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The success of carsharing as a relatively new and more sustainable way of traveling is moving private car ownership towards a
service use model. Competitivity is an essential aspect of this service and ways to increase profit while offering the most appealing
service are still getting explored. Among others, dynamic pricing strategies can be designed to increase profit by attracting more
users, selling more rental hours, or maximizing fleet utilization. In this paper, we propose an experimental method aimed at
developing a model for maximizing service profit. Using agent-based modeling to generate realistic scenarios, we analyze pricing
as a function of the potential demand (i.e., number of members) and supply (hours of booking supplied). The process of reaching
the maximum profit consists of testing various combinations of pricing-demand and pricing-supply ranges in order to find the
values that maximize the profit for every demand and supply level. Once the optimal prices are known, a polynomial fitting and an
optimization method are used to generate a functional form linking all the maximal profit obtaining the advised price to offer for
any specific supply levels. Results show how the profit only slightly depends on the variability of the potential demand, while it
strongly depends on the amount of supply. It is then shown how it is possible to obtain a linear relation that maximizes the profit in
the function of the price offered once the supply is given.

1. Introduction

Carsharing users benefit from access to a shared fleet of
vehicles on a pay-per-use model. This cancels the burden of
owning a car and the related cost connected to maintenance,
fuel, and insurance. Carsharing vehicles are typically
available for short-term rentals and paid by the minute or by
the hour. Carsharing comes in different formats [1, 2]:

(i) Station-Based Round-Trip or Two-Way carsharing:
customers can pick up a vehicle from any station,
but it must be returned to the same station where
the rent started.

(ii) Station-Based One-way carsharing: customers can
pick up a vehicle from any station, and it can be
returned to any available station.

(iii) Free-floating carsharing: pick up and drop off can
happen in a vast operation area designated by the
carsharing provider without any predefined station.

One of the main features of a carsharing system is
flexibility. This, together with the diffusion of mobile ap-
plications and Internet, helped carsharing services to be-
come mainstream. The most straightforward use of this
technology is to book vehicles on the fly. Moreover, an app
allows fast payment, user-tailored experience for users and
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grants continuous supervision from operators together with
massive opportunities for data collection and analysis [3]. It
is evident how the ability to offer a flexible interaction with
vehicles is one of the features that contributed the most to
the carsharing success [4] and, at the same time, makes daily
utilization rates soar above 10%, which is considerably
higher than the average rates for private cars (Lawrence D.
Reference [5]). The growth of this service in the frame of the
sharing economy principles makes the effect of a paradigm
shift towards sharing mobility clear [6]. Carsharing can help
sustainability in three ways:

(i) Vehicles used in carsharing are typically more fuel
efficient [7].

(ii) One carsharing vehicle is used by more than one
person. Some of these people decide not to own a
car, so this leads to fewer cars getting dismissed.

(iii) Lowering GHG emissions by reducing vehicle ki-
lometers traveled [8].

During the course of the last decades, the expansion of
this service attracted research from a variety of fields ranging
from market analysis, pricing, location, and allocation
strategies to travel behavior and sustainability [9, 10]. With
these services being usually managed by private actors,
several studies have focused on how to efficiently manage the
fleet and how to increase profit and revenues [11, 12]. Great
focus has been placed on carsharing operations, more
specifically on carsharing relocation in one-way operations.
Still, the research done so far tends to be too context-specific
and therefore difficult to apply in different situations [1].
While the goal of the paper is not to solve the context-
specific approach used in other works available in
the literature, we propose a procedure that steers towards
generalization and reproducibility in different contexts
where this specific service is introduced.

The increased number of operators, their expansion, and
competition phenomena make carsharing pricing important
for business sustainability. Pricing schemes affect the spatial
and journey-purpose profiles of the carsharing usage,
influencing who is using carsharing, when and where [13].
This shows how a well-conceived pricing scheme can make
the difference between a successful company and a non-
profitable business. Focusing on one-way systems, zone and
time of day price variations have been proposed. With the
goal of balancing the fleet distribution in the system, a
mixed-integer nonlinear programming model was applied in
order to increase profit, showing that optimal prices are
usually 23% higher than the base rate applied and, even
though less demand is served, the enhanced performance of
the system can boost earnings on the company side [14].

The relation between price, demand, and supply is still
not fully understood, given the high complexity of the
problem due to the many interacting demand and supply
state factors. Profit can depend on a multitude of variables:
diverse characteristics of the demand such as its elasticity
and its intrinsic features (e.g., age, income, way of living,
type of trips made) [15], exogenous conditions such as
different policies applied in the area of service and specific
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incentives given to the company [12], supply characteristics
such as fleet availability and competition [16], and its op-
erational costs that depend on fleet usage and location.
Therefore, coming up with a simple model to be used in
profit optimization is not trivial.

In this paper, we take inspiration from dynamic pricing
schemes developed in other businesses and disciplines,
which have a long tradition in seeking profit maximization
strategies, such as, for example, tourism management,
transportation economy and logistic, airline business.
Methods of dynamic price variability with revenue maxi-
mization goals have been applied in hotel management;
findings suggested that a stronger price variability leads to
higher revenues [17]. Charging a distinct price for the same
service is found to be one key for increasing revenues and
similar behavior is also observed in airline management.
Here, it is noticeable how the goal of such strategies is to
exploit the heterogeneity in markets and not to make cus-
tomers pay more [18]. There are two main schemes adopted
in airlines pricing: intertemporal price discrimination—to
buy a product for future consumption needs—and dynamic
adjustment to stochastic demand—price in function of the
selling rate of a product. It is observed how the synergy of
these two approaches leads to significantly higher revenues
when compared to more restrictive pricing strategies [19].
Dynamic pricing (or dynamic price discrimination) is in-
deed a well-explored stream in the airline industry literature.
It is defined as the adjustment of “prices based on the option
value of future sales, which varies with time and units
available” [18]. Acquiring insights into this pricing strategy
and capturing the analogies can be beneficial for carsharing
operators in terms of profit maximization objectives.

