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A B S T R A C T

In the context of Industry 4.0, companies understand the advantages of performing Predictive Maintenance
(PdM). However, when moving towards PdM, several considerations must be carefully examined. First, they
need to have a sufficient number of production machines and relative fault data to generate maintenance
predictions. Second, they need to adopt the right maintenance approach, which, ideally, should self-adapt to
the machinery, priorities of the organization, technician skills, but also to be able to deal with uncertainty.
Reinforcement learning (RL) is envisioned as a key technique in this regard due to its inherent ability to learn
by interacting through trials and errors, but very few RL-based maintenance frameworks have been proposed
so far in the literature, or are limited in several respects. This paper proposes a new multi-agent approach
that learns a maintenance policy performed by technicians, under the uncertainty of multiple machine failures.
This approach comprises RL agents that partially observe the state of each machine to coordinate the decision-
making in maintenance scheduling, resulting in the dynamic assignment of maintenance tasks to technicians
(with different skills) over a set of machines. Experimental evaluation shows that our RL-based maintenance
policy outperforms traditional maintenance policies (incl., corrective and preventive ones) in terms of failure
prevention and downtime, improving by ≈ 75% the overall performance.
1. Introduction

The industry has benefited from technologies such as cyber–physical
systems, internet of things, big data analytics, or still Artificial Intelli-
gence (AI) [1], with the overall aim of increasing profitability, produc-
tion, capacity, quality, employee safety, and decreasing costs [2]. Such
technologies are widely used when it comes to maintenance operations,
as it can represent in some cases up to 60% of the total turnover [3,4].

An increasing number of Predictive Maintenance (PdM) systems
are emerging in all sectors of the industry [5]. Some market studies
report that PdM can reduce time required to plan maintenance by 50%,
increase equipment uptime by 20% and reduce costs by 10% [6]. A
PdM system can be seen as a three stage-process, as depicted in Fig. 1:

1. Remote monitoring: sensors and cameras are deployed on produc-
tion lines to capture real-time events and communicate these
data to on site or cloud systems;
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2. Failure Prediction: analytics tools with predictive (ML) capabil-
ities analyze the collected data to determine when a system
(component, equipment, process) is likely to fail;

3. Task Scheduling: based on the computed predictions, and expert
knowledge, decision support systems are designed, which often
include the optimization of maintenance task scheduling and
operator assignment.

Each of these stages is the subject of significant research efforts, for
example to address interoperability issues in stage (1) [7], to make AI
(Machine Learning — ML) models more robust, accurate and transpar-
ent for predicting failures in stage (2) [8,9], or still to improve state-of-
the-art maintenance scheduling strategies [10] and better model expert
knowledge in the decision process [11,12].

As emphasized in Fig. 1, although stage (1) (remote monitoring)
is a prerequisite for PdM, the main goal of any PdM framework is to
predict and optimally schedule the maintenance interventions/tasks.
vailable online 8 July 2022
736-5845/© 2022 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.rcim.2022.102406
Received 23 June 2022; Accepted 26 June 2022
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/rcim
http://www.elsevier.com/locate/rcim
mailto:marcelo.ruiz@uni.lu
mailto:sylvain.kubler@uni.lu
mailto:andrea@degiorgio.info
mailto:maxime.cordy@uni.lu
mailto:jeremy.robert@cebi.com
mailto:yves.letraon@uni.lu
https://doi.org/10.1016/j.rcim.2022.102406
https://doi.org/10.1016/j.rcim.2022.102406
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2022.102406&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Robotics and Computer-Integrated Manufacturing 78 (2022) 102406M.L. Ruiz Rodríguez et al.
Fig. 1. Key stages to move towards Predictive Maintenance (PdM).
In this respect, maintenance can be corrective (applied after failure
occurrence) or preventive (applied before failure occurrence) [13]. The
former is known as corrective maintenance (CM), also known as run-
to-failure, while the latter can be divided into two policies known as
Preventive and Predictive1 maintenance. The most simple policy is CM,
which seeks to maximize the lifetime of the components, but with
the disadvantage that it can quickly becomes costly due to production
interruptions caused by the long equipment downtime. Preventive
Maintenance (PM), also known as time-based maintenance, is a more
advanced and effective strategy, as it anticipates failures and avoids
equipment breakdowns that could be costly to repair. The disadvantage
of this type of maintenance is that the equipment receives maintenance
that is not yet necessary, reducing the lifespan of some components and
resulting in additional costs. The key to overcome the trade-off between
opting for CM and/or PM is to determine the optimal maintenance
timing such that the overall profit of the manufacturing system is
optimized. This has led to the so-called PdM policy, also referred to as
condition-based maintenance [14], which uses statistical or AI models
to calculate the degradation of the equipment or the remaining useful
life (RUL) of a component [15,16]. This makes possible the prediction
of when and what part of the system is likely to fail in order to
optimally perform maintenance decision making (incl., maintenance
task scheduling, technician assignment, etc.).

