
Scalable Coercion-Resistant E-Voting under Weaker Trust
Assumptions

Thomas Haines
Australian National University

Canberra, Australia
thomas.haines@anu.edu.au

Johannes Müller
University of Luxembourg

Esch-Sur-Alzette, Luxembourg
johannes.mueller@uni.lu

Iñigo Querejeta-Azurmendi
Independent researcher

Donostia, Spain
azinig@querejeta.me

ABSTRACT
Electronic voting (e-voting) is regularly used in many countries and
organizations for legally binding elections. In order to conduct such
elections securely, numerous e-voting systems have been proposed
over the last few decades. Notably, some of these systems were de-
signed to provide coercion-resistance. This property protects against
potential adversaries trying to swing an election by coercing voters.

Despite the multitude of existing coercion-resistant e-voting
systems, to date, only few of them can handle large-scale Internet
elections efficiently. One of these systems, VoteAgain (USENIX
Security 2020), was originally claimed secure under similar trust
assumptions to state-of-the-art e-voting systems without coercion-
resistance.

In this work, we review VoteAgain’s security properties. We
discover that, unlike originally claimed, VoteAgain is no more se-
cure than a trivial voting system with a completely trusted election
authority. In order to mitigate this issue, we propose a variant of
VoteAgain which effectively mitigates trust on the election author-
ities and, at the same time, preserves VoteAgain’s usability and
efficiency.

Altogether, our findings bring the state of science one step closer
to the goal of scalable coercion-resistant e-voting being secure
under reasonable trust assumptions.

CCS CONCEPTS
• Security and privacy → Formal security models; Privacy-
preserving protocols;

KEYWORDS
Electronic Voting, Verifiability, Privacy, Coercion-resistance, Attack

ACM Reference Format:
Thomas Haines, Johannes Müller, and Iñigo Querejeta-Azurmendi. 2023.
Scalable Coercion-Resistant E-Voting under Weaker Trust Assumptions. In
Proceedings of ACM SAC Conference (SAC’23). ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC’23, March 27–April 2, 2023, Tallinn, Estonia
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In Australia, Brazil, Estonia, India, the US, and many other coun-
tries, systems for electronic voting (e-voting) are regularly used
for legally binding political elections. In such high-stake elections,
it is crucial to protect voters against being coerced to vote or not
to vote for a certain candidate, to abstain from voting, or to sell
their votes. A legal approach to mitigate the risk of coercion is to
ensure that “[any] coercion of voters should be prohibited by penal
laws and those laws should be strictly enforced”, as required by the
international standards of elections of the UN Committee on Human
Rights [27]. Since, realistically, the risk of being penalized may not
be sufficient to deter possible coercers, the threat of coercion must
also be counteracted at a technical level. To this end, numerous
e-voting systems have been designed that aim to protect against
coercion (see, e.g., [1, 2, 6, 7, 12, 17, 22, 32]), or to mitigate its risk
(see, e.g., [5, 14, 20, 28, 29]), by technical means. This property is
called coercion-resistance.

Coercion-resistance. In a coercion-resistant e-voting system,
each coerced voter has the option to run some counter-strategy
instead of obeying the coercer. By running the counter-strategy,
the coerced voter can achieve her own goal (e.g., to vote for her
favorite candidate). At the same time, the coercer cannot distinguish
whether the coerced voter followed his instructions (e.g., voted for
the coercer’s favorite candidate) or ran the counter-strategy. From
a technical perspective, there exist three different approaches in the
literature which implement this concept: fake credentials, masking,
and deniable vote updating. We will briefly explain these different
approaches next.

Fake credentials are used, for example, in [1, 6, 7, 12], and they
work as follows. Each voter is provided with a unique and secret
credential 𝑐 . A voter uses 𝑐 to submit her vote when she is not
under coercion. Otherwise, if a voter is under coercion, she can
create a so-called fake credential 𝑐 to submit her coerced vote. Since
the voter’s fake credential is invalid, the respective vote will be
secretly removed by the voting authorities. At the same time, the
fake credential 𝑐 and the real one 𝑐 are indistinguishable from a
coercer’s perspective.

The masking technique is employed, for example, in [2, 32]. Its
idea is the following one. Each voter is provided with a unique and
secret mask �̂�. A voter uses �̂� to blind her actual vote 𝑣 when she
is not under coercion. Otherwise, if a voter is being coerced to vote
for a different choice 𝑣 , then she computes a fake mask𝑚 such that
the resulting blinded vote still remains a vote for her actual vote 𝑣 .

In both the fake credential and masking approach, the counter-
strategies appear to be hardly usable by human voters (see, e.g., [21,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SAC’23, March 27–April 2, 2023, Tallinn, Estonia Thomas Haines, Johannes Müller, and IñigoQuerejeta-Azurmendi

Ballot Privacy Verifiability Coercion-resistance
PA Untrusted Trusted Trusted
TS Untrusted Untrusted Trusted
PBB Untrusted Untrusted Untrusted★

Trustees 𝑘-out-of-𝑛 Untrusted Untrusted

Figure 1: Trust assumptions under which VoteAgain was originally
claimed to provide the respective security properties. PA denotes
the polling authority, TS the tally server, and PBB the public bul-
letin board. (★We consider the case that voters submit their ballots
anonymously.)

26]) so that these two concepts may be rendered completely inef-
fective for real practical elections. Achieving coercion-resistance
via deniable vote updating, as described next, is more promising.

The idea of e-voting with deniable vote updating (e.g., [17, 22])
is to enable each voter to overwrite her previously submitted bal-
lot, that she may have cast under coercion, such that no-one else,
including a possible coercer, can see whether or not the voter has
subsequently updated her vote.
VoteAgain. VoteAgain is an e-voting system that aims for coercion-
resistance via deniable vote updating. It was proposed by Lueks,
Querejeta-Azurmendi, and Troncoso [25] (Usenix Security 2020).
They designed VoteAgain to improve usability compared to previ-
ous approaches by relieving voters to store cryptographic state (e.g.,
secret signing keys).1 Lueks et al. implemented a prototype of Vote-
Again to evaluate its practicality: their benchmarks demonstrate
that VoteAgain is very efficient, even for large-scale elections.

Importantly, Lueks et al. formally analyzed the security of Vote-
Again in terms of coercion-resistance as well as ballot privacy,
which guarantees that the protocol does not leak more information
on each single voter’s choice than what can be derived from the
final election result, and verifiability, which guarantees that it can
be verified whether the election result corresponds to the voters’
choices. In a nutshell, they stated that VoteAgain provides
• ballot privacy if the trustees, the voting authorities under
whose joint public key voters encrypt their votes, are trusted,
• verifiability if the polling authority, the party which provides
voters with anonymous voting tokens, is trusted, and
• coercion-resistance if the tally server, the voting authority
which hides the voters’ re-voting pattern, and the polling
authority are trusted.

These trust assumptions are summarized in Fig. 1. They specify
those threat scenarios for which VoteAgain was claimed secure
originally [25].
Our contributions. In this work, we revisit VoteAgain from a
security perspective. We will show that VoteAgain falls short of the
security it aimed to achieve originally:

(1) We demonstrate that the polling authority needs to be trusted
for all security properties (see Fig. 2), not only for verifiability
and coercion-resistance, as claimed originally (see Fig. 1).
We show that this issue immediately relates to the core of
VoteAgain.

1As to the best of our knowledge, to date, usability of VoteAgain has not yet been
studied.

Ballot Privacy Verifiability Coercion-resistance
PA Trusted★ Trusted★ Trusted
TS Untrusted Untrusted Trusted
PBB Trusted Trusted Trusted

Trustees 𝑘-out-of-𝑛 Untrusted k-out-of-n★

Figure 2: Trust assumptions which we identified to be necessary in
VoteAgain to provide the respective security properties. Differences
to originally claimed trust assumptions (Fig. 1) are bold. Those trust
assumptions that we were able to mitigate are marked with ★.