Our recent works on carsharing pricing strategies sug-
gested new ways to maximize companies’ revenues. With the
goal of assessing travel behavior and equity impacts, we
studied two dynamic pricing strategies evaluating their
impact on a carsharing company revenue. Findings show
that prices based on availability help to increase revenue
when compared to fixed pricing schemes [20]. Taking ad-
vantage of one of its main peculiarities, one-way carsharing
has been the target of a profit maximization strategy by
means of user-based vehicle relocation. Exploiting this re-
location strategy and avoiding the more conventional op-
erator-based relocation, it was found how the operator’s
profit can be increased [21]. Concerning both the two-way
and one-way service, a way to optimize carsharing profits in
the planning phase was addressed; the optimization of the
fleet size and the vehicle allocation in each station was
studied with a mixed-integer linear programming model
[22]. Testing new strategies, especially brand-new strategies,
could be a difficult and resource-intensive task. For example,
to set up pricing experiments in a real-world setting could
require substantial disruption of carsharing operations.
Considering that we are looking for emerging functions for a
complex system with many variables and intertwined be-
havioral processes, the use of a simulator is a valuable asset to
get insights and can produce advanced screening of oper-
ational strategies. Carsharing has already been the focus of
work on agent-based simulation. For example, in Ciari et al.
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[23], the authors present several reasons why it is advan-
tageous to use an agent-based approach to describe simu-
lating a carsharing service. In Ciari et al. [24], it is described
how MATSim (a mesoscopic agent-based simulator) is
adapted to incorporate carsharing. Other studies have also
seen the simulation of a carsharing service performed using
an agent-based approach. For example, Heilig et al. [25]
integrate carsharing with an agent-based simulator that
simulates travel behavior over a week in greater Stuttgart.

The question behind this paper is the following: “is it
possible to identify a maximum profit functional relation-
ship for any given combination of demand, supply and
price?”. To answer this research question, we created an
experimental method that maximizes the profit of a com-
pany for any given usage of the supply advising the price of
every booking. Considering that the state of the supply is
thoroughly known by the company at any given time, the
formulation of the solution is conceived to be opportunistic
and adaptable at any given moment, taking advantage of the
circumstances, contrary to planned strategies that cannot be
easily adapted if specific events happen.

To the best of the authors” knowledge, this work helps to
bridge the gap between profit maximization problems and
agent-based simulation applied to a real case carsharing
scenario. The method hereafter exposed can be considered
applicable to any round-trip carsharing service except for
what concerns the calibration phase. To showcase the results
in a realistic setting, the data used in this paper is extracted
from the Munich dataset of Oply, a B2C carsharing company
operating with a round-trip mixed system. Oply offered a
two-way service using small areas instead of punctual
stations.

2. Methods

2.1. Methodology. Even though carsharing has been around
for quite some time, models able to fully assess its func-
tionalities are not yet fully developed. A conventional four-
step model makes use of data that is too aggregated, not
allowing researchers to assess the peculiarities of a car-
sharing service. That is why, to appraise round-trip car-
sharing, an aggregated trip-based model cannot be able to
reliably assess fundamental Key Performance Indicators
(KPIs) such as service availability at a precise point in space
and time [26], users spending, activities, service profitability,
and usage during a typical business day. Taking into account
the limited number of carsharing vehicles and users, a
mesoscopic or microscopic simulation is possibly the most
suited approach. The most popular way to apply this cri-
terion in order to capture trends and indicators resulting
from individuals’ activity travel behaviors is through agent-
based modeling [27].

Addressing a relocation problem, agent-based simula-
tion was used for choosing the fleet size of a carsharing
service in Texas. Comparisons of a calibrated simulation
with actual data from Austin’s car2go confirm the appli-
cability of the simulation approach, as stated in [28]. A
similar approach was applied to estimate travel demand for
carsharing through an activity-based microsimulation. A

phase of validation against customer data of a Swiss car-
sharing company following the simulation was shown to be
able to give plausible results in terms of overall carsharing
usage [24]. The simulation of innovative transport modes
with agent-based models has been proven useful because of
their microscopic nature. That is, regarding carsharing, the
peculiarity of the services offered can be modeled in a re-
alistic way and can capture car availability at a given location
at a given time. Among the various agent-based simulation
platforms, MATSim (Multi-Agent Transport Simulation),
while applicable on large-scale scenarios, is capable of
providing a disaggregated representation of carsharing
operations and use (i.e., single vehicle and single user level
[29]). For all of the above reasons, this approach has also
been used in this study.

Even though the agent-based simulators offered available
in the literature is relatively vast, we selected MATSim since,
up to date, it is one of the few that already allows simulating
carsharing services [24, 30, 31]. Its use related to the users’
activity chain and its integration with the microscopic land-
use simulation system SILO (Simple Integrated Land-Use
Orchestrator) [32] makes this agent-based simulator suited
to our task. Carsharing in MATSim is modeled as a private
car with the addition of a reservation phase and an auxiliary
monetary payment [26]. At every iteration, the simulator
assigns to carsharing members a carsharing leg or a car-
sharing subtour with a predefined probability. Thanks to this
strategy, a plan with the carsharing mode is executed. At the
end of the iteration, the score is evaluated and the goodness
of the plan with the carsharing alternative for a specific agent
is evaluated. The use of carsharing in simulation is modeled
following a specific process: first of all, after having finished
their activity, the agent looks for the closest car carrying out
a reservation; then, they proceed to reach the station where
there is the reserved vehicle by foot. The vehicle is then taken
and driven towards the next activity, where the vehicle will
be parked. This phase is repeated for all the activities that
need to be executed until the last one, where the agent will
end the rental and leave the vehicle in the same station where
they picked up the vehicle. From now on, the vehicle will be
available for the other agents.

MATSim simulation is based on the coevolutionary
principle, for which “every agent repeatedly optimizes its
daily activity schedule while in competition for space-time
slots with all other agents on the transportation infra-
structure” [29]. That is, a MATSim simulation is based on
multiple iterations of the same day with the goal of reaching
a user equilibrium since the optimization is based on an
individual scoring function. It should be noted that one of
the fundamental properties of carsharing is the uncertainty
generated by the probability of not finding an available
vehicle. In reality, this would be solved with a quick
replanning of the modal choice by the carsharing user. In the
case of MATSim (even if it is possible to simulate the user’s
adaptation to unexpected events), the user who manages to
rent the vehicle at iteration i will try to keep it also in the next
iterations i+1. In the event that this is not possible (e.g.,
another user books the same vehicle in an earlier time), the
plan will be heavily penalized and the probability of reusing



carsharing very low. Ultimately, it is argued that it is not
necessary to represent the competition generated by the
research of car sharing machines since this process is still
represented by the coevolutionary process integrated in
MATSim [33]. One of the features of this simulator is that
agents have memory. In this case, every agent can remember
up to five different plans and choose among them at the end
of every iteration using a logit model as a decisional model.
In case agents do not find a car in one iteration and then find
it in the next one, they will try to keep the plan with the best
score. Here, there are two rules involved: first-come, first-
served, and scoring maximization. If an agent » finds the car
in iteration I, they can carry out their activities. In the
moment they do not find a car anymore at iteration i+1, they
will not carry out their activities. This means that a low score
will be assigned to the agent that, in the future, will change
their mode of transport. In the end, if an agent finds a vehicle
in a prior iteration, it will receive a certain score. If in the
following iteration it does not find any vehicle (meaning that
someone already took it), it will receive a low score since it
cannot carry out their activities. Since MATSim as a whole
tends to evolve to a stable state, and given the fact that the
first-come, first-served behavior could lead to problems in
reaching this stability at the last iterations, we set up specific
strategies to guarantee convergence. MATSim strategies can
be deactivated when the simulation reaches a specific iter-
ation. In order to reach a stable state when carsharing is
simulated, it is important to deactivate (in case they have
been activated by the user) two specific strategies towards the
end of the simulation: TimeAllocationMutator and Ran-
domTripToCarsharingStrategy. The former introduces a
time shift that, in the moment, is deactivated will guarantee
that times (departure, arrival) will not be modified by the
agent. The latter makes one carsharing member reserve a
carsharing vehicle. In the moment it gets deactivated, no
new trip with the carsharing service will be proposed. This
precaution helps the achievement of a stable state at the end
of the simulation.