In today’s literature, several studies have proposed PdM frameworks
using machine learning (ML) techniques [17]. While both supervised
and unsupervised learning techniques have already been widely used in
the manufacturing industry, accounting for 90–95% of all applications
according to [18], especially for PdM [19], reinforcement learning
(RL) has been much less studied [20]. This is unfortunate because RL
provides many interesting features [21], such as learning by interact-
ing with the environment, measuring the utility of actions that yield
long-term benefits, optimizing complex sequential decisions under un-
certainty, adding that RL takes advantage of the multi-agent approach,
which allows for multi-objective optimization [22]. To overcome this
gap in research, the present article proposes a novel maintenance
policy based on RL, which aims at reducing unexpected failures and
maintaining a high uptime. As emphasized in Fig. 1, our research does
not progress the state-of-the-art in failure prediction (i.e., in determin-
ing failure distribution), but in dynamic maintenance task scheduling
(failure distributions being used as inputs of our strategy), where the
originality compared to state-of-the-art RL-based maintenance policy
models lies in the fact that, to the best of our knowledge, it is the first
multi-agent RL model taking into account different types of failures,
along with varying maintenance times (depending on technician skills).

Section 2 discusses the current state-of-the-affairs pertaining to (dy-
namic) maintenance task scheduling, with a specific focus on RL-based
maintenance strategies. Section 3 presents the RL model underpinning
the proposed maintenance policy. Section 4 presents the experimental
2

Table 1
Acronyms used in the present article.

Notation Description

AC Ant Colony
AI Artificial Intelligence
ANSGA-III Adaptive-reference-point-based Nondominated

Sorting Genetic Algorithm
BB Branch and Bound
BD Benders Decomposition
BH Black Hole
BIP Binary Integer Programming
BOMP Bi-Objective Mathematical Programming
CEA Coevolutionary algorithms
CM Corrective Maintenance
GA Genetic Algorithm
GP Goal Programming
GrA Greedy Algorithm
IP Integer Programming
LPT Longest Processing Time
MA Memetic Algorithm
MC Monte Carlo
MDP Markov Decision Process
MG Markov Game
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
MIP Mixed Integer Programming
ML Machine Learning
MP Multiparametric Programming
MVO Multiverse Optimizer Algorithm
NSGA-II Non-dominated Sorting Genetic Algorithm II
OTA Online Task Allocation
PdM Predictive Maintenance
PM Preventive Maintenance
RA Random Maintenance
RHA Rolling Horizon Algorithm
RL Reinforcement Learning
RUL Remaining Useful Life
SA Simulated Annealing
TS Tabu Search
VNS Variable Neighborhood Search
XAI eXplainable Artificial Intelligence

setup and evaluation of our system in two manufacturing scenarios.
Discussion and conclusion are given in Sections 5 and 6 respectively.
Note that all acronyms used in this paper are summarized in Table 1.

2. Maintenance policies and strategies

Several maintenance policies and strategies have been explored over
the past few years. Section 2.1 provides a quick overview of the trends
followed by the scientific community in this respect, while Section 2.2
discusses more in-depth the policies/strategies that have been proposed
and designed based on the RL theory.



Robotics and Computer-Integrated Manufacturing 78 (2022) 102406M.L. Ruiz Rodríguez et al.

(
t
f
a
a

2.1. State-of-affairs and trends

A dynamic maintenance task scheduling problem, like the standard
scheduling problem, consists of assigning a set of maintenance tasks to
a set of technicians, while minimizing the overall system downtime and
cost, and taking into account several specific constraints such as safety
and process constraints, technician skills, job duration, etc. [10,23,24].
This problem is known to be NP-hard [25,26]. Over the past decades,
maintenance policies and strategies have been explored using different
types of theories and methods. In order to understand the trend in
theories/techniques used in that respect, a review of the literature has
been carried out using the following search query on the Web of Science
database:

TS = ("maintenance") AND

TS = ("scheduling" OR "schedule")

AND

TS = ("manufacturing")

Around 350 journal papers were collected (conference articles being
excluded from our analysis). After screening titles, abstracts the content
of the articles (checking their relevance and quality), 56 articles were
identified and reviewed, which have been classified in Table 2 based on
the year of publication and the type of method(s) used for optimization.
These methods are classified into three main classes: (i) Metaheuristics:
BH, VNS, GA, SA, NSGA-II, ANSGA-III, MA, MVO, CEA, GrA, TS, AC,
LPT; (ii) Mathematical Programming: IP, MIP, MILP, MINLP, BIP, BD,
RHA, MP, BOMP, BB, OTA, GP; and (iii) Machine Learning (ML): NN,
RL. (all abbreviations being given in Table 1).

Table 2 brings to light that most of the state-of-the-art maintenance
scheduling strategies (≈85% of the reviewed literature) are designed
based on metaheuristics or mathematical programming techniques; GA
being the most widely used technique. While these techniques are
very powerful for solving NP-hard problems at a given point in time,
they usually assume deterministic environments/problems (i.e., that all
parameters and information are known a priori such as the number
of tasks to be performed, their duration, and level of criticality, the
operator availability, etc.) [81]. While this assumption may hold in
some specific industrial processes, it does not in most real-life cases
when the process involves uncertainties regarding the constraints, input
values, and objective functions (e.g., due to sudden machine failures,
reassignment of personnel, change of machine priority, component
shortage). As metaheuristics or mathematical programming are not
designed, by nature, to deal with stochastic processes, some stud-
ies investigate optimization–simulation frameworks – also known as
‘‘Simheuristic’’ – that combines metaheuristics with simulation (Monte
Carlo, discrete-event, agent-based, etc.) to solve the stochastic prob-
lem [82–84]. However, such an approach is not optimal, suffering from
some limitations as been discussed e.g. in [85]. In contrast, RL is based
on the Markov Decision Process (MDP) theory, which is designed to
deal with stochastic processes. Table 2 report some research studies that
have adopted this approach, although they are still limited in number.
Nonetheless, considering the arguments discussed above, this research
work adopts an RL-based maintenance approach.

