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Abstract—In this letter, we solve the link adaptation and
channel selection problem in next generation satellite cognitive
networks under dynamically varying channel availability and
time-varying channel statistics. Primary user (PU) activity in Low
Earth Orbit (LEO) satellite cognitive communications forces the
set of available transmission channels for a secondary user (SU) to
vary dynamically over time. We consider the scenario where the
channel state varies in a piecewise-stationary mode, referred to as
quasi-static (block-fading) channels. We formalize the problem
as a reinforcement learning problem, and propose Discounted
Structured and Sleeping Thompson Sampling (dSTS), which
maximizes the SU’s throughput by selecting the optimum mod-
ulation and coding scheme (MCS) and the transmission channel
under volatile and piecewise-stationary settings. When channel
characteristics are unknown as well as piecewise-stationary, the
proposed algorithm adapts the SU’s link-rate by exploiting the
structure of the transmission success probability in transmission
rates over the selected available channel. Furthermore, channel
state information (CSI) is absent and feedback is limited to 1-bit
(success/failure).

Index Terms—Satellite Communications, link adaptation,
channel selection, discounted Thompson Sampling.

I. INTRODUCTION

Low Earth Orbit (LEO) satellite has gained popularity due
to its quality of service (QoS) in terms of high speed data rate
and low transmission latency [1]. However, spectrum scarcity
challenges LEO based satellite communications (SatCom) to
serve pre-defined licensed users, referred to as primary users
(PUs). Cognitive Radio Networks (CRNs) in LEO SatCom
are able to serve dynamic users under certain conditions i.e.,
secondary users (SUs) can access unused PU channels, or co-
exist under some interference constraints [2]. Furthermore, Ar-
tificial Intelligence (AI)-enabled decision making for resource
allocation (e.g., link adaptation referred to as modulation and
coding scheme (MCS) and/or channel selection in wireless
communications [3]–[7]) is a viable solution compared to
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traditional off-line solutions due to its autonomous cognitive
decision making capabilities by interacting with the unknown
environment in real-time [8].

For an SU in heterogeneous CRNs, spectrum sharing is
often studied along with rate adaptation (also known as link
adaptation). Various resource allocation strategies based on
multi-armed bandits (MABs), a famous reinforcement learning
(RL) technique for decision making in stochastic environ-
ments, are proposed to maximize the expected reward (also
referred to as throughput), defined as the number of bits
successfully transmitted over the unknown selected wireless
channel [3]–[7], [9], [10]. These autonomous learning al-
gorithms were proved to be more efficient than traditional
resource allocation algorithms, which makes them a promising
solution for future envisioned SatCom (e.g., 5G and 6G).

Link adaptation and channel selection in SatCom poses
multiple challenges due to dynamic channel availability (i.e.,
PU activity) and time-varying channel characteristics (e.g.,
rain attenuation), and to device an efficient strategy, one
needs a combination of variants of MAB and exploitation of
inherent properties of the expected rewards. There exists a
predefined correlation between the expected rewards and the
transmission rates (e.g., the success probability decreases over
increasing transmission rates, referred to as monotonicity), and
exploiting this structural information converges faster to the
optimal solution in RL algorithms [10]. Furthermore, stochas-
tic sleeping (volatile) MABs [11], a variant of stochastic MAB
where available arms vary dynamically over time, is applied in
wireless scenarios when resources are not available all the time
[7]. Last but not least, the transmission success probabilities
vary slowly over time, referred to as piecewise-stationary
environment in MAB literature [12], and learning algorithms
need to be adapted to serve under such scenarios (e.g., [6],
[13]).

In this work, we consider the SU’s link adaptation and
channel selection problem in an unknown and piecewise-
stationary environment, where channel characteristics are time-
varying and unknown to the SU, and the set of available
channels varies over time. We cast the MCS-channel pair se-
lection problem as an on-line learning problem, and propose a
learning algorithm called Discounted Structured and Sleeping
Thompson Sampling (dSTS), which handles the volatility of
the wireless channel set and exploits the correlation between
the transmission success probability and the transmission rates
in piecewise-stationary setting over channels’ gains.
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TABLE I: Comparison between the proposed dSTS and earlier works

Learning Algorithms

RAGTS KL-UCB G-ORS CD-CoTS V-CoTS dSTS
Properties / advantages [3] [4] [5] [6] [7] (This work)
Structure exploitation × X X X X X
Thompson Sampling X × × X X X
Volatile / Sleeping MABs × × × × X X
Time-varying channel statistics X X X X × X