The methods section is structured in three main parts:
the first section concerns the methodology. The first sub-
section explains the setup of an agent-based simulator and
the generation of the synthetic population using SILO and a
microscopic travel demand model (MITO) [34], the second
one debates the calibration method, while the third sub-
section explains the maximization method. The second
section is dedicated to the case study and explains how the
scenario is set up. It discusses the introduction of Oply’s
members in the simulation and, finally, explains the
framework of the two experiments that will be carried out.

2.1.1. Simulation Setup. MATSim is an open-source soft-
ware, written in the Java programming language, used to run
large-scale agent-based transport simulations. The basic
input files used by MATSim are the following:

(1) Network. The network file is usually obtained by
importing OSM (Open Street Map) data into JOSM (Java
Open Street Map). This time, however, since we used SILO

Journal of Advanced Transportation

and MITO in order to generate the synthetic population that
best suits our needs, we use the Munich network available in
the SILO repository.

(2) CSStations. A CSStations file consists of a list of all the
stations and the vehicles available at the beginning of the
simulation day. In our case, the station and vehicle distri-
bution used by the company was employed.

(3) Plans. A plans file (or population file) consists of a
synthetic population representing the ones living in the
study area, usually generated using census data.

(4) Synthetic Population Generation. As an agent-based
simulator, one of the MATSim fundamental inputs is the
synthetic population of agents that will move in our sim-
ulated network accomplishing tasks as written in their ac-
tivity chain file (i.e., plans). To generate this file, we made use
of SILO and MITO. SILO produces and updates the syn-
thetic population for the study area, i.e., the city of Munich
in Germany, using geographical data available from micro
census and travel times applying an iterative proportional
updating algorithm [35]. The travel demand model MITO,
using the synthetic persons generated in the previous phase
by SILO, distributes all trips returning the plans file needed
in MATSim. Using this approach and starting from the
German census data of 2011, we obtained the population
updated to 2020 ready to be run in MATSim. The infor-
mation regarding the households for the German population
is available in the 2011 Household Census [36]. The census
takes place every 10 years.

2.1.2. Simulation Calibration. Once we obtained the pool of
members, we passed to a calibration phase in order to make
the base scenario of the simulation match Oply’s perfor-
mance for a given typical day. The two indicators that we
needed to match in order to calibrate our simulation were:
the number of bookings and daily revenue. The value of
these two indicators is obtained by averaging them over a
fortnight’s service. The procedure chosen to carry out the
calibration is an iterative bilevel calibration approach. Using
a quadratic regression, two constants are iteratively esti-
mated in order to match the number of bookings and the
daily revenue.

Booking Time. An average weekday of operations in
Munich could reach an amount of around 130 bookings
resulting in a total time of 508.5 hours (0s). In MATSim, a
booking is a function of many variables. First of all, all
agents, including carsharing members, do not have car-
sharing as their predefined transportation mode. During
every iteration, a specific “random trip to carsharing”
module assigns, with a probability of 20%, the carsharing
mode to a member.This means that this specific strategy
prompts agents “to use the carsharing service by randomly
substitute a leg mode which should not be a chain-based
mode, by a carsharing mode” [37]. Additionally, another
strategy called “CarsharingSubtourModeChoiceStrategy” is
enabled. This strategy “changes the transportation mode of
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all the legs of a sub-tour to a different mode” [37], in this
case, a two-way carsharing vehicle.

At the end of the iteration, the scoring is calculated, and
the modal choice is kept performing a multinomial logit
model selection between plans. The scoring of traveling with
the carsharing mode is described in (1), where acs is a
constant which can be used as a calibration parameter. The
description of all the other parameters is in Table 1 and is
directly taken from the MATSim manual [29]. The second
and third terms refer to the time-dependent and the dis-
tance-dependent parts of the fee, respectively. The fourth
term takes into account the walking path to and from the
station. The latter represents the marginal utility of an ad-
ditional unit of time spent traveling with the carsharing
service.

Strav,q,cs = ‘Xcs + ﬂc,cs * pt * tr + ﬂc,cs * pd * d

(1)
+ ﬁt,walk * (ta + te) * ﬁt,cs * 1.

The number of bookings is dependent on the score,
which is why the Carsharing Constant (CsC) «,, is used as a
calibration parameter.

Daily Revenue. An average weekday of operations in
Munich brings a revenue of 3500 €. The revenue is directly
dependent on the booking time, given that the service price
is offered as euro per unit of time. Also, the time a vehicle is
booked and depends on the utility (i.e., the score) an agent
gets using the carsharing service, which depends, in turn, on
the CsC. That describes in what measure the cost of the
carsharing impacts the users and, indirectly, modifies the
final revenue.

Calibration Process. The calibration process consists of a
procedure in which five simulations are run in parallel with
different values of the CsC.

The goal of the calibration is to find a CsC that generates
a total booking time similar to the one observed during
Oply’s daily operations.

The first step consists in running five simulations, each
with a different CsC to retrieve the booking times (Table 2).

We plot these points as shown in Figure 1.

We fit the point with two power trend lines described by
the following:

T, =23.85%a’’®, (2)

In order to find the values of booking time we are
looking for, we use the function of the power trend line to
find the CsC when the booking time is of 508 hours
(1828800 s). This way, we are able to find a.,=12.7. Using
this value (i.e., the CsC), we were able to get the same
booking time as the prefixed target. The number of bookings
does not coincide with the average number of bookings
experienced by Oply. Since the calibration is done on the
booking hours and not on the booking number, it is ex-
tremely unlikely to get a booking number that has an
identical match since there is no one-to-one correspondence
between these two elements. The revenue does not strictly
depend on the number of bookings, while it does depend on
the number of hours booked.

2.1.3. Profit Maximization. In carsharing operations, we can
calculate the profit (P) as the difference between the revenue
generated renting the vehicles and all the fixed and variable
costs (c) sustained by the company. Revenue (R) is the gross
income generated from the business operations and, in our
case, is a function of the following:

(i) Demand (Q), the number of members that will carry
out a booking on a given day. It is a subgroup of the
potential demand (D), all members of the car-
sharing service that can make a booking;

(ii) Supply (S), the number of hours we are able to sell to
our customer base;

(iii) Price (p), the cost of renting a vehicle by a unit of
time (i.e., rental hours).

