
 

 
 

PhD-FSTM-2023-004 

The Faculty of Science, Technology and Medicine 

 

 
DISSERTATION 

 
Defence held on 18/01/2023 in Esch-sur-Alzette 

 

to obtain the degree of 

  

 

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG 
 

EN MATHEMATIQUES 
 

by 
 

Juntong CHEN 
Born on 26 March 1992 in Liaoning (China) 

 

ROBUST ESTIMATION IN EXPONENTIAL FAMILIES: 

FROM THEORY TO PRACTICE 

 

 
Dissertation defence committee 

Dr. Yannick Baraud, dissertation supervisor 
Professor, Université du Luxembourg 

 

Dr. Richard Samworth 
Professor, University of Cambridge 

 

Dr. Mark Podolskij, Chairman 
Professor, Université du Luxembourg 

 

Dr. Nicolas Verzelen 
Professor, Université de Montpellier 

 

Dr. Matthieu Lerasle, Vice Chairman 
Professor, ENSAE Paris 

 

 





Abstract

This thesis is a contribution to the topic of estimation in one-parameter exponential fami-

lies. It contains four chapters where three different estimation strategies have been studied

to address this statistical problem. Chapter 1 is an overall introduction to the subject of

this dissertation. Each of the later chapter (Chapter 2, 3 and 4) corresponds to a presen-

tation of one of the three strategies for estimation. Chapter 2 is joint work with Yannick

Baraud (University of Luxembourg) and is based on the arXiv paper Baraud and Chen

(2020). Chapter 3 is based on the arXiv paper Chen (2022) and Chapter 4 is an ongoing

work.

In Chapter 1, we present the statistical problem we would like to solve in this thesis.

Roughly speaking, we observe n pairs of independent (but not necessarily i.i.d.) random

variables X1 = (W1, Y1), . . . , Xn = (Wn, Yn) and assume for each i ∈ {1, . . . , n}, the condi-

tional distribution Q?i (wi) of Yi given Wi = wi is not far away from a distribution belonging

to some one-parameter exponential family with parameter γ?(wi) ∈ R. Throughout this

thesis, our goal is to estimate the n conditional distributions Q?i (wi). We provide some

elementary examples to illustrate the problem we would like to solve and survey the rel-

evant literature. We conclude our contributions together with providing an overview of

the contents of each chapter. We also introduce some background knowledge in this part

including a brief introduction to ρ-estimation which is the cornerstone of the work in this

thesis and the definition of VC-subgraph class which is the main assumption the present

work relies on.

In Chapter 2, we present our first strategy, a robust estimation procedure based on

one model. Our estimation relies on the assumptions (might not be true) that the data

are i.i.d. and the conditional distributions of Yi given Wi = wi belong to a one parameter

exponential family Q = {Qθ, θ ∈ I} with parameter space given by an interval I. More

precisely, we pretend that these conditional distributions take the form Qθ(wi) ∈ Q for

some θ belonging to a VC-subgraph class Θ of functions with values in I. For each

i ∈ {1, . . . , n}, we estimate Q?i (wi) by a distribution of the same form, i.e. Q
θ̂(wi)

∈ Q,

where θ̂ = θ̂(X1, . . . , Xn) is a well-chosen estimator with values in Θ. We establish non-

asymptotic exponential inequalities for the upper deviations of a Hellinger-type distance

between the true conditional distributions of the data and the estimated one based on the



exponential family Q and the class of functions Θ. We show that our estimation strategy

is robust to model misspecification, contamination and the presence of outliers. Besides,

when the data are truly i.i.d., the exponential family Q suitably parametrized and the

conditional distributions Q?i (wi) of the form Qθ?(wi) ∈ Q for some unknown Hölderian

function θ? with values in I, we prove that the estimator θ̂ of θ? is minimax (up to a

logarithmic factor). Finally, we provide an algorithm for calculating θ̂ when Θ is a VC-

subgraph class of functions of low or moderate dimension and we carry out a simulation

study to compare the performance of θ̂ to that of the MLE and median-based estimators.

The proof of our main result relies on an upper bound, with explicit numerical constants,

on the expectation of the supremum of an empirical process over a VC-subgraph class.

This bound can be of independent interest.

In Chapter 3, we introduce our second estimation strategy that is a model selection

procedure based on ρ-estimation. We establish an oracle type inequality for the selected

estimator with respect to a Hellinger-type distance. When the data are truly i.i.d., the

exponential family Q suitably parametrized and the regression function γ? exists such that

Q?i (wi) = Rγ?(wi) for all i ∈ {1, . . . , n}, we show that our estimator γ̂ of γ? is adaptive in

the minimax sense over a wide range of anisotropic Besov spaces. In particular, when γ?

has (or is close to) a general additive or multiple index structure, we construct suitable

models to approximate this γ? and prove that the resulted estimators given by our model

selection procedure based on these constructed models can circumvent or mitigate the curse

of dimensionality. Moreover, we consider the problem of model selection on ReLU neural

networks. We provide an example to illustrate that estimating γ? by our model selection

procedure based on neural networks enjoys a much faster converge rate than the one we

would obtain by using models based on wavelets. Finally, we apply our model selection

procedure to solve variable selection problem in one-parameter exponential families.

When the family of models is very large, the model selection strategy may be extremely

costly from a computational point of view. To overcome this difficulty, we consider an

alternative strategy in Chapter 4 which is estimator selection. More precisely, we consider

the problem of estimator selection in a particular situation where we assume to have an

arbitrary collection Γ̂(X) = {γ̂λ(X), λ ∈ Λ} of piecewise constant candidate estimators

for the regression function γ?. These estimators are based on our observations X =

(X1, . . . , Xn) where the dependency of each estimator with respect to the data X may be

unknown and we wish to use the same observations namelyX to select a suitable estimator

denoted as γ̂
λ̂
(X) among the family Γ̂(X). From this point of view, our procedure

contrasts with other alternative selection methods based on data splitting, cross validation,

hold-out, etc. We establish a non-asymptotic deviation bound that compares the risk of

the selected estimator to the infimum of the risks over the collection. We then explain how

to apply our procedure to the changepoint detection problem in one-parameter exponential

families. The practical performance of our estimator selection procedure is illustrated by



a comparative simulation study under different scenarios and on two real datasets from

the copy numbers of DNA and British coal disasters records.





Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor Yannick

Baraud. Without his guidance and encouragement over the past years, it is not possible

to have the work in the present thesis. Back in the days in Nice, I was very fortunate to

have two statistical courses with him as a master student. Those elegant lectures evoked

my strong interest to go further in the field of statistics. However, it is not that easy for

me to pursue a PhD at the beginning because of my weak background of mathematical

statistics. I still remember when I was in the first year of my PhD, Yannick has been

extremely generous with his time and provided numerous support for me. During my

study, I have learnt a lot from him not only on mathematical knowledge but also the taste

of statistics and precious personalities to become a qualified researcher. I also appreciate

a lot for his trust, invaluable advice and careful feedback through the whole PhD training.

It has been a pleasure to be a member of Yannick’s research group where it is always

full of vibrant atmosphere. I would like to thank my nice colleagues: Alexandre Lecestre,

Guillaume Maillard and Hélène Halconruy for their constant encouragement and helpful

discussions. I also thank all the people in our department for creating a friendly work-

ing environment. My PhD is funded by European Union’s Horizon 2020 research and

innovation programme under grant agreement No 811017, which I gratefully acknowledge.

I would like to thank all of my thesis defense committee members. Thanks Prof.

Richard Samworth and Prof. Nicolas Verzelen for their careful reading of this thesis.

Thanks Prof. Matthieu Lerasle and Prof. Mark Podolskij for a useful discussion. Thanks

also to all of my CET members at the University of Luxembourg Prof. Giovanni Peccati

and Prof. Ivan Nourdin for their support along this journey.

The past three years is a special period for the whole world. Due to the pandemic, I was

not able to go back to my hometown as usual. I thank all my friends in Luxembourg who

gave me plenty of warmth and a lot of happiness. In particular, I thank Shi-Yuan Zhou

my lovely office mate; Ninghan Chen and Taowen Wang my two big chefs and friends; Xin

He and Longfei Song my little sisters and brothers in Belval. I also thank all the members

of ULVB with whom I have enjoyed much fun to play volleyball every week.

Finally, I would like to thank my family for their unconditional love and endless sup-

port. They are always my intrinsic motivation to become a better person.





Contents

1 Introduction 1

1.1 The Gaussian regression framework . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 From risk bounds to minimax bounds . . . . . . . . . . . . . . . . . 3

1.1.2 Structure assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Changepoint detection . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Estimator selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Regression in other exponential families . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Converting the problem to Gaussian regression . . . . . . . . . . . . 7

1.2.2 Direct treatments on the original non-Gaussian data . . . . . . . . . 7

1.3 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 An overview of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 An overview of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 An overview of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 A brief introduction to ρ-estimation . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Robust and optimal estimators . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Heuristic ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 VC-subgraph and its dimension . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Robust estimation based on a single model 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 The statistical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 The main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 The estimation procedure . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 The main assumption and the performance of θ̂ . . . . . . . . . . . . 28

2.3.3 From a natural to a general exponential family . . . . . . . . . . . . 30

2.4 Uniform risk bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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Chapter 1

Introduction

In this dissertation, we consider the following problem. We observe n pairs of independent

(but not necessarily i.i.d.) random variables X1 = (W1, Y1), . . . , Xn = (Wn, Yn) with

values in a measurable product space (W × Y ,W ⊗ Y). Our aim is to understand how

the responses Yi depend on the covariates Wi. To analyse this dependency, we assume

that for each i ∈ {1, . . . , n}, the conditional distributions of Yi given Wi = wi belong to a

one-parameter exponential family Q with parameter γ?(wi) ∈ R. Throughout this thesis,

the mapping γ? will be called the regression function. The most classical example of such

a statistical framework is the Gaussian regression one where the variance of the error is

known.

Example 1.0.1 (Homoscedastic Gaussian regression with a known variance). The n pairs

of independent random variables (W1, Y1), . . . , (Wn, Yn) take their values in W ×R (usually

W ⊂ Rd with some d ∈ N\{0}),

Yi = γ?(Wi) + σεi for all i = 1, . . . , n, (1.0.1)

σ is a known positive number, εi are unobserved i.i.d. standard real-valued Gaussian

random variables and γ? : W → R is the unknown regression function we want to estimate.

Nevertheless, we want to go beyond this classical Gaussian regression setting and

consider more general situations examples of which are given below.

Example 1.0.2 (Binary regression). We observe the clinical characteristicsWi ∈ W ⊂ Rd,
i ∈ {1, . . . , n}, of n patients and for each of those we report whether or not he/she has

developed a given disease D. More precisely, for each i ∈ {1, . . . , n}, Yi = 1 if the i-th

patient has disease D and Yi = 0 otherwise. Our aim is to estimate the probability of

developing the disease knowing the covariate of the patient. To do so, we introduce the

following model: the data (W1, Y1), . . . , (Wn, Yn) are i.i.d. and the conditional distribution

of Y given W = w ∈ W is given by

P [Y = y|W = w] =
exp [yγ?(w)]

1 + exp [γ?(w)]
for all y ∈ {0, 1}, (1.0.2)



2 Introduction

where the regression function γ? is assumed to be of the form γ? : w 7→ 〈η?, w〉 for some

unknown vector η? ∈ Rd.

Example 1.0.3 (Poisson regression). We want to study the influence of some ecosystems

(depending on humidity, temperature, etc.) on the appearance of a rare frog species. For

each ecosystem i ∈ {1, . . . , n} with characteristics Wi ∈ W ⊂ Rd, we count the number of

frogs Yi ∈ N of that species. We assume the data are i.i.d. and the conditional distribution

of Y given W = w ∈ W follows a Poisson distribution with mean γ?(w) ∈ (0,+∞), where

γ? belongs to a smoothness class of functions on W (Hölder, Sobolev, Besov classes for

instance).

Example 1.0.4 (Exponential multiplicative regression). We want to study the lifetime of

some space equipment as a function of their operating conditions (radiation, temperature,

etc.). The random variables Wi are independent taking their values in W ⊂ Rd and for

all i ∈ {1, . . . , n}
Yi =

Zi
γ?(Wi)

,

where the Zi are i.i.d. random variables distributed as an exponential distribution with

parameter 1, independently of Wi, and the regression function γ? : W → (0,+∞) is

assumed to be of the form γ? : w 7→ log(1 + exp [〈η?, w〉]) for some unknown vector

η? ∈ Rd.

In these examples, we have proposed some particular models for regression functions: a

linear set of functions in the case of Example 1.0.2, a parametric set of (nonlinear) functions

in the case of Example 1.0.4 and a nonparametric model in the case of Example 1.0.3.

Other choices would have been possible.

All these examples can be put in the following general framework: the conditional

distributions of Yi given Wi = wi are of the form Rγ?(wi) and belong to a one-parameter

exponential family Q = {Rγ , γ ∈ J} where the parameter set J is a non-trivial interval of

R and γ? : W → J belongs to a given class of regression functions Γ. We recall that a one-

parameter exponential family with parameter set J is a family of distributions dominated

by some reference measure µ and the densities of which take the form for all y ∈ Y and

γ ∈ J

rγ(y) = eu(γ)S(y)−B(γ)a(y) where B(γ) = log

[∫
Y
eu(γ)S(y)a(y)dµ(y)

]
, (1.0.3)

S is a real-valued measurable function on (Y ,Y) which does not coincide with a constant

ν = a · µ-a.e., u is a continuous, strictly monotone function on J and a is a nonnegative

function on Y .

The statistical model can be described as follows: the data (Wi, Yi) are independent

and for each i ∈ {1, . . . , n}, (Wi, Yi) is distributed as Rγ? · PWi where PWi denotes the



1.1 The Gaussian regression framework 3

marginal distribution of Wi and for all measurable sets A ∈ Y and B ∈ W,

Rγ? · PWi(A×B) =

∫
B
Rγ?(w)(A)dPWi(w) =

∫
A×B

rγ?(w)(y)dµ(y)dPWi(w).

In the literature, it is often assumed that the Wi are deterministic or that they are i.i.d.

with a common distribution PW .

1.1 The Gaussian regression framework

As already mentioned, the Gaussian case (Example 1.0.1) is probably the most widely

studied in the literature. One of the reason lies in the fact, that under suitable assumptions,

the maximum likelihood estimator (MLE for short) of the regression function γ? is both

easy to calculate and analyse. This is typically the case when the set Γ is linear with

dimension D and the Wi = wi are deterministic. Then the MLE is a linear estimator γ̂n

given by the least squares and its quadratic risk satisfies

E
[
d2(γ?, γ̂n)

]
≤ inf
γ∈Γ

d2(γ?,γ) +
D

n
σ2, (1.1.1)

where d(γ,γ ′) =
[
n−1

∑n
i=1(γ(wi)− γ ′(wi))2

]1/2
. When the regression function γ? does

belong to Γ (as expected) the bound we get is proportional to its dimension D. However,

the risk of the MLE becomes more difficult to analyse when the Wi are random or when

the set Γ is no longer a linear space. When the design is random, the authors (e.g. Barron

et al. (1999), Kohler (2000), Baraud (2002) and Schmidt-Hieber (2020)) usually assume

that the regression function is bounded by some constant M and the risk bound that they

established deteriorates when M is taken as a large number. We are not aware of any

non-asymptotic analysis of the MLE for general models Γ especially parametric ones that

are nonlinear.

In what follows, we provide an overview of some problems that have been tackled in the

Gaussian setting and that we wish to solve in the more general setting of one-parameter

exponential families.

1.1.1 From risk bounds to minimax bounds

It is well-known that inequality (1.1.1) based on the parametric model Γ can lead to a

minimax risk bound on a nonparametric set of regression functions. For example, let

α ∈ (0, 1], M > 0 and Hα(M) denote the set of all functions γ on [0, 1] such that

|γ(x)− γ(y)| ≤M |x− y|α, for all x, y ∈ [0, 1] .

If Γ is the linear space of piecewise constant functions based on a regular partition of [0, 1]

into D intervals and γ? ∈ Hα(M), then

inf
γ∈Γ

d2(γ?,γ) ≤M2D−2α. (1.1.2)
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Therefore we deduce from (1.1.1) that when D is the smallest integer such that(
nM2

σ2

) 1
1+2α

≤ D,

the estimator γ̂n achieves the bound

E
[
d2(γ?, γ̂n)

]
≤ 2

(σ2M1/α

n

) 2α
1+2α

+
σ2

n


uniformly over the smoothness class Hα(M). It turns out this rate is minimax in the

sense that it cannot be improved by any estimator uniformly over Hα(M) apart from

the numerical constants. An interesting feature of this strategy lies in the following fact:

we have considered a set Γ of regression functions that is only approximate and may not

contain the the true regression function γ? (but does contain our estimator) in order to get

an optimal risk bound on the class of regression functions Hα(M) of interest. Applying

this strategy is possible because inequality (1.1.2) shows that the bound on the quadratic

risk of the MLE remains stable under a slight misspecification of the class Γ of regression

functions we have started from. This property allows one to consider models with good

approximation properties rather than exact models.

There exist numerous results on how to approximate smooth functions by finite dimen-

sional linear spaces (e.g. based on piecewise polynomials, splines or wavelets see DeVore

and Lorentz (1993), Birgé and Massart (1997) and Donoho and Johnstone (1998) for in-

stance). More recently, approximation and estimation by neural networks have received

increasing attention in the community of mathematicians in the area of approximation

theory and statistics (e.g. Daubechies et al. (2019) and Schmidt-Hieber (2020)).

1.1.2 Structure assumptions

Estimating a regression function under smoothness assumptions as we did in the section

above is quite satisfactory when the Wi belong to a subset of Rd with d = 1 but this

strategy becomes useless when d is large. It is indeed well-known that the minimax rate

over a class of functions of smoothness α on [0, 1]d is typically of order n−2α/(2α+d) (see

Stone (1982)). A way to overcome this difficulty is to make structure assumptions on the

regression function γ? namely to assume that the unknown function γ? is of the form

f ◦ g where f and g have some specific structures (for instance see Stone (1985), Horowitz

and Mammen (2007) and Baraud and Birgé (2014)). One typical example of structure

assumptions is the generalized additive structure. More precisely, we may assume that the

regression function γ? on W = [0, 1]d is of the form w = (w1, . . . , wd) 7→ f(g(w1, . . . , wd))

where f is a smooth function of regularity α on [0, 1] and g is of the form

g(w1, . . . , wd) = g1(w1) + . . .+ gd(wd),
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where the gi are also of regularity α and take their values in [0, 1/d]. In this case, Horowitz

and Mammen (2007) shows that, one can estimate the regression function γ? with rate

n−2α/(2α+1) which is independent of the dimension d.

1.1.3 Model selection

Dealing with a single model Γ for the regression function is usually not enough in most

applications. It is preferable to introduce an at most countable family of candidate models{
Γm, m ∈M

}
and then to design a criterion solely based on the dataX = (X1, . . . , Xn) in

order to select a suitable index m̂(X) among the familyM. In Gaussian regression, Birgé

and Massart (2001) proposed a penalized model selection criterion. Their result assumes

that the Wi are deterministic and that each Γm is a linear space of finite dimension Dm.

The selected index m̂(X) satisfies

E
[
d2(γ?, γ̂m̂)

]
≤ C

{
inf
m∈M

[
d2(γ?,Γm) +

Dm(Lm ∨ 1)

n
σ2

]
+

Σ

n
σ2

}
, (1.1.3)

where C is an explicit numerical constant, {Lm}m∈M is a family of nonnegative numbers

satisfying Σ =
∑

m∈{m′∈M|Dm′>0} exp [−DmLm] < +∞ and d(γ?,Γm) = infγ∈Γm
d(γ?,γ).

With such a result at hand, the authors provide several applications among which variable

selection and adaptation in the minimax sense.

We are not aware of any result that generalizes their approach to other exponential

families and to possibly nonlinear models Γm.

1.1.4 Changepoint detection

The problem of estimating the changepoints of a regression function defined on the bounded

interval W ⊂ R can be described as follows: the regression function γ? is assumed to be

piecewise constant on a partition m? of W into a finite number of intervals. The aim is to

estimate both the partition m? (or equivalently the endpoints of the intervals of m?) as

well as the values of the function γ? on each interval of the partition. This problem has

received a lot attention in the literature. Some authors put more emphasis on the prob-

lem of localization of the changepoints (e.g. Fryźlewicz (2014) and Li et al. (2016)) while

others consider the problem of estimating the regression function with a small risk (e.g.

Baraud et al. (2009) and Cleynen and Lebarbier (2017)). This problem can be viewed as

a particular case of model selection whereM is a family of partitions on [0, 1] into a finite

number of subintervals and Γm is a linear space of piecewise constant functions based on

the partition m ∈M.
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1.1.5 Estimator selection

When the family of models is very large, which may be the case for solving the variable

selection and changepoint detection problems, the model selection strategy proposed by

Birgé and Massart (2001) may be extremely costly from a computational point of view.

To overcome this difficulty, an alternative approach is to start from a family of preliminary

estimators {γ̂λ, λ ∈ Λ}, the number of which keeps to a reasonable size, and to design

a selection procedure in order to select a suitable one γ̂
λ̂

among the family to estimate

γ?. These estimators may, for example, result from a more trackable model selection

procedure or be obtained based on extra assumptions on the regression function γ?. The

problem of selecting a suitable estimator among a collection of candidate ones is called

estimator selection. Many procedures tackle this problem on the basis of a sample splitting

scheme (e.g. Wegkamp (2003), Yang (2004) and Bunea et al. (2007)). This means that

the estimators are built from a sample SA and conditionally on SA, we select one of them

by means of an independent sample SB. Considering the sample SB only, the collection of

candidate estimators {γλ, λ ∈ Λ} can be seen as non-random. If the regression function

γ? and all the candidates γλ are bounded in sup-norm, Bunea et al. (2007) proved that

their selected estimator γ
λ̂

satisfies

E
[
d2(γ?,γ

λ̂
)
]
≤ (1 + ε) inf

λ∈Λ
d2(γ?,γλ) + Cεσ

2 log(Card(Λ))

n
, (1.1.4)

where Cε > 0 is a constant only depending on ε. The risk of the selected estimator

compares to the infimum of the risks among the the family of estimators we started from

up to an additional term that increases with the cardinality of the family Λ. They show

that this term, namely log(Card(Λ))/n, cannot be removed in general.

Baraud et al. (2014) proposed an alternative approach that relaxes the assumption that

the estimators are based on the independent sample SA, allowing thus both the estimators

and the selection rule to be based on the same dataset. Besides, for each specific problem

they want to solve (variable selection, selection of a suitable tuning parameter), the risk

bound they got on the selected estimator is a non-increasing function of the family Λ (with

respect to the inclusion), which means that the risk bound they got can only be improved

when one enlarges the family Λ. This might not be the case with a risk bound of the form

(1.1.4). To our knowledge, their strategy has never been generalized to other exponential

families.

1.2 Regression in other exponential families

We are not aware of many results for estimating the regression function γ? when the

exponential family is not the Gaussian one.
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1.2.1 Converting the problem to Gaussian regression

When the Wi are deterministic, a common strategy is to bin the data into groups and

to make a suitable transformation of a combination of those into each group so that the

distributions of the resulting statistics are close to a Gaussian random variable. This can

be obtained by using some variance stabilization transformation (VST) techniques. For

instance, Anscombe (1948) proposed VSTs for Poisson, binomial and negative binomial

data. After performing VST, one can apply methodologies that have been developed

in the Gaussian framework to the transformed data. For instance, when dealing with

Poisson data, Donoho (1993) applied the transformation introduced in Anscombe (1948)

while Fryźlewicz and Nason (2001, 2004) applied the one given by Fisz (1955). Another

example of implementing this strategy can be found in Nunes and Nason (2009) where

they dealt with binomial regression. Theoretical guarantee of this strategy mainly relies on

asymptotically normal approximations. We refer the reader to Proposition 2 of Fryźlewicz

and Nason (2004) and Theorem 3.1 of Nunes and Nason (2009) for instance. It has been

reported in Besbeas et al. (2004) that for Poisson data, this strategy may suffer from over-

smoothing or losing details of the underlying signals especially when the levels of counts

are low.

On a unified treatment of the one-parameter exponential families, Brown et al. (2010)

introduced a new transformation technique and established uniform risk bounds on sets

of regression functions that belong to Besov spaces. Up to a logarithmic factor, the risk

bounds they got coincide with those obtained in the Gaussian setting. However, their

approach only applies for exponential families which are parametrized by their means and

under the conditions that these means are bounded away from zero and infinity. Further-

more, their results mainly focus on the situation where the variances of the distributions

in the exponential family are quadratic functions of their means.

All the above mentioned results are of asymptotic nature. Moreover, a common feature

of the techniques that are used in all these papers lies in the fact that they require the Wi

to be deterministic in order to bin the data into non-random groups.

1.2.2 Direct treatments on the original non-Gaussian data

In all the literature we have found, the authors developed their procedures for some specific

parametrization of the exponential family Q. Some of them assume that Q has been

parametrized by its mean and they considered the problem of estimating the conditional

means E [Yi|Wi = wi], which correspond then to the values of the regression function γ?

at the wi. Others assume that Q is under its natural form, i.e. taking u in (1.0.3) as the

identity function.

To estimate the regression function γ?, some of the authors used wavelet techniques.

For instance, Antoniadis and Leblanc (2000) focused on the estimation of the conditional
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means E [Yi|Wi = wi] in binary regression by implementing wavelet expansion. They as-

sume that the Wi = wi are deterministic and the regression function γ? belongs to a

Hölder class of functions of smoothness α > 1/2 on [0, 1]. They showed that their estima-

tor is asymptotically minimax when α ≥ 1, achieving the rate n−2α/(2α+1) for the squared

integrated L2-loss (with respect to the Lebesgue measure on [0, 1]). In Ivanoff et al. (2016),

the authors considered Poisson regression parametrized by the mean. Besides wavelets,

they also considered other classical orthonormal systems such as the Fourier basis. Their

estimator of E [Yi|Wi = wi] is based on a penalized likelihood criterion where the penalties

are of the form Lasso or group-Lasso ones. Under the assumptions that the true condi-

tional distributions belong to their model and that the conditional means E [Yi|Wi = wi]

are bounded away from zero and infinity, they established a risk bound based on the em-

pirical Kullback-Leibler divergence between the true conditional distributions of the data

and the estimated one based on γ̂. By applying wavelet shrinkage, Antoniadis and Sap-

atinas (2001) considered the problem of estimating the conditional means E [Yi|Wi = wi]

in all the one-parameter exponential families with quadratic variance functions (i.e. the

variance of the distribution is at most a quadratic function of its mean). Their approach is

inspired by the work of Beran and Dümbgen (1998) on modulation estimators in Gaussian

regression. When the regression function γ? belongs to an ellipsoid of the Sobolev class

Wα
2 with α > 1/2, the estimator proposed by Antoniadis and Sapatinas (2001) attains the

classical rate of convergence n−2α/(2α+1) with respect to the squared L2-loss (with respect

to the empirical measure (
∑n

i=1 δWi)/n). Later, Antoniadis et al. (2001) extended the

approach in Antoniadis and Sapatinas (2001) to the one-parameter exponential families

with cubic variance functions.

Some authors have also considered the problem of variable selection assuming that the

regression function γ? is a sparse linear combination of the covariates of Wi. In order

to estimate the subset of covariates that really influence the response Yi, they used a

penalized criterion including the likelihood function and the penalty term which is similar

to the Lasso one in the Gaussian setting. This is the case in Li and Cevher (2015) and

Jia et al. (2019), where both of the authors parametrized the Poisson distributions under

their natural form and showed that their estimators γ̂ of γ? are consistent under some

assumptions on the true regression function γ?.

All the results we have mentioned in this section are either established conditionally on

the Wi or when the Wi are deterministic. This is not the case of the paper by Kroll (2019)

which considered the problem of model selection in Poisson regression. He showed that his

estimator of the conditional mean function E [Yi|Wi] satisfies an oracle type inequality with

respect to the squared L2(PW )-loss, where PW denotes the common distribution of the Wi.

Moreover, when the Wi are uniformly distributed on [0, 1], he proved that his estimator

achieves the minimax rate of convergence adaptively over Sobolev-type ellipsoids. His

results are based on the assumptions that the models are finite dimensional linear spaces
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satisfying some good connections between the sup-norm and the L2(PW )-norm. Besides,

the regression function needs to be bounded in sup-norm.

1.3 Our contributions

In this thesis, our aim is to have a unified treatment of the problem of estimating a

regression function in the one-parameter exponential families. Besides, we aim at solving

this problem under conditions which we wish to be as weak as possible and in particular,

under no assumption on the distributions of the covariate Wi. Furthermore, we want to

go beyond the common assumption that the true distribution of the data exactly belongs

to the statistical model we consider. If we go back to Example 1.0.2, it is actually unclear

that all the data are i.i.d. and it may happen that the probability of developing the disease

D is different for a small subgroup of people from the rest of the population (some of these

people may have a rare mutation on the gene for instance). It may also happen that some

of the data have been erroneously reported. This might even be more likely when counting

the population of a species in Example 1.0.3 where by mistake an individual is reported

twice. This means that not only the model Γ for the regression function might not be

exact but also the true conditional distributions of Yi given the covariates Wi might not

belong to the exponential family we consider. It is therefore wiser to assume that our

statistical model is an approximation of the truth rather than assuming that it perfectly

models reality. Unfortunately, the procedures that have been developed in the literature

do not consider the situation where the model is possibly misspecified. In order to tackle

this problem, our approach is based on the estimation of the conditional distributions

of the data rather than on the sole estimation of the regression function. This explains

why we work on a slightly different statistical model than the one we introduced at the

beginning of this chapter. We denote by Q?1(w) . . . , Q?n(w) the respective true conditional

distributions of Yi given Wi = w. On the one hand, each pair (Wi, Yi) is distributed as

Q?i · PWi for i = 1, . . . , n. On the other hand, the statistical model that we consider,

and which may only be an approximation of the truth, assumes that these conditional

distributions Q?i (w) are of the form Rγ?(w) ∈ Q for some γ? ∈ Γ.

