modeled by advection inside vessels and by advection-diffusion in extra-vascular space. The mathemat-

ical model shows that reducing vessel wall pore size decreases interstitial fluid pressure in tumors, allowing

nanoparticles to enter more easily, but smaller pores associated with better hydrodynamics obstruct the

penetration of bigger nanoparticles. The authors of [133] suggest that nanoparticles with diameters smaller

than 12 nm are ideal for cancer therapy. These numerical results emphasize both the significance of the

normalization of tumor blood vessels [131] and the efficiency of biomechanical modeling in the nanoparticles

delivery challenge.

Microfluidic and circulating tumor cells (CTC). The isolation and characterization of CTC is a key chal-

lenge in metastatic cancer management. This can be achieved by the exploitation of biological properties

(CTC biomarkers) or physical properties (size, deformation, viscosity). The first difficulty is the sparsity of

CTC cells, which represent 0.004% of all cells in metastatic patient blood. Moreover, CTC present a high

heterogeneity in biological and physical properties, thus, a microfluidic device solely based on size filtration

and isolation could not be relevant as in a single patient CTC sizes vary between 4 and 30,µm. The review,

in [135], reports several successful examples of dual approaches, biological and mechanical, which efficiently

capture CTC heterogeneities.

In [136], Nagrath et al. present the CTC-chip device. Their approach is based on microposts coated with

the antibodies EpCAM, standing for epithelial∗ cell adhesion molecule. The use of these specific antibodies

for the CTC capture is justified by the over-expression of EpCAM by many carcinomas∗ (lung, colorectal,

breast, prostate, among others) and by its absence of expression in haematologic cells. From the mechanical

aspect, two parameters are critical for the CTC capture: the flow velocity, which determines the duration

of the cell/micropost contact, and the minimization of the shear force, to ensure cell-micropost attachment.

Additionally, these two parameters are constrained by a reasonable duration of patient blood analysis. The

CTC-chip has been designed by simulation results. These results indicated that an equilateral triangle sur-

face of 970 mm2, with an architecture of 50 µm microposts separated by a shift of 50 µm every 3 rows, and

a flow rate of 1 to 2 ml · h−1 ensured the best compromise. The CTC-chip successfully identified CTCs in
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the peripheral blood of patients with metastatic lung, prostate, pancreatic, breast and colon cancer in 115

of 116 (99%) samples.

Three years later, Stott et al. in [137] proposed an improved design of the CTC-chip. Adding ridges on the

wall of the device creates passive micro-vortex in the flow which notably increase the collision between CTC

and EpCAM location. Therefore, the complex CTC-chip architecture could be simplified in superimposed

micro-channels with their walls shaped by asymmetrical chevrons. The device is denoted Herringbone-Chip.

Its design allows for 93% CTC captures at a flow rate 4-fold higher than CTC-chip. Its high-throughput

and easier fabrication make it suitable for clinical use.

These two examples show that the collaboration between biological and mechanical approaches, with a

well-designed modeling, lead to successful clinical applications. Experimental design of isolation of metastatic

cells or modeling of nanocarriers is of critical importance for the future of cancer management. These are

inspiring examples of the involvement of mechanics in cancer.

3.3. Non-thermal electrophysics

We conclude this review of the exploration of electrical treatments currently used in clinical management

of cancer. The first one targets cell membranes: the irreversible electroporation (IRE). IRE is a non-thermal,

minimally invasive technique which provokes tumor cell death by short high-voltage electric pulses. Since

2005 (see Davalos el al. [129]), IRE is a well-established treatment for non-resectable tumors. We focus on

recent development of this technique on several locally advanced cancers. The second one targets cell mytotic

activity: the tumor treating fields (TTF). TTF are the application of intermediate frequency alternating

electric fields with low intensity. In 2019, TTF has been approved by the US Federal Drug Agency as a new

treatment for recurrent glioblastoma∗ multiforme [138].