It is clear that, once the supply is fixed and the potential
demand is known, different prices will lead to a different
revenue that, once the fixed and the variable costs are
known, will return a profit curve where P=f(D,p). The same
can be said if the potential demand is considered fixed and
the supply varies. Once the fixed and the variable costs are
known, we can obtain a profit curve where P = £(S,p). The two
types of costs (obtained from Oply) considered are as
follows:

(i) Variable costs linked to the utilization of one vehicle,
including maintenance, fuel, wear of the vehicle
estimated with an amount of 1.5 €/h;

(ii) Fixed costs for one vehicle, including insurance and
leasing costs, estimated with an amount of 3 €/day.

Following the research question stated in the intro-
duction, we created an experimental method in order to
calculate the two afore-mentioned functions (i.e., P=f(D,p)
for several D values and P=£(S,p) for several S values.

2.2. Case Study

2.2.1. Scenario Setup. In Figure 2 we show the network and
the distribution of the stations. The actual offer from Oply
consists of 186 vehicles (4464 equivalent rental hours)
distributed along 79 stations. Oply introduces a slight
modification of the round-trip system: it does not have well-
defined landmarked carsharing stations, but the customers
are required to return the vehicle back to the zone, or a
neighborhood, where the rent started. These areas were
imported in QGIS and then converted into a MATSim-
readable file where vehicles for every virtual station were
introduced. A virtual station, hereafter defined as a station, is
a centroid representing a carsharing parking zone.
Regarding the population, we have generated the
equivalent of the adult population of Munich, roughly
1385000 citizens. It is computationally challenging to sim-
ulate this number of agents, running a MATSim simulation
of such a population took almost 25 days. Considering that
the scope of this paper is to assess indicators exclusively
related to carsharing, we opted to simulate only the car-
sharing population, 14747 people, that is, the agents who are
members of Oply in the study area. This assumption is
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TaBLE 1: Notation.
Notation Definition
A Calibration parameter
q Activity
Becs Marginal utility of money
p Price of one hour of reservation
t,, T, Reservation time, cumulative of all reservation times
P Price of one kilometer traveled
d Total reservation distance
B walk Marginal utility of walking
t, Access time
t, Egress time
Bics Marginal utility of traveling with carsharing
t In vehicle time
r, R Revenue
P Profit
D Potential demand
Q Demand
S Supply
TaBLE 2: CsC calibration phase one.
Simulation O Booking time (s)
1 5.0 11 972
2 7.0 102 117
3 9.0 498 955
4 11.0 887 936
5 13.0 2 035 090

Booking Time [s]

*  Booking Time vs. CSC
— Trending Line

FiGUre 1: Booking Time vs CsC plot.

considered reasonable given the goal already stated. Results
may be limited since the use of a population smaller than the
actual population of Munich will not generate any con-
gestion at all. Simulating only the mobility choices of the sole
carsharing population of Oply will not trigger phenomena
related to congestion since the demand on the road will be
necessarily smaller than the one for which the real network is
built. To fix that, we scale down the capacity of the network.
To do so, we set the parameters “flowCapacityFactor” and
“storageCapacityFactor” [29] in the configuration file to
0.011. It has to be pointed out that we are not simulating the
shared-car users only but the members of the carsharing

service. These agents are not going to necessarily use the
service but are just subscribed to it as they will always have
the possibility to use different modes. Of course, to be a
recipient of the “RandomTripToCarsharing” the agent needs
to be a member of the carsharing service. The probability
given to the strategy is conceived as a way to randomly try
different mobility services and see if they can be beneficial
for the agent’s score while, at the same time, not exerting an
excessive load on the simulator and avoiding longer com-
putational times. The sampling rate of this strategy is not
linked to a specific type of agent, and it is not related to the
type of user.

2.2.2. Oply’s Members. Oply was a carsharing company
operating in some major German and British cities until
February 2020. Using the anonymized information of
their members’ database, we treated this data to fit the
scope of our simulation. Using QGIS, a free and open-
source geographic information system (GIS) [38], we
imported the location of the agents obtained in the
previous subsection. After that, we cropped down our
population to the one living inside the Munich border.
Once our synthetic population was ready, we imported
the residence location of all members of Oply into our
geographic platform. In order to be able to simulate a
typical day with MATSim, we needed to infer the activity
chain of these members and, moreover, we needed to
make this activity chain readable by MATSim. To do this,
we proceeded to apply an Iterative Linking Algorithm
(ILA) (Figure 3) based on the Euclidean distance within
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Sex F
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D
Age

87654321
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X:48.13
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Shopping 1000 X:4823 PT
Y: 1166
2 Agent Work 1200 X:4823 PT
Y: 1167

& Oply’s Member

()

(b)

D 12345678
Age 26
Sex  F
Base location
Activity Time
Work  7:30

STEP 3.

X:48.19Y: 11.63
Mode
Car

Location
X:48.13
Y: 1156
X:48.19
Y: 11.63

/T
Home 16:00 Car

D 87654321

Age el

Sex: M

Base location X:48.20 Y: 11.62

Activity  Time Location Mode

Shopping 10:00 X:48.23 PT
Y: 1166

12:00 X:4823 PT
Y: 116

(c)

FiGure 3: Example of the Iterative Linking Algorithm. (a) The agents, with their relative geographic coordinates and any attributes, are
imported into the GIS software. (b) ILA searches for the agent n closest (in terms of Euclidean distance) to member m. (c) ILA assigns the
attributes of agent n to member m then deletes agent n so that its attributes are not assigned to a possible member 1 +i.

an agent created in the previous subsection and Oply’s
members. The ILA allocates one agent’s properties (drawn
from the whole population set) to the closest member
(e.g., The ILA assigns the home location of an agent where
the closest Oply member lives) and, once done so, it
deletes the agent leaving only the member with all the
desired attributes.

This instance is repeated until all the members are
embedded into the synthetic population of Munich
(Figure 4).

2.2.3. Fixing the Supply. In this experiment set, the supply
is fixed for an equivalent offer of 4464 rental hours (the
actual offer from Oply). In order to vary the quantity of

booked hours, which is an output of the simulation, we
can change the number of members creating five different
inputs (Table 3).

The supply has been distributed following the same
distribution chosen by Oply. We modified the supply by
adding one or two cars per station (i.e., 24 or 48 hours
supply), respectively, in 4 and ¢, and removing one or two
cars per station (when possible), respectively, in ® and x.).
Furthermore, we introduce ten different prices (Table 4).

The set of prices is conceived around Oply’s pricing
model. Currently, Oply offers a base reservation price of 6 €/
h and unlimited mileage. Combining these inputs, we obtain
50 simulations that we run in parallel on a High Perfor-
mance Computing Platform (HPC) [39] using 4 cores and
40 GB for each instance.
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FIGURE 4: Distribution of the synthetic population and Oply members.