(2) We show that the trustees, unlike claimed originally [25], and
thus all voting authorities, need to be trusted in VoteAgain
for coercion-resistance (see Fig. 2).

(3) We explain that a malicious public bulletin board, unlike
claimed originally [25], can break privacy, verifiability, and
coercion-resistance (see Fig. 2). While trust on the public
bulletin board can be mitigated by means independent of the
VoteAgain protocol, our findings are yet another example
that the importance of the public bulletin board for secure
e-voting must not be underestimated.

Themost critical of these observations is the first one, i.e., that the
polling authority in VoteAgain needs to be trusted for all security
properties. In fact, if the overall security of a voting protocol reduces
to a single voting authority being uncorrupted, then one might as
well replace all voting authorities by the completely trusted one
without affecting security. This means that VoteAgain, in its original
state, is insecure.

Now, the obvious question is: Can this problem be fixed or is
it intrinsic to VoteAgain’s approach? We will see that, as long as
the polling authority needs to be fully trusted for verifiability, it
also needs to be trusted for privacy. Hence, the only possibility to
mitigate this issue is to distribute trust among other authorities.
To this end, we propose a modification of VoteAgain, in which
the power of the polling authority is strictly limited and in which
therefore significantly less trust in this authority is required both
for verifiability and privacy. In Fig. 2, we have marked those trust
assumptions which were able to mitigate. Importantly, our modifi-
cations preserve usability and efficiency of VoteAgain.

Altogether, our findings bring the state of science one step closer
to the goal of scalable coercion-resistant e-voting being secure
under reasonable trust assumptions.
Outline of the paper. In Sec. 2, we give an overview of the Vote-
Again protocol and the idea of the pitfalls we discovered. In Sec. 3,
we describe VoteAgain with full technical details. In Sec. 4, we
present the pitfalls of VoteAgain, several attacks to exploit them,
and the inaccuracies in the formal analysis of the original paper.
In Sec. 5, we show how to effectively mitigate the main issue we
discovered. We conclude in Sec. 6.
Note. The first two authors published a preliminary version of this
paper as a technical report on eprint [16].

2 OVERVIEW
In this section, we describe the concept of VoteAgain and the pitfalls
of its approach. In Sec. 2.1, we briefly recall the security properties
that VoteAgain aimed to achieve. In Sec. 2.2, we explain the idea

Scalable Coercion-Resistant E-Voting under Weaker Trust Assumptions SAC’23, March 27–April 2, 2023, Tallinn, Estonia

of VoteAgain; a more detailed protocol description is presented in
Sec. 3. In Sec. 2.3, we explain the pitfalls of VoteAgain’s approach
that we discovered, with full technical details on our attacks in
Sec. 4.

2.1 Security Properties
We recall the security notions of ballot privacy, end-to-end verifia-
bility, and coercion-resistance.
Ballot privacy. For most elections, it is important that outside or
even inside observers (e.g., voting authorities) should not be able
to tell how individual voters voted. This property is called (ballot)
privacy [4]. It guarantees that the data published during the election
(including, for example, voters’ ballots, talliers’ proofs of integrity,
etc.) does not leak more information on the voters’ plain choices
than what can be derived from the final election result.
Verifiability. Numerous e-voting systems suffer from flaws which
open up the opportunity for inside or outside attackers to change
the election result without being detected (see, e.g., [15, 30, 31]).
Therefore, modern secure e-voting systems strive for what is called
(end-to-end) verifiability [8]. This fundamental security property
enables voters or external auditors to verify whether the published
election result is correct, i.e., corresponds to the votes cast by the
voters, even if, for example, voting devices and servers have pro-
gramming errors or are outright malicious.
Coercion-resistance. A voting protocol is coercion-resistant [23,
24] if any coerced voter, instead of obeying the coercer, can run
some counter-strategy such that (𝑖) by running the counter-strategy,
the coerced voter achieves her goal (e.g., successfully votes for her
favorite candidate), and (𝑖𝑖) the coercer is not able to distinguish
whether the coerced voter followed his instructions or tried to
achieve her own goal. There exist several concepts in the litera-
ture to construct coercion-resistant e-voting systems. The approach
taken in VoteAgain is called deniable vote updating: if a voter is
coerced to vote for a certain candidate, then the voter’s counter-
strategy is to update her vote after the coercer has left. In this way,
she can overwrite her previously cast choice. At the same time, due
to some technical mechanisms in the background, it is guaranteed
that the coercer is not able to distinguish whether or not the voter
has subsequently updated her vote.

2.2 VoteAgain
We now recall how VoteAgain works. In this section, we present
VoteAgain in such a way that the idea of the pitfalls below can be
followed. We provide more technical details of VoteAgain in Sec. 3.
Idea. As mentioned above, VoteAgain follows the concept of
coercion-resistance via deniable vote updating: each voter can over-
write her previously submitted ballots, that she may have cast under
coercion, such that no-one else, including a possible coercer, can
see whether or not the voter has updated her vote.

VoteAgain implements this idea as follows. In addition to the
standard voting authorities which are commonly used in modern
secure e-voting systems, namely a public bulletin board (PBB) and
a trustee (T), VoteAgain employs two further parties, the polling
authority (PA) and the tally server (TS). The role of the PA is to guar-
antee that each voter can cast ballots without revealing her identity

to the public bulletin board. At the same time, the PA ensures that it
can be verified whether incoming ballots were submitted by eligible
voters only. The role of the TS is to hide the voters’ re-voting/vote-
updating pattern. In combination, these two voting authorities are
supposed to securely guarantee deniable vote updating: on the one
hand, every observer can verify that only eligible voters have cast
the ballots on the bulletin board and that each eligible voter did not
overwrite any other voter’s ballot (under the assumption the PA is
honest), while, on the other hand, it remains secret to any outsider
whether or not a given voter has updated her ballot.

In what follows, we describe VoteAgain’s approach more pre-
cisely, with full technical details provided in Sec. 3.
Participants. VoteAgain is run among the following participants:
• Voters V1, . . . ,V𝑛 : Each voterV𝑖 interacts with the polling
authority and the public bulletin board to cast her ballots. It
is assumed that each voter can authenticate herself to the
polling authority. The voters encrypt their choices under the
trustee’s public key.
• Polling Authority (PA): The PA provides each eligible voter
with a one-time voting token. The voter can then use this
token to sign her ballot without revealing her identity to the
public bulletin board.
• Public Bulletin Board (PBB): The PBB is an append-only list
which contains all public information, including the voters’
cast ballots, as well as proofs and results published by the
election/tallying authorities during the tally phase.
• Tally Server (TS): The TS adds dummy ballots (encryptions of
0 under the trustee’s public key), shuffles all ballots, groups
them by voter, and selects the last ballot for each voter.
• Trustee (T):2 The trustee shuffles and decrypts the last ballots
per voter that were selected by TS.

Protocol phases. VoteAgain proceeds in three phases (the invoked
procedures are defined in Sec. 3):

(1) Pre-election phase: The election authorities set up their pub-
lic/private key material. The polling authority PA initializes
the voters’ anonymous identifiers (Procedure 1).

(2) Election phase: Voters authenticate to PA every time they
vote to obtain a one-time voting token (Procedure 2). They
then use the token to cast a ballot (Procedure 3). The public
bulletin board PBB verifies the correctness and eligibility
of each incoming ballot (Procedure 4). Note that voters can
re-vote multiple times.

(3) Tally phase: The tally server TS adds dummy ballots to hide
the voters’ re-voting pattern, makes real and dummy ballots
publicly indistinguishable, selects the last ballot for each real
and dummy voter, and removes the dummies again (Pro-
cedure 5). The trustee T shuffles and decrypts the ballots
previously returned by TS (Procedure 6).

The verification program of VoteAgain follows immediately from
the protocol description: essentially, the proofs published by the
different parties on PBB are checked. We refer to [25] (Procedures
7 and 8) for details.

