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Abstract

Interpretation of omics data is needed to form meaningful hypotheses about
disease mechanisms. Pathway databases give an overview of disease-related pro-
cesses, while mathematical models give qualitative and quantitative insights into
their complexity. Similarly to pathway databases, mathematical models are stored
and shared on dedicated platforms. Moreover, community-driven initiatives such
as disease maps encode disease-specific mechanisms in both computable and
diagrammatic form using dedicated tools for diagram biocuration and visuali-
sation. To investigate the dynamic properties of complex disease mechanisms,
computationally readable content can be used as a scaffold for building dynamic
models in an automated fashion. The dynamic properties of a disease are ex-
tremely complex. Therefore, more research is required to better understand the
complexity of molecular mechanisms, which may advance personalized medicine
in the future.

In this study, Parkinson’s disease (PD) is analyzed as an example of a complex
disorder. PD is associated with complex genetic, environmental causes and
comorbidities that need to be analysed in a systematic way to better understand
the progression of different disease subtypes. Studying PD as a multifactorial
disease requires deconvoluting the multiple and overlapping changes to identify
the driving neurodegenerative mechanisms. Integrated systems analysis and
modelling can enable us to study different aspects of a disease such as progression,
diagnosis, and response to therapeutics. Therefore, more research is required to
better understand the complexity of molecular mechanisms, which may advance
personalized medicine in the future. Modelling such complex processes depends
on the scope and itmay vary depending on the nature of the process (e.g. signalling
vs metabolic). Experimental design and the resulting data also influence model
structure and analysis. Boolean modelling is proposed to analyse the complexity
of PD mechanisms. Boolean models (BMs) are qualitative rather than quantitative
and do not require detailed kinetic information such as Petri nets or Ordinary
Differential equations (ODEs). Boolean modelling represents a logical formalism
where available variables have binary values of one (ON) or zero (OFF), making it
a plausible approach in cases where quantitative details and kinetic parameters
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are not available. Boolean modelling is well validated in clinical and translational
medicine research.

In this project, the PD map was translated into BMs in an automated fashion
using different methods. Therefore, the complexity of disease pathways can be
analysed by simulating the effect of genomic burden on omics data. In order to
make sure that BMs accurately represent the biological system, validation was
performed by simulating models at different scales of complexity. The behaviour
of the models was compared with expected behavior based on validated biological
knowledge. The TCA cycle was used as an example of a well-studied simple
network. Different scales of complex signalling networks were used including the
Wnt-PI3k/AKT pathway, and T-cell differentiation models. As a result, matched
and mismatched behaviours were identified, allowing the models to be modified
to better represent disease mechanisms. The BMs were stratified by integrating
omics data from multiple disease cohorts. The miRNA datasets from the Parkin-
son’s Progression Markers Initiative study (PPMI) were analysed. PPMI provides
an important resource for the investigation of potential biomarkers and therapeu-
tic targets for PD. Such stratification allowed studying disease heterogeneity and
specific responses to molecular perturbations. The results can support research
hypotheses, diagnose a condition, and maximize the benefit of a treatment. Fur-
thermore, the challenges and limitations associated with Boolean modelling in
general were discussed, as well as those specific to the current study.

Based on the results, there are different ways to improve Boolean modelling
applications. Modellers can perform exploratory investigations, gathering the
associated information about the model from literature and data resources. The
missing details can be inferred by integrating omics data, which identifies missing
components and optimises model accuracy. Accurate and computable models
improve the efficiency of simulations and the resulting analysis of their control-
lability. In parallel, the maintenance of model repositories and the sharing of
models in easily interoperable formats are also important.

10



Chapter 1

Introduction

Extensive amounts of omics data generated to understand disease mechanisms
require interpretation to formulate meaningful hypotheses[1]. Pathway databases
[2, 3, 4] give an overview of disease-related processes, while mathematical models
give qualitative and quantitative insights into their complexity. Similarly to path-
way databases, mathematical models are stored and shared on dedicated platforms
[5, 6, 7, 8, 9]. Moreover, community-driven initiatives such as disease maps [10]
encode disease-specific mechanisms in both computable and diagrammatic form
using dedicated tools for diagram biocuration [11, 12, 13] and visualisation[14,
15]. In all cases, computationally readable content can be used as a scaffold
to build dynamic models in an automated fashion to investigate the dynamic
properties of the system [16]. The dynamic properties of a disease are extremely
complex. Therefore, more research is required to better understand the com-
plexity of molecular mechanisms, which may advance personalized medicine in
the future. Modelling of such complex process depends on the scope and it may
vary depending on the nature of the process (e.g.signalling vs metabolic). The
experimental design and resulting data also influence the model structure and
analysis [17]. Dynamic modelling approaches include Boolean or Multi-valued
models [18], Petri nets [19] or Ordinary Differential equations (ODEs)[20]. How-
ever, model  parameterisation is a challenging task [21] making logical models an
interesting alternative[8].

1.1 The complexity of Parkinson’s disease

As an example of complex disorders is Parkinson’s disease (PD). PD is character-
ized by progressive damage to dopaminergic neurons, causing motor, cognitive,
and behavioral impairments. PD is characterized by a loss of neurons in the
substantia nigra, resulting in rigid muscles, tremors, and bradykinesia. The de-
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generation of dopaminergic neurons in the substantia nigra over time decreases
dopamine release, resulting in reduced stimulation of the motor cortex by the
basal ganglia[22].

Although the causes of PD are unclear, evidence suggests that genetic and
environmental factors contribute to its development. The majority of PD cases
are sporadic rather than familial, and are caused by environmental factors or a
combination of several genetic and environmental factors. Genetic mutations are
found to be responsible for up to 15 percent of PD cases[23]. For example, LRRK2
mutations increase the aggregation of cytosolic proteins, leading to apoptosis and
cell dysfunction [23].

The cause of PD is not only genetic, but is also linked to lifestyle fac-
tors and toxin exposure. As an example, MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) is an environmentally-derived neurotoxin [23]. MPTP
destroys dopaminergic neurons, leading to permanent symptoms similar to PD.
There is no definitive link between environmental toxins and PD progression, but
it is hypothesized that exposure to environmental toxins increases the risk[23].

A variety of comorbidities are associated with PD, including cardiovascular
diseases, melanoma, dementia, and diabetes [24]. Themost common comorbidities
among PD patients are hypertension and diabetes [24]. In some cases, depression
may appear decades before the onset of PD. Limited information is known about
how comorbidities may play a role in PD pathogenesis and progression. PD and
its comorbidities may share therapeutic targets and biomarkers. Diabetes-related
drugs are currently being evaluated in clinical trials for PD [25].

From the previous examples, PD is associated with complex genetic, environ-
mental causes and comorbidities that need to be analysed in a systematic way to
unveil the progression of different disease subtypes. Studying PD as a complex
disease requires deconvoluting the multiple and overlapping changes to identify
the driving neurodegenerative mechanisms. This requires multiple and precise
perturbation experiments to study the effect of mutations on PD mechanisms,
which is not possible in the human body[26]. For this reason, scientists include
model systems, such as in vivo and culture systems, to identify novel mechanisms
that will lead to new therapeutic approaches. In this context, multi-dimensional
omics analysis of culture experiments is essential to provide a large number of
measurements for relatively few samples. Further, integrated systems analysis
can help us to study many aspects of a disease in parallel. Systems analysis of
human tissues yields a variety of novel insights regarding PD-related mutations.
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Analysis of other invivo models yields correlations between measurements and
disease phenotypes. Therefore, a multivariate analysis is necessary to identify
many correlates of disease and discriminate between disease subtypes [27]. This
leads to decreased motor control and movement. As PD progresses, cognitive
impairment, depression, and other behavioral symptoms can develop.

1.2 Logical modelling process
Logical modelling in systems biology is a mathematical approach that can be
used to represent biological systems. It is based on Boolean algebra and can
be used to represent the interactions between components in a system. This
approach is useful for understanding how components interact and how changes
in one component can affect the whole system. Logical models are often used
to investigate the behaviour of cellular networks or other systems, such as gene
regulation networks. Logical models are useful for predicting the effects of
perturbations to a system, such as drug treatments, and can provide insights into
the dynamics of a biological system.

There are several types of logical modelling used in systems biology. Boolean
models (BMs) are the most commonly used type of logical modelling. These
models provide a graphical representation of a system and are used to model
the interactions between components. Probabilistic BMs are an extension of
BMs and allow for the incorporation of probabilistic functions. Petri nets are
another type of logical modelling used in systems biology. These models provide
a graphical representation of a system and are used to model the interactions
between components and the effects of different inputs. Finally, rule-based models
are used to represent the dynamics of a system and the behaviour of components
in response to external stimuli.

BMs are qualitative rather than quantitative and do not require detailed kinetic
information such as Petri nets [19] or Ordinary Differential equations (ODEs)[20].
However, in some research areas, such as pharmacogenomics, presenting data to
simple BMs may be challenging, and does not introduce the best description of
the biological system [28]. Therefore, researchers studied the qualitative nature of
BMs, facilitating the integration with other quantitative methods to allow better
analysis[29]. Such methods, including ODEs and Petri nets, combined with BMs
and constraint-based models, show that BMs are useful scaffolds for quantitative
models [28].

Boolean modelling represents a logical formalism where available variables
have binary values one (ON) or zero (OFF), making it a plausible approach in
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cases where quantitative details and kinetic parameters are not available. Model’s
biomolecules and interactions are described by Boolean functions (BFs) that
define the behaviour of the output biomolecules based on the interaction inputs.
Some non-physical components of BMs, represented as pathway endpoints or
phenotype, are not biomolecules. Updating schemes define conditions and order
in which the BFs are calculated [30]. BFs were used primarily to describe genes’
regulation but other researchers applied them to signalling networks using various
logical formalisms [31, 32, 33], e.g. Boolean, differential, or fuzzy equations.

Boolean modelling was applied in clinical and translational medicine re-
search[34, 35, 36]for various purposes. Simulation of the complex biological
systems allowed to predict the activity of pathway endpoints (phenotypes)[37],
drug targets [38] and cellular crosstalks [39]. Identifying attractors helped
to understand the activity of the phenotypes, since they represent the steady
states of biomolecules [40, 41]. Finally, comparing attractors before and after
perturbations allows evaluating the model stability and give insight into how the
in-vivo systems maintain their homeostasis.

In this project, the PD map is translated into BMs in an automated fashion
using different methods. Therefore, the complexity of disease pathways is studied
by simulating the effect of genomic burden from omics data. BMs are created at
different scales of the complexities to ensure its ability and reliability to simulate
disease mechanisms. First, the simple and known mechanisms are simulated to
investigate the model ability to represent the already known behaviour. Further,
the BMs are used to re-simulate complex molecular interventions data, comparing
the results with other models.

The BMs are stratified by integrating omics data of multiple disease cohorts.
Such stratification allows for studying disease heterogeneity and specific re-
sponses to molecular perturbations. Molecular expressions can be used to specify
the conditions of key components such as disease biomarkers. The effect of
presence or absence of disease biomarkers is simulated, modifying the probability
of having a component active or inactive at the beginning of the simulations.
From this point, the modelling of disease modules can develop specific treatment
strategies and propose new therapeutic interventions to arrest disease progres-
sion.

Taken together, Boolean modelling is a flexible formalism, allowing to analyse
a range of dynamic properties of biological systems, including models of disease
mechanisms[42, 43]. BMs show a flexibility to be integrated with omics data,
allowing a precision in transitional medicine.
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1.3 Result overview

BMs were created in different modelling formats including SBML-qual, which
is used for creating, storing and exchanging qualitative models. Analysis of the
models’ structural and dynamic properties was used to verify their accuracy.
The dynamic verification and sensitivity analysis results showed that the BFs
accurately represented the original interactions and the model was robust against
small perturbations. The validation was performed by simulating models in
different scales of complexity. The behaviour of the models was compared with
the expected behavior based on validated biological knowledge.

The BMs were stratified based on the dataset obtained from the Parkinson’s
ProgressionMarkers Initiative study (PPMI). PPMI provides an important resource
for the investigation of potential biomarkers and therapeutic targets for PD. High-
throughput sequencing of small RNAs from whole blood samples of patients at
various stages of the disease was performed, and miRNAs were identified and
quantified. Differential expression analysis revealed the dysregulation of several
miRNAs in the blood of PD patients compared to healthy controls. In addition, the
expression of several miRNAs was associated with clinical parameters of disease
subtypes.

The simulation of BMs highlights different regulatory modules during disease
progression. The results may support the research hypothesis, diagnosis, and
maximize the effectiveness of a treatment. In addition, the models provided stage-
based simulations of disease progression and diagnosis. Furthermore, the study
identify the similar probabilities between phenotypes across disease subtypes. In
this way, it is possible to use the models to investigate similarity-based differential
diagnosis and identify common crosstalk. The approach described in this thesis
is illustrated in (Figure 1.1). This figure summarizes the key steps and methods
used in our research

As will be seen in the following chapters, the literature review serves as an
essential foundation for the rest of the study, as it provides a comprehensive
overview of the current state of knowledge on the Boolean modelling. I system-
atically reviewed and analysed the relevant literature, highlighting key findings
and theories that are relevant to the research question. This includes a critical
evaluation of the strengths and limitations of the previous research, and to syn-
thesise the findings in a way that sets the stage for the research question and
methods of the current study.
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Figure 1.1 The figure summarizes the general approach taken in this thesis. It high-
lights the key steps and methods used in our research. The static diagrams represented as
research knowledge and omics can be converted into dynamic Boolean models, enabling
in silico simulations and predictions to be made. This allows for a deeper understanding
of the underlying mechanisms of health and disease.

The method chapter provides the details of how the study is conducted. the
study design is described, including the research question and the hypotheses
being tested. I describe the datasets that were used, as well as the data collection
methods and any data analysis techniques that are applied. It is important to note
that the scripts that used in the method chapter are provided on Gitlab repository
so that other researchers can understand and replicate the study if needed.

The results chapter include tables and figures to help illustrate the results. The
chapter highlights the limitations and potential sources of error in the analysis
process, as well as any unexpected or surprising results.

The discussion chapter delves into the dynamics and interpretation of the
results, offering insight into the underlying mechanisms or trends that are ob-
served in the study. This includes a discussion of the implications of the results
for the research question or hypotheses being tested, as well as how the results
compare to previous research in the field. The chapter explains the limitations
or challenges that were encountered in the study and how they may affect the
results.

The conclusion chapter highlights the key takeaways from the research, in-
cluding the limitations and future directions for study.
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Chapter 2

Literature review

2.1 Parkinson’s disease as a complex disorder

Parkinson’s disease (PD) is a complex progressive neurological disorder that
affects movement and coordination. The cause of PD is not known, but it is
believed to be related to a combination of genetic and environmental factors. It is
characterized by the slow degeneration of nerve cells in the brain that produce
dopamine, a neurotransmitter that helps control movement. As these cells are lost,
the patient experiences a variety of symptoms, including tremors, slowmovement,
stiffness, difficulty with balance and coordination, and problems with speech [44].
The complexity of PD makes it difficult to diagnose, as symptoms can vary greatly
from person to person. Diagnosis often requires a combination of tests, such
as MRI, CT scans, and neurological exams [45]. Both scans cannot definitively
diagnose PD, but they can assist physicians in eliminating other potential causes of
the symptoms.Treatment for PD includes medications to increase dopamine levels,
physical therapy to help maintain muscle strength and coordination, and lifestyle
changes to manage symptoms. The complexity of PD also makes it difficult to
predict how it will progress over time. While some patients may experience
only mild symptoms and a relatively slow progression of the disease, others may
experience more severe symptoms that worsen quickly. This unpredictability can
make it difficult to plan for the future and make decisions.

2.1.1 Hallmarks and genetic mutations

PD-related pathways involve a wide range of molecular changes. These pathways
are linked to the degeneration of dopamine-producing neurons in the substan-
tia nigra in the midbrain. Research into these pathways is ongoing, and new
treatments are being developed to address the underlying causes of this disorder.

17



Mitochondrial dysfunction

Mitochondrial dysfunction is implicated as amajor contributor to the pathogenesis
of PD.Mitochondrial dysfunction refers to a decrease in the ability of mitochondria
to produce ATP, the primary source of energy in the body [46]. This can lead to
impaired function of cells, including dopamine-producing neurons, which may
contribute to the development of PD. Mitochondrial dysfunction can be caused
by a variety of factors, including genetic mutations, environmental toxins, and
oxidative stress [47]. Treatments aimed at addressing mitochondrial dysfunction
in PD may require the use of dietary supplements and antioxidants, as well as
drugs that target specific mitochondrial pathways. In addition, research show
that targeting the mitochondria may be a potential therapeutic strategy for PD
[47]. For example, research suggests that increasing levels of the PGC-1α protein,
which plays a role in mitochondrial biogenesis and energy production, may be
beneficial for PD [48]. Additionally, studies suggests that drugs that can target
mitochondrial function, such as the antioxidant CoQ10, may be beneficial for
PD [49, 50]. Finally, research shows that modulating the energy metabolism of
mitochondria may be a promising strategy for treating PD [51].

Oxidative stress

The accumulation of reactive oxygen species (ROS) leads to the formation of
toxic compounds that can damage neurons, leading to the development of PD.
Oxidative stress is thought to be a major contributor to the pathology of PD.
The imbalance of ROS and antioxidants leads to increased cellular damage and
dysfunction of dopaminergic neurons. This increased oxidative stress is thought
to contribute to the death of these neurons, leading to the clinical features of
the disease. There is evidence that antioxidant supplements, such as vitamin E
and vitamin C, can reduce the oxidative stress associated with PD. This may be a
potential supportive treatment for the disease. Additionally, dietary interventions,
such as consuming foods rich in antioxidants, may provide some protection from
the oxidative damage seen in PD. Therefore, it is important to understand the
role of oxidative stress in the development of PD. In addition, it is important to
explore strategies to reduce the oxidative damage associated with the disease.

Neuroinflammation

Neuroinflammation is believed to be an important factor in the pathogenesis of
PD. The presence of chronic inflammation in the brain is linked to the progression
of the disease and the development of motor symptoms. Studies show that individ-
uals with PD have increased levels of inflammatory mediators in their brains[52].
Additionally, genetic mutations associated with PD are linked to increased levels
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of pro-inflammatory cytokines [52]. Furthermore, environmental factors such as
pesticides, heavy metals and other toxins may trigger an inflammatory response
in the brain which could cause the development of PD [53].

Protein aggregation

Protein aggregation plays a role in the pathogenesis of PD. The formation of
protein aggregates, such as Lewy bodies, is linked to the progression of the dis-
ease and the development of motor symptoms. Protein aggregation occurs when
proteins misfold and clump together, leading to the formation of insoluble struc-
tures within the cell [54]. The accumulation of these aggregates disrupts normal
cell functioning, leading to cell death and the development of Parkinson’s symp-
toms. Additionally, the presence of these aggregates contributes to a cascade of
oxidative stress, inflammation and mitochondrial dysfunction, which can further
aggravate the disease [55]. In addition to Lewy bodies, other aggregated proteins
associated with Parkinson’s include alpha-synuclein, tau and polyglutamine [54].
Research is ongoing to understand how these aggregates form, as well as to
develop treatments that target them.

Protein degradation

Protein degradation is an important process in the body that helps to clear out
damaged or unnecessary proteins. In PD, two types of protein degradation
pathways are thought to play a role in the degeneration of neurons: ubiquitin-
proteasome system (UBS) and autophagy [56]. The UBS is a pathway that involves
the attachment of a small protein called ubiquitin to target proteins, which marks
them for degradation by the proteasome [57]. The proteasome is a complex of
enzymes that breaks down the target proteins into smaller peptides, which can
then be recycled or used for energy. In PD, the UBS is thought to play a role in the
degeneration of dopamine-releasing neurons, which are responsible for producing
the neurotransmitter dopamine [57]. Autophagy is another pathway that plays a
role in protein degradation and is important for maintaining cellular homeostasis.
Autophagy involves the formation of vesicles called autophagosomes, which
engulf and recycle damaged or unnecessary proteins and organelles [58]. In PD,
autophagy is thought to be impaired, which may contribute to the accumulation
of abnormal proteins such as alpha-synuclein. Both the UBS and autophagy
pathways are important for maintaining protein homeostasis in the body and may
play a role in the development and progression of PD. Further research is needed
to fully understand the role of these pathways in PD and to identify potential
therapeutic targets for the treatment of this condition.
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Genetic components of Parkinson’s disease

Research suggests that genetic factors play an important role in the development
of PD. Mutations in certain genes are associated with an increased risk of devel-
oping the disease. These mutations can affect the proteins involved in dopamine
production, as well as other proteins involved in the pathways outlined above.
For example, mutations in the LRRK2 gene are associated with late-onset PD,
which develops after age 50 [59]. LRRK2 mutations increase the aggregation of
cytosolic proteins, leading to apoptosis and cell dysfunction [23].

Parkin, which is encoded by the PARK2 gene, is associated with the degra-
dation of dysfunctional mitochondria. There is evidence that mutations in the
PARK2 gene are associated with an earlier onset of PD [60]. Researchers suggest
that the loss of parkin activity interferes with the normal functions of cells, includ-
ing the activity of mitochondria. Damaged mitochondria may affect dopamine
transmission in dopaminergic neurons, resulting in PD symptoms and signs [60].

The SNCA gene encodes the alpha-synuclein protein, which is found in
presynaptic nerves and other types of cells. Alpha-synuclein plays a key role
in neurotransmission as it regulates synaptic vesicle release - the release of key
neurotransmitters, such as dopamine [23, 60]. SNCA mutations can lead to abnor-
mal accumulation of dopamine due to the dysregulation of the alpha-synuclein
protein. The body then breaks down what is thought to be excessive dopamine,
resulting in neuronal cell death and the characteristic signs and symptoms of PD
[23, 60].

The PARK7 gene codes for a protein that acts as an antioxidant, protecting
neurons from oxidative stress and preventing alpha-synuclein accumulation.
Mutations in the PARK7 gene lead to the accumulation of alpha-synuclein and
the degradation of excess dopamine [23, 60]. Dysfunction of the PARK7 gene
leads to oxidative stress, causing dopaminergic neuronal death [60].

PINK1 gene mutations may play a role in causing early-onset PD. The PINK1
gene codes for a protein, PINK1, which is found in the mitochondria of cells
throughout the body. PINK1 plays a protective role in response to oxidative stress
[23, 60]. Normal PINK1 protein inhibits apoptosis. However, a mutant PINK1
protein may contribute to increased neuronal cell death.

2.1.2 Environmental factors related to Parkinson’s disease

Environmental factors, such as exposure to certain chemicals and toxins have
are linked to an increased risk of PD. Other environmental factors may also play
a role, such as lifestyle factors, like exposure to certain pesticides. MPTP is an
environmental neurotoxin that is linked to Parkinson’s-like symptoms in humans
and animals. It inhibits the enzyme responsible for breaking down dopamine.
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This leads to a buildup of dopamine in the brain, which causes cell death and the
characteristic symptoms of Parkinson’s. In addition to its potential link to the
development of PD. It can also be used to study the effects of dopamine-related
treatments in animals. Despite its potential link to PD, further research is needed
to confirm any causative relationship [23].

2.1.3 Comorbidities associated with Parkinson’s disease
PD can result in a variety of comorbidities, or additional health conditions that
can occur alongside the primary diagnosis. Common comorbidities in people
with PD include depression, anxiety, urinary incontinence, sleep disturbances,
dementia, and REM behavior disorder. Treating these comorbidities can help
improve the quality of life for people with PD and reduce the risk of complications
[24].

Although there is limited research on the comorbidity of PD and Type 2 Dia-
betes Mellitus (T2DM), there is evidence that suggests that the two conditions
co-occur more often than is expected by chance alone [61]. There are a few poten-
tial explanations for the comorbidity of both conditions. Firstly, the mechanisms
underlying both conditions are similar and linked. For example, certain path-
ways involved in the development of PD such as oxidative stress, mitochondrial
dysfunction, and inflammation, are associated with the pathogenesis of T2DM.
Additionally, certain risk factors for both conditions overlap, such as age and
genetics [62, 63]. Lastly, certain drugs used to treat PD, such as levodopa and
dopamine agonists, may increase the risk of T2DM [64].

T2DM is a metabolic condition in which the body does not produce enough
insulin to effectively regulate blood sugar levels. T2DM may worsen the motor
symptoms of PD [63]. This can include a decrease in mobility, balance, and
coordination. It can also lead to an increased risk of cognitive decline [65]. T2DM
has a significant negative impact on the lives of people with PD. To reduce the
risk of these complications, PD patients should be checked for signs of T2DM and
treated appropriately. Additionally, lifestyle modifications such as a healthy diet
and regular exercise should be encouraged to help control blood sugar levels.

PD is frequently associated with insulin resistance [63]. Insulin resistance
is a condition in which the cells become less sensitive to the effects of insulin.
This can lead to high blood sugar levels, which can increase the risk of T2DM and
other health complications. Studies show that PD patients may have increased
insulin resistance due to a decrease in insulin secretion, changes in fat metabolism,
increased oxidative stress, and increased inflammation [66, 67]. Additionally, PD
patients may have an increased risk of developing T2DM due to lifestyle factors
such as physical inactivity and a poor diet. Treatment of insulin resistance in PD
patients can involve medications such as metformin and insulin sensitizers can
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be used to help lower blood sugar levels and improve insulin sensitivity [68].

2.1.4 Cohort study of Parkinson’s disease
From the previous examples, PD is associated with complex genetic, environ-
mental factors, and comorbidities. These complexities need to be analysed in
a systematic way to understand the progression of different disease subtypes.
Cohort studies are an effective tool for understanding the multiple interactions of
complex diseases. These studies can help identify risk factors associated with the
development of a particular disease. They can also be used to assess the effects of
interventions designed to reduce the risk or progression of the disease. Cohort
studies are especially helpful in complex diseases because they allow researchers
to observe the progression of the disease over time. In addition, they help to
identify any changes in risk factors that may be associated with the onset or
progression of the disease. Cohort studies can also provide valuable insight into
the biological mechanisms underlying the disease, and can be used to develop
more effective treatments or preventative strategies.

In this context, the Parkinson’s Progression Markers Initiative (PPMI) is an
observational, international, longitudinal study of PD. The goal of PPMI is to iden-
tify biomarkers that could predict the onset of PD and measure the progression
of the disease. To achieve this goal, PPMI collects data from participants on a
variety of measures, including demographic information, clinical assessments,
laboratory tests, and imaging studies. PPMI also collects biological samples, such
as blood, urine, and saliva, which are analyzed to identify biochemical markers of
PD [69]. The data and biological samples obtained at PPMI are made available
to researchers around the world through the PPMI Data and Sample Reposi-
tory (https://www.ppmi-info.org/access-data-specimens/data). This repository
provides access to data sets, including clinical, demographic, imaging, and labora-
tory information, as well as protocols, study materials, and biospecimens. The
repository also provides access to analytical tools, such as data visualization and
bioinformatics software, to aid in biomarker discovery.

As part of PPMI, blood samples are collected from participants and analyzed
to measure the levels of microRNAs, which are small and stable molecules that
regulate gene expression. These microRNA levels can be used to determine
disease subtypes as well as to monitor the progression of the disease [70]. The
PPMI includes different disease subtypes such as SWEDD (scans without evidence
of dopaminergic deficit) and prodromal cases (early stage of a disease).