TaBLE 3: Scenarios definition for demand variation.

Scenario Number of Difference from the original
code members pool

X 11946 20% fewer
13273 10% fewer

] 14747 Original pool
16221 10% more

. 17843 20% more

TaBLE 4: Price.

Price [€/h] Price [€/min] Note

3 0.05

4.2 0.07

5.4 0.09

6 0.1 Original Oply’s pricing

6.6 0.11

7.8 0.13

9 0.15

10.2 0.17

11.4 0.19

12 0.2

2.2.4. Fixing the Potential Demand. Keeping the same pri-
ces, we set up another experiment in which we fixed the
potential demand of 14747 members while changing the
supply (Table 5). The supply has been distributed following
the same distribution chosen by Oply.

Combining these inputs with the 10 pricing values
shown in Table 2, we obtain 50 simulations run in parallel on
the HPC using the same above-mentioned computing
power.

3. Results

The average computational time for every simulation, which
consists of 500 iterations, is of 32 hours. Once the results are
obtained, they are processed with MATLAB and gathered in
a spreadsheet.

3.1. Fixing the Supply. Once the supply has been fixed and
the number of members is varied according to Table 3, we
evaluate the revenue and the profit reached for every set of
simulations (Figure 5).

It is noticeable how the shape of the profit function is
not significantly affected by the variation of the potential
demand. All the maximum points are always around
2000€. This result is reasonable and possibly caused by the
fact that the potential demand is not varying significantly
even though the range considered, especially the 3000
members of the difference between the actual and the
highest increment in the number of members, cannot be
considered modest. This means that it could still be
possible that with a greater increment of members, an
increment in profit could still be reached; however, an
increment of 3000 members for a carsharing service is not
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TABLE 5: Scenario definition for supply variation.
Scenario code Supply (h) Supply [car] Difference from the original supply
X 936 39 80% fewer
2568 107 42% fewer
[ ] 4464 186 Original supply
6432 268 46% more
* 8328 347 82% more
X |
8000 8000 8000
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Price [€/h] Price [€/h] Price [€/h]
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® Profit
*
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6000 LI 6000 o
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-4000 -4000
Price [€/h] Price [€/h]

Scenario Code
X

*

Number of Members
11946
13273
14747
16221
17843

FIGURE 5: Revenue and profit by potential demand variation.

trivial and, especially in reality, would be met with a
different supply than the one used in this paper. Of course,
this result is also related to the equilibrium reached with
the available supply and even though a few more vehicles
are rented, the marginal profit does not vary significantly
as the additional number of members is not compensating
the increase in operational costs.

In order to further assess the trend of the profit once the
number of members varies, we show in Figure 6 the profit
curve in the function of the potential demand and the price
offered.

The maximum profit is always reached when the price is
between 5.4 €/h and 6 €/h. Anyway, for what concerns the
profile of the surface, the profit slightly depends on the swing
of the potential demand. The peak in the middle of the crest
makes it clear that there is not a monotonic correlation. This
makes it difficult to formalize a function that describes the
relation between the two variables.

In Figure 7, we display the elasticity of the demand and
how the amount of booking time (i.e., the total hours for
which the fleet is booked) is not affected by the different
quantities of members.

This specific shape of Figure 7 it is plausibly a result of
the method used to create more demand. The members
generated to increase Oply’s customer base are randomly
spawned in the Munich area and linked to the closest agent
following the procedure shown in paragraph 2.2.2.

3.2. Fixing the Potential Demand. Once the number of
members is fixed and the supply is varied according to
Table 5, we assess the revenue and the profit generated for
every set of simulations (Figure 8).

Looking at how the diagrams change while the supply
increase, it is clear how the profit is strongly affected by the
change of the supply. Scaling up the supply generates an
increment of the revenue. This hints to a stronger rela-
tionship between these two variables (profit and supply) if
compared to the relation of the variables shown above in the
previous paragraph (profit and potential demand)”. In
Figure 9 we show the profit curve in the function of the
supply and the price offered.

The maximum profit is always reached when the price is
between 5.4 €/h and 7.8 €/h. In this case, concerning the
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FIGURE 7: Demand elasticity.

profile of the surface, the profit has a stronger dependence
on the amount of supply offered, and it does not change only
in function of the price. Given the monotonic shape of the
crest, we assess the relation between the two variables
(supply and profit) in a bidimensional space (Figure 10).
This is done using the price that allows reaching the max-
imum profit.

By performing a simple linear regression, it is possible to
model the relationship between the dependent variable, the
profit, and the explanatory variable, the supply. This model
shows how every hour of supply offered generates a profit of
0.40 €. However, the prices that are generated by this line are
various, as shown in Figure 9. That is why to show how the
unitary profit changes throughout all the stages of the
supply, we show the maximum profit divided by the total
number of hours supplied (Figure 11).

The trend of the marginal profit shown in Figure 11 is
less than linear. An explanation of this behavior can be

found in the overall usage rate. The usage rate (Figure 12),
which is obtained as the ratio between the total amount of
hours booked when the profit is the highest and the number
of hours supplied in the same simulation.

In these last three figures, we see that the supply increases
and together with it, the demand increases. The potential
demand, on the contrary, remains the same. For this reason,
at some point, the profit per hour sold will decrease with
increasing supply. In the presented cases, not all vehicle hours
are sold and the demand grows slower than the supply. This is
why the usage rate varies this way (Figure 13). We can see that
the marginal profit (Figure 12) has a slower growth compared
to the net profit (Figure 11) because the hours sold have a
slower increment rate than the proposed hours (as can be seen
by the decrease in Figure 13). These extreme cases are not
shown because of the connection with the realistic existing
carsharing supplier (the ratio between demand and supply is
limited as the catchment area remains the same).”
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FiGUure 12: Usage rate.

The decrease in the overall usage rate explains the less
than linear growth of the marginal profit. Along with the
increment of the supply and profit, the demand inter-
cepted by the service moves towards an inelastic state, the
usage drops since only people that must travel with the
carsharing will use the service (i.e., all the people that
could not complete their activity chain without
carsharing).

In Figure 13, we display the elasticity of the demand once
the supply varies. The three-dimensional graph in Figure 13
left displays the elasticity of the demand in a continuous
fashion, while the right figure shows its projection on the

price-booking time plan. The five functions can be con-
sidered homothetic with the elasticity of the demand de-
creasing together with the supply: a lower supply intercepts
an inelastic demand while a higher amount of supply in-
duces a strong elastic demand intercepted for a price lower
than 8 €/h and a less elastic demand intercepted for a price
higher than that.

Being the profit function of both the supply and the price
offered, we fit the data shown in Figure 10 as a three-di-
mensional surface (Figure 14).

