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Abstract—Mobile robots extract information from its environ-
ment to understand their current situation to enable intelligent
decision making and autonomous task execution. In our previous
work [1], we introduced the concept of Situation Graphs (S-
Graphs) which combines in a single optimizable graph, the
robot keyframes and the representation of the environment with
geometric, semantic and topological abstractions. Although S-
Graphs were built and optimized in real-time and demonstrated
state-of-the-art results, they are limited to specific structured
environments with specific hand-tuned dimensions of rooms and
corridors.

In this work, we present an advanced version of the Situational
Graphs (S-Graphs+), consisting of the five layered optimizable
graph that includes (1) metric layer along with the graph of
free-space clusters (2) keyframe layer where the robot poses are
registered (3) metric-semantic layer consisting of the extracted
planar walls (4) novel rooms layer constraining the extracted pla-
nar walls (5) novel floors layer encompassing the rooms within a
given floor level. S-Graphs+ demonstrates improved performance
over S-Graphs efficiently extracting the room information while
simultaneously improving the pose estimate of the robot, thus
extending the robots situational awareness in the form of a five
layered environmental model.
Video Link: https://youtu.be/zPbPe9JXgKk

I. INTRODUCTION

Recent 3D Scene Graph approaches such as [2], [3], [4],
[5] model the scene as a graph, in order to efficiently
represent the environment and its semantic elements in a
hierarchical representation with structural constraints between
the elements. Scene graphs enable the robots to understand
and navigate the environment similarly to humans, using high-
level abstractions (such as chairs, tables, walls) and the inter-
connections between them (such as a set of walls forming a
room or a corridor). Although these works show promising
results, they do not tightly couple scene graphs with SLAM
methods that simultaneously optimize the robot poses along
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Fig. 1: S-Graph+ generated using a legged robot (circled in
black) corresponding to a real construction site consisting of
four adjacent houses. The graph can be divided into five sub-
layers: 1) Metric-free space cluster layer which consist of the
3D metric-map along with the graph of free space clusters.
2) Keyframe layer registering the robot poses. 3) Metric-
Semantic layer extracting planar walls and registering it the
corresponding keyframes. 4) Rooms layer constraining the
different mapped walls with appropriate room constraints. 5)
Floor layer computing the floor centroid using all the mapped
walls.

with the scene graph. Our previous work S-Graphs [1] bridges
this gap by combining a geometric LiDAR SLAM with 3D
scene graphs, providing state-of-the-art results. But, S-Graphs
are only limited to structured environments with specific
rooms shapes and size, which caused missed/incorrect room
detections in presence of complex room structures leading to
incomplete representation of the environment and inaccuracies
in the 3D map and robot pose estimate.

To overcome the limitations of our previous work, we
present S-Graphs+ (Fig. 1) which contains a five layered
optimizable graph comprising of Metric Layer consisting of
the metric mesh/pointcloud generated using the robot pose and
sensor measurements. The metric layer also includes the graph
which represents different free space clusters which are gener-
ated using a modified version of [6]. Keyframe Layer consists
of the robot poses registered at different time intervals using
odometry measurements. Metric-Semantic Layer consists of
the different planar walls extracted at each keyframe and
are constrained to the keyframe using pose-plane constraints.
Rooms Layer utilizes the graph of free space clusters and the
mapped planar walls to identify and map rooms within the
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Fig. 2: Pipeline of the proposed S-Graph+ architecture, receiving 3D LiDAR measurements and robot odometry at a given time
instant t, along with its pre-filtering and free space graph generator. The figure also presents the five layered situational graph
along with the loop closure, plane segmentation, room segmentor and floor segmentor modules, which are jointly optimized
to update the robot pose and the S-Graph+.

given environment. In S-Graphs+ we define rooms with all
four planar walls as finite rooms and rooms with only two
opposed planes as infinite rooms. Floors Layer is the last layer
denoting the floor level in the graph, it utilizes all the mapped
planar surfaces to compute the centroid of the current floor
level, to then constraint the rooms present at that level. Our
main contributions in this paper are:

• A robust and improved implementation of the Situational
Graphs named S-Graphs+ using robot odometry and
3D LiDAR measurements with five hierarchical layers,
optimizing the robot poses jointly with a high-level 3D
representation of the scene.

• The introduction of novel room detection algorithm using
the graph of free space clusters and the mapped planar
walls, as well as novel factors in the graph to constraint
the mapped planar walls with the rooms.

• A thorough experimental evaluation showing the im-
proved performance over the baseline S-Graph.

II. PROPOSED APPROACH

An overview of the proposed approach is shown in Fig. 2.
The overall pipeline can be divided into eight main modules
(colored boxes in Fig. 2). The first module pre-filters the
LiDAR measurements to remove noise and downsamples the
pointcloud. The second module computes the robot odometry
either from LiDAR measurements or acquires it from the
robot encoders. The third module is a modified version of [6]
generating free-space graph cluster using the robot poses and
3D LiDAR information. The fourth module generates the five
layered optimizable S-Graphs+. S-Graphs+ utilizes the aid
of four additional modules to generate the five layered topo-
logical understanding of the environment, namely the plane

segmentation module segmenting the planar surfaces from the
pointcloud snapshot stored at each keyframe. Room segmentor
module utlizing the free-space graph and the mapped planes at
a given time instant to detect rooms. Floor segmentor utilizes
the information of all the currently mapped planar surfaces to
extract the centroid of the floor node. Finally the loop closure
module which utilizes scan-matching algorithm to constraint
neighbouring keyframes.

