
iBiR: Bug Report driven Fault Injection

AHMED KHANFIR, SnT, University of Luxembourg, Luxembourg

ANIL KOYUNCU, Sabanci University, Turkey

MIKE PAPADAKIS, SnT, University of Luxembourg, Luxembourg

MAXIME CORDY, SnT, University of Luxembourg, Luxembourg

TEGAWENDE F. BISSYANDÉ, SnT, University of Luxembourg, Luxembourg

JACQUES KLEIN, SnT, University of Luxembourg, Luxembourg

YVES LE TRAON, SnT, University of Luxembourg, Luxembourg

Much research on software engineering relies on experimental studies based on fault injection. Fault injection, however, is not often
relevant to emulate real-world software faults since it “blindly” injects large numbers of faults. It remains indeed challenging to inject
few but realistic faults that target a particular functionality in a program. In this work, we introduce iBiR, a fault injection tool that
addresses this challenge by exploring change patterns associated to user-reported faults. To inject realistic faults, we create mutants
by re-targeting a bug report driven automated program repair system, i.e., reversing its code transformation templates. iBiR is further
appealing in practice since it requires deep knowledge of neither code nor tests, but just of the program’s relevant bug reports. Thus,
our approach focuses the fault injection on the feature targeted by the bug report. We assess iBiR by considering the Defects4J dataset.
Experimental results show that our approach outperforms the fault injection performed by traditional mutation testing in terms of
semantic similarity with the original bug, when applied at either system or class levels of granularity, and provides better, statistically
significant, estimations of test effectiveness (fault detection). Additionally, when injecting 100 faults, iBiR injects faults that couple
with the real ones in around 36% of the cases, while mutation testing achieves less than 4%.

CCS Concepts: • Software and its engineering → Software fault tolerance; Software reliability; Software usability; Software
performance; Software safety; Correctness; Software maintenance tools; Software testing and debugging; Software verification
and validation; Software defect analysis; Maintaining software; Software evolution; Software version control; Software
post-development issues.

Additional Key Words and Phrases: Fault Injection, Mutation, Bug Reports, Information Retrieval

ACM Reference Format:
Ahmed Khanfir, Anil Koyuncu, Mike Papadakis, Maxime Cordy, Tegawende F. Bissyandé, Jacques Klein, and Yves Le Traon. 2022. iBiR:
Bug Report driven Fault Injection. J. ACM 37, 4, Article 111 (August 2022), 32 pages. https://doi.org/10.1145/3542946

Authors’ addresses: Ahmed Khanfir, ahmed.khanfir@uni.lu, SnT, University of Luxembourg, 29 Avenue John F. Kennedy, Luxembourg, Luxembourg,
1855; Anil Koyuncu, anil.koyuncu@sabanciuniv.edu, Sabanci University, Üniversite Caddesi No:27, Istanbul, Turkey, 34956; Mike Papadakis, michail.
papadakis@uni.lu, SnT, University of Luxembourg, 29 Avenue John F. Kennedy, Luxembourg, Luxembourg, 1855; Maxime Cordy, maxime.cordy@uni.lu,
SnT, University of Luxembourg, 29 Avenue John F. Kennedy, Luxembourg, Luxembourg, 1855; Tegawende F. Bissyandé, tegawende.bissyande@uni.lu,
SnT, University of Luxembourg, 29 Avenue John F. Kennedy, Luxembourg, Luxembourg, 1855; Jacques Klein, jacques.klein@uni.lu, SnT, University of
Luxembourg, 29 Avenue John F. Kennedy, Luxembourg, Luxembourg, 1855; Yves Le Traon, Yves.LeTraon@uni.lu, SnT, University of Luxembourg, 29
Avenue John F. Kennedy, Luxembourg, Luxembourg, 1855.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3542946

2 Khanfir et al.

1 INTRODUCTION

A key challenge of fault injection techniques (such as mutation analysis) is to emulate the effects of real faults. This
property of representativeness of the injected faults is of particular importance since fault injection techniques are
widely used by researchers when evaluating and comparing bug finding, testing and debugging techniques, e.g., test
generation, bug fixing, fault localisation, etc, [60]. This means that there is a high risk of mistakenly asserting test
effectiveness in case the injected faults are non-representative.

Typically, fault injection techniques introduce faults by making syntactic changes in the target programs’ code using
a set of simple syntactic transformations [13, 33, 51], usually called mutation operators. These transformations have
been defined based on the language syntax [3] and are “blindly” mutating the entire codebase of the projects, injecting
large numbers of mutants, with the hope to inject some realistic faults. This means that there is a limited control on the
fault types and the locations where to inject faults. In other words, the appropriate “what” and “where” to inject faults
in order to make representative fault injection has been largely ignored by existing research.

Fault injection techniques may also draw on recent research that mines fault patterns [7, 70] and demonstrate some
form of realism w.r.t. real faults. These results indicate that the injected faults may carry over the realism of the patterns,
fact that removes a potential validity threat. However, at the same time, they are limited as they do not provide any
control on the locations and target functionality, thus impacting fault representativeness [8, 51, 62].

This is an important limitation especially for large real-world systems because of the following two reasons: a)
injecting faults everywhere escalates the application cost due to the large number of mutants introduced and b) the
results could be misleading since a tiny ratio of the injected faults are coupled to the real ones [62] and the injected set
of faults does not represent the likelihood of faults appearing in the field [51]. Therefore, representativeness of the
injected faults in terms of fault types and locations is of utmost importance w.r.t. both application cost and accuracy of
the method.

To bypass these issues, one could use real faults (mined from the projects’ repositories) or directly apply the testing
approach to a set of programs and manually identify potential faults. While such a solution brings realism into the
evaluations, it is often limited to few fault instances (of limited diversity), requires an expensive manual effort in
identifying the faults and fails to offer the experimental control required by many evaluation scenarios.

We advance in this research direction by bringing realism in the fault injection via leveraging information from
bug reports. Bug reports often include sufficient information for debugging techniques in order to localise [84], debug
[61] and repair faults [31] that happened in the field. Therefore, together with specially crafted defect patterns (mined
through systematic examination of real faults) such information can guide fault injection to target critical functionality,
mimic real faulty behaviour and make realistic fault injection. Perhaps more importantly, the use of bug reports removes
the need for knowledge of the targeted system or code.

Ourmethod starts from the target project and a bug report (BR) written in natural language. It then applies Information
Retrieval (IR)-based fault localisation [84] in order to identify the relevant places where to inject faults. It then injects
recurrent fault instances (fault patterns) that were manually crafted using a systematic analysis of frequent bug fixes,
prioritized according to their position and type. This way our method performs fault injection, using realistic fault
patterns, by targeting the features described by the bug reports. Moreover, by applying our method on many programs
and BRs (injecting few bugs per BR), one gets fault pools to be used for test and fault tolerance assessment.

Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 3

We implemented our approach in a system called iBiR and evaluated its ability to imitate 280 real faults. In particular
we evaluated a) the semantic similarity of real and injected faults, b) the coupling1 relation between injected and real
faults, and c) the ability of the injected faults to indicate test effectiveness (fault detection) when tested with different
test suites. Our results show that iBiR manages to imitate the targeted faults, with a median semantic similarity value
of 0.577, which is significantly higher than the 0.134 achieved by using traditional mutation testing, when injecting the
same number of faults.

Interestingly, we found that iBiR injects faults that couple with the real ones in around 36% of the targeted cases.
This is achieved by injecting 100 faults per target (real) fault and it is approximately 9 times higher than the coupled
mutants produced by mutation testing. Fault coupling is one of the most important testing properties [28, 57], here
indicating that one can use the injected faults instead of the real ones.

Another key finding of our study is that the injected faults provide much better indication on test effectiveness (fault
detection) than mutation testing as their detection ratios discriminate between actual failing and passing test suites,
while mutant detection rates cannot. This implies that the use of iBiR yields more accurate results than the use of
traditional mutation testing.

2 SCOPE & MOTIVATION

iBiR aims at injecting realistic faults, i.e., faults imitating the behaviour of previously reported ones, to be used for
test and fault tolerance assessment. As such, it injects faults in a current stable (fixed) version of the same system
where test techniques are assessed with respect to a) fault revelation potential, in the case of test assessment, and b) the
reaction of the system under unexpected (faulty) behaviour to support controlled studies. This means, that we assume
the existence of relatively stable projects with Fixed/Closed bug reports. In principle, iBiR could be use to guide testing
towards open bug reports or to support the discovery of bugs that are similar to those reported. However, these two use
cases regard the fault revelation ability of the fault injection campaigns (the test guidance provided by fault injection)
and not the realistic fault injection problem (the ability of injecting faults to imitate the behaviour of real ones) that we
are aiming at. Therefore, we have left them open for future research.

2.1 Assessment of testing techniques

Fault injection is used extensively by researchers as a tool to evaluate the fault-revealing capability of automated test
techniques such as automated test generation techniques. This approach was found to be used by approximately 19% of
all software testing studies published in major SE conference by a bibliometric analysis performed in 2016 [59]. This
is because real and diverse bug-datasets are hard to collect and make it hard to perform controlled studies as they
usually result in faulty versions including single faults. Fault injection is thus a fast and convenient way to perform
control studies since it avoids the costly and tedious work of creating fault-datasets. In such cases, the realism of the
injected faults is a major validity question that may impact the results of the experiments. Recent studies [62] have
shown that conventional mutation testing doesn’t perform well in this regard as it introduces many faults that are
unrealistic. To deal with such cases, we develop iBiR and show that it injects more semantically similar faults than
traditional mutation testing.

1Injected faults couple with the real ones when injected faults are detected only by test cases that detect the real faults. This implies that the injected
faults provide good indications on whether tests are capable of detecting the coupled faults.

Manuscript submitted to ACM

4 Khanfir et al.

2.2 Fault tolerance assessment

Fault injection is also frequently used to evaluate the system’s performance under faulty test executions. In such a case,
the injected faults simulate the effects of real ones by performing arbitrary code changes everywhere. To this end, iBiR
guides the injection towards specific error-prune targets/features and fault types. This is particularly important in order
to improve the realism of the analysis. Interestingly, previous research on fault tolerance assessment [51] has shown
that fault injection realism can be improved by appropriately controlling the locations and types of the injected faults.
We therefore, propose a way to do so by leveraging information from bug reports.

3 BACKGROUND

3.1 Fault Localisation

Fault localisation is the activity of identifying the suspected fault locations, whichwill be transformed to generate patches.
Several automated fault localisation techniques have been proposed [80], such as slice-based [79], spectrum-based [1],
statistics-based [37], mutation-based [61] and etc.

Fault localisation techniques based on Information Retrieval (IR) [11, 17, 44, 67] exploit textual bug reports to
identify code chunks relevant to the bug, without relying on test cases. IR-based fault localisation tools extract tokens
from the bug report to formulate a query to be matched with the collection of documents formed by the source code
files [42, 65, 75, 77, 81, 84]. Then, they rank the documents based on their relevance to the query, such that source files
ranked higher are more likely to contain the fault. Recently, automated program repair methods have been designed on
top of IR-based fault localisation [31]. They achieve comparable performance to methods using spectrum-based fault
localisation, yet without relying on the assumption that test cases are available.