Electroporation. The Irreversible Electroporation is a non-thermal ablation technique which uses electric

pulses to disrupt cell membrane [139]. Since 2005, more than 50 clinical trials have been applied to pancreatic,

prostate, liver and kidney cancer showing that IRE has varying degree of clinical success, and reducing

the progression of cancer [139]. Additionally, recent studies in human and mice suggest that IRE increases

immune response of tumor-protective CD8+T cells. The success combination of IRE and immunomodulatory

therapy (GC-CSF/STING agonist) shows significant improvement of treatment. In Shao et al. [140], an in

vitro study shows that IRE enhances tumor antigen release. In the recent works of Burbach et al. [141],

the hypothesis that primary treatment with IRE and following treatment with checkpoint immunotherapy

increase the effective destruction and promote tumor clearance. In this study, authors also indicate that

anti-CTLA-4 is a potential in-situ tumor vaccination strategy which could generate protective tumor-specific

CD8+T cells, which play a critical role in host immune response.
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In [29], Lin et et al. conduct a clinical trial on the combination of IRE and immunotherapy by V γ9V δ2 cells.

62 patients (32 control) with stage∗ III PDAC receive IRE therapy and 30 patients receive at least two cycles

of V γ9V δ2 cells infusion. This is the first reported immune treatment of PDAC by γ T cells. Advanced

PDAC is characterized by a strong immunosuppressive stroma∗, IRE can improve, by its damaging effect,

the drug delivery through this stroma∗, but also increase tumor cells infiltration. Additionally, IRE provokes

systemic change in tumor microenvironment, specifically in tumor immunity [142]. The combination of IRE

and immunotherapy shows a significant improvement median survival (14.5 months, control 11). This is a

promising strategy for treatment of stage∗ III PDAC.

Tumor treating fields (TTF). Glioblastoma∗ is a common brain tumor, which is very aggressive and recur-

rent. Its 5-year survival rate is still around 5% percent since 2000 [143]. Its standard of care is, if possible,

maximum surgical resection followed by 6 one-week cycles a concomitant radiotherapy, temozolomide (TMZ)

chemotherapy [50]. The TZM is used for its radio sensitizer effect, and after the 6 cycles, as chemotherapy

maintenance for 6 or 12 months. Since 2005, no significance improvement has been made in this standard

of care.

TTF [144] brought progress in glioblastoma∗ survival as shown in the phase III of clinical trial [145]. TTF are

an antimitotic treatment, i.e. they affect dividing cells by delivering low-intensity alternating electric fields

via electrodes arrays placed on the scalp. It is shown in [144] that the intermediate frequency of 200 kHz has

the stronger effect on glioblastoma∗ cells.

In a phase III clinical trial, 637 patients, after the concomitant radiotherapy TZM treatment, receive TTF-

TMZ maintenance or TMZ alone during 28 cycles. The TTF treatment shows a significant influence on

progression-free (6.7 months vs. 4.0) and survival (20.9 months vs. 16.0). This treatment is a notable

improvement on a particularly difficult cancer location. Recently, TTF has been approved by the US Federal

Drug Agency as a new treatment for recurrent glioblastoma∗ multiforme [138].

Clinical application: key points
•Stroma∗ mecano-biology emerges as a promising field for prognosis∗ tools and new therapeutic

targets.

•Fluid mechanics opened new opportunities to experimental design and nanocarriers design,

of critical importance in the field.

•Non-thermal electrophysics is a well-established protocol for non-resectable tumors and its

recent development led to promising new tools for pancreatic cancer and glioblastoma∗ multiforme.
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4. Challenges and perspectives

In 2009, the National Cancer Institute deputy director Anna Barker wrote ”we had reached an inflection

point where we knew enough about the biology to bring in other fields”. In 2012, Jennie Dusheck wrote

a letter published in Nature, addressed to biologists and entitled ”Oncology: Getting Physical” [146]. She

pointed out that since the 1950’s, age-adjusted cancer mortality rates have declined by only 11% whereas

the budget allowed to treatment research have a 25-fold increase. This letter was mainly motivated by the

examples given in the 2011 Nature review cancer of Mauro Ferrari et al. ”What does physics have to do

with cancer” [147], who has an important contribution in cancer nanomedicine [148] and cancer biophysical

modeling [149, 34].