Once the points of maximum profit are connected using
a polynomial fitting function, we obtained a concave surface.
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With the use of this figure, it is possible to define the highest
profit reachable for any given price once the supply is given.
Through a quadratic interpolation, we define the model in
(3) for pe[5.4, 7.8] (that is, the range where the maximum
profit was observed) and S € [936, 8328]

P(p,S) = —60.29p" + 739.9p — 2287

(3)
+5(0.027p +0.194),

where P is the profit, p is the price proposed per hour of
service, and S is the supply expressed in the number of hours.
Once the supply that can be offered is known, given the

concave shape of the surface, it is possible to define the price
solving (3) as an optimization problem as shown in the
following equation:

max P(p)

sazpersf] N

Since S is known at the moment of the booking, we
treated it as an “undefined constant” in order to identify the
line of maximum profit. We evaluate all the points where the
derivative is equal to zero.
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We calculate the first derivative which is set to zero in
order to obtain the line of maximum profit as shown in the
following equation:

P
- ~120.52p + 0.027S + 739.9 = 0. (5)
In (6), we obtained the maximum profit line and in

Figure 15 it is shown the corresponding curve for p € [5.4,
7.8] and S € [936, 8328].

~0.027S +739.9

=0.00022S + 6.13. (6)
120.52

The functional form here proposed links a state of the
supply to a specific price. Given the specificity of the appli-
cation, the equation is valid only for the scanned region of
supply comprised between 936 and 8328 hours. The result can
be applied by a carsharing company in two different ways:

(i) Every time a vehicle is requested, the company scans
its fleet, retrieves the number of hours that can be
offered (i.e., determines the remaining supply), and
offers the price that leads to the maximum profit.

(ii) Know how and how much the price should change if
new vehicles are introduced or removed from their
fleet.

4. Discussion

The results of this paper suggest that enlarging the supply
leads to higher profit but, at the same time, the marginal
profit gets smaller. The highest possible profit is reached
when the system is able to capture the part of the potential
demand that is more elastic, that is, more sensitive to ve-
hicles’ availability.

Results show that, when the supply (i.e., the number of
hours supplied) is fixed and the number of members of the
carsharing service varies, the profit variable is not sensitive
to changes in potential demand; the change in profit is
mainly led by the pricing offer. One possible way to interpret
this is that, given the daily schedule of the agents, it is not
possible to find vehicles available at the right time for the
additional members. In other words, it would be possible to
have more demand if the potential demand (the additional
members) had schedules compatible (without overlapping)
with those already using carsharing. The finding potentially
has important implications for an operator. Once the op-
erator should find itself on the desired point of the marginal
profit curve, it should not invest too much (or even at all) in
trying to attract other customers as it would not increase the
usage rate of the vehicles and then of the profit. Instead, it
would potentially generate unsatisfied customers. It should
be noted, though, that this is possibly, or at least partly, the
result of the method used to create more potential demand.
In the scenarios with additional Oply members, they are
randomly generated, picking from the synthetic population.
As aresult, although the method per se keeps being valid, in
order to completely trust the results, the mechanism through
which additional agents become members should be
properly modeled instead of using a random draw.

Journal of Advanced Transportation

When the potential demand is fixed and the supply
varies, results show that the obtained profit is linearly de-
pendent on the supply while depending on the price in a
parabolic fashion. Another important observation is also
that one will expect a deterioration of profit at some point if
they keep adding cars with fixed demand. Although the
image in Figure 10 seems to contradict this, it should be
noted that in that figure, the ascending part of a curve that
later descents is represented. The range considered in this
research is subject to the constraint of not increasing the
number of stations. This is because the profit maximization
application is designed to increase the profit of an existing
company. However, a potential positive impact of supply
growth would be the creation of new stations (in order to
increase the attractiveness of the service by reaching un-
explored demand of a typical day). In addition, in order to
remain in this reasonable range, the number of cars per
station was limited as well. From a practical perspective, it
was relevant to remain in the “best region” identified in
terms of usage rate because the profit drop can be predicted
in an analytical way and is of no interest in terms of profit
maximization.

The range considered in this research is subject to the
constraint of not increasing the number of stations. This is
because the profit maximization application is designed to
increase the profit of an existing company. However, a
potential positive impact of supply growth would be the
creation of new stations (in order to increase the attrac-
tiveness of the service by reaching unexplored demand of a
typical day). In addition, in order to remain in this rea-
sonable range, the number of cars per station was limited as
well. From a practical perspective, it was relevant to remain
in the “best region” identified in terms of usage rate, in
particular, because the profit drop can be predicted in an
analytical way and is of no interest in terms of profit
maximization.

One may argue that the functional form chosen leads to
prices that, if offered to real carsharing customers, could
generate confusion. To avoid this problem and offer a more
user-friendly price, a round-off could help simplify opera-
tions and the customers’ understanding of the service. The
calibration here proposed is made on Oply carsharing op-
eration. In order to apply this methodology to a different
company and to maximize their profit, a possible tabled
solution could be tailored.

It has to be noted that MATSim simulations depend on
random seeds, but despite using random numbers, we still
want the simulations to be deterministic so that results can
be reproduced by running the same scenario a second time.
At the same time, it is true that the number of iterations
could potentially affect the outcome of a simulation. To
avoid or mitigate this problem, there are different precau-
tions that need to be taken. For instance, concerning the
number of iterations, innovation strategies (e.g., rerouting
strategies and mode changing strategies) can be deactivated
before the end of the simulation. This way, once the score has
converged, it is sure that agents will choose their plan
drawing from the best choice set they developed during the
simulation. Concerning the seed, a common way to
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overcome the issue of having an outcome heavily depending
on an arbitrary input is to average the results of different
simulations. However, this comes at the theoretical risk that
the resulting (averaged) solution is not an equilibrium so-
lution [40]. While choosing different seeds tends to mod-
erately affect (larger) links load, the variability of the mode
markets shares remains negligible [40]. Given that the main
focus of this paper is to identify the price that maximizes
profit, we controlled the possible variability of the outcome
by running a second set of simulations, thus verifying the
comparability of the outcome analyzed in this paper.

The solution here proposed employs a functional link
between the three main variables: profit, supply, and price.
This results in a price that can change dynamically during
the day, is defined when a vehicle is booked, and functions
on the number of vehicles available at the moment of the
booking. The way this price is determined is by checking the
state of the supply (known by the operator)—that is the
number of hours that the operator can offer—and to set the
price in order to reach the maximum profit for that pair.
Either way, even though the robustness of this function
should be further assessed before its eventual application in
business operations, it is interesting to know that such a
number exists and that we can calculate it if we can measure
all the other values empirically.