22



SWEDD (187 individuals) refers to the absence, rather than the presence, of
an imaging abnormality in patients clinically presumed to have PD. SWEDD is a
neurologic diagnosis made in patients who have a classic clinical presentation of
PD but lack the classic imaging features seen in PD on a brain scan [71]. This
can occur when a patient has symptoms of PD but does not have the usual brain
imaging findings seen in PD. For example, the presence of Lewy bodies and/or
the presence of a midbrain dopaminergic deficit on PET or SPECT scans.

Prodromal (223 individuals) does not usually develop severe symptoms, but it
can be diagnosed through a positive dopamine transporter (DAT) SPECT scan. A
DAT SPECT scan is a type of imaging test that measures the activity of dopamine
transporters in the brain. This test can help diagnose prodromal, as it can detect
changes in dopamine transporter activity that may indicate prodromal. It is
important to note that a positive DAT SPECT scan does not necessarily mean
that a person has prodromal symptoms. It means that the scan detected changes
in dopamine transporters which may indicate a prodromal condition [72].

Other cohort studies includes the NCER-PD cohort[73] and OPDC Discovery
cohort [74]. NCER-PD is known as the Luxembourg Parkinson’s study, aims
to conduct comprehensive clinical, molecular, and device-based research on PD
and atypical parkinsonism [73]. This study includes patients of all stages of the
disease, regardless of age, comorbidities, or linguistic background. To facilitate
this research, the NCER-PD cohort implements an open-source digital platform
that can be integrated with other international PD cohort studies. Additionally,
the NCER-PD cohort is focusing on specific areas of PD research relevant to
Luxembourg, including vision, gait, and cognition [73]. The NCER-PD cohort also
collects high-quality biosamples, such as body fluids and tissue biopsies, to support
its research efforts. The combination of advanced clinical phenotyping approaches
and device-based assessment allows for a comprehensive understanding of the
disease and its progression. The OPDC Discovery cohort is a long-term study that
is researching PD. The study includes individuals with early-stage Parkinson’s,
people at risk of developing the condition, and those with REM Sleep Behaviour
Disorder, as well as healthy controls [74]. The goal of the study is to learn
more about how Parkinson’s progresses in different individuals and to use this
information to improve diagnosis and management of the disease. The OPDC is
committed to using new and innovative technologies to aid in the diagnosis and
monitoring of Parkinson’s symptoms. The hope is that these technologies will
help affected individuals better manage their symptoms and have more control
over their disease.

23



2.2 Logical modelling in systems biology
Modelling biological processes can take various forms depending on the scope
of the study and the questions being explored. Data and prior knowledge of
pathways also play a role in the structure and analysis of the model[75]. Static
network analysis, for instance, is used to identify clusters and correlations between
biomolecules. This approach can be useful for understanding the relationship
between functional biomolecules and disease classes or phenotypic measurements
[76]. Dynamic modelling focuses on simulating the causal relationships between
biomolecules and their measurement values. By integrating data and prior knowl-
edge of pathways, dynamic models can be used to model relationships between
expressed genes or proteins [76]. This approach can be applied to understand
the effects of a particular drug on the progression of a medical condition. In this
case, data such as drug concentrations and biomarkers can be used to construct
and modify the model, allowing it to be used as a tool to explore hypotheses and
identify potential therapeutic targets [77].

There are different types of dynamic modelling approaches, for example, Petri
nets [78] or Ordinary Differential equations (ODEs) [79] and Boolean, Multi-
valued models [80]. However, model parameterisation is a challenging task [81]
making Boolean or multi-valued discrete models, an interesting alternative [82].
Petri nets are a mathematical modelling approach that is frequently used in
systems biology to understand and analyze complex biological systems [83]. Es-
sentially, a Petri net consists of a directed bipartite graph with nodes representing
different biomolecules (such as proteins, DNA, or RNA) and transitions represent-
ing the interactions or events that can take place within the system. Edges in the
graph represent the flow between biomolecules. By simulating the flow through
the graph, scientists can study the dynamic behavior of the system and make
predictions about how it will behave under different conditions [78]. Petri nets
are applied to a wide range of biological processes, including gene regulation,
protein synthesis, and cell signaling pathways, and are useful for identifying
potential targets for therapeutic intervention [84].

ODEs are type of mathematical equations that used to model the dynamics of
biological systems, such as the concentration of biomolecules [79]. For example,
an ODE may be used to describe the change in the concentration of a particular
chemical compound in a pathway over time, taking into account the rate at which
it is produced, consumed, and eliminated [21]. ODEs can also be used to identify
key factors that influence the behavior of a biological system, and to design
experiments or interventions that can alter the system’s behavior in desired ways
[85].
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A Boolean model (BM) does not require detailed kinetic information since it is
qualitative rather than quantitative. It can be challenging to present unknown
data to simple BMs in certain research areas, such as pharmacogenomics [28]. As
a result, researchers explored how BMs can be integrated with other quantitative
methods to make analysis more effective [86, 87].

Biomolecular systems can be represented by BMs, where biomolecules’ states
have two possible values, one or zero, that change according to their interactions
described by Boolean functions (BFs). A BF defines the output state based on
inputs and the logic of the interaction. The order of evaluating BFs is governed by
an updating scheme [29]. BMs are used to analyze qualitative behaviour and ther-
apeutic responses to a variety of biological problems [31, 33, 32]. Here, we review
the application of Boolean modelling to systems medicine problems. An overview
of the modelling process is followed by an explanation of incremental develop-
ment of the Boolean modelling in clinical and translational medicine. We conclude
by discussing emerging tools and methods for improving the reproducibility and
reuse of such models in biomedical research.

2.2.1 Building the regulatory graph of the Boolean models

In general, the first step of Boolean modelling is building model structure. This
step can be achieved by inference of molecular interactions from available mecha-
nistic data [30, 88] The second step is to construct BFs that describe the interactions
of biomolecules. The transition of a biomolecule from one state to another is
regulated by those functions and the chosen updating scheme.

Inference from molecular interaction diagrams

Molecular mechanisms of health and disease are often represented as systems
biology diagrams, and the coverage of such representation constantly increases.
These diagrams can be transformed into BMs using automated conversion tools.
Simple interaction format (SIF) can be translated into a list of logical functions in
Boolsim format [89]using a Standardised QUAlitative Dynamical system approach
(SQUAD) [90]. In turn, diagrams and networks from KEGG, BioCarta and SABIO-
RK [91] can be transformed to SBML-qual format using PAth2Models, providing
large scale models. SBML-qual offers the interoperability and the annotation of a
BM and its components. The System Biology Graphical Notation (SBGN) Activity
Flow, Process Description and entity relation diagrams can be translated to the
reaction-contingency language [92] (rxncon language), using the mechanistic
details on the signal transduction networks and creates the contingencies (logical
rules).
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Recently, the diagrams in CellDesigner SBML format were translated to SBML-
qual using CaSQ (CellDesigner as SBML-qual), providing the construction of
large-scale BMs automatically from the molecular interaction diagrams. The
translation process starts with the diagram reduction based on specific rewriting
rules [93]. CaSQ also infers the Boolean functions and translates the interactions
from the Process Description to the Activity Flow, considering one qualitative
species to each species after the reduction step.

Construction of Boolean functions

In a molecular setting, biomolecules are controlled by various regulators, which
can be represented as regulatory nodes controlling the activation or inhibition of
their target nodes by associated rules called BFs. The state of a specific biomolecule
is changed based on BFs in an iterative manner [94]. Each iteration corresponds to
a discrete time step in a path length (the number of the interactions in a path)and
completes as long as all biomolecules are updated based on a proper time scheme
[30].

Other types of BFs that are not as widely used in systems biology, as they
describe complex and non intuitive relationships, are described in detail in Shuster
(Ed.) [95]. An important type among these is a canalysing function [96]. In this
type, multiple input variables that control the BF are in a hierarchical relationship
[96]. For example, in A OR (B AND C), if A equals one, it will control the output
regardless of other variables. If A equals zero, the second part of the function will
be controlled by B= 0 or C=0. It was noticed that the canalysing functions increase
robustness of BMs, similarly to corresponding molecular mechanisms. BFs can
also be constructed by different probability distributions [95]. They can repre-
sent the combinatorial effects of gene regulations in a simple and interpretable
representation of regulatory networks [97].

2.2.2 Simulation of model dynamics with updating schemes
The dynamics of BMs are simulated by incremental execution of BFs and changing
the states of corresponding nodes in a series of discrete time steps. The order at
which BFs are executed is governed by updating schemes: synchronous, asyn-
chronous and hybrid [98]. Updating schemes are fundamental in dynamic models
to understand the mechanism of how the biomolecules are evolved in a biological
system across time [99]. The evolution of one biomolecule may not be described
by only one interaction, therefore, the modeller can test and choose different
options of updating schemes to decide which scheme is more suitable for the
research.

The synchronous scheme updates the state of all biomolecules at the same
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time. The resulting dynamic trajectory of a synchronous updating scheme is
deterministic i.e. the model always reaches the same state after the same time.

The asynchronous scheme updates the state of one biomolecule per transition,
and the nodes are updated randomly based on their BFs. Therefore, one initial
condition state can evolve into different outcomes with different executions [100].
The spectrum of all possible outcomes is illustrated using the state transition
graph.

In hybrid scheme, synchronous and asynchronous schemes can be used to-
gether. It includes temporal logic to model interactions that need more than
one time step [101, 102]. The temporal logic adds time delays between regulator
biomolecules and their final products. The hybrid scheme assumes partitioning
the model into clusters, the variables at each cluster are synchronously updated
and the choice to start the update between groups relies on asynchronous strategy
[101, 103].

The previous schemes can be updated in probabilistic manner using prob-
abilistic BMs. Probabilistic BMs assigns certain probabilities to BFs, and each
biomolecule is updated based on this probability before reaching the steady state
[101, 104].

2.2.3 Attractor analysis
A simulated model can reach a stable dynamic behaviour, where the states of
the biomolecules converge to a stable configuration, called an attractor, which is
interpreted as a physiological endpoint [105, 34]. An attractor is a state of a BM
with no outgoing edges in the state transition graph. Attractors can be classified
as i) stable states (fixed points) which are time invariant, and ii) complex attractors
– sets of possible outcomes that can be reached following the synchronous and
asynchronous scheme [106]. The set of states within an attractor is called the
basin of attraction. It can be interpreted as a set of possible biological scenarios,
supporting testable hypotheses [107]. In synchronous and deterministic asyn-
chronous schemes, the system may oscillate regularly when attractors form a
limit cycle, and each node has not more than one successor. An example of a limit
cycle is the cell cycle in models of a eukaryotic cell [108, 109]. In a stochastic
asynchronous scheme, the system may oscillate irregularly due to the random
initial condition selection leading to loose attractors. That means the model does
not oscillate in a cycle due to the target node having more than one successor. It
is challenging to interpret complex attractors with large numbers of steady states
that oscillate in an irregular cycle.

To find an attractor, the past states of the model are compared to the updated
ones to find recurring patterns. This search process can be exhaustive or heuristic.
An exhaustive search starts from all states synchronously until the attractor is
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reached. This mode is mostly limited to small-size models [102], although a
SAT solver can increase the search speed, identifying the possible attractors in
large models with hundreds of components [110]. In turn, the heuristic search
starts with a chosen subset of states to identify the attractor synchronously or
asynchronously. The heuristic search performs random transitions, creating
model states with a high probability. Then, the algorithm computes the forward
reachable sets of the model states. If all sets are similar, an attractor is identified
[111].

Identifying an attractor in a complex model is challenging. Many reduction
techniques were implemented to simplify the original BFs to include a fewer num-
ber of operations [112, 113, 114]. This can be achieved by removing components
that do not affect the behaviour of the original BFs. For example, some reduction
techniques identify the biomolecules whose state do not change, turning the cor-
responding BFs into a simpler model [112, 115]. In complex BMs, this technique
is followed by removing interactions with one input and output and self-loops
[116]. Another approach splits the model into strongly connected components
(SCCs) to decrease its complexity, and the simulations are run for all the SCCs
independently [117]. Recently proposed Most Permissive BMs simulations is
a paradigm to perform trajectories sampling and to reach the complete set of
attractors faster than the asynchronous search, allowing to run more fine-grained
simulations [118].

2.2.4 Topology, perturbation, and controllability analysis
Simulation of BMs to identify their stable states and attractors provides insights
into the behaviour of the model. From this point, it is possible to predict mean-
ingful interventions towards desired outcomes by analysing the structure of the
model and its response to perturbations. To gain insight into the model structure,
it is important to study the topology of a BM which may be a necessary prereq-
uisite for some updating schemes and/or attractor analysis (the ones that need
modularisation). Such analysis helps to understand the connectivity of the model
components and how they affect phenotypes. This information can improve the
understanding of BM dynamics under different updating schemes or attractor
analysis [119] by identifying structural cycles in the BM topology. Moreover, this
information can be used to define components sensitive against perturbations
[120].

Perturbation analysis means changing the state of a biomolecule or its BFs, to
analyse the topological robustness and the dynamic resilience of the BM, and the
attractors it reaches [121, 122]. Comparing the original attractors with those after
perturbation allows evaluating its impact. One of frequently used perturbations
sets the state of a biomolecule to a fixed value, zero or one, emulating permanent
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activation or activation, e.g., due to a drug action. Other types of perturbation may
change the rule structure of the BFs, either entirely (rule-flip) or partially. Such
partial perturbations are called edge perturbations, as they affect the connectivity
of a BM.

Testing of BMs is performed at three levels. The first level is to check the
model topology of the biomolecules and their BFs for completeness and correct
use of logic operators [123]. The second level is to ensure the model ability to
simulate a biological system at different updating schemes. The third level is to
check the stability of a model in response to perturbations. A robust model reflects
how the physiological system can keep their internal state relatively constant
against the effect of perturbations [30]and maintain homeostasis.

The control of BMs can be achieved by twomainways. The first one starts with
adding external sets of signals to affect the state of the biomolecules in the model
and reach the desirable stable state or attractor [124, 125]. The added signals,
represented as additional nodes in BMs, have no parent interactions and their
values are a series of state values in a specific time step to reach the desirable states.
They can represent possible therapies affecting model behaviour. For instance,
the control of gene expression is essential to plan therapeutic interventions [124].

The second way is to perturb the states of BMs randomly to select the
biomolecules that may result in attractors representing the desired outcomes
of the model. This approach is implemented as an algorithm [126]that that identi-
fies the optimal one-bit perturbation, i.e., the simplest form of perturbation that
inverts the states of biomolecules in an attractor, for a given configuration of
external inputs.

2.2.5 Boolean modelling formats and tools
A BM can be constructed and represented using various modelling tools relying
on different formats, as illustrated in the (Figure 2.1). One of these formats is the
SIF [127], which is used for encoding a model topology from a list of interactions,
giving an easy solution for combining new interactions tomodels. SIF is supported
by different tools and databases such as Cytoscape [128], OmniPath [129] and
Signor [130].

In order to re-use or integrate models, they need to be translated from their
original format. Literature-constructed diagrams can be transformed into BMs as
a SIF using automated conversion tools (Figure 2.1). SIF can be translated into a
list of BFs in Boolsim format [131] using a Standardised QUAlitative Dynamic ap-
proach (SQUAD) [132]. In addition, GNA allows the encoding of model functions
and specifies qualitative values of a model from the experimental literature [133].

Model annotations can be stored along with the topology and BFs using a
SBML-qual. SBML-qual is a standard format designed by the CoLoMoTo com-
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munity [134], extending the SBML [135] to represent the qualitative models of
biological networks [136]. Pathway diagrams from KEGG, BioCarta and SABIO-
RK [137] can be transformed to SBML-qual using PAth2Models [137]. Using a
dedicated converter CaSQ [138], CellDesigner SBML format can be translated to
SBML-qual. Notably, SBML can be translated into SBML-qual by CellNOpt[139]
and SQUAD [132]. However, the SBML-qual format is still incompatible with
some tools such as RMut [122], NetDS [140] and CABEAN [141], pointing out
that further integration efforts are required to allow reproducibility of SBML-qual
models with the incompatible tools.

In the modelling process, a range of tools is available for model inference,
simulation, and attractor analysis. In the case of model inference, the majority
of represented tools in the (Table 2.1) generate BMs randomly based on selected
information, which is known as random model generation. The two software-
CABERNET and caspo- create a BM by augmentation if the topological/ functional
characterization is incomplete (Table 2.1). A user can generate ensembles of
models by combining components and interactions with the original model. The
synchronous updating scheme is a default simulation method, supported by all
the reviewed tools. Moreover, CellCollective [142], GINsim [143], ADAM [144],
BoolNet [102], MaBoSS [145] and CABEAN [141] support the asynchronous
scheme (Table 2.1). Most of the represented tools identify the attractor dynamics
with heuristic and exhaustive search except BooleSim [89], CellNopt, RMut and
SQUAD. Once the attractors are identified, the stability and controllability check
can be performed by RMut, CANA [146], CABEAN, ASSA-PBN [147], BioModel
Analyzer BMA [148]. In turn, BoolNet, RMut, GDSC [149] and CABERNET[150]
perform the topological analysis of the intrinsic structure of the model. As
mentioned, particular tools such as RMut, NetDS, and CABEAN are incompatible
with the SBML-qual modelling format. There may be limitations to the reusability
of models created with these tools since they have their own formats. As a
result, ensuring interoperability and reproducibility of models is necessary when
incompatibilities exist.

2.3 Applications of Boolean modelling in clinical
and translational medicine

Boolean modelling was applied in clinical and translational medicine research[34,
35, 151, 36] for various purposes. Simulation of the complex biological sys-
tems allowed to predict the activity of pathway endpoints (phenotypes) [152],
drug targets[125] and crosstalks[153]. Identifying attractors helped to under-
stand the activity of the phenotypes, since they represent the steady states of

30



Figure 2.1 Overview of the interoperability of Boolean modelling tools, libraries and
formats. The format of data resources (white colour) can be translated by tools and
libraries (grey colour) to modelling formats (blue colour), to be used by the popular
Boolean modelling tools (green colour).
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Tool Interface Format Model
generation

Updating
scheme

Attractor
search

Attractor
analysis

Topological
analysis

CellCollective Web, GUI SBML qual – Asynchronous Heuristic,
Exhaustive

– Centrality

GINSIM GUI SBML qual – Asynchronous Heuristic,
Exhaustive

– –

Boolesim Web, GUI Own – Synchronous – – –

ADAM Web, GUI SBML core – Asynchronous Heuristic,
Exhaustive

– –

BoolNet CL,
Cytoscape

SBML qual Random Asynchronous Heuristic,
Exhaustive

– Centrality,
Clustering

CellNopt CL,
Cytoscape

SBML core,
SBML qual

– Synchronous – – Centrality

RMut CL Own Random Synchronous – Stability,
Controlability

Centrality,
Clustering

SQUAD GUI SBML core,
SBML qual

– Synchronous – – –

CABERNET GUI,
Cytoscape

SBML core Random,
Augumented

Synchronous Heuristic,
Exhaustive

Stability Centrality,
Clustering

NetDS GUI SBML core Random Synchronous Heuristic,
Exhaustive

Stability Centrality

GDSC Web, GUI Own – Synchronous Heuristic,
Exhaustive

– Centrality

CANA CL Own Random Synchronous Exhaustive Stability,
Controlability

–

CABEAN CL Own – Asynchronous Exhaustive Stability,
Controlability

–

ASSA-PBN CL Own Random Synchronous Heuristic,
Exhaustive

Stability,
Controlability

–

caspo CL Own Augumented Synchronous – – –

BMA Web, GUI,
CL

Own – Synchronous Exhaustive Stability,
Controlability

–

Table 2.1 Summary of key tools and their functionalities that were implemented
to perform Boolean analysis and simulations. GUI - Graphical User Interface, CL -
Command Line.
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biomolecules[100, 154]. Finally, comparing attractors before and after perturba-
tions allowed evaluating the model stability and gave insight into how the in-vivo
systems maintain their homeostasis. Below examples of such applications are
discussed, and summarised in (Table 2.2).

2.3.1 Modelling of cell signalling

A complex signalling network can determine cellular decisions, but the kinetic
parameters and quantitative data that enable dynamic modelling may not be suf-
ficient. Therefore, computational approaches based on the qualitative structure
of these networks are of great interest. Boolean modelling of cellular signalling
provided insights into the process of signals and the interactions between reg-
ulators and target molecules. A model of T cell signalling included: i) a T cell
receptor, its co-receptors CD4/CD8, and CD28 which regulates T cell function, ii)
selected MAPK signalling and PI3K/PKB signalling driving cellular activation and
differentiation. The model was able to reproduce the literature and experimental
results upon different activation scenarios of TCR, CD4 and CD28. Moreover, it
reproduced the T cell phenotype in response to knockouts and predicted unex-
pected activation of the PI3K/PKB pathway after TCR activation [155]. This model
was extended [156]into large BMs modelling a regulatory Th cell. TCR signalling,
cytokine signalling, and cell cycle models were studied separately, and integrated
into a single model. The model showed the naive cell differentiation into Th1,
Th2, Th17 and Treg subtypes. The analysis predicted an unexpected plasticity
behaviour of the canonical cell types as well as the potential of regulatory T cells
to differentiate into Th1 or Th2 subtypes.

Another BM modelled the plasticity of CD4+ T cell differentiation [157] and
showed that it is controlled by the dose and composition of cytokines. The model
explained the T cell fate by defining 500 external conditions and considering all
possible endogenous interactions. These interventions were perturbed to control
the dynamics of the model from undesired to desired phenotypes. The model
reproduced known synergistic actions of feedback loops on IL-12R expression
and confirmed results from other studies [158, 159], showing that the balance
between i-Treg and Th17 was regulated by IL-6. Furthermore, the model predicted
a complex phenotype (Th1-Th2) after activation of Tbet and GATA3 transcription
factors under the similar environmental conditions proposed by an in vivo study
[160].

Integrating different layers of biological data allowed for understanding the
heterogeneity of multifactorial diseases and for reducing the possibility of false
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positive results. A BM was used to analyse the regulation of key transcription
factors (TFs) in Rheumatoid Arthritis (RA) and derive patient-specific models
to understand the disease complexity and the response to treatment [161]. The
model highlighted the impact of TGFB1, IL6, and TNF in response to the anti-TNF
drugs on the model outputs. The analysis showed that TFs are master regulators-
the activation of IL6 and/or TGFB1 positively regulates TFs expression, even
with deactivation of TNF cascade. Blocking IL6 and TGFB1, and TNF cascades
deactivates TFs expression. Further, theMAPKmolecules depend on the activation
of IL6 and TGFB1 and do not be affected by TNF deactivation.

2.3.2 Modelling of cancer growth signalling and apoptosis
In cancer, targeted therapies inhibit driver molecules of tumorigenic pathways

[162]. However, it is difficult to identify targets that have crucial functions in
tumour progression because of complex interactions and feedback loops between
implicated molecules. Moreover, monotherapies were found to be additive in
their actions because tumours are highly complex and evolve continuously [163].
Therefore, they had limited efficacy and needed many clinical trials. Perturbation
analysis may help to understand this complexity, proposing the interventions
between molecular targets and predicting their possible synergistic action. The
BMs of gastric cancer used this analysis on seven known inhibitors that target
the gastric cancer pathways [35]. All possible combinations were calculated
then simulated in silico to identify new synergistic targets, which were then
experimentally validated. In another work, probabilistic BM allowed associating
the activity of the pathological phenotype to the perturbation probability of its
regulators. Under a given perturbation, the model tested the possible synergistic
perturbations to decrease the activity of the phenotype [164].

Boolean modelling was proposed to simplify the complex interactions and
their downstream signals. The molecular intervention analysis showed that the
combinatory inhibition of oncogenic molecules e.g. PDK1, AKT, andMDM2 or the
activation of P53, RB and CDH1 reduces the proliferation and increases quiescent
phenotypes since the targeted drug associations blocked cancer pathways at
different regions [162]. Signalling networks in cancer are complex cascades
and their pathological rewiring may alter cellular proliferation, migration and
apoptosis resistance [165], and BMs can help to understand this complicated
rewiring [166]. A BM was constructed combining the main cancer pathways
such as RTKs, Wnt/β-catenin, TGF-β/Smads, Rb, HIF-1, p53, PI3K/AKT signalling
pathways [165]. Identified attractors were associated with apoptosis, proliferation,
and quiescent phenotypes in response to environmental conditions. The model
revealed that growth factor signalling significantly increased the proliferation
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and quiescent phenotypes but decreased the apoptosis. The similar result was
proposed by another model [167]which combined the intrinsic and extrinsic
pro-apoptotic pathways with the growth factor signalling.

In another study, a BM describing the PI3K/AKT1 signalling pathway showed
increased tissue proliferation and cell invasion phenotypes [115]. In particular,
the oscillations of PI3K protein expression were studied by simulating its different
activity levels at different cellular stages. Using different updating schemes can
be more appropriate in specific settings and this is an example that illustrates
it - While applying the synchronous updating scheme, the inhibition effect of
PI3K induced four phenotypes including G2 arrest, mitotic catastrophe, and
aberrant and normal anaphase. However, the asynchronous scheme showed that
the previous four phenotypes didn’t occur at the same time, and they are not
synergistic in signal transduction because the asynchronous scheme updates the
biomolecules at different time intervals. Therefore, depending on the biological
process and the knowledge about the real biological time, modellers get to decide
which updating schemes make more sense to achieve a desired output.

Logical models of cancer are usually generic because they use heterogeneous
data and require clinical data to calibrate them. To generate precise BMs, a
PROFILE framework [165] was proposed, integrating the mechanistic insights
of logical modelling with multi-omics data. The PROFILE framework combined
mutations and expression data (METABRIC [168], TCGAdataset https://www.can-
cer.gov/tcga) with the cancer BM to simulate different cases and compare the
model outputs. After data binarization, the activity of the nodes and the tran-
sition rates were modified based on specific cases. Stochastic simulations were
performed using MaBoSS [169] for a semi-quantitative analysis of model pertur-
bations. This approach was used in another study to investigate BRAF inhibition
in melanoma and colorectal cancer which have significant variations despite the
similar omics profiles [37]. The model was able to differentiate between the two
cancers based on different datasets. This approach extends the previous works
using the dynamic data [170] and the same pathways [171]to personalise the
signalling behaviours in response to treatments.

Recently, researchers tested the PROFILE framework on a prostate model and
infer patient-specific treatments [172]. The model of prostate cancer includes
major deregulated signalling pathways integrated withmutation and RNAseq data.
The biomolecules are fixed to zero/one according to the type of the mutations. For
the continuous RNAseq data, the expression levels are translated as a modulation
of a signal to the initial conditions to influence the probability of transitions. The
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Model Nodes Interactions Type Ref.