The years following this ‘inflection point’ have shown major reviews of cancer mechanical interplay as

”The role of mechanical forces in tumor growth and therapy” in 2014 by Jain et al. [18]. The progress

of clinical imaging led to the seminal review by T. Yankeelov et al. ”Clinically relevant modeling of tu-

mor growth and treatment response” in Science Translational Medicine in 2013 [39]. These studies showed

decades of persevering research bringing to light and mechanics were finally allowed to ‘make its part’ in

cancer research. Two examples to illustrate this statement: i) early research on elevated interstitial fluid

pressure inside tumors as impediments of drug delivery in 1988 by Jain et al. [150] led to nanocarrier design

through normalization of tumor vasculature in 2012 [133], ii) early work of Weaver et al. in 1997 [127]

on integrin-mediated phenotype switch led to a clinical tool for early diagnosis of colorectal cancer with a

metastatic prognosis∗ by Bauer et al. in 2020 [15]. Thus, the collaboration between biological and mechan-

ical approaches could be a key for the next step of cancer treatments.

We have seen enormous efforts in the literature to select the best model, agent-based, individual-based,

or focusing on partial differential equations, to best reproduce the phenomena of interest for computational

oncology. However, the question of verifying whether the problem is solved to a satisfactory accuracy level

is mostly neglected in literature. Recent efforts have been expended in the area of quality control and esti-

mation for biomechanics problems, with the first real-time error estimation for surgical simulation proposed

by Bui et al. in [151]. Additionally, adapting the computational mesh to obtain optimal accuracy in solving

a model with minimal computational cost is a key strategy to obtain an efficient and precise implementation

of computational oncology problems. Therefore, one of the most challenging problems in computational

oncology resides in selecting the right model and identifying the best statistical distribution for each of its

parameters (see Rappel et al. in [152]).

Personalized medicine has been a challenge for the last decade. Since 2017, numerous articles with promis-
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ing results are converging within the same modeling framework: i) the coupling of chemical reaction-diffusion

equations and multi-physics mechanical equations, ii) the use of rich clinical patient-specific datasets with the

robust experience of mechanical engineering. This framework is denoted as imaging-informed mechanical-

based modeling. Yet the challenge of developing personalized medicine based on this framework is not

achieved, we hope that the clinician will be willing to get acquainted with these promising new tools.
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5. Supplementary information

5.1. Presentation of the modeling framework

Tumor growth approaches.

Figure 3: Tumor growth approaches
Phenomenological:

• Gompertz law:

N(t) = N0 exp
[

ln
(

θ

N0

)
(1 − exp(−γt))

]
t time, N(t) tumor cell density at time t, N0 tumor
cells initial density, θ carrying capacity of the domain,
γ growth rate (see [153]).

• Diffusion law: ∂tN = ∇ · (DT ∇N)
DT the diffusion coefficient of tumor cells.

Mass conservation:
∂t(ρT V T ) =

∑ i→T
M

∑
∂t(ρiV i) = −

∑ i→T
M i ̸= T

V T tumor volume, i other components of the system (for

instance, interstitial fluid, stroma∗).
i→T
M mass exchange be-

tween phases i and T .

In general, the tumor growth between t0 and t may be described by two approaches: the phenomenological

approach and the balance law approach. The older and most famous phenomenological approach is the

Gompertz law. The formulation comes from the work of Anna Laird in 1964 [153]. This adaptation of the

sigmoid function can give good results in vitro, but the in vivo dynamics can not be properly reproduced.

The Gompertz law may be replaced by a more general Logistic law: ∂tN = γ(x)N(t)
(

1 − N(t)
θ

)
where the

growth rate γ(x) is spatially resolved. These laws can be replaced or completed by a diffusion law (see the

models presented in section 2.2), where the tumor is considered as chemical species diffusing in the domain.