2The role of the trustee T is distributed in the original VoteAgain protocol [25]. For
the sake of brevity, we assume that the trustee is a single entity.

SAC’23, March 27–April 2, 2023, Tallinn, Estonia Thomas Haines, Johannes Müller, and IñigoQuerejeta-Azurmendi

2.3 Pitfalls
We show that VoteAgain [25] is not secure under those trust as-
sumptions for which it was claimed to be (Fig. 1). We describe our
findings on an intuitive level in what follows, with full technical
details presented in Sec. 4. Our results are summarized in Fig. 2.
Impact of corrupted PA. Recall that the polling authority PA
provides each eligible voter with one-time voting tokens. In order
to guarantee deniable vote updating (and thus coercion-resistance),
the links between the individual voters and their ballots signed
with the voting tokens remain hidden. Since a malicious PA could
tamper with the distribution of the voting tokens undetectably, the
PA needs to be trusted for verifiability. This was already stated in
the original VoteAgain paper but its implication to ballot privacy
was apparently overlooked (Fig. 1). In secure e-voting, there exists
a strong relationship between verifiability and ballot privacy: if
ballots can be dropped or replaced undetectably, then privacy of
the remaining ballots is undermined [10].

In Sec. 4, we show how this general threat applies to VoteAgain in
its worst form. Unlike in most other e-voting protocols (e.g., Helios)
where only a small number of ballots can be dropped without being
detected, a malicious PA in VoteAgain can replace an arbitrary
number of ballots completely secretly. This vulnerability results
into two risks which, in combination, can have a devastating effect:
(1) By replacing many ballots except for just a few, privacy of the
untouched ballots can be broken with extremely high probability.
(To see this, assume that all but one ballot are replaced.) Since,
in political elections, typically the final result of each district is
published, such an attack can be executed in each district separately
so that, in total, ballot privacy of many voters may be put at risk. (2)
By replacing ballots with reasonably distributed choices, the tracks
of the privacy attack can easily be covered.

The consequence of this observation is disillusioning: there exists
a voting authority in VoteAgain (namely the PA) which needs to
be trusted for all security properties: ballot privacy, verifiability,
and coercion-resistance. This means that VoteAgain is as (in)secure
as a trivial voting protocol with a single and completely trusted
voting authority which is responsible for the whole voting process.
Fortunately, as we will demonstrate in Sec. 5, we were able to
effectively mitigate trust on the PA both in terms of verifiability
and privacy, without affecting VoteAgain’s usability and efficiency.
Impact of corrupted trustee. The role of the tally server TS is
to hide the voters’ re-voting pattern by adding indistinguishable
dummy ballots which are later removed. Clearly, the PA and the
TS need to be trusted for coercion-resistance because both of them
know whether a voter re-voted. This was already stated in the
original VoteAgain paper (Fig. 1). We discovered that, additionally,
there exists a subtle yet significant relationship between coercion-
resistance and a possibly corrupted trustee. Assume that a coercer
forces a voter to submit a sequence of ballots in which each ballot
encrypts a vote for a randomly chosen candidate. By this, the co-
erced voter’s sequence of plain votes is essentially unique and thus
a “fingerprint”. Now, if the trustee is corrupted, then the coerced
voter’s submitted ballots can be linked to the voter, even if some
dummy ballots are added to the voter’s ciphertexts. In other words,
the secrecy of the vote updating process is undermined, even if
the PA and the TS are trusted. As a result, the trustee needs to be

trusted for coercion-resistance as well (Fig. 2). Therefore, all voting
authorities need to be trusted for coercion-resistance which is an
assumption arguably too strong as well.
Impact of corrupted PBB. We discovered that the importance
of the public bulletin board PBB was underestimated originally.
Lueks et al. [25] stated that even if the PBB is malicious, VoteAgain
provides ballot privacy, verifiability, and coercion resistance (Fig. 1).
We discovered that, in fact, the PBB needs to be trusted for all
security properties (Fig. 2), as explained next.

If the PBB is malicious, then it can show a “faked” view on the
bulletin board to a voter which includes this voter’s submitted ballot.
At the same time, the PBB does not append the ballot to the “real”
bulletin board which it shows to the remaining parties [18]. In this
way, the voter’s ballot is effectively dropped even though the voter
verified that her ballot is on “the” bulletin board. This demonstrates
that the PBB needs to be trusted for verifiability.

By executing the above attack against verifiability for several
voters, the choices of the remaining ballots are hidden behind less
further choices, which undermines ballot privacy.We note, however,
that the effect of this privacy attack (which applies to virtually all
e-voting protocols) is much weaker than the privacy attack of a
malicious PA described above because the number of ballots that
can be dropped undetectably is more limited for the following two
reasons. Firstly, if at least one of the affected voter cross-checks her
view on PBB, the attack is detected. Secondly, in order to obtain
significant information on the remaining votes, many ballots have
to be dropped but this is then reflected in the low number of votes
of the final result which would raise suspicion. However, at least
formally, it follows that the PBB needs to be trusted for ballot
privacy as well, which disproves the original security claim.

Furthermore, a malicious PBB can break coercion-resistance,
even if voters submit their ballots anonymously, as described next.
The coercer forces a voter to submit a ballot for a certain candidate
and to reveal all secret information on the submitted ballot. The
PBB identifies and accepts this ballot but drops all subsequently
incoming ballots (similarly to the attack on verifiability above). By
this, the coerced voter can no longer update her choice, even if the
coercer is absent for the rest of the submission phase.

The PBB is a critical bottleneck in all e-voting systems, not only
VoteAgain. There are several approaches to mitigate trust on the
PBB which could also be used in VoteAgain (see, e.g., [11, 18, 19]).
Nevertheless, our findings are yet another example to demonstrate
that the importance of the PBB for secure e-voting must not be
underestimated.

3 VOTEAGAIN PROTOCOL
In this section, we precisely describe the VoteAgain protocol. The
original VoteAgain protocol [25] employs specific cryptographic
primitives centered around ElGamal public-key encryption [13].
We chose to abstract away from this concrete instantiation because
our attacks on VoteAgain (Sec. 4) exploit the protocol design but
no specific cryptographic details. We also think that our slightly
more abstract presentation simplifies comprehension of the com-
plex protocol.
Cryptographic primitives. VoteAgain employs the following
cryptographic primitives:

Scalable Coercion-Resistant E-Voting under Weaker Trust Assumptions SAC’23, March 27–April 2, 2023, Tallinn, Estonia

• An IND-CPA-secure public-key encryption (PKE) scheme
E = (EncKeyGen, Enc,Dec) which is homomorphic.
• A NIZKP of correct encryption (ProveEnc,VerifyEnc) for the
PKE scheme E and a voting relation 𝑅 which specifies valid
choices.
• A NIZKP of correct decryption (ProveDec,VerifyDec) for the
PKE scheme E.
• A shuffle algorithm Shuffle [3] which takes as input a vec-
tor of ciphertexts 𝐶 (w.r.t. E), re-encrypts each entry of 𝐶 ,
permutes the vector uniformly at random, and returns the
resulting shuffled ciphertext vector 𝐶′ together with a proof
𝜋Shuffle that 𝐶′ is correct.
• An EUF-CMA-secure signature scheme (SigKeyGen, Sign,
Verify).

Procedure 1 (Setup). The election authorities generate their pub-
lic/private key pairs and send the public keys to the bulletin board.
The polling authority PA runs (pkPA, skPA) ← SigKeyGen(1ℓ)
and sends pkPA to PBB. The tally server TS runs (pkTS, skTS) ←
EncKeyGen(1ℓ) and sends pkTS to PBB. The trustee T runs (pkT,
skT) ← EncKeyGen(1ℓ) and sends pkT to PBB.