The next Section discusses existing RL-based maintenance strategies,
along with their pros and cons.

2.2. RL-based maintenance

As reviewed in the previous Section (see Table 2), a few stud-
ies – 8 in total – have proposed RL-based maintenance strategies.
Those strategies usually address a sequential or parallel manufacturing
process. The former (sequential) refers to processes where multiple
machines are connected and dependent on each other, as depicted in
Figs. 2(a) and 2(b) (machine M3 requiring, as inputs, goods manufac-
3

tured by M2, which itself requires goods manufactured by M1), while m
Table 2
Trend in methods used for maintenance task scheduling.

Year Metaheur. Math Prog. ML

[27] 2022 GA
[28] 2021 BH, VNS
[29] 2021 GA, MC
[30] 2021 GA
[31] 2021 GA
[32] 2021 GrA
[33] 2021 GA
[34] 2021 CEA
[35] 2021 GrA
[36] 2021 GA
[37] 2021 BD
[38] 2021 RHA
[12] 2021 MP NN
[39] 2021 RL
[40] 2021 RL
[41] 2020 GA
[42] 2020 MVO
[43] 2020 TS
[44] 2020 NSGA-II
[45] 2020 ANSGA-III
[46] 2020 MA MIP
[47] 2020 GA MIP
[48] 2020 BOMP
[49] 2020 BB
[50] 2020 RL
[51] 2020 RL
[52] 2020 NN
[53] 2019 GA
[54] 2019 OTA
[55] 2019 AC
[56] 2019 NSGA-II
[57] 2019 BIP
[58] 2019 MILP
[59] 2019 MINLP
[60] 2019 RL
[61] 2019 RL
[62] 2019 RL
[10] 2018 GA
[63] 2018 SA, GA
[64] 2018 SA
[65] 2017 NSGA-II
[66] 2017 MA
[67] 2017 MILP
[68] 2017 RL
[69] 2016 NSGA-II
[70] 2016 LPT MILP
[71] 2015 NSGA-II
[72] 2015 SA, GA
[73] 2015 TS
[74] 2014 GA
[75] 2014 MILP
[76] 2013 SA, GA
[77] 2013 IP
[78] 2013 GP
[79] 2013 MIP, RHA
[80] 2012 GA

Total 34 16 10

the latter (parallel) refers to processes where machines are indepen-
dent of one another (i.e., goods being manufactured by machines in
parallel), as depicted in Figs. 2(c) and 2(d). For each type of manu-
facturing process, two types of agent architectures can be applied for
decision-making, namely centralized (decisions regarding the different
components/processes are taken by a single logical agent) or distributed
decisions are distributed among multiple logic agents), thus leading
o the four architectural design possibilities depicted in Fig. 2. In the
ollowing, the 8 articles adopting an RL-based maintenance approach
re further discussed, first focusing on studies adopting a centralized
pproach, and then on studies adopting the distributed one.

Xu and Cao [62] propose a centralized approach to schedule the
aintenance tasks of a machine tool, the objective being to improve
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Fig. 2. Possible agent architectural designs when using Reinforcement Learning (RL) in industrial processes.
the energy efficiency of the production process. This policy can be
applied to different states of machine degradation while taking into
account productivity, product quality, and energy consumption. A con-
trol policy for manufacturing facilities linked to a finished products
buffer is proposed by Xanthopoulos et al. [68], where the agent policy
allows to alternate between production and maintenance actions. This
approach was compared to other production policies, such as Kanbas
and (s,S), along with maintenance policies such as condition-based
and periodic-based. Experiments have shown that the RL-based policy
succeeds in reducing the cost function, providing high-level of service
while keeping inventory as low as possible. An extension of this work
was proposed by Paraschos et al. [51] to include quality data that is
related to the system degradation level. In addition, the authors include
a recycling policy so that agents can additionally perform the action of
recycling second-class goods. This system is guided to maximize profits
for the different products, and to minimize maintenance and produc-
tion costs. Their work was tested in different scenarios with variable
production times and deterioration frequencies. Results showed that
the proposed policy achieves higher profits than other policies, and
is effective in managing inventory levels and preventing equipment
deterioration. Huang et al. [61] have been working on the problem of
PM for a serial production line with multi-stage machines, this work
having been extended in [50] to find the optimal time to execute
preventive actions. The authors have compared their work with respect
to different maintenance policies such as CM, PM, opportunistic, and
different RL algorithms, whose results show that the RL policy manages
to keep maintenance and production costs below the other policies.
Wang et al. [39] propose the optimization of production scheduling and
maintenance of multiple factories in which collaborative maintenance
policy is performed. In their model, both machine deterioration and
unexpected failures are taken into account with the aim of maximizing
the total profit, where collaborative maintenance is ensured through
the use of blockchain technology.

Regarding studies adopting the distributed scheme, let us cite
Kuhnle et al. [60] who propose an approach to determine the best win-
dow of opportunity to perform maintenance in a stochastic production
environment. Their work is based on the use of multiple independent
agents that learn the policy based on information from the production
4

Table 3
Overview of agent architecture designs adopted by state-of-the-art studies.