We leverage IR-based fault localisation to achieve a different goal; instead of localising the reported bug, we aim at
injecting faults at code locations that implement a functionality similar to the one described by the bug report.

3.2 Mutation Testing

Mutation testing is a popular fault-based testing technique [60]. It operates by inserting artificial faults into a program
under test, thereby creating many different versions (named mutants) of the program. The artificial faults are injected
through syntactic changes to all program locations in the original program, based on predefined rules named mutation

operators. Such operators can, for instance, invert relational operators (e.g., replacing ≥ with <).
Mutants can be used to indicate the strengths of test suites, based on their ability to distinguish the mutants from

the original program. If there exists a test case distinguishing the original program from a particular mutant, then the
mutant is said to be killed. Then, we term a mutant to be “coupled” with respect to a particular fault if the test cases
that kill it are a subset of the test cases that can also detect that fault (make the program fail by exerting the fault).

Previous research has shown that the choice of mutation operators and location can affect the fault-revealing ability
of the produced mutants [4, 35]. Thus, it is important to select appropriate mutation testing strategies. Nevertheless,
previous research has shown that random mutant sampling achieves comparable results with the mutation testing state
of the art [8, 32], making the random mutant sampling a natural baseline to compare with.

Another issue with mutation testing regards its application cost. The problem stems from the vast number of faults
that are injected, which need to be executed with large test suites, thereby requiring expensive computational resources
[60]. Unfortunately, the mutant execution problem becomes intractable when test execution is expensive or the test
suites involve system level tests, thereby often limiting mutation testing application to unit level. This is a major
Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 5

Fig. 1. The iBiR fault injection workflow.

problem when performing fault tolerance [51], or large-scale testing campaigns. Recent studies aim at reducing the
computational demands of the mutant execution through a combination of static and dynamic metrics [82] but these
methods cannot be applied for fault tolerance assessment and do not identify which mutants are realistic and which are
not. Thus, it remains an open question to identify the few but realistic mutants.

We fill this gap, by using bug report-driven fault injection. In essencewe leverage IR-based fault localisation techniques
to identify the locationswhere fault injection should happen, i.e., locations relevant to the targeted functionality described
in the bug report, and apply frequent fault patterns to produce mutants that behave similar to real faults.

3.3 Fix Patterns

In automated program repair [21], a common way to generate patches is to apply fix patterns [26] (also named fix
templates [38] or program transformation schemes [22]) in suspicious program locations (detected by fault localisation).
Patterns used in the literature [14, 22, 26, 30, 38, 39, 46, 66] have been defined manually or automatically (mined from
bug fix datasets).

Instead of fix patterns, we use fault patterns that are fix patterns inverted. Since fix patterns were designed using
recurrent faults, their related fault patterns introduce them. This helps injecting faults that are similar to those described
in the bug reports. iBiR inverts and uses the patterns implemented by TBar [40] as we detail in the following Section.

4 APPROACH

We propose iBiR, the first fault injection approach that utilizes information extracted from bug reports to emulate real
faults. A high level view of the way iBiR works is shown in Figure 1 and a step by step overview of IBIR’s approach is
illustrated in the Algorithm 1. Our approach takes as input (1) the source code of the program of interest and (2) a bug
report of that program, written in natural language. The objective is to inject artificial faults in the program (one by one,
creating multiple faulty versions of the program) that imitate the original bug. To do so, iBiR proceeds in three steps.

First step: iBiR identifies relevant locations to inject the faults. It applies IR-based fault localisation to determine,
from the bug report, the code locations (statements) that are likely to be relevant to the target fault. These locations are
ranked according to their likelihood to be the feature described by the bug report, hence are relevant to inject faults.

Second step: iBiR applies fault patterns on the identified code locations. We build our patterns by inverting fix
patterns used in automated program repair approaches [40]. Our intuition is that, since fix patterns are used to fix

Manuscript submitted to ACM

6 Khanfir et al.

Algorithm 1 IBIR approach algorithm
Require: 𝑏𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡, 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦, 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐹𝑎𝑢𝑙𝑡𝑠

1: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [] ← loadListOfPatterns()
2: 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 [] ← []
3: 𝑟𝑒𝑠𝑢𝑙𝑡 [] ← []
4: 𝑟𝑎𝑛𝑘𝑒𝑑𝑆𝑢𝑠𝑝𝑒𝑐𝑖𝑜𝑢𝑠𝐹𝑖𝑙𝑒𝑠 [] ← fileLevelIRFL(𝑏𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡, 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦)
5: 𝑓 𝑖𝑟𝑠𝑡20𝑅𝑎𝑛𝑘𝑒𝑑𝑆𝑢𝑠𝑝𝑒𝑐𝑖𝑜𝑢𝑠𝐹𝑖𝑙𝑒𝑠 [] ← head(𝑟𝑎𝑛𝑘𝑒𝑑𝑆𝑢𝑠𝑝𝑒𝑐𝑖𝑜𝑢𝑠𝐹𝑖𝑙𝑒𝑠, 20)
6: 𝑟𝑎𝑛𝑘𝑒𝑑𝑆𝑢𝑠𝑝𝑒𝑐𝑖𝑜𝑢𝑠𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 [] ← statementLevelIRFL(𝑏𝑢𝑔𝑅𝑒𝑝𝑜𝑟𝑡, 𝑓 𝑖𝑟𝑠𝑡20𝑅𝑎𝑛𝑘𝑒𝑑𝑆𝑢𝑠𝑝𝑒𝑐𝑖𝑜𝑢𝑠𝐹𝑖𝑙𝑒𝑠 [])
7: for 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 in 𝑟𝑎𝑛𝑘𝑒𝑑𝑆𝑢𝑠𝑝𝑒𝑐𝑖𝑜𝑢𝑠𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 [] do
8: 𝑓 𝑖𝑙𝑒𝐴𝑠𝑡𝑇𝑟𝑒𝑒 ← loadAstTree(𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝐹𝑖𝑙𝑒)
9: 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑠 [] ← parseTree(𝑡𝑟𝑒𝑒, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡)
10: for 𝑎𝑠𝑡𝑁𝑜𝑑𝑒 in 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑁𝑜𝑑𝑒𝑠 [] do
11: for 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 [] do
12: if patternIsAppliableOnNode(𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑎𝑠𝑡𝑁𝑜𝑑𝑒) then
13: 𝑝𝑎𝑡𝑐ℎ ← createPatch(𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑎𝑠𝑡𝑁𝑜𝑑𝑒, 𝑓 𝑖𝑙𝑒𝐴𝑠𝑡𝑇𝑟𝑒𝑒)
14: add(𝑝𝑎𝑡𝑐ℎ, 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 [])
15: end if
16: end for
17: end for
18: end for
19: for 𝑝𝑎𝑡𝑐ℎ in 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 [] do
20: 𝑓 𝑎𝑢𝑙𝑡𝑦𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ← apply(𝑝𝑎𝑡𝑐ℎ, 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦)
21: if isCompilable(𝑓 𝑎𝑢𝑙𝑡𝑦𝑉𝑒𝑟𝑠𝑖𝑜𝑛) then
22: add(𝑝𝑎𝑡𝑐ℎ, 𝑟𝑒𝑠𝑢𝑙𝑡 [])
23: end if
24: if 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓 𝐹𝑎𝑢𝑙𝑡𝑠 == length(𝑟𝑒𝑠𝑢𝑙𝑡 []) then
25: return 𝑟𝑒𝑠𝑢𝑙𝑡 []
26: end if
27: end for
28: return 𝑟𝑒𝑠𝑢𝑙𝑡 []

bugs, inverted patterns may introduce a fault similar to the original bug. For each location, we apply only patterns that
are syntactically compatible with the code location. This step yields a set of faults to inject, i.e., pairs composed of a
location and a pattern.

Third step: our method ranks the location-pattern pairs wrt. the location likelihood and priority order of the patterns.
Then iBiR takes each pair (in order) and applies the pattern to the location, injecting a fault in the program. We repeat
the process until the desired number of injected faults has been produced or until all location-pattern pairs have been
considered.

4.1 Bug Report driven Fault Localisation

IR-based fault localisation (IRFL) [63, 74] leverages potential similarity between the terms used in a bug report and the
program source code to identify relevant buggy code locations. It typically starts by extracting tokens from a given
bug report to formulate a query to be matched in a search space of documents formed by the collections of source code
files and indexed through tokens extracted from source code [42, 65, 75, 77, 78, 84]. IRFL approaches then rank the
documents based on a probability of relevance. Top-ranked files are likely to contain the buggy code.
Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 7

Table 1. IR features collected from bug reports and source code files.

Bug Report Features
Feature Description
summary The summary/title part of the bug report
description The description part of the bug report
rawBugReport The whole bug report as in textual form
stackTraces The stack traces in the bug report
codeElements Code snippets in the bug reports
summaryHints Code-related terms in summary
descriptionHints Code-related terms found by parsing description text

Source Code Features
Feature Description
packageNames The parsed package names of the source code files
classNames The parsed class names of the source code files
methodNames The parsed method names of the source code files
methodInvocations The parsed method invocation of the source code files
formalParameters The parsed formal parameters of the source code files
memberReferences The parsed member references of the source code files
documentation The parsed class names of the source code files
rawSource Source file as a text
hunks The hunks from the commits on the file
commitLogs The commit logs of the file

We follow the same principle to identify promising locations where to inject realistic faults. We rely on the information
contained in the bug report to localise the code location with the highest similarity score. Most IRFL techniques have
focused on file-level localisation, which is too coarse-grained for our purpose of fault injecting. Thus, we rather use a
statement-level IRFL approach that has been successfully applied to support program repair [31].

It is to be noted that, contrary to program repair, we do not aim to identify the exact bug location. We are rather
interested in locations that allow injecting realistic faults (similar to the bug). This means that IRFL may pinpoint
multiple locations of interest for fault injection even if those were not buggy code locations.

To identify fault injection locations that are relevant to the targeted bug-report, we leverage an existing IRFL tool
that was originally developed as part of the iFixR [31] tool. The IRFL works by matching words of a bug report with
source code file(s) using 17 features. These features are extracted from the bug report (7 features) and the source code
git repository (10 features) and are listed in Table 1.

For every feature, the tokenizer applies a lexical analysis where (1) it extracts tokens from the retrieved text, (2) then
drops stopwords to reduce the noise, i.e., caused by the programming language keywords, and (3) applies stemming on
all tokens to create homogeneity with the root of the token. The tokens are extracted by considering both white space
and source code specific separators, such as punctuation and camel case splitting, i.e., 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑀𝑎𝑥𝑖𝑚𝑢𝑚 is split to
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 and 𝑀𝑎𝑥𝑖𝑚𝑢𝑚. The tokens are then checked against the WordNet [15] dictionary to discard all unknown
ones. An additional sanity check is then applied to detect stack-traces and source code elements using specific regular
expressions.