Within this statistical setting, we first aim at estimating the n-tuple Q? = (Q?1, . . . , Q
?
n)

by an estimator of the form Rγ̂ = (Rγ̂ , . . . , Rγ̂) for some γ̂ ∈ Γ. We wish to establish an

inequality akin to (1.1.1), except for the following facts:

(1) the distance d now measures the distance between two n-tuples Q = (Q1, . . . , Qn)

and Q′ = (Q′1, . . . , Q
′
n) and is defined as

d(Q,Q′) =

[
1

n

n∑
i=1

∫
W
h2(Qi(w), Q′i(w))dPWi(w)

]1/2

, (1.3.1)
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where h(·, ·) denotes the Hellinger distance. We recall that the Hellinger distance

between two probabilities P = p · λ and P ′ = p′ · λ dominated by λ on a measurable

space (E, E) is defined as

h(P, P ′) =

[
1

2

∫
E

(
√
p−

√
p′)2dλ

]1/2

. (1.3.2)

(2) We want to relax the assumption that Γ is a linear space and replace it by the more

general one that it is VC-subgraph with dimension not larger than D.

(3) We want to allow the Wi to be either deterministic or random but not necessarily

i.i.d.

In order to describe our contributions in a more specific way, we provide below an

account of the contents of the Chapter 2, 3 and 4 of this thesis.

1.3.1 An overview of Chapter 2

Chapter 2 is based on joint work with my PhD supervisor Yannick Baraud and has been

submitted for publication as Baraud and Chen (2020). In this chapter, we use ρ-estimation

to design a suitable estimator Rγ̂ = (Rγ̂ , . . . , Rγ̂) of the n-tuple Q? = (Q?1, . . . , Q
?
n) on

the basis of a model Γ for the regression function.

(1) When Γ is a VC-subgraph class on W with dimension bounded by D ≥ 1, we show

that whatever the conditional distributions Q? = (Q?1, . . . , Q
?
n) of Yi given Wi = wi

and the distributions of the Wi, for some universal constant C > 0, our estimator

satisfies

E
[
d2(Q?,Rγ̂)

]
≤ C

[
inf
γ∈Γ

d2(Q?,Rγ) +
D

n
log n

]
. (1.3.3)

The quantity (D/n) log n is the bound we would get if the model were exact that

is when for all i ∈ {1, . . . , n}, Q?i = Rγ? for some γ? ∈ Γ. This bound cannot be

improved in general. When the model is approximate in the sense that there exists

an element Rγ with γ ∈ Γ such that for all those indices i ∈ I ⊂ {1, . . . , n},∫
W
h2(Q?i (w), Rγ(w))dPWi(w) ≤ ε2

the risk bound (1.3.3) becomes

E
[
d2(Q?,Rγ̂)

]
≤ C

[
|I|
n
ε2 +

|Ic|
n

+
D

n
log n

]
≤ C

[
ε2 +

|Ic|
n

+
D

n
log n

]
,

since the Hellinger distance is bounded by 1. If the quantity max{nε2, |Ic|} is small

enough compared to D log n, the bound we get is still of order (D/n) log n. This

means that if most of the true conditional distributions Q?i (·) are close enough to
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a conditional distribution that belongs to our model
{
Rγ , γ ∈ Γ

}
, the risk bound

that we get for our estimator is of the same order of magnitude as the one we would

get when the statistical model is exact. This property accounts for the stability of

our estimator on the model misspecification and we call it robustness.

(2) Interestingly, we also show that the result (1.3.3) we establish is not connected to a

special parametrization of the exponential families therefore holds for all parametriza-

tions. In order to be more specific, let us consider the following situation. Two

statisticians A and B want to analyse the same data by using the same statistical

model except from the fact that the first statistician puts the exponential family

under its natural form while the other uses the general form given by (1.0.3). Since

the statistical model to analyse the data is the same, if the statistician A consid-

ers the set Γ to model the regression function, statistician B would use the set

Γ̃ =
{
u−1(γ), γ ∈ Γ

}
. By using our procedure, we will show that both statisticians

will end up with the same estimator of the conditional distributions and that the

conditions on which our risk bound (1.3.3) holds is invariant with respect to the

choice of u, and it is therefore independent on the way that statisticians parametrize

the exponential family.

This feature distinguishes our approach from the ones that can be found in the liter-

ature and which mainly rely on a smoothness assumption on the regression function.

Such an assumption is not independent with respect to the way of which the expo-

nential family is parametrized since the sets of regression functions Γ and Γ̃ may

have different smoothness depending on the choice of u.

(3) When the data are truly i.i.d. and the model is exact, we derive from inequality

(1.3.3) a uniform risk bound over the class of α-Hölder regression functions.

We show that under a suitable parametrization, the order of magnitude of the mini-

max rate is of order n−2α/(1+2α) in all the one-parameter exponential families (Propo-

sition 2.4.3) at least when all the Wi are uniformly distributed on [0, 1]. Under such

parametrizations, we prove our estimators to be minimax, up to a logarithmic factor

(Proposition 2.4.2).

We also provide a counterexample to illustrate the fact that without a suitable

parametrization of Q, the minimax rate of convergence can be different from the

typical one n−2α/(1+2α). For a family of Poisson distributions parametrized by their

means, the minimax rate over α-Hölder class is of order n−α/(1+α) (Proposition 2.4.4)

and our estimator is minimax up to a logarithmic factor (Proposition 2.4.5).
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(4) When Γ is a VC-subgraph class of functions of low or moderate dimension, we de-

sign an algorithm to calculate the ρ-estimator. We carry out a simulation study in

the logit, Poisson and exponential regression problems (the source code is available

at https://github.com/juntong6/RhoEstimator). We compare its perfor-

mance to that of the MLE and a median-based one under three different scenarios:

when the model is well-specified, when there is an outlier among the observations

and when the data are contaminated. If the model is exact, we see that the ρ-

estimator recovers the MLE and both estimators perform well. When the model is

slightly misspecified either because we add an outlier or because the data are con-

taminated, the MLE performs very poorly and its risk explodes while the behavior

of the ρ-estimator remains stable. The median-based estimator performs poorly as

compared to the ρ-estimator when the model is exact and when the dataset contains

an outlier. Its performance becomes comparable to that of the ρ-estimator only

when the data are contaminated. As compared to the MLE and the median-based

one, only the ρ-estimator shows some good and stable estimation properties under

these three scenarios.

1.3.2 An overview of Chapter 3

Chapter 3 is based on a slight modification of the arXiv paper Chen (2022).

As already seen, dealing with a single model is not enough. In Chapter 3, we consider

the problem of model selection. More precisely, we consider an at most countable family

of models
{
Γm, m ∈M

}
where for each m ∈ M, Γm is a VC-subgraph class on W with

dimension not larger than Dm ≥ 1 and we design a model selection procedure based on

ρ-estimation to choose a suitable element γ̂ ∈ Γ = ∪m∈MΓm. Based on each model

Γm for the regression function γ?, we denote the corresponding model for the n-tuple

Q? = (Q?1, . . . , Q
?
n) as Qm =

{
Rγ = (Rγ , . . . , Rγ), γ ∈ Γm

}
.

(1) We establish an oracle type inequality for the selected estimator Rγ̂ , which states

that no matter what the conditional distributions Q? = (Q?1, . . . , Q
?
n) of Yi given

Wi = wi are and no matter what the distributions of the Wi are, we have

E
[
d2(Q?,Rγ̂)

]
≤ C

{
inf
m∈M

[
d2(Q?,Qm) +

Dm

n
log n+

∆(m)

n

]
+

Σ

n

}
(1.3.4)

where d(·, ·) is the distance defined by (1.3.1) and d(Q?,Qm) = infγ∈Γm
d(Q?,Rγ),

the notation ∆(m) plays a similar role as the term LmDm in (1.1.3), i.e.

Σ =
∑
m∈M

exp [−∆(m)] < +∞,

and C > 0 is a universal constant.

https://github.com/juntong6/RhoEstimator
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On the one hand, the risk bound (1.3.4) is akin to (1.1.3) obtained from the problem

of model selection in Gaussian regression. On the other hand, compared to the

result (1.3.3) based on a single model, the inequality (1.3.4) indicates that if for each

m ∈M, the term ∆(m) can be well chosen in the sense that it is proportional to the

dimension Dm, we are able to select the model achieving the best trade-off between

the approximation and the complexity among the collection M.

With the result (1.3.4) at hand, we can provide several applications as we did in the

Gaussian case.

(2) We provide applications to the problems of variable selection and adaptation. For

the problem of adaptation to anisotropic Besov spaces, we suppose the data are i.i.d.,

W = [0, 1]d and Q? = (Rγ? , . . . , Rγ?) where γ? belongs to some Besov space with

an unknown anisotropic regularity α = (α1, . . . , αd) ∈ (0,+∞)d. We construct our

models Γm as the collections of piecewise polynomials on some particular partitions

on [0, 1]d. Under some suitable parametrizations of Q, we show that in all the one-

parameter exponential families, our estimator Rγ̂ is adaptive in the minimax sense

over a wide range of anisotropic Besov spaces and achieves the risk bound, up to a

logarithmic factor, of order n−2α/(2α+d) where α is the harmonic mean of α1, . . . , αd

(Corollary 3.3.1).

(3) In order to overcome the problem of the curse of dimensionality when the covariates

take their values in a high dimensional space, we tackle estimation under struc-

ture assumptions on the regression functions. We consider two classical models for

γ? which are generalized additive structure and multiple index structure. Under

each structure assumption, we construct suitable models Γm to approximate γ?

and implement our model selection procedure to derive an estimator based on the

family of constructed models
{
Γm, m ∈M

}
. We establish risk bounds for the re-

sulted estimators (Corollary 3.4.1 and 3.4.2). The results state that under a suitable

parametrization of the exponential family Q, the bounds we get coincide with those

derived in the Gaussian regression setting under the same structure assumption.

Therefore, by doing so, we circumvent or mitigate the curse of dimensionality.

(4) We also consider the problem of estimating the regression function γ? by neural

networks. To solve this problem, we provide a bound on the VC dimension that

depends on the width, the depth and the sparsity of the network. By using suitable

networks, we shall see that our estimator may achieve, up to a logarithmic factor, a

parametric rate of convergence for estimating some very irregular regression function

(that is nowhere differentiable).
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1.3.3 An overview of Chapter 4

In Chapter 4, we consider the problem of estimator selection and as it has been explained

in Section 1.1.5, we want to design a selection rule for which the selected estimator will

satisfy a risk bound which is a non-increasing function (for the inclusion) of the collection

of candidate estimators.

We consider this problem in a particular situation where we assume to have an arbitrary

collection Γ̂(X) = {γ̂λ(X), λ ∈ Λ} of piecewise constant candidates for the regression

function γ? based on the observations X. With the same data X, our goal is to select an

estimator γ̂
λ̂
(X) among the collection Γ̂(X). Our method is agnostic to the dependencies

of each γ̂λ(X) with respect to the data X and can therefore be unknown. From this point

of view, our procedure contrasts with other alternative selection methods based on data

splitting, cross validation, hold-out, etc. but can be regarded as a generalization of the

approach in Baraud et al. (2014) from the problem of Gaussian estimator selection to a

unified treatment of the problem of estimator selection in all one-parameter exponential

families.

(1) Under some reasonable assumptions (Assumption 4.2.1 and 4.2.2), we show the

selected estimator Rγ̂
λ̂

of the n-tuple Q? = (Q?1, . . . , Q
?
n) satisfies

E
[
d2(Q?,Rγ̂

λ̂
)
]
≤ C inf

λ∈Λ

{
E
[
d2(Q?,Rγ̂λ

)
]

+
1

n
E [Ξ(γ̂λ)]

}
, (1.3.5)

where C > 0 is a numerical constant only depending on some parameters required in

Assumption 4.2.1 and 4.2.2, Ξ(γ̂λ) is an additional nonnegative term mainly related

to the VC dimension of the functional space to which γ̂λ belongs (see Corollary 4.2.1

for details).

Similarly to the risk bound for the selected estimator in Baraud et al. (2014), the

result (1.3.5) compares the risk of the selected estimator Rγ̂
λ̂

to those of Rγ̂λ
plus an

additional nonnegative term which does not depend on the cardinality of the set Γ̂.

Therefore, if we enlarge the family of candidates Γ̂, the risk bound for the selected

estimator can only be improved.

(2) We then apply our procedure to solve the problem of changepoint detection. To do

so, we first calibrate some tuning parameter in our estimator selection procedure

based on the simulation study. Our calibration differs from the typical procedures

which choose the tuning parameter by cross-validation and have to be done for each

implementation. In fact, the parameter we would like to calibrate is a universal con-

stant and we can even derive a possible value of it from our theory. Unfortunately,

this theoretical value is too large to use in practice and we do not have enough in-

formation about the smallest possible value of it validating (1.3.5). Therefore, we
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regard it as a tuning parameter to be calibrated once for all.

(3) We solve the problem of Gaussian changepoint detection with respect to the means

by “standing upon the shoulders of giants”. To be more precise, we construct our

candidates set Γ̂(X) as a collection of several state-of-art procedures in the literature

and implement our selection procedure to pick one among Γ̂(X) based on the obser-

vations X. In Section 4.4, we test the performance of our selection procedure under

six different formats of signals. It turns out that under different test signals, our

estimator selection procedure tends to allocate different preference to the candidates

in Γ̂(X) based on their practical performance. As a result, our estimator provides

a very competitive performance under all the six signals in the meanwhile no single

procedure (state-of-art estimator in the literature) in Γ̂(X) succeeds to achieve this.

Moreover, when there are a small amount of outliers in the observations, we still can

select the most competitive ones which implies a robustness property of our selection

procedure.

(4) We also consider the application of our procedure to the changepoint detection prob-

lem in other exponential families, where the algorithms are much less as compared

to the Gaussian case. We are only ware of Cleynen and Lebarbier (2014, 2017) and

Frick et al. (2013) which try to solve the changepoint detection problem in general

exponential families. To construct a rich collection Γ̂ as we did in the Gaussian

changepoint detection, we implement the mean-matching variance stabilizing trans-

formation proposed in Brown et al. (2010) to roughly turn the problem into the

Gaussian case and borrow those previous algorithms to locate changepoints. To en-

hance the robustness with respect to outliers, we associate the ρ-estimator on each

resulted partition given by those algorithms. Simulation results in Section 4.4.3 indi-

cate that by doing so, when there is no outlier, our estimator performs much better

than the one given in Frick et al. (2013) and slightly outperforms the one given in

Cleynen and Lebarbier (2014, 2017). Moreover, when there is a small amount of

outliers in the observations, we obviously improve the stability of the final estimator

as compared to those two existing methods.

(5) At the end of Chapter 4, we apply our selection procedure to two real datasets in-

cluding the copy numbers of DNA and British coal disasters records to investigate

its practical performance. Gaussian model is considered to detect changes for the

first dataset and Poisson model is applied to the second one. For both of them, our

estimator shows a reasonable performance according to the relevant literature.



16 Introduction

1.4 A brief introduction to ρ-estimation

As mentioned, we shall handle the estimation problem introduced in Section 1.3 by a new

methodology which is called ρ-estimation proposed by Baraud et al. (2017). In Baraud and

Birgé (2018), the authors revisited this estimation method and relaxed several limitations

in the previous work.

This new estimation methodology is designed for providing a universal treatment of a

rather general estimation framework. More precisely, they consider the problem that they

observe n independent random variables X1, . . . , Xn with values in a measurable space

(X ,X ) where for each i ∈ {1, . . . , n}, Xi follows an unknown distribution P ?i on (X ,X ).

Their goal is to find a suitable random approximation P̂(X) = ⊗ni=1P̂i(X) of the true

joint distribution P? = ⊗ni=1P
?
i on the basis of the observations X = (X1, . . . , Xn).

1.4.1 Robust and optimal estimators

To motivate the employment of the ρ-estimator, we introduce two essential properties of

it: robustness and (nearly) optimality.

We denote P f the set of all product probabilities on (X n,X⊗n). To measure the

deviation of P̂(X) from the truth P?, a distance on P f is needed. A convenient choice

of measuring the distance between two product probabilities could be the Hellinger-type

distance h (e.g. Le Cam (1986) and Le Cam and Yang (1990)) defined as for any P =

⊗ni=1Pi ∈ P f and P′ = ⊗ni=1P
′
i ∈ P f ,

h2
(
P,P′

)
=

n∑
i=1

h2(Pi, P
′
i ), (1.4.1)

where h(·, ·) denotes the Hellinger distance defined by (1.3.2). We then can quantify

the performance of an estimator P̂(X) through its risk E
[
h2
(
P?, P̂(X)

)]
where the

expectation is taken under the true joint distribution P?. Let us remark here that for any

P̂(X) ∈ P f , its risk at any P? ∈ P f is naturally bounded by n.

To estimate P?, ρ-estimation suggests to work based on the models. For each model

P , they mean a moderate subset of P f for the existence of an estimator P̂ such that

supP?∈P E
[
h2(P?, P̂)

]
is substantially smaller than n. Although they do not assume

P? ∈ P is true, by constructing a model P for P?, they do as if P? did belong to P and

derive their estimators of P? within P . We consider two possible situations below.

Optimality in the minimax sense. When we do have P? ∈ P , a nice criterion

of evaluating the performance of P̂, as mentioned, is to consider its maximal quadratic

risk supP?∈P E
[
h2(P?, P̂)

]
. We would like to compare it with the minimax one over

P defined as R
(
P
)

= inf
P̂

supP?∈P E
[
h2(P?, P̂)

]
, where the infimum runs over all the
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possible estimators P̂. We say an estimator P̂ is approximately optimal over P in the

minimax sense if

sup
P?∈P

E
[
h2(P?, P̂)

]
≤ CR

(
P
)
, (1.4.2)

where C is a constant (ideally being not large, independent of n and the model P ).

Robustness. In practice, we cannot check precisely whether P? ∈ P or not. When there

is a slight misspecification, i.e. P? /∈ P but infP∈P h2 (P?,P) being small, if the bound

(1.4.2) remains approximately true, we say such an estimator P̂ possesses robustness.

Putting these two ingredients together, an estimator P̂ based on the model P is said

to be approximately optimal and robust if for all P? ∈ P f ,

E
[
h2(P?, P̂)

]
≤ C

[
inf

P∈P
h2 (P?,P) ∨R

(
P
)]
, (1.4.3)

where C is a universal constant.

1.4.2 Heuristic ideas

In this section, we introduce some heuristic ideas behind ρ-estimation in our setting. For

a more detailed explanation, we refer to Baraud et al. (2017)[Section 1.4 and Section 3.1

(density framework)] and Baraud and Birgé (2018)[Section 2.5].

The invention of ρ-estimation is based on a development of T -estimation proposed by

Birgé (2006), of which the main idea is to first discretise the model P at some scale (with

respect to h) then to design robust tests between the balls centred at these discretised

points. Alternatively, ρ-estimation suggests to construct tests indicating that, given any

two choices in the model (without discretisation), which one is closer to the truth with

respect to the distance h. Several assumptions required by T -estimation can therefore be

relaxed under this new construction.

Recall that in our setting for each pair Xi = (Wi, Yi), it follows the distribution P ?i =

Q?i ·PWi on (X ,X ) = (W ×Y ,W⊗Y). We consider Γ a collection of measurable functions

from W into J which gives a model P =
{
Pγ , γ ∈ Γ

}
=
{
⊗ni=1 (rγ · µ · PWi) , γ ∈ Γ

}
with rγ given by (1.0.3) for the true joint distribution P? = ⊗ni=1P

?
i .

Provided two choices γ,γ ′ ∈ Γ which induce two probabilities Pi,γ = Rγ · PWi and

Pi,γ′ = Rγ′ ·PWi on X = W ×Y , to know which one is closer to P ?i , a natural consideration

is to construct an estimator of the quantity h2(P ?i , Pi,γ) − h2(P ?i , Pi,γ′). The interesting

point lies in the fact that if one can design a “nice” statistic say T (Xi,γ,γ
′) to estimate

this difference, we can go further than just telling the preference between γ and γ ′. In fact,

if T (Xi,γ,γ
′) is a “good” estimator of h2(P ?i , Pi,γ)− h2(P ?i , Pi,γ′), taking the supremum

with respect to γ ′ over Γ, we note that

sup
γ′∈Γ

T (Xi,γ,γ
′) ≈ sup

γ′∈Γ

[
h2(P ?i , Pi,γ)− h2(P ?i , Pi,γ′)

]
= h2(P ?i , Pi,γ)− inf

γ′∈Γ
h2(P ?i , Pi,γ′),
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which measures how far away for Pi,γ being the closest element to P ?i amongP . Therefore,

to search the closest point to P ?i within P , the idea is try to, more or less, minimize the

quantity supγ′∈Γ T (Xi,γ,γ
′) with respect to γ. This is the underlying idea to construct

the ρ-estimator. At this moment, the only problem left is to design a “good” statistic

T (Xi,γ,γ
′).

To control the risk of the resulted ρ-estimator, the authors suggest to construct

T (Xi,γ,γ
′) as

T (Xi,γ,γ
′) = ψ

(√
rγ′(Wi)(Yi)

rγ(Wi)(Yi)

)
,

where two specific choices of the function ψ are

ψ1(x) =
x− 1√
x2 + 1

and ψ2(x) =
x− 1

x+ 1

mapping [0,+∞] into [−1, 1]. For both of them, they showed that for each i ∈ {1, . . . , n},
whatever P? ∈ P f

a1h
2(P ?i , Pi,γ)− a0h

2(P ?i , Pi,γ′) ≤ E
[
T (Xi,γ,γ

′)
]

≤ a0h
2(P ?i , Pi,γ)− a1h

2(P ?i , Pi,γ′), (1.4.4)

where for ψ1, a0 = 4.97, a1 = 0.083 and for ψ2, a0 = 4, a1 = 3/8.

Therefore, given n observationsX = (X1, . . . , Xn), if we design the statistic T(X,γ,γ ′)

on (X n,Γ,Γ) as

T(X,γ,γ ′) =
n∑
i=1

T (Xi,γ,γ
′) =

n∑
i=1

ψ

(√
rγ′(Wi)(Yi)

rγ(Wi)(Yi)

)
,

an immediate consequence of (1.4.1) and (1.4.4) is that

a1h
2(P?,Pγ)−a0h

2(P?,Pγ′) ≤ E
[
T(X,γ,γ ′)

]
≤ a0h

2(P?,Pγ)−a1h
2(P?,Pγ′). (1.4.5)

Such a result indicates if the difference between h2(P?,Pγ) and h2(P?,Pγ′) is obviously

large, the sign of E [T(X,γ,γ ′)] contains the information about the fact that between Pγ

and Pγ′ , which one is closer to the truth P?.

1.5 VC-subgraph and its dimension

In this section, we introduce some background knowledge of the VC-subgraph including its

definition and some useful properties to make a preparation for the contents of Chapter 2,

3 and 4.

Let C be a collection of subsets of a set X . For an arbitrary set of m points

{x1, . . . , xm}, we say the set C shatters {x1, . . . , xm} if each of its 2m subsets can be

represented as a set of the form C ∩ {x1, . . . , xm} with some C ∈ C. We begin with

introducing the VC-class of sets which was first studied by Vapnik and Chervonenkis.
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Definition 1.5.1 (van der Vaart and Wellner (1996), page 134–135). Let C = {C, C ⊂X }
be a class of subsets of X . We say the VC dimension of C is V (C) if V (C) is the largest

cardinality of the set E ⊂X which can be shattered by C. Moreover, when V (C) < +∞,

we call C a VC-class of sets.

To illustrate Definition 1.5.1, let us consider an easy example. Supposing X = R and

C− = {(−∞, a], a ∈ R}, we observe that C− shatters any single-point set {x} ⊂ R but

for any two-point set {x1, x2} ⊂ R with x1 < x2, there is no element C ∈ C− such that

{x2} can be represented as the form C ∩ {x1, x2}. Therefore, we conclude V (C−) = 1.

Let C+ = {(b,+∞), b ∈ R} and C = C− ∪ C+. Similarly, we can conclude V (C) = 2. This

simple example tells that the more refined C is, the larger is its VC dimension.

We then introduce the conception of growth function ΠC(m) of C defined as

ΠC(m) = max
{x1,...,xm}⊂X

Card ({C ∩ {x1, . . . , xm}, C ∈ C}) . (1.5.1)

Based on (1.5.1), the VC dimension of C can be defined more formally through

V (C) = sup {m such that ΠC(m) = 2m} ,

which turns out to be a convenient tool when one wants to derive an upper bound on the

dimension of some class C.
We now move to the definition of VC-subgraph class. Recall that for a function f :

X → R, its subgraph is a subset of X × R which can be written as

{(x, t) ∈X × R such that f(x) > t} .

Definition 1.5.2 (van der Vaart and Wellner (1996), page 141). A collection F of mea-

surable functions on a sample space is called a VC-subgraph class or VC-class if CF the

collection of all subgraphs of the functions in F forms a VC-class of sets. Moreover, we

say F is VC-subgraph class with dimension V (F) = m if V (CF ) = m.

The following result relates the VC-property to any finite-dimensional vector space.

Proposition 1.5.1 (van der Vaart and Wellner (1996), Lemma 2.6.15). Any finite-

dimensional vector space F of measurable functions f : X → R with dimension d(F)

is VC-subgraph of dimension smaller than or equal to d(F) + 1.

We also list some important properties as follows which allow us to construct new

VC-subgraph classes based on those classical ones and establish a dimensional bound for

them.

Proposition 1.5.2 (Baraud et al. (2017), Proposition 42). Let F be VC-subgraph with

dimension V on a set X .
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(i) For all functions g on X , F + g = {f + g, f ∈ F} is VC-subgraph with dimension

not larger than V .

(ii) For all monotone function ϕ on R, ϕ(F) = {ϕ ◦ f, f ∈ F} is VC-subgraph with

dimension not larger than V .

(iii) The class −F is VC-subgraph with dimension not larger than V .

(iv) The class F+ = {f ∨ 0, f ∈ F} is VC-subgraph with dimension not larger than V .

We comment that as a consequence of (i) and (iv) of Proposition 1.5.2, under the

condition that V (F) = V , for any fixed number a ∈ R, the class Fa+ = {f ∨ a, f ∈ F} is

a VC-subgraph class with dimension not larger than V . Moreover, based on this comment

and (iii), for any fixed number b ∈ R, the class Fb− = {f ∧ b, f ∈ F} is also a VC-subgraph

class with dimension not larger than V .

Next theorem states the stability of VC-property under some particular operations

which we shall repeatedly use in this thesis.

Theorem 1.5.1 (van der Vaart and Wellner (2009), Theorem 1.1). Suppose that C1, . . . , Cm
are VC-classes of subsets of a given set X with dimensions V1, . . . , Vm respectively. We

define the classes tmj=1Cj and umj=1Cj by

tmj=1Cj =
{
∪mj=1Cj , Cj ∈ Cj , j = 1, . . . ,m

}
,

umj=1Cj =
{
∩mj=1Cj , Cj ∈ Cj , j = 1, . . . ,m

}
.

Then tmj=1Cj and umj=1Cj are again VC-classes with the following dimensional bounds:{
V (tmj=1Cj)
V (umj=1Cj)

}
≤ c1V log(c2m),

where c1 = e/ [(e− 1) log 2], c2 = e/(log 2) and V =
∑m

j=1 Vj.



Chapter 2

Robust estimation based on a

single model

2.1 Introduction

We start this chapter with a more straightforward example to tell the drawbacks of im-

plementing MLE in practice.

Example 2.1.1 (Logit regression). We study a cohort of n patients with respective clinical

characteristics W1, . . . ,Wn with values in Rd. For the sake of simplicity we shall assume

that d is small compared to n even though this situation might not be the practical one.

We associate the label Yi = 1 to the patient i if she/he develops the disease D and Yi = −1

otherwise. The effect of the clinical characteristic W on the probability of developing the

disease D is given by the conditional distribution of Y given W : P [Y = y|W = w] which

is the quantity we want to estimate. A classical model for it is the logit one given by

P [Y = y|W = w] =
1

1 + exp [−y 〈w?, w〉]
∈ (0, 1) for y ∈ {−1,+1}, (2.1.1)

where w? is an unknown vector and 〈·, ·〉 the inner product of Rd. If we assume that

this model is true, the problem amounts to estimate w? on the basis of the observations

(Wi, Yi) for i ∈ {1, . . . , n}.

A common way of solving this problem is to use the MLE. In exponential families,

the MLE is known to enjoy many nice properties but it also suffers from several defects.