T cell signalling (MAPK signalling and
PI3K/PKB signalling)

94 123 Cell signalling [173]

TCR signalling, Cytokine signalling, and
cell cycle

65 135 Cell signalling [156]

Plasticity of CD4+ T cell differentiation 38 96 Cell signalling [174]
TGFB1, IL6, and TNF signalling 38 59 Cell signalling [161]
Gastric adenocarcinoma 10 34 Cancer signalling [175]
Simplified cancer network 96 249 Cancer signalling [176]
RTKs, Wnt/β-catenin, TGF-β/Smads, Rb,
HIF-1, p53, PI3K/AKT signalling pathways

98 254 Cancer signalling [165]

Pro-apoptotic pathways with the growth
factor signalling

37 63 Cancer signalling [177]

PI3K/AKT1 signalling pathway 30 42 Cancer signalling [178]
Signalling pathways around BRAF in col-
orectal and melanoma cancers.

33 43 Cancer signalling [37]

Signalling in prostate cancer 133 449 Cancer signalling [172]

Table 2.2 Selected models and applications of Boolean modelling in clinical and transla-
tional medicine, with an overview of their scale in nodes (graph vertices) and interactions
(graph edges).

analysis highlights that apoptosis is activated by Caspase 8/9, while proliferation is
activated by cyclins D/B. Further, several readouts of cancer hallmarks (phenotypic
outputs) were detected such as metastasis and DNA repair. The analysis identifies
a list of drug combinations that reduce the proliferation phenotype or increase
the apoptosis. The researchers use Boolean simulations to grade the effect of
the combined drugs on patient-specific phenotypes, comparing the effects of
treatments on each patient to suggest suitable treatment.
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Chapter 3

Methods

This Chapter describes methods for construction of BMs from systems biology
diagrams, and their subsequent simulation. In particular, the conversion from
CellDesigner SBML graphical format is discussed, and the approaches to validate
the resulting models. Next, omics data used for creation of cohort-specific models
are discussed. Finally, the framework for stochastic simulation of such calibrated
models is described. Discussed methods and data are available in the LCSB GitLab
repository.1

3.1 Construction of Boolean models

3.1.1 Construction of BMs from systems biology diagrams

Systems biology diagrams in the Process Description format (see Section 2.2.1)
were used to construct Boolean models. Diagrams in CellDesigner SBML format
were obtained from the Parkinsons’s disease map hosted on the MINERVA Plat-
form [15]. The MINERVA Platform allows to export selected parts of the map.
Such parts are henceforth called diagrams.

3.1.2 Translation of the diagrams into Booleanmodels using
CaSQ

The diagrams in CellDesigner SBML format were translated to SBML-qual using
CaSQ (CellDesigner as SBML-qual) automatically. The translation process starts
with the diagram reduction based on specific rewriting rules [93]. These steps
are illustrated in Figure 3.1.

1https://gitlab.lcsb.uni.lu/Ahmed7emdan/Boolean modelling of PD -Thesis

37



First step of this translation process is the reduction of the Process Descrip-
tion notation into Activity Flow notation (see Section 2.2.1). Biomolecules in
Process Description diagrams can be represented in several different states (e.g.
phosphorylated, methylated etc) and upon translation into Activity Flow they
are represented a by a single node in the diagram, with the different states of
the biomolecule represented by different logical states of the node (e.g., active or
inactive).

CaSQ also infers the logical functions and translates the interactions from the
Process Description to the Activity Flow, considering one qualitative species to
each species after the reduction step. A Process Description is a detailed descrip-
tion of the steps or events that occur during a particular process or mechanism.
It provides a detailed account of how something happens or works. An Activity
Flow, on the other hand, is a visual representation of the steps or events in a
process, showing the sequence of activities and the relationships between them
in a clear and concise manner. In the context of biological mechanisms, a Pro-
cess Description describes the various molecular reactions and interactions that
occur during a particular process, such as DNA replication or protein synthesis.
An Activity Flow depicts the same process as a series of interconnected steps,
showing how one activity leads to another and how different components of the
system interact with each other. One way to turn a Process Description into an
Activity Flow interaction is to represent each step or event in the process as a
node in a diagram, and to represent the relationships between the steps or events
as connections or edges between the nodes (see Figure 3.1). In order to facilitate
the use of BMs with different tools, the diagrams were transformed to the Simple
Interaction Format SIF using CaSQ tool.This process allowed for the creation
of SBMl-qual models that could be utilised with certain tools such as BoolNet
(Table 2.1).

Rule 1 In a reaction, where a receptor and a ligand form complex, the receptor
reactant is removed.

Rule 2 In a reaction, where two proteins form a complex, the reactants are
removed and modifiers are linked directly to the product.

Rule 3 The inactive forms of a biomolecule in a single reaction is removed (do
not participate in other interactions)

Rule 4 In a single transport reaction a reactant is removed and the reactions are
linked to the product (in case product and reactant are the same).
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3.1.3 Evaluation of biological relevance
The accuracy of representations of a biomolecular mechanisms were evaluated.
This included:

First: Comparison with exploratory literature: Conduct an exploratory
literature search to determine the validated effects of molecular perturbations
in vivo. To do so, it is important to first define specific key biomolecules using
the structural and sensitivity analysis. This helped to guide the selection of ap-
propriate dataset and ensure that the studies reviewed are relevant. Once the
key molecules are defined, the next step is to identify and select appropriate
databases to search. There are many databases available that contain information
on scientific and medical research, such as PubMed and Scopus. It is important to
choose databases that have a reputation for publishing high-quality research. In
addition to choosing reputable databases, it was also important to use filtering
criteria to ensure that the reviewed studies are of high quality. Some common
filtering criteria that were considered include the study design (e.g. randomized
controlled trials), the sample size, the duration of the study, the type of interven-
tion being tested, and the type of outcome being measured. For some articles that
show discrepancies, some tools such as the Cochrane Risk of Bias tool [179]or
the Newcastle-Ottawa Scale [180] were considered to assess the quality of the re-
viewed studies. The impact factor (IF) of a journal was also considered. However,
it is important to keep in mind that the impact factor is not a perfect measure of
the quality of individual articles or the importance of the research they contain.
The impact factor is based on citations, which may not always be an accurate
measure of the quality or importance of a piece of research. Therefore, it was
important to use the impact factor in conjunction with other criteria.

Once the appropriate databases have been selected, the next step is to use
keywords related to the research question to search for relevant studies. This
can be done by using advanced search features within the database or by using
logical operators to narrow the search results. Once a list of relevant studies was
identified, it is important to review the abstracts of these studies to determine their
relevance. If a study seems relevant, one can get a more complete understanding
of the research and its findings. It is also important to create a dedicated online
library, recording the title, author, publication year, and a brief summary of the
study, as this information will be useful when analyzing and interpreting the
results.

Once all relevant studies are gathered, it is important to analyze the results
and interpret the findings. This may involve looking for patterns or trends in
the literature and considering how the findings relate to the original research
question. It is also important to consider any gaps in the current knowledge about
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the topic and to identify areas where further research is needed.

Second: Comparisonwith omics data: the first step was to identify the model
biomolecules and their molecular functions. Then, a list of differentially expressed
genes was obtained, either by performing differential expression analysis on a
dataset or by finding a published list. The differentially expressed genes are then
mapped to the model biomolecules using enrichment analysis in PD map and
other resources (Section 2.2.1). Finally, the overlap between the two lists was
analyzed and statistically tested to determine if it is significant.

3.2 Topological analysis of the models

The interactions between biomolecules in a BM was analysed to study their
structure and correctness. The topological features of the BM as a network were
analysed to understand the relationships and interactions between biomolecules.
These interactions were represented as a graph, with the biomolecules as nodes
and the interactions between them as edges. Statistical packages were used
[127] to calculate the directionality and the degrees of the nodes (in degree/out
degree), feedback loops, and centrality measures. Centrality measures, such as
betweenness and stress were used to quantify the importance or influence of
a particular node in the network[181]. Betweenness centrality measures the
number of times a node lies on the shortest path between two other nodes, with
nodes that act as intermediaries between other nodes considered more central.
Stress centrality is a measure of a node’s importance in a network based on the
number of shortest paths that pass through it. A node with a high stress centrality
is considered more central because it plays a key role in connecting other nodes in
the network, as it is part of many shortest paths. This type of centrality is useful
for identifying nodes that are critical for the overall connectivity of the network
[182]. These measures were used to identify key nodes in the model, such as
hubs and to understand the role that these nodes play in the overall model. They
were used to identify potential targets for therapeutic interventions, as targeting
highly central nodes may have a greater impact on the overall model.

In order to use the topological analysis to validate the correctness of the
models, certain criteria were considered based on the biological knowledge of
the systems being modelled and the centrality measures of the key biomolecules.
Based on the topological analysis, the top five centrality measures were selected
to search for biological relevance Tables 4.2 and 4.6.
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Figure 3.1 Translation from a mixed representation of Process Description and Activity
Flow, to an Activity Flow representation, and finally to a Boolean model. Panel A shows
the Process Description representation, featuring indirect state transition interaction.
Panel B illustrates the transformation from state transition to direct interaction in the
Activity Flow representation. Panel C displays the Simple Interaction Format (SIF)
representation, with sources and targets. Panel D indicates the basic structure of SBML-
qual, generated from either the Activity Flow or the SIF
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Figure 3.2 (A) illustrates a simple directed Network [35], with typically used logical
functions. Red arrow refers to the inhibition effects. Black arrows refer to the activation
effect. (B) shows Boolean functions either in basic logical expressions or as a truth table.
(C) shows the Boolean gates AND/OR/NOT, describing the dynamics update from time
(t) to (t + 1).
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3.3 Model analysis

3.3.1 Model updating schemes

Different updating schemes were compared and evaluated. The BFs were updated
by synchronous and asynchronous updating schemes and a hybrid scheme that
combines both approaches [98] (see Figure 3.4).

The synchronous updating scheme changes the state of all biomolecules at
the same time, according to their BFs. It is deterministic, meaning that the same
initial conditions will always result in the same final state. This makes it easier
to predict the behavior of the system and to understand how changes in the BFs
of the biomolecules will affect the system’s behavior. However, synchronous
updating can be difficult to model systems with time delays or systems that have
multiple, interacting sub-systems, as the synchronous update scheme does not
allow for different biomolecules to update at different times.

In contrast, the asynchronous updating changes states of biomolecules at
different times based on their BFs. This can make it easier to model systems
with time delays or complex interactions between biomolecules. However, it can
also be more difficult to predict the behavior of the system, as the same initial
conditions can result in different final states depending on the order in which the
biomolecules are updated[100].

These schemes can be updated in probabilistic manner using probabilistic
BMs. Probabilistic BMs assigns certain probabilities to BFs, and each biomolecule
is updated based on this probability before reaching the steady state [101, 104].

These schemes are summarised in Figure A (Figure 3.4), BM includes three
components X1, X2, X3 which have states (zero/one). The dynamics of a compo-
nent is represented by Boolean function. Synchronous updating scheme updates
all states at the same time, the successor states have two possible values, one
(ON) or zero (OFF). In the asynchronous updating scheme, the start states are
not updated at the same time (one state is updated per iteration), the successor
states have two possible values one (ON) or zero (OFF). In Figure B (Figure 3.4), a
probabilistic BMs shows that states are updated at the same time and the successor
states present different probabilities; p represents the updated probability values
of the variables. Importantly, an asynchronous updating scheme can be used in
probabilistic BMs as well.

To visualize the behavior of a BM under different update schemes, state
transition graphs were generated. This is a graphical representation of all the
possible states that the system can be in, along with the transitions between
states. The state transition graph can be used to illustrate the spectrum of all
possible outcomes for a given initial condition, depending on the update scheme
being used. For further examples of state transition graphs, see the ”steady states
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calculations” directory LCSB GitLab repository. 2.
In this study, the performance of synchronous and asynchronous update

schemes were evaluated using various metrics to assess the stability and pre-
dictability of the models. These metrics included tracking the number and dura-
tion of stable states or fixed points produced by each update scheme. The results
of this comparison are presented in the ”steady states calculations” directory
in the GitLab repository [183]. Both updating schemes were able to replicate
known or expected behavior in the system. However, the choice of which update
scheme is superior depends on the specific biological process being modeled and
the available knowledge about the real biological time course. Asynchronous
update schemes may take longer to achieve a desired output, but may be more
biologically realistic. On the other hand, synchronous update schemes may be
faster, but are deterministic in nature.

3.3.2 Attractor Search

Attractors are states in a state transition graph with no outgoing edges. These
states can be classified into two categories: stable states (also known as fixed
points), which do not change over time, and complex attractors, which are sets of
possible outcomes that can be reached through synchronous or asynchronous
updating schemes[184]. The set of states that lead to an attractor is known as
the basin of attraction, which can be interpreted as a set of potential biological
scenarios that can be tested through hypotheses [185].

In this study, several search algorithms were compared during model verifica-
tion by evaluating their speed and reachability (Table 4.3). An exhaustive search
was employed, in which all possible attractors were found through synchronous
transitions between states. To improve the speed of this approach, a SAT-based
method was used to formulate the attractor identification problem as a Boolean
satisfiability problem (SAT). This allowed for the determination of whether a
given formula was satisfiable or unsatisfiable, and for the restriction of the search
to loops of a specified length [110].

In comparison, the decomposition method is a computational approach that
aims to optimize speed and reduce complexity by dividing a model into strongly
connected components (SCCs). While this method may be effective at improving
the speed of getting attractors, it may not always accurately reflect biological
processes. This is because the primary focus of the decomposition method is on
optimizing for speed, rather than accurately modelling the underlying biological
processes. As a result, the decomposition method may oversimplify the model
and lead to inaccurate results in certain contexts.

2https://gitlab.lcsb.uni.lu/Ahmed7emdan/Boolean modelling of PD -Thesis
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Figure 3.3 An example of a state transition graph for a dopamine transcription Boolean
model under a synchronous update scheme. The illustrated nodes are attractors, showing
the different possible steady states in red and the transitions that lead to them in green.
This graph illustrates the range of outcomes that can occur based on the initial conditions
and update scheme used.
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Figure 3.4 The figure represents the model updating in time for a simple regulatory
graph. (A) Boolean model with three components X1, X2, X3 which have states (zero/one)
and BFs. (B) A Probabilistic Boolean model shows that states are updated at the same
time and the successor states present different probabilities.
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In addition to the exhaustive search, heuristic and asynchronous searches
were also conducted. For the heuristic search, a subset of possible states was
specified as initial conditions and synchronous transitions were performed until
an attractor was reached. For the asynchronous search, random asynchronous
transitions were used to identify steady states and complex attractors from the
specified initial conditions. This resulted in the network’s current state being
located within an attractor with high probability, and allowed for the identification
of forward reachable states and the comparison of these to the current state sets
in order to identify complex attractors [186].

The results and visualisation of the attractor analysis, including details on
steady states and complex attractors, can be found in the ”steady states calcula-
tions” directory within the LCSB GitLab repository [183].

3.3.3 Perturbation analysis
Perturbation analysis was used in order to assess the impact on the topological
robustness and dynamic resilience of the models, as well as the attractors reached
by them. [127] (Section 2.2.4). Two main types of perturbations were evaluated
(see also Figure 3.5):

• node perturbations, which involve altering the state of a single biomolecule.
These were performed through knockout or overexpression.

• edge perturbations, which involve altering the function of the interactions
between biomolecules. These were performed by edge removal or attenua-
tion mutation.

The evaluation was based on performing sensitivity analysis on each
biomolecule and interaction in a set of selected models. The sensitivity analysis
is a technique used to assess how the output of a model or system changes
in response to perturbations, i.e. two attractors reached by a given model
(unperturbed and perturbed). The distance between two attractors, was measured
using similarity-based distance and identity-based distance . Similarity-based
distance measured the similarity between two attractors, taking into account the
common and unique states present in both attractors. Identity-based distance,
on the other hand, measured the percentage of states that are present in both
attractors

After the evaluation, only node-based perturbations (knockout and overex-
pression) were considered. Changing the original rules of the model through
perturbations such as rule-flip or edge perturbations significantly affected the
stability of the models, resulting in large changes in their attractors. This made it
difficult to accurately assess the impact of the perturbations on the model, as the
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large changes in the attractors were not representative of the true behavior of the
model. The results of the selected perturbation methods- node-based knockout
and overexpression can be found in Figures 4.1 and 4.2.

The results of sensitivity analysis of other types of perturbations including
the edge perturbations are available in the GitLab repository [183]. The data
include the equations and codes used to calculate the sensitivities.

3.4 Integration of Boolean models with omics
data

The section involves the use of two datasets: the Parkinson’s Progression Markers
Initiative-microRNA (PPMI-miRNA) dataset and the Type 2 Diabetes Mellitus
(T2DM) dataset. The PPMI-miRNA dataset includes miRNA expression data
collected as part of a clinical study on Parkinson’s disease, and in this section, the
differential expression of miRNAs is analyzed and the identification of miRNA
targets is performed. The T2DM dataset consists of transcriptomic data on PINK1
and GBA mutations in T2DM, and this data is analyzed to examine the specific
impact of perturbation of T2DMon PD progression. Finally, the section explain the
use of the pyMaBoSS framework to perform stochastic Boolean model simulation.

3.4.1 Parkinson’s Progression Markers Initiative-miRNAs
dataset

The PPMI (Parkinson’s Progression Markers Initiative) dataset is a multi-cohort,
longitudinal observational study that examines the molecular and clinical changes
in different subtypes of Parkinson’s disease (PD). The dataset includes microRNAs
from blood samples collected from individuals with clinical PD, prodromal PD,
scan without dopaminergic deficit (SWEDD), and Parkinsonism. Clinical PD
refers to individuals who exhibit the clinical symptoms of PD and have a positive
dopamine transporter (DAT) SPECT scan. Prodromal PD refers to individuals who
do not yet have severe symptoms but do have significant positive DAT SPECT
results (223 individuals). SWEDD refers to individuals who have been clinically
diagnosed with PD but do not show dopaminergic deficit on their DAT SPECT
scan (187 individuals). Atypical Parkinson’s disease, or parkinsonism, refers to
individuals with idiopathic symptoms similar to those seen in typical PD. This
data is available through the LONI (Laboratory of Neuro Imaging) archive at
www.ppmi-info.org/data.

Diagrams used in the stratification process are selected based on pathway
enrichment analysis of the Parkinson’s Progression Markers Initiative (PPMI)

48



Figure 3.5 The figure illustrates a regulatory graph in which the states of nodes X1,
X2, and X3 can be modulated by activating (black link) or inhibiting (red link) influences.
Node perturbations represent changes in the states of these nodes that occur due to
knockout or overexpression. Edge perturbations depict alterations in the functions of
the interactions between the nodes resulting from mutations.
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dataset using the Parkinson’s disease map (PD map). Once significant pathways
are identified, they are exported in bipartite and CellDesigner SBML formats for
further modelling. Both formats are translated to SBML-qual, which is a module
of the SBML standard that is specifically designed for representing qualitative
models of biological systems.

Statistical correlations and Effect size of PPMI dataset

The differential expressed miRNAs were calculated by estimating the Log2 fold
change between cohorts(case/control). Additionally statistical correlations and
effect sizes were calculated.

Statistical correlations: Moreover, statistical correlations are calculated in-
cluding paired sample t test, Pearson correlation and Wilcoxon rank test.

Paired t-test: The paired t-test is a statistical test used to determine whether
there is a significant difference between the means of two related groups [187]. It
is based on the t-statistic, which was calculated as follows:

𝑡 =
𝑥1 − 𝑥2

√
𝑠21
𝑛1
+ 𝑠22

𝑛2

.

where:

• x̄1 is the mean of the first group

• x̄2 is the mean of the second group

• s1 is the standard deviation of the first group

• s2 is the standard deviation of the second group

• n1 is the size of the first group

• n2 is the size of the second group

Wilcoxon rank sum test: The Wilcoxon rank sum test is a non-parametric
statistical test used to determine whether there is a significant difference between
the medians of two groups [188]. It is based on the rank sum statistic, which was
calculated as follows:

𝑊 = ∑𝑅𝑖
where:

• Ri is the rank of the ith observation in the combined dataset
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Pearson’s correlation coefficient: It is a measure of the strength and direc-
tion of the linear relationship between two variables [189]. It was calculated as
follows:

𝑟 =
∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

√∑ (𝑥𝑖 − 𝑥)2√∑(𝑦𝑖 − 𝑦)2

where:

• xi is the ith value of the first variable

• yi is the ith value of the second variable

• x̄ is the mean of the first variable

• ȳ is the mean of the second variable

Pearson’s correlation coefficient can range from -1 to 1. A value of 1 indicates
a perfect positive correlation, meaning that as the value of one variable increases,
the value of the other variable also increases. A value of -1 indicates a perfect
negative correlation, meaning that as the value of one variable increases, the
value of the other variable decreases. A value of 0 indicates no correlation.

Effect sizes: The effect sizes of each miRNA were identified by calculating the
Cohen distance between multiple cases[190]. Cohen’s distance is a standardized
measure of the difference between two groups’ means divided by the data’s
standard deviation. This measure calculates the size of the mean difference by
comparing it to the pooled standard deviation. One of the advantages of the Cohen
distance is that it can be translated into probabilities using Common language
effect size (CL) [191, 192]. The probability describes how a random outcome
observation from one group differs from a random outcome observation from the
other group. Using this method, Cohen distance information is communicated in
a more intuitive manner[191]. The Cohen distance is estimated as follows:

𝑑 =
̄𝑌1 − ̄𝑌2
𝑠p

,

where ̄𝑌1 and ̄𝑌2 are the sample means and 𝑠p is the pooled standard deviation;

= √𝑝1𝑠
2
1 + 𝑝2𝑠22 , where 𝑝1 and 𝑝2 are the base rates in the sample (𝑝1 + 𝑝2 = 1)

and 𝑠21 and 𝑠22 are the sample variances.[191, 192]. CL is calculated using the
following formula:

CL = Φ ⋅ (
̄𝑌1 − ̄𝑌2

√𝑠
2
1 + 𝑠22

) ,

where Φ is the cumulative normal distribution function [192].
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Identification of the miRNA targets

The validated targets of miRNAs are identified using manually curated databases
such as miRTarBase[193]. This database contains more than three hundred and
sixty thousand experimentally validated miRNA-target interactions, which are
systematically identified through natural language processing of the text to filter
articles relating to functional studies of miRNA.

The predicted and validated miRNAs-targets are enriched using PD map as
a disease-specific knowledge resource to identify the overlaps with substatia
nigra targets, making miRNAs more specific to PD and identify the involved
pathways. The substantia nigra dataset consists of microarray gene expression
data for human post mortum brain samples from various regions, human whole
blood samples, samples from animal models, and cell culture samples. This data
is related to PD map and is publicly available [194].

The expression pattern of the miRNAs are compared with the curated miRNA
expression databases: MiREDiBase[195], miRGate[196], The Human miRNA and
Disease Database (HMDD)[197], and GEO data screening[198] .

3.4.2 Identification of Type two Diabetes mellitus transcrip-
tomic profile

Type two Diabetes mellitus (T2DM) is a chronic condition characterized by high
levels of sugar (glucose) in the blood which can be a comorbidity of the PD. To
investigate the relationship between the T2DM on the progression of PD subtypes
identified in PPMI the in-house unpublished transcriptomic datasets were used
that describe PINK1 and GBA mutations in T2DM. These datasets were generated
as a part of an internal LCSB project to study T2DM-PD comorbidities. The
publication is being prepared and the datasets are available upon request.

In the first dataset the samples were analysed from three distinct PD pa-
tients carrying the homozygous Q456X mutation in PINK1 (compared with their
corresponding isogenic gene-corrected controls). The dataset comprise a list
of RNA-seq differentially expressed genes analyzed from iPSC-derived neurons
(30 days of differentiation). In this dataset, the relationship between PD and
T2DM is established based on the following findings. It was observed in vivo that
IRS1 levels were decreased and phosphorylation of AKT at both S473 and T308
was reduced in PINK1 mutant neurons compared to isogenic controls, indicating
impaired insulin signaling.

In the second dataset, differentially expressed genes of the GBA N307S mu-
tation were identified as they were analysed from isogenic control midbrain
organoids. It was observed in vivo that the insulin resistance affects human
midbrain and accelerates PD phenotypes.
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In order to further validate the relevance of these datasets for PD-T2DM
commorbidity study, a dedicated analysis performed (see Figure B.22), involving
the following steps.

1. Enrichment analysis of the differentially expressed genes (DEGs) to identify
significant pathways and gain a better understanding of their role:

• Use Gene set enrichment analysis to represent the overlaps on the Substan-
sia Nigra dataset [194] on the PD map to obtain common pathways.

• Use the MsigDB Hallmark 2020 database (www.gsea-msigdb.org) to iden-
tify common disease hallmarks across a wide range of diseases for better
interpretation.

• Perform pathway enrichment analysis using the StringDB (https://string-
db.org/) and EnrichNet tool [199] to create subnetworks and identify po-
tential interactions.

• Use KEGG [2] and Reactome [200] to identify significant pathways and
confirm their relevance with other results.

• Validate the enrichment results and brain tissue specificity using InnateDB
[201], GTEx [202], and HPA [203].

2. A literature search for miRNA targets in PD and DM in patients by search-
ing online databases and reviewing the identified articles for relevant information.
This was followed by reviewing the identified articles and selecting those that
report on validated miRNA targets commonly found in both PD and DM in pa-
tients. The results of the literature search were further filtered by the significant
and relevant targets identified through the enrichment analysis.

3. Compare if any of the filtered common miRNAs targets have overlaps with
miRNAs-target of PPMI dataset. The aim is to check the relevance between two
diseases before the simulation.

The raw results from the enrichment analysis in different databases are avail-
able in the ”Supplementary results directory” in GitLab repository [183]. The
filtered outcome from the workflow is presented in Table 4.8

3.4.3 Stochastic Boolean model simulation
Simulations of the selected BMs were performed using pyMaBoSS, a python
API for the MaBoSS software [169]. The pyMaBoSS framework is a tool for
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probabilistic Boolean modelling and simulation of biological systems by applying
discrete/continuous time Markov processes. It uses a Monte Carlo algorithm to
simulate the evolution of the system over time, based on the initial conditions
of the biomolecules and the rules governing their interactions. In this context,
pyMaBoSS performs asynchronous updates using a random walk which is a
simulation technique where a single biomolecule is selected and updated at each
step and this process is repeated to create a sample of the reachable attractors. In
pyMaBOSS, random asynchronous transitions are used to identify steady states
and complex attractors from the specified initial states. The perturbation analysis
includes only Knockouts and overexpressions.

The probabilities of the initial states are identified based on the effect size and
statistical correlations of PPMI dataset. The effect size and statistical correlations
of the dataset are used to assign probabilities to the initial states, which are then
included in configuration files that can be used with PyMaBoSS.

Probabilistic Boolean simulation:

In pyMaBoSS, a biological system is represented as a model of interconnected
Boolean variables, each representing the state of a biomolecule (e.g. present or
absent, active or inactive). The interactions between the variables are defined by
Boolean rules, which specify how the state of one variable can influence the state
of another. The Monte Carlo algorithm works by randomly sampling the possible
states of the system at each time step, based on the probabilities of each state
given the current state of the system and the rules governing the interactions
between variables. By simulating the system over many time steps, PyMaBoSS
can estimate the probability of each state at each time point, allowing researchers
to study the dynamics of the system and predict how it will evolve over time.
[145].