The IRFL calculates then the similarity coefficient (𝐶𝑜𝑠𝑖𝑛𝑒 [64]) between the bug report and a source code file using a
revised Vector Space Model (rVSM) [85] based on the occurrences-frequency of the extracted tokens in the preprocessing
tokenization step (the vectors are calculated using 𝑡 𝑓 − 𝑖𝑑 𝑓 [47]).

Manuscript submitted to ACM

8 Khanfir et al.

Next, an ensemble of classification models provided by D&C [29] was used in order to rank the source code files
according to their suspiciousness. This ensemble takes as input the calculated 7x10 weights of all pairs <bug report,
source code file> and outputs their averaged prediction results. This ensemble was used as it has been shown to work
well on a diverse set of bug reports [29] since every classifier of the ensemble model was trained on a different set of
data.

In a last step, as iFixR [31], the IRFL localises suspicious statements from the 20 most suspicious files based on their
rVSM cosine-similarity [64] with the given bug report (the vectors are calculated using 𝑡 𝑓 − 𝑖𝑑 𝑓 [47]) and outputs these
statements in a list of statements ranked according to their suspiciousness. Further details on the IRFL can be found in
the D&C work [29] and our implementation [25].

4.2 Fault patterns

We start from the fix patterns developed in TBar [40], a state of the art pattern-based program repair tool. Any pattern
is described by a context, i.e., an AST node type to which the pattern applies, and a recipe, a syntactical modification to
be performed similar to program repair techniques [76]. For each pattern, we define a related fault injection pattern
that represents the inverse of that pattern. For instance, inverting the fix pattern that consists of adding an arbitrary
statement yields a remove statement fault pattern. Interestingly, some fix patterns are symmetric in the sense that their
inverse pattern is also a fix pattern, e.g., inverting a Boolean connector. These patterns can thus be used for both bug
fixing and fault injection. Table 2 enumerates the resulting set of fault injection patterns used by our approach.

Given a location (code statement) to inject a fault into, we identify the patterns that can be applied to the statement.
To do so, our method starts from the AST node of the statement and visits it exhaustively, in a breadth-first manner.
Each time it meets an AST node that matches the context of a fault pattern, it memorizes the node and the pattern for
later application. Then the method continues until it has visited all AST nodes under the statement node. This way, we
enumerate all possible applications of all fault patterns onto the location.

Since more than one pattern may apply to a given location, we prioritize them by leveraging heuristic priority rules
previously defined in automated program repair methods (these were inferred from real-world bug occurrences [40]).
This means that every fault injection pattern gets the priority order of its inverse fix pattern.

4.3 Fault injection

The last step consists of applying, one by one, the fault patterns to inject faults at the program locations identified by
IRFL. Locations of higher ranking are considered first. Within a location, pattern applications are ordered based on
the pattern priority. By applying a pattern to a corresponding AST node of the location, we inject a fault within the
program before recompiling it. If the program does not compile, we discard the fault and restart with the next one. We
continue the process until it reaches the desired number of (compilable) injected faults or all locations and patterns
have been considered.

4.4 Demonstration Example

Figures 2 and 3 illustrate the execution steps of iBiR when injecting faults in commons-math project, based on the
content of the bug report MATH-3292.

2Bug report link: https://issues.apache.org/jira/browse/MATH-329

Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 9

Table 2. iBIr fault injection patterns.

Pattern context category Bug injection pattern example input example output

Insert Statement Insert a method call,
before or after the localised statement. someMethod(expression);

someMethod(expression);
method(expression);

Insert a return statement,
before or after the localised statement. statement;

statement;
return VALUE;

Wrap a statement with a try-catch. statement;
try{
statement;
} catch (Exception e){ ... }

Insert an if checker: wrap a
statement with an if block. statement;

if (conditional_exp) {
statement; }

Mutate Class Instance Creation Replace an instance creation call by
a cast of the super.clone() method call. ... new T(); ... (T) super.clone();

Mutate Conditional Expression Remove a conditional expression. condExp1 && condExp2 condExp1
Insert a conditional expression. condExp1 condExp1 && condExp2
Change the conditional operator. condExp1 && condExp2 condExp1 | | condExp2

Mutate Data Type Change the declaration type of a variable. T1 var ...; T2 var ...;
Change the casting type of an expression. ... (T1) expression ...; ... (T2) expression ...;

Mutate float or double Division Remove a float or a double cast ... dividend / (float) divisor ...; ... dividend / divisor ...;
from the divisor. ... intVarExp / 10d ...; ... intVarExp / 10 ...;
Remove a float or a double cast ... (float) dividend / divisor ...; ... dividend / divisor ...;
from the dividend. ... 1.0 / var ...; ... 1 / var ...;
Replace float or double multiplication ... (1.0 / divisor) * dividend dividend / divisor ...;
by an int division. ... 0.5 * intVarExp ...; ... intVarExp / 2 ...;

Mutate Literal Expression
Change boolean, number or string
literals in a statement by another literal
or expression of the same type.

... string_literal1 ...

... int_literal ...

... string_literal2 ...

... int_expression ...

Mutate Method Invocation Replace a method call by another one. ... method1(args) method(args) ...
Replace a method call argument by another one. ... method(arg1, arg2) method(arg1, arg3) ...
Remove a method call argument. ... method(arg1, arg2) method(arg1) ...
Add an argument to a method call ... method(arg1) method(arg1, arg2) ...

Mutate Return Statement Replace a return experession by an other one. return expr1; return exp2;

Mutate Variable Replace a variable by another variable
or an expression of the same type.

... var1 ...

... var1 ...
... var2 ...
... exp ...

Move Statement Move a statement to another position. statement;
...

...
statement;

Remove Statement Remove a statement. statement;
... ...

Remove a method. method(args){ statement; } ...

Mutate Operators Replace an Arithmetic operator. ... a + b a - b ...
Replace an Assignment operator. ... c += b c -= b ...
Replace a Relational operator. ... a <b a >b ...
Replace a Conditional operator. ... a && b a | | b ...
Replace a Bitwise or a Bit Shift operator. ... a & b a | b ...
Replace an Unary operator. a++ a--
Change arethmetic operations order. a + b * c c + b * a

iBiR starts by parsing the bug report and extracting its relevant information: the summary (1), the summary hints (2),
the description (3), the description hints (4), code elements (5) and the raw bug-report. This example bug report does
not contain any stack-trace as the corresponding bug causes a misbehavior but does not trigger any crash or throw any
exception.

Manuscript submitted to ACM

10 Khanfir et al.

iBiR loads also all the required information from the projects repository (6) then uses all of these features to find the
code locations that are the most likely related to the input bug-report. This search happens in two steps - file-level then
statement-level localisation - and ends by the output of a sorted list of source-code lines (7), as detailed in subsection 4.1.

iBiR parses these lines one by one starting with the highest rank. In this example, the 1st rank is attributed to the line
number 303 of the file src/main/java/org/apache/commons/math/stat/Frequency.java (8), which corresponds
to a return statement that invokes the method getPct with a variable v which is cast to the type Comparable. iBiR
selects all compatible fault patterns with this statement’s AST and applies them one by one on the source-code, inducing
multiple faults. In Figure 3 we illustrate the modified source-code corresponding to 5 faults injected in the line 303 of the
Frequency.java file (9): Fault 1 and 2 are injected by invoking respectively the methods getCumPct and getCumFreq

instead of getPct. In fault 3, the method getPct is invoked with the field this.freqTable as variable instead of v.
Fault 4 and 5 are injected by inserting additional method calls before the return statement, respectively addValue(v);

and clear();.
iBiR continues parsing the sorted source code locations by the IRFL until all of them are treated or the requested

number of faults has been injected.

5 RESEARCH QUESTIONS

Our approach aims at injecting faults that imitate real ones by leveraging the information included in bug reports.
Therefore, a natural question to ask is how well iBiR’s faults imitate the targeted (real) ones. Thus, we ask:

RQ1 (Imitating bugs): Are the iBiR faults capable of emulating, in terms of semantic similarity, the targeted (real)
ones? How they compare with mutation testing?

To answer this question, we check whether any of the injected faults imitate well the targeted ones. Following the
recommendations from the mutation testing literature [62] we approximate the program behaviour through the project
test suites and compare the behaviour similarity of the test cases w.r.t. their pass and failing status using the Ochiai
similarity coefficient. This is a typical way of computing the semantic similarity of mutants and faults in mutation-based
fault localisation [50, 61].

We then compare these results with the mutation testing ones by injecting mutants using the standard operators
employed by mutation testing tools [28] and measuring their semantic similarity with the targeted faults. To make a
fair comparison, we inject the same number of faults per target. For iBiR we selected the top-ranked mutants while
for mutation testing we randomly sampled mutants across the entire project code-base. Random mutant sampling
forms our baseline since it performs comparably to the alternative mutant selection methods [8, 32]. Also, since we are
interested in the relative differences between the injected fault sets, we repeat our experiments multiple times using the
same number of faults (mutants).

Our approach identifies the locations where bugs should be injected through an IR-based fault localisation method.
This may give significant advantages when applied at the project level, but these may not carry on individual classes.
Such class level granularity may be well suited for some test evaluation tasks, such as automatic test generation [19].
To account for this, we performed mutation testing (using the traditional mutation operators) at the targeted classes
(classes where the faults were fixed). To make a fair comparison we also restricted iBiR to the same classes and compared
the same number of mutants. This leads us to the following question:

RQ2 (Comparison at the target class): How does iBiR compare with mutation testing, in terms of semantic similarity,
when restricted to particular classes?

Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 11

Bug-report MATH-329

packages

packageName, classNames, methodNames, methodInvocations,
formalParameters, memberReferences, documentation, rawSource

Classes

Commits (commit logs and hunks)
Git history

Commons-Math git repository

1

2

4

3

5

6

Fig. 2. Example of iBiR’s input: the bug report MATH-329 (1- the summary, 2- the summary hints, 3- the description, 4- the description
hints, 5- code elements) and the Commons-Math git repository (6-).

We answer this question by injecting faults in only the target classes using the iBiR bug patterns and the traditional
mutation operators. Then we compare the two approaches the same way as we did in RQ1.

Manuscript submitted to ACM

12 Khanfir et al.

IR-based fault

localisation

Rank Likeli-
hood File Line

number

1 0,698 src/main/java/org/apache/commons/
math/stat/Frequency.java 303

2 0,642 src/main/java/org/apache/commons/
math/stat/Frequency.java 475

… … … …

Frequency.java

Fault injection Compatible fault

pattern selection

Fault 4Frequency.java

Fault 5Frequency.java

Insert a new statement

Fault 1Frequency.java

Fault 2Frequency.java

Invoke another method

Fault 3Frequency.java

Invoke the method with another variable

MATH-329
Bug-report

Commons-
Math git

repository

78

8

9

Fig. 3. Example of iBiR’s execution on the bug report MATH-329: the IRFL extracts tokens from the bug-report and the projects
repository. Then, it outputs a list of statements ranked by their suspicioussness (7- the 2 first ranked statements by iBiR). The mutator
loads every statement in this list, parses its AST, selects the applicable patterns and apply them one by one to inject faults (8- the
statement with the highest suspicioussness, 9- faults injected when processing the first statement).