First of all, it is not difficult to see that it might not exist. This is in particular the case

when a hyperplane separates the two subsets of Rd given by W+ = {Wi, Yi = +1} and

W− = {Wi, Yi = −1}, i.e. when there exists a unit vector w0 ∈ Rd such that 〈w,w0〉 > 0

for all w ∈ W+ and 〈w,w0〉 < 0 for w ∈ W−. In this case, the conditional likelihood
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function at λw0 with λ > 0 can be written as

n∏
i=1

1

1 + exp [−λYi 〈w0,Wi〉]
=

n∏
i=1

1

1 + exp [−λ |〈w0,Wi〉|]
−→
λ→+∞

1,

hence the maximal value 1 is not reached. For a thorough study of the existence of the

MLE in the logit model we refer to Candès and Sur (2020) as well as the references therein.

Another issue with the use of the MLE lies in the fact that it is not robust and we shall

illustrate its instability in our simulation study. Robustness is nevertheless an important

property in practice since, going back to Example 2.1.1, it may happen that our database

contains a few corrupted data that correspond to mislabelled patients (some patients

might have developed a disease which is not D but has similar symptoms) or that the

relation (2.1.1) is only approximately true. A natural question arises: how can we provide

a suitable estimation of P [Y = y|W = w] despite the presence of possibly corrupted data

or a slight misspecification of the model?

This is the kind of issue we want to solve here. Our approach is not, however, restricted

to the logit model but applies more generally whenever the conditional distribution of Y

givenW belongs to a one-parameter exponential family as we described in Chapter 1. More

precisely, we shall work within the following statistical framework. We observe n pairs

of independent, typically non i.i.d., random variables X1 = (W1, Y1), . . . , Xn = (Wn, Yn)

(with Wi ∈ W and Yi ∈ Y for i ∈ {1, . . . , n}) and we want to estimate the n conditional

distributions Q?i (wi) of Yi when Wi = wi, i ∈ {1, . . . , n}, without any information about

the distributions PWi of the variables Wi which are unknown and can be completely

arbitrary. In order to do so, we introduce a statistical model for the Q?i (wi). We start

from an exponential family {Qθ, θ ∈ I} where I is an interval of R and consider the family

of conditional distributions {Qθ(w),θ ∈ Θ} where Θ is a given set of functions from W

to I. This provides a model for the n conditional distributions Q?i (wi) if we pretend that

Q?i (wi) takes the form Qθ?(wi) for some θ? ∈ Θ, i.e.

Q?i (wi) = Qθ?i with θ?i = θ?(wi) for i ∈ {1, . . . , n}. (2.1.2)

We shall do as if (2.1.2) were true although we do not assume it. We merely hope that

the set of conditional distributions Qθ?i induced by a suitable element θ? of Θ provides

a reasonably good approximation for the true conditional distributions Q?i (wi). Any esti-

mator θ̃ of θ? leads, by an application of (2.1.2), to an estimator Q
θ̃(wi)

of the conditional

distribution Q?i (wi). We measure the risk of such an estimator by a Hellinger-type dis-

tance between the conditional distributions Q?i (wi) and their estimators, integrated with

respect to the probabilities PWi (to be defined in the next section).

Given the model indexed by the elements of Θ, instead of estimating θ? by the max-

imum likelihood method as is commonly done, we use for this a ρ-estimator θ̂, whose
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definition and performance are described in great details in Baraud et al. (2017) and Ba-

raud and Birgé (2018). The purpose of this replacement is to avoid various drawbacks

connected to the use of the MLE:

— It may not exist;

— It is typically difficult to evaluate its performance in a non-asymptotic framework and

its analysis generally requires some knowledge or restrictions about the distributions of

the Wi;

— Its performance may be very bad when the model is not exact (misspecification, pres-

ence of outliers, contamination, etc.) as demonstrated by our simulations in Section 2.5.

On the contrary a ρ-estimator always exists and it enjoys the following properties.

• When the parameter set Θ is VC-subgraph with VC-dimension V , the non-asymptotic

risk of θ̂ is bounded by the sum of two terms : an approximation term reflecting the

distance between the model and the truth and an estimation term corresponding to

the risk bound one would get if the model were true. Moreover, this second term

only depends on V . This risk bound involves explicit constants and holds under the

only assumption that the data (W1, Y1), . . . , (Wn, Yn) are independent;

• the estimator θ̂ still performs well when the function θ? does not belong to Θ but

lies close enough to it;

• the estimator is robust: its performance remains stable when the data set X1 =

(W1, Y1), . . . , Xn = (Wn, Yn) is contaminated or contains outliers or when the statis-

tical model based the exponential family is only approximately correct.

• when the model is exact, the exponential family {Qθ, θ ∈ I} is suitably parametrized

and Θ is a Hölderian class of smoothness, the estimator θ̂ is rate optimal (up to a

logarithmic factor).

The work presented here is different from the study of ρ-estimators conducted in Ba-

raud and Birgé (2018)[Section 9] for estimating a regression function (seen as the parameter

of interest in the conditional distribution of Y given W ). In Baraud and Birgé (2018),

the authors studied a regression model in which the errors are assumed to be i.i.d., ho-

moscedastic with a density with respect to the Lebesgue measure. In the present paper,

the errors are typically heteroscedastic, independent but not i.i.d. and they may not admit

a density with respect to the Lebesgue measure. This is the case in the logistic and Poisson

regression settings for example. Actually, new results had to be established in order to

analyze further the behaviour of ρ-estimators in the statistical setting we consider here.

The proof of our main result combines the theory of ρ-estimation — see Baraud et al.

(2017) and Baraud and Birgé (2018) — and an original result that establishes the fact
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that the family of functions on W × Y of the form

(w, y) 7→ S(y)η(w)−A(η(w)) with η ∈ Γ

is VC-subgraph when S is an arbitrary function on Y , A a convex function defined on an

interval I of positive length and Γ a VC-subgraph class of functions defined on W with

values in I. The proof of our main result also relies on an upper bound with explicit

constants (see Theorem 2.6.1) on the expectation of the supremum of an empirical process

over a VC-class of functions. Since we are not aware of such a result (with explicit

constants) in the literature, this bound can be of independent interest.

Besides our theoretical guarantees on the performance of the estimator θ̂, we carry out

a simulation study in order to compare it with the MLE and median-based estimators.

The simulation study addresses both the situations where the data are generated from the

model and when it is contaminated or contains an outlier. To our knowledge, it is the first

time that ρ-estimators are implemented numerically and their performance is studied on

simulated data.

This remainder of this chapter is organized as follows. We describe our statistical

framework in Section 2.2. The construction of the estimator and our main result about

its risk are presented in Section 2.3. We also explain why the deviation inequality we

derive guarantees the desired robustness property of the estimator. Uniform risk bounds

over Hölderian classes are established in Section 2.4 provided that the exponential family

involved in the model is suitably parametrized. We also show that, without such a suitable

parametrization, the minimax rates may differ from the usual ones established for an

homoscedastic Gaussian regression as described by our Example 1.0.1. Section 2.5 is

devoted to the description of our algorithm and the simulation study. Our bound on the

expectation of the supremum of an empirical process over a VC-subgraph class can be

found in Section 2.6 as well as its proof. Section 2.7 is devoted to the other proofs of this

chapter.

2.2 The statistical setting

Let us recall that we observe n pairs of independent, but not necessarily i.i.d., random

variables X1 = (W1, Y1), . . . , Xn = (Wn, Yn) with values in a measurable product space

(X ,X ) = (W × Y ,W ⊗ Y) and we assume that, for each i ∈ {1, . . . , n}, the conditional

distribution of Yi given Wi = wi exists and is given by the value at wi of a measurable

function Q?i from (W ,W) to the set T of all probabilities on (Y ,Y). We equip T with

the Borel σ-algebra T associated to the total variation distance (which induces the same

topology as the Hellinger one defined by (1.3.2)). With this choice of T , the mapping

w 7→ h2(Q?i (w), Q) on (W ,W) is measurable whatever the probability Q ∈ T and i ∈
{1, . . . , n}.



2.2 The statistical setting 25

Apart from independence of the Wi, 1 ≤ i ≤ n, we assume nothing about their

respective distributions PWi which can therefore be arbitrary.

Let Q ⊂ T be an exponential family on the measured space (Y ,Y, ν) where ν is an

arbitrary σ-finite (positive) measure. We assume that Q = {Qθ, θ ∈ I} is indexed by a

natural parameter θ that belongs to some interval I ⊂ R such that I̊ 6= ∅. This means

that, for all θ ∈ I, the distribution Qθ admits a density (with respect to ν) of the form

qθ : y 7→ eS(y)θ−A(θ) with A(θ) = log

[∫
Y
eθS(y)dν(y)

]
, (2.2.1)

where S is a real-valued measurable function on (Y ,Y) which does not coincide with

a constant ν-a.e. We also recall that the function A is infinitely differentiable on I̊ and

strictly convex on I. It is of course possible to parametrize Q in a different way (i.e. with a

non-natural parameter) by performing a variable change γ = v(θ) where v is a continuous

and strictly monotone function on I. We shall see in Section 2.3.3 that our main result

remains unchanged under such a transformation and we therefore choose, for the sake of

simplicity, to introduce it under a natural parametrization first.

Given a class of functions Θ from W into I, we presume that there exists θ? in Θ

such that the conditional distribution Q?i (wi) is of the form Qθ?(wi) for all i ∈ {1, . . . , n}
and wi ∈ W . We refer to θ? as the regression function. Even though our estimator is

based on these assumptions, we should keep in mind that our statistical model might

be misspecified: the conditional distributions Q?i (wi) might not be exactly of the form

Qθ?(wi), the set Θ might not contain θ? or some observations might be outliers. It will

follow from our risk bounds as described by Theorem 2.3.1 that such misspecifications

result in an additional term in the risk corresponding to the approximation error between

the truth and the model. This term is small when our model provides a good enough

approximation of the truth.

For i ∈ {1, . . . , n}, let QW be the set of all measurable mappings (conditional probabil-

ities) from (W ,W) into (T , T ). We set QW = Qn
W so that the n-tuple Q? = (Q?1, . . . , Q

?
n)

belongs to QW as well as the n-tuple Qθ = (Qθ, . . . , Qθ) where Qθ ∈ QW denotes the

mapping w 7→ Qθ(w) when θ is a measurable function from W into I. We endow the space

QW with the Hellinger-type (pseudo) distance h defined as follows. For Q = (Q1, . . . , Qn)

and Q′ = (Q′1, . . . , Q
′
n) in QW ,

h2(Q,Q′) = E

[
n∑
i=1

h2
(
Qi(Wi), Q

′
i(Wi)

)]
(2.2.2)

=

n∑
i=1

∫
W
h2
(
Qi(w), Q′i(w)

)
dPWi(w).

In particular, h(Q,Q′) = 0 implies that for all i ∈ {1, . . . , n}, Qi = Q′i PWi-a.s.
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On the basis of the observations X1, . . . , Xn, we build an estimator θ̂ of θ? with values

in Θ and evaluate its performance by the quantity

h2(Q?,Q
θ̂
) =

n∑
i=1

∫
W
h2
(
Q?i (w), Q

θ̂(w)

)
dPWi(w).

When P is the distribution of a random variable (W,Y ) ∈ W × Y we write it as

P = Q·PW where PW is the marginal distribution of W and Q the conditional distribution

of Y given W . For P = Q · PW and P ′ = Q′ · PW the squared Hellinger distance between

P and P ′ is written as

h2(P, P ′) =

∫
W
h2
(
Q(w), Q′(w)

)
dPW (w).

Setting, for i ∈ {1, . . . , n} and θ a function from W to I, P ?i = Q?i ·PWi and Pi,θ = Qθ ·PWi

we deduce that

h2(Q?,Qθ) =

n∑
i=1

h2 (P ?i , Pi,θ)

so that h2(Q?,Qθ) is equal to h2(P?,Pθ) =
∑n

i=1 h
2 (P ?i , Pi,θ) where P? = ⊗ni=1P

?
i is

the true distribution of the observed data X = (X1, . . . , Xn) while Pθ =
⊗n

i=1 Pi,θ =⊗n
i=1(Qθ · PWi) is the joint distribution of independent random variables (W ′i , Y

′
i ) with

1 ≤ i ≤ n for which the conditional distribution of Y ′i given W ′i = wi is given by Qθ(wi) ∈ Q

for all i. This shows that the quantity h(Q?,Qθ) = h(P?,Pθ) may also be interpreted as

a distance between the probability distributions P? and Pθ and not only as a (pseudo)

distance between the conditional ones Q? and Qθ. More generally, given two measurable

functions θ,θ′ from W to I, the quantity h(Qθ,Qθ′) can also be written as h(Pθ,Pθ′).

Note that, unlike Q
θ̂
, P

θ̂
is not an estimator (of P?) since it depends on the marginal

distributions PW1 , . . . , PWn which are unknown.

2.2.1 Examples

Let us present here some typical statistical models to which our approach applies.

Example 2.2.1 (Homoscedastic Gaussian regression with known variance). Given n in-

dependent random variables W1, . . . ,Wn with values in W , let

Yi = θ?(Wi) + σεi for all i ∈ {1, . . . , n},

where the εi are i.i.d. standard real-valued Gaussian random variables, σ is a known

positive number and θ? an unknown regression function with values in I = R. In this

case, Q is the set of all Gaussian distributions with variance σ2 and for all θ ∈ I = R,

Qθ = N (θ, σ2) has a density with respect to ν = N (0, σ2) on (Y ,Y) = (R,B(R)) which is

of the form (2.2.1) with A(θ) = θ2/(2σ2) and S(y) = y/σ2 for all y ∈ R.
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Example 2.2.2 (Binary regression). The pairs of random variables (Wi, Yi) with i ∈
{1, . . . , n} are independent with values in W × {0, 1} and

P [Yi = y|Wi = wi] =
exp [yθ?(wi)]

1 + exp [θ?(wi)]
for all y ∈ {0, 1} and wi ∈ W . (2.2.3)

This means that the conditional distribution of Yi given Wi = wi is Bernoulli with mean

(1 + exp [−θ?(wi)])−1 for some regression function θ? with values in I = R. This model

is equivalent to the logit one presented in Example 2.1.1 by changing Yi ∈ {0, 1} into

Y ′i = 2Yi − 1 ∈ {−1, 1} for all i. The exponential family Q consists of the Bernoulli

distribution Qθ with mean 1/[1 + e−θ] ∈ (0, 1) and θ ∈ I = R. For all θ ∈ R, Qθ admits

a density with respect to the counting measure ν on Y = {0, 1} of the form (2.2.1) with

A(θ) = log(1 + eθ) and S(y) = y for all y ∈ Y .

Example 2.2.3 (Poisson regression). The exponential family Q is the set of all Poisson

distributions Qθ with mean eθ, θ ∈ I = R. Taking for ν the Poisson distribution with

mean 1, the density of Qθ with respect to ν takes the form (2.2.1) with S(y) = y for all

y ∈ N and A(θ) = eθ − 1 for all θ ∈ R. The conditional distribution of Yi given Wi = wi

is presumed to be Poisson with mean exp [θ?(wi)] for some regression function θ? with

values in I = R.

Example 2.2.4 (Exponential multiplicative regression). The random variables Wi are

independent and

Yi =
Zi

θ?(Wi)
for all i ∈ {1, . . . , n} (2.2.4)

where the Zi are i.i.d. with exponential distribution of parameter 1 and independent of

the Wi. The conditional distribution of Yi given Wi = wi is then exponential with mean

1/θ?(wi) ∈ I = (0,+∞). Exponential distributions parametrized by θ ∈ I admit densities

with respect to the Lebesgue measure on R+ of the form (2.2.1) with S(y) = −y for all

y ∈ Y = R+ and A(θ) = − log θ.

2.3 The main results

2.3.1 The estimation procedure

As mentioned in the introduction, our approach is based on ρ-estimation. The basic ideas

that underline the construction of these estimators have been explained in Section 1.4.2

and more details can be found in Baraud and Birgé (2018). Let ψ be the function defined

on [0,+∞] by

ψ(x) =
x− 1

x+ 1
for x ∈ [0,+∞) and ψ(+∞) = 1. (2.3.1)



28 Robust estimation based on a single model

Let us set, for θ ∈ Θ, qθ(Xi) = qθ(Wi)(Yi), where qθ is given by (2.2.1) and, in order

to avoid measurability issues, let us restrict ourselves to those θ belonging to a finite or

countable subset Θ of Θ. We then introduce the function

T(X,θ,θ′) =
n∑
i=1

ψ

(√
qθ′(Xi)

qθ(Xi)

)
for θ,θ′ ∈ Θ, (2.3.2)

with the conventions 0/0 = 1 and a/0 = +∞ for all a > 0. We set

υ(X,θ) = sup
θ′∈Θ

T(X,θ,θ′) for all θ ∈ Θ (2.3.3)

and choose θ̂ = θ̂(X) as any (measurable) element of the random (and non-void) set

E (X) =

{
θ ∈ Θ such that υ(X,θ) ≤ inf

θ′∈Θ
υ(X,θ′) +

κρ
25

}
(2.3.4)

with κρ = 280
√

2 + 74, so that 18 < κρ/25 < 18.8. The random variable θ̂(X) is our

estimator of the regression function θ? and Q
θ̂

= (Q
θ̂
, . . . , Q

θ̂
).

Note that the construction of the estimator is only based on the choices of the expo-

nential family given by (2.2.1) and the subset Θ of Θ. In particular, the estimator does

not depend on the distributions PWi of the Wi which may therefore be unknown.

The fact that we build our estimator on a finite or countable subset Θ of Θ is not

restrictive as we shall see. Besides, this assumption is consistent with the practice of

calculating an estimator on a computer that can handle a finite number of values only.

Let us mention that similar results could be established for the ρ-estimator associated

to the alternative choice ψ(x) = (x−1)/
√
x2 + 1. Nevertheless, the risk bounds we get for

this choice of ψ involve numerical constants that are larger than those we establish here

for ψ(x) = (x− 1)/(x+ 1). We therefore focus on this latter choice of ψ.

2.3.2 The main assumption and the performance of θ̂

Our main assumption is stated as follows.

Assumption 2.3.1. The class of functions Θ is VC-subgraph on W with dimension not

larger than V ≥ 1.

We refer to Section 1.5 for the definition of VC-subgraph classes and their properties.

In this chapter, we mainly use the facts that Assumption 2.3.1 is satisfied when Θ is a

linear space V with finite dimension d ≥ 1, in which case V = d+ 1 by Proposition 1.5.1

and that it is also satisfied when Θ is of the form {F (β), β ∈ V} where F is a monotone

function on the real-line. In this latter case, the VC-dimension of Θ is not larger than

that of V according to Proposition 1.5.2. We set

c1 = 150, c2 = 1.1× 106, c3 = 5014 (2.3.5)
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and, for Q ∈ QW and A ⊂ QW ,

h (Q,A) = inf
Q′∈A

h
(
Q,Q′

)
.

The following theorem provides a probabilistic bound for the distance between our esti-

mator Q
θ̂

and Q?.

Theorem 2.3.1. Let ξ > 0. Under Assumption 2.3.1, whatever the conditional probabil-

ities Q? = (Q?1, . . . , Q
?
n) of the Yi given Wi and the distributions of the Wi, the estimator

Q
θ̂

defined in Section 2.3.1 satisfies, with a probability at least 1− e−ξ,

h2
(
Q?,Q

θ̂

)
≤ c1h

2(Q?,Q) + c2V
[
9.11 + log+

( n
V

)]
+ c3 (1.5 + ξ) (2.3.6)

where Q = {Qθ = (Qθ, . . . , Qθ), θ ∈ Θ} and log+ = max(0, log).

The constants c1, c2 and c3 are numerical constants. They are independent of the

choice of the exponential family. When the model Q is exact, the bound we get only

depends on the VC-dimension of Θ.

It is clear that (2.3.6) also holds true for Q = {Qθ, θ ∈ Θ} in place of Q when Q is

dense in Q with respect to the Hellinger-type distance h. This is the case when Θ is dense

in Θ for the topology of pointwise convergence. We do not comment on our result any

further in this direction and rather refer to Baraud and Birgé (2018) Section 4.2. From

now on, we assume for the sake of simplicity that Q is dense in Q, doing as if Θ = Θ. In

the remaining part of this section, C will denote a positive numerical constant that may

vary from line to line.

Let us now rewrite (2.3.6) in a slightly different form. We have seen in Section 2.2

that the quantity h (Q?,Qθ) with θ ∈ Θ, which involves the conditional probabilities of

P? and Pθ with respect to the Wi, can also be interpreted in terms of the Hellinger(-type)

distance between these two product probabilities. Inequality (2.3.6) therefore implies that

P
[
Ch2

(
P?,P

θ̂

)
> h2(P?,P ) + V

[
1 + log+

( n
V

)]
+ ξ
]
≤ e−ξ, (2.3.7)

where P = {Pθ, θ ∈ Θ}. Integrating this inequality with respect to ξ > 0 leads to the

following risk bound for our estimator θ̂

CE
[
h2
(
P?,P

θ̂

)]
≤ h2(P?,P ) + V

[
1 + log+

( n
V

)]
. (2.3.8)

In order to comment upon (2.3.8), let us start with the ideal situation where P? belongs

to P , i.e. P? = Pθ? for some θ? ∈ Θ, in which case (2.3.8) leads to

CE
[
h2
(
Pθ? ,Pθ̂

)]
≤ V

[
1 + log+

( n
V

)]
. (2.3.9)

Up to the logarithmic factor, the right-hand side of this inequality is of the expected order

of magnitude V for the quantity h2(Pθ? ,Pθ̂): in typical situations V is of the same order

as the number of parameters that are used to parametrize Θ.
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When the true distribution P? is of the form Pθ? but the regression function θ? does

not belong to Θ, or when the conditional distributions of the Yi given Wi do not belong to

our exponential family, inequality (2.3.8) shows that, as compared to (2.3.9), the bound

we get involves the approximation term h2(P?,P ) that accounts for the fact that our

statistical model is misspecified. However, as long as this quantity remains small enough

as compared to V
[
1 + log+(n/V )

]
, our risk bound will be of the same order as that

given by (2.3.9) when the model is exact. This property accounts for the stability of our

estimation procedure under misspecification. In order to be more specific, let us assume

that

P? =

n⊗
i=1

[
(1− αi)Pi,θ + αiRi

]
and

n∑
i=1

αi ≤
n

2
(2.3.10)

where θ ∈ Θ, Ri is an arbitrary distribution on X and αi a number in [0, 1] for all

i ∈ {1, . . . , n}. Such a distribution P? allows us to model different form of robustness

including robustness to the presence of contaminating data as well as outliers. In the

case of contamination, PWi = PW , αi = α ∈ (0, 1/2], Ri = R 6= Pθ = Qθ · PW for all

i ∈ {1, . . . , n} and one observes an n-sample a portion (1−α) of which is drawn according

to a distribution Pθ that belongs to our model P = {Pθ = Qθ · PW , θ ∈ Θ} while the

remaining part of the data is drawn according to a contaminating distribution R. In the

second case, the data set contains the outliers {ai, i ∈ K} for some subset K ⊂ {1, . . . , n}
with K 6= ∅ so that P? is of the form (2.3.10) with αi = 1li∈K for all i ∈ {1, . . . , n} and

Ri = δai for all i ∈ K. In all cases, using the classical inequality h2 ≤ D where D denotes

the total variation distance between probabilities, we get

h2(P?,P ) ≤ h2(P?,Pθ) ≤
n∑
i=1

D(P ?i , Pθ) ≤
n∑
i=1

αi, (2.3.11)

which means that whenever
∑n

i=1 αi remains small as compared to V (1 + log+(n/V )), the

performance of the estimator remains almost the same as if P? were equal to Pθ. The

estimator θ̂ therefore possesses some stability properties with respect to contamination

and the presence of outliers.

2.3.3 From a natural to a general exponential family

So far we focused on an exponential family Q parametrized by its natural parameter.

However statisticians often write exponential families Q under the general form Q =

{Rγ = rγ · ν, γ ∈ J} with

rγ : y 7→ eu(γ)S(y)−B(γ) for γ ∈ J. (2.3.12)

In (2.3.12), J denotes a (non-degenerate) interval of R and u a continuous and strictly

monotone function from J onto I so that B = A ◦ u. In the exponential family Q =
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{Rγ , γ ∈ J} = {Qθ, θ ∈ I}, the probabilities Rγ are associated to the probabilities Qθ by

the formula Rγ = Qu(γ).

With this new parametrization, we could alternatively write our statistical model Q
as

Q =
{
Rγ = (Rγ , . . . , Rγ), γ ∈ Γ

}
(2.3.13)

where Γ is a class of functions γ from W into J . Starting from such a statistical model

and presuming that Q? = Rγ? for some function γ? ∈ Γ, we can build an estimator γ̂

of γ? as follows: given a finite or countable subset Γ of Γ we set γ̂ = u−1(θ̂) where θ̂

is any estimator obtained by applying the procedure described in Section 2.3.1 under the

natural parametrization of the exponential family Q and using the finite or countable

model Θ = {θ = u ◦ γ, γ ∈ Γ}.
Since our modelQ for the conditional probabilities Q? is unchanged (only its parametri-

sation changes), it would be interesting to establish a result on the performance of the

estimator Rγ̂ = Q
θ̂

which is independent of the parametrization. A nice feature of the

VC-subgraph property lies in the fact that by Proposition 1.5.2, it is preserved by composi-

tion with a monotone function: since u is monotone, if Γ is VC-subgraph with dimension

not larger than V , so is Θ and our Theorem 2.3.1 applies. The following corollary is

therefore straightforward.

Corollary 2.3.1. Let ξ > 0. If the statistical model Q is under the general form (2.3.13)

and Γ is VC-subgraph with dimension not larger than V ≥ 1, whatever the conditional

probabilities Q? = (Q?1, . . . , Q
?
n) of the Yi given Wi and the distributions of the Wi, the

estimator Rγ̂ satisfies with a probability at least 1− e−ξ,

h2
(
Q?,Rγ̂

)
≤ c1h

2(Q?,Q) + c2V
[
9.11 + log+

( n
V

)]
+ c3 (1.5 + ξ) (2.3.14)

where Q = {Rγ , γ ∈ Γ}. In particular,

E
[
h2
(
Q?,Rγ̂

)]
≤ C ′

[
h2(Q?,Q) + V

[
1 + log+

( n
V

)]]
, (2.3.15)

for some numerical constant C ′ > 0.

A nice feature of our approach lies in the fact that (2.3.14) holds for all exponential fam-

ilies simultaneously and all ways of parametrizing them. In particular, the VC-dimension

associated to the model Q is intrinsic since it is independent of the way it is parametrized.

2.4 Uniform risk bounds

Throughout this section, we assume that the Wi are i.i.d. with common distribution PW

and that Q? = Rγ? = (Rγ? , . . . , Rγ?) belongs to a statistical model of the (general) form

given by (2.3.13) where Γ is a class of smooth functions. More precisely, we assume that
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for some α ∈ (0, 1] and M > 0, Γ = Hα(M) is the set of functions γ on W = [0, 1] with

values in J that satisfy the Hölder condition

|γ(x)− γ(y)| ≤M |x− y|α for all x, y ∈ [0, 1] (2.4.1)

and denote by Q[Hα(M)] the corresponding family of conditional distributions Q? = Rγ? .

Because of our equidistribution assumption and the form of our loss function, the loss

h2
(
Q?,Rγ̃

)
takes the form nh2

(
Q?, Rγ̃

)
whatever the estimator γ̃.

Our aim is both to estimate Rγ? , or equivalently Rγ? , under the assumption that

γ? ∈ Hα(M) and to evaluate the minimax risk over Q[Hα(M)], i.e. the quantity

Rn(Hα(M)) = inf
γ̃

sup
γ?∈Hα(M)

E
[
h2
(
Rγ? , Rγ̃

)]
(2.4.2)

with

h2
(
Rγ , Rγ′

) def
=

∫
W
h2
(
Rγ(w), Rγ′(w)

)
dPW (w).

where the infimum runs among all estimators γ̃ of γ? based on the n-sample X1, . . . , Xn.

2.4.1 Uniform risk bounds over Hölder classes

It is common to parametrize the exponential family Q = {Rγ , γ ∈ J} by the means of

the distributions, i.e. with γ =
∫
Y ydRγ(y). This is typically the case for the Bernoulli,

Gaussian and Poisson families for example. In such a case, one can write the model in a

heteroscedastic regression form:

Yi = γ?(Wi) + σ
(
γ?(Wi)

)
εi for all i ∈ {1, . . . , n}, (2.4.3)

where σ2
(
γ?(Wi)

)
is the conditional variance of Yi and the εi errors which, conditionally

to the Wi are centred and with variance 1. As mentioned in Chapter 1, many authors

have used this form and its similarity to the classical Gaussian regression framework given

in Example 2.2.1 to derive estimators with performances that mimic those of the least

squares estimators in the Gaussian case. In particular, when γ? ∈ Hα(M), the minimax

rate for Gaussian regression is n−2α/(2α+1) and, for the more general situation described

in (2.4.3) various authors established similar rates for their estimators by using the L2-loss

(under somewhat restrictive assumptions as mentioned in Chapter 1).

With our Hellinger-type loss, we also show in this section that n−2α/(2α+1) is the

minimax rate for estimating Rγ? with γ? ∈ Hα(M). However, this result holds when the

parametrization of the exponential family satisfies some suitable conditions. When these

conditions are not met, the minimax rate may be different as we shall see, even when the

exponential family is parametrized by the mean as it is commonly done in the literature.