Parametrisation using PPMI miRNA data Each biomolecule has a specific
transition rate associated with its state. The probability of reaching a phenotype
(observed output of a model) is calculated by simulating random walks over the
probabilistic BMs. Thus, pyMaBoSS can be used to investigate the variation in
phenotype probability as a result of a particular molecular alteration[172, 37,
165]. The study focuses on the model’s outputs as well as some biomolecules that
explain the variation in the progression of disease subtypes. These probabilities
describe model states of disease subtypes in a series of iteration steps. The change
points of the iteration steps are identified using the regression of multiple change
points algorithm[204].
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Parametrisation using T2DM transcriptomic profile The identified targets
from previous steps were perturbed in order to study the effect of perturbation
of T2DM on PD progression (Table 4.8). The perturbations were based on the
expression levels of these biomolecules in datasets and involved point mutations,
with knockout represented as ”Zero” and overexpression represented as ”One”.
The downstream effects of these perturbations on PD progression were simulated.
The probability of reaching a particular phenotype (observed output of the model)
was calculated by simulating random walks on the probabilistic biomolecular
models. These probabilities describe the different states of PD progression and
the specific impact of perturbation of T2DM on PD progression.

Dynamic Time Warping:

Then, Dynamic Time Warping (DTW)[205] is an algorithm to measure similarity
between two temporal sequences. The DTW algorithm works by dividing the
time series into points and measuring the distance between corresponding points
in different series. In this context, DTW was used to determine the similarities
and differences between trajectories based on the calculated change points. The
distance between points is calculated using the Euclidean distance, which is a
measure of the straight-line distance between two points in a space. The DTW
algorithm calculates the distance between every point in one series and the first
point in a second series, and then finds the optimal path through these distances
that minimizes the overall distance between the two series (Figure 4.4). A lower
DTW score indicates a higher degree of similarity between the two series, while
a higher DTW score indicates more differences between the series. Therefore, the
DTW score can be used as a measure of the ”activity” or dynamics of a particular
process or trajectory over time. A lower DTW score may indicate a higher level
of activity or a more consistent progression of the condition, while a higher DTW
score may indicate less activity or more variability in the progression of the
process. However, the interpretation of the DTW score requires understanding
of the specific characteristics of the disease conditions.

Pearson correlation:

Pearson correlation was used to measure the correlation between of DTW similar-
ity values in pairs of subgroups (Table 4.17). The Pearson correlation coefficient
is a statistical measure that was used to assess the strength and direction of
the linear relationship between two variables [189]. In this context, a positive
correlation indicates that as one variable increases, the other variable also tends
to increase. A negative correlation indicates that as one variable increases, the
other variable tends to decrease. The strength of the correlation is indicated by
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the magnitude of the coefficient. A coefficient close to +1 or -1 indicates a strong
relationship, while a coefficient close to 0 indicates a weak relationship. This
information can be useful in the diagnostic and treatment planning process, as it
can inform the selection of appropriate therapies and interventions for different
disease conditions.
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Chapter 4

Results

In this part, methods and algorithms discussed above were applied to study the
dynamic behaviour of molecular mechanisms in Parkinson’s disease (PD), and
how they respond to perturbations. To achieve this, different formats of BMs
were created - including SBML-qual- and analyzed with a range of tools. The
accuracy of the BMs was assessed through the analysis of their structural and
dynamic properties. The results of the assessment showed that the models have
consistent structural and dynamic properties. This suggests that the selected
models are reliable can be used in studying dynamics of PD.

The BMs were stratified by integrating omics data of patients in disease
subgroups to study disease heterogeneity and specific responses to molecular
perturbations. Molecular expression datasets were used to specify the parameters
of simulations for selected subgroups. From this point, the modelling of disease
subgroups can develop specific treatment strategies and propose new therapeutic
interventions to arrest disease progression.

All results are available in the GitLab repository 1.

4.1 Model construction
The selection of PD map diagrams (Table 4.1)for downstream modelling and
verification is based on several factors. First, the diagrams with phenotypic
relevance are chosen, including those related to dopamine dyregulation, alpha-
synuclein aggregation, neuoinflammation, oxidative stress, and mitochondrial
dysfunction. These phenotypes help to understand the underlying mechanisms of
PD. Next, the quality of the information in the diagrams is evaluated through the
literature search to identify the recently validated and reported data. The selected
diagrams are then assessed for the presence of sufficient information, including the

1https://gitlab.lcsb.uni.lu/Ahmed7emdan/Boolean modelling of PD -Thesis
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biomolecules and their interactions. Additionally, the complexity of the models
is considered, with the aim of finding a balance between the computational
efficiency and the accuracy. The primary objective is to use the chosen diagrams
to reproduce the previously validated and reported behaviours in vivo.

The selection of PD map diagrams for downstream modelling and stratifi-
cation is based on pathway enrichment analysis of the Parkinson’s Progression
Markers Initiative (PPMI) dataset using the PDmap. The significant pathways (Ta-
ble 4.1 are dopamine transcription pathways, PI3k/AKT signalling, FOXO3 acivity,
mTOR-MAPK signalling, and PRKN mitophagy. It is important to note that these
pathways are complex and interconnected, and the consequences of their dysreg-
ulation vary depending on the specific disease subgroups. (All miRNA targets
from the PPMI dataset are used in the enrichment analysis to ensure involvement
of pathways covering all considered disease subtypes)

The selected pathways are exported from PD map in specific representations,
such as bipartite and CellDesigner SBML, for further analysis and modelling.
CellDesigner SBML diagrams of these patwhways are used to produce SBML-
qual files using CaSQ. Then, BMs are constructed using bipartite and SBML-qual
representations.

Pathways Nodes Edges Type

Dopamine transcription 167 196 Cellular signalling
Wnt-PI3K/AKT signalling 391 436 Cellular signalling
FOXO3 activity 65 86 Cellular signalling
mTOR-MAPK signalling 59 83 Cellular signalling
PRKN mitophagy 54 72 Cellular signalling
PPARGC1A 67 109 Cellular signalling
TCA cycle 137 160 Metabolic

Table 4.1 This table presents a summary of the selected pathways with their nodes,
and edges in several important cellular signaling and metabolic pathways. The pathways
listed include dopamine transcription, Wnt-PI3K/AKT signaling, FOXO3 activity, mTOR-
MAPK signaling, PRKN mitophagy, PPARGC1A, and the TCA cycle. The number of
nodes and edges for each pathway is also provided

4.2 Model verification
Verification of a BM is important to ensure its accuracy and reliability. Verification
of a BM involves examining both its structural and dynamic aspects. Structural
verification involves evaluating the relationships and interactions between the
model’s components to ensure that they accurately reflect the underlying biologi-
cal system. Dynamic verification involves evaluating the model’s behavior over
time and comparing it to the actual system to ensure that the model’s predictions
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are reliable. By verifying a BM in both of these ways, the model can be ensured to
be a reliable and accurate representation of the biological system it is intended to
model, which is essential for making informed and reliable predictions about that
system. The verification was run for all the models selected previously to ensure
that they are reliable and accurate representations of the biological systems.

4.2.1 Structural verification

The structural verification of the models was performed by using the topological
network analysis and centrality measures as discussed in (Section 3.2).

General observations: Results of this analysis are in (Table 4.2). The table show
that signalling pathways tended to have higher average degree, betweenness, and
stress values, suggesting their importance in coordinating the system’s response to
stimuli. The ”Dopamine transcription” pathway, on the other hand, had relatively
low values in these measures, potentially indicating a less influential role in
the overall system. Within the ”TCA cycle” pathway, intermediates such as ”2-
oxoglutaric acid,” ”S-malate,” ”NADH,” ”ADP,” and ”acetyl-CoA” had high degree
and stress values, indicating their importance in maintaining the flow of the cycle
and regulating metabolism. In the ”Wnt-PI3K/AKT” pathway, signaling molecules
like ”PI3K,” ”PDPK1,” ”RPS6KB1 phosphorylated,” and ”AKT1 phosphorylated”
had high degree, betweenness, and stress values, suggesting their central roles in
transmitting signals and regulating downstream targets.

In the ”Dopamine transcription”: The nodes with the highest in-degrees
(TF NR4A2 complex, PITX3, and TF PITX3 complex) also had relatively high
betweenness and stress values. This suggested that these nodes may play a
central role in the pathway, possibly regulating the transcription of dopamine in
response to various signals.

In the ”FOXO3 activity”: The nodes with the highest degree, betweenness, and
stress values are all transcription factors or transcription factor complexes. This
suggested that these factors may be key regulators of FOXO3 activity, possibly
through the transcription of downstream target genes.

In the ”mTOR”: The pathway appeared to be highly interconnected, with
many nodes having high degree, betweenness, and stress values. This suggested
that mTOR activity may be tightly regulated by multiple signaling pathways and
factors.
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Degree

Pathway Node ID Total In Out Betweenness Stress

Dopamine transcription TF NR4A2 complex 29 8 21 330 463
PITX3 3 2 1 102 136
TF PITX3 complex 13 2 11 66 84
MIR133B rna 2 1 1 54 66
RXRA 2 1 1 27 38

FOXO3 activity TFFOXO3 complex nucleus 36 9 27 3673 9084
TFCHOP:FOXO complex 4 2 2 1763 4932
FOXO3 nucleus 3 2 1 1600 4416
SIRT3 6 3 3 1482 3946
BBC3 rna 3 2 1 896 2670

mTOR AMPK complex neuron 10 7 3 2277 11064
TSC1:TSC2 complex neuron 8 5 3 1465 7476
STK11 6 5 1 1018 6050
SESN2 5 2 3 788 2464
nicotinamide 7 4 3 745 7518

PPARGC1A PPARGC1A phosphorylated 13 4 9 322 650
TF NRF1 complex 24 2 22 174 388
PPARGC1A acetylated phosphorylated 4 3 1 94 188
TF NRF2 complex 16 2 14 88 266
TF YY1 complex 11 3 8 75 92

TCA cycle 2-oxoglutaricacid 25 19 6 451 761
S-malate 12 7 5 195 490
NADH 19 15 4 188 539
ADP 15 8 7 178 393
acetyl-CoA 10 6 4 152 384
mTORC1 complex neuron 11 7 4 463 511
AKT1 phosphorylated 7 5 2 440 500

Wnt-PI3K/AKT PI3K 9 8 1 297 369
PDPK1 2 1 1 260 326
RPS6KB1 phosphorylated 5 3 2 189 201

Table 4.2 Common top five topological metrics in BMs and their source diagrams.
The table summarises topological properties of nodes in the selected pathways, and
“Node ID” indicate the specific nodes, “Degree” indicates a specific type of a node degree
of in the BMs (total/incoming/outgoing connections), “Betweenness” describes node
betweenness, while “Stress” describes the number of shortest paths that pass through a
node
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In the ”PPARGC1A”: The node with the highest betweenness value (TF NRF1
complex) also has a relatively high in-degree, but a low out-degree. This suggests
that the NRF1 complex may be receiving signals from many other nodes in the
pathway, but only influencing a few downstream targets.

In the ”TCA cycle”: The pathway had a number of nodes with high degree
and stress values, but relatively low betweenness values. This suggests that these
nodes are important for maintaining the flow of intermediates within the model,
but may not be as central to the overall structure of the pathway.

The analysis found that all models passed the verification process and were
appropriate for modelling. The results demonstrate the high quality and reliability
of these models.

4.2.2 Sensitivity analysis
The dynamic verification of the models was performed by using the sensitivity
analysis and attractor reachability as discussed in Section 3.3.

The results of the analysis show that all of the models are less sensitive to
knockouts (in which a particular biomolecule is removed) than to overexpressions
(in which a biomolecule is significantly increased). This suggests that the models
are more robust to the removal of single biomolecules, but are more sensitive to
significant increases in the levels of certain biomolecules. One possible reason
for this result is that the removal of a biomolecule may not have a significant
impact on the overall functioning of the system, while an increase in the levels of
a biomolecule may disrupt the balance of the system and lead to more significant
changes in the stable states. The models tend to be more sensitive to perturbations
of complex biomolecules than simple biomolecules (Figures 4.1 and 4.2). Complex
biomolecules, such as transcription factor complexes, had many interacting parts
and play important regulatory roles in the models. As a result, disrupting the
function of these molecules had significant sensitivity values for the overall
functioning of the model.

In Figures 4.1 and 4.2, a higher identity-based and similarity based distances
(see Section 3.3.3) indicated a larger difference between the original and perturbed
attractors, which suggested a higher sensitivity of the models to perturbations.
The data suggested that the sensitivity of the models to perturbations varies across
the different pathways and biomolecule groups. For example, in (Figures 4.1
and 4.2), the model of the TCA cycle pathway was more sensitive to perturbations
(knockouts) compared to the model of the PRKN pathway, as the distance values
for the TCA cycle pathway were generally higher than those for the PRKN
pathway. Similarly, the model of the PPARGC1A pathway was more sensitive to
perturbations (knockouts) compared to the model of the FOXO3 pathway, as the
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distance values for the PPARGC1A pathway were generally higher than those
for the FOXO3 pathway.In (Figures 4.1 and 4.2), the CTNNB1, EIF4EBP1, IRS1,
CTNNB1, and PDPK1, had ”Identity-based distance” values of 1. This indicates
that the models were highly sensitive to perturbations (overexpression) of these
groups in the corresponding pathways. The overexpression of these biomolecules
could significantly alter the behavior of the model.

It’s worth noting that the ”Identity-based distance” and ”Similarity-based
distance” values may not always be directly comparable across pathways and
biomolecules, as these measures are calculated using different methods and may
be affected by different factors. However, the observation of these pathways
and biomolecules suggested that they may be key players in the dynamics of the
model and could have significant downstream effects.
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Figure 4.1 The top sensitivity metrics in BMs. The figure summaries the sensitivities of
the BMs in response to molecular knockouts. The figure show the identity and similarity-
based distances between the original and perturbed attractors
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Figure 4.2 The top sensitivity metrics in BMs. The figure summaries the sensitivities
of the BMs in response to molecular overexpressions. The figure show the identity and
similarity-based distances between the original and perturbed attractors
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4.2.3 Attractor reachability

Asynchronous and synchronous simulations were compared in the selected mod-
els to understand their characteristics and calculate their performance. The results
of the attractor analysis showed that state trajectories converge to fixed or cyclic
attractors under different updating schemes. The Table 4.3 summarises the com-
parison of the performance of four algorithms (HyTarjan, Heuristic, Decomp,
and SAT) (see Section 3.3.2) in terms their reachability in pathways. The data
show that in case of asynchronous solutions, HyTarjan outperforms the Heuristic
approach. In turn, the comparison between Decomp vs SAT shows that there is
not a single solution that consistently outperforms the other.

Next, the attractors produced by these methods were analysed in terms of their
biological relevance (see Section 4.3 below). Both HyTarjan and Decomp solutions
produced attractors that were not biologically relevant for all the considered
pathways. In turn, Heuristic and SAT solver algorithms produced attractors that
were viable for all the pathways except Wnt/PI3K pathway (see Section 4.3.2). The
reason for this behaviour was an aggressive decomposition by the HyTarjan and
Decomp algorithms, overly fragmenting the resulting models. Taken together,
Heuristic and SAT solver algorithms were selected for downstream analysis.

The data showed that the SAT algorithm consistently outperformed the De-
comp algorithm in terms of the time reachability, with the exception of TCA cycle.
The SAT algorithm achieved greater time reduction in ER stress signalling path-
way, reaching 87.32% improvement compared to the Decomp algorithm. Overall,
the SAT solver algorithm improved the speed of attractor reachability by reducing
the initial size of the states.

Time (seconds)

Asynchronous Synchronous

Pathway Edges Targets HyTarjan Heuristic Decomp SAT

PGC1 alpha 109 PPARGC1A 3547 1789 173 96
SIRT1 2587 1471 169 74

Dopamine transcription 167 NR4A2 2981 1460 147 54
Wnt/PI3K-AKT 391 Wnt/PI3K 1135 3961 403 256
ER stress signaling 53 DDIT3 971 1855 67 11

AKDHC 2066 1123 84 110
TCA cycle 137 Oxoglutarate 2122 1140 84 110

IDH 2153 1151 84 110
SIRT3 2130 1140 84 110

Table 4.3 Attractor reachability speed in different algorithms. The table shows the
duration of attracor reachabiliy for asynchronous and synchronous systems in the
selected pathways, using the methods HyTarjan, Heuristic, Decomp, and SAT. The scales
includes the node numbers, and Targets indicate the perturbed molecules
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4.3 Model validation
Validation is the process of comparing a model’s output to real-world data to
confirm its reliability. To validate a model, simulations are performed and the
model’s ability to reproduce known perturbations is evaluated. All the selected
BMs were validated following the steps indicated in Section 3.2. The following
results suggested that they are reliable indicators of biological processes, as
they are consistent with the available data. However, there are two cases in
Wnt-PI3K/AKT signaling pathway where the model did not match the published
literature, which led to its correction.

For each pathway, the selected targets were perturbed following the literature-
suggested scenarios, and the changes in corresponding outputs were analysed.
This was done by:

• a) Running a simulation in CellCollective [7] and analysing the attractors
visually

• b) Performing an exhaustive attractor search with pyMaBoSS (available in
the GitLab repository [183]) and comparing computationally the obtained
attractors with DEGs reported in corrseponding published datasets.

Details of validation scenarios for selected pathways, their results and interpreta-
tion are discussed below.

4.3.1 TCA cycle model: Validation using literature and ex-
perimental data

The TCA cycle is a critical metabolic pathway that occurs in the mitochondria of
cells. This pathway is impaired in PD, and this impairment may play a role in the
development of the disease [206]. The TCA cycle is a good example to validate the
BM approach because it is a well-studied and well-understood biological process,
with a wealth of literature and data available for comparison [207]. Additionally,
the TCA cycle involves the conversion of a number of different metabolites, which
can be measured and tracked using techniques such as fluxomics. This allows to
evaluate the accuracy of a BM by comparing the predicted metabolite levels to
those observed experimentally. Given that the TCA cycle is a central metabolic
pathway that is involved in many different cellular processes, a BM of the TCA
cycle could have broad implications and applications.

The performance and accuracy of the TCA cycle BM are validated through
comparison with literature and fluxomics data. In order to run the simulation, the
knockouts of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, and
the pyruvate dehydrogenase complex are considered as initial state parameters
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based on literature. Using temporal-fluxomics data [207], the activity levels of
alpha-ketoglutarate dehydrogenase and the nucleotide triphosphates GTP and
GDP on ATP levels are simulated using CellCollective. After running the simula-
tion with these parameters, the results are compared with experimental data as
discussed below. The validated results based on literature show that the simulated
activation of acetyl CoA, NADH, and PDKs through increases the phosphoryla-
tion reaction, which in turn reduces the activity of the pyruvate dehydrogenase
complex (PDC). This supports the hypothesis that PDC deficiency, a potential
therapeutic target for age-related diseases, results from the activation of the
phosphorylation reaction involving these products [208]. The PDC deficiency,
which is caused by KGDHC knockout, has a significant effects on the produc-
tion of succinic semialdehyde [209]. This deficiency leads to a decrease in the
levels of succinic acid and succinyl CoA, resulting in a decline in ATP and GTP
in mitochondria [210, 211]. Isocitrate dehydrogenase knockout decreases the
amount of ATP and inhibit the oxidative decarboxylation catalysis of isocitrate
into alpha-ketoglutarate, leading to mitochondrial dysfunction and dopaminergic
neurotoxicity [212]. In PD, the key regulators such as oxoglutaric acid, glutamate
hydrogenase 1 (GLUD), and ATP levels are deregulated in response to SIRT3
knockout, which directly impacts mitochondrial function [206]. These findings
are summarized in the table (Table 4.6).

The cellular metabolites oscillate during the cell cycle, adapting the changes
in the cell. The effects of alpha KGDH, and GTP, GDP are simulated on ATP level.

Inputs Output ATP level

Time (h) Cond. 𝛼-KG acid GTP GDP Phosphate Simulated Real

9 C1 0.84 0.48 0.50 0.45 1 0.87
12 C2 0.79 0.77 0.66 0.67 0.86 0.77
15 C3 0.77 0.98 0.79 0.93 1 1
18 C4 0.84 0.83 0.83 0.71 1 0.95
21 C5 1 0.56 0.65 0.73 1 0.90
24 C6 0.88 0.50 0.64 0.72 0.96 0.84
27 C7 0.93 0.66 0.84 0.80 0.96 0.87
30 C8 0.83 0.93 1 0.78 1 0.89
33 C9 0.83 1 0.71 1 1 0.89
36 C10 0.80 0.79 0.61 0.93 0.9 0.81
39 C11 0.81 0.77 0.60 0.83 1 0.97
42 C12 0.80 0.73 0.58 0.73 0.95 0.85
45 C13 0.815 0.49 0.46 0.65 0.88 0.76

Table 4.4 This table presents data on the ATP activity in the TCA (tricarboxylic acid)
cycle with fluxomics integration. The data includes the time in hours, the condition
(labeled as ”Cond.”), and the levels of various inputs (alpha-ketoglutaric acid, GTP, GDP,
and phosphate). The table also includes both simulated and real measurements of ATP
levels.
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The simulated ATP activity levels are inline with the measured concentration in
synchronised HeLa cells every 3 hours post release from growth arrest (Table 4.4).

4.3.2 Signalling pathways: Validation using literature and
experimental data

To further validate the capability of BMs to simulate biological processes, a group
of signaling pathways were chosen as benchmarks. They were selected based
on the disease relevance and available experimental data to validate against the
predictions.

Dopamine transcription pathway

One of the validated pathways in this study was the dopamine transcription
pathway, which is known to be deregulated in Parkinson’s disease (PD)(Figure A.2)
[213].

The key elements considered in this validation are: NR4A2 and SIRT1. NR4A2
and SIRT1 are key elements considered in this validation because they are proteins
that play important roles in the development and maintenance of neurotransmit-
ters and various cellular processes [213, 214, 215].

In the simulation scenario, NR4A2 and SIRT1 were perturbed and the effects
on dopamine release and mitochondrial biosynthesis were observed as activity
levels using the CellCollective. These results, which were confirmed through an
exhaustive search attractor analysis (available in the GitLab repository [183]),
show the following behavior that is in line with the following literature (Table 4.6):

• The production of brain-derived neurotrophic factor (BDNF), which is
important for the survival and growth of neurons, was affected by the
NR4A2 knockout (Figure 3.5). This result was in line with previous research
indicating that NR4A2 is involved in the stimulation of BDNF production
in response to the neurotransmitter N-methyl-D-aspartate (NMDA) [213].

• In addition, other molecules such as GCH1, TH, DDC, SLC18A2, SLC6A3,
and DRD2, which have significant effects on the development and mainte-
nance of neurotransmitters through various targets, were affected by the
NR4A2 knockout, as stated in previous researches [216, 217, 218].

• Activation of SIRT1 was also observed to improve the biogenesis of mito-
chondria, which are important for energy production in cells, according to
previous research [214].
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Wnt-PI3K/AKT

The PI3K/AKT pathway was one of the validated pathways in this study and is
known to be affected by mutations in PD [219, 220, 221].

The key elements considered in this validation are: LRRK2 G2019S mutation,
Wnt, DDIT3, GSK3B, TFEB, PHLPP, RPS6KB1, AND 4EBP2. These molecules are
involved in the Wnt-PI3K/AKT pathway and plays a role in the development and
progression of PD [220, 125, 222, 223].

In the simulation scenario, these biomolecules were perturbed and the effects
on autophagy and neuron survival were observed as activity levels using the
CellCollective.These results, which were confirmed through an exhaustive search
attractor analysis (available in the GitLab repository [183]), show the following
behavior that is in line with the following literature (Table 4.6, (Table 4.5)):

• Overexpression of the LRRK2 G2019S mutant enhanced the autophagy
process [220].

• This effect appeared to be mediated by the inhibition of mTORC1/2, proteins
that regulate autophagy [125, 222]. These observations supported the idea
that amino acid sensing, mTORC1 signaling, and autophagy were closely
interconnected and suggested that modulating these pathways may be
useful for treating PD [221].

• Activating both 4EBP2 and TFEB was shown to increase autophagy activity
more than activating them separately [224, 225, 226]. Specifically, activating
both of these proteins in combination leaded to a 10.7% and 13.6% increase
in autophagy compared to activating them individually.

• In addition, the inhibition of the proteins RPS6KB1 and PHLPP in combi-
nation with the activation of TFEB significantly decreased neuronal death
and the active state of autophagy [227]. This combination resulted in a
96.3% decrease in neuronal death.

• Activating the Wnt protein and inhibiting the protein GSK3B both increase
autophagy [228, 229, 65].Further, the combination of modulating Wnt sig-
naling and GSK3B activity may improve our understanding of therapeutic
protocols for neurological diseases by promoting neurogenesis and au-
tophagy [39]. These findings suggested that targeting these proteins could
be a promising approach for developing treatments for neurological disor-
ders (Table 4.5).
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Inputs Outputs

4EBP2 TFEB gsk3b Wnt PHLPP RPS6KB1 LRKK2 Autophagy Neuron death

1 – – – – – – 0.3983 0.9557
– 1 – – – – – 0.3691 0.9934
– – 0 – – – – 0.6918 0.9592
1 1 – – – – – 0.5055 0.8083
– – 0 1 – – – 0.9928 0
– 1 – 0 0 – 0 0.0364
1 1 0 – 0 0 1 0.9926 0.0364

Table 4.5 The table shows the relationship between molecular target interventions and
the probabilities of autophagy and neuron death. The data includes the levels of seven
different inputs, which are known to play a role in these processes. The table presents
the resulting probability of autophagy and neuron death for each combination of input
levels

FOXO3 activity

One of the validated pathways in this study was the FOXO3 activity pathway,
which is known to be dysregulated in PD [230].

The key element considered in this validation is: FOXO3. FOXO3 is a key
element considered in this validation because it plays important roles in autophagy,
cell cycle progression, apoptosis, stress resistance in PD [230, 231, 232].

In the simulation scenario, FOXO3was perturbed and the effects on autophagy
and RNA mediated bioomolecules were observed as activity levels using the
CellCollective. These results, which were confirmed through an exhaustive search
attractor analysis (available in the GitLab repository [183]), show the following
behavior that is in line with the following literature (Table 4.6):

• FOXO3 biomolecule activation increased autophagy in mitochondria (Ta-
ble 4.6) [232].

• FOXO3 activation also activated different molecules involved in RNA me-
diated mechanisms, including BECN1, GABARAPL1, MAP1LC3A, BNIP3,
ATG12, and MUL1. These biomolecules are known to be important regula-
tors of autophagy [233].

4.3.3 Cross-pathway comparison
In order to validate the relevance of BMs for studying mechanisms of PD, one
metabolic and three signalling pathways were analysed. Literature-driven scenar-
ios were used to validate the pathways, as shown in the Table 4.6. The simulated
behavior of these pathways matched the expected behavior according to pub-
lished literature. However, the Wnt/PI3K pathway showed some discrepancies.
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Namely, the simulated behavior of LRRK2 is not matching the expected behavior
in some researches [234, 235]. According to the “LRRK2: Autophagy and Lyso-
somal Activity” review article,[219]. There could be several reasons why there
are discrepancies between the simulated behavior of LRRK2 and its expected
behavior. Some possible reasons could include:

• Differences in the experimental conditions or protocols used to study
LRRK2, which could lead to varying results.