Up to this point, the answers to the posed questions provide evidence that using our approach yields mutants that are
semantically similar to the targeted bugs. Although, this is important and demonstrates the potential of our approach,
it does not necessarily mean that the injected faults are strongly coupled with the real ones3. Mutant and fault coupling
is an important property for mutants that significantly helps testing [24]. Therefore, we seek to investigate:

3Mutants are coupled with real faults if they are killed only by test cases that also reveal the real faults

Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 13

RQ3 (Mutant and fault coupling): How does iBiR compare with mutation testing with respect to mutant and fault
coupling?

To answer this question we check whether the faults that we inject are detected only by the failing tests, i.e., only by
the tests that also reveal the target fault. Compared to similarity metrics, this coupling relation is stricter and stronger.

After answering the above questions we turn our attention to the actual use of mutants in test effectiveness evaluations.
Therefore, we are interested in checking the correlations between the failure rates of the sets of the injected faults we
introduce and the real ones. To this end, we ask:

RQ4 (Failure estimates): Are the injected faults leading to failure estimates that are representative of the real ones?
How do these estimates compare with mutation testing?

The difference of RQ4 from the other RQs is that in RQ4, a set of injected faults is evaluated while, in the previous
RQs only isolated mutant instances.

6 EXPERIMENTAL SETUP

6.1 Dataset & Benchmark

To evaluate iBiR we needed a set of benchmark programs, faults and bug reports. We decided to use Defects4J [23]
since it is a benchmark that includes real-world bugs and it is quite popular in software engineering literature.

6.1.1 Linking the bugs with their related reports. We used the bug-report to revision-id (commit) mapping provided by
the Defects4J dataset. Unfortunately, none of the provided revisions-ids for the projects Lang and Math were pointing
to the actual git repositories. As the projects have been migrated into GitHub but the revision-ids didn’t get updated in
the dataset. So for these two projects, to identify which bug report describes a given bug in the Defects4J, we followed
the same process as in the study of Koyuncu et al. [31]. We used the bug linking strategies that are implemented in the
Jira issue tracking software and used the approach of Fischer et al. [16] and Thomas et al. [69] to map the sought bugs
with the corresponding reports. Precisely, we crawled the relevant bug reports and checked their links. We selected bug
reports that were tagged as “BUG” and marked as “RESOLVED” or “FIXED” and have a “CLOSED” status. Then we
searched the commit logs to identify related identifiers (IDs) that link the commits with the corresponding bug.

Additionally, because of limitations in our current IRFL implementation, we included only the projects that are using
Jira as issue tracking software.

Our resulting bug dataset included the 316 faults of Defect4J related to the Cli (39), Codec (18), Collections (4),
Compress (47), Csv (16), JxPath (22), Lang (64) and Math (106) projects. We discarded 36 defects because they were
sharing the same bug report and we could not map the correct one with its related issue, or issues with the buggy
program versions such as missing files from the repository, or execution issues, at the reporting time. This leaves us
with a total of 280 faults.

6.2 Experimental Procedure

To compare the fault injection techniques we need to set a common basis for comparison. We set this basis as the
number of injected faults since it forms a standard cost metric [53] that puts the studied methods under the same cost
level. We used sets of 5, 10, 30, and 100 injected faults since our aim is to equip researchers with few representative faults,
per targeted fault, in order to reach reasonable execution demands. To reduce the arbitrariness due to the stochastic
nature of mutation testing, we reproduced the injection 15 times, then we sorted the executions by their average Ochiai

Manuscript submitted to ACM

14 Khanfir et al.

coefficient (for every bug separately) and we reported the mean execution. In the other hand, we run iBiR only once as
its approach does not depend on random decisions.

To measure how well the injected faults imitate the real ones (answer RQ1 and RQ2) we use a semantic similarity
metric (Ochiai coefficient) between the test failures on the injected and real (targeted) faults. Precisely, let 𝑓 𝑇𝑆𝑀 and
𝑓 𝑇𝑆𝐵 be the sets of failing tests when executing a test suite 𝑇𝑆 correspondingly on a mutant𝑀 and a buggy project 𝐵,
the Ochiai coefficient is 0 if any of 𝑓 𝑇𝑆𝑀 or 𝑓 𝑇𝑆𝐵 is empty, else is calculated as𝑂𝑐ℎ𝑖𝑎𝑖 (𝑀, 𝐵) = |𝑓 𝑇𝑆𝑀∩𝑓 𝑇𝑆𝐵 |√

|𝑓 𝑇𝑆𝑀 |. |𝑓 𝑇𝑆𝐵 |
, where

|𝑠𝑒𝑡 | denotes the set size. In our study, as we’re executing the fixed-version test-suites provided by defects4j, every
targeted bug breaks at least one test, thus, 𝑓 𝑇𝑆𝐵 is never empty. This coefficient quantifies the similarity level of the
program behaviours exercised by the test suites and is often used in mutation testing literature [62]. The metric takes
values in the range [0, 1] with 0 indicating complete difference and 1 exact match. We treated the injected faults that
were not detected by any of the test suites as equivalent mutants [5, 58]. This choice does not affect our results since
we approximate the program behaviours through the projects test suites, i.e., they are never killed.

To measure whether the injected faults couple with the existing ones (answer RQ3), we followed the process suggested
by Just et al. [24] and identified whether there were any injected faults that were killed by at least one failing test (test
that detects the real fault) and not by any passing test (test that does not detect the real fault). In RQ4 we randomly
sampled 50 test suites, random subsets of the accompanied test suites, that included between 10% to 30% test cases of
the original test suite (provided by defects4j). Thus, we ensure that the selected samples (1) are smaller than the original
test suite, (2) have different sizes and (3) different ratios of killing the mutants and detecting the targeted bug. Then we
recorded the ratios of the injected faults that are detected when injecting 5, 10, 30 and 100 faults. We also recorded
binary variables indicating whether or not each test suite detects the targeted fault. This process simulates cases where
test suites of different strengths are compared. Based on these data, we computed two statistical correlation coefficients,
the Kendall and Pearson.

To further validate whether the two approaches provide sufficient indicators on the effectiveness of the test suites,
we check whether the detection ratios of the injected faults are statistically higher when test suites detect the targeted
faults than when they do not.

To reduce the influence of stochastic effects we used the Wilcoxon test with a significance level of 0.05. This helped
deciding whether the differences we observe can be characterised as statistically significant. Statistical significance
does not imply sizable differences and thus, we also used the Vargha Delaney effect size Â12 [71]. In essence, the Â12

values quantify the level of the differences. For instance, a value Â12 = 0.5 can be interpreted as a tendency of equal
value of the two samples. Â12 > 0.5 suggest that the first set has higher values, while Â12 < 0.5 suggest the opposite.

6.3 Implementation

To perform our experiments, we implemented iBiR’s approach as described in Section 4: we have used the IRFL
implementation proposed in iFixR [31] and implemented the mutator component which is responsible of injecting
faults in specific locations, as a java standalone application. Second, for the mutation testing, denoted as “Mutation” in
our experiments, we used randomly sampled mutants from those produced by typical mutation operators, coming from
mutation testing literature. In particular we implemented the muJava intra-method mutation operators [43], which are
the most frequently used [28]. Third to reduce the noise from stillborn mutants, i.e., mutants that do not compile, we
discarded without taking into any consideration, i.e., prior to our experiment, every mutant that did not compile or its
execution with the test suite exceeded a timeout of 5 minutes. Fourth, when answering the RQ1, we found out that

Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 15

there were many cases where iBiR injected less than 100 faults. To perform a fair comparison, we discarded these cases
(for both approaches). This means that we always report results where both studied approaches manage to inject the
same number of faults.

7 RESULTS

7.1 RQ1: Semantic similarity between iBiR injections and the targeted real faults

To check whether the injected faults imitate well the targeted ones, we measured their behaviour (semantic) similarity
w.r.t. the project test suites (please refer to Section 6 for details). Figure 4 shows the distribution of the similarity
coefficient values that were recorded in our study. As can be seen, iBiR injects hundreds of faults that are similar to real
ones, whereas mutation testing (denoted as Mutation in Figure 4) did not manage to generate any. At the same time, as
typically happens in mutation testing [62], a large number of injected faults have low similarity. This is evident in our
data, where mutations have 0 similarity.

To investigate whether iBiR successfully injects any fault that is similar (semantically) to the targeted ones, we
collected the best similarity coefficients, per targeted fault, when injecting 5, 10, 30 and 100 faults. Figure 5 shows the
distribution of these results. For more than half of the targeted faults, iBiR yields a best similarity value higher than 0.5,
when injecting 100 faults, indicating that iBiR’s faults imitate relatively well the targeted ones. We also observe that in
many faults the best similarity values are above 0 by injecting just 10 faults. This is important since it indicates that
iBiR successfully identifies relevant locations for fault injection.

To establish a baseline and better understand the value of iBiR, we need to contrast iBiR’s performance with that of
mutation testing when injecting the same number of faults. Mutation testing forms the current SoA of fault injection
and thus a related baseline. As can be seen from Figure 5, the similarity values of mutation testing are significantly
lower than those of iBiR.

iBiR injects faults that resemble those described in Bug Reports. iBiR injects a fault that imitates the real
targeted one, significantly better than traditional mutation testing.

Figure 6 shows the distribution of the semantic similarities, between real and injected faults, when injecting 5, 10, 30
and 100 faults. As can be seen from the boxplots, the trend is that a large portion of faults injected by iBiR have positive
similarity scores with the targeted ones.

Interestingly, in mutation testing, only outliers have their similarity above 0. In particular, mutation testing injected
faults with similarity values higher than 0 in 87, 112, 145, 189 of the targeted faults (when injecting 5, 10, 30, 100 faults),
while iBiR injected in 130, 156, 190, 226 of the targeted faults, respectively.

To validate this finding, we performed a statistical test (Wilcoxon paired test) on the data of both figures 5 and 6 to
check for significant differences. Our results showed that the differences are significant, indicating the low probability
of this effect to be happening by chance. The size of the difference is also big, with iBiR yielding Â12 values between
0.64 and 0.68 indicating that iBiR injects faults with higher semantic similarity to real ones in the great majority of the
cases. Due to the many cases with 0 similarity values, the average similarity values of iBiR’s faults is 0.163, while for
mutation it is 0.010, indicating the superiority of iBiR.

iBiR injects faults that better resemble real faults, than traditional mutation testing, in 64%-68% of the cases.

Manuscript submitted to ACM

16 Khanfir et al.

0.0 0.2 0.4 0.6 0.8 1.0
Semantic similarity

0

5000

10000

15000

20000

Fr
eq

ue
nc

y

IBIR
Mutation

(a) All injected faults.

0.0 0.2 0.4 0.6 0.8 1.0
Semantic similarity

0

200

400

600

800

1000

Fr
eq

ue
nc

y

IBIR
Mutation

(b) Faults with an Ochiai coefficient higher than zero.

Fig. 4. Distribution of semantic similarities of 100 injected faults per targeted (real) fault.

Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 17

5 10 30 100
Injected faults

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

IBIR
Mutation

Fig. 5. Semantic similarity per targeted (real) fault, top values. iBiR injects faults with higher similarity coefficients than mutation
testing.

5 10 30 100
Injected faults

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

IBIR
Mutation

Fig. 6. Semantic similarity of all injected faults. iBiR injects faults with higher similarity coefficients than mutation testing.

7.2 RQ2: iBiR Vs Mutation Testing at particular classes

To check the performance of iBiR at the class level of granularity we repeated our analysis by discarding, from our
priority lists, every mutant that is not located on the targeted classes, i.e., classes where the targeted faults have been

Manuscript submitted to ACM

18 Khanfir et al.

5 10 30 100
Injected faults

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

IBIR
Mutation

Fig. 7. Semantic similarity of injected faults at particular classes. iBiR injects faults with higher similarity coefficients than mutation
testing (at class level granularity).

fixed. Figure 7 shows the distribution of the semantic similarities when injecting 5, 10, 30 and 100 faults at a particular
class. As expected, mutation testing scores are higher than those presented before, but still mutation testing falls behind.

To validate this finding, we performed a statistical test and found that the differences are significant. The size of the
difference is between 0.62 and 0.65, meaning that iBiR score more than 60% times higher than mutation testing. The
average similarity values of the iBiR faults is 0.217, while for mutation is 0.066, indicating that iBiR is better.

iBiR outperforms traditional mutation testing, imitating real faults, even when restricted to a particular (target)
class. The difference is significant with iBiR scoring more than 60% of the time higher than mutation testing.

7.3 RQ3: Fault Coupling

The coupling between the injected and the real faults forms a fundamental assumption of the fault-based testing
approaches [23]. An injected fault is coupled to a real one when a test case that reveals the injected fault also reveals
the real fault [23]. This implies that revealing these coupled injected faults results in revealing potential real ones. We
therefore, check this property in the faults we inject and contrast it with the baseline mutation testing approach.

Figure 8 shows the percentage of targeted faults where there is at least one injected fault that is coupled to a real one.
This is shown for the scenarios where 5, 10, 30 and 100 faults, per target, are injected. As we can see from these data,
iBiR injects coupled faults for approximately 16% of the target faults when it aims at injecting 5 faults. This percentage
increases to 36% when the number of injected faults is increased to 100.

Perhaps surprisingly, mutation testing did not perform well (it injected coupled faults for around 4% of the targeted,
when injecting 100 faults per target). These results differ from those reported by previous research [24, 62], because a)
Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 19

5 10 30 100 200 500 1000
Injected faults

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

15.7
18.6

24.6

35.7

45.7

53.6

61.1

1.1 0.4 1.1
3.9 6.1

11.8

18.2

IBIR
Mutation

Fig. 8. Percentage of real faults that are coupled to injected ones when injecting 5 to 1000 faults.

Table 3. Vargha and Deianey Â12 (iBiR VS Mutation) of Kendall and Pearson correlation coefficients.

Number of injected faults 5 10 30 100

Kendall 0.605 0.620 0.681 0.655

Pearson 0.580 0.612 0.627 0.652

previous research only injected faults at the faulty classes and not the entire project and b) previous research injected
all possible mutant instances and not 100 as we do.

iBiR injects coupled faults for approximately 16%-36% of the cases, while mutation testing does it in around 4%.
This is achieved by injecting 5-100 faults.

7.4 RQ4: Fault detection estimates

The results presented so far provide evidence that some of the injected faults imitate well the targeted ones. Though,
the question of whether the injections provide representative results of real faults remains, especially since we observe
a large number of faults with low similarity values. Therefore, we check the correlations between the failure rates of the
sets of injected faults and the real faults when executed with different test suites, (please refer to section 6 for details).

Figure 9 shows the distribution of the correlation coefficients, when injecting different numbers of faults. Interestingly,
the results on both figures show a trend in favour of iBiR. This difference is statistically significant, shown by aWilcoxon
test, with an effect size of approximately 0.6. Table 3 records the effect size values, Â12, for the examined strategies.
In essence, these effect sizes mean that iBiR outperforms the mutant injection in 60% of the cases, suggesting that

Manuscript submitted to ACM

20 Khanfir et al.

Table 4. Percentage of injected faults that are coupled to real ones when injecting 5 to 1000 faults.

Number of injected faults 5 10 30 100 200 500 1000

IBIR 5.93% 5.61% 5.78% 5.23% 4.57% 3.43% 2.57%
Mutation 0.29% 0.04% 0.05% 0.06% 0.06% 0.07% 0.07%

iBiR could be a much better choice than mutation testing, especially in cases of large test suites with expensive test
executions.

To further validate whether iBiR’s faults provide good indicators (estimates) of test effectiveness (fault detection)
we split our test suites between those that detect the targeted faults and those that do not. We then tested whether
detection ratios of the injected faults in the test suite group that detects the real faults are significantly (statistically)
higher than those in the group that does not detect it. In case this happens, we have evidence that our injected faults
favour test suites capable of detecting real faults. This is important when comparing test generation techniques, where
the aim is to identify the most effective (at detecting faults) technique.

Figure 10 records the number of faults where (real) fault detecting test suites detect a statistically higher number of
injected faults than those test suites that do not detect them. As can be seen by these results, iBiR has a big difference
from mutation, i.e., it distinguishes between passing and failing test suites in 126 faults, while Mutation in 55 faults. We
also measured the Vargha and Delaney Â12 effect size values on the same data, recorded in Figure 11. Of course it does
not make sense to contrast insignificant cases, so we only performed that on the results where iBiR has statistically
significant difference. Interestingly big differences are recorded (in approximately 80% of the cases) in favour of our
approach.

iBiR injects faults that provided better fault detection estimates than traditional mutation testing in approxi-
mately 80% of the cases.

8 DISCUSSION

The effectiveness of iBiR in generating faults that are similar to real ones is endorsed by its two main components: the
IRFL and the mutator. The IRFL indicates where the faults need to be injected and the mutator decides what changes
should be made, depending on the AST tree of each location.

Particularly, compared to conventional mutation testing, we can see that the IRFL is narrowing down the area of
injection to the source-code features described by the bug report, while the patterns-set of iBiR extends the injection
possibilities in that area. In the other hand, conventional mutation testing targets all the source code and injects faults
only in statements where their operators are applicable. For instance, applying the typical mutation operators - the
Mutate Operators and Remove Statement ones - on a specific area of code would not induce any fault, if no statement
can be removed without breaking the compilation, or there is no operator to mutate. While in such case, iBiR may
inject faults by applying other patterns like mutating the method invocation or the used parameters or inserting a
statement, etc.

Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 21

5 10 30 100
Injected faults

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ke
nd

al
l

IBIR
Mutation

(a) Kendall

5 10 30 100
Injected faults

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

IBIR
Mutation

(b) Pearson

Fig. 9. Correlation coefficients of test suites (samples from the original project test suite). The two related variables are a) the
percentage of injected faults that were detected by the sampled test suites and b) whether the targeted fault was detected or not by
the same test suites.

Manuscript submitted to ACM

22 Khanfir et al.

5 10 30 100
Injected faults

0

20

40

60

80

100

120

140

160

Si
gn

ifi
ca

nt
 d

iff
er

en
ce

s
91

100

117
126

37
47 50 55

IBIR
Mutation

Fig. 10. Number of (real) faults where injected faults provided good indications of fault detection. Particularly, number of cases with
statistically significant difference, in terms of ratios of injected faults detected, between failing and passing test suites (wrt real faults).

5 10 30 100
Injected faults

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Â1
2

va
lu

es

Fig. 11. Vargha and Delaney values for iBiR. Â12 values computed on the detection ratios of injected faults of the test suites that
detect and do not detect the (real) faults.

Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 23

8.1 Injecting large number of faults

The Figure 8 shows that iBiR injects much more faults that couple with the real ones than conventional mutation
testing. In fact, it achieves a higher coupling percentage when injecting only 10 faults than the percentage achieved by
conventional mutation testing when injecting 1000 faults. We can see also that when injecting 1000 faults we achieve
the coupling percentages of 61.1% and 18.2% for respectively iBiR and mutation testing. This is obviously because
the more faults we inject, the more chances we have to inject faults that couple with the real ones. Considering that
injecting more faults comes with a considerable consequent cost-increase, as the practitioners will need more time
to analyse the produced mutants, this option is often not favoured in practice, where it is better to have few relevant
faults than many.

To have a better understanding of the impact of injecting multiple faults, we illustrate in Table 4 the averaged
faults-coupling success-rates when injecting 5, 10, 30, 100, 200, 500 and 1000 faults with iBiR and mutation testing.
We define the success rate as the percentage of coupled faults among all the injected ones. As an example, a coupling
success-rate of 5% corresponds to 5 coupled faults when injecting 100 ones. In our study, iBiR achieves a much higher
success rate than mutation testing: 20, 87, 49 and 36.7 times higher when injecting 5, 100, 500 and 1000 faults. Even
if the coupling percentage increases by injecting more faults (Figure 8), we can see that the more we inject faults,
the more the success rate decreases for iBiR. This is a direct consequence of the decrease of the injection-locations
likelihood to be related to the targeted bug-report. As we explain further in Section 4, iBiR starts by injecting faults in
the highly ranked code locations found by its IRFL then iterates further until all locations are treated or the requested
number of faults has been injected. So the higher the requested number of injected faults is, the more faults in lower
ranked locations are injected. In the other hand, we see that the success rate of conventional mutation testing remains
relatively low and far behind the one of iBiR. For instance, it remains at 0.07% even when doubling the number of
injected faults from 500 to 1000. In Table 4, we notice that injecting 5 faults with mutation testing achieves a success
rate of 0.29% which is much higher than the ratios achieved when injecting more faults, by the same technique. This is
caused by the randomness in the conventional mutation testing results.

8.2 Distribution of the patterns inducing most effective injections

To understand better the impact of the used patterns in injecting faults that are similar to real ones, we grouped the
faults by their creating patterns and compared the sizes of each group. Figure 12 illustrates the proportion of every
pattern’ induced faults that have high Ochiai Coefficients (more than 0.8), when injecting 1000 faults by IBIR in the
current dataset. Clearly, more than 70% of the faults with high similarity coefficients have been generated by patterns
that are not commonly used in conventional mutation testing techniques: mainly by adding conditional expressions
(42.3%) or by mutating variables (29.5%). This is significantly higher than the 15.3% generated with the commonly used
conventional mutation operators (10.4% by mutating operators and 4.9% by removing statements). This highlights the
fact that iBiR’s patterns are bringing a clear advantage over mutation-testing.

These percentages and the general performance of every pattern depends on the targeted bug-report and the project
nature. For instance, the low percentages of multiple patterns in Figure 12 can be the consequence of multiple factors,
such as: 1) the fact that some faults are occurring less frequently in the current dataset or 2) the fact that some patterns
are only applicable on few specific statement-ASTs or 3) that some patterns produce relatively more mutants in the
same location, thus have higher percentages (i.e. the "Mutate Method Invocation" which induced Fault 1 and Fault 2 in
the same statement in Figure 3 in Section 4.4).