Centralized agent Distributed agents

Sequential [50,61] [40]
Parallel [39,51,62,68] [60]

system buffer and time-to-failures. The RL policy outperforms CM and
PM policies with respect to completed jobs and evidenced how the
agents learn to execute maintenance closer to failure times with a low
buffer volume. Su et al. [40] extended Huang et al. work [50,61] of
single agents to multi agents for PM purposes on a serial production line
with multi-stage machines. Their main contribution is to demonstrate
convergence towards better policies and to solve scalability issues by
the joint action space of the single agent approaches. Although the
above-discussed studies are interesting in many respects, they still
suffer from two main limitations: (l1) they do not take into account
the availability of technicians; (l2) they are limited to a single type of
failure.

Table 3 provides an overview of what agent architecture designs
have been adopted by the above-reviewed studies, showing that most
of them adopt the centralized scheme. This can be partly explained
by the fact that a distributed agent framework brings additional chal-
lenges/complexity such as agent heterogeneity, communication, the
definition of collective goals (cooperation), scalability, non-stationarity,
and so forth [86,87]. However, we believe that this approach is more
realistic and can become more powerful if well addressed and managed.
This is one of the main reasons why we propose and investigate a new
multi-agent deep RL-based maintenance policy in this paper, with the
objective to overcome the limitations (l1), (l2) previously discussed.

3. Multi-agent deep RL-based maintenance policy

This Section presents the mathematical formalization underlying
our RL system. Section 3.1 introduces the environment considering a set
of identical-parallel machines subject to multiple failures. Section 3.2
presents the RL-Framework explaining in detail the interaction that the
agents have with the environment. All notations used in this work are
summarized in Table 4.
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Fig. 3. Environment proposed for multi-agent deep RL-based PdM.
Table 4
Notation used in this paper.

Notation Description

𝑀 Set of machines
𝐶𝑚 Set of components of 𝑚 ∈ 𝑀
𝑓𝑐 Failure time of 𝑐 ∈ 𝐶𝑚
𝑇 Set of technicians
𝑟𝑡𝑐 Repairing time by technician 𝑡 ∈ 𝑇 given a component 𝑐 ∈ 𝐶𝑚
𝑊 (𝑥; 𝛼, 𝛽) 2-parameter Weibull distribution
𝑧𝑚 State of 𝑚 ∈ 𝑀
𝑔𝑡 State of 𝑡 ∈ 𝑇
𝑤𝑐 State of 𝑐 ∈ 𝐶𝑚
𝑙𝑐 Lifespan of component 𝑐 ∈ 𝐶𝑚
𝑒𝑚 Remaining maintenance time of 𝑚
𝑟𝑚 Reward obtained by agent in charge of 𝑚
𝐨𝐦 Local observation obtained by agent in charge of 𝑚
𝐚𝑚 Action taken by the agent in charge of 𝑚
𝜂 Reward penalty due to breakdown prediction
𝑝 Total profit

3.1. System description

Let us consider a factory where the production is performed by
𝑀 identical machines, as shown in Fig. 3. Each machine 𝑚 ∈ 𝑀 is
integrated by 𝐶𝑚 components, which can fail at 𝑓𝑐 ∣ 𝑐 ∈ 𝐶𝑚 timesteps.
The machine 𝑚 can receive maintenance by any available technician 𝑡 ∈
𝑇 to restore or repair any 𝑐 ∈ 𝐶𝑚. Each 𝑡 has a repairing time 𝑟 for
each type of component 𝑐. The repairing time 𝑟 by technician 𝑡 given a
component 𝑐 is defined as 𝑟𝑡𝑐 ∈ Z+.

We can represent three states for each machine that evolve in
discrete-time steps. The first is working, which indicates that the ma-
chine is running normally and has not shown any type of failure.
The second is breakdown, in which one or more 𝑐 have failed and
the machine cannot return to the working state until 𝑐 has/have been
repaired. To model the failure of a component, a 2-parameter Weibull
distribution is used, as commonly adopted in the literature to describe
equipment failures [88], where the probability density function is de-
fined as 𝑊 (𝑥; 𝛼, 𝛽) = 𝛽𝑥𝛽−1

𝛼𝛽 𝑒−(
𝑥
𝛼 )

𝛽
, with 𝛼 the scale parameter and 𝛽 the

shape. The last state is maintenance, which indicates that a technician 𝑡
has been assigned to repair a 𝑐 in 𝑟𝑡𝑐 time steps. If the machine does not
present any other type of failure, then it will switch back to the working
state. Ideally, the machine should move from the working state to the
maintenance state without having to go through the breakdown state.
Finally, any available technician can be assigned when the machine is
in the working or breakdown state.