• The use of different LRRK2 models or cellular systems in different studies,
which could affect the results.

• The complexity of the autophagy pathway and the many factors that can
influence it, making it difficult to accurately predict the behavior of LRRK2
in all cases.

• Limited understanding of the exact mechanisms by which LRRK2 regu-
lates the autophagy pathway, which could lead to discrepancies in the
simulations.

Dimension

Pathway Nodes Edges Target node State Simulated behavior Expected behavior

TCA cycle 137 160 AKDHC OFF acetyl coA-ATP-NADH Match [210]
Oxoglutarate OFF acetyl coA-ATP-NADH Match [212]
IDH OFF Acetyl coA-ATP-oxoglutarate Match [212]
SIRT3 OFF Acetyl coA-ATP-Iron Match [212]

Dopamine
transcription

167 196 NR4A2 OFF Dopamine release Match [236]

SIRT1 ON Mitochondrial biosynthesis Match[214]
Wnt/PI3K 391 436 LRRK2 ON Autophagy activation Match[220], Mismatch [234]

Wnt ON Increase auto-phagy Match [58]
DDIT3 ON increase BCL2L11/BBC3i Match [223]
GSK3B OFF Autophagy activation Match [229]
TFEB ON Autophagy activation Match [237]
PHLPP OFF Autophagy dysregulation Match [227]
RPS6KB1 OFF Autophagy dysregulation Match [227]
4EBP2 ON Autophagy activation Match [238]

FOXO3
activity

65 86 FOXO3 ON Autophagy activation Match [232]

BNIP3 activation Match [232]

Table 4.6 The table compares the simulated behavior of several Boolean models to
expected behavior based on published literature. The table includes information on the
pathways, the number of nodes and edges in each network, the target node, the state of
the target node (ON or OFF), and the simulated and expected behavior for each pathway.

As a result, corrective measures were taken to address these discrepancies. These
measures include modifications of Boolean function to better represent the inter-
actions between LRRK2, ARFGAP1 and autophagy [239]. These results suggest
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that the simulated behaviour of the pathways is largely consistent with published
literature.

4.4 Modelling-based patient stratification using
omics data

This part of the work focuses on modelling-based stratification of PD patients
based on cohort-specific miRNA expression data. For this purpose, the PPMI
dataset was used that includes microRNAs from blood samples in disease subtypes
(LONI archive- www.ppmi-info.org/data). In the PPMI dataset, the following
patient subgroups were considered:

1. Prodromal - 223 individuals - which does not develop severe symptoms
but shows significant positive dopamine transporter (DAT) SPECT

2. SWEDD (Scan without evidence of dopaminergic deficit) - 187 individuals
- clinically diagnosed with normal DAT SPECT

3. Parkinsonism - 123 individuals - includes cases of atypical PD, which is
characterized by idiopathic symptoms similar to those seen in typical PD.

Moreover, the PD commorbidity with Type 2 Diabetes Mellitus (T2DM) was
studied. For this purpose, the T2DM transcriptomic dataset (see Section 3.4.2) was
used, describing the effect of PD-specific mutations on cell cultures of iPS-induced
dopaminergic neurons and organoids.

These two datasets were used to parameterise and run selected models ac-
quired form the PD map. Results discussed below describe analysis of the above-
mentioned data, and simulation results for selected cohort subgroups, with and
without the burden of T2DM commorbidity.

4.4.1 PD omics data analysis
miRNA data analysis for PD subgroups

The miRNA data was analyzed by calculating differential expression of miRNAs
statistical correlations (see Section 3.4.1. Standardized effect sizes were then
calculated and transformed into probabilities using the Common Language Effect
Size method (see Section 3.4.3). Based on manually curated miRNA databases and
the PD map, miRNA targets were identified and filtered.

The validated miRNA targets from manually curated miRNA databases are
identified (see Section 3.4.1). The targets were filtered based on the substantia ni-
gra dataset from the PD map (see Section 3.4.1) and compared with those reported
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in published literature and datasets. It was found that most of the significant miR-
NAs were downregulated in PD and were involved in mitochondrial dysfunction.
The miRNAs that did not match were discarded from the analysis (Table 4.7).

The majority of the identified miRNAs are dysregulated in all cohorts (see
Table 4.7). The effect size of the filtered miRNAs differs between cohorts (see
Figure 4.3).

Figure 4.3 The figure shows an example of 15 miRNAs that are common across the
conditions with different expressions

RNAseq data analysis for T2DM comorbidity

To identify potential connections between PD and T2DM, transcriptomic data from
PINK1 and GBA mutations in T2DM was analysed Section 3.4.2. and comparing
them to a substantia nigra dataset on PD. The following results were obtained:

1. Differentially expressed genes in two datasets describing the PINK1 and
GBA N307S mutations in T2DM were identified and common overlaps with
the genes in the substantia nigra dataset on the PD Map were determined
[183].

2. Validated common miRNA-target pairs that was reported in the literature
as being involved in both PD and T2DM were identified (Table 4.8) through
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enrichment analysis of the differentially expressed genes (DEGs) and a
literature search (see Chapter 3).

3. The downstream effects of T2DM on PD progression were simulated by
perturbing the overlapped targets based on their expression levels in the
datasets as point perturbations (knockouts and overexpressions).

The raw results from the enrichment analysis in different databases are avail-
able in the ”Supplementary results directory” in the GitLab repository, and the
filtered outcome from the workflow is presented in the manuscript (Table 4.8).
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miRNA Regulation Sample Method Ref.

M
at
ch
ed

ex
pr
es
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s

hsa-miR-96-5p Up Peripheral blood RT-qPCR (TaqMan) [240]
hsa-miR-26a-5p Up Peripheral blood RT-qPCR (SYBR Green) [241]
hsa-miR-424-5p Up Peripheral blood Microarray [241]
hsa-miR-9-3p Up Peripheral blood RT-qPCR (TaqMan) [241]
hsa-miR-454-3p Up Peripheral blood RT-qPCR (TaqMan) [242]
hsa-miR-15b-5p Up Peripheral blood RT-qPCR (TaqMan) [242]
hsa-miR-671-5p Up Peripheral blood Microarray [243]
hsa-miR-93-5p Up Prefrontal cortex Illumina’s HiSeq 2000 [243]
hsa-miR-195-5p Up Peripheral blood RT-qPCR (TaqMan) [244]
hsa-miR-20a-5p Up Peripheral blood Microarray [244]
hsa-miR-16-5p Up Prefrontal cortex Illumina’s HiSeq 2000 [244]
hsa-miR-132-3p Up Peripheral blood RT-qPCR (TaqMan) [245]
hsa-miR-196b-5p Down Peripheral blood RT-qPCR (TaqMan) [245]
hsa-miR-92b-3p Down Peripheral blood Microarray [245]
hsa-miR-19a-3p Down Mid-brain Microarray [245]
hsa-miR-19a-3p Down Peripheral blood Microarray [245]
hsa-miR-92a-3p Down Peripheral blood RT-qPCR (TaqMan) [245]
hsa-miR-133b Down Mid-brain RT-qPCR (TaqMan) [245]
hsa-miR-15b-5p Down Peripheral blood RT-qPCR (TaqMan) [245]
hsa-miR-7-5p Down Peripheral blood RT-qPCR (TaqMan) [240]
hsa-miR-15a-5p Down Peripheral blood Microarray [246]
hsa-miR-19b-3p Down Peripheral blood RT-qPCR (TaqMan) [247]
hsa-miR-139-5p Down Peripheral blood RT-qPCR (TaqMan) [247]
hsa-miR-450b-5p Down Peripheral blood RT-qPCR (TaqMan) [247]
hsa-miR-212-3p Down Prefrontal cortex Illumina’s HiSeq 2000 [247]
hsa-miR-22-3p Down Peripheral blood RT-qPCR (TaqMan) [247]
hsa-miR-26a-5p Down Peripheral blood RT-qPCR (TaqMan) [247]
hsa-miR-16-2-3p Down Prefrontal cortex Illumina’s HiSeq 2000 [247]
hsa-miR-16-2-3p Down Peripheral blood RT-qPCR (TaqMan) [248]
hsa-miR-30b-5p Down Peripheral blood RT-qPCR (TaqMan) [248]
hsa-miR-144-3p Down Prefrontal cortex Illumina’s HiSeq 2000 [249]
hsa-miR-323a-3p Down Peripheral blood RT-qPCR (TaqMan) [250]
hsa-miR-495-3p Down Peripheral blood RT-qPCR (TaqMan) [250]
hsa-miR-148b-3p Down Peripheral blood RT-qPCR (TaqMan) [250]
hsa-miR-374a-5p Down Peripheral blood RT-qPCR (TaqMan) [250]
hsa-miR-199b-3p Down Peripheral blood RT-qPCR (TaqMan) [250]
hsa-miR-374b-3p Down Peripheral blood RT-qPCR (TaqMan) [250]
hsa-miR-20a-5p Down Peripheral blood Microarray [250]
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hsa-miR-199b-3p Up Peripheral blood Microarray [250]
hsa-miR-196b-5p Up Peripheral blood RT-qPCR (TaqMan) [251]
hsa-miR-221-3p Up Peripheral blood RT-qPCR (TaqMan) [251]
hsa-miR-103a-3p Up Peripheral blood RT-qPCR (TaqMan) [251]
hsa-miR-320b Up Prefrontal cortex Illumina’s HiSeq 2000 [251]
hsa-miR-30c-5p Down Peripheral blood RT-qPCR (TaqMan) [251, 240]
hsa-miR-30a-5p Down Peripheral blood RT-qPCR (SYBR Green) [251, 248]
hsa-miR-181c-5p Down Peripheral blood RT-qPCR (TaqMan) [252]
hsa-miR-338-5p Down Prefrontal cortex Illumina’s HiSeq 2000 [253]
hsa-miR-148b-3p Down Prefrontal cortex Illumina’s HiSeq 2000 [254]
hsa-miR-21-5p Down Peripheral blood Microarray [241, 254]

Table 4.7 The table indicate the matched (top) and mismatched (bottom) expressions
between the filtered PPMI-miRNAs and the reported miRNAs in literature and datasets.
The table includes the miRNA name, the direction of regulation (up or down), the sample
type, the method used for measurement, and the reference for the data.
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References

miRNA Targets PD T2DM

hsa-miR-423-3p CDKN1A [255] [256]
hsa-miR-132-3p MAPK1 [255] [257, 258]
hsa-mir-15a-5p RET, PHLPP1 [255] [259, 260]
hsa-mir-29c-3p PTEN [261] [262]
hsa-mir-29a-3p IGF1 [261, 263] [264, 262]
hsa-mir-20a-5p PTEN, E2F1 [255, 265] [266, 267]
hsa-mir-22-3p PTEN [268] [269]
hsa-mir-26b-5p IGF1R, PTEN [270] [271]
hsa-mir-143-3p IGF1R, AKT1 [255] [272]
hsa-mir-145-5p IGF1R, IRS1, EIF4E, RPS6KB1 [273] [274]
hsa-mir-133b IGF1R, AKT1 [275] [276]
hsa-mir-34a-5p E2F1 [277] [278]
hsa-mir-182-5p PTEN, GSK3B [279] [280]
hsa-mir-148a-3p IRS1 [270] [281]
hsa-mir-7-5p SNCA, IGF1R, RS1 [270, 255] [282]
hsa-mir-195-5p RET, INSR [270] [283]
hsa-mir-218-5p RET [284] [285]
hsa-mir-200c-3p ROCK2 [265] [286]
hsa-miR-125b-2-3p IGF1R [287] [288]
hsa-mir-18a-5p PTEN, PHLPP1 [265] [289]
hsa-miR-17-5p PHLPP1, PTEN,E2F1 [284] [290]
hsa-mir-96-5p GSK3B [291] [292]
hsa-mir-21-5p PTEN, E2F1 [293] [294]
hsa-mir-200a-3p PTEN, MAPK14 [295] [296]
hsa-miR-200b-3p PHLPP1, ROCK2 [295] [296]
hsa-miR-200c-3p ROCK2 [295] [296]
hsa-mir-103a-3p PTEN [255] [296]
hsa-mir-10a-5p PTEN [297] [298]
hsa-mir-153-3p SNCA, PTEN [297] [299]
hsa-mir-19b-3p PTEN [297] [300]
hsa-mir-155-3p PTEN [263] [301]
hsa-mir-26a-5p GSK3B, PRKCD, PTEN [263] [302]
hsa-miR-26b-5p IGF1R, PTEN [263] [302]
hsa-let-7a-5p E2F1 [263] [303]
hsa-mir-23a-3p PTEN [268] [304]
hsa-mir-100-5p AKT1, IGF1R [305, 306] [307]
hsa-mir-92a-3p PHLPP1, PTEN [305] [308]

Table 4.8 The table indicates the common miRNA expression and target regulation in
PD and T2DM. The table lists miRNA, targeted genes, and references for studies that
have common altered expression of the miRNA in PD or T2DM.
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4.5 Cohort specific Boolean simulations

Using the PD cohort-specific miRNAs and their identified targets, enrichment
analysis was performed on the PD map using the MINERVA GSEA Plugin (3) to
identify significant pathways affected by these miRNAs targets. These pathways
include the dopamine transcription pathway, the Wnt-PI3KAKT pathway, the
FOXO3 activity pathway, the mTOR-MAPK signalling pathway, and the PRKN
mitophagy pathway (Table 4.9). These enriched pathways were then transformed
into BMs and parameterized based on the effect sizes calculations (see Section 3.4.3
and Table 4.10).

Model p value Simulation inputs Simulation outputs

Dopamine
transcription

1.42E-14 ADCYAP1, BDNF, EN1, FOXO1, GCH1,
PBX1, PRKAA2, RXRA, SESN3, SFPQ, RGS6,
NRF1, MAP1B, LMX1A, FOXO3

Mitochondrial biogenesis
Dopamine metabolism
Neuron survival

Wnt-PI3KAKT 2.83E-24 AKT1, E2F1, EIF2AK3, GSK3B, IGF1, IGF1R,
IRS1, MAPK1, NEDD4, PRKCD, PTEN,
TFDP1, AGO2, EIF4E, IDE, PHLPP1, PPP2CA,
PPP2CB, ROCK2, RPS6KB1

TFEB phosphorylated
Insulin resistance
TFEB SNCA complex
TFEB complex
Neuron death

FOXO3 activity 1.30E-20 AKT1, BCL2L11, CEBPB, FASLG,
GABARAPL1, MAP3K5, MFN2,
PPARGC1A,RICTOR, SESN3, SIRT1, SOD2,
TXNIP, ATG12, BNIP3, FOXO3, HSPD1, JUN

Response to oxidative stress
Fission Fusion
Autophagy
Mitochondrial biogenesis
Apoptosis

mTOR-MAPK
signalling

1.39E-22 AKT1, DEPTOR, GSK3B, MAPK1, MTOR,
PRKAA1, PRKAA2,RHEB, RICTOR, RRAGD,
SIRT1, TSC1, UBE2V1, CAMKK2, DDIT4,
DEPDC5, DEPTOR, GSK3B,MAPK1,
MAPKAP1, MTOR, PARP1,PHLPP1,
PRKAA1, RHEB, RICTOR, RPS6KB1, SIRT1,
TSC1, UBE2V1

Glycolysis
RHEB lysosome
AKT
Catabolism
Autophagy
Mitochondrial biogenesis

PRKN 4.47E-05 ATXN3, BAG4, FBXW7, GABARAPL1,
TIMM17A, ULK1, VPS13C

Apoptosis
Mitophagy
PRKN ubiquitinated
PINK1 accumulation

Table 4.9 This table presents the Boolean models, with the inputs and outputs for
each model listed. The pathways included are the Dopamine transcription pathway, the
Wnt-PI3KAKT pathway, the FOXO3 activity pathway, and the mTOR-MAPK signalling
pathway. The inputs for each pathway consist of various biomolecules, while the outputs
represent various cellular processes or biomolecules that are influenced by the inputs.
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4.5.1 Model parameterisation using cohort data
The probabilities of the initial states of BMs are determined based on the effect size
and statistical correlations found in PPMI dataset, specifically for each subgroup
(see Section 3.4.1). These probabilities are then included in configuration files
and used with pyMaBoSS, a software tool that simulates the dynamics of BMs
and investigates the probability of reaching certain conditions (levels of defined
outputs).

Such parameterised models are then simulated with pyMaBoSS to study the
effects of molecular alterations on the probability of reaching different conditions,
as well as identify key biomolecules that may be involved in the progression of
disease subtypes [172, 37, 165]

An example of such a parameterisation for the PRKN mitophagy pathway is
discussed here. Table 4.10 illustrates calculated miRNA effect sizes for the SWEDD,
prodromal, and parkinsonism, together with their targets. A corresponding BM,
constructed based on a PD map diagram (see Figure A.6) is parameterised by
setting the values of the corresponding targets (biomolecules in the model) to the
corresponding probabilities. Such a parameterised model, run with pyMaBoSS
provides readouts for the three phenotypes as illustrated by the corresponding
lines (see Figure 4.4).

In the resulting simulation graphs (Figure 4.4) the change points in the iter-
ations are identified using the regression of multiple change points algorithm
[204].Two change points were chosen, dividing the graph into three sections,

Cohort Target.Score miRNA Gene.ID Gene.Symbol Transcript.Accession CL-effectsize

SWEDD 95 hsa-miR-96-5p 4287 ATXN3 NM_001164776 0.966761
97 hsa-miR-26a-5p 9530 BAG4 NM_001204878 0.712208
97 hsa-miR-424-5p 55294 FBXW7 NM_033632 0.852718
95 hsa-miR-15b-5p 23710 GABARAPL1 NM_031412 0.92637
95 hsa-miR-3121-3p 10440 TIMM17A NM_006335 0.981296
96 hsa-miR-26a-5p 8408 ULK1 NM_003565 0.712208

Prodromal 95 hsa-miR-96-5p 4287 ATXN3 NM_001164776 0.956198
97 hsa-miR-26a-5p 9530 BAG4 NM_001204878 0.951438
97 hsa-miR-15b-5p 55294 FBXW7 NM_033632 0.960511
95 hsa-miR-15b-5p 23710 GABARAPL1 NM_031412 0.960511
95 hsa-miR-3121-3p 10440 TIMM17A NM_006335 0.574494
96 hsa-miR-26a-5p 8408 ULK1 NM_003565 0.951438

Parkinsonism 96 hsa-miR-1271-5p 4287 ATXN3 NM_001164776 0.976557
97 hsa-miR-26b-5p 9530 BAG4 NM_001204878 0.896051
100 hsa-miR-32-5p 55294 FBXW7 NM_033632 0.914474
96 hsa-miR-195-5p 23710 GABARAPL1 NM_031412 0.938137
99 hsa-miR-421 9868 TOMM70 NM_014820 0.942465
96 hsa-miR-26b-5p 8408 ULK1 NM_003565 0.896051
98 hsa-miR-223-5p 54832 VPS13C NM_018080 0.964472

Table 4.10 This table presents PRKN-mitophagy Boolean model parameters within
three subgroups SWEDD, prodromal, parkinsonism with common language (Cl) effect
sizes and targets
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Figure 4.4 The figure shows a representative run of the simulation in PRKNmitophagy
model, consisting of 100 iteration steps with 100 repetitions. Dynamic time warping
measure similarity between two sequences which differs in speed based on different
stages of the simulation (early, mid, and late).

interpreted as early, mid and late stage. The DTW algorithm is then used to
calculate the similarities between different time series, which represent the pro-
gression of a particular process over time [205]. By using the Pearson correlation
coefficient, the pairs of DTW scores were compared to identify which conditions
are most correlated across disease subgroups.

Such quantified simulation graphs are generated and summarised for all
three PD subgroups, across all considered BMs, their targets and defined outputs.
Figure 4.5 summarises the entire workflow.

4.5.2 Model parameterisation using T2DM transcriptomic
profile

Selected models were further parameterised to study the comorbidity of PD with
T2DM. The Differentially Expressed Genes from T2DM datasets (above) were
used to introduce perturbations in the models.

For biomolecules that were found to be expressed at lower levels in the
transcriptomic dataset, the simulation involved activating or ”overexpression” the
biomolecules in silico. In contrast, for genes that were found to be downregulated,
the simulation involved in silico knocking out the biomolecule.

The following example in Table 4.11 shows parameterisation of PARKIN
pathway, including two sets of parameters (miRNA based and T2DM specific
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Figure 4.5 The figure illustrates an example of a Probabilistic Boolean simulation run
using pyMaBoSS tool. The inputs are cohort-specific probabilistic models of prodromal-
SWEDD-parkinsonism with X nodes that have different initial states probabilities (P).
The outputs represented on two panels: Panel A displays the output of the model in a
simulation graph, which presents the probabilities of the outputs in iteration steps. Panel
B shows DTW alignment scores, which measure the similarity between the probabilities
of the different conditions across the early, mid, and late simulation stages.

which are combined) during the simulation. The miRNA-based parameters were
used to represent the cohort specific paramenters. On the other hand, T2DM-
specific parameters were used to represent the effects of T2DM on PD cohort
progression.
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Cohort Cohorts -based targets CL-effectsize T2DM-specific targets (Knockouts)

SWEDD ATXN3 0.966761 SNCA
BAG4 0.712208 BCL2
FBXW7 0.852718 BNIP3
GABARAPL1 0.92637
TIMM17A 0.981296
ULK1 0.712208

Prodromal ATXN3 0.956198
BAG4 0.951438
FBXW7 0.960511
GABARAPL1 0.960511
TIMM17A 0.574494
ULK1 0.951438

Parkinsonism ATXN3 0.976557
BAG4 0.896051
FBXW7 0.914474
GABARAPL1 0.938137
TOMM70 0.942465
ULK1 0.896051
VPS13C 0.964472

Table 4.11 The table shows an example of parameterisation for PARKIN pathway,
including two sets of parameters (miRNA based and T2DM specific which are combined)
during the simulation

4.6 Cohort specific simulation results
Following the parameterisation as discussed above, the selected BMs were anal-
ysed in two aspects:

• Molecular mechanisms in specific cohorts: parkinsonism, SWEDD and
prodromal

• Role of T2DM comorbidity in these cohorts

For each of the selected models (Table 4.9) two sets of results were obtained:
cohort-specific and comorbidity-specific results.

4.6.1 Dopamine transcription
Simulation results of the ”Dopamine transcription” BM show that during the
early stages, the SWEDD and prodromal-related groups have similar levels of
activation of mitochondrial biogenesis and dopamine metabolism. However, the
parkinsonism group has higher levels of activation for these processes. All of
the groups also show differences in neuron survival, with lower activity in the
SWEDD and prodromal groups (Table 4.12).

As the simulation progresses to the mid and late stages, an increase in activa-
tion levels for these processes is observed in all groups except the diabetic group,
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Cohort miRNA T2DM transcriptomics

Stage Conditions Prodromal SWEDD Parkinsonism Prodromal SWEDD Parkinsonism

Early Mitochondrial biogenesis 0.6771 0.6512 0.3853 0.3170 0.3185 0.1937
Dopamine metabolism 0.4592 0.4565 0.3856 0.1359 0.1322 0.1238
Neuron survival 0.3743 0.4894 0.3818 0.3413 0.3274 0.0668

Mid Mitochondrial biogenesis 0.1693 0.1623 0.0493 0.8890 0.8927 0.0456
Dopamine metabolism 0.0973 0.0680 0.0496 0.0935 0.2073 0.0436
Neuron survival 0.0761 0.0906 0.0674 0.9226 0.8951 0.0268

Late Mitochondrial biogenesis 0.0311 0.0482 0.0002 0.9676 0.9698 0.0023
Dopamine metabolism 0.0132 0.0135 0.0098 0.0364 0.0765 0.0198
Neuron survival 0.0110 0.0210 0.0295 0.0364 0.0765 0.0198

Table 4.12 The table presents the DTW scores in dopamine transcription BM for
three different simulation stages of prodromal, SWEDD and parkinsonism. The scores
are based on three different disease conditions: mitochondrial biogenesis, dopamine
metabolism, and neuron survival.

where the levels of activation for mitochondria and neuron survival remain un-
changed. During the mid and late stages, one can observe significant difference in
mitochondrial biogenesis between the SWEDD/prodromal related T2DM groups
and the other groups (Table 4.12). In the parkinsonism-T2DM group, the levels of
activation for ”mitochondrial biogenesis” and ”neuron survival” were found to be
lower than in the other groups at all stages of the simulation. These findings sug-
gest that there may be a link between diabetes and reduced levels of mitochondrial
biogenesis and neuron survival, particularly in cases of parkinsonism-T2DM.

4.6.2 Wnt-PI3K/AKT signalling
The simulation shows that in the early stages, there is a significant difference in
insulin resistance between the prodromal group and the SWEDD and parkinson-
ism groups. The SWEDD and parkinsonism groups have similar levels of insulin
resistance, while the prodromal cohort has lower levels of insulin resistance.
Both the SWEDD and prodromal groups also have a similar probability of insulin
resistance due to T2DM. The active forms of TFEB (phosphorylated TFEB and
TFEB SNCA) have a low probability, while the inactive form (TFEB complex) has
a high probability of development(Table 4.13).
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Cohort miRNA T2DM transcriptomics

Stage Conditions Prodromal SWEDD Parkinsonism Prodromal SWEDD Parkinsonism

Early TFEB phosphorylated 0.9503 0.9215 0.9216 0.9032 0.9053 0.8998
Insulin resistence 0.6341 0.3364 0.3310 0.1111 0.1118 0.0190
TFEB SNCA complex 0.9622 0.9422 0.9422 0.8964 0.9215 0.9088
TFEB complex 0.3624 0.3572 0.3580 0.05755 0.0575 0.0125
Neuron death 0.3090 0.2714 0.2725 0 0 0.0366

Mid TFEB phosphorylated 0.9503 0.9215 0.9216 0.8847 0.8906 0.8758
Insulin resistence 0.6341 0.3364 0.3310 0.0213 0.0203 0.0098
TFEB SNCA complex 0.9622 0.9422 0.9422 0.9080 0.9065 0.9078
TFEB complex 0.3624 0.3572 0.3580 0.0007 0.0006 0.0006
Neuron death 0.3090 0.2714 0.2725 0 0 0.0048

Late TFEB phosphorylated 0.9298 0.9276 0.9243 0.8997 0.9009 0.8991
Insulin resistence 0.0241 0.0222 0.0212 0.0213 0.0203 0.0098
TFEB SNCA complex 0.9324 0.9279 0.9208 0.9066 0.8914 0.8931
TFEB complex 0.0296 0.0098 0.0097 0 0 0
Neuron death 0.0192 0.0005 0.0009 0 0 0

Table 4.13 The table presents the DTW scores in Wnt-PI3K/AKT BM for three different
simulation stages of prodromal, SWEDD and parkinsonism. The scores are based on
different disease conditions: TFEB phosphorylated, Insulin resistence, TFEB complex and
Neuron death.