For each voter V𝑖 , the polling authority PA generates a pair
(𝑣𝑖𝑑𝑖 ,𝑚𝑖) uniformly at random where 𝑣𝑖𝑑𝑖 is the voter’s (secret)
identifier, and𝑚𝑖 is (the initial state of) the voter’s ballot counter.
More precisely, PA runs the following program for eachV𝑖 :

(1) 𝑣𝑖𝑑𝑖
𝑟←−MEnc

3

(2) 𝑚𝑖
𝑟←− {2ℓ−2, . . . , 2ℓ−1 − 1} ⊂ MEnc

(3) store (V𝑖 , 𝑣𝑖𝑑𝑖 ,𝑚𝑖) internally
Procedure 2 (GetToken). Each time a voter V𝑖 wants to sub-
mit a ballot, the voter needs to authenticate herself to the polling
authority PA. If authentication ofV𝑖 is successful, then PA sends
certain one-time credentials toV𝑖 which enableV𝑖 to cast a single
ballot without having to reveal her identity. For this purpose, PA
essentially encryptsV𝑖 ’s identifier 𝑣𝑖𝑑𝑖 as well as her ballot counter
𝑚𝑖 under the public key pkTS of the tally server TS.

By this, on the one hand, it is not possible to coerce V𝑖 into
revealing 𝑣𝑖𝑑𝑖 or𝑚𝑖 , while, on the other hand, it can be verified
that V𝑖 ’s ballot was submitted by an eligible voter and that only
V𝑖 ’s last ballot is counted (if PA is trusted).

More precisely, PA executes the following steps after voterV𝑖
authenticated herself correctly:

(1) 𝛾 ← Enc(pkTS, 𝑣𝑖𝑑𝑖)
(2) 𝐼 ← Enc(pkTS,𝑚𝑖)
(3) 𝑚𝑖 ←𝑚𝑖 + 1
(4) (pk, sk) ← SigKeyGen(1ℓ)
(5) 𝜎𝜏 ← Sign(skPA, pk∥𝛾 ∥𝐼)
(6) send 𝜏 ← (pk, sk, 𝛾, 𝐼 , 𝜎𝜏) toV𝑖
The voter can then check whether Verify(pkPA, 𝜎𝜏 , (pk∥𝛾 ∥𝐼)) =

⊤ holds true. If this is the case, thenV𝑖 can use 𝜏 to cast a vote, as
described next.
Procedure 3 (Vote). VoterV𝑖 takes as input 𝜏 = (pk, sk, 𝛾, 𝐼 , 𝜎𝜏)
from PA (see GetToken) as well as a candidate 𝑐 ∈ C and executes
the following steps to cast her ballot 𝛽 :

(1) (𝑣, 𝑎𝑢𝑥) ← Enc(pkT, 𝑐)
3MEnc denotes the message space of the PKE scheme E (for public key pkTS).

(2) 𝜋Enc ← ProveEnc ((pk𝑇 , 𝑣), (𝑎𝑢𝑥, 𝑐))
(3) 𝜎 ← Sign(sk, 𝑣 ∥𝜋Enc∥pk∥𝛾 ∥𝐼 ∥𝜎𝜏)
(4) 𝛽 ← (𝑣, 𝜋Enc, pk, 𝛾, 𝐼 , 𝜎𝜏 , 𝜎)
(5) send 𝛽 to PBB
For each incoming ballot 𝛽 , PBB checks whether Valid(𝛽) = ⊤

holds true (see below for algorithmValid), and if this is the case, then
PBB appends 𝛽 . VoterV𝑖 can then verify whether 𝛽 was appended
to PBB.
Procedure 4 (Valid). For each incoming ballot 𝛽 , PBB verifies
whether 𝛽 contains a valid choice, whether eligibility was acknowl-
edged by the polling authority PA, and whether it does not contain
a duplicate entry of a ballot 𝛽′ that was already appended.

More precisely, Valid returns ⊤ if and only if the following con-
ditions are satisfied:

(1) VerifyEnc (pkT, 𝑣, 𝜋Enc) = ⊤, and
(2) Verify(pk, 𝜎, 𝑣 ∥𝜋Enc∥pk∥𝛾 ∥𝐼 ∥𝜎𝜏) = ⊤, and
(3) Verify(pkPA, 𝜎𝜏 , (pkEnc∥𝛾 ∥𝐼)) = ⊤, and
(4) (𝑣, . . .) ∉ 𝛽′ and (. . . , pk, . . .) ∉ 𝛽′ for some appended 𝛽′

Procedure 5 (Filter). The tally server TS reads the list of bal-
lots 𝐵 ← (𝛽𝑖)𝑛𝐵𝑖=1 from PBB and verifies for each 𝛽 ∈ 𝐵 whether
Valid(𝛽) = ⊤ holds true. If this is not the case, then TS aborts.
Otherwise, TS continues as follows.
Adding dummies. For each ballot 𝛽𝑖 = (𝑣𝑖 , . . . , 𝛾𝑖 , 𝐼𝑖 , . . .) ∈ 𝐵, the
tally server executes the following steps:

(1) \𝑅 ← Enc(pkTS, 1; 0)
(2) 𝛽′

𝑖
← (𝑣𝑖 , 𝛾𝑖 , 𝐼𝑖 , \𝑅)

In other words, TS creates a “stripped” ballot 𝛽′
𝑖
which consists

of the respective voter’s encrypted candidate 𝑣𝑖 , the voter’s en-
crypted identifier 𝛾𝑖 , the encrypted ballot counter 𝐼𝑖 , as well as a
deterministic ciphertext \𝑅 to “tag” real ballots.

Additionally, and this is one of the main ideas of VoteAgain, the
tally server TS generates a number of dummy ballots which are
used to hide the re-voting pattern of real voters. To this end, the
tally server TS creates 𝑛𝐷 further ballots 𝛽′

𝑖
= (𝑣𝜖 , 𝛾𝑖 , 𝐼𝑖 , \𝐷), where

• 𝑣𝜖 ← Enc(pkT, 0; 0)
• \𝐷 ← Enc(pkTS, 𝑔; 0) for some 𝑔 ≠ 1

holds true.
This means that each dummy ballot contains a 0-vote (with

trivial randomness 0), as well as a deterministic ciphertext \𝐷 to
“tag” dummy ballots. The ciphertext 𝛾𝑖 either encrypts the identifier
of a real voterV𝑖 in which case the encrypted ballot counter 𝐼𝑖 of
the dummy ballot is smaller than the one of the last ballot cast by
V𝑖 , or the ciphertexts 𝛾𝑖 encrypts the identifier of a “fake” voter.4

The tally server TS sends the resulting list of ballots 𝐵′ ←
(𝛽′
𝑖
)𝑛𝐵+𝑛𝐷
𝑖=1 to PBB.

Shuffling. The tally server TS verifiably shuffles the ciphertext
vector 𝐵′:

(1) (𝐵′′, 𝜋𝜎) ← Shuffle(𝐵′)
(2) send (𝐵′′, 𝜋𝜎) to PBB.

4We refer to [25] (Sec. 5.2) for a detailed description of how dummy ballots are con-
structed precisely because the vulnerabilities of VoteAgain presented in this paper are
independent of the specific cover.

SAC’23, March 27–April 2, 2023, Tallinn, Estonia Thomas Haines, Johannes Müller, and IñigoQuerejeta-Azurmendi

Ballots

𝛽1

.

.

.

𝛽𝑛𝐵

add

dummies

Ballots
with dummies

𝛽′1

.

.

.

𝛽′𝑛𝑇

shuffle

Shuffled ballots
(without proofs)

𝑣 ′1

.

.

.

𝑣 ′𝑛𝑇

𝛾 ′1

.

.

.

𝛾 ′𝑛𝑇

𝐼 ′1

.

.

.

𝐼 ′𝑛𝑇

\ ′1

.

.

.

\ ′𝑛𝑇

decrypt 𝛾 ′
𝑖
, 𝐼 ′
𝑖

and group

Grouped ballots

𝑣1,1

.

.

.

𝑣1,𝜒1

𝑚1

.

.

.

𝑚1 + 𝜒1

𝑣𝑖𝑑1

\1,1

.