The mass conservation approach poses the problem of cancer growth and treatment relying on fundamental

physical balances (for instance, see [154, 35]). The mass of the system being conserved, the evolution of the

tumor volume will be balanced by the evolution of the other components of the system (fluids, nutrients, and

cells). Nevertheless, the mass exchange between the components
i→T

M may be defined by various constitutive

equations, physical or phenomenological.
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Tumor growth inhibition.

Figure 4: Tumor growth inhibition may be modeled
as:

•Mechanical, with a stress inhibition threshold
σy .

¯̄σ =
¯̄̄̄
C(E, ν) : ϵ(u)

σVM =

√
3
2

(σ −
tr(¯̄σ)

3
¯̄I)

and test if σVM ≥ σy

•Chemical, with a hypoxia∗ threshold O2crit.

∂t(C) − ∇ · (DC∇(C)) = TSource − TSink

and test if C(t) ≤ O2crit

where DC is the diffusion coefficient of the evalu-
ated chemical agent, here oxygen.

We distinguish two main ways to model the tumor growth inhibition: mechanical inhibition through a stress

criterion and chemical inhibition through a concentration threshold of a chemical agent.

From the displacement u and the material parameters, we can deduce the stress tensor ¯̄σ. In figure 4, σ is

modeled with a linear elastic law. Then, a scalar stress metric, such as the Von Mises stress σVM, can be

compared to an inhibition threshold σy. This stress could be compared to an inhibition threshold σy (see

figure 4).

Chemical inhibition of tumor growth may be modeled with various criteria (e.g. nutrients, treatment), in

figure 4, it is oxygen. Oxygen level may be evaluated with a reaction-diffusion equation, as in figure 4, or by

a heuristic relationship. Then it is compared with the hypoxia∗ threshold.

Depending on how the inhibition is modeled, dependencies will be added to the tumor growth model. The

growth rate γ may become γ(O2), the tumor cells diffusion coefficient DT may become DT (σVM) or the mass

exchange between the system components
i→T

M may become
i→T

M (O2, σVM).
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Specificity of poromechanics.

Elastic solid and porous system mechanics.

•An elastic solid is characterized by two material pa-
rameters, the Young’s modulus E -its stiffness- and the
Poisson’s ratio ν -its compressibility-. Each elastic solid in the
domain has its own tuple (E, ν). The unknown of the system
is the displacement field u. The linear momentum balance, in
absence of external load, reads:

∇ · σ = 0 with

σ = Eν

(1 + ν)(1 − 2ν)
ϵ(u) + E

2(1 + ν)
tr(ϵ(u)) ¯̄I

•A porous system is composed of porous solid(s) with
inner fluid(s) passing through. An elastic porous solid is defined
by the elastic tuple (E, ν) and its permeability k. The fluid is
characterized by its dynamic viscosity µ. The unknowns of the
system are the displacement field u and the fluid pressure p.
The system linear momentum balance, in absence of external
load, reads:

∇ · σT = 0 with σT = σ − p ¯̄I

Diffusion of chemical species

•In an elastic solid a diffusive chemical species may be
added. Its diffusion will depend only on its diffusion coeffi-
cient D. However, this coefficient may be space dependent
D(x) and partially coupled to the elastic solid through a stress
inhibition threshold D(σVM).

•In a porous medium, diffusive chemical species will
also be advected by the inner fluid. A Darcy’s term, depen-
dent on both permeability k and dynamic viscosity µ, will be
added to the diffusion equation.
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5.2. Glossary of clinical terms

Adenocarcinoma: From Greek Adeno ‘gland’. Subtype of carcinoma∗ which origi-

nates or presents the characteristics of a gland.

Apoptosis: From Greek ‘falling off’. Programmed cell death. Contrary to

necrosis∗, this is a highly regulated and controlled process.

Carcinoma: From Greek ‘crabe’. Subtype of cancer characterized by abnormal

and excessive growth of epithelial∗ cells.

Desmoplasia: Formation of connective tissue due to proliferation of fibroblasts∗.