5. Conclusions

The idea behind this paper is that modeling the profit as
function of the price and the potential demand P =f(p,D),
and as a function of price and supply P=f(p,S), it is
possible to identify a maximum profit for a specific price p,
potential demand D and supply S. A novel calibration
method for carsharing use in the agent-based simulator
MATSim has been proposed. This method employs data
fetched from the carsharing operator Oply in order to
define a main constant used for the evaluation of the
number of bookings and the cost of the trip, respectively
CsC (carsharing constant).

The function in Figure 15 has been calculated on the
whole city. Therefore, a lot of attributes are naturally em-
bedded in it, such as the density of the members around the
station, proximity with other stations, and modal offer in the
surrounding area. Questions that easily follow are how much
these attributes affect the price or if focusing on one station
can return different prices. Answering these questions is out
of the scope of this paper but future research will provide an
application of the same process on the singular station.
Future contributions will focus on another feature of this
procedure: reproducibility. While it is clear that this paper
focuses on a particular case study in a specific city and on a
precise carsharing company, it is true; however, that the
same procedure can be applied, with similar results types, on
other case studies. As described in the methodology section,
the input needed is the potential demand (i.e., the number of
members of the carsharing service) and the supply (i.e., the
number of cars that make up the fleet) and the daily travel
plans. These are essential to the simulation, which in turn,
needs to be calibrated using data describing shared-car
rental in space and time.

The model presented here is scalable and replicable in
different contexts. First of all, the scalability can be done in
different ways: to scale down the procedure applied to the
city to a station level or to scale up the procedure for bigger
cities or bigger fleets. However, even though it could be
theoretically possible to apply the same method for different
carsharing models (e.g., one-way or free-floating), the
procedure should be subject to modification. When applied
to one-way carsharing models, different costs such as re-
location costs should be taken into account. Furthermore,
even relocation procedures could be taken into account in
order to increase profit and, in general, such strategies could
be not as beneficial as they could be for the carsharing model
in exam.

The replicability of the model is given by the fact that the
formulation of the price that generates a maximum profit is
based only on the state of the supply. Obviously, to apply the
procedure described here in another context, it is necessary
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to have a synthetic population and a carsharing service
already active with a number of active members and with a
fleet already defined in the area.

The very concept of dynamic pricing clashes with the
idea that the customer can precisely know the price of the
service he would like to purchase. This is due to the fact that
the price changes continuously over time. The result is that
the user has lower control over their decisions since they
cannot know the hourly price of the trip before making the
reservation. First of all, it should be noted that this paper is
about a two-way service. This means that when the user
reserves the car, the hourly price is defined by the system
without this being able to be updated further during the
booking (which ends with the delivery of the vehicle at the
departure station). This type of offer allows having an
identical hourly monetary cost for each trip made under a
single reservation. Other future work can focus on a more
punctual calibration taking into account bookings in a
single station or taking into account other attributes such as
the density of members, modal offer, accessibility. This
method can bring a more precise maximization function
that considers the station attractiveness as independent
from the others allowing for a punctual pricing strategy. In
addition, future research will link parameter values to
measurable characteristics such as population density,
zonal distribution of city areas, and accessibility of car-
sharing stations in terms of average walking distance.

From an operational point of view, future works can take
into account the diversity of the offer considering the different
composition of the fleet (i.e., different vehicle models) and
possibly different kinds of features such as specific on-board
service, different cancellation policies, and number of vehicles
in a specific area or station. Furthermore, one issue that can be
seen in offering this kind of dynamic pricing is that the client
is not able to know the price until a rental request is made and
that this type of pricing is suited only for spontaneous
bookings. Planned bookings (usually made hours or days
before the start of the rental) cannot be supplied with this kind
of approach. To fix that, future research can focus on specific
hybrid dynamic pricing based on supply availability and time
of the day in order to maximize profit.

Data Availability

The population and simulation data used to support the
findings of this study are available from the corresponding
author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

GG, DK, FC, and FV were responsible for study conception
and design and analysis and interpretation of results and
prepared the original draft; GG and LB collected the data. All
authors reviewed the results and approved the final version
of the manuscript.

Journal of Advanced Transportation

Acknowledgments

The present project STREAMS (ref. 11608347) was sup-
ported by the National Research Fund, Luxembourg.

References

[1] D. Jorge and G. Correia, “Carsharing systems demand esti-

mation and defined operations: a literature review,” European

Journal of Transport and Infrastructure Research, vol. 13,

pp. 201-220, 2013.

F. Ferrero, G. Perboli, M. Rosano, and A. Vesco, “Car-sharing

services: an annotated review,” Sustainable Cities and Society,

vol. 37, pp. 501-518, 2018.

[3] B. Cici, A. Markopoulou, E. Frias-Martinez, and N. Laoutaris,
“Assessing the potential of ride-sharing using mobile and
social data: a tale of four cities,” in Proceedings of the UbiComp
2014 - 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, pp. 201-211, Seattle Washington,
DC, USA, September 2014.

[4] T. D. Schuster, J. Byrne, J. Corbett, and Y. Schreuder,
“Assessing the potential extent of carsharing,” Transportation
Research Record: Journal of the Transportation Research
Board, vol. 1927, no. 1, pp. 174-181, 2005.

[5] L. D. Burns, “A vision of our transport future,” Nature,
vol. 497, no. 7448, pp. 181-182, 2013.

[6] S. A. Shaheen and A. P. Cohen, “Growth in worldwide car-
sharing: an international comparison,” Transp. Res. Rec.
J. Transp. Res. Board, vol. 1992, pp. 81-89, 2007.

[7] E. W. Martin and S. A. Shaheen, “Greenhouse gas emission
impacts of carsharing in north America,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4,
pp. 1074-1086, 2011.

[8] S. A. Shaheen and A. P. Cohen, “Carsharing and personal
vehicle services: worldwide market developments and
emerging trends,” International Journal of Sustainable
Transportation, vol. 7, no. 1, pp. 5-34, 2013.

[9] K. Degirmenci and M. H. Breitner, “Carsharing: a literature
review and a perspective for information systems research,” in
Proceedings of the Tagungsband Multikonferenz Wirt-
schaftsinformatik 2014, pp. 962-979, MKWI, Paderborn,
Germany, February 2014.

[10] G. Perboli, F. Ferrero, S. Musso, and A. Vesco, “Business
models and tariff simulation in car-sharing services,”
Transportation Research Part A: Policy and Practice, vol. 115,
pp. 32-48, 2018.

[11] A. Di Febbraro, N. Sacco, and M. Saeednia, “One-way car-
sharing,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 2319, no. 1, pp. 113-120,
2012.

[12] J. Pfrommer, J. Warrington, G. Schildbach, and M. Morari,
“Dynamic vehicle redistribution and online price incentives in
shared mobility systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 4, pp. 1567-1578, 2014.

[13] F. Ciari, M. Balac, and M. Balmer, “Modelling the effect of
different pricing schemes on free-floating carsharing travel
demand: a test case for Zurich, Switzerland,” Transportation,
vol. 42, no. 3, pp. 413-433, 2015.