In any case, our estimator is proven to achieve the minimax rate up to a logarithmic factor.

Let us first introduce the following assumptions on the parametrization.



2.4 Uniform risk bounds 33

Assumption 2.4.1. There exists a constant κ > 0 such that

h(Rγ , Rγ′) ≤ κ
∣∣γ − γ′∣∣ for all γ, γ′ ∈ J (2.4.4)

and for a (non-degenerate) compact interval K ⊂ J , there exists a constant cK > 0 such

that

h(Rγ , Rγ′) ≥ cK
∣∣γ − γ′∣∣ for all γ, γ′ ∈ K. (2.4.5)

This assumption is in particular satisfied in the following situation.

Proposition 2.4.1. Let Q = {Qθ, θ ∈ I} be a natural exponential family defined

by (2.2.1) where I is an open interval. If the function v satisfies

v′(θ) =

√
A′′(θ)

8
> 0 for all θ ∈ I, (2.4.6)

when parametrized by γ = v(θ), the exponential family Q = {Rγ = Qv−1(γ), γ ∈ J}
satisfies Assumption 2.4.1 with κ = 1 for all choices of a (non-trivial) compact subset K

of J .

It is well-known that the functions vj(θ), j ∈ {1, 2, 3, 4} given by

v1(θ) =
θ

σ
√

8
, v2(θ) =

1√
2

arcsin

(
1√

1 + e−θ

)
, v3(θ) =

1√
2
eθ/2 on R

and v4(θ) = 8−1/2 log θ on (0,+∞) satisfy (2.4.6) in the cases of Examples 2.2.1, 2.2.2,

2.2.3 and 2.2.4 respectively.

As a consequence of Assumption 2.4.1 we derive by integration with respect to PW

that, for all functions γ,γ ′ on W with values in J ,

h2
(
Rγ , Rγ′

)
≤ κ2

∥∥γ − γ ′∥∥2

2
= κ2

∫
W

(
γ − γ ′

)2
dPW , (2.4.7)

which leads to the following uniform risk bound for the performance of the ρ-estimator Rγ̂

when γ? ∈ Hα(M). Note that this upper bound holds without any assumption on PW .

Proposition 2.4.2. Assume that (2.4.4) is satisfied. Let α ∈ (0, 1], M > 0 and S be the

set of functions with values in the interval J which are piecewise constant on each element

of a partition {Ij , j ∈ {1, . . . , D}} of [0, 1] into D ≥ 1 intervals of lengths 1/D. For

D = D(α,M, n) = min

{
k ∈ N,

(
κ2M2n

1 + log n

) 1
1+2α

≤ k

}
,

the ρ-estimator γ̂ based on (any) countable and dense subset S of S (with respect to the

supremum norm) satisfies

sup
γ?∈Hα(M)

E
[
h2
(
Rγ? , Rγ̂

)]
≤ 2C ′

((κM)1/α log(en)

n

) 2α
1+2α

+
3 log(en)

2n


where C ′ is the numerical constant appearing in (2.3.15).
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To show that this rate is optimal under Assumption 2.4.1 and the ρ-estimator minimax

(up to a logarithmic factor) when the distribution of the Wi can be arbitrary, let us assume

that PW is the uniform distribution on W = [0, 1]. It then follows from (2.4.5) that there

exists a constant cK > 0 such that for all functions γ,γ ′ on W with values in K,

h2
(
Rγ , Rγ′

)
≥ c2

K

∥∥γ − γ ′∥∥2

2
.

Assumption 2.4.1 makes the Hellinger-type distance h
(
Rγ , Rγ′

)
and the L2(PW )-one be-

tween γ and γ ′ comparable, at least when γ and γ ′ take their values in K.

Proposition 2.4.3. Let α ∈ (0, 1] and M > 0. If PW is the uniform distribution on [0, 1]

and Assumption 2.4.1 is satisfied for a compact interval K of length 2L > 0, then

Rn(Hα(M)) ≥
c2
K

48

( 3M1/α

22α+4+1/ακ2n

) 2α
1+2α ∧(

M2

4

)∧
L

2

 .
This result says that in all exponential families for which Assumption 2.4.1 is satis-

fied, the order of magnitude of the minimax rate over Hα(M) cannot be smaller than

n−2α/(2α+1), at least when PW is the uniform distribution on [0, 1].

2.4.2 A counterexample

Without a suitable parametrization of the exponential family Q = {Qθ, θ ∈ I} like that

provided by Proposition 2.4.1, the minimax rate of convergence ofRn(Hα(M)) may be dif-

ferent from n−2α/(2α+1) as shown by the following simple example of Poisson distributions

parametrized by their means.

Proposition 2.4.4. Let α ∈ (0, 1], M > 0, PW be the uniform distribution on [0, 1] and

Q the set of Poisson distributions Rγ with means γ ∈ J = (0,+∞). For all n ≥ 1,

Rn(Hα(M)) ≥ (1− e−1)

144

( 3M1/α

24+α+3/αn

) α
1+α ∧M

8

∧(
1 +

√
3

2

) .
In the Poisson case with this parametrization, the rate for Rn(Hα(M)) is therefore

at least of order n−α/(1+α), hence much slower than the one we would get if the family

would be properly parametrized as indicated in the previous section, namely n−2α/(2α+1).

We conclude that, depending on the exponential family, the parametrization by the mean

may lead to different minimax rates. Nevertheless, as shown in the following proposition,

the ρ-estimator still achieves the optimal rate (up to a logarithmic factor) in this case.

Proposition 2.4.5. Let α ∈ (0, 1], M > 0 and S be the set of functions with values in J =

(0,+∞) which are piecewise constant on each element of a partition {Ij , j ∈ {1, . . . , D}}
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of [0, 1] into D ≥ 1 intervals of lengths 1/D. For

D = D(α,M, n) = min

{
k ∈ N,

(
Mn

2 log(en)

) 1
1+α

≤ k

}
,

the ρ-estimator γ̂ based on (any) countable and dense subset S of S (with respect to

supremum norm) satisfies

sup
γ?∈Hα(M)

E
[
h2
(
Rγ? , Rγ̂

)]
≤ 2C ′

((M/2)1/α log(en)

n

) α
1+α

+
3 log(en)

2n


where C ′ is the numerical constant appearing in (2.3.15).

2.5 Calculation of ρ-estimators and simulation study

In this section, we study the performance of the ρ-estimator θ̂ of the regression function

θ? in the cases of Examples 2.2.2, 2.2.3, 2.2.4 which correspond respectively to the logit

regression, Poisson and exponential distributions parametrized by their natural parame-

ters.

The models

The function space Θ consists of functions θ on W = R5 with values in I and for w =

(w1, . . . , w5) ∈ W the value θ(w) has the following form:

— In the Bernoulli model, I = R and

θ(w) = η0 +

5∑
j=1

ηjwj with η = (η0, . . . , η5) ∈ R6. (2.5.1)

— In the Poisson model, I = R and

θ(w) = log log

1 + exp

η0 +

5∑
j=1

ηjwj

 with η = (η0, . . . , η5) ∈ R6. (2.5.2)

— In the exponential model, I = (0,+∞) and

θ(w) = log

1 + exp

η0 +

5∑
j=1

ηjwj

 with η = (η0, . . . , η5) ∈ R6. (2.5.3)

For all these cases, the set Θ is VC-subgraph with dimension not larger than 7. For the

calculation of the estimator on a computer, we do as if Θ were countable and consequently

take Θ = Θ.
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The competitors

We compare the performance of θ̂ to that of the MLE and, in cases of Examples 2.2.3

and 2.2.4, to a median-based estimator θ̂0. The estimator θ̂0 is defined as any minimizer

over Θ of the criterion

θ 7→
n∑
i=1

|Yi −m(θ(Wi))| (2.5.4)

where m(θ) is the median (or an approximation of it) of the distribution Qθ for θ ∈ I.

We take m(θ) = eθ + 1/3 − 0.02e−θ for the Poisson distribution with parameter eθ and

m(θ) = (log 2)/θ for the exponential one with parameter θ.

In the examples we have chosen, the log-likelihood function is concave with respect

to the parameter η ∈ R6 and the MLE is calculated using the stats4 R-package. The

criterion (2.5.4) is not convex with respect to the parameter η and the median-based

estimator is calculated using the cmaes R-package based on the CMA (Covariance Matrix

Adaptation) method which turns out to be more stable than the gradient descent method.

For more details about the CMA method, we refer the reader to Hansen (2016).

2.5.1 Calculation of the ρ-estimator

As mentioned in Section 2.3, we call ρ-estimator θ̂ = θ̂(X) any element of the random set

E (X) =

{
θ ∈ Θ such that υ(X,θ) ≤ inf

θ′∈Θ
υ(X,θ′) +

κρ
25

}
,

where

υ(X,θ) = sup
θ′∈Θ

T(X,θ,θ′) = sup
θ′∈Θ

n∑
i=1

ψ

(√
qθ′(Xi)

qθ(Xi)

)
for all θ ∈ Θ.

To calculate the ρ-estimator θ̂ we use the iterative Algorithm 1 described below. We

stop it either when the condition υ(X, θ̂) ≤ 1 is met or otherwise after L = 100 iterations.

Since

υ(X,θ) = sup
θ′∈Θ

T(X,θ,θ′) ≥ T(X,θ,θ) = 0,

the quantity infθ∈Θ υ(X,θ) is nonnegative and when υ(X, θ̂) ≤ 1,

υ(X, θ̂) ≤ inf
θ∈Θ

υ(X,θ) + 1 ≤ inf
θ∈Θ

υ(X,θ) +
κρ
25
,

which shows that θ̂ is a ρ-estimator. The constant 1 has nothing magical, we just believe

that the closer υ(X, θ̂) to infθ∈Θ υ(X,θ) the better θ̂ performs. The condition υ(X, θ̂) ≤
1 can therefore be seen as an early stopping time that guarantees that the estimator θ̂
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almost minimizes θ 7→ υ(X,θ) over Θ. In all our simulations, (including the cases when

we stop after 100 iterations), the resulting estimators θ̂ satisfy

υ(X, θ̂) ≤ κρ
25

hence υ(X, θ̂) ≤ inf
θ∈Θ

υ(X,θ) +
κρ
25

and are therefore ρ-estimators.

The algorithm is based on the following heuristic that we describe in the situation

where the data are i.i.d. with distribution P ? = Pθ? for the sake of simplicity. It is proven

in Proposition 14 of Baraud (2021), that T(X,θ0,θ1) is a good test statistic for testing

H0 : “Pθ0 is closer (in Hellinger distance) to P ? than Pθ1” against H1 : “Pθ1 is closer

to P ? than Pθ0”. More precisely, with a probability close to 1, T(X,θ0,θ1) > 0 when

h2(Pθ1 , P
?)� h2(Pθ0 , P

?) and 1/n� h2(Pθ0 , P
?) while the test statistic T(X,θ0,θ1) < 0

when h2(Pθ0 , P
?) � h2(Pθ1 , P

?) and 1/n � h2(Pθ1 , P
?). Note that if h2(Pθ, P

?) ≈ 1/n

for both θ = θ0 and θ = θ1, the two distributions Pθ0 and Pθ1 are both close to P ? and

choosing between θ0 and θ1 is unimportant. Because of these properties, if we start from

an initial point θ0 that is not too far from θ? and if θ1 is such that T(X,θ0,θ1) > 0, it

is likely that one of the two following situations occur:

— the quantity h2(Pθ1 , P
?) is smaller or at least of comparable order as h2(Pθ0 , P

?);

— h2(Pθ1 , P
?) is of order 1/n.

In any case, either θ1 improves on θ0 or, at least, performs similarly. We can then repeat

the test starting now from θ1 and looking from some θ2 such that T(X,θ1,θ2) > 0 and

so on.

Since ρ-estimators are not unique, there is no reason for the algorithm to converge to

a point and we are not expecting the algorithm to do so. Since the algorithm is based on

the test statistic T(X,θ,θ′), that provides a robust test between the probabilities Pθ and

Pθ′ , as explained above, we expect the algorithm to get closer to the truth as we iterate

it. As we shall see, only few iterations are in general necessary to meet the condition

υ(X, θ̂) ≤ 1 and when it is not the case, the estimator obtained after L = 100 iterations

provides a suitable estimation of the parameter. To find a maximizer of the mapping

θ 7→ T(X, θ̂,θ) at each iteration, we use the cmaes R-package.

To intialize the process we choose the value of θ0 as follows. In the case of Bernoulli

regression, we take for θ0 the function on Rd that minimizes on Θ the penalized criterion

(that can be found in the e1071 R-package)

θ 7→ 10

n∑
i=1

(1− (2Yi − 1)θ(Wi))+ +
1

2

d∑
i=1

|θ(ei)− θ(0)|2 ,

where e1, . . . , ed denotes the canonical basis of Rd (with d = 6). The e1071 R-package is

used for the purpose of classifying the Yi from the Wi. For the other exponential families

we choose for θ0 the median-based estimator θ̂0.
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Algorithm 1 Searching for the ρ-estimator

Input:

X = (X1, · · · , Xn): the data

θ0: the starting point

Output: θ̂

1: Initialize l = 0, θ̂ = θ0;

2: while υ(X, θ̂) > 1 and l ≤ L do

3: l← l + 1

4: θ1 = argmax
θ∈Θ

T(X, θ̂,θ)

5: θ̂ ← θ1

6: end while

7: Return θ̂.

2.5.2 When the model is exact

Throughout this section, we assume that the data X1, . . . , Xn are i.i.d. with distribution

Pθ? = Qθ? · PW , θ? ∈ Θ, and we estimate the risk

Rn(θ̃) = E
[
h2
(
Pθ? , Pθ̃

)]
= E

[∫
W
h2
(
Qθ?(w), Qθ̃(w)

)
dPW (w)

]

of an estimator θ̃(X) by the Monte Carlo method on the basis of 500 replications. For

this simulation study n = 500. We recall that, for a natural exponential family,

h2(Qθ, Qθ′) = 1− exp

[
A

(
θ + θ′

2

)
− A(θ) +A(θ′)

2

]
(2.5.5)

where A is given in (2.2.1).

Bernoulli model. We consider the function θ? = θ given by (2.5.1) with η = (1, . . . , 1) ∈
R6. The distribution PW is (P

(1)
W +P

(2)
W +P

(3)
W )/3 where P

(1)
W , P

(2)
W and P

(3)
W are respectively

the uniform distributions on the cubes

[−a, a]5, [b− 0.25, b+ 0.25]5 and [−b− 0.25,−b+ 0.25]5

with a = 0.25 and b = 2.

Poisson model In this case θ? = θ given by (2.5.2) with η = (0.7, 3, 4, 10, 2, 5). The dis-

tribution PW is P⊗2
W,1⊗PW,2⊗P

⊗2
W,3 where PW,1, PW,2 and PW,3 are the uniform distributions

on [0.2, 0.25], [0.2, 0.3] and [0.1, 0.2] respectively.
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Exponential model We set θ? = θ given by (2.5.3) with η = (0.07, 3, 4, 6, 2, 1). The

distribution PW is P⊗3
W,1 ⊗ P⊗2

W,2 where PW,1 and PW,2 are the uniform distributions on

[0, 0.01] and [0, 0.1] respectively.

In order to compare the performance of the ρ-estimator to the two other competitors

we proceed as follows: we estimate the risk Rn(θ̂) of θ̂ by Monte Carlo as explained before.

We then use this quantity as a benchmark and given another estimator θ̃ we compute the

quantity

E(θ̃) =
Rn(θ̃)−Rn(θ̂)

Rn(θ̂)
so that Rn(θ̃) =

(
1 + E(θ̃)

)
Rn(θ̂). (2.5.6)

Note that large positive values of E(θ̃) indicate a significant superiority of our estimator as

compared to θ̃ and negative values inferiority. The respective values of Rn(θ̂) and E(θ̃) are

displayed in Table 2.1. The computation time of each estimator is displayed in Table 2.2.

Table 2.1: Values of Rn(θ̂) and E(θ̃) when the model is well-specified

Rn(θ̂) E(MLE) E(θ̂0)

Logit 0.0015 < +0.1% −

Poisson 0.0015 < +0.1% +450%

Exponential 0.0015 < +0.1% +110%

Table 2.2: Average computation time when the model is well-specified

ρ-estimator MLE Median-based

Logit 331.43s 0.17s −

Poisson 216.23s 0.23s 34.69s

Exponential 87.78s 0.28s 16.31s

Since the median of the Bernoulli distribution is either 0 or 1, hence only weakly

depends on the value of the parameter, there is no estimator of the regression function

based on the median for the Bernoulli model.

We observe the following facts:

• When the model is correct, the risks of the MLE and θ̂ are the same (the value of

E(MLE) is not larger than 1/1000). In fact, a look at the simulations shows that

the ρ-estimator coincides most of the time with the MLE, a fact which is consistent

with the result proved in Section 5 of Baraud et al. (2017) that states the following:
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under suitable (strong enough) assumptions, the MLE is a ρ-estimator when the

statistical model is regular, exact and n is large enough. Our simulations indicate

that the result actually holds under weaker assumptions.

• Both the MLE and the ρ-estimator outperform the median-based estimator θ̂0.

• The quantities Rn(θ̂) are of order 0.0015 in all three cases. This fact can be explained

as follows. In a regular statistical model M0 = {Pη, η ∈ S} parametrized with a

parameter η ∈ S ⊂ Rd, the asymptotic normality properties of the MLE η̂n together

with the local equivalence of the Hellinger distance with the Euclidean one imply

that, when the data are i.i.d. with distribution Pη? ∈M0,

nE
[
h2(Pη̂n , Pη?)

]
−→

n→+∞

d

8
.

In our simulation, conditionally toW , the distribution of Y is given by an exponential

family parametrized by d = 6 parameters and the number of data being n = 500,

we expect a risk of order d/(8n) = 0.0015, which is exactly what we obtained.

• The above result provides evidence that the algorithm we use does calculate the

ρ-estimator as expected.

• In all the simulations we carried out, the algorithm required at most two iterations

before the stopping condition υ(X, θ̂) ≤ 1 was met.

In the Bernoulli model, we also consider the case where the true regression function

θ? = θ is given by (2.5.1) with η = (1, . . . , 1) ∈ R6 and PW = (P
(2)
W + P

(3)
W )/2. In such

a situation, the MLE is likely not to exist because the sets of data labelled by 1 and 0

respectively can be perfectly separated by a hyperplane with probability close to 1. As

expected the stats4 R-package for calculating the MLE returns an error. In contrast, the

ρ-estimator always exists and its estimated risk Rn(θ̂) is of order 0.000179. In the 100

simulations we carried out, the algorithm stops after at most 2 iterations.

2.5.3 In presence of outliers

We now work with n = 501 independent random variables X1, . . . , Xn. The 500 first

variables X1, . . . , Xn−1 are i.i.d. with distribution Pθ? and simply follow the framework

of the previous section. The last observation is chosen as follows. In the Bernoulli model

Wn = 1000(1, 1, 1, 1, 1) and Yn = −1, for the Poisson case Wn = 0.1(1, 1, 1, 1, 1) and

Yn = 200 and for the exponential case Wn = 5× 10−3(1, 1, 1, 10, 10) and Yn = 1000. The

results are displayed in Table 2.3 on the basis of 500 replications. The computation time

for each estimator are given in Table 2.4.

We observe the following facts:
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Table 2.3: Values of Rn(θ̂) and E(θ̃) in presence of an outlier

Rn(θ̂) E(MLE) E(θ̂0)

Logit 0.0015 +13000% −

Poisson 0.0019 +1900% +330%

Exponential 0.0018 +6000% +78%

Table 2.4: Average computation time in presence of an outlier

ρ-estimator MLE Median-based

Logit 497.31s 0.12s −

Poisson 229.36s 0.29s 35.83s

Exponential 103.05s 0.32s 15.18s

• the risks of the ρ-estimator are quite similar to those given in Table 2.1 despite the

presence of an outlier among the data set;

• the MLE behaves poorly;

• the performance of θ̂ remains much better than that of the median-based estimator

θ̂0.

Let us now display the quartiles of the distribution of the number of iterations that

have been necessary to compute the ρ-estimator.

Table 2.5: Quartiles for the number of iterations in presence of outliers

1st Quartile Median 3rd Quartile Maximum

Logit 3 3 3 6

Poisson 2 2 2 3

Exponential 2 2 2 3

Table 2.5 shows that the computation of the ρ-estimator requires only a few iterations

of the algorithm.

2.5.4 When the data are contaminated

We now set n = 500 and define Pθ? and PW as in Section 2.5.2. We now assume that

X1, . . . , Xn are i.i.d. with distribution P ? = 0.95Pθ? + 0.05R for some (contaminating)
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distribution R on W × Y with first marginal given by PW . We restrict ourselves to

the Poisson and exponential cases (we exclude the Bernoulli model since the Bernoulli

distribution remains stable under the contamination by another Bernoulli distribution).

In the Poisson case, we choose for R the distribution of the random variable (W, 80 +B)

where the conditional distribution of B given W = (w1, . . . , w5) is Bernoulli with mean

(1 + exp [− (w1 − w2 − w4 + w5)])−1. In the case of the exponential distribution R =

PW ⊗ U([50, 60]) where U([50, 60]) denotes the uniform distribution on [50, 60].

We measure the performance of an estimator θ̃ of θ? by means of the quantity

Rn(θ̃) = E
[
h2
(
P ?, P

θ̃

)]
that we evaluate by Monte Carlo on the basis of 500 replications. We compare the per-

formance of θ̂ to a competitor θ̃ by evaluating the quantity

E(θ̃) =
Rn(θ̃)−Rn(θ̂)

Rn(θ̂)
. (2.5.7)

The results are displayed in Table 2.6 and the computation times in Table 2.7.

Table 2.6: Values of Rn(θ̂) and E(θ̃) under contamination (5%)

Rn(θ̂) E(MLE) E(θ̂0)

Poisson 0.028 +760% +11%

Exponential 0.040 +320% –17%

Table 2.7: Average computation time under contamination (5%)

ρ-estimator MLE Median-based

Poisson 867.50s 0.33s 39.23s

Exponential 1863.97s 0.30s 20.47s

Let us now comment these results.

• With our choices of the contaminating distributions R, the (squared) Hellinger

distance between the true distribution P ? of the data and the model is of order

h2 (P ?, Pθ?) ≈ 0.025. As expected, we get that Rn(θ̂) ≥ 0.025 ≈ h2 (P ?, Pθ?). Note

that the situation is extreme in the sense that the approximation error is much larger

than estimation error that can be achieved when the model is well specified (which

is about 0.0015). This means that the model is “very” misspecified.

• The MLE behaves poorly.
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• In the exponential case, the median-based estimator θ̂0 outperforms the ρ-estimator

while the opposite situation occurs in the Poisson case.

Table 2.8: Quartiles for the number of iterations when the data are contaminated

1st Quartile Median 3rd Quartile Maximum

Poisson 5 5 5 100

Exponential 5 10 30 100

In Table 2.8, we observe that the number of iterations for calculating the ρ-estimator

increases substantially as compared to the two previous situations. We note that for

some simulations the algorithm was iterated 100 times (which corresponds to the maximal

number of iterations that we allow) and the stopping condition υ(X, θ̂) ≤ 1 was not met

(but satisfies υ(X, θ̂) ≤ κρ/25). Despite this fact, the estimator that we get at the final

step, hence after 100 iterations, performs well since the values of the risks Rn(θ̂) are of

the same order as h2 (P ?, Pθ?) and comparable to the median-based estimator θ̂0.

2.6 Bounding the expectation of the supremum of an em-

pirical process

The aim of this section is to prove the following result which will used later as an elementary

material to prove Theorem 2.3.1.

Theorem 2.6.1. Let X1, ..., Xn be n independent random variables with values in (X ,X )

and F an at most countable VC-subgraph class of functions with values in [−1, 1] and VC-

dimension not larger than V ≥ 1. If

Z(F ) = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Xi)− E [f(Xi)])

∣∣∣∣∣ and sup
f∈F

1

n

n∑
i=1

E
[
f2(Xi)

]
≤ σ2 ≤ 1,

then

E [Z(F )] ≤ 4.74
√
nV σ2L (σ) + 90VL (σ), (2.6.1)

with L (σ) = 9.11 + log(1/σ2).

Let us now turn to the proof. It follows from classical symmetrisation arguments

that E [Z(F )] ≤ 2E
[
Z(F )

]
, where Z(F ) = sup

f∈F

∣∣∣∣ n∑
i=1

εif(Xi)

∣∣∣∣ and ε1, . . . , εn are i.i.d.

Rademacher random variables. It is therefore enough to prove that

E
[
Z(F )

]
≤ 2.37

√
nV σ2L (σ) + 45VL (σ). (2.6.2)
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Given a probability P and a class of functions G on (E, E) we denote by Nr(ε,G , P ) the

smallest cardinality of an ε-net for the Lr(E, E , P )-norm ‖·‖r,P , i.e. the minimal cardinality

of a subset G [ε] of G that satisfies for all g ∈ G

inf
g∈G [ε]

‖g − g‖r,P = inf
g∈G [ε]

(∫
E
|g − g|r dP

)1/r

≤ ε.

We start with the following lemma.

Lemma 2.6.1. Whatever the probability P on (X ,X ), ε ∈ (0, 2) and r ≥ 1

Nr(ε,F , P ) ≤ e(V + 1)(2e)V
(

2

ε

)rV
.

Proof. Let λ be the Lebesgue measure on ([−1, 1],B([−1, 1])) and Q the product proba-

bility P ⊗ (λ/2) on (E, E) = (X × [−1, 1],X ×B([−1, 1])). Given two elements f, g ∈ F

and x ∈X ∫
[−1,1]

∣∣1lf(x)>t − 1lg(x)>t

∣∣ dt =

∫
[−1,1]

(
1lf(x)>t≥g(x) + 1lg(x)>t≥f(x)

)
dt

= |f(x)− g(x)|

and, setting Cf = {(x, t) ∈ X × [−1, 1], f(x) > t} the subgraph of f and similarly Cg

that of g, we deduce from Fubini’s theorem that

‖f − g‖1,P =

∫
X
|f − g| dP = 2

∫
X ×[−1,1]

∣∣1lCf (x, t)− 1lCg(x, t)
∣∣ dQ

= 2
∥∥1lCf − 1lCg

∥∥
1,Q

.

Since the functions f, g ∈ F take their values in [−1, 1],

‖f − g‖rr,P =

∫
X
|f − g|r dP ≤ 2r−1

∫
X
|f − g| dP ≤ 2r

∥∥1lCf − 1lCg
∥∥

1,Q

and consequently, for all ε > 0

Nr(ε,F , P ) ≤ N1((ε/2)r,G , Q) with G = {1lCf , f ∈ F}.

Since F is VC-subgraph with VC-dimension not larger than V , the class G is by definition

VC with dimension not larger than V and the result follows from Corollary 1 in Haussler

(1995).

The proof of Theorem 2.6.1 is based on a chaining argument. It follows from the

monotone convergence theorem that it is actually enough to prove (2.6.2) with FJ , J ≥ 1,

in place of F where (FJ)J≥1 is a sequence of finite subsets of F which is increasing for the

inclusion and satisfies
⋃
J≥1 FJ = F . We may therefore assume with no loss of generality

that F is finite.
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Let q be some positive number in (0, 1) to be chosen later on and PX the empirical

distribution n−1
∑n

i=1 δXi . We shall denote by Eε the expectation with respect to the

Rademacher random variables εi, hence conditionally on X = (X1, . . . , Xn). Let ‖·‖2,X
be the L2(X ,X , PX)-norm and

σ̂2 = σ̂2(X) = sup
f∈F
‖f‖22,X = sup

f∈F

[
1

n

n∑
i=1

f2(Xi)

]
∈ [0, 1].

For each positive integer k, let Fk = Fk(X) be a minimal (qkσ̂)-net for F with respect

to ‖·‖2,X . In particular, we can associate to a function f ∈ F a sequence (fk)k≥1 with

fk ∈ Fk satisfying ‖f − fk‖2,X ≤ qkσ̂ for all k ≥ 1. Actually, since F is finite fk = f

for all k large enough. Besides, it follows from Lemma 2.6.1 with the choices r = 2 and

P = PX that for all k ≥ 1 we can choose Fk in such a way that log[Card Fk] is not larger

than h(qkσ̂) where

h(ε) = log
[
e(V + 1)(2e)V

]
+ 2V log

(
2

ε

)
for all ε ∈ (0, 1]. (2.6.3)

For f ∈ F , the following (finite) decomposition holds

n∑
i=1

εif(Xi) =

n∑
i=1

εif1(Xi) +

n∑
i=1

εi

+∞∑
k=1

[fk+1(Xi)− fk(Xi)]

=
n∑
i=1

εif1(Xi) +
+∞∑
k=1

[
n∑
i=1

εi (fk+1(Xi)− fk(Xi))

]
.