Epithelial cells: These cells, thanks to their organized cell-cell adhesions, form a

thin and continuous layer of packed cells that covers the outer

surfaces of the organs. Epithelial cells also constitute the main

component of glands.

Etiology: Causes of disease.

Extra-cellular matrix: Non-cellular material secreted by cells into the surrounding

medium, which provide cell adhesion and intercellular communica-

tion. Depending on the cells, this material is mainly composed of

collagen (fibrous structure), elastin (elastic property), fibronectin

(cell adhesion) or glycosaminoglycans (shock absorption).

Fibroblast: Mobile cell that produces the extra-cellular matrix∗ collagen.

Focal adhesion: Sub-cellular structure that serves as the mechanical linkage to the

extra-cellular matrix∗, i.e. cell-matrix adhesion. This mechani-

cal linkage forms by the concentration of integrin proteins (and

other signaling proteins) upon fibronectin and other cell-matrix

adhesion sites.
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Glioma: Brain tumor originating of glial cells, mainly from oligodendro-

cytes or astrocytes.

Glioblastoma: Stage∗ IV glioma∗. Aggressive and recurrent, characterized

by necrotic core and/or micro-vascular abnormal proliferation.

Glioblastoma almost exclusively come from astrocytes (rare hy-

brids may have an oligodendrocytes-astrocytes profile).

Histology: From Greek ‘Tissue knowledge’. The study of the microscopic

anatomy of tissues. Various processes are involved: light mi-

croscopy, cell staining or freezing.

Hypoxia: At the cell’s scale, it refers to a state in which oxygen supply is

insufficient. If this insufficiency is severe and prolonged, it could

lead to necrosis∗.

Lymphoma: Cancers of lymphocytes (white blood cells). The common feature

of different types of lymphoma is the enlargement and the swelling

of lymph nodes.

Mesenchymal cell: Undifferentiated cell, highly mobile, which can form various tis-

sues (muscle, bone, neural tube). Epithelial∗ cells can lose their

organization and return to the state of mesenchymal. This process

is termed epithelial to mesenchymal transition (EMT).

Necrosis: From Greek ‘death’. External factors, such as infection or trauma,

cause cell deregulation leading to death, which provokes an inflam-

matory response of the surrounding tissue.

Neoadjuvant therapy: Therapy or a group of therapies (radio-, immuno- or chemother-

apy) that are delivered before surgery or another primary treat-

ment with curative intent.

40



Parenchyma: Functional part of an organ, complemented by the stroma∗.

Phenotype: Observable characteristics resulting from the interaction of a geno-

type with its environment.

Prognosis: From Greek ‘foreseeing’. Expected development of a disease.

Stage: Staging of cancer: I - local, benign; II invasion of nearby tissue;

III lymph node invasion; IV metastatic, recurrent.

Stroma: Structural part of an organ, also termed connective tissue, com-

plemented by the parenchyma∗.
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5.3. List of acronyms

ADC Apparent diffusion coefficient

BOLD Blood oxygen level dependent

CE Contrast enhanced

CFD Computational fluid dynamics

CNN Convolutional neural network

CSF Cerebro-spinal fluid

CT Computed tomography

CTC Circulating tumor cell

DCE-MRI Dynamic contrast enhanced magnetic resonance imaging

DTI Diffusion tensor imaging

DW-MRI Diffusion weighted magnetic resonance imaging

ECM Extra-cellular matrix∗

EGF Epidermal growth factor

EMT Epithelial∗ to mesenchymal∗ transition

F-FDG 18fluor-fluorodeoxyglucose (radio-tracer)

FAKs Focal adhesion∗ kinases

FlAIR Fluid attenuated inversion recovery

GBM Glioblastoma∗ multiforme

H&E Hematoxylin and eosin

HER2 Human epidermal growth factor receptor 2

IRE Irreversible electroporation

MEC Mammalian epithelial∗ cell

MRI Magnetic resonance imaging

PET Proton emission tomography

rCVB Relative cerebral blood volume

TTF Tumor-treating fields
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geois, Focus on the controversial aspects of 64cu-atsm in tumoral hypoxia mapping by pet imaging,

Frontiers in Medicine 2 (2015) 58. doi:10.3389/fmed.2015.00058.