II. RELATED WORK

Adaptive Modulation and Coding (AMC) is a well-known
technique in CRNs and SatCom to adapt to the time-varying
channel statistics [14], [15]. The receiver performs link quality
estimation in the form of signal-to-noise-ratio (SNR) and
feeds it back to the transmitter, which in turn selects the
adequate MCS for the transmission. In CRNs, channel state
information (CSI) is also used for adequate MCS selection.
However, when SNR information is outdated or there is a
limited feedback, it is hard to implement AMC by traditional
methods (e.g., SNR based look-up tables) and necessitates AI-
enabled learning algorithms to either predict CSI or directly
adapt MCS without any CSI [3], [10], [16]. This motivates
authors in [4], [5] to formulate the link adaptation and
channel/mode selection problem as a MAB problem, and
propose a frequentist algorithm based on Kullback-Leibler
upper confidence bound (KL-UCB), which maximizes the
average number of successfully transmitted packets over a
given time horizon. In these works, authors exploited the
unimodal structure of the expected rewards over rate-channel
pairs. Authors in [9], presented the Bayesian counterpart
for link rate selection, and proposed an algorithm based on
Thompson Sampling (TS). As an extension to the work in
[9], authors in [10] proposed a TS based algorithm which
exploits the monotonicity of the success probability over the
transmission rates.

In traditional MAB formulation [17], [18], an action is
sequentially selected and a stochastic reward, which is drawn
from an unknown but fixed stochastic distribution, is observed.
When the action set is time-varying, an extension of MAB
referred to as volatile MAB, is proposed. Both Bayesian
and frequentist based algorithms are presented in [11] and
[19], respectively. In [7], we proposed a Bayesian learning
framework for rate and channel adaptation where the set of
available actions varies dynamically over time. In piecewise-
stationary or non-stationary MABs, the reward distributions
of the actions vary over time, and an MAB based algorithm
can readily be extended to handle such reward distributions
by introducing a sliding window. Then, the reward estimation
and action selection counters are estimated only for the current
window, which ensures that the estimates are from most recent
values and historical values are gradually eliminated, as pre-
sented in [4], [5]. Moreover, a sliding window based Bayesian
counterpart for rate adaptation is presented in [3]. Since,
sliding windows require additional memory to keep track of
all the estimates in the window, a discounted TS is proposed
which eliminates the memory requirement, it multiplies the
estimates with the successive powers of a scalar discounted
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Fig. 1: System model and a toy example: (a) In round t1, the
channel set is Ct1 = {c1, c2} with channel states hc1(t1) and
hc2(t1), respectively. SU selects MCS m(t1) = m3 to transmit
over channel c(t1) = c2. (b) In round t2, we have Ct2 = {c1}
with hc1(t2), SU selects m(t2) = m1 and c(t2) = c1.

factor (γ ∈ (0, 1]), which in turn ensures that historical
values die out [13]. A change detection based algorithm for
piecewise-stationary MAB is presented in [12], the proposed
change-point detection based on Thompson sampling (CD-TS)
scheme is parametrized by w (size of the estimation window)
as well as b (change detection parameter), which requires
information about the expected rewards of the actions in hand
and may be difficult to acquire in real world applications.

Distinguished from prior works that either ignore the volatil-
ity in the channel set (e.g., see [4], [20]) or handle piecewise-
stationary characteristics based on knowledge of the expected
rewards and utilize sliding windows (e.g., see [4], [5], [12]),
we propose an efficient Bayesian algorithm dSTS, which ac-
counts for both volatility and piecewise-stationary settings (see
Table I). To deal with evolving expected rewards (piecewise-
stationary settings), dSTS is parametrized by a computation-
ally inexpensive scalar quantity to discount historical values.
To reduce the learning time, dSTS exploits the monotonicity
of transmission success probabilities in the transmission rates
over the chosen wireless channel (see Section IV). The per-
formance of dSTS significantly exceeds that of well-known
learning methods under such highly dynamic, volatile and
time-varying communication scenarios (see Section V).