A. Robot Odometry

As in S-Graphs [1], we use the Voxelized Generalized
Iterative Closest Point (VGICP) [7] for computing the robot
odometry using 3D LiDAR measurements, alternatively, as
we run our experiments on legged robots, we also test S-
Graphs+ using the odometry estimated from the encoders of
these platforms.

B. Free-Space Graph Generator

Free-space graph generator is a modified version of [6].
In [6] a sparse connected graph of free-space is generated
given the robot poses and a Euclidean Signed Distance Field
(ESDF) map generated using [8]. We divide this connected
graph into sub-graphs of places checking the distance of each
vertex which respect to obstacles. Vertices which are closer to
objects are utilized to disconnect graph into sub-graphs. Using
this technique we can obtain disconnected free-space clusters
belonging to different rooms, because vertices close to room
openings have distances closer to walls (obstacles) and thus
vote for disconnecting the graph.
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C. Plane Segmentor

We use sequential RANSAC to detect all planar surfaces
which gives a first estimation of their normals as in [1].
Compared to [1], where plane segmentation is carried out on
a different thread which lead to missed planar detections, in
S-Graphs+ the plane segmentation is carried out everytime a
new keyframe is registered with the corresponding snapshot
of metric 3D LiDAR measurement. This results in efficient
detection and mapping of all the planar surfaces at a given
time instant.

D. Room Segmentor

Our novel room segmentor utilizes the sub-graphs of free-
space clusters (Section. II-B) and the mapped planar surfaces
extracted from the past three keyframes, to detect different
rooms with their 2D positions. For each cluster we first check
the l2 norm between the vertices of each cluster and the points
on the mapped planar surfaces. Given two sets of opposed
mapped planar walls in x and y axis direction, respectively
satisfying a certain width and length and with points closest to
the free-space vertices, get identified to form a finite room. We
use the four mapped planar walls to calculate the 2D position
of our room using the difference between the x axis planes
and y axis planes respectively. In cases where only two of
the opposed planar walls are identified (either x direction or
y direction), the room candidates are called as infinite rooms.
To calculate the position of an infinite room with two opposed
walls in the direction of the x-axis, we utilize the planar
coefficients to get its x-coordinate while the y-coordinate is
obtained using the y-coordinate of the cluster centroid. The
same procedure is applied for infinite rooms with walls facing
the y-axis.

E. Floor Segmentor

Floor segmentor utilizes the information from all the cur-
rently mapped planar walls with same the floor id to calculate
the 2D position of the current floor level the robot is navi-
gating. Whenever the robot ascends or descends to a different
floor level, the newly mapped planar walls are incorporated
with the new floor id and are the ones used for computing the
2D position of the corresponding floor level.

F. Loop Closure

S-Graphs+ has the same loop closure module as in [1], with
the room constraints providing the soft loop closure constraints
when the robot detects and matches the mapped rooms, while a
scan matching-based hard loop closure constraint, constraining
neighbouring keyframe poses using their relative pose.

G. S-Graphs+

This is the module responsible for creating a five layered
hierarchical optimizable graph using the information provided
by the above mentioned modules.

Metric-Free-Space Cluster. This layer contains the 3D
metric map of the area generated using the registered keyframe

poses of the robot. Bundled within this metric map are the
clusters representing the free space within the area.

Keyframes. This layer creates a factor node MxRt
∈

SE(3) with the robot keyframe pose at time t in the map frame
M . The pose nodes are constrained by pairwise odometry
readings between consecutive poses.

Metric-Semantic. This layer creates the factor nodes for
the planar surfaces extracted by the planar segmentor. The
planar normals extracted in the LiDAR frame Lt at time
t are transformed to the global map frame M for its map
representation. The plane normals with their Mnx or Mny

components greater than the Mnz component are classified as
corresponding to vertical planes. Within the vertical planes,
those with normals where Mnx is greater than Mny are
classified as x-plane normals, and otherwise they are classified
as y-plane normals. Finally, planes whose normals’ bigger
component is Mnz are classified as horizontal planes. The pla-
nar nodes are constrained with their corresponding keyframes
using pose-plane constraints as in [1].

Rooms. The rooms layer receives the extracted room po-
sitions with its planar walls from the room segmentor (Sec-
tion II-D). Finite room node is mapped with edges connecting
the four planar walls, and similarly an infinite room node
is mapped using edges with two opposed walls. S-Graphs+
creates novel edges between the room position and each of it
planar walls by computing the difference between the vector
of plane node coefficients and room position. Data association
for the room node is also based on the l2 norm. We can
safely increase the matching threshold of the rooms, as no
two rooms overlap. This allows us to merge planar structures
duplicated due to inaccuracies. Similar procedure is carried out
for mapping infinite rooms, with either x planes or y planes.