[14] D. Jorge, G. Molnar, and G. H. de Almeida Correia, “Trip
pricing of one-way station-based carsharing networks with
zone and time of day price variations,” Transportation Re-
search Part B: Methodological, vol. 81, pp. 461-482, 2015.

[15] C. Cisterna, G. Giorgione, E. Cipriani, and F. Viti, “Supply
characteristics and membership choice in round-trip and

[2



Journal of Advanced Transportation

free-floating carsharing systems,” in Proceedings of the 2019
Sixth International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), pp. 1-7, Cracow,
Poland, June 2019.

L. M. Martinez, G. H. d. A. Correia, F. Moura, and M. Mendes
Lopes, “Insights into carsharing demand dynamics: outputs of
an agent-based model application to Lisbon, Portugal,” In-
ternational Journal of Sustainable Transportation, vol. 11,
no. 2, pp. 148-159, 2017.

G. Abrate, J. L. Nicolau, and G. Viglia, “The impact of dy-
namic price variability on revenue maximization,” Tourism
Management, vol. 74, pp. 224-233, 2019.

R. P. McAfee, Dynamic Pricing in the Airline Industry 44,
California Institute of Technology, California, CA, USA, 2006.
K. R. Williams, Dynamic Airline Pricing and Seat Availability,
Cowles Foundation, New Haven, CT, USA, 2017.

G. Giorgione, F. Ciari, and F. Viti, “Dynamic pricing on
round-trip carsharing services: travel behavior and equity
impact analysis through an agent-based simulation,” Sus-
tainability, vol. 12, no. 17, p. 6727, 2020.

A. Di Febbraro, N. Sacco, and M. Saeednia, “One-way car-
sharing profit maximization by means of user-based vehicle
relocation,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 2, pp. 628-641, 2019.

C. M. Monteiro, C. A. S. Machado, M. de O. Lage,
F. T. Berssaneti, C. A. Davis Jr., and J. A. Quintanilha,
“Maximizing carsharing profits: an optimization model to
support the carsharing planning,” Procedia Manufacturing,
vol. 39, pp. 1968-1976, 2019.

F. Ciari, M. Balmer, and K. W. Axhausen, “Concepts for a
Large Scale Car-Sharing System: Modeling and Evaluation
with an Agent-Based Approach,” Eidgendssische Technische
Hochschule, Institut  fiir  Verkehrsplanung und Trans-
portsysteme, vol. 517, 2008.

F. Ciari, N. Schuessler, and K. W. Axhausen, “Estimation of
carsharing demand using an activity-based microsimulation
approach: model discussion and some results,” International
Journal of Sustainable Transportation, vol. 7, no. 1, pp. 70-84,
2013.

M. Heilig, N. Mallig, O. Schroder, M. Kagerbauer, and
P. Vortisch, “Implementation of free-floating and station-
based carsharing in an agent-based travel demand model,”
Travel Behaviour and Society, vol. 12, pp. 151-158, 2018.

F. Ciari, B. Bock, and M. Balmer, “Modeling station-based and
free-floating carsharing demand,” Transportation Research
Record: Journal of the Transportation Research Board,
vol. 2416, no. 1, pp. 37-47, 2014.

L. Zhang and D. Levinson, “Agent-based approach to travel
demand modeling: exploratory analysis,” Transportation
Research Record: Journal of the Transportation Research
Board, vol. 1898, no. 1, pp. 28-36, 2004.

J. A. Barrios and J. C. Doig, “Fleet Sizing for Flexible Car-
sharing Systems: A Simulation-Based Approach 18,” Trans-
portation Research Record Journal of the Transportation
Research Board, vol. 2416, no. 2416, pp. 1-9, 2014.

A. Horni, K. Nagel, and K. W. Axhausen, The Multi-Agent
Transport Simulation MATSim, Ubiquity Press, London, UK,
2016.

H. Ayed, D. Khadraoui, and R. Aggoune, “Using MATSim to
simulate carpooling and car-sharing trips,” in Proceedings of
the Information Technology and Computer Applications
Congress (WCITCA), 2015 World Congress on, pp. 1-5, IEEE,
Hammamet, Tunisia, June 2015.

17

[31] G. Giorgione, F. Ciari, and F. Viti, “Availability-based dy-
namic pricing on a round-trip carsharing service: an ex-
plorative analysis using agent-based simulation,” Procedia
Computer Science, vol. 151, pp. 248-255, 2019.

[32] D. Ziemke, K. Nagel, and R. Moeckel, “Towards an agent-

based, integrated land-use transport modeling system,”

Procedia Computer Science, vol. 83, pp. 958-963, 2016.

F. Ciari, M. Balac, and K. W. Axhausen, “Modeling carsharing

with the agent-based simulation MATSim: state of the art,

applications, and future developments,” Transportation Re-
search Record: Journal of the Transportation Research Board,

vol. 2564, no. 1, pp. 14-20, 2016.

C. Llorca, A. T. Moreno, M. B. Okrah, and R. Moeckel, Traffic

Assignment for an Integrated Land Use and Transportation

Model in a Large Metropolitan Area: Case Study of Munich 2,

Technical University of Munich, Munich, Germany, 2017.

[35] C. Llorca, “Travel time by car - MSM Models - TUM Wiki,”
2019, https://wiki.tum.de/display/msmmodels/
Travel+time+by+car.

[36] Zensus, “Bevolkerungs- und Wohnungszédhlung 2011,” 2011,
https://www.zensus2011.de/DE/Home/home_node.html.

[37] M. H. Laarabi and R. Bruno, “A generic software framework
for carsharing modelling based on a large-scale multi-agent
traffic simulation platform,” in Agent Based Modelling of
Urban Systems, M.-R. Namazi-Rad, L. Padgham, P. Perez,
K. Nagel, and A. Bazzan, Eds., Springer International Pub-
lishing, Cham, Switzerland, pp. 88-111, 2017.

[38] Qgis Association, “QGIS.org. QGIS Geographic Information
System,” 2020, http://www.qgis.org.

[39] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos,
“Management of an academic HPC cluster: the UL experi-
ence,” in Proceedings of the 2014 International Conference on
High Performance Computing ¢ Simulation (HPCS). Pre-
sented at the 2014 International Conference on High Perfor-
mance Computing & Simulation (HPCS), pp. 959-967, IEEE,
Bologna, Italy, July 2014.

[40] M. Paulsen, T. K. Rasmussen, and O. A. Nielsen, “Output
variability caused by random seeds in a multi-agent transport
simulation model,” Procedia Computer Science, vol. 130,
pp. 850-857, 2018.

[33

[34


https://wiki.tum.de/display/msmmodels/Travel+time+by+car
https://wiki.tum.de/display/msmmodels/Travel+time+by+car
https://www.zensus2011.de/DE/Home/home_node.html
http://www.qgis.org