4.6.3 FOXO3 activity
The simulation shows that in the early stages, the prodromal-related cohort
develops ”Fission Fusion” endpoint at a higher rate than the other groups, and
this trend continues in the mid and late stages. The prodromal-T2DM cohort also
has faster development of autophagy and responses to oxidative stress compared
to the other groups. The prodromal and SWEDD groups have similar responses
to oxidative stress, which are greater than those in the parkinsonism group. In
terms of autophagy, the SWEDD group has a lower rate than the prodromal and
parkinsonism groups, which are similar to each other. The parkinsonism cohort
has a higher probability of apoptosis compared to the other groups (Table 4.14).

At the mid stage of the simulation, the probability of fission and fusion in
SWEDD and parkinsonism is similar. Further, autophagy develops significantly
more in patients with parkinsonism than in other cohorts. At the mid stage, the
probability of apoptosis becomes similar in prodromal and SWEDD. In SWEDD,
the probability of autophagy and apoptosis increases in the late stage compared
to the prodromal and parkinsonism cohorts (Table 4.14).

At the mid- and late stages, the SWEDD group has a significantly higher
probability of oxidative stress compared to the prodromal and parkinsonism
groups. The SWEDD-T2DM group also exhibits an increased response to oxidative
stress and an increased probability of mitochondrial biogenesis. The prodromal
cohort also has a high probability of mitochondrial biogenesis. Additionally, the
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parkinsonism group’s mitochondrial biogenesis is less affected by T2DM than in
the other groups (Table 4.14).

Cohort miRNA T2DM transcriptomics

Stage Conditions Prodromal SWEDD Parkinsonism Prodromal SWEDD Parkinsonism

Early Response to oxidative stress 0.6331 0.6220 0.6949 0.4473 0.4850 0.5954
Fission Fusion 0.6361 0.8529 0.8111 0.4676 0.6192 0.6858
Autophagy 0.5561 0.6491 0.5514 0.3789 0.3962 0.4145
Mitochondrial biogenesis 0.5622 0.5419 0.5824 0.2045 0.1843 0.1500
Apoptosis 0.7547 0.7707 0.5508 0.3947 0.4657 0.3255

Mid Response to oxidative stress 0.5138 0.4952 0.5708 0.5133 0.4938 0.6417
Fission Fusion 0.5413 0.6091 0.6015 0.5188 0.7658 0.6431
Autophagy 0.5096 0.5418 0.4814 0.5195 0.4671 0.5028
Mitochondrial biogenesis 0.1257 0.1465 0.1633 0.0744 0.1251 0.0777
Apoptosis 0.4666 0.4640 0.3315 0.4231 0.4450 0.4302

Late Response to oxidative stress 0.5099 0.4577 0.5485 0.5325 0.4703 0.6460
Fission Fusion 0.5080 0.5133 0.5469 0.5528 0.6010 0.6156
Autophagy 0.5399 0.4978 0.5367 0.5323 0.4878 0.5567
Mitochondrial biogenesis 0.0208 0.0372 0.0712 0.0197 0.0436 0.0392
Apoptosis 0.3177 0.2623 0.2752 0.2664 0.2940 0.3221

Table 4.14 The table presents the DTW scores in FOXO3 BM for three different sim-
ulation stages of prodromal, SWEDD and parkinsonism. The scores are based on five
different disease conditions: Response to oxidative stress, Fission Fusion, Autophagy,
Mitochondrial biogenesis and Apoptosis.

4.6.4 mTOR-MAPK signalling
The simulation shows that in the early stages, there are significant differences in
the activity levels of glycolysis and catabolism among all cohorts. The change
in glycolysis begins earlier in the SWEDD group and continues to have higher
activity in the late stage. The SWEDD-T2DM group has lower levels of glycolysis
at all stages of T2DM, while catabolism increases whenever glycolysis decreases
(Table 4.15). In the parkinsonism group, catabolism is more active at the early and
mid stages compared to the SWEDD and prodromal groups. Despite the increased
activity of glycolysis, the SWEDD group has a higher probability of catabolism in
the mid/late stages (Table 4.15). As the simulation of catabolism continues into the
late stages, a significant difference is observed between the parkinsonism/SWEDD
cohort and the prodromal cohort. Additionally, the parkinsonism-T2DMgroup has
higher levels of glycolysis activity than the other groups with T2DM (Table 4.15).
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Cohort miRNA T2DM transcriptomics

Stage Conditions Prodromal SWEDD Parkinsonism Prodromal SWEDD Parkinsonism

Early Glycolysis 0.8151 0.7664 0.9058 0.3040 0.3971 0.1740
RHEB lysosome 0.6653 0.3861 0.6113 0.1382 0.0098 0.0286
AKT 0.4171 0.3893 0.4172 0.0630 0.0122 0.0081
Catabolism 0.8087 0.8350 0.7342 0.3553 0.4528 0.1848

Mid Glycolysis 0.3077 0.3461 0.5149 0.3365 0.3690 0.2926
RHEB lysosome 0.2368 0.0937 0.2166 0.0744 0.0098 0.0048
AKT 0.1115 0.0962 0.1930 0.0555 0.0098 0.0065
Catabolism 0.3688 0.3193 0.2579 0.3458 0.2822 0.3093

Late Glycolysis 0.1493 0.1397 0.1780 0.1666 0.1799 0.1458
RHEB lysosome 0.1227 0.0446 0.0643 0.0492 0.0002 0.00003
AKT 0.0427 0.0296 0.0439 0.0128 0.0001 0.00001
Catabolism 0.1601 0.1392 0.1398 0.1924 0.1629 0.2083

Table 4.15 The table presents the DTW scores in mTOR BM for three different sim-
ulation stages of prodromal, SWEDD and parkinsonism. The scores are based on four
different disease conditions: Glycolysis, RHEB lysosome, AKT and Autophagy.

4.6.5 PRKN mitophagy

At all stages, there is a significant difference in the activation of mitophagy
across cohorts. Mitophagy activation begins more quickly in the early stages of
the SWEDD and prodromal groups compared to the parkinsonism group. The
parkinsonism group has a higher probability of PINK1 accumulation than the
other groups. T2DM decreases the probability of mitophagy in the parkinsonism
group (Table 4.16).

Cohort miRNA T2DM transcriptomics

Stage Conditions Prodromal SWEDD Parkinsonism Prodromal SWEDD Parkinsonism

Early Mitophagy 0.3303 0.3303 0.4719 0.0537 0.0537 0.0422
PRKN ubiquitinated 0.6165 0.6165 0.4545 0.2041 0.2041 0.0643
PINK1 accumulation 0.5952 0.5952 0.5870 0 0 0.1556

Mid Mitophagy 0.0325 0.0325 0.0820 0.0078 0.0078 0.0335
PRKN ubiquitinated 0.1918 0.1918 0.1009 0.1065 0.1065 0.1212
PINK1 accumulation 0.1982 0.1982 0.1314 0 0 0.0658

Late Mitophagy 0.0002 0.0002 0.0129 0 0 0.0101
PRKN ubiquitinated 0.0644 0.0644 0.0933 0.0327 0.0327 0.0534
PINK1 accumulation 0.0747 0.0747 0.0196 0 0 0.0204

Table 4.16 The table presents the DTW scores in PRKN mitophagy BM for three
different simulation stages of prodromal, SWEDD and parkinsonism. The scores are
based on three different disease conditions: Mitophagy, PRKN ubiquitinated, and PINK1
accumulation.

85



4.6.6 Similar characteristics in the disease subgroups
Understanding the similar characteristics of the disease conditions in the disease
subgroups is an important aspect of diagnosis and treatment planning, as it can
help to inform the selection of appropriate therapies and interventions. The DTW
algorithm identified and synthesised the similarities between disease conditions
in subgroups (see Section 3.4.3). A lower DTW score between two conditions in
different subgroups indicates a higher degree of similarity in the progression of
these conditions over time, while a higher DTW score indicates more differences
in the progression. By using the Pearson correlation coefficient (see Section 3.4.3,
the pairs of DTW scores were compared to identify which conditions are most
correlated, and to understand the patterns of their progression over time. The
Pearson correlation coefficient identified the highly correlated DTW similarity
score. The following findings are selected based on a correlation coefficient
greater than 0.98, indicating a strong positive correlation (Table 4.17). The results
show that in the early stages of simulations, most of the observed conditions
are correlated to dysregulation of mitochondria. These conditions continue
to be present in the mid and late stages, manifesting as apoptosis, catabolic
processes, dopamine metabolism, and neuron death (Table 4.17). At the early
stage of the simulation, all of the cohorts are affected by T2DM. T2DM has a
similar effect on dopamine metabolism and neuron death in the late stage of
simulation (Table 4.17). The prodromal and SWEDD groups have similar levels
of mitochondrial biogenesis at the early and late simulation stages of T2DM.
There are no differences in mitophagy activity between the simulation stages,
but insulin resistance activity is similar only in the early stages of the simulation
(Table 4.17). The SWEDD and parkinsonism groups have similar probabilities of
insulin resistance activation in the early stage of simulation, fission metabolism
in the mid stages, and catabolism in the late stages. In the early and late stages
of simulation, the prodromal and SWEDD groups have similar probabilities of
mitophagy activation, while dopamine metabolism appears similar in the late
stage. The neuron survival condition is similar in the prodromal and parkinsonism
groups in the early stage of the simulation, and the autophagy pathway is similar
in the early and late stage (Table 4.17).
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Conditions in stage

Disease subgroups Early Mid Late

Prodromal+T2DM,
SWEDD+T2DM

Insuline resistence Insuline resistence Insuline resistence
Mitophagy Mitophagy Mitophagy
Mitochondrial biogenesis Apoptosis Mitochondrial biogenesis

SWEDD+Parkinsonism Insuline resistence Fission fusion Catabolism

Prodromal+SWEDD Mitophagy – Mitophagy
Dopamine metabolism

Prodromal+Parkinsonism
Autophagy – Autophagy
Neuron survival

T2DM (all cohorts) Dopamine metabolism – Neuron death

Table 4.17 The table presents the highly correlated disease conditions within disease
subgroups (ranging from 98%-100%) at various stages of simulation using the Pearson
correlation coefficient.
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Chapter 5

Discussion

Neurodegenerative diseases, including Parkinson’s disease (PD), are conditions
that arise from the complex interaction of genetic and environmental factors and
are characterized by disruptions in multiple molecular and cellular processes [309].
These conditions are associated with a wide range of symptoms and can be further
complicated by comorbidities. The need to understand and effectively treat these
conditions is growing as their prevalence increases [310]. To better understand the
underlying molecular and cellular mechanisms of these diseases and identify more
precise and effective therapeutics, new approaches and technologies are needed,
including systems biology [311]. Systems biology is a holistic approach that
focuses on the interactions between various biomolecules of a biological system
and how they contribute to the function and behavior of the system as a whole
[312]. Systems biology approaches often involve the use of computational models
and the integration of large datasets to gain a comprehensive understanding of the
system [313, 314]. The goal of these approaches is to improve our understanding of
the underlying causes of complex diseases and develop more precise and effective
therapies.

Modelling biological processes is a crucial tool for understanding the complex
interactions and relationships within biological systems. There are different mod-
elling approaches that can be used, such as static network analysis and dynamic
modelling. Static network analysis can be useful for identifying correlations
and clusters between biomolecules [76], while dynamic modelling focuses on
simulating the causal relationships between biomolecules and their measurement
values [315, 313]. Dynamic modelling approaches include the use of Petri nets,
ODEs, Boolean, and multi-valued models. Logical models such as Boolean or
multi-valued discrete models are interesting alternatives as they do not require
detailed kinetic information. However, these types of models may not be suitable
for certain research areas, such as pharmacogenomics, where insufficient data
is a limitation. The development of Boolean models requires a combination of
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large-scale studies, data analysis, and a thorough understanding of the underlying
biology of the disease [77].

The study used Boolean modelling to investigate the complexity of PD by
simulating the dynamic interactions between various biomolecules. The BMs
are used to test hypotheses about the role of specific biomolecules in the de-
velopment of PD by simulating the effect of these biomolecules on the disease
progression and evaluating the results against experimental or observational
data. Additionally, these models are used to explore the impact of multiple per-
turbations on the disease and identify patterns that may not be apparent from
experimental or observational data alone. Furthermore, the use of stratified BMs
can aid in the diagnosis of PD by analyzing the specific factors that contribute to
the disease progression and tailoring treatment strategies to the specific needs of
each subgroup of patients. Overall, BMs can provide a valuable computational
tool that can aid researchers in understanding the complexity of PD, developing
new diagnostic criteria, targeted interventions, and better treatment strategies,
ultimately improving care for patients with PD.

5.1 Constructing Boolean models from knowl-
edge repositories

The BMs were constructed in an automatic fashion using CaSQ tool[93]. One
of the key advantages of using the CaSQ tool to construct BMs from PD map
diagrams is its ability to apply specific rewriting rules to simplify the model
and make it more manageable. This is demonstrated in the method section (see
Chapter 3), where the Process Description notation is reduced to the Activity Flow
notation, and logical functions and interactions are inferred from the Process
Description (see Figure 3.1). This reduction process is important for making the
model more tractable for downstream analysis and modeling.

Another advantage of using the CaSQ tool is its ability to translate diagrams
into the SBML-qual format, which is a widely adopted standard for representing
qualitative dynamic systems in the systems biology community. SBML-qual allows
the description of the structure of a model (the biomolecules and interactions) as
well as the mathematical equations that describe how these components behave
over time. The use of this format allows for easy sharing and comparison of
models with other researchers and provides a standardized way of representing
models.

The transformation of the diagrams to Simple Interaction Format (SIF) using
CaSQ tool added advantage, as it allowed for the use of a range of tools to
analyse the diagrams. This is important in the context of understanding complex
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diseases such as Parkinson’s disease, where a comprehensive understanding of
the complex mechanisms is necessary. By using different tools to analyse the
diagrams, researchers can gain a more holistic view of the disease, which can
improve the understanding of the underlying mechanisms.

The reduction of Process Description notation into Activity Flow notation and
inferring logical functions from interactions, combined with the use of SBML-qual
format, allowed for the creation of models that are both accurate and computation-
ally efficient. This makes the generated models more suitable for studying large
and complex systems as well as allows for a deeper understanding of the system
and more accurate predictions about its behavior. Therefore, the constructed BMs
have the potential to be scaled up in order to study larger and more complex
systems.

It is worth noting that the use of specific knowledge disease resources, such as
PD map, has the advantage of providing a high quality of knowledge specificity.
This is because the diagrams are focused on a specific disease and are created
and reviewed by experts in the field. This high level of expertise and specificity
makes the generated models more reliable.

5.2 Data-driven model parameterisation and sim-
ulations

5.2.1 Comparison of simulation algorithms
This study highlights the importance of considering different algorithms for differ-
ent goals and characteristics of the systems being studied. The Heuristic and SAT
solver algorithms were found to be the most promising options for downstream
analysis as they achieve a good trade-off between performance and biological
relevance. The results can be valuable for researchers who are interested in
using simulation algorithms to analyse biological systems. The performance of
different simulation algorithms were compared for understanding the charac-
teristics and calculating the performance of BMs. By comparing asynchronous
and synchronous simulations in selected models, the aim was to understand how
their characteristics are affected by different updating schemes. The attractor
analysis showed that the state trajectories converge to fixed or cyclic attractors
under different updating schemes. In this context, four algorithms (HyTarjan,
Heuristic, Decomp, and SAT) in terms of their reachability in pathways. The
data indicated that in the case of asynchronous solutions, the HyTarjan algorithm
outperformed the Heuristic approach. When comparing Decomp vs SAT, the data
suggest that there was not a single solution that consistently outperformed the
other. The attractors produced by these methods in terms of their biological rele-
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vance showed that both the HyTarjan and Decomp solutions produced attractors
that were not biologically relevant for all the considered pathways. In contrast,
the Heuristic and SAT solver algorithms produced attractors that were viable
for all the pathways except the Wnt/PI3K pathway. The reason for this is that
the HyTarjan and Decomp algorithms use an aggressive decomposition which
overly fragments the resulting models. Therefore, the Heuristic and SAT solver
algorithms were selected for downstream analysis.

5.2.2 Parameterisation using omics data
The study explored the use of BMs and probabilistic BMs as a modelling frame-
work for understanding the dynamics of biological systems. The probabilistic
BMs can be adjusted to incorporate specified levels of model parameters, allowing
modelling systems with varying probabilities based on expression levels. This
allowed to better capture the inherent variability in biological systems. Proba-
bilistic BMs are stochastic in nature, meaning that the outcome of the simulation
is not always deterministic. This may be relevant more for the biological systems
that exhibit stochastic behaviour such as expression levels of the biomolecules.
Such a model could be used to simulate the effects of different medications or
interventions on the activity of biomolecules involved in a disease, and predict
how these interventions may affect the disease progression in different patient
subgroups [316].

A high-quality data set of miRNAs sequenced from the whole blood of PD
patients from different subtypes of the disease was obtained from the PPMI study
[69]. The existence of microRNAs in the circulation is considered a promising
biomarker for both diagnosis and prognosis of disease because of their high sta-
bility in human fluids [317, 297]. Differentially expressed miRNAs were evaluated
to include only validated interactions between miRNAs and genes in brain tissue.
Only stable correlations between miRNA expression and target gene expression
were chosen. In addition, the filtered miRNAs were enriched in the PD map
as PD-specific knowledge resource and overlapped with substatia nigra targets.
As a final step, the expressions of miRNAs are compared with the curated data
resources and other experiments related to PD in the literature (Table 4.7). Most
of such filtered, significant miRNAs showed downregulation in PD and were
involved in mitochondrial dysfunction. The enrichment analysis of the PD map
revealed significant pathways that may be involved in disease progression. Using
these pathways, probabilistic BMs were created and the initial states are chosen
based on the targets of miRNAs biomarkers from PPMI dataset. The probabilities
of the initial states are calibrated based on the calculated effect sizes. Boolean
simulations were then performed based on the disease subtypes.

Type 2 diabetes mellitus (T2DM), is a significant PD comorbidity, affecting the
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progression of different disease subtypes [63]. In this work, the transcriptomic
datasets related to T2DM were analysed to understand the relevance of diffren-
tially expressed genes to PD and T2DM. The data is filtered based on common
miRNA-target pairs from the literature and substantia nigra dataset on the PD
map(Table 4.8). In this context, upregulated genes were treated as overexpression
perturbation and donwregulation as knockout. Such simulation of T2DM as point
perturbations separately after simulating a cohort of PD patients, allowed to study
the effects of T2DM on PD progression in isolation. This allowed to identify
specific interactions and pathways that may be involved in the co-occurrence of
these two disorders, and can provide a clearer understanding of the underlying
biology.

5.3 Validation of the constructed models
Models were built using systems biology standards, making them interoperable
with different tools and programs. Systems biology standard formats (e.g. SBML
packages) improved model reproducibility and made pipeline development easier.
By using these standard formats, researchers can ensure that their models are
easily readable and understandable by other scientists, and that they can be
integrated with other models and data in a consistent and reliable way. This
improves the reproducibility of models and makes it easier to develop pipelines
and workflows that involve multiple models or data sources.

In general, computational models constructed without sufficient detail may
result in inaccurate predictions [318]. Thus, a focus on model quality during the
construction step is crucial to minimize false positive results during simulation
[251, 319]. In this context, the verification step is a critical part of the modelling
process, as it helps to ensure that the model is a reliable representation of the
system being studied and that it can be used to make accurate predictions and
inform decision-making.

In this work, the BMs were evaluated by showing their ability to reproduce
experimentally validated studies on different scales of complexity (Section 3.3).
Results shown in the Table 4.6 indicate that the simulated behaviour of the
models considered for this work is in line with the expected behaviour based
on different scenarios, reproducing expected behaviour for both original and
perturbed conditions. Simulation of known perturbations proves the models’
capability to recreate known pathological conditions, helps to understand them,
and allows to prioritise a reliable set of biomolecules and translation rules.

The selection of PD map diagrams for downstream modelling and verifica-
tion is an important step to explain the underlying biological mechanisms of
PD and provide targets for the development of therapies. These diagrams were
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chosen based on their relevance to PD phenotypes, such as mitochondrial dysfunc-
tion, dopamine dysregulation, alpha-synuclein aggregation, neuroinflammation,
oxidative stress [320, 321].

5.4 Structural and functional validation of the
Boolean modelling approach

5.4.1 Modelling of the TCA cycle

The model of the TCA cycle pathway from the PD map was used to validate the
modelling approach. The TCA cycle is a well-studied pathway with a wealth
of experimental data available, including measurements of enzyme activity and
metabolite levels. This allowed to compare the BM predictions with experimental
data to determine the accuracy and reliability of the model. Moreover, desregula-
tion of the TCA cycle is linked to oxidative stress, inflammation, and cell death,
which are all hallmarks of PD [208, 212, 209].

To investigate the TCA cycle BM, the structural and functional roles of key
molecules were analysed. This included examining the involved enzymes and
cofactors, as well as the reactions they catalyze and the intermediates they produce.
The regulatory mechanisms that control the activity of these molecules were
considered to predict impact on the TCA cycle [322]. The effects of overexpression
and knockout of regulatory mechanisms that control the activity of the enzymes
in the TCA cycle were modelled in the TCA cycle BMs. In particular, the results
from the structural analysis were used to calculate the sensitivity of the TCA
cycle to knockouts and overexpressions. This involved simulating knockouts and
overexpressions of a particular biomolecule on the overall activity of the TCA
cycle. To verify the results, literature was reviewed to find experimental studies
that perturbed TCA cycle molecules in model organisms, such as yeast or mice
[323, 324].

Selected perturbations in the Boolean model resulted in the following findings
supported by the literature (Table 4.6):

• Activation of acetyl CoA, NADH, and PDKs in silico increased the phospho-
rylation reaction, which reduced the activity of the pyruvate dehydrogenase
complex (PDC) [208]. This led to a decrease in succinic semialdehyde and
succinic acid [209].

• Simulated KGDHC knockout predicted deficiency in succinic acid and
succinyl CoA and a downstream decrease in ATP and GTP [210, 211].
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• Simulated isocitrate dehydrogenase knockout lead to a decrease in ATP
production and inhibited the oxidative decarboxylation of isocitrate [212].
Additionally, levels of oxoglutarate, an intermediate component that serves
as the carbon skeleton for nitrogen assimilation, are observed to decrease
in response to L-glutamate [212, 325].

• Knockout of SIRT3 downregulated oxoglutaric acid, glutamate hydrogenase
1 (GLUD), and ATP levels, which has a direct impact on mitochondrial
function [206]

• Finally, simulation of the effect of alpha KGDH and GTP, GDP on ATP levels
was validated using probabilistic BM based on temporal-fluxomics data that
describe the oscillations of metabolites in the TCA [207]. The simulated
activity levels matched the measured concentrations in synchronized HeLa
cells at various time points post-release from growth arrest (Table 4.4).

While the TCA model used in this study does not answer the same research
questions as quantitative models, it reproduces molecular activity that could
regulate ATP levels and mitochondrial function. These findings suggest that
the TCA BM is a reliable tool for describing the general overview of the energy
metabolism and may provide insight into the mechanisms underlying the oscil-
lations of cellular metabolites. This evaluation process has certain limitations.
For example, the literature search may not capture all relevant data, and the
simulations may not accurately reflect all the complex interactions that occur in
cells. It is also important to consider the specific context in which the TCA cycle
is being evaluated, as it may vary depending on the organism or tissue being
studied. However, the main focus is validating BMs of the TCA cycle to ensure
that the model accurately reflects the underlying biological processes.

5.4.2 Modelling of the signalling pathways
Dopamine transcription: The role of the NR4A2 gene

The NR4A2 gene is a key player in the regulation of dopamine levels and the
development and maintenance of neurons. This gene is expressed in a variety
of tissues, including the brain, and is shown to be involved in several important
biological processes, such as neuron survival, mitochondrial biogenesis, and
apoptosis [326]. The in silico knockout of NR4A2 correctly predicts inhibition
of BDNF production [213] and regulation of expression of several other genes
involved in neurotransmitter metabolism and transport, including dopamine [216,
217, 218]. Activation of the SIRT1 gene, another gene involved in neurotransmitter
metabolism, improves mitochondrial biogenesis, a process that is necessary for
the production of new mitochondria.
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Wnt-PI3K/AKT signalling: Implications for dopaminergic neurogenesis
and autophagy

The Pi3K/AKT pathway and Wnt signaling are critical for dopaminergic neu-
rogenesis and are involved in important developmental processes and in the
aging process, which is a major risk factor for PD. These two signaling pathways
also have common downstream targets, suggesting the potential for crosstalk
and synergistic therapeutic approaches [44, 327]. Both pathways can regulate
the activity of certain signaling proteins, such as the protein GSK3B [328, 229].
Moreover, they regulate pathways of autophagy, protein translation, and their
role in neuronal survival. The following findings validated the contents and the
structure of the patway.

• Effect of LRRK2: LRRK2 gene its G2019S mutant form is associated with an
increased risk of developing PD [219]. Overexpression of the LRRK2 G2019S
mutant enhanced autophagy, a process that involves the degradation and
recycling of cellular biomolecules. This effect appears to be mediated by
the inhibition of mTORC1/2, reflecting the reported findings [220, 125, 222,
223]. Modelling overexpresion of protein AMPK predicted reactivation of
mTORC1 and is consistent with proposed interaction between amino acid
sensing, mTORC1 signaling, and autophagy [221].

• Regulation of autophagy and protein translation: TFEB is a transcription
factor that plays a crucial role in the regulation of the autophagy [225].
Simulated TFEB overexpression increased the activity of autophagy by
36.9%, leading to a neuroprotective effect. However, TFEB also activates
protein synthesis inducers such as EIF4E and RPS6KB1 (Table 4.5). These
complex effects of TFEB on the autophagy are still under investigation,
however modelling results in this regard reflect recent findings [224, 237,
225]. Interestingly, joint activation of TFEB and protein synthesis inhibitor
4EBP2 resulted in a 10-13% increase in autophagy activity compared to
their single activations. Further, the inhibition of RPS6KB1 and PHLPP and
activation of TFEB significantly decreased neuronal death (by 96.3%) and
the activated autophagy (Table 4.5).

• Effects ofWnt and GSK3B: Simulated overexpression ofWnt protein and the
inactivation of GSK3B increased autophagy, confirming reported findings
[329, 330, 331]. In turn, simulated GSK3B inhibition and overexpression
regulated neurogenesis as reported in [328, 332]. The combination of
modulating Wnt signaling and GSK3B indicated the potential towards a
useful neuroprotective treatment in the early stages of disease progression
(Table 4.5).
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Overall, besides confirming the litearture findings, validation study in Wn-
t/PI3K pathway brought up interesting hypotheses about combined modulation
of its elements. However, the relationship between the discussed biomolecules
and neurogenesis and autophagy is complex and may depend on specific cell type,
activity of other signaling pathways, or the stage of disease progression.

FOXO3 activity: Impact on mitochondrial autophagy
The FOXO3 activity pathway plays a significant role in mitochondrial home-

ostasis [232]. Simulated FOXO3 activation increased autophagy specifically in
mitochondria and led to activation of a number of biomolecules, including BECN1,
GABARAPL1, MAP1LC3A, BNIP3, ATG12, and MUL1. These biomolecules are
known to be important regulators of autophagy [233], and their activation in
response to FOXO3 activation suggests that FOXO3 and these RNA-mediated
pathways are closely interconnected in the regulation of autophagy.