Floors. The floors layer creates a floor node using the de-
tections from the floor segmentor (Section. II-E) representing
the center of a floor level. Currently, the floor node creates
a position-position edges between between all the mapped
room at that level. As the estimate of the floor node might
change while the robot explores the surrounding, the floor
node estimate and its corresponding edges with the rooms are
also modified accordingly. This factor results in room nodes
remaining bounded within a given floor level.

III. EXPERIMENTAL VALIDATION

We validate S-Graphs+ on datasets generated using both
simulated and real-world indoor scenarios, comparing it
against several state-of-the-art LiDAR SLAM frameworks and
the baseline S-Graphs. The datasets are collected teleoperating
a Boston Dynamics Spot1 robot equipped with a Velodyne
VLP-16 3D LiDAR. S-Graph+ runs real-time on these datasets
on-board an Intel i9 16 core workstation.

1) Simulated Experiments: We conduct a total of four
simulated experiments. Two of them are performed in envi-
ronments generated from the 3D mesh of two floors of actual
architectural plans provided by a construction company. We
denote these two settings as Construction Floor-1 (CF-1) and
Construction Floor-2 (CF-2). We also generated two additional

1https://www.bostondynamics.com/products/spot

https://www.bostondynamics.com/products/spot
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TABLE I: Absolute Trajectory Error (ATE) [m], of our S-
Graph+ and several baselines on simulated data. Best results
are boldfaced, second best are underlined.

Dataset

Method CF-1 CF-2 SE-1 SE-2

HDL-SLAM [10] 0.09 0.11 0.04 0.15
ALOAM [11] 0.07 0.10 0.16 0.32
MLOAM [12] 0.15 0.39 0.65 2.82
FLOAM [13] 3.90 0.44 0.15 0.24
SCA-LOAM [14] 0.45 0.43 0.43 0.64
LeGO-LOAM [15] - - - -
S-Graph - w/o top layer 0.05 0.17 0.40 1.01
S-Graph (Baseline) 0.04 0.07 0.03 0.05
S-Graph+ 0.03 0.04 0.02 0.13

simulated environments resembling typical indoor environ-
ments namely Simulated Environment-1 (SE-1), and Simulated
Environment-2 (SE-2). In all the simulated experiments the
robot odometry is estimated only from LiDAR measurements.
The simulated experiments are performed mainly to validate
accuracy of the algorithms with ground truth data using
Absolute Trajectory Error (ATE) [9] due to the absence of
ground truth trajectory in real experiments. As can be observed
from Table. I, S-Graphs+ outperforms its baseline S-Graphs
[1] being able to identify and map rooms without requiring
fine tuning of the parameters for room identification. Although
in experiment SE-2 the S-Graphs+ provides second best
results, it identifies rooms without any additional parameter
adjustment, as was required by S-Graphs.

2) Real Experiments: We have tested S-Graphs+ on differ-
ent real indoor environments but due to space limitations, we
provide results with only three real experiments on structured
indoor environments ranging from construction site to office
environments. We utilize the same robot encoder odometry
for all the methods to have a fairer comparison. The first
two experiments are performed on two floors of an on-
going construction site, the same scenes whose meshes were
utilized to validate the algorithm in the simulated environments
(CF-1 and CF-2). We also perform a similar experiment in
an office environment with a long corridor (LC-1) that the
robot traverses back and forth. To validate the accuracy of
each method on these first three experiments, we report the
RMSE of the estimated 3D maps against the actual 3D map
generated from the architectural plan. Table II presents the
errors obtained in the real experiments and as can be seen, S-
Graphs+ provides better robot pose and map estimation given
the accurate identification of rooms and without requiring any
parameter tuning.

IV. CONCLUSION

In this work we present the preliminary version of S-
Graphs+ consisting of a five layered optimizable graph which
includes (1) metric layer along with the graph of free-space
clusters (2) keyframe layer where the robot poses are registered
(3) metric-semantic layer consisting of the extracted planar
walls (4) novel rooms layer constraining the extracted planar
walls (5) novel floors layer encompassing the rooms within a
given floor level. We validated S-Graphs+ on different sim-
ulated and real experiments and observed better performance

TABLE II: Point cloud RMSE [m] on the real datasets. Best
results are boldfaced, second best are underlined.

Dataset

Method CF-1 CF-2 LC-1

HDL-SLAM 1.34 0.37 1.45
ALOAM 8.03 1.20 3.14
MLOAM 3.73 1.93 1.68
FLOAM 7.63 1.15 2.90
SCA-LOAM 4.86 0.75 2.89
LeGO-LOAM 4.08 0.70 3.40
S-Graph - w/o top. layer 1.21 0.36 1.45
S-Graph (Baseline) 0.33 0.37 1.32
S-Graph+ 0.31 0.33 1.31

over its baseline S-Graphs with a robust identification of rooms
as well as not requiring constant fine tuning of the parameters
over all the experimental validation. Our plan is to validate S-
Graphs+ over different real construction scenarios to compare
its accuracy with the baseline and other 3D LiDAR slam
approaches.
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