III. SYSTEM MODEL AND PROBLEM FORMULATION

Let the set M = {m1, . . . ,mM} represent different MCSs
with corresponding transmission rates RM = {r1, . . . , rM},
while the set C = {c1, . . . , cC} represents the collection of
C channels. Without loss of generality, the transmission rates
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satisfy r1 < . . . < rM , and therefore, set RM is ordered (and
subsequently M is ordered). We consider the scenario where
the channel statistics are unknown, and the channel is varying
in a piecewise-stationary mode i.e., for a given channel c ∈ C
with unknown statistics, there exists Pc (Pc ≥ 1) channel state
change points. The channel hc(t) remains the same during the
block between two change points, and varies after a change
point (see Fig. 2 in Section V).

A system model with a toy example of two wireless
channels and three MCSs (C = {c1, c2},M = {m1,m2,m3})
is shown in Fig. 1. In Fig. 1(a), two PU channels are available
in round t1 (i.e., Ct1 = {c1, c2}) with channel states hc1(t1)
and hc2(t1), respectively. SU selects channel c(t1) = c2
and MCS m(t1) = m3 in round t1. In Fig. 1(b), only one
PU channel is available in round t2 (i.e., Ct2 = {c1}) with
channel state hc1(t2) (e.g., rain attenuation), SU selects MCS
m(t2) = m1 to transmit over c(t2) = c1. Here, the SU
opportunistically searches for free channels to utilize for its
transmission, referred to as interweave CRNs. The set of these
free channels varies over time due to PUs activity, hence
adding volatility in the selection criteria. Furthermore, weather
conditions, rain attenuation, etc., create dynamically changing
channel conditions, which makes MCS-channel pair selection
a challenging task in such dynamic scenarios.

Let T represent the time horizon where sequential decisions
are made in rounds t ∈ {1, · · · , T}. At the beginning of
each round t, channel sensing is performed (assuming the
existence of a channel sensing mechanism in the system or
the exploitation of a geo-location database for dynamic SUs
to avoid sensing PUs) to determine the set of free channels
Ct. Then, the user chooses a channel c(t) ∈ Ct and MCS
m(t) ∈ M for that channel, and transmits at a rate rm(t) ∈
RM over the selected channel with channel state hc(t)(t).
After the transmission of rm(t) bits, it receives an indicator of
ACK/NACK, ACK for successful transmission and NACK for
failure [7]. We let xm(t),c(t)(t) represent this Bernoulli reward
(1 for successful transmission, and 0 otherwise) with expected
value ϕm(t),c(t)(t). This ϕm,c(t) represents the transmission
success probability for the MCS-channel pair (m, c) with
channel state hc(t) at round t. It is important to note that
[m(t), c(t)] represent the selected MCS-channel pair at round
t, and therefore ϕm(t),c(t)(t) is the success probability for
that pair at round t, whereas ϕm,c(t) represents the success
probability for any pair m ∈ M, c ∈ C at round t. Similarly,
the throughput associated with the MCS-channel pair (m, c)
is µm,c(t) = rm ·ϕm,c(t). We call µm,c(t)/rM the normalized
throughput of MCS-channel pair (m, c).

Transmission success probabilities exhibit a monotonically
decreasing structure over the set of transmission rates [10],
where ϕ1,c(t) > ϕ2,c(t) . . . > ϕM,c(t) for a given channel
c with channel state hc(t) for every t. The optimal MCS-
channel pair at round t is denoted by (m∗(t), c∗(t)) =
argmaxm∈M,c∈Ct µm,c(t). Without loss of generality we as-
sume that (m∗(t), c∗(t)) is unique for every t. Let At =
M×Ct represent the available action set in round t. For any
T round available action sequence A = {A1, . . . ,AT } (since
the available channel set is time-varying, each t ∈ {1, · · · , T}
has different available channels to chose from), the expected

Algorithm 1 Discounted Structured and Sleeping Thompson
Sampling (dSTS)

1: Input: M,C, T
2: Parameters: γ ∈ (0, 1]
3: Initialize: Sm,c = 0, Fm,c = 0,∀m ∈M,∀c ∈ C
4: for t = 1, 2, · · · , T do
5: Channels free from primary activity Ct
6: for c ∈ Ct
7: Draw φc(t) ∼ 1

(
φc(t) ∈ Φc(t)