3.2. Multi-agent models

In order to obtain optimal or near-optimal maintenance policies, an
RL approach is employed. According to this, multiple decision-making
5

agents are placed in an environment whose dynamics are initially
unknown [21]. This environment can be formally described using an
extension of the MDP called Markov Games (MG), also known as
Stochastic Games. MDP is a mathematical formulation of a problem in
which an agent (decision-maker) selects actions sequentially to transit
through different states guided by rewards. A MDP can be expressed
as a 5-tuple ⟨𝑆,𝐴, , 𝑅, 𝛾⟩, which consists of a state space 𝑆 indicating
all possible states the agent can be in; an action space 𝐴 indicating all
possible actions the agent can take; a transition function  ∶ 𝑆×𝐴 → 𝑆
indicating the probability of transitioning from any state 𝑠 ∈ 𝑆 to state
𝑠′ ∈ 𝑆 given that the agent took action 𝑎 ∈ 𝐴; a reward function
𝑅 ∶ 𝑆 × 𝐴 × 𝑆 → R that returns an immediate reward given by the
transition from (𝑠, 𝑎) to 𝑠′; and a discount factor 𝛾 ∈ [0, 1] indicating
how myopic the agent is, a 𝛾 = 0 indicating that the agent only cares
about immediate reward and in the case of 𝛾 → 1 the agent gives more
weight to future state information.

MG is a generalization of MDP to work with multiple agents. MG for
𝑁 agents can be defined by the 6-tuple

⟨

𝑁,𝑆, {𝐴𝑖}𝑖∈𝑁 , , {𝑅𝑖}𝑖∈𝑁 , 𝛾
⟩

,
which consists of a state space 𝑆 indicating the state space observed
by all the agents; an action space 𝐴𝑖 indicating all possible actions
the agent 𝑖 can take; a transition function  ∶ 𝑆 × 𝐴 → 𝑆, given
that 𝐴 = 𝐴1 × ⋯ × 𝐴𝑖, indicating the probability of transitioning from
any state 𝑠 ∈ 𝑆 to any state 𝑠′ ∈ 𝑆 for any joint action 𝑎 ∈ 𝐴; a
reward function 𝑅𝑖 ∶ 𝑆 ×𝐴 × 𝑆 → R that returns an immediate reward
received by agent 𝑖 for a transition from (𝑠, 𝑎) to 𝑠′; and a discount factor
𝛾 ∈ [0, 1].

The proposed predictive maintenance policies (RL policies) per-
formed two tasks: (i) keep the machines in a working state as long as
possible; (ii) prevent any failure that could lead to a breakdown state
by triggering a maintenance action. Using the MG framework, agents
determine their actions based on the observations given by the system.
Therefore, it is required to design local observations that provide the
basis for the agent’s actions and provide useful information for training.
To perform the above described tasks, agents observe a representation
of the system state that includes the state of all the machines and
technicians. However, each agent is limited to observing the lifetime
of the components of its own machine and any remaining time of
maintenance. This limits the decision-making of the agents (since they
are partially unaware of the complete state of the other machines),
which contributes to decrease the complexity of their decision-making.

The system state observed by an agent 𝑎𝑚 responsible for the
machine 𝑚 is represented by the vector given in (1), where 𝑧𝑖 ∈ {0, 1, 2}
gives information whether machine 𝑖 ∈ 𝑀 is in a working, breakdown or
maintenance state respectively, 𝑔𝑗 ∈ {0, 1} whether a technician 𝑗 ∈ 𝑇 is
working on a particular machine (0) or free (1), 𝑤𝑐 represents the state
of component 𝑐 ∈ 𝐶𝑚, 𝑙𝑐 the lifespan of component 𝑐 ∈ 𝐶𝑚, and 𝑒𝑚 the
remaining maintenance time of machine 𝑚.

𝐨 = (𝑧 ,… , 𝑧 , 𝑔 ,… , 𝑔 , 𝑤 ,… , 𝑤 , 𝑙 ,… , 𝑙 , 𝑒 ) (1)
𝑚 1 ∣𝑀 ∣ 1 ∣𝑇 ∣ 1 ∣𝐶𝑚 ∣ 1 ∣𝐶𝑚 ∣ 𝑚
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According to the observation, each agent must select whether to
perform a maintenance action by selecting an available technician and
the component to be maintained or to delay the maintenance. The
action of agent 𝐚𝑚 responsible for machine 𝑚 is given in (2) where 𝑑
means that no technician will be allocated to 𝑚.

𝐚𝑚 ∈ 𝑇 × 𝐶𝑚 ∪ {𝐝} (2)

To guide the agents in learning the policy, a reward function is de-
fined for benefiting the agent to keep the machine in the working state
and for predicting the best time to trigger maintenance actions. This
function is defined in (3), where 𝐨𝑚 is the observation of the current
state of machine 𝑚, 𝐚𝑚 the action taken, and 𝐨′𝑚 the next observation
obtained from machine 𝑚. 𝜂 is defined in (4), with 𝑓𝑐 ∼ 𝑊 (𝑥; 𝛼, 𝛽)
the time steps in which the selected component 𝑐 by the maintenance
action will fail, and 𝑙𝑐 the current time steps of the component.

𝑟𝑚(𝐨𝑚, 𝐚𝑚, 𝐨′𝑚) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if 𝐨′𝑚 = 𝑤𝑜𝑟𝑘𝑖𝑛𝑔
1 − 𝜂 if 𝐨′𝑚 = 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

0 if 𝐨′𝑚 = 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛
−2 if 𝐚 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑

(3)

𝜂 =

{ 𝑓𝑐−𝑙𝑐
𝑓𝑐+𝑙𝑐

if 𝑓𝑐 > 𝑙𝑐
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

Overall, the agents learn how to keep machines in the working state
as long as possible due to the fact that this condition allows them to
obtain the highest reward, and, in an indirect way, to identify the best
technicians to perform the maintenance in the shortest amount of time
steps to move out of the breakdown and maintenance state as quickly as
possible.