.

.

\1,𝜒1

· · ·
𝑣𝐾,1

.

.

.

𝑣𝐾,𝜒𝐾

𝑚𝐾

.

.

.

𝑚𝐾 + 𝜒𝐾

𝑣𝑖𝑑𝐾

\𝐾,1

.

.

.

\𝐾,𝜒𝐾

compute selected votes

𝑉 1 · · · 𝑉𝐾

Selected votes including dummy votersSelected votes

𝑉1 · · · 𝑉𝑛

Shuffle, then
remove dummies

Figure 3: Overview of Procedure 5 (Filter), adopted from [25]. Notation: 𝑛𝐵 denotes the number of ballots, 𝑛𝐷 the number of dummies added by
TS, 𝑛𝑇 = 𝑛𝐵 + 𝑛𝐷 denotes their sum, 𝐾 the number of (real) voters plus the number of dummy voters, and 𝜒𝑖 the number of ballots for voter 𝑖
(including dummy voters).

Grouping. For each 𝛽′′ = (𝑣 ′′
𝑖
, 𝛾 ′′
𝑖
, 𝐼 ′′
𝑖
, \ ′′
𝑖
) ∈ 𝐵′′, the tally server

TS uses its secret key skTS to verifiably decrypt the encrypted
identifiers and ballot counters:

(1) for all 𝑖 ≤ 𝑛𝐵 + 𝑛𝐷 :
(a) 𝑣𝑖𝑑𝑖 ← Dec(skTS, 𝛾 ′′𝑖)
(b) 𝜋Dec

𝑖,1 ← ProveDec ((pkTS, 𝛾 ′′𝑖), skTS)
(c) 𝑚𝑖 ← Dec(skTS, 𝐼 ′′𝑖)
(d) 𝜋Dec

𝑖,2 ← ProveDec ((pkTS, 𝐼 ′′𝑖), skTS)
(e) 𝜋Dec

𝑖
← (𝜋Dec

𝑖,1 , 𝜋Dec
𝑖,2)

(2) 𝐶 ← (𝑣𝑖𝑑𝑖 ,𝑚𝑖 , 𝜋Dec𝑖
)𝑛𝐵+𝑛𝐷
𝑖=1

(3) send 𝐶 to PBB
If there exist 𝑖 ≠ 𝑗 such that (𝑣𝑖𝑑𝑖 ,𝑚𝑖) = (𝑣𝑖𝑑 𝑗 ,𝑚 𝑗) holds true,

then TS aborts. Otherwise, TS groups all (𝑣𝑖𝑑𝑖 , 𝑣𝑖 ,𝑚𝑖 , \★) according
to the identifiers 𝑣𝑖𝑑 . We denote the resulting groups by (𝐺 𝑗)𝐾𝑗=1.
Selecting. For each group 𝐺 𝑗 , the tally server TS opts for the ci-
phertext 𝑣 𝑗★ assigned to the highest ballot counter𝑚 in 𝐺 𝑗 . If the
respective tag \ refers to a real voter, then TS re-encrypts the ci-
phertext 𝑣 𝑗★, and otherwise, the TS replaces the ciphertext by a
0-vote:

(1) 𝑗★← index of maximal𝑚 in 𝐺 𝑗
(2) if Dec(skTS, \ 𝑗★) = 0, then 𝑉 𝑗 ← 𝑣 𝑗★ · Enc(pkT, 0)
(3) else 𝑉 𝑗 ← Enc(pkT, 0)
(4) 𝜋Sel

𝑗
← NIZKP of correctness of previous steps5

(5) 𝐹 ← (𝑣𝑖𝑑 𝑗 ,𝑉 𝑗 , 𝜋
Sel
𝑗
) 𝑗≤𝐾

(6) send 𝐹 to PBB

Removing dummies. The tally server TS verifiably shuffles the vector
of selected encrypted votes S𝐷 ← (𝑉 𝑗) 𝑗≤𝐾 , i.e., TS computes
(S′
𝐷
, 𝜋 ′𝜎) ← Shuffle(S𝐷) and sends (S′

𝐷
, 𝜋 ′𝜎) to PBB.

5We refer to [25] for the precise relation to be proven by this NIZKP. The details are
not relevant for our purposes.

Next, TS creates the list of indices D of encrypted dummy votes
𝑉
′
𝑗 in the shuffled ciphertext vector S′

𝐷
, and for each 𝑗 ∈ D, the

tally server proves that 𝑉 ′𝑗 is an encryption of 0:
(1) D ← indices of dummy votes in S′

𝐷

(2) 𝑅 ← (𝑟 𝑗) 𝑗∈D such that 𝑉 ′𝑗 = Enc(pkT, 0; 𝑟 𝑗)6
(3) send (D, 𝑅) to PBB
Finally, the tally server TS publishes the list of votes to be de-

crypted by the trustee T, i.e., TS computes S ← (S′
𝐷
\ S′D) and

sends S to PBB.
Procedure 6 (Tally). In order to obtain the final election result,
the trustee T verifiably shuffles S and then uses its secret key skT
to verifiably decrypt the resulting shuffled ciphertexts.

4 PITFALLS OF VOTEAGAIN
We elaborate on the pitfalls of VoteAgain’s approach which we
sketched in Sec. 2.3.

4.1 Impact of corrupted PA
It was claimed in the original VoteAgain paper [25] that VoteAgain
provides ballot privacy if the trustee is honest, while PA, TS, and
PBB can be malicious (Fig. 1). We will now show that a malicious
PA can break privacy. The idea is that the PA can impersonate any
voter by simulating Procedure 2 and Procedure 3.

Attack: Let V1, . . . ,V𝑛 be the voters. Assume that the PA is
malicious and wants to know howV1, . . . ,V𝑙 voted. After all voters
V𝑙+1, . . . ,V𝑛 have submitted their (last) ballots, the PA runs the
voting process 𝑛 − (𝑙 + 1) times. In each of these processes 𝑖 ∈
{𝑙 + 1, . . . , 𝑛}, the malicious PA runs Procedure 2 for voterV𝑖 , uses
V𝑖 ’s token to run Procedure 3 to submit a ballot for some arbitrary
candidate 𝑐𝑖 , and stores (𝑖, 𝑐𝑖).
6Each 𝑟 𝑗 is a simple combination of the randomness that TS used to create𝑉 𝑘 and of
the randomness that TS then used to re-encrypt𝑉 𝑘 to obtain𝑉

′
𝑗 .

Scalable Coercion-Resistant E-Voting under Weaker Trust Assumptions SAC’23, March 27–April 2, 2023, Tallinn, Estonia

Impact: By design, it is not possible to verify whether V𝑖 , 𝑖 ∈
{𝑙 + 1, . . . , 𝑛}, has updated her vote. Therefore, the final election
result consists of V1, . . . ,V𝑙 ’s votes plus 𝑛 − (𝑙 + 1) votes (𝑖, 𝑐𝑖)
submitted by PA. The adversary can now substract all (𝑖, 𝑐𝑖)𝑖≥𝑙+1
from the public election result to obtain the (aggregated) choices of
V1, . . . ,V𝑙 .

Remarks: We have described the attack in its most general form,
i.e., for some arbitrary 𝑙 . In order to obtain much information about
the votes of V1, . . . ,V𝑙 from the aggregation of their votes, it is
necessary to restrict 𝑙 . Clearly, for 𝑙 = 1, ballot privacy of V1 is
completely broken, but even for 𝑙 > 1, significant information can
be leaked, e.g., if the adversary wants to know whether all voters
V1, . . . ,V𝑙 voted for the same candidate.

Recall from Sec. 2.3 that in political elections, typically the final
result of each district is published, so that the above attack can
be executed in each district separately and thus privacy of many
voters in total may be put at risk.

Observe that, in order to not raise any suspicion, the adversary
can easily choose the replacing choices 𝑐𝑖 such that the manipulated
final election result appears completely reasonable.