Manuscript submitted to ACM

24 Khanfir et al.

42.3% Add Conditional Expression
29.5% Mutate Variable
10.4% Mutate Operators
4.9% Remove Statement
4.5% Insert Statement
4.0% Mutate Method Invocation or Class Instance Creation
3.0% Move Statement
0.9% Remove Conditional Expression
0.2% Mutate Literal Expression
0.2% Mutate Return Statement
0.1% Mutate Data Type

Fig. 12. Distribution of the patterns inducing mutants with an Ochiai coefficient higher than 0.8 for iBiR when injecting 1000 faults.

8.3 iBiR Vs typical mutation operators

Early research on mutation testing defined mutation operators based on all possible simple removals or replacements of
programming language elements [2, 27]. This practice was then adopted when defining mutation operators for other
languages, such as Java, and in defining object oriented related mutants [43, 54]. To reduce the number of mutants
involved, many tool developers applied a restrictive set of mutation operators, usually referred to as the 5-operator set,
based on the selective mutation testing studies performed by Offutt et al. [53, 55] with the result that the majority of
modern mutation testing tools implementing a version of this 5-operator set together with some deletion operators
[34, 60].

In view of the above all the iBiR injections that involve addition of code elements, i.e., “Insert Statement” and “Mutate
Return Staement” categories of Table 2, are fundamentally different from what has been used in mutation testing studies
over the years. The “Mutation Literal Expression” category is also something that has not been used by mutation testing
studies. The rest of the operators have some similarities with operators used in some studies overall differ significantly
from the operators used by any single tool or study. In the following we provide a detailed list of iBiR operators and
their related similarities (or novelties) with respect to other studies.

Operators that have not been used by other studies:

• Insert Statement : Insert a method call, Insert a return statement, Wrap a statement with a try-catch, Insert an if

checker.
• Mutate Conditional Expression : Insert a conditional expression.
• Mutate float or double Division : Remove a float or a double cast from the divisor, Remove a float or a double cast

from the dividend, Replace float or double multiplication by an int division.
Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 25

• Mutate Literal Expression : Change boolean, number or string literals in a statement by another literal or expression

of the same type.
• Mutate Return Statement : Replace a return expression by an other one.

Operators that have similarities with those used by other studies:

• Mutate Class Instance Creation : Replace an instance creation call by a cast of the super.clone() method call. Similar
to the class mutation operators of MuJava [54].
• Mutate Data Type : Change the declaration type of a variable, Change the casting type of an expression. Similar to
the interface mutation in C [2, 12].
• Mutate Method Invocation : Replace a method call by another one, Replace a method call argument by another one,

Remove a method call argument, Add an argument to a method call. Similar to the interface mutation [12].
• Mutate Variable : Replace a variable by another variable or an expression of the same type. Similar to the variable
mutations in C [2].
• Move Statement: Move a statement to another position. Similar to the move out of a loop operators in C [2, 12].

Operators that are frequently used by other studies:

• Mutate Conditional Expression : Remove a conditional expression, Change the conditional operator [2, 27].
• Remove Statement : Remove a statement, Remove a method [4, 27, 34].
• Mutate Operators : Replace an Arithmetic operator, Replace an Assignment operator, Replace a Relational operator,

Replace a Conditional operator, Replace a Bitwise or a Bit Shift operator, Replace an Unary operator, Change arithmetic

operations order [4, 27, 34].

8.4 Project size and iBiR’s effectiveness

Considering the fault injection as a search task where the target is injecting faults similar to real ones and the search
space is the combination of the source-code locations and mutation possibilities, we were interested in assessing iBiR’s
performance for different project sizes. Figure 13a and Figure 13b show the scatter plots of the semantic similarity by
the project size in terms of number of classes. Figure 13a and Figure 13b consider respectively all the injected faults
and the faults having an Ochiai coefficient higher than zero. We can see that the project size has no impact on the
effectiveness of iBiR.

9 THREATS TO VALIDITY AND LIMITATIONS

The question of whether our findings generalise, forms a typical threat to validity of empirical studies. To reduce this
threat, we used real-world projects, developer test suites, real faults and their associated bug reports, from an established
and independently built benchmark. Still though, we have to acknowledge that these may not be representative of
projects from other domains. In addition, as the approach’s injection depends on the input bug reports, its effectiveness
may be impacted by the content of the reports, such as partial/incomplete or vague descriptions. To reduce this threat,
we have run our experiments with all available bug reports in the studied dataset without any particular selection and
got encouraging results. We acknowledge though that the results may vary depending on the information provided in
the reports. In practice, one should make a careful selection of bug reports based on which iBiR could be applied to
avoid such cases. Nevertheless, the appropriate selection of bug reports falls outside the scope of this work and has
been left open for future research.

Manuscript submitted to ACM

26 Khanfir et al.

200 400 600 800 1000
Project size

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

y=-0.0001x+0.2

(a) All injected faults.

200 400 600 800 1000
Project size

0.0

0.2

0.4

0.6

0.8

1.0

Se
m

an
tic

 si
m

ila
rit

y

y=-0.0002x+0.6

(b) Faults with an Ochiai coefficient higher than zero.

Fig. 13. Correlation between the semantic similarities and the project size (100 injected faults per targeted (real) fault).

Other threats may also arise from the way we handled the injected faults and mutants that were not killed by any test
case. We believe that this validation process is sufficient since the test suites are relatively strong and somehow form
the current state of practice, i.e., developers tend to use this particular level of testing. Though, in case the approach
Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 27

is put into practice things might be different. We also applied our analysis on the fixed program version provided by
Defects4J. This was important in order to show that we actually inject the actual targeted faults. Though, our results
might not hold on the cases that the code has drastically changed since the time of the bug report. We believe that this
threat is not of actual importance as we are concerned with fault injection at interesting program locations, which
should be pinpointed by the fault localisation technique we use. Still future research should shed some light on how
useful these locations and faults are.

Furthermore, some implementation changes of iBiR may improve its usability. For instance, adding an advanced
integrity check before applying the patterns would shorten the execution time of the tool. As currently, the generated
faulty programs are mainly validated via the compilation, only 52% of the mutants are compilable and thus outputted,
while the rest are discarded. Also, one can consider using the same approach with different IRFL techniques. This would
eliminate the training cost and reduce the eventual risk of threats that may be induced by the machine-learning module
currently used to rank the suspicious files. In fact, some of the projects in our evaluation set has been used during the
training phase of this latter. Although, we did not notice any bias or bad impact on our results, we are aware that this
can be considered as an additional threat to validity. However, these threats concern only the file-level localisation of
the IRFL and not the statement-level one, thus, they would not impact its results. This is because the IRFL is performing
a VSM cosine-similarity to rank the suspicious statements without involving any machine learning technique in this
step, as explained in Section 4.1.

Finally, our evaluation metrics may induce some additional threats. Our comparison basis measurement, i.e., number
of injected faults, approximates the execution cost of the techniques and their chances to provide misleading guidance
[62], while the fault couplings and semantic similarity metrics approximate the effectiveness of the approaches. These
are intuitive metrics, used by previous research [8, 32] and aim at providing a common ground for comparison.
10 RELATEDWORK

Software fault injection [73] has been widely studied since 1970s. Injected faults have been used for the purpose of
testing [60], debugging [41, 61], assessing fault tolerance [51], risk analysis [10, 72] and dependability evaluation [6].

Despite the many years of research, the majority of previous research is focused on the fault types. In mutation
testing research, mutation operators (fault types) are usually designed based on the grammar of the targeted language
[3, 60], which are then refined through empirical analysis, aiming at reducing the redundancy between the injected
faults [45, 53]. The most prominent mutant selection approach is that of Offutt et al. [53], which proposed a set of 5
mutation operators. This set has been incorporated in most of the modern mutation testing tools [28] and is the one
that we use in our baseline.

Recently, Brown et al. [7] aimed at inferring fault patterns from bug fixes. Their results showed that a large number of
mutation operators could be inferred. Along the same lines Tufano et al. [70] developed a neural machine translation tool
that learns to mutate through bug fixes. A key assumptions of these methods are a) the availability of a comprehensive
number of clean bug fixing commits, and b) the absence of fault couplings [52], which are often not met and can often
be reduced to what simple mutations do. For instance, the study of Brown et al. found that with few exceptions, almost
all mutation operators designed based on the C language grammar appeared in the inferred operator set. Perhaps more
importantly, the studies of Natella et al. [51] and Chekam et al. [8] found that the pair of mutant location and type are
what makes mutants powerful and not the type itself. Nevertheless, iBiR goal is complementary to the above studies as
it aims at injecting faults that mimic specifically targeted faults, those described in bug reports. This way, one can inject
the most important and severe faults experienced.

Manuscript submitted to ACM

28 Khanfir et al.

Some studies attempt to identify the program locations where to inject faults. Sun et al. [68] suggested injecting
faults in diverse places within different program execution paths. Gong et al. [20] used graph analysis to inject faults in
different and diverse locations of the program spectra. Mirshokraie et al. [48] employed complexity metrics together
with actual program executions to inject faults at places with good observability. These strategies, aim at reducing the
number of injected faults and not to mimic any real fault as our approach. Moreover, their results should be resembled
by the random mutant sampling baseline that we use.

Random mutant sampling forms a natural cost-reduction method proposed since the early days of mutation testing
[13]. Despite that, most of the mutant selection methods fail to perform better than it. Recently, Kurtz et al. [32] and
Chekam et al. [8] demonstrated that selective mutation and random mutant sampling perform similarly. From this, it
should be clear that despite the advances in selective mutation, the simple random sampling is one of the most effective
fault injection techniques. This is the reason why we adopt it as a baseline in our experiments. There are also attempts
to combine random and selective mutation [83] but they are not relevant for us as they inject numerous mutants.

Natella et al. [51] used complexity metrics as machine learning features and applied them on a set of examples in
order to identify (predict) which injected faults have the potential to emulate well the behaviour of real ones. Chekam
et al. [8] also used machine learning, with many static mutant-related features to select and rank mutants that are likely
fault revealing (have high chance to couple with a fault). These studies assume the availability of historical faults and
do not aim at injecting specific faults as done by iBiR.

The relationship between injected and real faults has also received some attention [60]. The studies of Papadakis et
al. [62], Just et al. [24], Andrews et al. [5] investigated whether mutant kills and fault detection ratios follow similar
trends. The results show the existence of a correlation and, thus, that mutants can be used in controlled experiments
as alternatives to real faults. In the context of testing, i.e., using mutants to guide testing, injected faults can help
identifying corner cases and reveal existing faults. The studies of Frankl et al. [18], Li et al. [36] and Chekam et al. [9]
demonstrated that guidance from mutants leads to significantly higher fault revelation than that of other test techniques
(test criteria).

11 CONCLUSION

We presented iBiR; a bug-report driven fault injection tool. iBiR (1) equips researchers with faults (to inject) targeting
the critical functionality of the target systems, (2) mimics real faulty behaviour and (3) makes relevant fault injection.

iBiR’s use case is simple; given a program and some bug reports, it injects faults emulating the related bugs, i.e.,
iBiR generates few faults per target bug report. This allows constructing realistic fault pools to be used for test or fault
tolerance assessment.