Setting F 2
k = {(fk, fk+1), f ∈ F} for all k ≥ 1, we deduce that

Z(F ) ≤ sup
f∈F1

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣+

+∞∑
k=1

sup
(fk,fk+1)∈F2

k

∣∣∣∣∣
n∑
i=1

εi [fk+1(Xi)− fk(Xi)]

∣∣∣∣∣
and consequently,

Eε
[
Z(F )

]
≤ Eε

[
sup
f∈F1

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣
]

+

+∞∑
k=1

Eε

[
sup

(fk,fk+1)∈F2
k

∣∣∣∣∣
n∑
i=1

εi [fk(Xi)− fk+1(Xi)]

∣∣∣∣∣
]
.

Given a finite set G of functions on X and setting −G = {−g, g ∈ G } and v2 =

maxg∈G ‖g‖22,X , we shall repeatedly use the inequality

E

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

εig(Xi)

∣∣∣∣∣
]

= E

[
sup

g∈G∪(−G )

n∑
i=1

εig(Xi)

]
≤
√

2n log(2 Card G )v2



46 Robust estimation based on a single model

that can be found in Massart (2007) (see inequality (6.3)). Since maxf∈F1 ‖f‖
2
2,X ≤ σ̂2,

log(Card F1) ≤ h(qσ̂), log(Card F 2
k ) ≤ h(qkσ̂) + h(qk+1σ̂) and

sup
(fk,fk+1)∈F2

k

‖fk − fk+1‖22,X

≤ sup
f∈F

sup
(fk,fk+1)∈F2

k

(
‖f − fk‖2,X + ‖f − fk+1‖2,X

)2
≤ (1 + q)2 q2kσ̂2,

we deduce that

Eε

[
sup
f∈F1

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣
]
≤ σ̂

√
2n (log 2 + h(qσ̂)),

and for all k ≥ 1

Eε

[
sup

(f,g)∈F2
k

∣∣∣∣∣
n∑
i=1

εi [g(Xi)− f(Xi)]

∣∣∣∣∣
]

≤ σ̂(1 + q)qk
√

2n (log 2 + h(qkσ̂) + h(qk+1σ̂)).

Setting g : u 7→
√

log 2 + h(u) + h(qu) on (0, 1] and using the fact that g is decreasing

(since h is) we deduce that

Eε
[
Z(F )

]
≤ σ̂
√

2n

√log 2 + h(qσ̂) + (1 + q)
∑
k≥1

qk
√

log 2 + h(qkσ̂) + h(qk+1σ̂)


≤ σ̂
√

2n

g(σ̂) + (1 + q)
∑
k≥1

qkg(qkσ̂)


≤
√

2n

 1

1− q

∫ σ̂

qσ̂
g(u)du+

1 + q

1− q
∑
k≥1

∫ qkσ̂

qk+1σ̂
g(u)du


≤
√

2n
1 + q

1− q

∫ σ̂

0
g(u)du.

The mapping g being positive and decreasing, the function G : y 7→
∫ y

0 g(u)du is increasing

and concave. Taking the expectation with respect to X on both sides of the previous

inequality and using Jensen’s inequality we get

E
[
Z(F )

]
≤
√

2n
1 + q

1− q
E [G(σ̂)] ≤

√
2n

1 + q

1− q
G (E [σ̂])

≤
√

2n
1 + q

1− q
G
(√

E [σ̂2]
)
. (2.6.4)
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By symmetrization and contraction arguments (see Theorem 4.12 in Ledoux and Talagrand

(1991)),

E
[
nσ̂2

]
≤ E

[
sup
f∈F

n∑
i=1

(
f2(Xi)− E

[
f2(Xi)

])]
+ sup
f∈F

n∑
i=1

E
[
f2(Xi)

]
≤ 2E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif
2(Xi)

∣∣∣∣∣
]

+ nσ2

≤ 8E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣
]

+ nσ2 = 8E
[
Z(F )

]
+ nσ2 (2.6.5)

and we infer from (2.6.4) that

E
[
Z(F )

]
≤
√

2n
1 + q

1− q
G (B) with B =

√
σ2 +

8E
[
Z(F )

]
n

∧ 1. (2.6.6)

The following lemma provides an evaluation of G.

Lemma 2.6.2. Let a, b, y0 be positive numbers and y ∈ [y0, 1],∫ y

0

√
a+ b log(1/u)du ≤

(
1 +

b

2a

)
y
√
a+ b log(1/y0).

Proof. Using an integration by parts and the fact that

d

du

√
a+ b log(1/u) = − b

2u
√
a+ b log(1/u)

we get ∫ y

0

√
a+ b log(1/u)du =

[
u
√
a+ b log(1/u)

]y
0

+
1

2

∫ y

0

b√
a+ b log(1/u)

du

≤ y
√
a+ b log(1/y) +

by

2
√
a+ b log(1/y)

= y
√
a+ b log(1/y)

[
1 +

b

2 (a+ b log(1/y))

]
and the conclusion follows from the fact that y0 ≤ y ≤ 1.

Since for all y ∈ (0, 1], g(y) =
√
a+ b log(1/y) with

a = log[2e2(V + 1)2] + 2V log(8e/q) and b = 4V

we may apply Lemma 2.6.2 with y0 = σ and y = B and deduce from (2.6.6) that

E
[
Z(F )

]
≤
√

2n
1 + q

1− q

(
1 +

b

2a

)
B
√
a+ b log(1/σ)

≤
√

2n
1 + q

1− q

(
1 +

b

2a

)√
σ2 +

8E
[
Z(F )

]
n

√
a+ b log(1/σ).
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Solving the inequality E
[
Z(F )

]
≤ A

√
2nσ2 + 16E

[
Z(F )

]
with

A =
1 + q

1− q

(
1 +

b

2a

)√
a+ b log(1/σ),

we get that

E
[
Z(F )

]
≤ 8A2 +

√
64A4 + 2A2nσ2 ≤ 16A2 +A

√
2nσ2. (2.6.7)

Finally, we conclude by using the inequalities

b

2a
=

4V

2 [log[2e2(V + 1)2] + 2V log(8e/q)]
≤ 1

log(8e/q)
,

a

b
=

log[2e2(V + 1)2] + 2V log(8e/q)

4V

=
log(8e/q)

2
+

log[2e2(V + 1)2]

4V
≤ log(8e/q)

2
+

log[8e2]

4

= log

(
83/4e
√
q

)
which, with our choice q = 0.0185, give

A ≤ 1 + q

1− q

(
1 +

1

log(8e/q)

)√
4V

(
log

(
83/4e
√
q

)
+ log

1

σ

)

≤ 2.37

√
V

(
4.555 + log

1

σ

)
and together with (2.6.7) leads to (2.6.2).

2.7 Proofs of main theorem and properties

2.7.1 Proof of Theorem 2.3.1

We recall that the function ψ defined by (2.3.1) satisfies Assumption 2 of Baraud and Birgé

(2018) with a0 = 4, a1 = 3/8 and a2
2 = 3

√
2 (see their Proposition 3). Theorem 2.3.1 is

actually a consequence of Theorem 1 of Baraud and Birgé (2018). Set µ =
⊗n

i=1 µi with

µi = PWi ⊗ ν for all i ∈ {1, . . . , n}, denote by Q the following families of densities (with

respect to µ) on X n = (W × Y )n

Q = {pθ : x = (x1, . . . , xn) 7→ qθ(x1) . . . qθ(xn), θ ∈ Θ}

and by P the corresponding ρ-model, i.e. the countable set {P = pθ · µ, θ ∈ Θ} with

representation (µ,Q). We first prove the following results.

Proposition 2.7.1. Under Assumption 2.3.1, the class of functions Q = {qθ : (w, y) 7→
qθ(w)(y), θ ∈ Θ} on X = W ×Y is VC-subgraph with dimension not larger than 9.41V .
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Proof. Since the exponential function is monotone on R, by Proposition 1.5.2, it suffices

to prove that the family

F =
{
f : (w, y) 7→ S(y)θ(w)−A(θ(w)), θ ∈ Θ

}
is VC-subgraph on X = W × Y with dimension not larger than 9.41V . The function

A being convex and continuous on I, the mapping defined on I by θ 7→ S(y)θ − A(θ)

is continuous and concave for all fixed y ∈ Y . In particular, for u ∈ R the level set

{θ ∈ I, S(y)θ − A(θ) > u} is an open subinterval of I of the form (a(y, u), a(y, u)) where

a(y, u) and a(y, u) belong to the closure I of I in R = R ∪ {±∞}. For θ ∈ Θ, let us set

C+
θ = {(w, b, b′) ∈ W × I2

, θ(w) > b}

C−θ = {(w, b, b′) ∈ W × I2
, θ(w) < b′}

and define C + (respectively C−) as the class of all subsets C+
θ (respectively C−θ ) when θ

varies among Θ.

Let us prove that C + is a VC-class of sets on Z = W × I
2

with dimension not

larger than V . If C + shatters the finite subset {z1, . . . , zk} of Z with zi = (wi, bi, b
′
i) for

i ∈ {1, . . . , k}, necessarily the bi belong to R for all i ∈ {1, . . . , k}.
Consequently, the class of subgraphs

C̃ + =
{
{(w, b) ∈ W × R, θ(w) > b}, θ ∈ Θ

}
shatters the points z̃1 = (w1, b1), . . . , z̃k = (wk, bk) in W × R. This is possible only for

k ≤ V since, by Assumption 2.3.1, Θ is VC-subgraph on W with dimension V .

Arguing similarly we obtain that C− is also VC on Z with dimension not larger than

V . In particular, it follows from Theorem 1.5.1 that the class of subsets

C +
∧

C− = {C+ ∩ C−, C+ ∈ C +, C− ∈ C−}

is VC on Z with dimension not larger than 9.41V .

Let us now conclude the proof. If the class of subgraphs of F shatter the points

(w1, y1, u1), . . . , (wk, yk, uk) in W ×Y ×R, this means that for all subsets J of {1, . . . , k},
there exists a function θ = θ(J) ∈ Θ such that the condition j ∈ J is equivalent to the

following ones

S(yj)θ(wj)−A (θ(wj)) > uj ⇐⇒ θ(wj) ∈ (a(yj , uj), a(yj , uj))

and finally equivalent to

zj = (wj , a(yj , uj), a(yj , uj)) ∈ C+
θ ∩ C

−
θ .

Hence, the class

C =
{
C+
θ ∩ C

−
θ , θ ∈ Θ

}
⊂ C +

∧
C−

shatters {z1, . . . , zk} in Z . This is possible for k ≤ 9.41V only and proves the fact that

F is VC-subgraph with dimension not larger than 9.41V .
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The result below provides an upper bound on the ρ-dimension function (P?,P) 7→
DP (P?,P) of P . The ρ-dimension function is defined by Definition 4 of Baraud and

Birgé (2018).

Proposition 2.7.2. Under Assumption 2.3.1, for all product probabilities P?,P = ⊗ni=1P i

on (X n,X⊗n) with P i = p · µi for all i ∈ {1, . . . , n},

DP (P?,P) ≤ 103V
[
9.11 + log+

( n
V

)]
.

Proof. Given two product probabilities R = ⊗ni=1Ri and R′ = ⊗ni=1R
′
i on (X n,X⊗n), we

set h2(R,R′) =
∑n

i=1 h
2(Ri, R

′
i) and for y > 0,

Fy =

{
ψ

(√
qθ
p

)∣∣∣∣ θ ∈ Θ,h2(P?,P) + h2(P?,pθ · µ) < y2

}
.

It follows from Proposition 2.7.1 and Proposition 1.5.2 that Fy is VC-subgraph with

dimension not larger than V = 9.41V . Besides, by Proposition 3 in Baraud and Birgé

(2018) we know that our function ψ satisfies their Assumption 2 and more precisely (11)

which, together with the definition of Fy, implies that supf∈Fy
n−1

∑n
i=1 E

[
f2(Xi)

]
≤

σ2(y) = (a2
2y

2/n) ∧ 1. Applying Theorem 2.6.1 with F = Fy, we obtain that

wP (P?,P, y) = E

[
sup
f∈Fy

∣∣∣∣∣
n∑
i=1

f(Xi)− E [f(Xi)]

∣∣∣∣∣
]

≤ 4.74a2y

√
VL (σ(y)) + 90VL (σ(y))

= 14.55a2y
√
VL (σ(y)) + 846.9VL (σ(y)).

Let D ≥ a2
1V/(16a4

2) = 2−11V to be chosen later on and β = a1/(4a2). For y ≥ β−1
√
D,

L (σ(y)) = 9.11 + log+

(
n

a2
2y

2

)
≤ 9.11 + log+

(
n

a2
2β
−2D

)
= 9.11 + log+

(
a2

1n

16a4
2D

)
≤ 9.11 + log+

( n
V

)
= L.

Hence for all y ≥ β−1
√
D,

wP (P?,P, y) ≤ 14.55a2y
√
V L+ 846.9V L

=
a1y

2

8

[
8× 14.55a2

√
V L

a1y
+

8× 846.9V L

a1y2

]

≤ a1y
2

8

[
8× 14.55a2

√
V L

a1β−1
√
D

+
8× 846.9V L

a1β−2D

]

=
a1y

2

8

[
2× 14.55

√
V L√

D
+

8× 846.9a1V L

16a2
2D

]

=
a1y

2

8

[
29.1
√
V L√
D

+
37.5V L

D

]
≤ a1y

2

8
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for D = 103V L > 2−11V . The result follows from the definition of the ρ-dimension.

Let us now complete the proof of Theorem 2.3.1. It follows from Theorem 1 of Baraud

and Birgé (2018) that the ρ-estimator P̂ = P
θ̂

built on the ρ-model P , which coincides

with that described in Section 2.3.1, satisfies for all P ∈ P , with a probability at least

1− e−ξ,

h2(P?, P̂) ≤ γh2 (P?,P ) + γ′
(
DP (P?,P)

4.7
+ 1.49 + ξ

)
with

γ =
4(a0 + 8)

a1
+ 2 +

84

a2
2

< 150 and γ′ =
4

a1

(
35a2

2

a1
+ 74

)
< 5014

and DP (P?,P) ≤ 103V
[
9.11 + log+(n/V )

]
by Proposition 2.7.2. Finally, the result fol-

lows from the facts that h2(P?, P̂) = h2(Q?,Q
θ̂
) and h2 (P?,P ) = h2 (Q?,Q).

2.7.2 A preliminary result

Proposition 2.7.3. Let g be a 1-Lipschitz function on R supported on [0, 1], N some

positive integer and L some positive number. For ε ∈ {−1, 1}2N define the function Gε as

Gε(x) = L

2N−1∑
k=0

εk+1g
(
2Nx− k

)
for all x ∈ [0, 1]. (2.7.1)

Then, Gε satisfies (2.4.1) with α ∈ (0, 1] and M > 0 provided that L ≤ 2−[(N−1)α+1]M .

Proof. For k ∈ Λ = {0, . . . , 2N − 1}, we set gk : x 7→ g(2Nx − k). Since g is 1-Lipschitz

and supported on [0, 1], the function gk is 2N -Lipschitz on R and supported on Ik =

[2−Nk, 2−N (k + 1)] ⊂ [0, 1] for all k ∈ Λ. In particular, the intersection of the supports of

gk and gk′ reduces to at most a singleton when k 6= k′.

Let x < y be two points in [0, 1]. If there exists k ∈ Λ such that x, y ∈ Ik, using that

0 ≤ y − x ≤ 2−N and the fact that L2Nα ≤ L2(N−1)α+1 ≤M , we obtain that

|Gε(y)−Gε(x)| = L |gk(y)− gk(x)| ≤ L2N (y − x)

≤ L2N (y − x)1−α(y − x)α ≤ L2Nα(y − x)α ≤M(y − x)α.

If x ∈ Ik and y ∈ Ik′ with k′ ≥ k + 1,(
y − 2−Nk′

)
+
(
2−N (k + 1)− x

)
≤ 2−N+1 ∧ (y − x)

and since g vanishes at 0 and 1,

|Gε(y)−Gε(x)| = L |εk′+1gk′(y)− εk+1gk(x)| ≤ L |gk′(y)|+ L |gk(x)|

= L
∣∣gk′(y)− gk′(2−Nk′)

∣∣+ L
∣∣gk(2−N (k + 1))− gk(x)

∣∣
≤ L2N

[
y − 2−Nk′ + 2−N (k + 1)− x

]1−α+α

≤ L2N2(1−α)(−N+1)(y − x)α = L2(N−1)α+1(y − x)α
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and the conclusion follows from the fact that L ≤ 2−[(N−1)α+1]M .

We use the following version of Assouad’s lemma.

Lemma 2.7.1 (Assouad’s Lemma). Let P be a family of probabilities on a measurable

space (X ,X ). Assume that for some integer d ≥ 1, P contains a subset of the form

C = {Pε, ε ∈ {−1, 1}d} with the following properties:

(i) there exists η > 0 such that for all ε, ε′ ∈ {−1, 1}d

h2 (Pε, Pε′) ≥ ηδ(ε, ε′) with δ(ε, ε′) =
d∑
j=1

1lεj 6=ε′j

(ii) there exists a constant a ∈ [0, 1/2] such that

h2 (Pε, Pε′) ≤
a

n
for all ε, ε′ ∈ {−1, 1}d satisfying δ(ε, ε′) = 1.

Then for all measurable mappings P̂ : X n → P,

sup
P∈P

EP

[
h2(P, P̂ (X))

]
≥ dη

8
max

{
1−
√

2a, (1− a/n)2n
}
, (2.7.2)

where EP denotes the expectation with respect to a random variable X = (X1, . . . , Xn)

with distribution P = P⊗n.

Proof. Given a probability P on (X ,X ), let ε be a minimizer over {−1, 1}d of the mapping

ε 7→ h2(P, Pε). By definition of ε, for all ε ∈ {−1, 1}d

h2(Pε, Pε) ≤ 2
(
h2(P, Pε) + h2(P, Pε)

)
≤ 4h2(P, Pε).

Hence by (i), for all ε ∈ {−1, 1}d

h2(Pε, P ) ≥ η

4
δ(ε, ε) =

d∑
i=1

[
1 + εi

2
`i(P ) +

1− εi
2

`′i(P )

]
with `i(P ) = (η/4)1lεi=−1 and `′i(P ) = (η/4)1lεi=+1 for i ∈ {1, . . . , d}. The result follows

by applying the version of Assouad’s lemma that can be found in Birgé (1986) with

βi = a/n for all i ∈ {1, . . . , d}, α = η/4 and the change of notation from ε ∈ {−1, 1} to

ε ∈ {0, 1}.

2.7.3 Proof of Proposition 2.4.1

Since the statistical model Q = {Rγ = Qv−1(γ), γ ∈ J} is regular with constant Fisher

information equal to 8, by applying Theorem 7.6 in Ibragimov and Has’minskĭı (1981)[page

81] we obtain that

h2
(
Rγ , Rγ′

)
≤
(
γ′ − γ

)2
for all γ, γ′ ∈ J
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and for any compact subset K of J , there exists a constant cK > 0

h2
(
Rγ , Rγ′

)
≥ c2

K

(
γ′ − γ

)2
for all γ, γ′ ∈ K.

The result follows by substituting γ and γ ′ to γ and γ′ respectively and then integrating

with respect to PW .

2.7.4 Proof of Proposition 2.4.2

For γ ∈ Hα(M) and j ∈ {1, . . . , D}, let γj = D
∫
Ij
γ(w)dw and γ =

∑D
j=1 γj1lIj . Since γ

takes its values in J , γj ∈ J for all j ∈ {1, . . . , D} and γ =
∑D

j=1 γj1lIj ∈ S. Since for all

w ∈ Ij , |γ(w)− γ(w)| ≤ sup|w−w′|≤1/D |γ(w)− γ(w′)| ≤MD−α and S is dense in S with

respect to the supremum norm

sup
γ∈Hα(M)

inf
γ∈S
‖γ − γ‖2 ≤ sup

γ∈Hα(M)
inf
γ∈S
‖γ − γ‖∞

= sup
γ∈Hα(M)

inf
γ∈S
‖γ − γ‖∞ ≤MD−α.

Using (2.4.4) and the fact that the data X1, . . . , Xn are i.i.d., we deduce that for all

functions γ and γ ′ with values in J ,

h2(Rγ ,Rγ′) = nh2(Rγ , Rγ′) ≤ nκ2
∥∥γ − γ ′∥∥2

2
≤ nκ2

∥∥γ − γ ′∥∥2

∞

and by applying Corollary 2.3.1 with V = D + 1 we derive that

sup
γ?∈Hα(M)

E
[
h2(Rγ? , Rγ̂)

]
≤ C ′

[
sup

γ?∈Hα(M)
inf
γ∈S

h2(Rγ? , Rγ) +
V

n

[
1 + log+(n/V )

]]

≤ C ′
[
κ2 sup
γ?∈Hα(M)

inf
γ∈S
‖γ? − γ‖22 +

V

n

[
1 + log+(n/V )

]]

≤ C ′
[
κ2M2D−2α +

D + 1

n
log(en)

]
.

Let us set Ln = log(en). With our choice of D ≥ 1,

D − 1 <

(
κ2M2n

Ln

) 1
1+2α

≤ D

hence κ2M2D−2α ≤ DLn/n, D < 1 + (κ2M2n/Ln)
1

1+2α and the result follows from the

inequalities

κ2M2D−2α +
(D + 1)Ln

n
≤ 2

DLn
n

+
Ln
n
≤ 2

[
(κM)1/αLn

n

] 2α
1+2α

+
3Ln
n
.
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2.7.5 Proof of Proposition 2.4.3

Let a0 be the middle of the intervalK of length 2L. GivenN ≥ 1, L > 0 and ε ∈ {−1, 1}2N ,

we define γε = a0 + Gε with Gε defined by (2.7.1). Provided that L ≤ L ∧ L0 with

L0 = 2−[(N−1)α+1]M , the functions γε takes their values in K ⊂ J and satisfies (2.4.1) and

consequently belongs to Hα(M) for all ε ∈ {−1, 1}2N . Set Rε = Rγε for all ε ∈ {−1, 1}2N .

Let us denote by Pγ = Rγ · PW the probability associated to Rγ and write Pε for Pγε for

short. Integrating the inequalities (2.4.4) and (2.4.5) with respect to PW and using that

for all ε, ε′ ∈ {−1, 1}2N , ‖Gε −Gε′‖2 = ‖γε − γε′‖2 we obtain that

c2
K ‖Gε −Gε′‖

2
2 ≤ h

2 (Rε, Rε′) ≤ κ2 ‖Gε −Gε′‖22 .

Let us set Λ = {0, . . . , 2N − 1}. Since PW is the uniform distribution and the supports

of the functions gk : x 7→ g(2Nx − k) for k ∈ Λ are disjoint, we obtain that for all

ε, ε′ ∈ {−1, 1}2N

‖Gε −Gε′‖22 = L2
∑
k∈Λ

∫
Ik

(
εk+1gk(x)− ε′k+1gk(x)

)2
dx

= L2
∑
k∈Λ

∣∣εk+1 − ε′k+1

∣∣2 ∫
Ik

g2
k(x)dx = 4L22−N ‖g‖22 δ(ε, ε

′)

and consequently, provided that L satisfies

L ≤ L ∧ L0 ∧
(

4κ‖g‖2
√

2−(N−1)n
)−1

(2.7.3)

the family of probabilities C = {Pε, ε ∈ {−1, 1}|Λ|} is a subset of P = {Pγ , γ ∈ Hα(M)}
that fulfils the assumptions of Lemma 2.7.1 with d = 2N ,

η = 4c2
KL

22−N‖g‖22 and a = 4nκ2L22−N‖g‖22 ≤ 1/8.

We derive from (2.7.2) that

Rn(Hα(M)) ≥
c2
K‖g‖22L2

2

(
1−
√

2a
)
≥
c2
K‖g‖22L2

4
. (2.7.4)

If κ2 ‖g‖22M2n > 1/8, we choose N ≥ 2 such that

2N ≥
(

22(2+α)κ2 ‖g‖22M
2n
)1/(1+2α)

> 2N−1

and N = 1 otherwise. In any case, our choice of N satisfies

L0 = 2−[(N−1)α+1]M ≤
(

4κ‖g‖2
√

2−(N−1)n
)−1

.

When N ≥ 2,

L2
0 = 2−2α(N−1)−2M2 ≥ M2

4

(
22(2+α)κ2 ‖g‖22M

2n
)− 2α

1+2α

=

(
M1/α

22α+6+1/ακ2 ‖g‖22 n

) 2α
1+2α

= L2
1,
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while L0 = M/2 when N = 1. The choice L = L ∧ L1 ∧ (M/2) satisfies (2.7.3) and we

deduce from the equalities

h2(Rε, Rε′) =

∫
W
h2
(
Rγε(w), Rγε′ (w)

)
dPW (w) = h2(Pε, Pε′)

and (2.7.4) that

Rn(Hα(M)) ≥
c2
K‖g‖22

4

( M1/α

22α+6+1/ακ2 ‖g‖22 n

) 2α
1+2α ∧(

M2

4

)∧
L

2

 .
The conclusion follows by choosing g(x) = x1l[0,1/2] + (1− x)1l[1/2,1] which satisfies ‖g‖22 =

1/12.

2.7.6 Proof of Proposition 2.4.4

When the Poisson family is parametrized by the mean, given two functions γ,γ ′ mapping

W = [0, 1] into J = (0,+∞), The Hellinger-type distance h2(Rγ , Rγ′) can be written as

h2(Rγ , Rγ′) =

∫
W

[
1− e−

(√
γ(w)−

√
γ′(w)

)2
/2
]
dPW (w). (2.7.5)

Using that for all x ∈ [0, 1], (1− e−1)x ≤ 1− e−x ≤ x, we deduce from (2.7.5) that

1

2
(1− e−1)

∥∥∥√γ −√γ ′∥∥∥2

2
≤ h2(Rγ , Rγ′) ≤

1

2

∥∥∥√γ −√γ ′∥∥∥2

2
(2.7.6)

whenever
∥∥√γ −√γ ′∥∥∞ ≤ 1.

Let N be some positive integer, L some positive number and g a 1-Lipschitz function

supported on [0, 1] with values in [−b, b]. Let us set Λ = {0, . . . , 2N − 1} and for ε ∈
{−1, 1}|Λ|, Gε the function defined by (2.7.1) and γε = L+Gε. Under our assumption on

g, γε takes its values in [(1 − b)L, (1 + b)L] and by Proposition 2.7.3, γε satisfies (2.4.1)

provided that L ≤ 2−[(N−1)α+1]M . Hence, under the conditions L ≤ 2−[(N−1)α+1]M and

b < 1, γε belongs to Hα(M) for all ε ∈ {−1, 1}|Λ|. For all ε, ε′ ∈ {−1, 1}|Λ|,

|Gε −Gε′ |
2
√

(1 + b)L
≤ |√γε −

√
γε′ | =

|γε − γε′ |√
γε +

√
γε′
≤ |Gε −Gε′ |

2
√

(1− b)L
,

and

|√γε −
√
γε′ | ≤

√
(1 + b)L−

√
(1− b)L =

[√
1 + b−

√
1− b

]√
L.

In particular,
∥∥√γε −√γε′∥∥∞ ≤ 1 for

L ≤
(√

1 + b−
√

1− b
)−2

=
1 +
√

1− b2
2b2

= L0
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and, writing Rε for Rγε for short, it follows from (2.7.6) that

(1− e−1)

8(1 + b)L
‖Gε −Gε′‖22 ≤ h

2(Rε, Rε′) ≤
1

8(1− b)L
‖Gε −Gε′‖22 . (2.7.7)

Since PW is the uniform distribution and the supports of the functions gk : x 7→ g(2Nx−k)

for k ∈ Λ are disjoint, we obtain that for all ε, ε′ ∈ {−1, 1}|Λ|

‖Gε −Gε′‖22 = L2
∑
k∈Λ

∫
Ik

(
εk+1gk(x)− ε′k+1gk(x)

)2
dx

= L2
∑
k∈Λ

∣∣εk+1 − ε′k+1

∣∣2 ∫
Ik

g2
k(x)dx = 4L22−N ‖g‖22 δ(ε, ε

′).

Let us denote by Pγ = Rγ · PW the probability associated to Rγ and write Pε for Pγε for

short. We deduce from (2.7.7) that provided that L and b satisfy

L ≤
(

2−[(N−1)α+1]M
)∧ 1 +

√
1− b2

2b2

∧ (1− b)2N−3

‖g‖22 n
, (2.7.8)

the family of probabilities C = {Pε, ε ∈ {−1, 1}|Λ|} is a subset of {Pγ , γ ∈ Hα(M)} that

fulfils the assumptions of Assouad’s lemma (Lemma 2.7.1) with d = |Λ| = 2N ,

η =
(1− e−1)L2−(N+1) ‖g‖22

1 + b
and a =

nL2−N ‖g‖22
1− b

∈ [0, 1/8].

We derive from the equalities

h2(Rε, Rε′) =

∫
W
h2
(
Rγε(w), Rγε′ (w)

)
dPW (w) = h2(Pε, Pε′)

and (2.7.2) that

Rn(Hα(M)) ≥
(1− e−1) ‖g‖22 L

16(1 + b)

(
1−
√

2a
)
≥

(1− e−1) ‖g‖22 L
32(1 + b)

. (2.7.9)

If ‖g‖22Mn > (1− b)/2, we choose N ≥ 2 such that

2N ≥

[
22+α ‖g‖22Mn

1− b

] 1
1+α

> 2N−1.

Otherwise, we choose N = 1. Note that in any case,

2−[(N−1)α+1]M ≤ (1− b)2N−3

n ‖g‖22
.