4. Evaluation

For evaluation purposes, the proposed RL-based maintenance policy
is going to be compared with traditional ones such as CM and PM.
Section 4.1 describes such policies. Section 4.2 presents the experimen-
tal set-up. Section 4.3 presents the training phase of the multi-agent
system. Section 4.4 presents and discusses the obtained results.

4.1. Maintenance policy benchmarking

To evaluate the proposed RL-based maintenance policy, three main-
tenance policies are implemented: corrective (CM), preventive (PM),
and a random one (RA), in a similar way as proposed in [60]. Each of
these policies is further described in the following.

CM is the simplest policy. It is based on waiting for any of the
components 𝑐 in machine 𝑚 to fail before performing the maintenance
action. Once the machine goes to the breakdown state, it checks if
there is a technician 𝑡 available. If any, technician 𝑡 is assigned to
𝑚, otherwise, 𝑚 makes the 𝑡 query at each time step until it can
perform the assignment. The pseudocode of this policy, which has been
implemented in our environment, is detailed in Algorithm 1.
Algorithm 1 CM policy
𝑚 ← current machine
𝐶𝑚 ← set of Components
if state(𝑚) = breakdown then

for 𝑡 in 𝑇 do
if state(𝑡) = available then

for 𝑐 in 𝐶 do
if state(𝑐) = break then

do maintenance to 𝑐 by 𝑡
break

The RA policy is part of the preventive maintenance policy be-
ause it tries to perform maintenance actions before the failure occurs.
or this, an 𝜖 can be defined, which determining the probability of
6
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Table 5
Parameters of the studied scenarios.

|𝑀| |𝑇 | |𝐶𝑚| 𝛼𝑐 𝛽𝑐 𝑟𝑡𝐶
Scenario 1 3 2 2 ⟨6, 8⟩ ⟨5, 5⟩ ⟨(8, 2), (2, 8)⟩
Scenario 2 5 3 2 ⟨6, 8⟩ ⟨5, 5⟩ ⟨(8, 2), (2, 8), (8, 8)⟩

requesting a technician 𝑡 to perform maintenance actions to any of
the components 𝑐 ∈ 𝐶𝑚, even if the maintenance is not ‘necessary’
(i.e., not critical). In case there is no technician available, the operation
is repeated for the next time step. The pseudocode of this policy is
detailed in Algorithm 2.

Algorithm 2 RA policy
Parameters 𝜖 ∈ (0, 1]
𝑚 ← current machine
𝐶𝑚 ← set of Components
𝑟 ← random number between 0 and 1
𝑐𝑟 ← random 𝑐 from 𝐶
if 𝑟 < 𝜖 then

for 𝑡 in 𝑇 do
if state(𝑡) = available then

do maintenance to 𝑐𝑟 by 𝑡
break

The PM policy performs maintenance actions periodically. A time
period  should be set for each 𝑐 ∈ 𝐶. This will indicate the times
t which maintenance will be requested to be performed on the com-
onents 𝑐 ∈ 𝐶. In case that 𝑐 failed before the maintenance action is
erformed, the PM policy can request a technician 𝑡 to perform a cor-
ective action to the particular component that failed. The pseudocode
f this policy is detailed in Algorithm 3.

Algorithm 3 PM policy
Parameters  = {𝜏1, ..., 𝜏𝑐} period of maintenance for each 𝑐 in 𝐶𝑚
𝑖 ← current timestep
𝑚 ← current machine
𝐶𝑚 ← set of Components
if state(𝑚) = working then

for 𝜏 in 𝑐 do
if i = 𝜏 then

for 𝑡 in 𝑇 do
if state(𝑡) = available then

do maintenance to 𝑐 by 𝑡
break

else
do apply the CM Policy
break

The next Sections detail the experimental environment and setup in
which the three above maintenance policies and ours (RL) have been
implemented for evaluation and comparison purposes.

4.2. Experimental setup

To test our system, a variable number of agents and technicians are
defined, and two types of component failures are modeled based on the
𝑊 (𝑥; 𝛼, 𝛽) distribution. A different 𝛼 for each type of failure is used,
which analogously represents the time to failure, and a single 𝛽 ≥ 2
s set to model wear-out failures [89]. Three technicians are defined,
here only the first two are used in the first scenario (as reported in
able 5). The repair time of the technicians is set so that one technician

s highly experienced in repairing one type of failure (short repairing
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Fig. 4. Training and evaluation of the 3M-Scenario.
time) and inexperienced in repairing the other (long repairing time),
the opposite applying for the second technician. The third technician
is inexperienced in repairing both types of failures. To evaluate the
proposed policy with respect to the policies described in Section 4.1
(CM, PM, RA), the horizon of the episode is limited to 1.5 times the
maximum 90th percentile of the failure distributions. In this way, we
can evaluate the occurrence of both failure distributions in a short
period of time. The configuration used for each scenario (3 machines
and 5 machines) is given in Table 5.