URL https://www.frontiersin.org/article/10.3389/fmed.2015.00058

[72] A. Almuhaideb, N. Papathanasiou, J. Bomanji, ¡sup¿18¡/sup¿f-fdg pet/ct imaging in oncology, Annals

of Saudi Medicine 31 (1) (2011) 3–13. arXiv:https://www.annsaudimed.net/doi/pdf/10.4103/

0256-4947.75771, doi:10.4103/0256-4947.75771.

URL https://www.annsaudimed.net/doi/abs/10.4103/0256-4947.75771

[73] Y. Zhang, M. Brady, S. Smith, Segmentation of brain mr images through a hidden markov random

field model and the expectation-maximization algorithm, IEEE Transactions on Medical Imaging 20 (1)

(2001) 45–57. doi:10.1109/42.906424.

50

https://cdt.amegroups.com/article/view/3640
https://cdt.amegroups.com/article/view/3640
https://cdt.amegroups.com/article/view/3640
http://www.ajnr.org/content/30/4/681
http://www.ajnr.org/content/30/4/681
http://www.ajnr.org/content/30/4/681
http://arxiv.org/abs/http://www.ajnr.org/content/30/4/681.full.pdf
http://dx.doi.org/10.3174/ajnr.A1465
http://www.ajnr.org/content/30/4/681
http://dx.doi.org/10.2214/AJR.12.9543
http://dx.doi.org/10.4329/wjr.v8.i9.785
https://doi.org/10.1016/j.nurt.2007.05.011
http://dx.doi.org/10.1016/j.nurt.2007.05.011
https://doi.org/10.1016/j.nurt.2007.05.011
http://dx.doi.org/https://doi.org/10.1007/s00330-006-0431-y
https://www.frontiersin.org/article/10.3389/fmed.2015.00058
http://dx.doi.org/10.3389/fmed.2015.00058
https://www.frontiersin.org/article/10.3389/fmed.2015.00058
https://www.annsaudimed.net/doi/abs/10.4103/0256-4947.75771
http://arxiv.org/abs/https://www.annsaudimed.net/doi/pdf/10.4103/0256-4947.75771
http://arxiv.org/abs/https://www.annsaudimed.net/doi/pdf/10.4103/0256-4947.75771
http://dx.doi.org/10.4103/0256-4947.75771
https://www.annsaudimed.net/doi/abs/10.4103/0256-4947.75771
http://dx.doi.org/10.1109/42.906424


[74] J. Chen, Z. Wan, J. Zhang, W. Li, Y. Chen, Y. Li, Y. Duan, Medical image segmentation and recon-

struction of prostate tumor based on 3d alexnet, Computer Methods and Programs in Biomedicine

200 (2021) 105878. doi:https://doi.org/10.1016/j.cmpb.2020.105878.

URL https://www.sciencedirect.com/science/article/pii/S0169260720317119

[75] K. Kamnitsas, E. Ferrante, S. Parisot, C. Ledig, A. V. Nori, A. Criminisi, D. Rueckert, B. Glocker,

Deepmedic for brain tumor segmentation, in: A. Crimi, B. Menze, O. Maier, M. Reyes, S. Winzeck,

H. Handels (Eds.), Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries,

Springer International Publishing, Cham, 2016, pp. 138–149.

[76] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shinohara, Identifying the

best machine learning algorithms for brain tumor segmentation, progression assessment, and overall

survival prediction in the brats challenge (2019). arXiv:1811.02629.

[77] A. Gertych, Z. Swiderska-Chadaj, Z. Ma, N. Ing, T. Markiewicz, S. Cierniak, H. Salemi, S. Guzman,

A. E. Walts, B. S. Knudsen, Convolutional neural networks can accurately distinguish four histologic

growth patterns of lung adenocarcinoma in digital slides, Scientific Reports 9 (2019) 1483. doi:

10.1038/s41598-018-37638-9.