This means that iBiR’s faults can be used as substitutes of real faults, in controlled studies. In a sense, iBiR can bring
the missing realism into fault injection and therefore support empirical research and controlled experiments. This is
important since a large number of empirical studies rely on artificially-injected faults [59], the validity of which is
always in question.

While the use case of iBiR is in research studies, the use of the tool can have applications in a wide range of software
engineering tasks. It can, for instance, be used for asserting that future software releases do not introduce the same (or
similar) kind of faults. Such a situation occurs in large software projects [56], where iBiR could help by checking for
some of the most severe faults experienced. Testers could also use iBiR for testing all system areas that could lead to
similar symptoms than the ones observed and resolved. This will bring benefits when testing software clones [49] and
similar functionality implementations.
Manuscript submitted to ACM

iBiR: Bug Report driven Fault Injection 29

Another potential application of iBiR is fault tolerance assessment, by injecting faults similar to previously experienced
ones and analysing the system responses and overall dependability. We hope that we will address these points in the
near future.

To support this research and enable reproducibility, we have made our data and code available [25].

ACKNOWLEDGMENT

This work was supported by the Luxembourg National Research Fund (FNR) TestFast Project, ref. 12630949 and partially
supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 949014 for project NATURAL).

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2009. Spectrum-based multiple fault localization. In Proceedings of the 24th IEEE/ACM

International Conference on Automated Software Engineering (ASE). 88–99.
[2] Hiralal Agrawal, Richard A. DeMillo, Bob Hathaway, William Hsu, Wynne Hsu, E. W. Krauser, R. J. Martin, Aditya P. Mathur, and Eugene Spafford.

1989. Design of Mutant Operators for the C Programming Language. techreport SERC-TR-41-P. Purdue University, West Lafayette, Indiana.
[3] Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing. Cambridge University Press. https://doi.org/10.1017/CBO9780511809163
[4] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. 2006. Using Mutation Analysis for Assessing and Comparing Testing Coverage Criteria.

Software Engineering, IEEE Transactions on 32, 8 (2006), 608–624. https://doi.org/10.1109/TSE.2006.83
[5] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar Siami Namin. 2006. Using Mutation Analysis for Assessing and Comparing Testing

Coverage Criteria. IEEE Trans. Software Eng. 32, 8 (2006), 608–624. https://doi.org/10.1109/TSE.2006.83
[6] Jean Arlat, Alain Costes, Yves Crouzet, Jean-Claude Laprie, and David Powell. 1993. Fault Injection and Dependability Evaluation of Fault-Tolerant

Systems. IEEE Trans. Computers 42, 8 (1993), 913–923. https://doi.org/10.1109/12.238482
[7] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas W. Reps. 2017. The care and feeding of wild-caught mutants. In Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017. ACM, 511–522. https://doi.org/10.1145/3106237.3106280
[8] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé, Yves Le Traon, and Koushik Sen. 2020. Selecting fault revealing mutants.

Empirical Software Engineering 25, 1 (2020), 434–487. https://doi.org/10.1007/s10664-019-09778-7
[9] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. 2017. An empirical study on mutation, statement and branch coverage

fault revelation that avoids the unreliable clean program assumption. In Proceedings of the 39th International Conference on Software Engineering,
ICSE 2017. 597–608. https://doi.org/10.1109/ICSE.2017.61

[10] Jörgen Christmansson and Ram Chillarege. 1996. Generation of Error Set that Emulates Software Faults Based on Field Data. In Digest of
Papers: FTCS-26, The Twenty-Sixth Annual International Symposium on Fault-Tolerant Computing, 1996. IEEE Computer Society, 304–313. https:
//doi.org/10.1109/FTCS.1996.534615

[11] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harshman. 1990. Indexing by latent semantic analysis.
Journal of the American Society for Information Science 41, 6 (Sept. 1990), 391–407.

[12] Márcio Eduardo Delamaro, José Carlos Maldonado, and Aditya P. Mathur. 2001. Interface Mutation: An Approach for Integration Testing. IEEE
Trans. Software Eng. 27, 3 (2001), 228–247. https://doi.org/10.1109/32.910859

[13] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer. IEEE
Computer 11, 4 (1978), 34–41. https://doi.org/10.1109/C-M.1978.218136

[14] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Monperrus. 2017. Dynamic patch generation for null pointer exceptions using
metaprogramming. In Proceedings of the 24th SANER. IEEE, 349–358.

[15] Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford Books.
[16] Michael Fischer, Martin Pinzger, and Harald C. Gall. 2003. Populating a Release History Database from Version Control and Bug Tracking Systems.

In 19th International Conference on Software Maintenance (ICSM 2003), The Architecture of Existing Systems, 2003. IEEE Computer Society, 23.
https://doi.org/10.1109/ICSM.2003.1235403

[17] William B. Frakes and Ricardo Baeza-Yates. 1992. Information Retrieval: Data Structures and Algorithms (1 ed.). Prentice Hall.
[18] Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu. 1997. All-uses vs mutation testing: An experimental comparison of effectiveness. J. Syst. Softw. 38,

3 (1997), 235–253. https://doi.org/10.1016/S0164-1212(96)00154-9
[19] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE Trans. Software Eng. 39, 2 (2013), 276–291. https://doi.org/10.1109/TSE.

2012.14
[20] Dunwei Gong, Gongjie Zhang, Xiangjuan Yao, and Fanlin Meng. 2017. Mutant reduction based on dominance relation for weak mutation testing.

Information & Software Technology 81 (2017), 82–96. https://doi.org/10.1016/j.infsof.2016.05.001

Manuscript submitted to ACM

https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/12.238482
https://doi.org/10.1145/3106237.3106280
https://doi.org/10.1007/s10664-019-09778-7
https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1109/FTCS.1996.534615
https://doi.org/10.1109/FTCS.1996.534615
https://doi.org/10.1109/32.910859
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/ICSM.2003.1235403
https://doi.org/10.1016/S0164-1212(96)00154-9
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1016/j.infsof.2016.05.001

30 Khanfir et al.

[21] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM 62, 12 (2019), 56–65. https:
//doi.org/10.1145/3318162

[22] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards practical program repair with on-demand candidate generation. In
Proceedings of the 40th International Conference on Software Engineering (ICSE). 12–23.

[23] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of existing faults to enable controlled testing studies for Java programs.
In Proceedings of the 2014 International Symposium on Software Testing and Analysis (ISSTA). 437–440.

[24] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and Gordon Fraser. 2014. Are mutants a valid substitute for real
faults in software testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2014. 654–665.
https://doi.org/10.1145/2635868.2635929

[25] Ahmed Khanfir, Anil Koyuncu, Mike Papadakis, Maxime Cordy, Tegawende F. Bissyandé, Jacques Klein, and Yves Le Traon. [n.d.]. IBIR. https:
//github.com/serval-uni-lu/IBIR

[26] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic patch generation learned from human-written patches. In
Proceedings of the 35th ICSE. IEEE, 802–811.

[27] K. N. King and A. Jefferson Offutt. 1991. A Fortran Language System for Mutation-based Software Testing. Softw., Pract. Exper. 21, 7 (1991), 685–718.
[28] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos Malevris, and Yves Le Traon. 2018. How effective are mutation

testing tools? An empirical analysis of Java mutation testing tools with manual analysis and real faults. Empir. Softw. Eng. 23, 4 (2018), 2426–2463.
https://doi.org/10.1007/s10664-017-9582-5

[29] Anil Koyuncu, Tegawendé F Bissyandé, Dongsun Kim, Kui Liu, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2019. D&C: A Divide-and-
Conquer Approach to IR-based Bug Localization. arXiv preprint arXiv:1902.02703 (2019).

[30] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein, Martin Monperrus, and Yves Le Traon. 2020. Fixminer: Mining
relevant fix patterns for automated program repair. Empirical Software Engineering 25, 3 (2020), 1980–2024.

[31] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Martin Monperrus, Jacques Klein, and Yves Le Traon. 2019. iFixR: Bug Report driven
Program Repair. In Proceedings of the 13th Joint Meeting on Foundations of Software Engineering (FSE).

[32] Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz, and Nida Gökçe. 2016. Analyzing the validity of selective mutation
with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016. 571–582.
https://doi.org/10.1145/2950290.2950322

[33] Anna Lanzaro, Roberto Natella, Stefan Winter, Domenico Cotroneo, and Neeraj Suri. 2015. Error models for the representative injection of software
defects. In Software Engineering & Management 2015, Multikonferenz der GI-Fachbereiche Softwaretechnik (SWT) und Wirtschaftsinformatik (WI), FA
WI-MAW, 17. März - 20. März 2015 (LNI, Vol. P-239). GI, 118–119.

[34] Thomas Laurent, Mike Papadakis, Marinos Kintis, Christopher Henard, Yves Le Traon, and Anthony Ventresque. 2017. Assessing and improving the
mutation testing practice of PIT. In 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST). IEEE, 430–435.

[35] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. Traon, and A. Ventresque. 2017. Assessing and Improving the Mutation Testing Practice of PIT.
In 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST). 430–435. https://doi.org/10.1109/ICST.2017.47

[36] Nan Li, Upsorn Praphamontripong, and Jeff Offutt. 2009. An Experimental Comparison of Four Unit Test Criteria: Mutation, Edge-Pair, All-Uses and
Prime Path Coverage. In Second International Conference on Software Testing Verification and Validation, ICST, 2009, Workshops Proceedings. IEEE
Computer Society, 220–229. https://doi.org/10.1109/ICSTW.2009.30

[37] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. 2005. Scalable statistical bug isolation. In Proceedings of the 26th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 15–26.

[38] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Shin Yoo, and Yves Le Traon. 2018. Mining fix patterns for findbugs violations. IEEE Transactions on
Software Engineering 47, 1 (2018), 165–188.

[39] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Avatar: Fixing semantic bugs with fix patterns of static analysis violations.
In Proceedings of the IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). 1–12.

[40] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar: Revisiting Template-based Automated Program Repair. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). 31–42.

[41] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao, and Lu Zhang. 2020. Can automated program repair refine fault
localization? a unified debugging approach. In ISSTA ’20: 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event,
USA, July 18-22, 2020. ACM, 75–87. https://doi.org/10.1145/3395363.3397351

[42] Stacy K Lukins, Nicholas A Kraft, and Letha H Etzkorn. 2010. Bug localization using latent Dirichlet allocation. Information and Software Technology
52, 9 (2010), 972–990.

[43] Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. 2005. MuJava: an automated class mutation system. Softw. Test. Verification Reliab. 15, 2 (2005),
97–133. https://doi.org/10.1002/stvr.308

[44] Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing (1 edition ed.). The MIT Press, Cambridge,
Mass.