4.3. Training of RL agents

To evaluate our system, the agents are trained using the Proximal
Policy Optimization algorithm [90] based on the RLlib library im-
plementation. This is part of the policy gradient methods and ensures
that the policy update stays close to the previous policy by optimizing
a clipped surrogate objective. In addition, we use Curiosity [91] as an
exploration strategy to address the lack of diversity of the reward (spar-
sity) due to the fact that some actions may not provide an immediate
reward (e.g., delay action). Curiosity is a type of intrinsic motivation
for exploration that encourages the agent to experience novel states.
Deepak Pathak et al. [91] define curiosity as the error in an agent’s
ability to predict the consequence of its own actions in a visual feature
space learned by a self-supervised inverse dynamics model. The agents
are trained with completely independent policies for 5 millions steps.
A fully connected 2-layer of 16 × 16 is used, a batch size of 2000, and
a learning rate of 1e−3, while keeping the remaining hyperparameters
by default. Figs. 4(a) and 5(a) show the training curves (dashed green
curves) of the 3M and 5M-scenarios respectively, and their average
(purple) over the 50k steps, where agents manage to learn the policy
despite the non-stationarity effect of the learning of multiple agents.

4.4. Maintenance policy comparison analysis

As detailed in Section 4.1, policies learned by our multi-agent
system are evaluated with respect to the CM, PM, and RA policies.
All the actions of these policies are valid, so unlike RL agents, these
agents know what each agent chooses when forming the joint action to
be executed in the environment. This prevents, for example, multiple
agents to choose the same available technician, which RL agents do
not know a priori when performing the joint action. In the RA policy,
as shown in Algorithm 2, an 𝜖 = .35 is set, which prevents the agent
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from executing a maintenance action too quickly. For the CM policy,
there is no parameter to be adjusted/set in Algorithm 1 since the agents
wait until the machines switch to the breakdown state for requesting
a maintenance action. In the PM policy, as shown in Algorithm 3,
the maintenance action is triggered based on the failure distributions.
In this respect, the maintenance request times are given by  =
{E[𝑓1],… ,E[𝑓∣𝐶𝑚 ∣]}, where E[𝑓𝑐 ] represents the expected value of the
distribution of failures 𝑓𝑐 ∼ 𝑊 (𝑥; 𝛼, 𝛽) for component 𝑐 ∈ 𝐶𝑚. In
case there is a failure before requesting maintenance, then the CM
policy is performed. To evaluate the different maintenance policies,
four metrics are defined: percentage of time that the machines were
in working state; performance based on the total reward obtained for
each policy; total number of breakdowns per episode; total number
of maintenance actions per episode. In our experiments, results were
obtained by averaging the results over 1000 episodes.

Results obtained from our experiments are given in Figs. 4 and
5 for the 3M and 5M scenarios. Looking at metric percentage of time
in working state (see Figs. 4(b) and 5(b)), results show that the RL
policy outperforms the three other policies (CM, RA, PM), as RL allows
machines to stay ≈60% of the time in working state, against 40% to 50%
for CM, RA and PM. Besides, RL spends ≈20% less time in breakdown
state than CM, RA, PM, while spending a similar amount of time in
the maintenance one. This brings evidence that the RL agents not only
succeed in predicting when to execute the maintenance actions to avoid
a failure, but also in improving agent coordination (e.g., avoiding them
to pick the same technician at the same time). Looking at metric total
reward, as can be seen in Figs. 4(c) and 5(c) for the 3M and 5M
scenarios, the cumulative reward in the RL policy outperforms the other
policies between 20% to 35%. This suggests that, because agents are
guided by the reward to keep the machine in a working state, and they
request maintenance actions as close as possible to the failures, it is
a policy that reduces unexpected failures while reducing the collision
of maintenance requests. The latter is due to the fact that, if several
agents request at the same time the same technician, this is considered
as an invalid action, which is penalized and causes a restart of the
environment, thus preventing the maximization of rewards. Looking at
total number of breakdowns (see Figs. 4(d) and 5(d)), the policy learned
by the RL agents – being guided to obtain a reward for approaching the
time step in which there will be a breakdown – succeeds in reducing
the number of breakdowns. One explanation lies in the fact that the
other policies do not have adequate knowledge of when to trigger the
maintenance due to the lack of coordination between agents. This could
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Fig. 5. Training and evaluation of the 5M-scenario.
be different for the case of the PM policy if |𝑇 | ≥ |𝑀|, since, on average,
it would be executing the maintenance action taking advantage of the
completely useful life of the components. However this scenario is
unrealistic considering a manufacturing scenario. Instead, if the value
of 𝜖 in the RA policy is increased, this would decrease the number of
failures but at the cost of an increased number of maintenance actions.

Figs. 4(e) and 5(e) give insight into the number of maintenance
actions performed by each policy. Interestingly, the RL policy gener-
ates a higher number of actions. However, this needs to be put into
perspective considering how this contributes to reducing the overall
system downtime, for which RL outperforms the three other policies (as
previously analyzed with Figs. 4(b) and 5(b)). One reason that might
explain this result is that scheduling a higher number of maintenance
actions can prevent machines from switching to the failure state, but
also avoid any queue for the availability of technicians to trigger the
maintenance action.

4.5. Financial implication

The different policies in both scenarios were evaluated from an
economical aspect considering three key variables obtained from Sec-
tion 4.4. Since the profit of the company is obtained by their produc-
tivity, we evaluate the total profit with respect to the number of time
steps that the machines are in the working state. However, giving that
maintenance actions and breakdowns also represent a cost to the total
profit, these two parameters (number of breakdowns and maintenance
actions) are also taken into account when calculating the total profit.