Besides, if N ≥ 2

2−[(N−1)α+1]M = 2−1M2−(N−1)α ≥ 2−1M

[
22+α ‖g‖22Mn

1− b

]− α
1+α

=

(
(1− b)M

1
α

23+α+1/α ‖g‖22 n

) α
1+α

= L1
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while for 2−[(N−1)α+1]M = M/2 for N = 1. Finally, we choose L = L0 ∧ L1 ∧ (M/2),

which satisfies (2.7.8), and we derive from (2.7.9) that

Rn(Hα(M))

≥ (1− e−1)‖g‖22
32(1 + b)

( (1− b)M
1
α

23+α+1/α ‖g‖22 n

) α
1+α

∧ M
2
∧ 1 +

√
1− b2
b2

 .
The conclusion follows by taking g(x) = x1l[0,1/2] + (1 − x)1l[1/2,1] for which b = 1/2 and

‖g‖22 = 1/12 .

2.7.7 Proof of Proposition 2.4.5

Let α ∈ (0, 1] and M > 0. For a function γ ∈ Hα(M) taking values in J = (0,+∞),

we set γj = D
∫
Ij
γ(w)dw, for j ∈ {1, . . . , D} and γ =

∑D
j=1 γj1lIj . As an immediate

consequence, γj ∈ J for all j ∈ {1, . . . , D} and γ ∈ S. Since for all w ∈ Ij , with the fact

that γ ∈ Hα(M)

|γ(w)− γ(w)| ≤ sup
|w−w′|≤1/D

∣∣γ(w)− γ(w′)
∣∣ ≤MD−α

and S is dense in S with respect to the supremum norm, we derive

sup
γ∈Hα(M)

inf
γ∈S

∥∥∥√γ −√γ∥∥∥
2
≤ sup
γ∈Hα(M)

inf
γ∈S

∥∥∥√γ −√γ∥∥∥
∞

≤ sup
γ∈Hα(M)

inf
γ∈S

√
‖γ − γ‖∞

= sup
γ∈Hα(M)

inf
γ∈S

√
‖γ − γ‖∞

≤
√
MD−

α
2 .

Using the fact that the data X1, . . . , Xn are i.i.d. and 1− e−x ≤ x for all x ∈ [0,+∞),

we deduce that for all functions γ and γ ′ with values in J = (0,+∞),

h2(Rγ ,Rγ′) = nh2(Rγ , Rγ′) = n

∫
W

[
1− e−

(√
γ(w)−

√
γ′(w)

)2
/2
]
dPW (w)

≤ n

2

∥∥∥√γ −√γ ′∥∥∥2

2
. (2.7.10)

Applying Corollary 2.3.1 with V = D + 1 together with (2.7.10), we obtain that

sup
γ?∈Hα(M)

E
[
h2(Rγ? , Rγ̂)

]
≤ C ′

[
sup

γ?∈Hα(M)
inf
γ∈S

h2(Rγ? , Rγ) +
V

n

[
1 + log+(n/V )

]]

≤ C ′
[

1

2
sup

γ?∈Hα(M)
inf
γ∈S

∥∥∥√γ? −√γ∥∥∥2

2
+
V

n

[
1 + log+(n/V )

]]

≤ C ′
[

1

2
MD−α +

D + 1

n
log(en)

]
.
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Let us set Ln = log(en). With our choice of D ≥ 1,

D − 1 <

(
Mn

2Ln

) 1
1+α

≤ D

hence MD−α/2 ≤ DLn/n, D < 1 + [Mn/(2Ln)]1/(1+α) and the result follows from the

inequalities

MD−α

2
+

(D + 1)Ln
n

≤ 2
DLn
n

+
Ln
n
≤ 2

[
(M/2)1/αLn

n

] α
1+α

+
3Ln
n
.



Chapter 3

Estimation by model selection

3.1 Introduction

We observe n independent pairs of random variables X1 = (W1, Y1), . . . , Xn = (Wn, Yn)

with values in a measurable product space (X ,X ) = (W ×Y ,W⊗Y). Recall that, as we

have introduced in Section 2.2, T denotes the set of all probabilities on (Y ,Y) which we

equip with the Borel σ-algebra T associated to the total variation distance and the notation

QW stands for the set of all measurable mappings (conditional probabilities) from (W ,W)

into (T , T ). We assume that for each i ∈ {1, . . . , n}, the conditional distribution Q?i (wi)

of Yi given Wi = wi exists and is given by the value at wi of some measurable function

Q?i ∈ QW . Our goal is to estimate the n-tuple Q? = (Q?1, . . . , Q
?
n). We do as if there

exists an unknown function γ? on W such that for each i ∈ {1, . . . , n}, the conditional

distribution of Yi given Wi = wi belongs to a one-parameter exponential family with

parameter γ?(wi) ∈ R. When such a γ? does exist, the above statistical setting includes

binary, Gaussian and Poisson regressions and exponential multiplicative regression, among

many others.

In Chapter 2, we have proposed a robust procedure based on the ρ-estimation to

estimate Q?. The approach is restricted to the case of a single model. Up to a numerical

constant, the risk of our ρ-estimator γ̂ within the constructed model is bounded by the

sum of an approximation term and a complexity term. Such an estimation procedure is

satisfactory if we know in advance a suitable model for γ?, i.e. a model which is not too

complex and provides a good enough approximation of γ?. However, such a model may

not be easy to design without any prior information and a safer approach is to consider a

family of candidate models instead and let the data decide which is the most appropriate

one for estimating the potential function γ?.

In this chapter, we consider the same estimation problem, i.e. estimating the condi-

tional distributions Q?i (wi) of Yi given Wi = wi, by model selection. For an exponential

family Q, we focus on its general form of parametrization, i.e. Q = {Rγ = rγ · µ, γ ∈ J}
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where the densities (with respect to µ) are of the form, for all y ∈ Y and γ ∈ J

rγ(y) = eu(γ)S(y)−B(γ)a(y) where B(γ) = log

[∫
Y
eu(γ)S(y)a(y)dµ(y)

]
, (3.1.1)

S is a real-valued measurable function on (Y ,Y) which does not coincide with a constant

ν = a · µ-a.e., u is a continuous, strictly monotone function on J and a is a nonnegative

function on Y . For convenience, we denote

rγ(y) = eu(γ)S(y)−B(γ), for all y ∈ Y and γ ∈ J, (3.1.2)

and rewrite Q = {Rγ = rγ · ν, γ ∈ J} which is exact the form described in (2.3.12).

We propose a model selection procedure based on ρ-estimation to estimate the con-

ditional distributions Q? = (Q?1, . . . , Q
?
n) and establish non-asymptotic exponential in-

equalities for the upper deviations between the resulted estimator and the truth Q?. Our

approach is still based on the presumption that there exists an unknown γ? on W belong-

ing to some of our models such that Q?i (wi) is of the form Rγ?(wi) for all i ∈ {1, . . . , n}.
However, our approach is not restricted to this assumption as we have emphasised in for-

mer chapters. Our estimator takes the form of a mapping Rγ̂ : w = (w1, . . . , wn) ∈ W n 7→
(Rγ̂(w1), . . . , Rγ̂(wn)) with values in Q

n
, where γ̂ is a (random) function from W into J .

In particular, when Q? = Rγ? for some (deterministic) function γ? : W → I, γ̂ provides

an estimator of the so called regression function γ?. We also keep to endow QW = Qn
W

with the Hellinger-type (pseudo) distance h introduced in (2.2.2). When Wi are i.i.d. with

the common distribution PW and Q?i = Q? for all i ∈ {1, . . . , n}, we slightly abuse the

notation h2(Q?, Rγ̂) to measure the distance between Q? and Rγ̂ which is defined as

h2(Q?, Rγ̂) =
1

n
h2(Q?,Rγ̂) =

∫
W
h2(Q?(w), Rγ̂(w))dPW (w).

Besides the model selection procedure, we put more attention to the situation when

X1, . . . , Xn are i.i.d., where several interesting applications arise including adaptation and

variable selection problems in exponential families. Also in i.i.d. case, when the dimen-

sionality d of covariate W is large, the converge rate of estimating γ? can be extremely slow

which is, as a well-known phenomenon, called the curse of dimensionality. When γ? has

some particular structures or at least close to some function with such features, we con-

sider model selection problems based on the composite piecewise polynomials and ReLU

neural networks and show that the resulted estimators by our procedure based on such

models can circumvent the curse of dimensionality. The structures discussed in the paper

includes genaralized additive structure, multiple index structure and multiple composition

structure. In particular, when γ? belongs to the Takagi class we provide an example where

estimation based on ReLU neural networks results in an estimator converging to γ? with

parametric rate although γ? has very little smoothness. At least for such an example,
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neural networks outperform all the other traditional approximation methods, e.g. piece-

wise polynomials and wavelets. The above mentioned results are replied on constructing

suitable models to approximate general additive and multiple index functions and derive

VC dimension bounds for them. Besides, we adapt the VC dimension result of ReLU

neural networks to the sparse setting. These VC dimension bounds can be of independent

interest.

The remainder of this chapter is organized as follows. We introduce the estimation

procedure in Section 3.2 together with its theoretical properties. We then discuss the

adaptive estimation problem in exponential families when the regression function belongs

to anisotropic Besov spaces as an application in Section 3.3. We show that under a suitable

parametrization of exponential families, our estimator is adaptive over a wide range of the

anisotropic Besov spaces with the risk bound independent of choice of the exponential

family. In Section 3.4, we consider the applications of our procedure to two examples of

the structural assumptions, general additive functions and multiple index functions, to

circumvent the curse of dimensionality. Estimation by model selection based on ReLU

neural networks is discussed in Section 3.5 and variable selection problem in generalized

linear models is considered in Section 3.6. Finally, all the proofs of this chapter can be

found in Section 3.7.

We end this section by introducing some notations for later use in this chapter. We

denote N∗ the set of all positive natural numbers, R+ the set of all non-negative real

numbers and R∗+ the set of all positive real numbers. For a set m, we use |m| to denote its

cardinality. By (x)+, we mean the function max{0, x}. We denote x ∨ y the largest value

among {x, y} while x∧ y is the smallest. We use the notation bxc for any x ∈ R to denote

the largest integer strictly smaller than x. For a Q ∈ QW and a set A ⊂ QW , we define

h2(Q,A) = infQ′∈A h2(Q,Q′). Unless otherwise specified, log denotes the logarithm

function with base e. Let (A,A) be a measurable space and µ be a σ-finite measure on

(A,A). For k ∈ [1,+∞], we define Lk(A,µ) the collection of all the measurable functions

f on (A,A, µ) such that ‖f‖k,µ < +∞, where

‖f‖k,µ =

(∫
A
|f |kdµ

) 1
k

, for k ∈ [1,+∞),

‖f‖∞,µ = inf{K > 0, |f | ≤ K µ− a.e.}, for k =∞.

We denote the associated equivalent classes as Lk(A,µ) where any two functions coincide

for µ-a.e. can not be distinguished. In particular, we write the norm ‖·‖k with k ∈ [1,+∞]

when µ = λ is the Lebesgue measure. Throughout this chapter, C denotes positive

numerical constant which may vary from line to line.
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3.2 An estimation strategy based on model selection

Our model selection approach is based on ρ-estimation. We refer to Baraud and Birgé

(2018) and Baraud et al. (2017) for a thorough study of this methodology or Chapter 1

for a brief introduction.

3.2.1 Main assumption

LetM be a finite or countable set. For each m ∈M, Γm stands for a class of measurable

functions from W into J , which we call it a model. We begin with an at most countable

family {Γm, m ∈M} of classes and assume the following.

Assumption 3.2.1. For any m ∈ M, Γm is VC-subgraph on W with dimension not

larger than Vm ≥ 1.

For definitions and more properties of the VC-subgraph class of functions, we re-

fer to Section 1.5. As we have commented in Section 1.5, one property derived from

Lemma 2.6.18 of van der Vaart and Wellner (1996) is that if Γ is VC-subgraph on a

set W with dimension V and a, b ∈ R are fixed numbers, then the classes of functions

Γa =
{
γ ∨ a, γ ∈ Γ

}
and Γ

b
=
{
γ ∧ b, γ ∈ Γ

}
are also VC-subgraphs on W with dimen-

sion not larger than V . We shall repeatedly use the conclusion through this chapter.

3.2.2 Model selection procedure

We consider
{
Γm, m ∈M

}
an at most countable family of models satisfying Assump-

tion 3.2.1. To avoid measurability issues, for any m ∈M, we take Γm a finite or countable

subset of Γm and denote Γ = ∪m∈MΓm. Let ψ be the map defined on [0,+∞] given by

(2.3.1). For any γ,γ ′ ∈ Γ, we introduce the function

T(X,γ,γ ′) =

n∑
i=1

ψ

(√
rγ′(Wi)(Yi)

rγ(Wi)(Yi)

)
(3.2.1)

with the conventions 0/0 = 1 and a/0 = +∞ for all a > 0.

Let ∆ be a map from M to R+. For each m ∈M, we associate it with a nonnegative

weight ∆(m) which satisfies

Σ =
∑
m∈M

e−∆(m) < +∞. (3.2.2)

In particular, when Σ = 1, this gives a Bayesian flavour to our procedure by regarding

∆(m) as a prior distribution on the family {Γm, m ∈M}.
Let Dn be a map from M to R+ defined as, for any m ∈M,

Dn(m) = 103Vm

[
9.11 + log+

(
n

Vm

)]
,
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where Vm stands for the VC dimension of the class Γm. We define the penalty function

from Γ to R+ as

pen(γ) = 102 inf
{m∈M|γ∈Γm}

[Dn(m) + 4.7∆(m)] , for all γ ∈ Γ. (3.2.3)

For all γ ∈ Γ, we set

υ(X,γ) = sup
γ′∈Γ

[
T(X,γ,γ ′)− pen(γ ′)

]
+ pen(γ). (3.2.4)

We define γ̂ = γ̂(X) as any measurable element of the random (and non-void) set

E (X) =

{
γ ∈ Γ such that υ(X,γ) ≤ inf

γ′∈Γ
υ(X,γ ′) +

κρ
25

}
, (3.2.5)

where κρ = 280
√

2 + 74. Finally, the random variable γ̂(X) is our estimator of the

regression function γ? and Rγ̂ = (Rγ̂ , . . . , Rγ̂) is our estimator of Q?.

As one can observe from the construction procedure, our estimator depends on the

choice of the exponential family Q, the countable subsets Γm of Γm and the weights

∆(m) we choose. However, we do not require any information about the distributions of

covariates Wi which, therefore, could be unknown. This is one of the feature distinguishing

our procedure with the existing ones Antoniadis and Sapatinas (2001), Antoniadis et al.

(2001), Sardy et al. (2004) and Brown et al. (2010) in the literature.

3.2.3 The performance of the estimator

Theorem 3.2.1. Let Qm = {Rγ , γ ∈ Γm} and Ξ(m) = Dn(m)/4.7 + ∆(m), for all m ∈
M. Under Assumption 3.2.1, whatever the conditional probabilities Q? = (Q?1, . . . , Q

?
n) of

Yi given Wi and the distributions of Wi, the estimator Rγ̂ obtained by our model selection

procedure in Section 3.2.2 satisfies for any ξ > 0, with a probability at least 1− Σe−ξ

h2(Q?,Rγ̂) ≤ inf
m∈M

[
c1h

2(Q?,Qm) + c2 (Ξ(m) + 1.49 + ξ)
]
, (3.2.6)

where c1 = 150 and c2 = 5014.

The proof of Theorem 3.2.1 is postponed to Section 3.7.1. We shall use (3.2.6) in the

forthcoming sections to solve many model selection problems simultaneously. We give

some comments on this result here. The numerical constants c1 and c2 are independent

of the choice of the exponential family. For all m ∈ M, let us set Qm = {Rγ , γ ∈ Γm}.
If for all m ∈M, Qm is dense in Qm with respect to the pseudo Hellinger distance h, i.e.

h(Q?,Qm) = h(Q?,Qm), (3.2.6) is equivalent to

h2(Q?,Rγ̂) ≤ inf
m∈M

[
c1h

2(Q?,Qm) + c2 (Ξ(m) + 1.49 + ξ)
]
,
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where we involve the models Γm into the deviation bound of our estimator but not its

countable subset Γm as we derived in (3.2.6). As it was discussed in Section 4.2 of Baraud

and Birgé (2018), this is exact the case when Γm is a dense subset of Γm for the topology

of pointwise convergence for all m ∈M.

An integration of (3.2.6) with respect to ξ leads to

E
[
h2(Q?,Rγ̂)

]
≤ inf

m∈M

[
c1h

2(Q?,Qm) + c2 (Ξ(m) + Σ + 1.49)
]
. (3.2.7)

We note from (3.2.7) that the risk of the estimator Rγ̂ is bounded, up to a constant

depending on Σ, by the infimum over the whole familyM of the quantity summing up the

distance from each Qm to Q?, the complexity of each Γm (up to a logarithmic factor) and

the associated weight ∆(m). The magnitude of the bias term and the complexity term is

of the optimal order so that if for all m ∈ M, the weight function ∆(m) is chosen to be

not larger than Vm (up to a logarithmic factor), we are able to select the model achieving

the best trade-off between approximation and model’s complexity among the collection

M.

Moreover, the bias term h(Q?,Qm) in (3.2.7) accounts for the robustness property of

our estimator with respect to the possible model misspecification and data contamination.

To illustrate it simply, let us focus on each single Γm and assume the weight ∆(m) has been

assigned such that ∆(m) . Dn(m). If Γm is exact, i.e. Q? = Rγ? with γ? ∈ Γm, up to a

constant, the risk of the estimator Rγ̂ will be smaller than Vm
[
1 + log+ (n/Vm)

]
. If it is

not the case, the risk involves an additional bias term h2(Q?,Qm) due to a potential model

misspecification or data contamination. However, as long as this bias term remains small

compared to Vm
[
1 + log+ (n/Vm)

]
, the performance of our estimator will not deteriorate

much as the case when Γm is exact.

In the situation where the covariates Wi are truly i.i.d. with a common distribution

PW and Q?i = Q? for all i ∈ {1, . . . , n}, we deduce from (3.2.7) that for any Q? and PW ,

our estimator Rγ̂ satisfies

E
[
h2(Q?, Rγ̂)

]
≤ c2 (c3 + Σ) inf

m∈M

[
h2(Q?,Qm) +

∆(m)

n
+
Vm
n
Ln(m)

]
, (3.2.8)

where c3 = 1940, Qm = {Rγ , γ ∈ Γm} and Ln(m) = 1 + log+ (n/Vm).

3.3 Adaptation to anisotropic Besov spaces

In this section, we assume the covariates Wi are truly i.i.d. on W = [0, 1]d, d ≥ 1 with

a common distribution PW and Q?i = Q? for all i ∈ {1, . . . , n} and consider adaptive

estimation in exponential families. The problem is stated as follows.

Let 0 < p, q ≤ ∞, α = (α1, . . . , αd) ∈ (R∗+)d and R ∈ R∗+. We denote Bαp,q([0, 1]d , R)

as the anisotropic Besov ball which gathers all the functions f in the anisotropic Besov
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space Bαp,q([0, 1]d) with (quasi-) semi-norm |f |α,p,q < R. Including Hölder and Sobolev

spaces, Besov space is a considerable general function space. It can also capture the

spatial inhomogeneity of the smoothness property as discussed by Suzuki and Nitanda

(2019). For readers who concern the definitions, we refer to Chapter 5 of Triebel (2006)

and Hochmuch (2002) which gives a detailed introduction restricted to d = 2 but can

be generalized easily. Similarly to the isotropic case, the d-dimensional parameter α

indicates the smooth property in each direction j ∈ {1, . . . , d}. More precisely, for all

functions f ∈ Bαp,q([0, 1]d), if αj is large, then f is smooth to the j-th direction.

For a given interval [v−, v+] ⊂ J with v− < v+, the notation Bαp,q(R, v−, v+) stands for

the collection of functions f ∈ Bαp,q([0, 1]d , R) with f(w) ∈ [v−, v+] for all w ∈ [0, 1]d. We

assume that the regression function γ? ∈ Bαp,q(R, v−, v+). Our aim, in this section, is to

design a specific procedure for estimating this γ? without assuming the parameters α, p

and R to be known.

3.3.1 Models construction

We begin with introducing the conception of hyperrectangle. Given sj ∈ N, 1 ≤ j ≤ d, for

any kj ∈ Ψ(sj) = {0, . . . , 2sj − 1}, we set

Ij(kj) =

{[
0, 2−sj

]
, kj = 0,

(kj2
−sj , (kj + 1)2−sj ] , kj = 1, . . . , 2sj − 1.

(3.3.1)

We call a hyperrectangle by any subset of [0, 1]d of the form
∏d
j=1 Ij(kj). Given a vector

s = (s1, . . . , sd) ∈ Nd, we denote MB,ds the resulted partition of [0, 1]d into the union of

hyperrectangles ∪(k1,...,kd)∈Ψ(s1)×···×Ψ(sd)

∏d
j=1 Ij(kj).

We take M = Nd × N. Given (s, r) ∈ M, we define S
B,d
(s,r) as the space of piecewise

polynomial functions on [0, 1]d, where on each hyperrectangle
∏d
j=1 Ij(kj), γ ∈ S

B,d
(s,r) is

a polynomial in d variables of degree at most r for each variable. This is to say given

(s, r) ∈M, for any (k1, . . . , kd) ∈ Ψ(s1)× · · · ×Ψ(sd), any γ ∈ SB,d(s,r) is of the form for all

w = (w1, . . . , wd) ∈
∏d
j=1 Ij(kj)

γ(w) =
∑

(r1,...,rd)∈{0,...,r}d
γ(r1,...,rd)

d∏
j=1

wj
rj , (3.3.2)

where γ(r1,...,rd) ∈ R, for all 0 ≤ rj ≤ r, 1 ≤ j ≤ d.

Recall that in our setting γ? takes values in some non-trivial interval J which may

vary from the choice of the exponential family and the choice of parametrization. To

estimate γ?, we assume that we have a prior information of v−, v+ ∈ R such that the

regression function γ? with values in [v−, v+] ⊂ J . For each (s, r) ∈M, we define Γ
B,d
(s,r) ={

(γ ∨ v−) ∧ v+, γ ∈ S
B,d
(s,r)

}
and the family of models is given by

{
Γ
B,d
(s,r), (s, r) ∈M

}
.
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For each S
B,d
(s,r), we take its countable subset SB,d(s,r) as the collection of functions of the

same form in (3.3.2) apart from restricting γ(r1,...,rd) ∈ Q, for all 0 ≤ rj ≤ r, 1 ≤ j ≤ d

and define ΓB,d(s,r) =
{

(γ ∨ v−) ∧ v+, γ ∈ SB,d(s,r)

}
.

Lemma 3.3.1. For any d ∈ N∗, r ∈ N and s ∈ Nd, SB,d(s,r) is dense in S
B,d
(s,r) and ΓB,d(s,r) is

dense in Γ
B,d
(s,r) with respect to the supremum norm ‖ · ‖∞.

For any (s, r) ∈ M, since MB,ds is a partition of [0, 1]d with
∏d
j=1 2sj hyperrectangles

and on each hyperrectangle the space of functions is spanned by (r + 1)d basis, S
B,d
(s,r) is

a (r + 1)d
∏d
j=1 2sj dimensional vector space. By Proposition 1.5.1, for any (s, r) ∈ M,

Γ
B,d
(s,r) is a VC-subgraph on W with dimension not lager than (r + 1)d

∏d
j=1 2sj + 1 which

fulfills Assumption 3.2.1 with

V(s,r) = (r + 1)d
d∏
j=1

2sj + 1. (3.3.3)

For each (s, r) ∈M, we associate it with the weight

∆(s, r) = log(8d)

d∏
j=1

2sj + r. (3.3.4)

We have the following result which shows inequality (3.2.2) is satisfied with the weights

defined by (3.3.4).

Lemma 3.3.2. For each (s, r) ∈M, let the weight be assigned by (3.3.4). Then∑
(s,r)∈M

e−∆(s,r) ≤ e

e− 1
.

We denote MB,d = ∪s∈NdM
B,d
s . Given a partition π ∈ MB,d without knowing the

specific values of (s1, . . . , sd), sometimes it is useful to introduce an alternative notation

Γ
B,d
(π,r) =

{
(γ ∨ v−) ∧ v+, γ ∈ S

B,d
(π,r)

}
for Γ

B,d
(s,r), where S

B,d
(π,r) characterises the space of

piecewise polynomial functions on [0, 1]d such that on each hyperrectangle of π, any γ ∈
S
B,d
(π,r) is a polynomial in d variables of degree not larger than r for each variable. Similarly,

the VC dimension bound for the class of functions Γ
B,d
(π,r) on W is given by

V(π,r) = (r + 1)d|π|+ 1, (3.3.5)

where |π| denotes the cardinality of hyperrectangles given by the partition π of [0, 1]d.

Under this new notation, the weight associated to each (π, r) ∈MB,d×N can be deduced

from (3.3.4) as

∆(π, r) = log(8d)|π|+ r. (3.3.6)
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3.3.2 Adaptivity result

Before deriving the risk bound for our estimator based on the constructed family in Sec-

tion 3.3.1, we first discuss the parametrization issue of the exponential family. As it has

been shown in Section 2.4.1 and 2.4.2 of Chapter 2, parametrization of the exponential

family influences the converge rate of γ̂ to γ?. For example, when d = 1 one can see from

Section 2.4.2 that if we parametrize exponential families by their means, Poisson regression

achieves much slower rate than the Gaussian case under the same α-Hölder smoothness

assumption on γ? with α ∈ (0, 1]. However, there do exist ways of parametrization such

that the same rate of convergence can be achieved uniformly regardless the choice of the

exponential family. We assume the following holds.

Assumption 3.3.1. The exponential family Q = {Rγ , γ ∈ J} has been parametrized in

the way that there exists a constant κ > 0 such that

h(Rγ , Rγ′) ≤ κ|γ − γ′| for all γ, γ′ ∈ J.

Let us remark that, by Proposition 2.4.1, Assumption 3.3.1 is fulfilled with κ = 1 when

the exponential family is parametrized by γ = υ(θ), where θ is the natural parameter and

υ satisfies υ′(θ) =
√
A′′(θ)/8 with the function A defined by (2.2.1).

For any α = (α1, . . . , αd) ∈ (R∗+)d, we denote αmin = min1≤j≤d αj and α the harmonic

mean of α1, . . . , αd, i.e.

α =

1

d

d∑
j=1

1

αj

−1

.

With the family of models
{

Γ
B,d
(s,r), (s, r) ∈M

}
defined in Section 3.3.1, the associated

countable subsets
{

ΓB,d(s,r), (s, r) ∈M
}

and the weights defined by (3.3.4), we are now able

to apply the model selection procedure introduced in Section 3.2.2 to estimate γ?. The

following result shows that under Assumption 3.3.1, the resulted estimator γ̂(X) based

on
{

ΓB,d(s,r), (s, r) ∈M
}

is adapted to the possible anisotropy over a wide range of the

anisotropic Besov spaces with a risk bound of order n−2α/(2α+d) up to a logarithmic factor

with respect to the distance d(γ?, γ̂) = h2
(
Rγ? , Rγ̂

)
. One nice feature is that this risk

bound is independent of the choice of the exponential family.

Corollary 3.3.1. Under Assumption 3.3.1, whatever the distribution of W , the estimator

γ̂(X) given by the model selection procedure in Section 3.2.2 over the countable family{
ΓB,d(s,r), (s, r) ∈ Nd × N

}
with the weights defined by (3.3.4) satisfies for all R > 0, p > 0

and α ∈ (R∗+)d such that α/d > 1/p,

sup
γ?∈Bαp,q(R,v−,v+)

E
[
h2
(
Rγ? , Rγ̂

)]
≤ Cκ,d,α,p

(
R

2d
d+2αn−

2α
d+2α +

1

n

)
(1 + log n) ,
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where q =∞ if 0 < p ≤ 1 or p ≥ 2 and q = p if 1 < p < 2, Cκ,d,α,p is a constant depending

on κ, d,α, p only.

The proof of Corollary 3.3.1 is postponed to Section 3.7.1. We hereby give some

comments on this result. First, Corollary 3.3.1 in fact holds for any 0 < q ≤ ∞, if

0 < p ≤ 1 or p ≥ 2 and 0 < q ≤ p, if 1 < p < 2 as a consequence of embedding the

anisotropic Besov spaces to some bigger spaces. We shall not discuss too much on this

direction but refer the reader to Section 2.3 of Akakpo (2012). Second, as it has been

discussed by Section 2.1 of Suzuki and Nitanda (2019), the parameter p plays a role of

controlling the spatial inhomogeneity of the smoothness. In particular, when p = ∞,

the smoothness is ensured uniformly. Our result, therefore, is also adapted to γ? with

potentially inhomogeneous smoothness. Third, the rate is optimal up to a logarithmic

factor in the minimax sense at least when d = 1 as it has been proved in Proposition 2.4.3.

Finally, the condition α/d > 1/p appearing in the result is more strict than the usual one

which only requires α/d > (1/p− 1/2)+. This is because we do not make any assumption

on the distribution of the covariate W . Therefore, we bound the approximation bias with

respect to the sup-norm ‖ · ‖∞. As one can see from the proof of Corollary 3.3.1, this

bias bound can be reconsidered if the specific distribution of the covariate W is given.