We note how this attack is a particular instance of the work
presented at CCS18 [10] by Cortier et al.. In that paper, it is noted
that if voters do not have individual verifiability, their ballots can be
dropped undetectably, reducing the privacy of voters whose ballots
have not been dropped. In VoteAgain, if the PA is not trusted, then it
can impersonate any voter, resulting in a complete lost of individual
verifiability and, by consequence, privacy of any set of voters of
the adversary’s choice.

4.2 Impact of corrupted trustee
It was claimed in the original VoteAgain paper [25] that VoteAgain
provides coercion-resistance if the PA and TS are honest, while
the PBB (if voters submit anonymously) and the trustees can be
malicious (Fig. 1). We now describe how an honest-but-curious
trustee T can break coercion-resistance of VoteAgain. The idea
is that for each voter, trustee T is able to decrypt the individual
sequences of ciphertexts assigned to this voter’s (anonymous) voter
id 𝑣𝑖𝑑 .

Attack: The adversary chooses a sequence (𝑐 𝑗)𝑙𝑗=1 over the set of
candidates C uniformly at random. The coercer instructs a targeted
voterV to submit a ballot 𝛽 𝑗 (i.e., run Procedures 2 and 3) for each
element 𝑐 𝑗 of this sequence (preserving the order of the sequence)
and then a ballot 𝛽 for the adversary’s favorite candidate 𝑐 .

Impact: Since the trustee is corrupted, the adversary is able use
skT to decrypt all 𝑣𝑖,★ for each 𝑣𝑖𝑑 in the grouped ballots (𝐺 𝑗)𝐾𝑗=1
(after the "grouping" phase in Procedure 5). The coercer (removes
all dummy votes injected by TA and) verifies whether there exists
a group 𝐺 𝑗 which contains the chosen sequence of candidates. If
this is the case, the adversary knows that the voter obeyed (with
overwhelming probability in 𝑙).

4.3 Impact of corrupted PBB
We show that a malicious PBB can break verifiability, ballot privacy,
and coercion-resistance of VoteAgain.
Verifiability. It was claimed in the original VoteAgain paper [25]
that VoteAgain provides verifiability if the PA is honest, while the

TS, PBB, and the trustee can be malicious (Fig. 1). We will now
describe an attack of a malicious PBB which breaks verifiability of
VoteAgain. Note that the effect of this attack can be increased by
repeating it multiple times for different voters.

Attack: Let V be an arbitrary voter. In Procedure 3, the PBB
shows a “faked” view on the bulletin board to voterV which in-
cludesV’s ballot 𝛽 . However, PBB does not append 𝛽 to the “real”
bulletin board which it shows to the remaining parties.

Impact: At the end of Procedure 3, the voter verifies successfully
that 𝛽 was appended to the “faked” bulletin board. However,V’s
choice is not included in the input to Procedure 5 and therefore
not in the final election result. Because this manipulation remains
undetected, verifiability is broken.
Ballot Privacy. It was claimed in the original VoteAgain paper [25]
that VoteAgain provides ballot privacy if the trustee is honest, while
PA, TS, and PBB can be malicious (Fig. 1). We will now show that a
malicious PBB can break ballot privacy.

Attack: Let V1, . . . ,V𝑛 be the voters. Assume that the PA is
malicious and wants to know howV1, . . . ,V𝑙 voted. For each voter
V𝑖 , 𝑖 ∈ {𝑙 + 1, . . . , 𝑛}, the PBB executes the verifiability attack
described above.

Impact: The final election result consists only of V1, . . . ,V𝑙 ’s
aggregated votes.

Remark: As already noted in Sec. 2.3 this vulnerability (which
applies to virtually all e-voting protocols) is of rather theoretical
concern in contrast to the privacy attack of a malicious PA described
above which can be devastating in real practical elections.
Coercion-Resistance. It was claimed in the original VoteAgain
paper [25] that VoteAgain provides coercion-resistance if the PA
and TS are honest, while the PBB (if voters submit anonymously)
and the trustee can be malicious (Fig. 1). We will now show that
a malicious PBB can break coercion-resistance even if all voters
submit their ballots anonymously.

Attack: The coercer chooses a candidate 𝑐 ∈ C and instructs an
arbitrary voterV to submit a ballot for this candidate (i.e., run Pro-
cedure 2 and Procedure 3). Furthermore, the coercer tells the voter
to reveal the submitted ballot 𝛽 , including all secret information
from Procedure 3. The malicious PBB identifies the incoming (no
longer anonymous) ballot 𝛽 , append it, and drop all subsequently
incoming ballots by any voter (see PBB’s attack on verifiability).

Impact: The affected voter can no longer “overwrite” the coercer’s
choice 𝑐 even if the coercer is absent for the rest of submission phase.

4.4 Inaccuracies in the formal analysis
In this section we expose the points where the formal analysis in
VoteAgain is inaccurate, mainly the game description of the ballot
privacy experiment (Figure 7) and the proof of coercion resistance
(Appendix B).
The ballot privacy game definition. There are two implicit
assumptions in the ballot privacy model: the 𝑂voteLR() and the
𝑂cast() oracles. One the one hand, Lueks et al. restrict𝑂voteLR()
to only receive as input one token and two different candidates.
However, the adversary controls the PA, and therefore the authority
that generates the tokens (and therefore, the voter identifiers). In
order to model an adversary that generates the voter identifiers,
the latter should be allowed to choose different tokens for each

SAC’23, March 27–April 2, 2023, Tallinn, Estonia Thomas Haines, Johannes Müller, and IñigoQuerejeta-Azurmendi

run of the protocol. In particular, the oracle should take as input
(𝜏0, 𝑐0, 𝜏1, 𝑐1), and depending on the game bit 𝑏, use one or the other.
It is now trivial for the adversary to win the game by the attack
described in Section 4.1. Once the grouping of the filtering phase
is published in the PBB, the adversary can inspect whether one
identifier or the other appears.

On the other hand, there is an implicit assumption in𝑂voteLR()
and 𝑂cast(), that if a ballot is valid, then the PBB will append it
in the unique view of the bulletin board. However, this implicitly
assumes that the PBB also provides the “must append” property,
and is therefore required to be honest.
Implicit assumption on Coercion Resistance proof. The mis-
take on the attack of coercion resistance by the trustees comes in
the proof, rather than in the modeling. In Game 6 of the proof of
Theorem 2, the encryptions of the votes published after a call to
oracle 𝑂voteLR() are replaced by encryptions of zero. The claim
on indistinguishability between Game 5 and Game 6 is based on the
Non-Malleability (NM) property of ElGamal (extended by a proof
of plaintext knowledge). However, the trustees are not required to
be honest, and therefore the adversary controls the decryption key,
making it trivial to distinguish both games. The same inaccuracy is
presented between Games 8 and 9.

5 MITIGATION OF TRUST IN VOTEAGAIN
In this section, we describe how to effectively mitigate the main
issue of VoteAgain’s security, namely that the PA in VoteAgain
needs to be trusted for all security properties (Sec. 4.1). Importantly,
our modifications preserve VoteAgain’s efficiency and usability.

We note that trust on the trustees for coercion-resistance (Sec. 4.2)
can be mitigated by specifying that the TS, which is trusted for
coercion-resistance anyway, holds a share of the trustee’s secret
key. Recall that mitigating trust on the PBB (Sec. 4.3) is a problem
that needs to be addressed independently of the actual e-voting
protocol.
Idea. Recall that in the original VoteAgain protocol, the PA is-
sues anonymous voting tokens for the voters, which is the root of
VoteAgain’s main security issue. We demonstrate how to assign
less responsibilities to the PA in a reasonable manner, which will
result into significantly less trust on PA both in terms of privacy
and verifiability. More precisely, we will replace the PA with a new
authority, called Counting Authority (CA), which only tracks ballot
counters. Moreover, we will specify that voters not only authenti-
cate to the CA when they want to submit a ballot, but also to the
PBB; this assumption is common in e-voting, for example in Bele-
nios [9]. Importantly, it will be easy to see that our modifications
preserve usability and efficiency of VoteAgain.
Details. Our modifications are (essentially) restricted to the pre-
election phase and the ballot submission phase of VoteAgain.