[78] M. Mostavi, Y.-C. Chiu, Y. Huang, Y. Chen, Convolutional neural network models for cancer

type prediction based on gene expression, BMC Medical Genomics 13 (2020) 44. doi:10.1186/

s12920-020-0677-2.

[79] S. Angeli, K. E. Emblem, P. Due-Tonnessen, T. Stylianopoulos, Towards patient-specific modeling of

brain tumor growth and formation of secondary nodes guided by DTI-MRI, NeuroImage: Clinical 20

(2018) 664–673.

[80] D. A. Hormuth, K. A. Al Feghali, A. M. Elliott, T. E. Yankeelov, C. Chung, Image-based personal-

ization of computational models for predicting response of high-grade glioma to chemoradiation, Sci.

Rep. 11 (2021) 8520.

[81] V. Vavourakis, B. Eiben, J. H. Hipwell, N. R. Williams, M. Keshtgar, D. J. Hawkes, Multiscale

mechano-biological finite element modelling of oncoplastic breast surgery—numerical study towards

surgical planning and cosmetic outcome prediction, PLOS One 11 (7) (2016) e0159766.

[82] X. Chen, R. M. Summers, J. Yao, Kidney tumor growth prediction by coupling reaction–diffusion

and biomechanical model, IEEE Transactions on Biomedical Engineering 60 (1) (2013) 169–173. doi:

10.1109/TBME.2012.2222027.

51

https://www.sciencedirect.com/science/article/pii/S0169260720317119
https://www.sciencedirect.com/science/article/pii/S0169260720317119
http://dx.doi.org/https://doi.org/10.1016/j.cmpb.2020.105878
https://www.sciencedirect.com/science/article/pii/S0169260720317119
http://arxiv.org/abs/1811.02629
http://dx.doi.org/10.1038/s41598-018-37638-9
http://dx.doi.org/10.1038/s41598-018-37638-9
http://dx.doi.org/10.1186/s12920-020-0677-2
http://dx.doi.org/10.1186/s12920-020-0677-2
http://dx.doi.org/10.1109/TBME.2012.2222027
http://dx.doi.org/10.1109/TBME.2012.2222027


[83] K. C. L. Wong, R. M. Summers, E. Kebebew, J. Yoa, Pancreatic tumor growth prediction with elastic-

growth decomposition, image-derived motion, and FDM-FEM coupling, IEEE Trans. Med. Imaging

36 (1) (2017) 111–123.

[84] D. Zardavas, M. Piccart, Neoadjuvant therapy for breast cancer, Annu. Rev. Med. 66 (1) (2015) 31–48.

[85] X. Kong, M. S. Moran, N. Zhang, B. Haffty, Q. Yang, Meta-analysis confirms achieving pathological

complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer

patients, Eur. J. Cancer 47 (14) (2011) 2084–2090.

[86] N. C. Atuegwu, L. R. Arlinghaus, X. Li, E. B. Welch, A. B. Chakravarthy, J. C. Gore, T. E. Yankeelov,

Integration of diffusion-weighted MRI data and a simple mathematical model to predict breast tumor

cellularity during neoadjuvant chemotherapy, Magn. Reson. Med. 66 (6) (2011) 1689–1696.

[87] J. A. Weis, M. I. Miga, L. R. Arlinghaus, X. Li, A. B. Chakravarthy, V. Abramson, J. Farley, T. E. Yan-

keelov, A mechanically coupled reaction-diffusion model for predicting the response of breast tumors

to neoadjuvant chemotherapy, Phys. Med. Biol. 58 (17) (2013) 5851–5866.

[88] A. M. Jarrett, D. A. Hormuth, S. L. Barnes, X. Feng, W. Huang, T. E. Yankeelov, Incorporating

drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the

response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results, Phys.

Med. Biol. 63 (10) (2018) 105015.

[89] O. Clatz, M. Sermesant, P.-Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain, N. Ayache, Real-

istic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical

deformation, IEEE Trans. Med. Imaging 24 (10) (2005) 1334–1346.