In the particular case when the probability measure PW admits a density PW = pW · λ
with respect to the Lebesgue measure λ and ‖pW ‖∞ ≤ K (i.e. the probability measure

PW is equivalent to the Lebesgue probability on W = [0, 1]d), we only need to require the

usual condition α/d > (1/p− 1/2)+ to obtain the same rate in Corollary 3.3.1, where the

numerical constant depends on K, κ, d, α and p.

3.4 Model selection under structural assumptions

In the last section, we have seen that when the covariates Wi are truly i.i.d. on [0, 1]d and

Q?i = Rγ? for all i ∈ {1, . . . , n} with γ? ∈ Bαp,q (R, v−, v+), the estimator γ̂(X) obtained

from our model selection procedure based on
{

ΓB,d(s,r), (s, r) ∈M
}

achieves the converge

rate n−2α/(d+2α) adaptively. When the value of d is large, this rate becomes slow, which

is, as a well-known phenomenon, called the curse of dimensionality. To circumvent it, we

impose structural assumptions on γ? in this section and consider additional models to

implement our procedure. We mainly discuss two examples of the structural assumptions:

generalized additive structure and multiple index structure.

We begin with setting some notations. Let k ∈ N∗ and w = (w1, . . . , wk) ∈ [0, 1]k.

For a vector α = (α1, . . . , αk) ∈ (R∗+)k with αj = rj + α′j , rj ∈ N and α′j ∈ (0, 1] for

j ∈ {1, . . . , k}, Hölder space Hα([0, 1]k) denotes the collection of functions f on [0, 1]k

satisfying for any (w1, . . . , wj−1, wj+1, . . . , wk) ∈ [0, 1]k−1 and all x, y ∈ [0, 1]∣∣∣∂rjj f(w1, . . . , x, . . . , wk)− ∂
rj
j f(w1, . . . , y, . . . , wk)

∣∣∣ ≤ L(f)|x− y|α
′
j ,
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where ∂
rj
j f denotes the rj-th order partial derivative of the function f on the j-th com-

ponent. We define the anisotropic Hölder class Hα([0, 1]k , L) as the collection of all the

functions f ∈ Hα([0, 1]k) with L(f)+inf L ≤ L, where the infimum runs among all L such

that

|f(w)− f(w′)| ≤ L
k∑
j=1

|wj − w′j |αj∧1, for all w,w′ ∈ [0, 1]k

and define Hα(L, v−, v+) as the collection of all functions f ∈ Hα([0, 1]k , L) taking values

in [v−, v+] ⊂ J with v− < v+.

Given tj ∈ N∗, 1 ≤ j ≤ k, for any hj ∈ Φ(tj) = {0, . . . , tj − 1}, we define

I ′j(hj) =

{
[0, 1/tj ] , hj = 0,

(hj/tj , (hj + 1)/tj ] , hj = 1, . . . , tj − 1.
(3.4.1)

For a given k ∈ N∗ and t = (t1, . . . , tk) ∈ (N∗)k, we denote MH,kt the resulted partition of

[0, 1]k into the union of
∏k
j=1 tj hyperrectangles

∪(h1,...,hk)∈Φ(t1)×···×Φ(tk)

k∏
j=1

I ′j(hj),

where on j-th direction the interval [0, 1] is divided into tj regular subintervals, for j ∈
{1, . . . , k}. For any k ∈ N∗, t ∈ (N∗)k and r ∈ N, we denote S

H,k
(t,r) the space of piecewise

polynomial functions f on [0, 1]k such that the restriction of f to each hyperrectangle

is a polynomial in k variables of degree not larger than r for each variable and SH,k(t,r)

the collection of functions with the same form as the ones belonging to S
H,k
(t,r) apart from

restricting the coefficients in front of the polynomial basis to be rational numbers. With

a similar argument as the proof of Lemma 3.3.1, the following result is easy to obtain.

Lemma 3.4.1. For any k ∈ N∗, t ∈ (N∗)k and r ∈ N, SH,k(t,r) is dense in S
H,k
(t,r) with respect

to the supremum norm ‖ · ‖∞.

3.4.1 Generalized additive structure

Generalized additive functions, as a classical structural assumption, have been consid-

ered in many statistical literatures. Let α,L ∈ R∗+, β = (β1, . . . , βd) ∈ (R∗+)d, p =

(p1, . . . , pd) ∈ (R∗+)d and R = (R1, . . . , Rd) ∈ (R∗+)d. We denote F[v−,v+](α,β,p, L,R) the

collection of functions γ : [0, 1]d → [v−, v+] ⊂ J of the following form

γ(w) = f

 d∑
j=1

gj(wj)

 , for all w = (w1, . . . , wd) ∈ [0, 1]d ,

where f ∈ Hα(L, v−, v+) and gj ∈ B
βj
pj ,pj ([0, 1] , Rj) taking values in [0, 1/d], for j ∈

{1, . . . , d}.
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We assume the regression function γ? ∈ F[v−,v+](α,β,p, L,R) but without the knowl-

edge of α, β, p, L and R. To estimate γ? by our model selection procedure, we need to

first build suitable approximation models for the class of functions F[v−,v+](α,β,p, L,R).

To approximate the Besov class of functions B
βj
pj ,pj ([0, 1] , Rj), we consider the family{

S
B,1
(s,r), (s, r) ∈ N× N

}
introduced in Section 3.3.1 taking d = 1. We recall that the

functions belonging to the above family are built based on the collection of particular

partitions MB,1 = ∪s∈NMB,1s . Therefore, we can rewrite the family in an alternative way{
S
B,1
(π,r), (π, r) ∈MB,1 × N

}
. To approximate the Hölder class of functions Hα([0, 1] , L)

with values in [v−, v+], we consider the family
{

Γ
H,1
(t,r), (t, r) ∈ N∗ × N

}
, where Γ

H,1
(t,r) ={

(γ ∨ v−) ∧ v+, γ ∈ S
H,1
(t,r)

}
.

For any r ∈ N, t ∈ N∗ and π = (π1, . . . , πd) ∈ (MB,1)d, we define Γ
A
(π,t,r) the collection

of all the functions γ on W = [0, 1]d of the form

γ(w) = f [(g(w) ∨ 0) ∧ 1] , for all w = (w1, . . . , wd) ∈ [0, 1]d , (3.4.2)

where g(w) =
∑d

j=1 gj(wj) with gj ∈ S
B,1
(πj ,r), for j ∈ {1, . . . , d} and f ∈ Γ

H,1
(t,r). The

following result reveals the upper bound of the VC dimension for the class of functions

Γ
A
(π,t,r).

Proposition 3.4.1. Given r ∈ N, t ∈ N∗ and π ∈ (MB,1)d, the class of functions Γ
A
(π,t,r)

is a VC-subgraph on [0, 1]d with dimension

V A
(π,t,r) ≤ 2 +

t(r + 1) + 2
d∑
j=1

|πj |(r + 1)

 log2 [4eU log2 (2eU)] ,

where U = t+ r + 2.

The proof is postponed to Section 3.7.3. For each r ∈ N, t ∈ N∗ and π = (π1, . . . , πd) ∈
(MB,1)d, we take the countable subset ΓA(π,t,r) of Γ

A
(π,t,r) defined as

ΓA(π,t,r) =
{
f [(g ∨ 0) ∧ 1] , f ∈ ΓH,1(t,r), gj ∈ S

B,1
(πj ,r)

, j = 1, . . . , d
}
,

where SB,1(πj ,r)
is the rational version of S

B,1
(πj ,r) which has been introduced in Section 3.3.1,

ΓH,1(t,r) =
{

(γ ∨ v−) ∧ v+, S
H,1
(t,r)

}
and g(w) =

∑d
j=1 gj(wj), for all w = (w1, . . . , wd) ∈

[0, 1]d.

LetM = (MB,1)d×N∗×N. For any (π, t, r) ∈ (MB,1)d×N∗×N, we associate it with

the weight

∆(π, t, r) = 3 log 2

 d∑
j=1

|πj |

+ r + t. (3.4.3)

The following result shows inequality (3.2.2) is satisfied with the weights defined by (3.4.3).
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Lemma 3.4.2. With the weights defined by (3.4.3), we have∑
(π,t,r)∈(MB,1)d×N∗×N

e−∆(π,t,r) ≤ e

e− 1
.

With Proposition 3.4.1 and Lemma 3.4.2, we can apply the model selection procedure

introduced in Section 3.2.2 and obtain the following.

Corollary 3.4.1. Under Assumption 3.3.1, no matter what the distribution of W is, the

estimator γ̂(X) given by the model selection procedure in Section 3.2.2 over the family{
ΓA(π,t,r), (π, t, r) ∈ (MB,1)d × N∗ × N

}
with the weights defined by (3.4.3) satisfies for all

α,L ∈ R∗+ and β,p,R ∈ (R∗+)d such that βj > 1/pj

sup
γ?∈F[v−,v+](α,β,p,L,R)

C ′κ,d,α,β,pE
[
h2(Rγ? , Rγ̂)

]

≤


 d∑
j=1

(
LRα∧1

j

) 2
2(α∧1)βj+1 n

−
2(α∧1)βj

2(α∧1)βj+1

+ L
2

2α+1n−
2α

2α+1 +
1

n

L2
n, (3.4.4)

where Ln = log n ∨ logL2 ∨ 1 and C ′κ,d,α,β,p is a constant depending on κ, d, α, β and p.

Corollary 3.4.1 tells that in the ideal situation γ? ∈ F[v−,v+](α,β,p, L,R) for some α,

β, p, L and R, the converge rate of the estimator is independent of d which entails the

procedure does not suffer from the curse of dimensionality. When Q? 6= Rγ? or γ? exists

but does not belong to any F[v−,v+](α,β,p, L,R), a bias term will be added into the risk

bound in Corollary 3.4.1. However, as long as the bias term is not too large compared

to the quantity on the right hand side of (3.4.4), the accuracy of the resulted estimator

γ̂(X) remains the same magnitude as the ideal case which confirms the robustness of our

estimator.

3.4.2 Multiple index structure

Let Cd be the unit ball for the `1-norm, i.e.

Cd =

(c1, . . . , cd) ∈ Rd,
d∑
j=1

|cj | ≤ 1

 .

For some known l ∈ N∗ (typically l ≤ d), we denote G[v−,v+](α, L) the collection of all the

functions γ of the following form

γ(w) = f ◦ g(w), for all w = (w1, . . . , wd) ∈ [0, 1]d , (3.4.5)

where g : [0, 1]d → [0, 1]l defined as g(w) = (g1(w), . . . , gl(w)) with

gj(w) =
1

2
[〈aj ,w〉+ 1] , aj ∈ Cd for all j ∈ {1, . . . , l}
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and f ∈ Hα (L, v−, v+) mapping [0, 1]l to [v−, v+] ⊂ J with L ∈ R∗+, α = (α1, . . . , αl) ∈
(R∗+)l and v− < v+. We assume γ? ∈ G[v−,v+](α, L) but without knowing the values of α

and L.

To approximate the Hölder classes on [0, 1]l with values in [v−, v+], we adopt the same

strategy by considering the family
{

Γ
H,l
(t,r), (t, r) ∈ (N∗)l × N

}
, where Γ

H,l
(t,r) stands for the

set
{

(γ ∨ v−) ∧ v+, γ ∈ S
H,l
(t,r)

}
. Let [l] = {1, . . . , l}. For any r ∈ N and t = (t1, . . . , tl) ∈

(N∗)l, we define the class of functions Γ
M
(t,r) on W = [0, 1]d as

Γ
M
(t,r) =

{
f (g1(·), . . . , gl(·)) , f ∈ Γ

H,l
(t,r), gj =

1

2
[〈aj , ·〉+ 1] , aj ∈ Cd, j ∈ [l]

}
.

The following result entails that Γ
M
(t,r) is VC-subgraph on W .

Proposition 3.4.2. For any r ∈ N and t = (t1, . . . , tl) ∈ (N∗)l, the class of functions

Γ
M
(t,r) is a VC-subgraph on W = [0, 1]d with dimension

VM
(t,r) ≤ 2 +

2ld+

 l∏
j=1

tj

 (r + 1)l

 log2 [4eU log2 (2eU)] , (3.4.6)

where U =
∑l

j=1 tj + lr + l + 1.

The proof is postponed to Section 3.7.3. For any r ∈ N and t = (t1, . . . , tl) ∈ (N∗)l, we

take the countable subset ΓM(t,r) of Γ
M
(t,r) defined as

ΓM(t,r) =

{
f (g1(·), . . . , gl(·)) , f ∈ ΓH,l(t,r), gj =

[〈aj , ·〉+ 1]

2
, aj ∈ Cd ∩Qd, j ∈ [l]

}
,

where ΓH,l(t,r) =
{

(γ ∨ v−) ∧ v+, γ ∈ SH,l(t,r)

}
with SH,l(t,r) the countable subset of S

H,l
(t,r) as we

introduced in the beginning of this section.

Let M = (N∗)l × N. For any r ∈ N and t ∈ (N∗)l, we associate it with the weight

∆(t, r) =
l∑

j=1

tj + r. (3.4.7)

The following result shows inequality (3.2.2) is satisfied with the weights defined by (3.4.7).

Lemma 3.4.3. With the weights defined by (3.4.7), we have∑
(t,r)∈(N∗)l×N

e−∆(t,r) ≤ e

e− 1
.

The proof is postponed to Section 3.7.2. With Proposition 3.4.2 and Lemma 3.4.3, we

are able to apply the model selection procedure introduced in Section 3.2.2 and obtain the

following.
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Corollary 3.4.2. Under Assumption 3.3.1, no matter what the distribution of W is, the

estimator γ̂(X) given by the model selection procedure in Section 3.2.2 over the family{
ΓM(t,r), (t, r) ∈ (N∗)l × N

}
with the weights defined by (3.4.7) satisfies for all α ∈ (R∗+)l

and L > 0,

sup
γ?∈G[v−,v+](α,L)

E
[
h2(Rγ? , Rγ̂)

]
≤ Cκ,l,α

(
L

2l
2α+ln−

2α
2α+l +

d

n

)
L2
n,

where Ln = log n ∨ logL2 ∨ 1 and Cκ,l,α is a constant depending only on κ, l and α.

The result tells that if for some α ∈ (R∗+)l and L > 0, γ? ∈ G[v−,v+](α, L) where

the value of l is smaller than d, we mitigate the curse of dimensionality by taking the

information that γ? is a multiple index function. If it is not the case, a bias term will be

added into the risk bound in Corollary 3.4.2. But as long as the conditional distribution

Q? is not far away from some set of conditional distributions
{
Rγ , γ ∈ G[v−,v+](α, L)

}
,

the performance of our estimator will not deteriorate too much.

When the value of l is large (l > d), the multiple index model (3.4.5) does not help

to circumvent the curse of dimensionality. In this situation, we could assume γ? has an

additive structure, i.e.

γ?(w) =
l∑

j=1

γj

(
〈aj ,w〉+ 1

2

)
, for all w ∈ [0, 1]d ,

where aj ∈ Cd. Imposing some smoothness on γj , we can construct models and perform

our model selection procedure to mitigate the curse of dimensionality. The construction

is similar to a combination of what we have done in Section 3.4.1 and 3.4.2.

3.5 Model selection for neural networks

Throughout this section, we assume the covariates Wi are i.i.d. on [0, 1]d with the common

distribution PW and Q?i = Rγ? for all i ∈ {1, . . . , n}. The idea in this section is to

estimate the regression function γ? by our model selection procedure based on ReLU

neural networks.

We start with setting some notations. We recall the Rectifier Linear Unit (ReLU)

activation function σ : R→ R defined as

σ(x) = max(0, x).

For any vector x = (x1, . . . , xp)
> ∈ Rp with some p ∈ N∗, by writing σ(x) we mean the

activation function operating component-wise, i.e.

σ(x) = (max{0, x1}, . . . ,max{0, xd})>.
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We formulate S(L,p) the Multi-Layer Perception (MLP) with width p ∈ N∗ and depth

L ∈ N∗, which is a collection of functions of the form

f : Rd → R, w 7→ f(w) = ML ◦ σ ◦ML−1 ◦ · · · ◦ σ ◦M0(w), (3.5.1)

where

Ml(y) = Al(y) + bl, for l = 0, . . . , L,

Al is a p× p weight matrix for l ∈ {1, . . . , L− 1}, A0 has size p× d, AL has size 1× p and

the shift vectors bl is of size p if l ∈ {0, . . . , L − 1}, a scalar if l = L. All the parameters

in weight matrices and shift vectors vary in R. We denote the MLP as S(L,p) when it has

the same architecture as S(L,p) but all the parameters in weight matrices and shift vectors

vary in Q.

Besides learning all the parameters in weight matrices and shift vectors, people also

enforce their algorithm on some sparse neural networks depending on the problem they

want to solve. Some examples can be found in Section 7.10 of Goodfellow et al. (2016).

Another more tuitive example for the sparse setting is the convolutional neural network

(CNN) which has been widely used in computer vision, sequence analysis in bioinformatics

and natural language processing.

We formulate the sparse ReLU neural networks as follows. For l ∈ {0, . . . , L}, we

define sl the indicator vector in which the component is either 0 or 1. The size of the

vector sl equals to the total number of parameters in weight matrix Al and shift vector

bl. For l = 0, s0 is of size p(d + 1), for l ∈ {1, . . . , L − 1}, sl is of size p(p + 1) and

for l = L, sL is of size p + 1. Essentially, indicator vectors sl, l ∈ {0, . . . , L} represent

collections of functions based on the structure of neural networks. The last p components

in sl, l ∈ {0, . . . , L − 1} and the last one in sL address to the collection of shift vectors

bl. More precisely, for any component in bl if the corresponding position in sl is 1, we

allow this component in bl varies in R otherwise the value of it is fixed at 0. The other

components in sl address to the collection of weight matrices Al with the same way as we

have introduced to bl after reshaping the matrices one row after another into vectors. To

illustrate, we take p = 2, L = 3 and l = 1 as an example. Let s1 = (1, 0, 0, 1, 1, 0)> which

is a vector of size 6. As mentioned before, A1 is a 2× 2 matrix which we write as

A1 =

(
a1 a3

a4 a2

)

and b1 is of size 2. The last 2 components in s1 is (1, 0)> which entails that the first

component in b1 varies in R and the second is fixed at 0. We then reshape A1 one row

after another into a vector, namely (a1, a3, a4, a2)>. The remaining components of sl is

(1, 0, 0, 1)> which entails a1 and a2 are allowed varying in R while a3, a4 = 0. To conclude,
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such an indicator vector s1 corresponds to the collection of weight matrices

A1 =

(
a1 0

0 a2

)
, with a1, a2 ∈ R

and shift vectors b1 = (b, 0)> with b ∈ R.

Given p, L ∈ N∗ and a joint indicator vector s = (s>0 , . . . , s
>
L )>, we denote S(L,p,s) as

the corresponding collection of functions on [0, 1]d. Similarly, S(L,p,s) denotes the class of

functions with the same architecture as S(L,p,s), where the non-zero parameters vary in Q
but not R. Let us remark that given L ∈ N∗, p ∈ N∗, s is of size

p = p2(L− 1) + p(L+ d+ 1) + 1.

The following result gives an upper bound of the VC dimension for the class of the functions

S(L,p,s) on W = [0, 1]d.

Proposition 3.5.1. For any L ∈ N∗, p ∈ N∗ and s ∈ {0, 1}p, a fixed designed neural

network S(L,p,s) is a VC-subgraph on W with dimension

V(L,p,s) ≤ (L+ 1)(‖s‖0 + 1) log2

[
2

(
2e(L+ 1)

(
pL

2
+ 1

))2
]
,

where ‖s‖0 denotes the number of non-zero components in s.

The proof is postponed to Section 3.7.3. In particular, when all the components in s

are 1, S(L,p,s) is the Multi-Layer Perception S(L,p) and Proposition 3.5.1 entails the VC

dimension of S(L,p) is, up to a constant, bounded by pL log [(L+ 1) (pL/2 + 1)].

3.5.1 The Takagi class of functions

We provide an example in this subsection where estimation based on ReLU neural networks

enjoys a significant advantage.

Let v−, v+ ∈ R such that v− < v+ and [v−, v+] ⊂ J . For any t ∈ (−1, 1), l ∈ N∗,
p = (p1, p2) ∈ N∗×N∗ and K ≥ 0, we denote F[v−,v+](t, l,p,K) the collection of functions

where for all f ∈ F[v−,v+](t, l,p,K), it takes values in [v−, v+] ⊂ J and is of the form

f(w) =
∑
k∈N∗

tkg
(
h◦k(w)

)
, for all w ∈ [0, 1] , (3.5.2)

where g ∈ S(l,p1) defined on [0, 1], ‖g‖∞ ≤ K, h ∈ S(l,p2) maps [0, 1] to [0, 1] and h◦k =

h ◦ · · · ◦ h denotes the resulted function when h is composed with itself k times. We

assume the regression function γ? ∈ F[v−,v+](t, l,p,K) but without the knowledge of t,

l, p and K. This type of setting provides elementary examples of self similar functions

and dynamical systems (see Yamaguti and Hata (1983) for example). It also includes a
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number of interesting functions belonging to the Takagi class (Daubechies et al. (2019)

p.28), which is defined as the collection of all the functions of the form

f =
∑
k∈N∗

ckh
◦k,

where (ck)k∈N∗ is an absolutely summable sequence of real numbers and h is the hat

function defined on [0, 1] as

h(w) =


2w , 0 ≤ w ≤ 1

2
,

2(1− w) ,
1

2
< w ≤ 1.

(3.5.3)

Let M = N∗ × N∗. The family of models we consider here is given by{
Γ(L,p), (L, p) ∈ N∗ × N∗

}
,

where Γ(L,p) =
{

(γ ∨ v−) ∧ v+, γ ∈ S(L,p)

}
. We note that for each Γ(L,p), it is a countable

collection of functions on [0, 1] and satisfies Assumption 3.2.1 with V(L,p), up to a constant,

bounded by pL log [(L+ 1) (pL/2 + 1)]. For any (L, p) ∈ M, we associate it with the

weight

∆(L, p) = L+ p. (3.5.4)

As an immediate consequence, we have Σ =
∑

(L,p)∈(N∗)2 e
−∆(L,p) ≤ 1 which satisfies

the inequality (3.2.2). Therefore, we are able to apply the model selection procedure

introduced in Section 3.2.2 and obtain the following result.

Corollary 3.5.1. Let Assumption 3.3.1 hold true. Whatever the distribution of W , the

estimator γ̂(X) given by the model selection procedure in Section 3.2.2 over the family{
Γ(L,p), (L, p) ∈ N∗ × N∗

}
with the weights defined by (3.5.4) satisfies for all t ∈ (−1, 1),

l ∈ N∗, p ∈ (N∗)2 and K ≥ 0

sup
γ?∈F[v−,v+](t,l,p,K)

E
[
h2
(
Rγ? , Rγ̂

)]
≤ Cκ,t,l,p,K

1

n
(1 + log n)4,

where Cκ,t,l,p,K is a constant depending on κ, t, l,p,K only.

The risk bound is optimal up to the logarithmic factors since any two probabilities

with a Hellinger distance smaller than O(1/
√
n) are indistinguishable. To comment upon

this result further, we consider a specific example of γ? in Gaussian regression problem

with a known variance σ > 0. We parametrize the exponential family Q = {Rγ , γ ∈ J}
by taking γ = θ/(2

√
2σ), where θ is the mean so that according to Proposition 2.4.1,

Assumption 3.3.1 is satisfied with κ = 1 and J = R. We therefore can take v− the smallest

integer in computer and v+ the largest so that [v−, v+] ⊂ J . Let γ? =
∑

k∈N∗ 2−kh◦k with



3.5 Model selection for neural networks 77

h defined by (3.5.3) be a function belonging to the Takagi class. This corresponds to the

situation where g is the identity function on [0, 1] so that K = 1 and t = 1/2 in the general

formalization (3.5.2). We also observe that g ∈ S(1,1) and h ∈ S(1,2) by rewriting them

into the following forms

g(x) = σ (x+ 0) , for all x ∈ [0, 1]

and

h(w) =
(

2 −4
)
σ

{(
1

1

)
w +

(
0

−1
2

)}
, for all w ∈ [0, 1] .

Therefore, we have γ? ∈ F[v−,v+](1/2, 1, (1, 2), 1). According to Corollary 3.5.1, the esti-

mator γ̂(X) obtained by the model selection procedure introduced in Section 3.2.2 based

on the fully connected ReLU neural networks converges to γ? with a rate of order 1/n

up to logarithmic factors. However, γ? is nowhere differentiable hence it has very little

smoothness in the classical sense. Estimation based on the traditional models will result

in a miserably slow rate considering the minimax converge rate for an α-smooth function

is of order n−2α/(2α+1).

3.5.2 Composite Hölder class of functions

We have seen in the last subsection that the estimator γ̂(X) based on MLPs converges to

the truth with an optimal rate for some class of functions. In this subsection, we continue

to consider the problem of circumventing the curse of dimensionality based on deep ReLU

neural networks. A natural structure of the regression function γ? for neural networks to

exhibit advantages could be a composition of several functions which has been considered

by Schmidt-Hieber (2020) for Gaussian regression. We shall reconsider it from another

point of view where we perform our model selection procedure based on the result of

controlling the VC dimension of sparse ReLU neural networks.

Let us introduce notations first. Given t ∈ N∗ and α ∈ R∗+, we define Cαt (D,K) an

α-Hölder ball with radius K as the collection of functions f : D ⊂ Rt → R such that

∑
β=(β1,...,βt)∈Nt∑t

j=1 βj<α

‖∂βf‖∞ +
∑
β∈Nt∑t

j=1 βj=bαc

sup
x,y∈D
x6=y

∣∣∂βf(x)− ∂βf(y)
∣∣

|x− y|α−bαc∞
≤ K,

where for any β = (β1, . . . , βt) ∈ Nt, ∂β = ∂β1 · · · ∂βt and for any x = (x1, . . . , xt) ∈ Rt,
|x|∞ = maxi=1,...,t |xi|.

For any k ∈ N∗, d = (d0, . . . , dk) ∈ (N∗)k+1, t = (t0, . . . , tk) ∈ (N∗)k+1, α =

(α0, . . . , αk) ∈ (R∗+)k+1 and K ≥ 0, we denote F[v−,v+](k,d, t,α,K) the class of func-
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tions with values in [v−, v+] ⊂ J as,

F[v−,v+](k,d, t,α,K) =
{
fk ◦ · · · ◦ f0, fi = (fij)j : [ai, bi]

di → [ai+1, bi+1]di+1 ,

fij ∈ Cαiti ([ai, bi]
ti ,K), for some |ai|, |bi| ≤ K

}
,

where dk+1 = 1. We assume the regression function γ? = γk◦· · ·◦γ0 ∈ F[v−,v+](k,d, t,α,K)

but without the knowledge of k, d, t, α and K.

To approximate these classes of functions F[v−,v+](k,d, t,α,K), we consider the sparse

ReLU neural networks. Recall that for any (L, p) ∈ (N∗)2, s = (s>0 , . . . , s
>
L )> ∈ {0, 1}p

with p = p2(L − 1) + p(L + d + 1) + 1 indicating the sparsity design of a MLP with

architecture (L, p). More precisely, setting M = (N∗)2 × {0, 1}p, we consider the family

of models based on sparse ReLU neural networks
{
Γ(L,p,s), (L, p, s) ∈ (N∗)2 × {0, 1}p

}
,

where Γ(L,p,s) =
{

(γ ∨ v−) ∧ v+, γ ∈ S(L,p,s)

}
. The VC dimension V(L,p,s) of each Γ(L,p,s)

is bounded by Proposition 3.5.1. For each (L, p, s) ∈ M, we take the countable subset

Γ(L,p,s) of Γ(L,p,s) as Γ(L,p,s) =
{

(γ ∨ v−) ∧ v+, γ ∈ S(L,p,s)

}
.

For each (L, p, s) ∈ (N∗)2 × {0, 1}p, we associate it with the weight

∆(L, p, s) =


‖s‖0 log

(
2ep

‖s‖0

)
+ p+ L , ‖s‖0 6= 0,

p+ L , ‖s‖0 = 0.

(3.5.5)

The following result shows (3.2.2) is satisfied with the associated weights defined by (3.5.5).

Lemma 3.5.1. For any L ∈ N∗, p ∈ N∗ and s = (s>0 , . . . , s
>
L )> ∈ {0, 1}p, we define

∆(L, p, s) by (3.5.5). Then, ∑
(L,p,s)∈(N∗)2×{0,1}p

e−∆(L,p,s) ≤ 2.

For any α = (α0, . . . , αk) ∈ (R∗+)k+1, we define the effective smoothness indices by

α′i = αi
∏k
l=i+1 (αl ∧ 1) for all i ∈ {0, . . . , k − 1} and α′k = αk. We denote φn =

maxi=0,...,k n
−2α′i/(2α

′
i+ti). Combining the result of Lemma 3.5.1 and Proposition 3.5.1,

we are now able to apply the model selection procedure in Section 3.2.2. The following

result entails the estimator γ̂(X) converges to γ? with a rate of order φn up to logarithm

factors with respect to the distance d(γ?, γ̂) = h2(Rγ? , Rγ̂).