Based on this premise, the total profit is calculated using (5),
where 𝑝 represents the total profit, 𝑝𝑚𝑎𝑥 the maximum profit, 𝑎 the
total percentage of time steps in the working state, 𝑏 the number of
breakdowns, 𝑐 the number of maintenance actions, and 𝛼 ∈ [0, 1] and
𝛽 ∈ [0, 1] a ratio of the maximum profit that each breakdown and each
maintenance action costs respectively. The maximum possible profit,
per episode, is the scenario where the machines are all the time in the
working state.

𝑝 = 𝑝𝑚𝑎𝑥(𝑎 − (𝛼.𝑏 + 𝛽.𝑐)) (5)

Figs. 6(a) and 6(b) illustrate that the top-1 policies with different
values of 𝛼 and 𝛽 represent between 1% and 10% of the 𝑝𝑚𝑎𝑥 for
breakdown events and maintenance actions. These are extreme values,
but they allow us to identify the frontiers where one policy outperforms
another from a total profit perspective. Dark colors (also denoted by
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‘‘+’’ in the legend) represent a profit gain, while light colors (denoted
by ‘‘−’’) represent a loss. For different values of 𝛼 and 𝛽, the RL, RA,
and PM policies perform better. However, unlike RL and PM, the RA
policy never leads to a positive profit, which is unrealistic. As can be
seen from the results, if the cost per number of maintenance actions
increases, the preventive policy becomes a better choice than the RL
policy. On the other hand, if 𝛽 is kept low, the RL policy is not affected
by an increase of 𝛼, which is due to the prevention of breakdowns.

5. Discussion

Although the present research work opens up a new direction to
maintenance task scheduling in uncertain environments and with dy-
namic assignment of technicians with different skills, some limitations
or improvement opportunities should be raised.

First, one of the great advantages of multi-agent systems is the
distribution of a complex task into multiple simpler tasks among dif-
ferent agents to avoid the exponential growth of the joint action
space [92,93]. However, multi-agent RL systems present different chal-
lenges such as agent heterogeneity, communication, the definition of
collective goals (cooperation), scalability, design of compact represen-
tations of the true state of the environment, and the main problem
of the non-stationarity [86,87]. Many approaches propose to adopt a
centralized-learning approach (cf., Fig. 2) to address some of these
challenges [93,94]. Nevertheless, decentralized-learning has proven to
be as effective in addressing this problem [95]. In the current work,
we use a fully decentralized learning paradigm of RL that may prove
to be computationally expensive due to the large search space on a
day-to-day basis, the dynamic nature of the manufacturing floor, and
the interactions between agents that may become complex to be man-
aged [96]. To overcome this, new approaches should be investigated.
Combining RL with metaheuristics for the exploration of RL agents is
a possible direction [97]. Besides, we consider that it is also important
to evaluate the design of the agents’ observations with respect to the
type of learning to be used.

Second, usually for the assignment of technicians to perform a
maintenance task, a planner is in charge of obtaining all the require-
ments, such as the number of technicians needed, the craftsmanship
skills, the working hours, the duration of the job, etc. [98]. However,
when defining policies obtained by RL agents, these policies can exhibit
(very) complex behaviors, which can cause distrust when planners,
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Fig. 6. Top-profit policies for different 𝛼 and 𝛽, which respectively represent the cost (percentage of the maximum profit) of a breakdown and maintenance action. Dark colors
(denoted by ‘‘+’’ in the legend) represent a profit gain, while light colors (denoted by ‘‘−’’ in the legend) represent a loss. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
schedulers, or even technicians are part of the decision making pro-
cess [99]. It is therefore very important in future PdM frameworks to
focus ‘‘explaining’’ the decisions resulting from such frameworks, which
is also known as XAI (eXplainable AI) in the literature [96,100,101].

Finally, in the approach presented in this paper, the maintenance
policy learned by the RL agents is based on equipment degradation,
and on the skills of the technicians and their availability. However, as
evidenced in Section 2, in order to optimize the learned policy, it is
important to explore the development of a joint policy with production
activities to look for the best time windows of opportunity [60] to per-
form the maintenance actions, but also to take into account the quality
data (i.e., monitoring how the quality of a given process degrades over
time) [33,51].

6. Conclusion

This research work examines a novel stochastic system that ex-
periences multiple types of failures on a set of machines working in
parallel (i.e., that are independent from one another). The problem
consists in determining the best time to assign a maintenance task to
a given technician (depending on her/his availability and skills) on a
particular machine in order to avoid system failures and maintain a
high operational uptime. As evidenced through the review of literature
carried out in this paper, this problem has not yet been properly
addressed in the literature, or at least the identified state-of-the-art
studies are limited in several respects (e.g., they consider a single type
of failure; they do not take into account technician resources in the
problem formalization, or still they assume that technicians are always
available).

To solve this problem, a multi-agent deep RL system is proposed,
where each agent is responsible to monitor a single machine and trigger
the (appropriate/optimal) maintenance action(s). The efficiency of the
system is experimentally evaluated and compared with three other
policies (reactive, preventive and random). Results of the proposed
scenario show that the RL policy outperforms the others, reducing up
to 80% the breakdown time, and up to 75% the failure prevention.
To achieve these results, the RL policy performs more maintenance
actions. Although an initial economical evaluation to understand when
the RL policy might become too expensive from a profit perspective
depending on the cost of spare parts to fix a breakdown, the labor cost
of a technician to intervene on a machine, and so forth, such an analysis
requires further attention and validation.
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