[45] Michaël Marcozzi, Sébastien Bardin, Nikolai Kosmatov, Mike Papadakis, Virgile Prevosto, and Loïc Correnson. 2018. Time to clean your test
objectives. In Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel
Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 456–467. https://doi.org/10.1145/3180155.3180191

Manuscript submitted to ACM

https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/2635868.2635929
https://github.com/serval-uni-lu/IBIR
https://github.com/serval-uni-lu/IBIR
https://doi.org/10.1007/s10664-017-9582-5
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.1109/ICST.2017.47
https://doi.org/10.1109/ICSTW.2009.30
https://doi.org/10.1145/3395363.3397351
https://doi.org/10.1002/stvr.308
https://doi.org/10.1145/3180155.3180191

iBiR: Bug Report driven Fault Injection 31

[46] Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair Search Space with Automatically Mined Templates: The Cardumen Mode of Astor.
In Proceedings of the 10th SSBSE. Springer, 65–86.

[47] Mark T Maybury. 2005. Karen Spärck Jones and Summarization. In Charting a New Course: Natural Language Processing and Information Retrieval.
Springer, 99–103.

[48] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2015. Guided Mutation Testing for JavaScript Web Applications. IEEE Trans. Software
Eng. 41, 5 (2015), 429–444. https://doi.org/10.1109/TSE.2014.2371458

[49] Manishankar Mondal, Md. Saidur Rahman, Ripon K. Saha, Chanchal K. Roy, Jens Krinke, and Kevin A. Schneider. 2011. An Empirical Study of
the Impacts of Clones in Software Maintenance. In The 19th IEEE International Conference on Program Comprehension, ICPC 2011. IEEE Computer
Society, 242–245. https://doi.org/10.1109/ICPC.2011.14

[50] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. 2014. Ask the Mutants: Mutating Faulty Programs for Fault Localization. In Seventh
IEEE International Conference on Software Testing, Verification and Validation, ICST 2014. IEEE Computer Society, 153–162. https://doi.org/10.1109/
ICST.2014.28

[51] Roberto Natella, Domenico Cotroneo, João Durães, and Henrique Madeira. 2013. On Fault Representativeness of Software Fault Injection. IEEE
Trans. Software Eng. 39, 1 (2013), 80–96. https://doi.org/10.1109/TSE.2011.124

[52] A. Jefferson Offutt. 1992. Investigations of the Software Testing Coupling Effect. ACM Trans. Softw. Eng. Methodol. 1, 1 (1992), 5–20. https:
//doi.org/10.1145/125489.125473

[53] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf. 1996. An Experimental Determination of Sufficient Mutant
Operators. ACM Trans. Softw. Eng. Methodol. 5, 2 (1996), 99–118. https://doi.org/10.1145/227607.227610

[54] A. Jefferson Offutt, Yu-Seung Ma, and Yong-Rae Kwon. 2006. The Class-Level Mutants of MuJava. In Proceedings of the International Workshop on
Automation of Software Test (AST’06). Shanghai, China, 78–84.

[55] A. Jefferson Offutt, Gregg Rothermel, and Christian Zapf. 1993. An Experimental Evaluation of Selective Mutation. In Proceedings of the 15th
International Conference on Software Engineering, Baltimore, Maryland, USA, May 17-21, 1993. 100–107. http://portal.acm.org/citation.cfm?id=257572.
257597

[56] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles Muller. 2011. Faults in Linux: Ten years later. In Proceedings of
the sixteenth international conference on Architectural support for programming languages and operating systems. 305–318.

[57] Mike Papadakis, Thierry Titcheu Chekam, and Yves Le Traon. 2018. Mutant Quality Indicators. In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops, ICST Workshops, Västerås, Sweden, April 9-13, 2018. IEEE Computer Society, 32–39. https://doi.org/10.
1109/ICSTW.2018.00025

[58] Mike Papadakis, Márcio Eduardo Delamaro, and Yves Le Traon. 2014. Mitigating the effects of equivalent mutants with mutant classification
strategies. Sci. Comput. Program. 95 (2014), 298–319. https://doi.org/10.1016/j.scico.2014.05.012

[59] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon. 2016. Threats to the validity of mutation-based test assessment. In
Proceedings of the 25th International Symposium on Software Testing and Analysis, ISSTA 2016. 354–365. https://doi.org/10.1145/2931037.2931040

[60] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. 2019. Chapter Six - Mutation Testing Advances: An Analysis
and Survey. Advances in Computers 112 (2019), 275–378. https://doi.org/10.1016/bs.adcom.2018.03.015

[61] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault localization. Software Testing, Verification and Reliability 25, 5-7 (2015),
605–628.

[62] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are mutation scores correlated with real fault detection?: a large scale
empirical study on the relationship between mutants and real faults. In Proceedings of the 40th International Conference on Software Engineering, ICSE
2018. 537–548. https://doi.org/10.1145/3180155.3180183

[63] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques actually helping programmers?. In Proceedings of the 20th ISSTA.
ACM, 199–209.

[64] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. 2004. Similarity between Euclidean and Cosine Angle Distance for Nearest Neighbor
Queries. In Proceedings of the 2004 ACM Symposium on Applied Computing (SAC ’04). Association for Computing Machinery, New York, NY, USA,
1232–1237. https://doi.org/10.1145/967900.968151

[65] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013. Improving bug localization using structured information retrieval. In
Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). 345–355.

[66] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. Elixir: Effective object-oriented program repair. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE). 648–659.

[67] Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, NY, USA.
[68] Chang-ai Sun, Feifei Xue, Huai Liu, and Xiangyu Zhang. 2017. A path-aware approach to mutant reduction in mutation testing. Information &

Software Technology 81 (2017), 65–81. https://doi.org/10.1016/j.infsof.2016.02.006
[69] Stephen W. Thomas, Meiyappan Nagappan, Dorothea Blostein, and Ahmed E. Hassan. 2013. The Impact of Classifier Configuration and Classifier

Combination on Bug Localization. IEEE Trans. Software Eng. 39, 10 (2013), 1427–1443. https://doi.org/10.1109/TSE.2013.27
[70] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2019. Learning How to Mutate

Source Code from Bug-Fixes. In 2019 IEEE International Conference on Software Maintenance and Evolution, ICSME 2019. IEEE, 301–312. https:
//doi.org/10.1109/ICSME.2019.00046

Manuscript submitted to ACM

https://doi.org/10.1109/TSE.2014.2371458
https://doi.org/10.1109/ICPC.2011.14
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1109/ICST.2014.28
https://doi.org/10.1109/TSE.2011.124
https://doi.org/10.1145/125489.125473
https://doi.org/10.1145/125489.125473
https://doi.org/10.1145/227607.227610
http://portal.acm.org/citation.cfm?id=257572.257597
http://portal.acm.org/citation.cfm?id=257572.257597
https://doi.org/10.1109/ICSTW.2018.00025
https://doi.org/10.1109/ICSTW.2018.00025
https://doi.org/10.1016/j.scico.2014.05.012
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1145/967900.968151
https://doi.org/10.1016/j.infsof.2016.02.006
https://doi.org/10.1109/TSE.2013.27
https://doi.org/10.1109/ICSME.2019.00046
https://doi.org/10.1109/ICSME.2019.00046

32 Khanfir et al.

[71] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the CL Common Language Effect Size Statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132. https://doi.org/10.3102/10769986025002101

[72] Jeffrey M. Voas, Frank Charron, Gary McGraw, Keith W. Miller, and Michael Friedman. 1997. Predicting How Badly "Good" Software Can Behave.
IEEE Softw. 14, 4 (1997), 73–83. https://doi.org/10.1109/52.595959

[73] Jeffrey M. Voas and Gary McGraw. 1997. Software Fault Injection: Inoculating Programs against Errors. John Wiley & Sons, Inc., USA.
[74] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the usefulness of IR-based fault localization techniques. In Proceedings of the

2015 International Symposium on Software Testing and Analysis (ISSTA). 1–11.
[75] Shaowei Wang and David Lo. 2014. Version History, Similar Report, and Structure: Putting Them Together for Improved Bug Localization. In

Proceedings of the 22nd International Conference on Program Comprehension (ICPC). 53–63.
[76] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for better automated program repair.

In Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM, 1–11.
https://doi.org/10.1145/3180155.3180233

[77] Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: Locating bugs from software changes. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). 262–273.

[78] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong Mei. 2014. Boosting Bug-Report-Oriented Fault Localization with
Segmentation and Stack-Trace Analysis. In Proceedings of the 2014 IEEE International Conference on Software Maintenance and Evolution (ICSME).
181–190.

[79] W Eric Wong, Vidroha Debroy, and Byoungju Choi. 2010. A family of code coverage-based heuristics for effective fault localization. Journal of
Systems and Software 83, 2 (2010), 188–208.

[80] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey on software fault localization. IEEE Transactions on Software
Engineering 42, 8 (2016), 707–740.

[81] Klaus Changsun Youm, June Ahn, Jeongho Kim, and Eunseok Lee. 2015. Bug Localization Based on Code Change Histories and Bug Reports. In
Proceedings of the 2015 Asia-Pacific Software Engineering Conference (ICSE). 190–197.

[82] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang. 2019. Predictive Mutation Testing. IEEE Trans. Software Eng. 45, 9
(2019), 898–918. https://doi.org/10.1109/TSE.2018.2809496

[83] Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid. 2013. Operator-based and random mutant selection: Better together. In 2013
28th IEEE/ACM International Conference on Automated Software Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, Ewen Denney,
Tevfik Bultan, and Andreas Zeller (Eds.). IEEE, 92–102. https://doi.org/10.1109/ASE.2013.6693070

[84] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed? more accurate information retrieval-based bug localization based
on bug reports. In Proceedings of the 2012 International Conference on Software Engineering (ICSE). 14–24.

[85] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed? more accurate information retrieval-based bug localization based
on bug reports. In 2012 34th International Conference on Software Engineering (ICSE). IEEE, 14–24.

Manuscript submitted to ACM

https://doi.org/10.3102/10769986025002101
https://doi.org/10.1109/52.595959
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1109/TSE.2018.2809496
https://doi.org/10.1109/ASE.2013.6693070

	Abstract
	1 Introduction
	2 Scope & Motivation
	2.1 Assessment of testing techniques
	2.2 Fault tolerance assessment

	3 Background
	3.1 Fault Localisation
	3.2 Mutation Testing
	3.3 Fix Patterns

	4 Approach
	4.1 Bug Report driven Fault Localisation
	4.2 Fault patterns
	4.3 Fault injection
	4.4 Demonstration Example

	5 Research Questions
	6 Experimental Setup
	6.1 Dataset & Benchmark
	6.2 Experimental Procedure
	6.3 Implementation

	7 Results
	7.1 black RQ1: Semantic similarity between iBiR injections and the targeted real faults
	7.2 RQ2: iBiR Vs Mutation Testing at particular classes
	7.3 RQ3: Fault Coupling
	7.4 RQ4: Fault detection estimates

	8 Discussion
	8.1 Injecting large number of faults
	8.2 Distribution of the patterns inducing most effective injections
	8.3 iBiR Vs typical mutation operators
	8.4 Project size and iBiR's effectiveness

	9 Threats to Validity and Limitations
	10 Related Work
	11 Conclusion
	References