5.5 Modelling-based patient stratification by dis-
ease subgroup analysis

Having validated the Boolean modelling approach and models based on the PD
map, the selected BMs were parameterised with cohort-based data and simulated
to stratify the dynamics different molecular mechanisms during disease progres-
sion. Simulations of these models provided time series, used to represent stages
in the disease progression. This allowed to identify the similarities of the molecu-
lar activity across the PD subtypes. The stratification is an important aspect of
this work, because its potential to inform treatment decisions and improve our
understanding of the underlying mechanisms of the disease.

5.5.1 Specific characteristics in each cohort

The prodromal cohort exhibits molecular changes that may result in higher prob-
abilities of motor signs compared to other cohorts, possibly related to impaired
neuronal autophagy [333]. This may also explain the higher levels of autophagy
and responses to oxidative stress seen in prodromal cohorts. The models show
that in the prodromal cohort mitochondrial turnover is more frequent (”Fission
and Fusion” output) with higher probabilities than other cohorts in the early
stages of simulation, and this pattern continues with a higher probability in the
mid and late stages of simulation (Table 4.14). This finding is consistent with
previous research suggesting that mitochondrial abnormalities may occur early
in the course of PD [47, 334]

97



In the SWEDD cohort, an interesting aspect is observed inhibition of ”Gly-
colysis and catabolism” output in the mTOR-MAPK signalling model. At the
same time the protein RHEB, which has a neuroprotective role, is highly active.
This suggests that RHEB may play a role in decreasing catabolic processes and
potentially protecting against the development of PD [335](Table 4.15). In the
later stages of SWEDD, there is an increase in catabolism, which is the break-
down of molecules to release energy. This increase in catabolism is accompanied
by increased glycolysis activity, which is the breakdown of glucose to produce
energy.

In parkinsonism, dopamine transcription and Wnt-PI3K/AKT models show
that mitochondrial biogenesis and dopamine transcription change rapidly with
lower change points in the mid and late stages simulation. This finding may be
due to the fact that the parkinsonism syndrome tends to progress more rapidly
than other PD subgroups [336].

5.5.2 Characteristics of prodromal and SWEDD subjects
The SWEDD and prodromal cohorts are similar in dopamine metabolism or
mitochondrial biogenesis in the early stages of PD. The probabilities of both
phenotypes is nearly identical, as demonstrated in (Table 4.12). This finding
suggests that the early stage of prodromal and SWEDD may refer to a stage at
which individuals do not fulfill diagnostic criteria for clinical PD. However, a
recent study propose that SWEDD patients do not have early PD [337].

Dopamine transcription and Wnt-PI3K/AKT models suggest that neuronal
activity may be influenced by dopamine metabolism and mitochondrial biogene-
sis, as these processes are important for energy production and the function of
neurons. Specifically in Wnt-PI3K/AKT, SWEDD and prodromal conditions show
lower levels of neuronal activity compared to parkinsonism in early stages. It is
possible that dopamine metabolism is sustained in the SWEDD and prodromal
early stages of simulation for longer periods of time than in the parkinsonism.
As a result, dopaminergic neurons may be affected by oxidative stress, leading to
a decrease in their survival rate [45].

Oxidative stress response may be related to dopamine metabolism and neu-
ronal activity because oxidative stress can damage cells and disrupt normal cellular
function, including dopamine metabolism and neuronal activity[45]. Prodromal
and SWEDD patients exhibit similar oxidative stress responses that are higher
than those observed in parkinsonism patients. This may explain the slight differ-
ences in dopaminemetabolism and lower neuron survival activity in the dopamine
transcription pathway observed between these two subtypes and other conditions
in early stages of simulation.

Glycolysis and catabolism are central processes that are vital for the produc-
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tion of energy in cells. Dysregulation of these processes is observed in a wide
range of disease states, including PD. Simulation results in both cohorts show
that changes in glycolysis and catabolism occur earlier in SWEDD and prodromal,
compared to parkinsonism (Table 4.15).

Mitophagy is the process of degrading and recycling mitochondria, and
changes in this process may affect the function and survival of mitochondria and
cells. Dysregulation of mitophagy is implicated in the development of the pro-
dromal and SWEDD (Table 4.16). In the PRKN mitophagy model, the prodromal
and SWEDD cohorts show higher probability of mitophagy activation than those
with parkinsonism. This activation in prodromal and SWEDD is mediated by the
protein ULK1, suggesting that the process may be independent of PRKN [338],
despite higher PINK1 accumulation in the simulation for parkinsonism cohort.

5.5.3 Characteristics of T2DM-related cohorts
Diabetes-parameterised and cohort-specific models demonstrate a series of differ-
ences from the results discussed above. One of the most affected is the Dopamine
transcription model. It features significantly lower levels of mitochondrial bio-
genesis and neuronal survival at mid and late stages of simulations (Table 4.12).
This is in line with a recent study, linking T2DM to a decline in neuron survival,
mitochondrial biogenesis, and dopamine metabolism, where T2DM was associ-
ated with oxidative stress and decreased levels of dopamine and its metabolites in
the striatum [339, 340]. Interestingly, in the mid and late stages, the probability
of dopamine metabolism activation differs among the cohorts. In particular, that
dopamine metabolism is less affected in SWEDD-T2DM cohort (Table 4.12).

For the Dopamine transcription model parameterised for parkinsonism-T2DM
cohort, in the mid and late stages of the mitochondrial biogenesis is less impacted
compared to other T2DM cohorts (Table 4.12). However, in the early stages
of the disease, T2DM is found to increase the cellular response to oxidative
stress, potentially through the activation of quality control mechanisms such as
Autophagy and Fission and Fusion. These processes may increase apoptosis, a
form of cell death triggered in response to cellular stress. Moreover, in mTOR-
MAPK signalling model for parkinsonism-T2DM, higher glycolysis activity was
observed. Coincidentally, in T2DM there is also an increase in the inactivated form
of RHEB and the activation of anaerobic glycolysis. This shift towards anaerobic
glycolysis is thought to occur as the brain tries to maintain ion homeostasis by
providing a limited amount of energy through the breakdown of glucose in the
absence of oxygen. However, this process ultimately leads to chemical changes
that result in cell death [341](Table 4.15). Finally, the probability of mitophagy
is decreased in parkinsonism-T2DM cohort compared to those without T2DM.
The results highlight the increased activation probability of the protein VPS13C
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in T2DM, which delays the progression of mitophagy. In support of this, two
novel cases are reported of patients who developed dementia and early onset
parkinsonism in the absence of VPS13C [342].

5.5.4 Common characteristics in all cohorts
The results show that insulin resistance is a common feature in PD, and its
dysregulation is observed in all disease subgroups. Insulin resistance is a condition
in which the body’s cells do not respond properly to the hormone insulin, leading
to high blood sugar levels and an increased risk of diabetes and other health
problems [343].

The models suggest that the development of insulin resistance may be linked
to the activity of the transcription factor TFEB (Table 4.13). The BMs show that
the active forms of TFEB tend to have low activity [344], while the inactive form
of TFEB, found in a complex with the 14-3-3 protein in the cytoplasm, tends to be
elevated [345]. The 14-3-3 proteins are a family of highly expressed brain proteins
with neuroprotective effects in multiple PD models [345]. However, high levels of
the inactive form of TFEB may suggest a decrease in 14-3-3 protein, which may
increase the aggregation of alpha-synuclein and impair cellular processes, leading
to insulin resistance [343]. Recent studies show that the use of antidiabetic
drugs has a beneficial role to control PD symptoms [346, 347, 348]. One of
these drugs is Metformin, suggested as a neuroprotective drug in the prodromal
cohort. Metformin can reduce alpha-synuclein aggregation and improve cellular
processes associated with age-related conditions [348]. The model suggests that
dysregulation of TFEB and its regulated genes plays an important role in insulin
resistance and controlling mitochondrial function in PD. A recent study shows
that abnormalities in TFEB cause a failure of endolysosomal and autophagic
pathways[349].

5.6 Application of results in translational re-
search

The aim of translational medicine is to bridge the gap between basic research and
clinical domain. Modelling and simulation techniques facilitate this goal by using
models build based on existing knowledge from bench experiments and disease-
relevant omics datasets to develop new hypothesis to understand the diseases,
and propose better therapies and diagnostics. In line with this goal, the Boolean
modelling approach is rooted in systems-biology and systems-medicine, which
allows to iteratively improve our understanding through a continuous cycle of
data-driven modelling and model-driven experimentation. The model simulations
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can be used to generate testable hypotheses, and once these hypotheses are
validated through experiments, one can incorporate the new knowledge into the
models, thereby improving their accuracy.

One of the key benefits of this approach is its potential to propose therapy-
related hypotheses. Boolean modelling approach can be used to design perturba-
tion experiments by comparing the model attractors to the disease signature. This
allows to identify the basins of attraction that could alleviate the pathological
signature of the disease and suggest the best combinations of targets to reach a
healthy state.

For instance, the study of the Wnt/PI3K pathway yielded valuable insights
and proposed hypotheses about the combined modulation of its elements. By
verifying the model constructed from this pathway, and through a series of
simulations, the existing literature findings were not only confirmed, but also
uncovered new and intriguing hypotheses that provide a deeper understanding of
the complex interactions within this pathway. Additionally, the model proposed
that dysregulation of mitophagy varies among different disease cohorts. This
indicates that the mitophagy targets and treatment strategies should be tailored
to each disease subgroup. To further explore this finding, experimental models
that represent each subgroup could be designed and the targets predicted by the
model could be perturbed to observe the pathological signature of mitophagy in
each subgroup.

The models can be used to improve similarity-based differential diagnosis in
PD by identifying the common cross-talk between different subtypes of the disease.
PD has different subtypes that may present with similar phenotypes (endpoints),
but have different underlying causes. With the help of the model results, the
similarity-based differential diagnosis can compare a patient’s endpoints to those
of similar conditions, including other subtypes of PD, in order to identify the
most likely underlying cause.

In summary, this approach aims to provide a tool for understanding the under-
lying mechanisms of disease, as well as developing new therapies, by providing a
clear understanding of the disease-causing dysregulations in biological systems
and design tailored strategies to address it.

5.7 Main limitations of the study

5.7.1 Limitations of model construction and training

In this study, construction and parameterisation of a model are two separate
processes. First, a static diagram is translated into a dynamic model of a global
picture of a disease mechanism. Still, such general model has to be parameterised
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for different disease conditions using omics data. Then, the training process with
omics data improves our understanding about disease heterogeneity but requires
adaptation to suit other conditions. It may be more effective to begin the process
of omics integration along with the construction of the model. This would help
to fill the gaps of the incomplete information and revise our knowledge about
curated interactions.

In another vein, CaSQ was selected as the translation tool as it produces
standardised SBML-qual format, supporting interoperability. It should be noted
that some SBML-qual based tools and platforms such as BoolNet, CellNoptR, and
CellCollective may require intermediate conversions in order to read and analyse
the SBML-qual models. For instance, BoolNet and CellNoptR read only SBML-
qual models generated by them but can’t read the models generated by other
tools. CellCollective platform can’t read and analyse SBML-qual model generated
by BoolNet and CellNoptR. In some cases, GINSIM tool alter or misrepresent
Boolean functions. Therefore, it is necessary to manually adjust the BFs in this
case.

Currently, a number of pathway-based models are analysed separately, while
in fact they are interconnected. The integration of pathways is required to
better understand the disease progression and therapeutic responses of PD. By
integrating various signaling pathways, such as PI3K/AKT and Wnt, it is possible
to identify crosstalk between these pathways and how they may contribute to the
development and progression of PD. A broader investigation is necessary to fully
understand the complex interplay between all pathways involved in PD. This
information can inform the development of targeted therapeutic approaches and
provide insight into potential targets for drug development.

5.7.2 Limitations of data type and integration
The stratification of the models relies on miRNAs. The miRNAs are small non-
coding RNA molecules that play important roles in regulating gene expression
and have been identified as potential biomarkers for a variety of diseases, includ-
ing neurodegenerative disorders such as PD. However, some miRNAs that are
frequently reported as biomarkers for these disorders are also found in other
diseases, which limits their use. This is because these miRNAs may not be spe-
cific to a given disorder, but rather to a nonspecific processes like immune and
inflammatory responses. To improve the accuracy and specificity of miRNA
biomarkers for neurodegenerative disorders, other biomarkers could be involved,
such as proteins or genes. In this work, the validation of miRNA biomarkers
in independent studies is considered and can be further improved and updated
to confirm their accuracy and specificity. The expression of key miRNAs in the
PPMI study was compared to previously reported literature, and some miRNAs
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are found to have mismatched expression levels (Table 4.7). Finally, it is essential
to consider the specific context in which the miRNA is being expressed, as this
may affect its regulation and potential use. Additionally, the level of an miRNA
may be influenced by various factors such as the presence of other miRNAs, the
availability of specific transcription factors, and the overall gene expression pro-
file of the cell [350]. Further, the same miRNA may be differentially regulated in
response to different drugs or drug combinations. This is because drugs can alter
gene expression and miRNA regulation through various mechanisms, such as by
inhibiting transcription factors or enzymes involved in miRNA processing. There-
fore, it is important to carefully consider the context of experimental design when
studying the role of miRNAs. By implementing and improving these strategies, it
may be possible to improve the accuracy and specificity of miRNA biomarkers
for neurodegenerative disorders and enhance their usefulness as diagnostic and
prognostic tools.

The study uses a snapshot of dynamic data to simulate the mutation effect of
T2DM on PD cohorts. This approach only captures one aspect of the comorbidity
and may not accurately represent the complex relationship between PD and
T2DM. A more comprehensive approach would be to analyze data that regularly
tracks the progression of both disorders over time. This would provide a more
accurate depiction of the comorbidity between PD and T2DM and allow for a
deeper understanding of how these conditions interact and influence each other.

5.7.3 Limitations of the results applicability
Accuracy of simulation results depend on the input of accurate and relevant
data, as well as the use of appropriate assumptions and algorithms. In this study,
the simulation of some phenotypes requires further integration with omics data,
allowing for precise staging during disease progression and better interpretations.
A key question is whether the model is capable of exhibiting a healthy response to
a disease as a defensive mechanism, or of showing no response to serious damage.
In this context, the glycolysis phenotype needs to be adapted to differentiate
between aerobic and anaerobic types. Additionally, the neuronal survival and
apoptosis are the observable effects of the disease on the cells, such as the survival
or death of the cells. These phenotypes are seen as high-level representations
in the models because they are the visible outcomes of complex processes that
occur at the molecular and cellular level. In order to fully understand the roles
that neuronal survival and apoptosis play in disease progression, it is necessary
to study these phenotypes in more detail, including the underlying molecular and
cellular mechanisms.

Another limitation is that the molecular mechanism dynamics of a disease
may vary from patient to patient, even within the same cohort. This can make it
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difficult to accurately model the disease at the cohort level, as it may be difficult
to account for the variations in molecular mechanism dynamics between patients.
To improve the accuracy of the approach, it is necessary to study the disease at
the individual patient level. Moreover, this work does not consider other factors
that may affect the dynamics of the disease, such as gender and age.
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Chapter 6

Conclusions

6.1 Key findings

In this study, BMs are automatically constructed from the PD map diagrams using
the CaSQ and bipartite representations. These models are created in different
formats, including SBML-qual and SIF to be analyzed with various tools. The ac-
curacy of the models is critically evaluated through the analysis of their structural
and dynamic properties.

Structural analysis of the models involved the calculation of basic topological
features, such as the in/out degrees and interaction directionality. In/out degree
refers to the number of incoming and outgoing connections a node (representing a
biomolecule) has in the network. Interaction directionality refers to the direction
in which the interaction between two biomolecules occurs. Further, centrality
measures provide a way to evaluate the importance of a biomolecule in the
model by considering its influence on the flow of information. For example, a
biomolecule with a high betweenness centrality may act as a bridge between
multiple biomolecules and therefore have a significant impact on the overall
functioning of the model.

To verify the dynamic properties of the models and the underlying PD mech-
anisms, sensitivity analysis was performed involving small perturbations, such as
knockouts (removal of a node from the network) and overexpressions (increased
activity of a node). This analysis helped to ensure that the models accurately
reflect the dynamic interactions and is robust against perturbations. The models
were validated by comparing simulated and perturbed system-level behavior with
validated behavior from the literature. The study used the TCA cycle, and the
Wnt-PI3K/AKT pathway at various levels of complexity as examples.

Model stratification with PD cohort omics data was used to study the perfor-
mance of BMs representing specific subgroups of patients. These BMs identified
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different behaviour of studied molecular mechanisms during simulated disease
progression. The models can also identify similarities of molecular activity across
PD subtypes. This information can be used to support similarity-based differen-
tial diagnosis and to better understand the common crosstalks between different
disease subtypes. This in turn may help to develop more targeted therapies that
are more effective at managing common symptoms.

6.2 Implications of this study
The study shows that Boolean modelling is a promising tool for understanding
the complexity of PD. By modelling the dynamic interactions between various
biomolecules, researchers can gain insight into the underlying mechanisms of
diseases and propose potential therapeutic strategies. BMs can be used to test
hypotheses about the role of particular biomolecules in the development of a
disease. Using a BM, the effect of different levels of a given biomolecule on
the disease progression can be simulated and evaluated against experimental or
observational data. In this way, BMs can be used to advance research hypotheses
by providing a computational tool for testing and refining them based on the
available data.

The study showed that the BMs of PD can also be used to explore the impact
of multiple perturbations on the disease and identify patterns that may not be
apparent from experimental or observational data alone. This can help to simu-
late and understand the effect of different combinations of therapeutics on the
progression of a disease to propose the most promising therapeutic strategies.

Additionally, the study provides stratified BMs based on characteristics such as
the severity of their disease, the presence of certain biomarkers, or the probability
of their activity. Such stratification can help to improve the diagnosis of PD
by analysing the specific factors that contribute to the disease progression. The
models can be used to identify patterns and predict disease progression in different
subgroups. This can be helpful in explaining the heterogeneity of a disease and
developing diagnostic criteria. The models can also be used to tailor treatment
strategies to the specific needs of each subgroup. This may involve using targeted
interventions to slow the progression of the disease or providing more frequent
follow-up care to monitor the effectiveness of these interventions.

6.3 Limitations
As previously discussed, BMs can be used to represent and analyze the relation-
ships between different variables in a system or a process. However, like any
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modelling approach, BMs are subject to certain limitations and risks. Construction
of a model with insufficient details may lead to inaccurate predictions. Modellers
may avoid this by using specific knowledge repositories of disease mechanisms,
performing exploratory investigations and gathering information about the model
from the literature and databases. It is possible to infer the missing details by
integrating omics data, which identifies the missing components and optimizes
the model’s accuracy. In this regard, another potential risk is the incomplete
data, e.g. due to issues with data collection or measurement, or lack of patients
representing the entire disease spectrum. Incomplete data can introduce bias and
lead to inaccurate conclusions. The incomplete data can affect the accuracy and
reliability of the BMs by reducing the amount of information that is available for
analysis.

BMs are based on assumptions and simplifications of the underlying biological
processes involved in the disease. While these assumptions and simplifications
can help to make the models more tractable and easier to analyze, they may not
accurately reflect the complexity of the relationships between different factors
specially with the incomplete data. If key biomolecules or phenotypes are missing,
it may be difficult to accurately represent the relationships between them and
draw conclusions about the underlying processes. This can lead to inaccuracies in
the predictions made by the model, and ultimately limit its usefulness in guiding
diagnosis and treatment decisions.

Model scale is also a significant challenge. Complex models are more difficult
to analyze, and it is more difficult to reach attractor structures as the model
scale increases [351, 352, 353]. To overcome this challenge, scientists propose
different reduction approaches to control complex models. However, some reduc-
tion techniques, such as [117, 116], can be useful for simplifying and analyzing
complex models, but it is important to keep in mind that they may not always
accurately reflect the behavior of biological systems. Therefore, it is essential to
carefully evaluate the limitations of these techniques and to verify the results of
any analysis with experimental data.

6.4 Recommendations for the future research
BMs have shown promise as a tool for predicting disease mechanisms (Table 2.2)
and for guiding the development of personalized treatments. However, there are
several recommendations that should be considered in order to improve the use
of BMs in clinical applications. One recommendation is to focus on improving
data integration from various sources, such as gene expression data, protein-
protein interaction data, and literature-based knowledge. This will require the
development of robust and scalable methods for data integration, as well as the
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establishment of standards for data representation and interoperability.

Cross-validation: Additional steps can be done to improve the evaluation of
model performance by using cross-validation approaches. Cross-validation will
involve dividing the omics data into training and test sets, training the model
on the training set, and evaluating the model on the test set. By repeating this
process multiple times using different portions of the data as the training and
test sets, cross-validation allows for a more robust evaluation of the model’s
performance and can provide a more accurate estimate of its overall performance
on the dataset.

Model precision: In order to accurately predict the behavior of biological
systems, BMs should be able to capture the underlying mechanisms and dynamics
of the system with a high degree of accuracy. In order to improve the accuracy
of BMs, researchers must have access to high-quality data on the relationships
between different factors that are believed to be involved and integrated in the
models. It is crucial to carefully consider the potential for missing data during
model construction and training and to utilize statistical techniques that can
effectively check the model quality. By doing so, we can ensure that the BMs
are thorough and comprehensive and can make useful predictions based on the
available data.

In order to thoroughly understand and identify the effectiveness of therapeutic
interventions, it is important to consider not just the calibrated initial states in a
model, but also other possible initial states that may lead to the same probability
of phenotype. This can help to provide a more comprehensive understanding of
the various pathways and mechanisms involved in the disease process and may
facilitate the identification of alternative therapeutic approaches. With regard to
drug target interventions in Wnt-PI3K/AKT signaling, it may be useful to identify
the minimum and maximum combinations of interventions that can alleviate
disease conditions in order to create drug profiles and prioritize their application
based on disease subtypes. This can help to optimize the therapeutic effectiveness
of the interventions and potentially reduce the risk of undesirable side effects.

Standardization: In order to facilitate reproducibility and comparison of re-
sults across different studies, it is important to establish standards for model
construction, validation, and evaluation. Addressing these recommendations will
require a collaborative effort across the fields of mathematics, bioinformatics, and
biology, as well as the development of systematic approaches for studying the
modes of action and dosages of therapeutic interventions at a patient level. By
following established protocols and best practices, it is possible to make the use
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of BMs more understandable and reproducible, and to improve the development
of decision-making pipelines based on these models in the future.

Scaling up mathematical models in systems biology - the role of HPC: In
systems biology, the analysis of complex biological systems at the molecular level
often requires the use of mathematical models such as BMs and ODEs. While
ODEs are effective for small- to medium-scale systems, they have limitations
when it comes to genome-scale analysis [354, 355]. In this context, BMs can offer
a solution by simulation of interactions between various biomolecules on a larger
scale, with thousands of nodes and edges. However, this increased complexity
requires the use of larger machines with more computational power, such as
HPC systems, distributed computing, specialized hardware, and optimization
techniques.

As illustrated in Figure 6.1 from Kratochvil et al [356], the size of published
models can greatly impact the computational demands of analysis. Even analyz-
ing a relatively small number of model variants (4 million) using flux variability
analysis can require more than 1018 operations, the threshold for human micro-
biome models. Models constructed from metagenomic data can also exceed this
threshold quickly, highlighting the importance of efficient methods in the analysis
of large models.

By successfully scaling up these models, modellers can make more accurate
predictions about the response of diseases to different therapeutics and gain a
deeper understanding of diseases at the molecular level [357]. Further research
and development in this area has the potential to lead to even more powerful and
accurate models in the future, making it a vital area of study in systems biology

6.5 Perspectives for interoperability and repro-
ducibility of Boolean models

It is important to improve interoperability, annotations, and reproducibility of
BMs.

• Annotations are important because they provide context and information
about the models, which makes it easier for others to understand and use
themodels. BMs can be complex and difficult to interpret without additional
information. By adding annotations to the models, a modeller can provide
more context and clarity, which can help other researchers to understand
the models and use them more effectively.

• Interoperability is important because it allows different models and tools
to work together seamlessly. BMs can be used in combination with other
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Figure 6.1 Examining the computational demands of large-scale modeling: model size
and analysis efficiency. The size of published models can significantly impact the volume
of computation required during analysis. Reproduced with permission from [356].
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types of models and data sources to gain a more comprehensive under-
standing of biological systems. By improving interoperability, a researcher
can ensure that models can be easily combined and analyzed in a way that
maximizes their utility and effectiveness.

• Reproducibility is important because it allows others to validate and
confirm the results of the model. BMs are often used to make predictions
about the behavior of biological systems. By ensuring that models are
reproducible, the results of the model can be independently verified and
validated, which can help to increase confidence in the predictions made
by the model.

Improvement of modelling standards: To improve the previous items, it
is important to establish and follow best practices for model construction, val-
idation, and evaluation. This can be achieved using standardised formats (e.g.,
SBMLpackages) which facilitate the development of logical modelling pipelines
(e.g., ColoMoTo notebook). Repositories like GINsim and CellCollective allow
users to create, annotate, and share models. Another important perspective is the
integration of bioinformatic repositories with logical modelling. The BioModels
platform (https://www.ebi.ac.uk/biomodels/) is one example of a repository that
already supports logical models, but more work is needed to improve the interop-
erability of different systems and to make it easier for researchers to access and
use the data and models available in these repositories.[5].

Model repositories: Maintaining model repositories and sharing models in
easily interoperable formats is essential for improving reproducibility and ad-
vancing the field of computational biology. By providing a central location for
storing and accessing models, model repositories enable researchers to build
upon previous work and ensure that their own results are reliable and accurate.
Model repositories also facilitate collaboration between researchers and promote
transparency in research by providing a clear record of the models that have been
developed and used in a given study. Examples of model repositories include
BioModels and the Java Web Simulation repository of pathway/genome databases
[358]. By utilizing these resources, researchers can access and reuse a wide range
of models, enabling them to gain a greater understanding of biological systems
and design more effective therapies for a range of diseases.

Modelling communities: The development of logical models in biology is
a complex and multi-faceted process that requires the collaboration of various
modelling communities, such as the Computational Modelling in Biology Network
(COMBINE), Simulation Experiment Description Markup Language (SED-ML)

111



and SBML communities. These communities have recognized the need for best
practices in the curation and annotation of logical models to facilitate their storage,
reuse, and reproducibility. One notable example of this collaboration is the
initiative of the ColoMoTo and SysMod communities to develop reproducibility
scorecards, which provide a set of eight questions to evaluate the reusability
and reproducibility of systems biology models [359]. This effort highlights the
importance of automatic approaches to model annotation, quality assessment,
and curation, as well as the need for a minimum amount of information to be
defined and systematically applied in order to facilitate the storage and reuse of
logical models [360].