In the pre-election phase, we need to provide a publicly verifiable
mechanism to check that each eligible voter was assigned a unique
voting identifier. To this end, we specify that the TS creates a public
mapping between voters and unique encrypted voter identifiers.
More precisely, during the pre-election phase, the TS generates 𝑛𝐵
random and unique identifiers for all real voters and all potential
dummy voters. The TS publishes all identifiers, as well as a publicly
verifiable encryption of each identifier on the public bulletin board.

Then, the TS shuffles the encrypted identifiers and publishes the
shuffled encrypted identifiers together with a ZKP of correct shuffle
on the public bulletin board. Next, it publicly assigns the 𝑛 eligible
voters uniquely to the first 𝑛 encrypted identifiers by linking the
first 𝑛 shuffled encrypted identifiers to each of the eligible voters’
public identifier (such as their National ID number). The TS will
later use the remaining identifiers for dummy voters. Every public
observer can verify that all encrypted identifiers are unique by
first checking that the plaintext identifiers are unique, and then
verifying the encryption and shuffle. Moreover, every voter will be
able to use their corresponding voter identifier to generate a voting
request (and not need to trust the PA as in VoteAgain). Finally,
the CA generates a random counter for each voter and stores it
privately.

In the ballot submission phase, to cast a ballot, a voter first re-
trieves her encrypted identifier from the PBB, re-randomizes it and
creates ZKP of correct randomization. Then, the voter authenti-
cates to the CA and sends the re-randomized encrypted identifier
and the ZKP to the CA. If the user authenticates correctly, and
the re-randomized encrypted identifier matches the authenticated
user, the CA looks up the voter’s ballot counter, encrypts it, and
provides it to the user. The CA also sends a signed token binding
the encrypted identifier to the encrypted counter. Finally, the voter
authenticates to the PBB, and submits a tuple consisting of the
re-randomized encrypted identifier and the corresponding ZKP, the
encrypted counter, CA’s signature, and the encrypted vote. The
PBB checks that the re-randomized encrypted counter matches the
authenticated voter, checks CA’s signature, and only then accepts
and publishes the ballot.

The tally phase remains essentially as in VoteAgain. The only
difference is that the TS, instead of using fresh identifiers for the
dummy votes, uses the remaining 𝑛𝐵 − 𝑛 shuffled and encrypted
identifiers generated during the pre-election phase.

Effect. We argue why our modifications mitigate trust on the PA,
which is now called CA, both in terms of verifiability and privacy.

Recall that in the original VoteAgain protocol, a corrupted PA
could completely determine the full election result. Now, due to our
modifications, the impact of a corrupted CA is more limited. In fact,
a malicious CA is only able to tamper with the individual order of
ballots submitted by the voters. For example, if a voter first submits
a vote for candidate 𝐴 and then changes her mind and submits
a vote for 𝐵, then a malicious CA could manipulate that voter’s
counter so that her update is not effective, i.e., that her vote for 𝐴
is counted. In any case, however, CA can neither replace a voter’s
vote by an arbitrary other vote, nor can it drop a voter’s vote. In
particular, for all voters who vote only once (which is probably the
vast majority in real elections), integrity is fully guaranteed.

Recall that the attack against privacy by a corrupted PA (Sec. 4.1)
is only possible because a PA in VoteAgain is able to impersonate all
voters. In our improved version, this is no longer possible because
voters also authenticate to the PBB.

We note that, even though we described an effective way to
prevent known attacks by a corrupted PA, our high-level reasoning
does not guarantee that no other attacks are possible. To this end,
a formal security analysis in a reasonable security framework is
required. We leave this challenge as interesting future work.

Scalable Coercion-Resistant E-Voting under Weaker Trust Assumptions SAC’23, March 27–April 2, 2023, Tallinn, Estonia

6 CONCLUSION
We discovered several security pitfalls of VoteAgain’s approach. In
particular, we observed that VoteAgain is no more secure than a triv-
ial voting protocol with a single completely trusted voting authority.
In order to solve this issue, we proposed a variant of VoteAgain
which effectively mitigates trust on the voting authorities, without
affecting VoteAgain’s efficiency and usability. It remains interesting
future work to formally prove that our modifications are sufficient
to improve VoteAgain’s security. Moreover, independently of the
insights presented in this paper, it is worthwhile to study usability
of VoteAgain’s approach. Altogether, our findings bring the state
of science one step closer to the goal of scalable coercion-resistant
e-voting being secure under reasonable trust assumptions.

ACKNOWLEDGMENTS
Thomas Haines is the recipient of an Australian Research Council
Australian Discovery Early Career Award (project number
DE220100595). Johannes Müller was supported by the Luxembourg
National Research Fund (FNR), under the CORE Junior project
FP2 (C20/IS/14698166/FP2 /Mueller). We thank Wouter Lueks for
valuable discussions on an earlier version of this paper.

REFERENCES
[1] Roberto Araújo, Amira Barki, Solenn Brunet, and Jacques Traoré. 2016. Remote

Electronic Voting Can Be Efficient, Verifiable and Coercion-Resistant. In Financial
Cryptography and Data Security - FC 2016 International Workshops, BITCOIN,
VOTING, and WAHC, Revised Selected Papers (Lecture Notes in Computer Science),
Vol. 9604. Springer, 224–232. https://doi.org/10.1007/978-3-662-53357-4_15

[2] Michael Backes, Martin Gagné, and Malte Skoruppa. 2013. Using mobile device
communication to strengthen e-Voting protocols. In Proceedings of the 12th annual
ACM Workshop on Privacy in the Electronic Society, WPES 2013. ACM, 237–242.
https://doi.org/10.1145/2517840.2517863

[3] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-Knowledge Argument for
Correctness of a Shuffle. In Advances in Cryptology - EUROCRYPT 2012 (Lecture
Notes in Computer Science), Vol. 7237. Springer, 263–280.

[4] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan
Warinschi. 2015. SoK: A Comprehensive Analysis of Game-Based Ballot Privacy
Definitions. In 2015 IEEE Symposium on Security and Privacy, SP 2015. 499–516.

[5] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. 2016.
BeleniosRF: A Non-interactive Receipt-Free Electronic Voting Scheme. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 1614–1625.

[6] Jeremy Clark and Urs Hengartner. 2011. Selections: Internet Voting with Over-
the-Shoulder Coercion-Resistance. In Financial Cryptography and Data Secu-
rity - 15th International Conference, FC 2011, Revised Selected Papers (Lecture
Notes in Computer Science), Vol. 7035. Springer, 47–61. https://doi.org/10.1007/
978-3-642-27576-0_4

[7] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. 2008. Civitas:
Toward a Secure Voting System. In 2008 IEEE Symposium on Security and Privacy
(S&P 2008). IEEE Computer Society, 354–368. https://doi.org/10.1109/SP.2008.32

[8] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and Tomasz
Truderung. 2016. SoK: Verifiability Notions for E-Voting Protocols. In IEEE
Symposium on Security and Privacy, SP 2016. 779–798.

[9] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. 2019. Belenios: A
Simple Private and Verifiable Electronic Voting System. In Foundations of Security,
Protocols, and Equational Reasoning - Essays Dedicated to Catherine A. Meadows
(Lecture Notes in Computer Science), Vol. 11565. Springer, 214–238. https://doi.
org/10.1007/978-3-030-19052-1_14

[10] Véronique Cortier and Joseph Lallemand. [n. d.]. Voting: You Can’t Have Privacy
without Individual Verifiability. In ACM Conference on Computer and Communi-
cations Security 2018. ACM, 53–66.

[11] Chris Culnane and Steve A. Schneider. 2014. A Peered Bulletin Board for Robust
Use in Verifiable Voting Systems. In IEEE 27th Computer Security Foundations
Symposium, CSF, 2014. 169–183.