)∏
m∈M πm,c

8: θm,c = rm · φm,c , ∀m ∈M
9: end for

10: [m(t), c(t)] = argmaxm∈M,c∈Ct θm,c

11: Transmission with rate rm(t) over channel c(t)
12: observe ACK/NACK
13: xm(t),c(t)(t) = 1 if ACK
14: xm(t),c(t)(t) = 0 if NACK
15: Sm,c = γ · Sm,c, Fm,c = γ · Fm,c ∀m ∈M,∀c ∈ C
16: Sm(t),c(t) = Sm(t),c(t) + xm(t),c(t)(t)
17: Fm(t),c(t) = Fm(t),c(t) +

(
1− xm(t),c(t)(t)

)
18: t = t+ 1
19: end for

regret is defined as

RA(T ) = E

[
T∑

t=1

(
µm∗(t),c∗(t)(t)− µm(t),c(t)(t)

)∣∣∣A] . (1)

IV. THE PROPOSED ALGORITHM

We propose dSTS, which exploits the monotone structure
of the success probability in transmission rates and takes
into account the time-varying availability (volatility) of PU
channels as well as their change points by discounting the his-
torical values from current estimations (pseudocode is given in
Algorithm 1). Its main advantage lies in optimizing the channel
selection from a dynamically varying channel set together with
MCS selections under piecewise-stationary characteristics.

Let πm,c = Beta(Sm,c+1, Fm,c+1) represent the posterior
distribution of ϕm,c(t) for each MCS-channel pair (m, c),
where Sm,c(t) represents the number of successful trans-
missions and Fm,c(t) represents the number of unsuccessful
transmissions, when (m, c) was selected before round t. φm,c

represents a random sample drawn from these distributions for
each (m, c) ∈ At. dSTS ensures that the samples satisfy the
monotone structure of φm,c in transmission rates [7], [10].
For a channel c, let Φc(t) = {(φ1,c, . . . , φM,c) | φm,c ≥
φm′,c,∀rm < r′m, m,m

′ ∈M} represent the selected sample
set that satisfies monotonicity in round t. Primarily, for each
c ∈ Ct, dSTS takes samples φc(t) = (φ1,c, . . . , φM,c) such
that φc(t) ∼ 1

(
φc(t) ∈ Φc(t)

)∏
m∈M πm,c, where 1(·) is

the indicator function.
For each channel c ∈ Ct, throughput samples θm,c are

calculated by multiplying the obtained success probability
samples φm,c with the corresponding transmission rates rm ∈
RM ,∀m ∈ M . Then, the MCS-channel pair with the max-
imum throughput sample is selected for transmission. After
transmission over channel c(t) with MCS m(t) (corresponding
rate rm(t)), the 1-bit feedback xm(t),c(t)(t) is observed. For
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TABLE II: Synthetic Success Probabilities over MCS-channel
pairs (inspired from [5], [7], [10])

rm in Mbits/s

MCS 1 2 3 4 5 6 7 8
rm 3 4.5 6 9 12 18 24 27

ϕm,1 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25
ϕm,2 0.90 0.80 0.70 0.60 0.50 0.45 0.30 0.20
ϕm,3 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15
ϕm,4 0.95 0.90 0.85 0.80 0.40 0.20 0.10 0.05
ϕm,5 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05
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Fig. 2: The expected rewards for channel 1 as a function of t.

each MCS m ∈ M and channel c ∈ C, values of Sm,c and
Fm,c are discounted with factor γ to handle the piecewise-
stationary distribution. The value of γ ∈ (0, 1] ensures that
historical values are gradually eliminated from estimations.
Then, the estimates of the selected MCS-channel pair are
updated i.e., Sm(t),c(t) is incremented with 1 in case of
successful transmission, whereas Fm(t),c(t) is incremented
with 1 in case of unsuccessful transmission. The proposed
dSTS is able to minimize the regret in eq. 1 due to the fact
that TS is asymptotically optimal for Bernoulli rewards (i.e.,
xm(t),c(t)(t)), and discounted TS is an extension to TS for
piecewise-stationary settings. Furthermore, by exploiting the
monotone structure in success probabilities, dSTS converges
faster to the optimal solution by eliminating the suboptimal
selections that violate the monotone structure.