[90] J. A. Weis, M. I. Miga, T. E. Yankeelov, Three-dimensional image-based mechanical modeling for

predicting the response of breast cancer to neoadjuvant therapy, Computer Methods in Applied Me-

chanics and Engineering 314 (2017) 494–512, special Issue on Biological Systems Dedicated to William

S. Klug. doi:https://doi.org/10.1016/j.cma.2016.08.024.

[91] J. G. Whisenant, G. D. Ayers, M. E. Loveless, S. L. Barnes, D. C. Colvin, T. E. Yankeelov, Assessing

reproducibility of diffusion-weighted magnetic resonance imaging studies in a murine model of HER2+

breast cancer, Magn. Reson. Imaging 32 (3) (2014) 245–249.

[92] A. G. Sorace, C. Wu, S. L. Barnes, A. M. Jarrett, S. Avery, D. Patt, B. Goodgame, J. J. Luci,

H. Kang, R. G. Abramson, T. E. Yankeelov, J. Virostko, Repeatability, reproducibility, and accuracy

of quantitative MRI of the breast in the community radiology setting, J. Magn. Reson. Imaging 48 (3)

(2018) 695–707.

52

http://dx.doi.org/https://doi.org/10.1016/j.cma.2016.08.024


[93] W. Chen, M. L. Giger, U. Bick, A fuzzy c-means (FCM)-based approach for computerized segmentation

of breast lesions in dynamic contrast-enhanced MR images, Acad. Radiol. 13 (1) (2006) 63–72.

[94] C. Wu, F. Pineda, D. A. Hormuth II, G. S. Karczmar, T. E. Yankeelov, Quantitative analysis of

vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast

tumors, Magn. Reson. Med. 81 (3) (2019) 2147–2160.

[95] T. E. Yankeelov, J. C. Gore, Dynamic contrast enhanced magnetic resonance imaging in oncology:

theory, data acquisition, analysis, and examples, Curr. Med. Imaging Rev. 3 (2) (2007) 91–107.

[96] X. Li, B. M. Dawant, E. B. Welch, A. B. Chakravarthy, L. Xu, I. Mayer, M. Kelley, I. Meszoely,

J. Means-Powell, J. C. Gore, T. E. Yankeelov, Validation of an algorithm for the nonrigid registration

of longitudinal breast MR images using realistic phantoms, Med. Phys. 37 (6Part1) (2010) 2541–2552.

[97] D. A. Hormuth, S. L. Eldridge, J. A. Weis, M. I. Miga, T. E. Yankeelov, Mechanically coupled reaction-

diffusion model to predict glioma growth: Methodological details, in: L. von Stechow (Ed.), Cancer

Systems Biology: Methods and Protocols, Springer New York, 2018, pp. 225–241.

[98] C. H. Wang, J. K. Rockhill, M. Mrugala, D. L. Peacock, A. Lai, K. Jusenius, J. M. Wardlaw, T. Clough-

esy, A. M. Spence, R. Rockne, E. C. Alvord, K. R. Swanson, Prognostic significance of growth kinetics

in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical

model, Cancer Res. 69 (23) (2009) 9133–9140.

[99] M. L. Neal, A. D. Trister, T. Cloke, R. Sodt, S. Ahn, A. L. Baldock, C. A. Bridge, A. Lai, T. F.

Cloughesy, M. M. Mrugala, J. K. Rockhill, R. C. Rockne, K. R. Swanson, Discriminating survival

outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric,

PLoS ONE 8 (1) (2013) e51951.

[100] R. C. Rockne, A. D. Trister, J. Jacobs, A. J. Hawkins-Daarud, M. L. Neal, K. Hendrickson, M. M.

Mrugala, J. K. Rockhill, P. Kinahan, K. A. Krohn, K. R. Swanson, A patient-specific computational

model of hypoxia-modulated radiation resistance in glioblastoma using (18)F-FMISO-PET, J. R. Soc.

Interface 12 (103) (2015) 20141174.
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