[12] Aleksander Essex, Jeremy Clark, and Urs Hengartner. 2012. Cobra: Toward Con-
current Ballot Authorization for Internet Voting. In 2012 Electronic Voting Technol-
ogy Workshop / Workshop on Trustworthy Elections, EVT/WOTE ’12, 2012. USENIX
Association. https://www.usenix.org/conference/evtwote12/workshop-program/

presentation/essex
[13] Taher El Gamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms. In Advances in Cryptology, Proceedings of CRYPTO ’84.
10–18.

[14] Gurchetan S. Grewal, Mark Dermot Ryan, Sergiu Bursuc, and Peter Y. A. Ryan.
2013. Caveat Coercitor: Coercion-Evidence in Electronic Voting. In 2013 IEEE
Symposium on Security and Privacy, SP 2013. IEEE Computer Society, 367–381.
https://doi.org/10.1109/SP.2013.32

[15] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. 2020.
How Not to Prove Your Election Outcome. In 2020 IEEE Symposium on Security
and Privacy, SP 2020. IEEE, 644–660. https://doi.org/10.1109/SP40000.2020.00048

[16] Thomas Haines and Johannes Müller. 2020. How not to VoteAgain: Pitfalls of
Scalable Coercion-Resistant E-Voting. IACR Cryptol. ePrint Arch. (2020), 1406.
https://eprint.iacr.org/2020/1406

[17] Sven Heiberg, Tarvi Martens, Priit Vinkel, and Jan Willemson. 2016. Improving
the Verifiability of the Estonian Internet Voting Scheme. In Electronic Voting -
First International Joint Conference, E-Vote-ID 2016, Proceedings (Lecture Notes
in Computer Science), Vol. 10141. Springer, 92–107. https://doi.org/10.1007/
978-3-319-52240-1_6

[18] Lucca Hirschi, Lara Schmid, and David A. Basin. 2021. Fixing the Achilles Heel
of E-Voting: The Bulletin Board. In 34th IEEE Computer Security Foundations
Symposium, CSF 2021. IEEE, 1–17. https://doi.org/10.1109/CSF51468.2021.00016

[19] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, and Thomas
Zacharias. 2018. On the Security Properties of e-Voting Bulletin Boards. In
Security and Cryptography for Networks - 11th International Conference, SCN 2018,
Proceedings. 505–523.

[20] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. 2015. End-to-End
Verifiable Elections in the Standard Model. In Advances in Cryptology - EURO-
CRYPT 2015, Proceedings, Part II (Lecture Notes in Computer Science), Vol. 9057.
Springer, 468–498. https://doi.org/10.1007/978-3-662-46803-6_16

[21] Oksana Kulyk and Stephan Neumann. 2020. Human Factors in Coercion Resis-
tant Internet Voting - A Review of Existing Solutions and Open Challenges. In
Electronic Voting - 5th International Joint Conference, E-Vote-ID 2020.

[22] Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. 2015. Extending Helios
Towards Private Eligibility Verifiability. In E-Voting and Identity - 5th International
Conference, VoteID 2015, Proceedings (Lecture Notes in Computer Science), Vol. 9269.
Springer, 57–73. https://doi.org/10.1007/978-3-319-22270-7_4

[23] Ralf Küsters and Johannes Müller. 2017. Cryptographic Security Analysis of
E-voting Systems: Achievements, Misconceptions, and Limitations. In Electronic
Voting - Second International Joint Conference, E-Vote-ID 2017, Proceedings (Lecture
Notes in Computer Science), Vol. 10615. Springer, 21–41. https://doi.org/10.1007/
978-3-319-68687-5_2

[24] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2011. Verifiability, Privacy,
and Coercion-Resistance: New Insights from a Case Study. In 32nd IEEE Sympo-
sium on Security and Privacy, S&P 2011. 538–553.

[25] Wouter Lueks, Iñigo Querejeta-Azurmendi, and Carmela Troncoso. 2020. VoteA-
gain: A Scalable Coercion-Resistant Voting System. In 29th USENIX Security
Symposium, USENIX Security 2020. USENIX Association, 1553–1570. https:
//www.usenix.org/conference/usenixsecurity20/presentation/lueks

[26] André Silva Neto, Matheus Leite, Roberto Araújo, Marcelle Pereira Mota, Nel-
son Cruz Sampaio Neto, and Jacques Traoré. 2018. Usability Considerations
For Coercion-Resistant Election Systems. In Proceedings of the 17th Brazilian
Symposium on Human Factors in Computing Systems, IHC 2018. ACM, 40:1–40:10.
https://doi.org/10.1145/3274192.3274232

[27] UN Committee on Human Rights. 1996. General Comment 25 of the Human
Rights Committee. (1996). https://www.ohchr.org/en/elections

[28] Kim Ramchen, Chris Culnane, Olivier Pereira, and Vanessa Teague. 2019. Uni-
versally Verifiable MPC and IRV Ballot Counting. In Financial Cryptography
and Data Security - 23rd International Conference, FC 2019, Revised Selected Pa-
pers (Lecture Notes in Computer Science), Vol. 11598. Springer, 301–319. https:
//doi.org/10.1007/978-3-030-32101-7_19

[29] Peter Y. A. Ryan, Peter B. Rønne, and Vincenzo Iovino. 2016. Selene: Voting with
Transparent Verifiability and Coercion-Mitigation. In Financial Cryptography and
Data Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC,
Revised Selected Papers (Lecture Notes in Computer Science), Vol. 9604. Springer,
176–192. https://doi.org/10.1007/978-3-662-53357-4_12

[30] Michael A. Specter and J. Alex Halderman. 2021. Security Analysis of the Democ-
racy Live Online Voting System. In 30th USENIX Security Symposium, USENIX
Security 2021. USENIX Association.

[31] Michael A. Specter, James Koppel, and Daniel J. Weitzner. 2020. The Bal-
lot is Busted Before the Blockchain: A Security Analysis of Voatz, the First
Internet Voting Application Used in U.S. Federal Elections. In 29th USENIX
Security Symposium, USENIX Security 2020. USENIX Association, 1535–1553.
https://www.usenix.org/conference/usenixsecurity20/presentation/specter

[32] Roland Wen and Richard Buckland. 2009. Masked Ballot Voting for Receipt-Free
Online Elections. In E-Voting and Identity, Second International Conference, VoteID
2009, Proceedings (Lecture Notes in Computer Science), Vol. 5767. Springer, 18–36.

https://doi.org/10.1007/978-3-662-53357-4_15
https://doi.org/10.1145/2517840.2517863
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-030-19052-1_14
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex
https://www.usenix.org/conference/evtwote12/workshop-program/presentation/essex
https://doi.org/10.1109/SP.2013.32
https://doi.org/10.1109/SP40000.2020.00048
https://eprint.iacr.org/2020/1406
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1109/CSF51468.2021.00016
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-319-22270-7_4
https://doi.org/10.1007/978-3-319-68687-5_2
https://doi.org/10.1007/978-3-319-68687-5_2
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://doi.org/10.1145/3274192.3274232
https://www.ohchr.org/en/elections
https://doi.org/10.1007/978-3-030-32101-7_19
https://doi.org/10.1007/978-3-030-32101-7_19
https://doi.org/10.1007/978-3-662-53357-4_12
https://www.usenix.org/conference/usenixsecurity20/presentation/specter

	Abstract
	1 Introduction
	2 Overview
	2.1 Security Properties
	2.2 VoteAgain
	2.3 Pitfalls

	3 VoteAgain Protocol
	4 Pitfalls of VoteAgain
	4.1 Impact of corrupted PA
	4.2 Impact of corrupted trustee
	4.3 Impact of corrupted PBB
	4.4 Inaccuracies in the formal analysis

	5 Mitigation of Trust in VoteAgain
	6 Conclusion
	Acknowledgments
	References