V. NUMERICAL EVALUATION

We set the number of MCSs (and corresponding trans-
mission rates) to M = 8, the number of wireless channels
C = 5, and the number of piecewise-stationary channel state
change points is set to Pc = 3 (we chose this value for
numerical illustration purposes for rain attenuations, cloud
attenuations, etc., in LEO networks). Transmission success
probabilities for MCS-channel pairs are shown in Table II.
These channels are swapped randomly after passing each of
the channel state change points, as shown in Fig. 2. We
set the total number of rounds to T = 60, 000, and the
results are averaged over 10 runs. We set γ to 0.9999 for
dSTS. We set the channel availability to change after every T

10
rounds, i.e, the number of available channels varies in rounds
{6, 12, 18, 24, 30, 36, 42, 48, 54}×103, as shown in Fig. 3. We
set the channel state change point to occur after every 15×103

rounds, and it is evident from Fig. 2 that the transmission
success probabilities (and the expected rewards) vary in rounds
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Fig. 3: Availability of wireless channels as a function of t.

Fig. 4: The best (channel, MCS) pair as a function of t.

{15, 30, 45}×103. Due to variations in the channel availability
and the expected rewards, the optimal MCS-channel pair may
vary after every 3× 103 rounds, as shown in Fig. 4.

We compare the proposed algorithm with the following
earlier works.

i) ORC (Oracle): Benchmark that knows the expected re-
wards beforehand and always selects the optimal MCS-
channel pair in each round t.

ii) SW-KL-UCB-U [4]: Exploits the structural (unimodal)
information of the expected rewards over the transmission
rates and maintains a sliding window over rounds for
reward estimates and selection counters. We set the
sliding window size to τ = 3000.

iii) V-CoTS [7]: V-CoTS selects a rate-channel pair over a
time-varying channel set and exploits the monotonicity
in the success probabilities over the transmission rates.
However, it ignores the time-varying channel statistics.

iv) CD-CoTS [6]: We run a separate instance of CD-CoTS
for each channel, CD-CoTS exploits the monotonicity
in the success probabilities over the transmission rates
and is based on change point detection in the expected
rewards, due to which it can handle time-varying changes
in the channel state. We set the specific selection, change-
detection window size, and reward threshold to F =
2000, w = 2000, b = 0.01, respectively.

Fig. 5 shows that the number of successfully transmitted
Mbits up to round T (i.e., 60, 000) by the Oracle is around
4.2 × 105 Mbits. The proposed dSTS algorithm achieves a
performance close to that of Oracle by transmitting 3.9× 105

Mbits. Whereas, the number of successfully transmitted Mbits
by CD-CoTS, V-CoTS and SW-KL-UCB-U are around 3.6×
105, 3.6× 105 and 3.1× 105 Mbits, respectively.

Fig. 6 compares the expected regrets (defined in eq. 1) of
dSTS, CD-CoTS, V-CoTS and SW-KL-UCB-U. It is observed
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that dSTS achieves the minimum expected regret. CD-CoTS
also obtains a small regret by exploiting the correlation of the
success probabilities and handling variations in the channel
set as well as in the expected reward. Nonetheless, CD-CoTS
requires knowledge of the minimum threshold of the expected
reward changes, and the estimation window size, and requires
memory to store values for all MCS-channel pairs for at-
least the size of the estimation window. Meanwhile, dSTS
only uses a scalar value γ to handle changes in the expected
rewards. The improvement induced by dSTS compared to V-
CoTS is due to the discounted TS, which performs better
in piecewise-stationary environments, whereas V-CoTS fails
to adapt to changes in the expected rewards due to channel
state variations. SW-KL-UCB-U, a frequentist counterpart of
dSTS, obtains a higher regret compared to other competitors.
The expected regret obtained with dSTS is approximately
43% lower than that of V-CoTS, 45% lower than that of
CD-CoTS, and 70% lower than that of SW-KL-UCB-U. It
is also observed that, in contrast to stationary environments,
the optimal MCS-channel pair varies with time in piecewise-
stationary environments (see Fig. 4). Consequently, the optimal
expect reward (throughput) varies with time, due to which the
expected regret follows a staircase shape (see Fig. 6).

VI. CONCLUSION

In this letter, we proposed a discounted Bayesian learning
algorithm for link adaptation and channel selection under
unknown and piecewise-stationary channel statistics. Our pro-
posed scheme, dSTS, handles the volatility in the channel
set and exploits the structural information (monotonicity) of
the transmission success probability in the transmission rates.
Numerical evaluations demonstrate that dSTS handles the

time-varying statistics and volatile settings, in terms of the
expected regret and the expected cummulative throughput,
better than state-of-the-art algorithms. The expected regret
obtained with dSTS is approximately 43% lower than that of
V-CoTS, 45% lower than that of CD-CoTS, and 70% lower
than that of SW-KL-UCB-U.
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