In conclusion: As a member of the modelling community, I am committed to
continuously strive for excellence and accuracy in this work. I believe that the
importance of this work cannot be overstated, as accurate and reliable models are
essential for driving progress in many areas of science and technology. To ensure
that this work is reliable, relevant, and up-to-date, I make it a priority to stay
abreast of the latest experimental workflows and research findings, and to adopt
best practices for the modelling process. This may involve regularly updating
and improving existing models, as well as developing dedicated approaches for
automatically updating models as new data becomes available. I also believe that
it is important to use a transparent and well-documented process in my modelling
work, including clearly defining the goals of the model, the assumptions and
limitations of the model, and the methods used to validate the model. This helps
to ensure that the models are accurate, reliable, and relevant to the research
question at hand. In addition, I make sure to use a diverse range of data sources
and to carefully consider the quality and relevance of the data used to build and
train the models. By using a diverse range of data, I can increase the applicability
of the findings and reduce the risk of bias in the models. To conclude, I am
dedicated to following best practices and continuously improving my work as a
modeler. By doing so, I believe that this work can make significant contributions
to the advancement of scientific knowledge and contribute to the progress in a
wide range of fields.
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Appendix A

Supplementary data and
information

A.1 Source code and data repository
All code and data related to this thesis is stored in a gitlab repository at [183].
The overall structure of the Gitlab repo is illustrated in Figure A.1.

A.2 The overall research process
The high-level approach to Boolean model construction is summarized in Algo-
rithm 1.

The general methodology scheme used for analysing themodels is summarized
in Algorithm 2.

The algorithm for integrating the Boolean models with omics data is summa-
rized in Algorithm 3.
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Figure A.1 The structure of the Gitlab repository
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Algorithm 1 Construction of Boolean models
1: procedure PD map selection
2: Identify relevant PD map diagrams for biological system of interest
3: Filter diagrams for relevancy and remove duplicates
4: Sort remaining diagrams by level of detail and complexity
5: end procedure
6: procedure Translation with CaSQ
7: Load CaSQ software
8: for each diagram in sorted set of diagrams do
9: Select diagram

10: Follow CaSQ prompts to translate diagram into Boolean model
11: end for
12: Models in SBML-qual
13: end procedure
14: procedure Model correctness
15: for each Boolean model do
16: Validate model correctness by comparing predictions to experimental

data
17: if model is incorrect then
18: Revise the Boolean functions and their relevance
19: end if
20: end for
21: end procedure
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Algorithm 2 Model analysis
1: procedure Model updating schemes
2: Choose synchronous or asynchronous updating scheme
3: end procedure
4: procedure Attractor search
5: Identify stable states (attractors) in the model
6: for each transition between attractors do
7: Identify transition
8: Compare transition to experimental data
9: end for

10: end procedure
11: procedure Perturbation analysis
12: Identify set of inputs (perturbations) to the model
13: for each input do
14: Simulate model with input
15: Compare output changes to experimental data
16: end for
17: end procedure

Algorithm 3 Integration of Boolean models with omics data
1: procedure PPMI-miRNA dataset
2: Load PPMI dataset
3: Identify set of miRNAs in dataset
4: for each miRNA in set do
5: Identify targets of miRNA using prediction tool
6: end for
7: end procedure
8: procedure Type two Diabetes mellitus dataset
9: Load Type two Diabetes mellitus dataset

10: Identify set of relevant variables in dataset
11: Update Boolean model using variables
12: end procedure
13: procedure Stochastic Boolean model simulation
14: Use stochastic simulation tool to simulate Boolean model
15: Compare model behavior to experimental data
16: end procedure
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Figure A.2 Dopamine transcription pathway

A.3 Selected diagrams from PD map
For completeness, we include the following pathway diagrams from PD map:

• Dopamine transcription pathway (Figure A.2)

• FOXO3 activity pathway (Figure A.3)

• PI3KAKT signalling pathway (Figure A.4)

• mTOR pathway (Figure A.5)

• PRKN signalling (Figure A.6)

• TCA cycle (Figure A.7)
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Figure A.3 FOXO3 Activity pathway
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Figure A.4 PI3KAKT signalling pathway
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Figure A.5 mTOR pathway
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Figure A.6 PRKN signalling pathway
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Figure A.7 TCA cycle
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Appendix B

Selected simulation result details

B.1 The simulation graphs from Boolean simula-
tions

This section details the simulation graphs that resulted from Boolean models
and Probabilistic BMs simulation. All simulation graphs are also available in the
thesis data repository (see Appendix A.1).

The examples from simulation graphs from CellCollective platform are shown
in Figures B.1 to B.4. Interactive demo and guidance on how to construct and
simulate the models is available at https://cellcollective.org/.

Examples from simulation graphs from pyMaBoSS are shown in Figures B.5
to B.18.
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Figure B.1 Dopamine transcription simulation
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Figure B.2 FOXO3 simulation
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Figure B.3 mTOR simulation
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Figure B.4 PRKN simulation
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Figure B.5 Dopamine transcription simulation in the prodromal

Figure B.6 Dopamine transcription model in the SWEDD
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Figure B.7 Dopamine transcription model in the Parkinsonism

Figure B.8 FOXO3 Activity simulation in prodromal
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Figure B.9 FOXO3 Activity simulation in SWEDD

Figure B.10 FOXO3 Activity simulation in parkinsonism
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Figure B.11 PI3KAKT model in prodromal

Figure B.12 PI3KAKT model in SWEDD
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Figure B.13 PI3KAKT model in parkinsonism

Figure B.14 mTOR model in prodromal
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Figure B.15 mTOR model in SWEDD

Figure B.16 mTOR model in SWEDD
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Figure B.17 PRKN model in prodromal and SWEDD

Figure B.18 PRKN model in parkinsonism
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B.2 The sensitivity analysis in response to muta-
tions

Distances computed between the original and perturbed attractors are summa-
rized in Table B.1 for knockouts and Table B.2 for overexpressions.
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Pathway Group ID Identity-based
distance

Similarity-
based distance

Pi3k/akt RPS6KB1 0.582524272 0.012230182
PHLPP1 0.582524272 0.007517202
WNT1 0.563106796 0.013361297
WNT3 0.553398058 0.008483363
PRKN 0.553398058 0.005372797

TCA cycle PDP2:PDPR_complex 0.630769231 0.010729783
alpha-ketoglutaratedehydrogenase_complex 0.630769231 0.009704142
PDP1:PDPR_complex 0.6 0.01025641
SIRT3 0.6 0.037790927
isocitratedehydrogenase_complex 0.6 0.012544379
GLUD1 0.6 0.01530572

PRKN SREBF1 0.648148148 0.012003
FBXW7 0.648148148 0.024005
OPTN 0.648148148 0.012003
HSP90 0.611111111 0.012003

PPARGC1A IDH3G_rna 0.582089552 0.008539393
TF_YY1_complex 0.582089552 0.060741071
IDH3A_rna 0.582089552 0.008539393
NDUFS8_rna 0.582089552 0.008539393
ATP5MC1_rna 0.582089552 0.008539393

mTOR TSC1:TSC2_complex_neuron 0.603174603 0.0095742
SESN2 0.603174603 0.0095742
NAMPT 0.587301587 0.009322247
ROS 0.571428571 0.009070295
Akt 0.571428571 0.009070295

Foxo3 MAP3K5 0.61971831 0.008728427
EIF4EBP1_rna 0.605633803 0.008530054
ATG12_rna 0.605633803 0.008530054
BECN1_rna 0.605633803 0.008530054
BBC3_rna 0.591549296 0.00833168
JUN 0.577464789 0.008133307
SIRT1 0.577464789 0.008133307

Dopamine EN1 0.852941176 0.013327206
transcription LRRK2 0.573529412 0.046243107

FOXA2 0.573529412 0.008961397
SNCA 0.558823529 0.022575827
SFPQ 0.529411765 0.008272059
PIN1 0.514705882 0.008042279
RXRA 0.5 0.0078125

Table B.1 Examples shows the significant distances between the original and perturbed
attractors (Knockouts)

170



Pathway Group ID Identity-based
distance

Similarity-
based distance

Pi3k/akt CTNNB1_phosphorylated 1 0.015081535
EIF4EBP1_phosphorylated 1 0.017862192
IRS1_phosphorylated 1 0.009708738
CTNNB1_ubiquitinated_phosphorylated 1 0.009708738
PDPK1 1 0.014209633
RPS6KB1_phosphorylated 1 0.010085776
AKT1_phosphorylated 0.990291262 0.018828353
TFEB_complex 0.980582524 0.009685173

TCA cycle 2-oxoglutaricacid 1 0.035108481
hydroxyglutaric_acid 1 0.033609467
succinic_semialdehyde 1 0.025325444
acetyl-CoA 1 0.016094675
oxaloacetate_2 1 0.015384615
succinyl-CoA 1 0.015384615
succinic_acid 1 0.015384615
GMP 0.984615385 0.014674556
GTP 0.984615385 0.014674556

PRKN PRKN_ubiquitinated 0.981481481 0.021604938
PINK1_neuron 0.944444444 0.043552812
ubiquitin_phosphorylated 0.944444444 0.017489712
PGAM5__S_ 0.907407407 0.016803841
PINK1_mitochondrion 0.888888889 0.017489712
PINK1 0.87037037 0.01611797

PPARGC1A COX5A_rna 0.985074627 0.014702606
COX7A2_rna 0.985074627 0.014702606
COX5B_rna 0.985074627 0.014702606
CYCS_rna 0.985074627 0.015296651
complex_IV_complex 0.985074627 0.014702606
SDHB_rna 0.985074627 0.014702606

mTOR CAMKK2 0.634920635 0.010078105
MAPK1_phosphorylated_phosphorylated 0.603174603 0.0095742
AMPK_complex_neuron 0.571428571 0.009070295
DDB1:CUL4A_complex 0.571428571 0.009070295
PRKN_neuron 0.555555556 0.008818342

FOXO3 FASLG_rna 0.661971831 0.009323547
MAPK9_phosphorylated 0.647887324 0.009125174
FOXO3_neuron 0.591549296 0.00833168
PPARGC1A_rna 0.591549296 0.00833168
FOXO3_acetylated_phosphorylated 0.577464789 0.008133307
BCL2L11_rna 0.577464789 0.008133307
FIS1_rna 0.577464789 0.008133307

Dopamine ALDH1A1_rna 1 0.03125
transcription DRD2_rna 1 0.015625

TH_rna 1 0.015625
BDNF_rna 0.985294118 0.015395221
DDC_rna 0.970588235 0.014820772
SLC18A2_rna 0.941176471 0.014705882
SLC6A3_rna 0.941176471 0.014705882
PITX3 0.911764706 0.026711857
TF_NR4A2_complex 0.897058824 0.242704504

Table B.2 Examples shows the significant distances between the original and perturbed
attractors (overexpressions)
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B.3 Attractor cycles representations
The landscape of the network state transitions along with attractor cycles were
identified. The returned transition network object has same structures with the
normal network object. The transition network is written as a SIF file. The SIF
file could be loaded to Cytoscape with the following the steps in Figure B.19.

The result is shown in Figure B.20.
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Figure B.19 Steps for loading a SIF fyle in Cytoscape (top to bottom: opening the
import dialogs, importing the nodes, importing the edges).
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Figure B.20 PPARGC1A pathway attractor
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B.4 Stratification related data
An overview of stratification related processes, including enrichment analysis
workflow and statistical correlations are shown in Figures B.21 and B.22. Parame-
ters are listed in Table B.4.
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Figure B.21 The stratification process with enrichment analysis pipeline to define the
common targets with PD map
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Figure B.22 Use different databases and resources for the enrichment analysis to
verify the T2DM enrichment results
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Pathway Target Biomolecule

Dopamine transcription BDNF knockout
RET knockout
SNCA knockout

WNT-PI3K/AKT IGF1 knockout
INSR knockout
IRS1 knockout
MAPK1 knockout
PHLPP1 knockout
PTEN knockout
RET knockout
SNCA knockout
ROCK overexpression

FOXO3 activity BECN1 knockout
BNIP3 knockout
SIRT1 overexpression
SNCA knockout

mTOR pathway MAPK1 knockout
PHLPP1 knockout
SIRT1 knockout

PRKN BCL2 knockout
BNIP3 knockout
SNCA knockout

Table B.3 The following table illustrates examples of perturbing T2DM-related
biomolecules through knockout or overexpression on the progression of the PD co-
hort. The biomolecules presented in the table have been identified as being involved in
enriched pathways.
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Table B.4 miRNAs and parameters used in the models calibrations.
Cohort Target.score miRNA gene.symbol log2fc abs.cohen.d activity

SWEDD 100 hsa-miR-9-3p SESN3 2.518635 0.213411 0.786589
SWEDD 95 hsa-miR-3121-3p RXRA 2.306803 0.574494 0.504377
SWEDD 99 hsa-miR-9-3p PRKAA2 2.518635 0.213411 0.786589
SWEDD 99 hsa-miR-450b-5p PBX1 1.581469 0.13098 0.86902
SWEDD 95 hsa-miR-766-5p GCH1 -1.80917 0.124675 0.124675
SWEDD 96 hsa-miR-582-5p FOXO1 1.404217 0.029289 0.970711
SWEDD 99 hsa-miR-454-3p TSC1 2.47141 0.167006 0.832994
SWEDD 98 hsa-miR-15b-5p UBE2V1 1.491016 0.039489 0.960511
SWEDD 95 hsa-miR-96-5p ATXN3 3.628876 0.043802 0.956198
SWEDD 97 hsa-miR-26a-5p BAG4 3.15791 0.048562 0.951438
SWEDD 97 hsa-miR-424-5p FBXW7 2.718901 0.111716 0.888284
SWEDD 95 hsa-miR-15b-5p GABARAPL1 1.491016 0.039489 0.960511
SWEDD 95 hsa-miR-3121-3p TIMM17A 2.306803 0.425506 0.574494
SWEDD 96 hsa-miR-26a-5p ULK1 3.15791 0.048562 0.951438
SWEDD 95 hsa-miR-6515-5p AKT1 2.810068 0.154843 0.845157
SWEDD 98 hsa-miR-20a-5p E2F1 -3.25562 0.134403 0.134403
SWEDD 95 hsa-miR-20a-3p EIF2AK3 -1.89509 0.014047 0.014047
SWEDD 98 hsa-miR-214-3p GSK3B 2.59832 0.23732 0.76268
SWEDD 99 hsa-miR-130a-3p IGF1 1.843781 0.334109 0.665891
SWEDD 96 hsa-let-7f-5p IGF1R 1.88839 0.217186 0.782814
SWEDD 95 hsa-miR-214-3p IRS1 2.59832 0.23732 0.76268
SWEDD 97 hsa-miR-212-3p MAPK1 2.268402 0.057177 0.942823
SWEDD 96 hsa-miR-548t-5p NEDD4 -2.02465 0.144947 0.144947
SWEDD 96 hsa-miR-26a-5p PRKCD 3.15791 0.048562 0.951438
SWEDD 99 hsa-miR-26a-5p PTEN 3.15791 0.048562 0.951438
SWEDD 95 hsa-miR-374a-5p TFDP1 -1.99329 0.130566 0.130566
prodromal 100 hsa-miR-3121-3p BDNF 1.633684 0.018 0.982
prodromal 99 hsa-miR-374a-5p EN1 -2.22397 0.22 0.22
prodromal 96 hsa-miR-582-5p FOXO1 1.139541 0.222221 0.777779
prodromal 95 hsa-miR-766-5p GCH1 -1.74177 0.021 0.021
prodromal 99 hsa-miR-450b-5p PBX1 0.964192 0.782969 0.217031
prodromal 99 hsa-miR-9-3p PRKAA2 2.277933 0.851154 0.148846
prodromal 95 hsa-miR-3121-3p RXRA 1.633684 0.981296 0.018704
prodromal 100 hsa-miR-9-3p SESN3 2.277933 0.148846 0.851154
prodromal 95 hsa-miR-6515-5p AKT1 2.762035 0.247214 0.752786
prodromal 99 hsa-miR-148b-3p BCL2L11 -1.91383 0.12467 0.12467
prodromal 98 hsa-miR-374a-5p CEBPB -2.22397 0.225932 0.225932
prodromal 99 hsa-miR-21-5p FASLG -2.52095 0.120716 0.120716
prodromal 95 hsa-miR-15b-5p GABARAPL1 1.659935 0.07363 0.889544
prodromal 95 hsa-miR-199b-3p MAP3K5 -2.25469 0.07628 0.07628
prodromal 97 hsa-miR-214-3p MFN2 2.586941 0.104136 0.895864
prodromal 99 hsa-miR-374b-3p PPARGC1A -2.9452 0.051324 0.051324
prodromal 99 hsa-miR-142-3p RICTOR 1.116804 0.441571 0.558429
prodromal 100 hsa-miR-9-3p SESN3 2.277933 0.148846 0.851154
prodromal 95 hsa-miR-338-5p SIRT1 -1.75972 0.230152 0.230152
prodromal 95 hsa-miR-212-3p SOD2 1.864045 0.113853 0.886147
prodromal 99 hsa-miR-20a-5p TXNIP -3.53187 0.030064 0.030064
prodromal 95 hsa-miR-6515-5p AKT1 2.762035 0.247214 0.752786
prodromal 95 hsa-miR-96-5p DEPTOR 3.32442 0.033239 0.966761
prodromal 98 hsa-miR-214-3p GSK3B 2.586941 0.104136 0.895864
prodromal 97 hsa-miR-212-3p MAPK1 1.864045 0.113853 0.886147
prodromal 97 hsa-miR-96-5p MTOR 3.32442 0.033239 0.966761
prodromal 99 hsa-miR-548b-5p PRKAA1 -1.47664 0.012277 0.851154
prodromal 99 hsa-miR-9-3p PRKAA2 2.277933 0.148846 0.851154
prodromal 96 hsa-miR-338-5p RHEB -1.75972 0.220152 0.558429
prodromal 99 hsa-miR-142-3p RICTOR 1.116804 0.441571 0.558429

continued on next page …
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…continued from previous page

Cohort Target.score miRNA gene.symbol log2fc abs.cohen.d activity

prodromal 99 hsa-miR-20a-5p RRAGD -3.53187 0.030064 0.876035
prodromal 95 hsa-miR-338-5p SIRT1 -1.75972 0.220152 0.876035
prodromal 99 hsa-miR-130a-3p TSC1 2.055169 0.123965 0.876035
prodromal 98 hsa-miR-15b-5p UBE2V1 1.659935 0.07363 0.92637
prodromal 95 hsa-miR-96-5p ATXN3 3.32442 0.033239 0.966761
prodromal 97 hsa-miR-26a-5p BAG4 3.029368 0.287792 0.712208
prodromal 97 hsa-miR-424-5p FBXW7 2.753274 0.147282 0.852718
prodromal 95 hsa-miR-15b-5p GABARAPL1 1.659935 0.07363 0.92637
prodromal 95 hsa-miR-3121-3p TIMM17A 1.633684 0.018704 0.981296
prodromal 96 hsa-miR-26a-5p ULK1 3.029368 0.287792 0.712208
prodromal 95 hsa-miR-6515-5p AKT1 2.762035 0.247214 0.752786
prodromal 98 hsa-miR-20a-5p E2F1 -3.53187 0.030064 0.030064
prodromal 95 hsa-miR-20a-3p EIF2AK3 -2.56318 0.213236 0.213236
prodromal 99 hsa-miR-130a-3p IGF1 2.055169 0.123965 0.876035
prodromal 96 hsa-let-7f-5p IGF1R 2.031796 0.048667 0.951333
prodromal 95 hsa-miR-214-3p IRS1 2.586941 0.104136 0.895864
prodromal 97 hsa-miR-212-3p MAPK1 1.864045 0.113853 0.886147
prodromal 96 hsa-miR-548t-5p NEDD4 -2.8389 0.036857 0.036857
prodromal 96 hsa-miR-26a-5p PRKCD 3.029368 0.287792 0.712208
prodromal 99 hsa-miR-26a-5p PTEN 3.029368 0.287792 0.712208
prodromal 95 hsa-miR-374a-5p TFDP1 -2.22397 0.225932 0.225932
parkinsonism 97 hsa-miR-1185-1-3p SFPQ 0.945454 0.203266 0.79
parkinsonism 100 hsa-miR-181d-5p SESN3 1.014874 0.084812 0.903731
parkinsonism 97 hsa-miR-222-3p RGS6 0.956793 0.093351 0.913305
parkinsonism 99 hsa-miR-30e-3p PRKAA2 0.864951 0.316977 0.86
parkinsonism 95 hsa-miR-196b-5p PBX1 0.999252 0.001291 0.998709
parkinsonism 95 hsa-miR-485-3p NRF1 0.871379 0.197863 0.802137
parkinsonism 95 hsa-miR-27b-3p MAP1B 1.008988 0.015269 0.932073
parkinsonism 95 hsa-miR-377-3p LMX1A 0.893432 0.197482 0.802518
parkinsonism 98 hsa-miR-182-5p FOXO3 1.080294 0.138897 0.861103
parkinsonism 98 hsa-miR-486-5p FOXO1 1.011897 0.112411 0.887589
parkinsonism 99 hsa-miR-374b-5p EN1 1.010525 0.013122 0.983085
parkinsonism 99 hsa-miR-495-3p BDNF 0.882131 0.207194 0.792806
parkinsonism 98 hsa-miR-485-3p ADCYAP1 0.871379 0.197863 0.802137
parkinsonism 97 hsa-miR-30a-5p ATG12 0.90731 0.16249 0.82592
parkinsonism 99 hsa-miR-148a-3p BCL2L11 0.91319 0.149668 0.419232
parkinsonism 96 hsa-miR-182-5p BNIP3 1.080294 0.138897 0.138897
parkinsonism 98 hsa-miR-374a-5p CEBPB 1.022915 0.020708 0.033829
parkinsonism 99 hsa-miR-21-5p FASLG 0.979987 0.038118 0.038118
parkinsonism 98 hsa-miR-182-5p FOXO3 1.080294 0.138897 0.138897
parkinsonism 96 hsa-miR-16-5p GABARAPL1 1.037644 0.090147 0.152009
parkinsonism 96 hsa-miR-942-5p HSPD1 0.991871 0.019395 0.019395
parkinsonism 98 hsa-miR-139-5p JUN 0.965532 0.081584 0.081584
parkinsonism 95 hsa-miR-199a-3p MAP3K5 1.049396 0.055289 0.070962
parkinsonism 96 hsa-miR-766-3p MFN2 0.982408 0.046162 0.046162
parkinsonism 100 hsa-miR-23a-3p PPARGC1A 0.903066 0.253717 0.36427
parkinsonism 99 hsa-miR-142-3p RICTOR 0.851202 0.226819 0.430085
parkinsonism 100 hsa-miR-23a-3p SESN3 0.903066 0.253717 0.577613
parkinsonism 95 hsa-miR-338-5p SIRT1 0.996662 0.014215 0.043601
parkinsonism 96 hsa-miR-377-3p SOD2 0.893432 0.197482 0.430507
parkinsonism 99 hsa-miR-106b-5p TXNIP 0.953409 0.122438 0.485466
parkinsonism 99 hsa-miR-671-5p CAMKK2 1.117669 0.322512 0.677488
parkinsonism 99 hsa-miR-495-3p DDIT4 0.882131 0.207194 0.792806
parkinsonism 100 hsa-miR-495-3p DEPDC5 0.882131 0.207194 1
parkinsonism 95 hsa-miR-96-5p DEPTOR 1.024287 0.033645 0.966355
parkinsonism 96 hsa-miR-26a-5p GSK3B 0.957107 0.110998 1
parkinsonism 99 hsa-miR-543 MAPK1 0.88518 0.260174 0.739826
parkinsonism 97 hsa-miR-7-5p MAPKAP1 0.973849 0.047077 0.952923
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…continued from previous page

Cohort Target.score miRNA gene.symbol log2fc abs.cohen.d activity

parkinsonism 97 hsa-miR-96-5p MTOR 1.024287 0.033645 1
parkinsonism 98 hsa-miR-7-5p PARP1 0.973849 0.047077 0.952923
parkinsonism 97 hsa-miR-16-2-3p PRKAA1 0.95004 0.062892 0.62013
parkinsonism 99 hsa-miR-30e-3p PRKAA2 0.864951 0.316977 1
parkinsonism 96 hsa-miR-338-5p RHEB 0.996662 0.014215 0.985785
parkinsonism 99 hsa-miR-142-3p RICTOR 0.851202 0.226819 1
parkinsonism 95 hsa-miR-4677-3p RICTOR 0.945166 0.159608 0.569915
parkinsonism 98 hsa-miR-200c-3p RPS6KB1 1.005142 0.019552 1
parkinsonism 99 hsa-miR-17-5p RRAGD 1.037103 0.072002 1
parkinsonism 95 hsa-miR-204-5p SIRT1 0.989836 0.029387 1
parkinsonism 99 hsa-miR-130b-3p TSC1 0.992711 0.027335 0.793577
parkinsonism 97 hsa-miR-497-5p UBE2V1 1.029254 0.099932 0.591873
parkinsonism 96 hsa-miR-1271-5p ATXN3 1.008758 0.023443 0.976557
parkinsonism 97 hsa-miR-26b-5p BAG4 1.083644 0.103949 0.896051
parkinsonism 100 hsa-miR-32-5p FBXW7 0.938829 0.085526 0.914474
parkinsonism 96 hsa-miR-195-5p GABARAPL1 1.049639 0.061863 0.938137
parkinsonism 99 hsa-miR-421 TOMM70 0.985332 0.057535 0.942465
parkinsonism 96 hsa-miR-26b-5p ULK1 1.083644 0.103949 0.896051
parkinsonism 98 hsa-miR-223-5p VPS13C 0.985586 0.035528 0.964472
parkinsonism 98 hsa-miR-376a-3p AGO2 0.802491 0.327577 0.672423
parkinsonism 98 hsa-miR-106b-5p E2F1 0.953409 0.122438 0.877562
parkinsonism 95 hsa-miR-20a-3p EIF2AK3 0.983895 0.02657 0.97343
parkinsonism 97 hsa-miR-545-3p EIF4E 1.014214 0.04469 0.95531
parkinsonism 96 hsa-miR-26a-5p GSK3B 0.957107 0.110998 0.889002
parkinsonism 97 hsa-miR-7-5p IDE 0.973849 0.047077 0.952923
parkinsonism 99 hsa-miR-301a-3p IGF1 1.01838 0.019528 0.980472
parkinsonism 97 hsa-miR-182-5p IGF1R 1.080294 0.138897 0.861103
parkinsonism 97 hsa-miR-660-5p IRS1 0.974744 0.046464 0.953536
parkinsonism 99 hsa-miR-543 MAPK1 0.88518 0.260174 0.739826
parkinsonism 98 hsa-miR-30a-5p NEDD4 0.90731 0.16249 0.83751
parkinsonism 96 hsa-miR-331-3p PHLPP1 0.942426 0.137542 0.862458
parkinsonism 97 hsa-miR-133b PPP2CA 0.98116 0.026068 0.973932
parkinsonism 97 hsa-miR-1185-1-3p PPP2CB 0.945454 0.203266 0.796734
parkinsonism 96 hsa-miR-26a-5p PRKCD 0.957107 0.110998 0.889002
parkinsonism 96 hsa-miR-26b-5p PRKCD 1.083644 0.103949 0.896051
parkinsonism 99 hsa-miR-23a-3p PTEN 0.903066 0.253717 0.746283
parkinsonism 98 hsa-miR-30e-3p ROCK2 0.864951 0.316977 0.683023
parkinsonism 98 hsa-miR-200c-3p RPS6KB1 1.005142 0.019552 0.980448
parkinsonism 95 hsa-miR-374a-5p TFDP1 1.022915 0.020708 0.979292
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