Corollary 3.5.2. Let Assumption 3.3.1 hold true. Whatever the distribution of W , the

estimator γ̂(X) given by the model selection procedure in Section 3.2.2 over the family{
Γ(L,p,s), (L, p, s) ∈ (N∗)2 × {0, 1}p

}
with the weights defined by (3.5.5) satisfies with a

sufficiently large n, for all k ∈ N∗, K ≥ 0, d ∈ (N∗)k+1, t ∈ (N∗)k+1 with tj ≤ dj for

j ∈ {0, . . . , k} and α ∈ (R∗+)k+1,

sup
γ?∈F[v−,v+](k,d,t,α,K)

E
[
h2
(
Rγ? , Rγ̂

)]
≤ Cκ,k,d,t,α,Kφn log4 n, (3.5.6)

where Cκ,k,d,t,α,K is a constant depending on κ, k,d, t,α,K only.



3.6 Variable selection in exponential families 79

By Corollary 3.5.2, we provide a theoretical guarantee for an alternative estimation

procedure based on sparse ReLU neural networks besides maximum likelihood estimation

(MLE) discussed in Schmidt-Hieber (2020) for the Gaussian regression. Our procedure

is, however, designed to handle the regression problems in exponential families and not

only restricted to the Gaussian case. It also endows the estimator an additional robust

property compared to the MLE. When there is a misspecification or data contamination,

as long as the bias remains small compared to the right hand side of (3.5.6), the behaviour

of our estimator will be of the same order as the model is exact.

3.6 Variable selection in exponential families

In this section, we propose to handle variable selection problem in exponential families by

model selection. The statistical setting is stated as follows. Assuming that Wi are i.i.d.

on W ⊂ Rp and for each i ∈ {1, . . . , n}, we observe Xi = (W
(1)
i , . . . ,W

(p)
i , Yi) where W

(j)
i

represents the observation of the explanatory variable W (j) in the i-th experiment. The

integer p stands for the number of the explanatory variables. This number may be large,

possibly larger than n. The exponential family Q = {Rγ = rγ · ν, γ ∈ J} is parametrized

in its natural form, i.e. for all y ∈ Y , γ ∈ J ,

rγ(y) = eγS(y)−B(γ),

which is the particular situation when taking u as the identity function in (3.1.2). We

assume that there exists an unknown function γ? on W taking values in [v−, v+] ⊂ J with

v− < v+ as a linear combination of some subset of the p explanatory variables, namely

γ?(w) =

p∑
j=1

γ?jw
(j) for all w = (w(1), . . . , w(p)) ∈ W ,

with γ?j ∈ R, such that the conditional distribution of Yi given Wi = wi belongs to a

natural exponential family with natural parameter γ?(wi), i.e. Rγ?(wi). Variable selection

problem attributes to estimate this unknown γ? together with selecting the most significant

explanatory variables among the p possible ones.

We set Ω = {1, . . . , p} and M = P(Ω). For any subset m ∈ M, we define Sm as the

collection of functions γ on W of the form

γ(w) =

p∑
j=1

γjw
(j) for all w ∈ W , (3.6.1)

where the coordinates of γ̃ = (γ1, . . . , γp) ∈ Rp are all zeros except for those indices j ∈ m.

By convention, Sm = {0} if m = ∅. We define Sm as the collection of functions of the

form given by (3.6.1) with a restriction to the rational combinations, i.e. for any γ ∈ Sm,
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γ̃ = (γ1, . . . , γp) ∈ Qp. For each m ∈ M, let us define Γm =
{

(γ ∨ v−) ∧ v+, γ ∈ Sm
}

and Γm = {(γ ∨ v−) ∧ v+, γ ∈ Sm}. With the fact that Q is dense in R, Sm is dense in

Sm for the topology of pointwise convergence. One can observe that such dense property

also holds for each Γm in Γm, m ∈M.

We define Mo = {md = {1, . . . , d}, 1 ≤ d ≤ p} ∪∅. For each m ∈ M, we associate it

with the weight

∆(m) =


2 log(1 + |m|) , m ∈Mo,

|m| log

(
2ep

|m|

)
, m ∈M\Mo.

(3.6.2)

The following result shows with the weights defined by (3.6.2), inequality (3.2.2) is satisfied.

Lemma 3.6.1. Let M = P(Ω). For any m ∈ M, the weight is defined by (3.6.2). Then

Σ =
∑

m∈M e−∆(m) ≤ 1 + π2/6.

Moreover, for any m ∈M, Sm defined by (3.6.1) is a |m|-dimensional vector space. As

an immediate consequence of Proposition 1.5.1, Γm is VC-subgraph on W with dimension

not larger than |m| + 1 which satisfies the Assumption 3.2.1 with Vm = |m| + 1. We are

now able to apply the model selection procedure presented in Section 3.2.2 and obtain the

following result.

Corollary 3.6.1. For all m ∈ M, let Qm =
{
Rγ , γ ∈ Γm

}
. Whatever the distribu-

tion of W , the estimator Rγ̂ given by the model selection procedure in Section 3.2.2 over

{Γm, m ∈M} associated with the weight defined by (3.6.2) satisfies

E
[
h2(Rγ? , Rγ̂)

]
≤ 1.95× 107(Bo ∧Bc), (3.6.3)

where

Bo = inf
m∈Mo

{
h2(Rγ? ,Qm) +

|m|+ 1

n

[
1 + log+

(
n

|m|+ 1

)]}
and

Bc = inf
m∈M

{
h2(Rγ? ,Qm) +

|m|+ 1

n

[
1 + log

[
(2p) ∨ n
|m|+ 1

]]}
.

The proof of Corollary 3.6.1 is postponed to Section 3.7.1. Let us remark a little bit

here for the strategy of assigning weights which is different with the typical choice, where

for each m ∈M,

∆(m) =


|m| log

(
2ep

|m|

)
, m 6= ∅,

0 , m = ∅.

With the typical choice of the associated weights, one can derive a risk bound

E
[
h2(Rγ? , Rγ̂)

]
≤ 1.95× 107Bc. (3.6.4)

Comparing (3.6.4) with the one given in (3.6.3), we note that (3.6.3) improves it by a

log(p) term whenever the minimizer m? ∈M in the right hand side of (3.6.3) does belong

to Mo.
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3.7 Proofs

3.7.1 Proofs of the main theorem and its corollaries

Proof of Theorem 3.2.1

Before starting to prove the main theorem, let us recall some notations and facts for later

use. For all i ∈ {1, . . . , n}, P ?i denotes the true distribution of Xi = (Wi, Yi) and P? =

⊗ni=1P
?
i is the true joint distribution of the observed data X = (X1, . . . , Xn). We denote

Pγ = ⊗ni=1Pi,γ as the distribution of independent random variables (W1, Y1), . . . , (Wn, Yn)

for which the conditional distribution of Yi given Wi = wi is given by Rγ(wi) ∈ Q for each

i. With the equalities P ?i = Q?i · PWi , Pi,γ = Rγ · PWi , we have

h2(P ?i , Pi,γ) =

∫
W
h2
(
Q?i (w), Rγ(w)

)
dPWi(w).

Moreover, according to (1.4.1), we have for any γ ∈ Γ,

h2(Q?,Rγ) =

n∑
i=1

∫
W
h2
(
Q?i (w), Rγ(w)

)
dPWi(w)

=
n∑
i=1

h2 (P ?i , Pi,γ) = h2(P?,Pγ). (3.7.1)

We also recall µ =
⊗n

i=1 µi with µi = PWi⊗ν for all i ∈ {1, . . . , n}. For all m ∈M, we

denote by Qm the following families of densities (with respect to µ) on X n = (W ×Y )n

Qm = {rγ : x = (x1, . . . , xn) 7→ rγ(w1)(y1) . . . rγ(wn)(yn), γ ∈ Γm}

and by Pm the corresponding ρ-model, i.e. the finite or countable set of probabilities

{P = rγ · µ, γ ∈ Γm} with the representation (µ,Qm).

Proposition 3.7.1. Under Assumption 3.2.1, for any m ∈ M, the class of functions

Qm = {rγ : (w, y) 7→ rγ(w)(y), γ ∈ Γm} on X = W ×Y is VC-subgragh with dimension

not larger than 9.41Vm.

Proof. For any m ∈ M, reparametrizing the exponential family in its natural form, we

obtain

Qm = {qθ : (w, y) 7→ eS(y)θ(w)−A(θ(w)), θ ∈ Θm},

where A(θ) = log
[∫

Y exp(θS(y))dν(y)
]

and Θm = {θ = u ◦ γ, γ ∈ Γm}. By Propo-

sition 1.5.2 (Proposition 42 of Baraud et al. (2017)), VC-subgraph is preserved by com-

position with a monotone function. Therefore, under Assumption 3.2.1, Θm is also VC-

subgraph on W with dimension not larger than Vm ≥ 1. Applying Proposition 2.7.1 with

Q = Qm for each m ∈M, we can conclude.
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The next result provides an upper bound for the ρ-dimension function DPm of Pm.

Proposition 3.7.2. Under Assumption 3.2.1, for any m ∈M, for all product probabilities

P? and P = ⊗ni=1P i on (X n,X n) with P i = p · µi for all i ∈ {1, . . . , n},

DPm(P?,P) ≤ 103Vm

[
9.11 + log+

(
n

Vm

)]
.

Proof. The proof is basically similar to the proof of Proposition 2.7.2 except a modification

of the class Fy. More precisely, for any y > 0, we define

Fy =

{
ψ

(√
rγ
p

)∣∣∣∣ γ ∈ Γm, h2(P?, rγ · µ) + h2(P?,P) < y2

}
.

Then combining Proposition 3.7.1, the conclusion is easy to obtain by following the proof

of Proposition 2.7.2.

Now we turn to prove Theorem 3.2.1. It follows by Proposition 3.7.2 taking P = Pγ

that for any γ ∈ Γ,

DPm(P?,Pγ) ≤ 103Vm

[
9.11 + log+

(
n

Vm

)]
= Dn(m),

which satisfies (22) of Baraud and Birgé (2018) with K = 0. Applying Theorem 2 of

Baraud and Birgé (2018) over the collection of ρ-models {Pm, m ∈ M} with κ1 = 0, we

obtain for any arbitrary P?, the ρ-estimator Pγ̂ satisfies, for all ξ > 0 with a probability

at least 1− Σe−ξ,

h2(P?,Pγ̂) ≤ inf
m∈M

[
c1h

2(P?,Pm) + c2 (Ξ(m) + 1.49 + ξ)
]
, (3.7.2)

where c1 = 150 and c2 = 5014. The constant Σ in front of e−ξ just due to in Theorem 2

of Baraud and Birgé (2018) they assumed Σ ≤ 1 for the sake of simplicity. One can refer

to their proof of Theorem 2 for understanding the role Σ plays. The conclusion finally

follows from the equalities h2(P?,Pγ̂) = h2(Q?,Rγ̂) and h2(P?,Pm) = h2(Q?,Qm), for

all m ∈M.

Proof of Corollary 3.3.1

We first present the following approximation result which is an immediate consequence

combining Theorem 1 and Proposition 2 of Akakpo (2012).

Proposition 3.7.3. Let r ∈ N, R ∈ R∗+, α = (α1, . . . , αd) ∈
∏d
j=1(0, r + 1), p > 0 and

1 ≤ p′ ≤ ∞ such that
α

d
>

(
1

p
− 1

p′

)
+

.
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For all f ∈ Bαp,q
(

[0, 1]d , R
)

and all l ∈ N, there exists a partition π(l) ∈ ∪s∈NdM
B,d
s of

[0, 1]d containing only hyperrectangles such that

|π(l)| ≤ Cd,α,p2ld

and

inf
f̃∈SB,d(π(l),r)

‖f − f̃‖p′ ≤ Cd,r,α,p,p′R2−lα, (3.7.3)

where q = ∞ if 0 < p ≤ 1 or p ≥ 2 and q = p if 1 < p < 2, Cd,r,α,p,p′ is a constant

depending only on d, r,α, p, p′.

Now we turn to prove Corollary 3.3.1. Under Assumption 3.3.1, applying (3.2.8),

Lemma 3.3.1 and 3.3.2, we derive no matter what the distribution of W is, for all R ∈ R∗+,

p > 0 and α ∈ (R∗+)d such that α/d > 1/p, any γ? ∈ Bαp,q (R, v−, v+)

E
[
h2(Rγ? , Rγ̂)

]
≤c2

(
c3 +

e

e− 1

)
inf

(s,r)∈M

[
h2(Rγ? ,Q

d
(s,r)) +

∆(s, r)

n
+
V(s,r)

n
(1 + log n)

]

≤Cκ inf
(s,r)∈M

 inf
γ∈Γ

B,d
(s,r)

‖γ? − γ‖22,PW +
∆(s, r)

n
+
V(s,r)

n
(1 + log n)

 , (3.7.4)

where Q
d
(s,r) =

{
Rγ , γ ∈ Γ

B,d
(s,r)

}
and Cκ is a constant depending on κ only. We then

apply Proposition 3.7.3 by taking r =
⌊

supj=1,...,d αj

⌋
∈ N, p′ = ∞ and obtain that for

all l ∈ N, there exists a partition π(l) ∈MB,d such that

∆(π(l), r) = log(8d)|π(l)|+ r ≤ Cd,α,p2ld, (3.7.5)

V(π(l),r) = (r + 1)d|π(l)|+ 1 ≤ Cd,α,p2ld, (3.7.6)

inf
γ∈Γ

B,d
(π(l),r)

‖γ? − γ‖22,PW = inf
γ∈Γ

B,d
(π(l),r)

∫
W
|γ?(w)− γ(w)|2dPW (w)

≤ inf
γ∈Γ

B,d
(π(l),r)

‖γ? − γ‖2∞

≤ inf
γ∈SB,d(π(l),r)

‖γ? − γ‖2∞

≤ Cd,α,pR22−2lα. (3.7.7)
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Plugging (3.7.5), (3.7.6) and (3.7.7) into (3.7.4), we derive

E
[
h2(Rγ? , Rγ̂)

]
≤Cκ inf

l∈N

 inf
γ∈Γ

B,d
(π(l),r)

‖γ? − γ‖22,PW +
∆(π(l), r)

n
+
V(π(l),r)

n
(1 + log n)


≤Cκ,d,α,p inf

l∈N

(
R22−2lα +

2ld

n

)
(1 + log n), (3.7.8)

where Cκ,d,α,p is a constant depending on κ, d,α, p only. To conclude, we need to minimize

the right hand side of (3.7.8). If nR2 < 1, we take l = 0 so that

R22−2lα +
2ld

n
= R2 +

1

n
<

2

n
. (3.7.9)

Otherwise, we take l as the largest natural number such that 2ld/n ≤ R22−2lα which is

well defined since nR2 ≥ 1. With this choice of l,

R22−2lα +
2ld

n
≤ 2R22−2lα ≤ CαR

2d
d+2αn−

2α
d+2α , (3.7.10)

where Cα is a constant depending only on α. Combining (3.7.8), (3.7.9) and (3.7.10), we

obtain

E
[
h2(Rγ? , Rγ̂)

]
≤ Cκ,d,α,p

(
R

2d
d+2αn−

2α
d+2α +

1

n

)
(1 + log n) .

We conclude by taking the supremum over the set Bαp,q(R, v−, v+).

Proof of Corollary 3.4.1

Lemma 3.7.1. For any k ∈ N∗, x1, . . . , xk ≥ 0 and α ∈ (0, 1],
(∑k

i=1 xi

)α
≤
∑k

i=1 x
α
i .

Proof. In fact, it is enough to prove when k = 2, i.e. (x1 + x2)α ≤ xα1 +xα2 . If at least one

of x1 and x2 is equal to zero, then the conclusion is trivial. So we suppose x1, x2 > 0. The

function f(x) = xα is concave on (0,+∞) since its second derivative f ′′(x) = α(α−1)xα−2

is always negative for all x ∈ (0,+∞). By the definition of the concave function, for any

λ ∈ [0, 1],

(λx)α = [λx+ (1− λ)0]α ≥ λxα.

Therefore, for any x1, x2 > 0

xα1 + xα2 =

[
x1

x1 + x2
(x1 + x2)

]α
+

[
x2

x1 + x2
(x1 + x2)

]α
≥ x1

x1 + x2
(x1 + x2)α +

x2

x1 + x2
(x1 + x2)α

= (x1 + x2)α.
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We then introduce a result given by Lemma 4 of Baraud and Birgé (2014) which we

will use later in the proof.

Lemma 3.7.2. Let (A,A, µ) be some probability space and u some nondecreasing and

nonnegative concave function on [0,+∞) such that u(0) = 0. For all k ∈ [1,+∞] and

h ∈ Lk(A,µ),

‖u(|h|)‖k,µ ≤ 21/ku(‖h‖k,µ),

with the convention 21/∞ = 1.

Finally, we introduce the following approximation result which is obtained by combin-

ing Corollary 3.1 of Dahmen et al. (1980) and Schumaker (1981) (13.62 p.517). It also

appeared in the proof of Proposition 5 in Barron et al. (1999) (4.25 p.347).

Proposition 3.7.4. For a given k ∈ N∗, let r ∈ N such that α = (α1, . . . , αk) ∈∏k
j=1(0, r + 1). For all f ∈ Hα([0, 1]k , L) and all t = (t1, . . . , tk) ∈ (N∗)k, we have

inf
f̃∈SH,k(t,r)

‖f − f̃‖∞ ≤ Ck,rL
k∑
j=1

tj
−αj , (3.7.11)

where Ck,r is a constant depending on k and r.

Now we turn to prove Corollary 3.4.1. First, we note that for any function γ? =

γ
(∑d

j=1 γ
′
j

)
∈ F[v−,v+](α,β,p, L,R) and any [f [(g ∨ 0) ∧ 1] ∨ v−]∧ v+, where f ∈ SH,1(t,r),

g(w) =
∑d

j=1 gj(wj), gj ∈ S(πj ,r), (π, t, r) ∈ (MB,1)d × N∗ × N, with the fact that γ ∈
Hα(L, v−, v+) and γ ′j taking values in [0, 1/d] for all j ∈ {1, . . . , d}, we have

sup
w∈[0,1]d

∣∣∣∣∣∣γ
 d∑
j=1

γ ′j(wj)

−
f
 d∑

j=1

gj(wj)

 ∨ 0

 ∧ 1

 ∨ v−
 ∧ v+

∣∣∣∣∣∣
≤ sup
w∈[0,1]d

∣∣∣∣∣∣γ
 d∑
j=1

γ ′j(wj)

− f
 d∑

j=1

gj(wj)

 ∨ 0

 ∧ 1

∣∣∣∣∣∣
≤ sup
w∈[0,1]d

∣∣∣∣∣∣γ
 d∑
j=1

γ ′j(wj)

− γ
 d∑

j=1

gj(wj)

 ∨ 0

 ∧ 1

∣∣∣∣∣∣+ ‖γ − f‖∞

≤L sup
w∈[0,1]d

∣∣∣∣∣∣
 d∑
j=1

γ ′j(wj)

−
 d∑
j=1

gj(wj)

∣∣∣∣∣∣
α∧1

+ ‖γ − f‖∞

≤L

∥∥∥∥∥∥
 d∑
j=1

∣∣γ ′j − gj∣∣
α∧1∥∥∥∥∥∥

∞

+ ‖γ − f‖∞ . (3.7.12)
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We then apply Lemma 3.7.1 and Lemma 3.7.2 with k =∞, µ being the Lebesgue measure

(probability) and u(z) = zα∧1 to (3.7.12) and obtain∥∥∥∥∥∥γ
 d∑
j=1

γ ′j

− [f [(g ∨ 0) ∧ 1] ∨ v−] ∧ v+

∥∥∥∥∥∥
∞

≤L
d∑
j=1

∥∥|γ ′j − gj |α∧1
∥∥
∞ + ‖γ − f‖∞

≤L
d∑
j=1

(∥∥γ ′j − gj∥∥∞)α∧1
+ ‖γ − f‖∞ . (3.7.13)

We take

r = r(α,β) =
⌊
α ∨ max

j=1,...,d
βj

⌋
∈ N.

By Proposition 3.7.3, 3.7.4 and Lemma 3.3.1, 3.4.1, for all α,L ∈ R∗+, β,p,R ∈ (R∗+)d

such that βj > 1/pj , all (l, t) = (l1, . . . , ld, t) ∈ Nd × N∗ and any γ
(∑d

j=1 γ
′
j

)
∈

F[v−,v+](α,β,p, L,R), we have

inf
f∈SH,1

(t,r)

‖γ − f‖∞ = inf
f∈SH,1(t,r)

‖γ − f‖∞ ≤ Cα,βLt−α (3.7.14)

and

inf
gj∈SB,1(π(lj),r)

‖γ ′j − gj‖∞ = inf
gj∈S

B,1
(π(lj),r)

‖γ ′j − gj‖∞ ≤ Cα,β,pjRj2
−ljβj . (3.7.15)

Combining (3.7.13), (3.7.14) and (3.7.15), we have for all α,L ∈ R∗+, β,p,R ∈ (R∗+)d

such that βj > 1/pj , all (l, t) = (l1, . . . , ld, t) ∈ Nd × N∗ and any γ
(∑d

j=1 γ
′
j

)
∈

F[v−,v+](α,β,p, L,R),

inf
f∈SH,1

(t,r)
, gj∈SB,1(π(lj),r)

∥∥∥∥∥∥γ
 d∑
j=1

γ ′j

−
f
 d∑

j=1

gj

 ∨ 0

 ∧ 1

 ∨ v−
 ∧ v+

∥∥∥∥∥∥
2

2,PW

≤ inf
f∈SH,1

(t,r)
, gj∈SB,1(π(lj),r)

∥∥∥∥∥∥γ
 d∑
j=1

γ ′j

−
f
 d∑

j=1

gj

 ∨ 0

 ∧ 1

 ∨ v−
 ∧ v+

∥∥∥∥∥∥
2

∞

≤Cd

L2
d∑
j=1

 inf
gj∈SB,1(π(lj),r)

‖γ ′j − g′j‖∞

α∧12

+ inf
f∈SH,1

(t,r)

‖γ − f‖2∞


≤Cd,α,β,pL2

 d∑
j=1

R
2(α∧1)
j 2−2(α∧1)ljβj + t−2α

 . (3.7.16)
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We denote π(l) = (π(l1), . . . , π(ld)). For any (l1, . . . , ld, t, r) ∈ Nd × N∗ × N, by Proposi-

tion 3.4.1 and 3.7.3, we have

V A
(π(l),t,r) + ∆(π(l), t, r) ≤C

t+
d∑
j=1

|π(lj)|

 (r + 1)

 log(t+ r + 2)

+

(3 log 2)

 d∑
j=1

|π(lj)|

+ r + t


≤Cr

t+

d∑
j=1

|π(lj)|

 log(t+ r + 2)

≤Cα,β,p

t+
d∑
j=1

2lj

 log(t+ r + 2), (3.7.17)

where C is a numerical constant, Cr is a numerical constant depending only on r and

Cα,β,p is a numerical constant depending only on α, β, p.

Under Assumption 3.3.1, applying (3.2.8) together with (3.7.16) and (3.7.17), we derive

that for all α,L ∈ R∗+, β,p,R ∈ (R∗+)d such that βj > 1/pj , all (l, t) = (l1, . . . , ld, t) ∈
Nd × N∗ and any γ

(∑d
j=1 γ

′
j

)
∈ F[v−,v+](α,β,p, L,R),

E
[
h2(Rγ? , Rγ̂)

]
≤Cκ inf

(π,t,r)∈(MB,1)d×(N∗)2

 inf
γ̃∈ΓA(π,t,r)

∥∥∥∥∥∥γ
 d∑
j=1

γ ′j

− γ̃
∥∥∥∥∥∥

2

2,PW

+
∆(π, t, r)

n
+
V(π,t,r)

n
(1 + log n)

]
≤Cκ,d,α,β,p(1 + log n) inf

(l1,...,ld,t)∈Nd×N∗

[(
L2t−2α +

t

n

)

+
d∑
j=1

(
L2R

2(α∧1)
j 2−2(α∧1)ljβj +

2lj

n

) log(t+ r + 2). (3.7.18)

To conclude, we need to optimize the right hand side of (3.7.18). We choose t ≥ 1 such

that

t− 1 <
(
nL2

) 1
1+2α ≤ t,

therefore L2t−2α ≤ t/n and t < 1 +
(
nL2

) 1
1+2α . As a consequence, we have

L2t−2α +
t

n
≤ 2

t

n
≤ 2

n
+ 2L

2
2α+1n−

2α
2α+1 . (3.7.19)

Moreover, we note that if nL2 < 1, we choose t = 1, then

log(t+ r + 2) ≤ log (r + 3) = Cα,β. (3.7.20)
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Otherwise nL2 ≥ 1,

log(t+ r + 2) ≤ log
[(
nL2

) 1
2α+1 + r + 3

]
≤ log

[
Cα,β

(
nL2

) 1
2α+1

]
≤ Cα,β

(
log n ∨ logL2 ∨ 1

)
. (3.7.21)

For any j ∈ {1, . . . , d}, if nL2R
2(α∧1)
j < 1, we take lj = 0 so that

L2R
2(α∧1)
j 2−2(α∧1)ljβj +

2lj

n
<

2

n
. (3.7.22)

Otherwise, we take lj as the largest natural number such that

2lj

n
≤ L2R

2(α∧1)
j 2−2(α∧1)ljβj ,

which yields

L2R
2(α∧1)
j 2−2(α∧1)ljβj +

2lj

n
≤ L2R

2(α∧1)
j 21−2(α∧1)ljβj

≤ Cα,β
[
L2R

2(α∧1)
j

] 1
2(α∧1)βj+1

n
−

2(α∧1)βj
2(α∧1)βj+1

≤ Cα,β
(
LRα∧1

j

) 2
2(α∧1)βj+1 n

−
2(α∧1)βj

2(α∧1)βj+1 . (3.7.23)

Combining (3.7.18), (3.7.19), (3.7.20), (3.7.21), (3.7.22) and (3.7.23), we obtain whatever

the distribution of W , for all α,L ∈ R∗+, β,p,R ∈ (R∗+)d such that βj > 1/pj and any

γ? ∈ F[v−,v+](α,β,p, L,R),

C ′κ,d,α,β,pE
[
h2(Rγ? , Rγ̂)

]
≤


 d∑
j=1

(
LRα∧1

j

) 2
2(α∧1)βj+1 n

−
2(α∧1)βj

2(α∧1)βj+1

+ L
2

2α+1n−
2α

2α+1 +
1

n

L2
n,

where Ln = log n∨ logL2∨1. Finally, the conclusion follows by taking the supremum over

F[v−,v+](α,β,p, L,R).

Proof of Corollary 3.4.2

We first present the following result which can be proved by a similar argument as the

proof of Lemma 3.3.1.

Lemma 3.7.3. Let Cd =
{

(c1, . . . , cd) ∈ Rd,
∑d

j=1 |cj | ≤ 1
}
. We denote SCd the collection

of functions on [0, 1]d of the form

f(w) =
1

2
(〈c,w〉+ 1) , for all w ∈ [0, 1]d , (3.7.24)

with c ∈ Cd and SCd the collection of functions of the form in (3.7.24) but with c ∈ Cd∩Qd.

Then SCd is dense in SCd with respect to the supremum norm.



3.7 Proofs 89

Now let us turn to prove Corollary 3.4.2. For all α ∈ (R∗+)l, L > 0, any γ? = γ ◦ γ ′ ∈
G[v−,v+](α, L), where γ ′(w) = (γ ′1(w), . . . ,γ ′l(w)) with γ ′j ∈ SCd for j ∈ {1, . . . , l}, γ ∈
Hα (L, v−, v+) and any f ∈ SH,l(t,r), g : [0, 1]d → [0, 1]l defined as g(w) = (g1(w), . . . , gl(w))

with gj ∈ SCd for j ∈ {1, . . . , l}, we have

‖γ ◦ γ ′ − (f ◦ g) ∨ v−) ∧ v+‖∞ ≤ ‖γ ◦ γ ′ − f ◦ g‖∞
≤ ‖γ ◦ γ ′ − γ ◦ g‖∞ + ‖γ ◦ g − f ◦ g‖∞

≤

∥∥∥∥∥∥L
l∑

j=1

∣∣γ ′j − gj∣∣αj∧1

∥∥∥∥∥∥
∞

+ ‖γ − f‖∞

≤ L
l∑

j=1

∥∥∥∣∣γ ′j − gj∣∣αj∧1
∥∥∥
∞

+ ‖γ − f‖∞. (3.7.25)

We apply Lemma 3.7.2 to (3.7.25) by taking k = ∞, µ the Lebesgue probability and

u(z) = zαj∧1 for each j ∈ {1, . . . , l} and obtain

‖γ ◦ γ ′ − (f ◦ g ∨ v−) ∧ v+‖∞ ≤ L
l∑

j=1

(∥∥γ ′j − gj∥∥∞)αj∧1
+ ‖γ − f‖∞. (3.7.26)

We take r = maxj=1,...,lbαjc ∈ N. By Proposition 3.7.4, for any γ? = γ◦γ ′ ∈ G[v−,v+](α, L)

and all t = (t1, . . . , tl) ∈ (N∗)l, we have

inf
f∈SH,l(t,r)

‖γ − f‖∞ ≤ Cl,αL
l∑

j=1

t
−αj
j ,

where Cl,α is a constant depending on l and α only. Then by Lemma 3.4.1, SH,l(t,r) is dense

in S
H,l
(t,r) with respect to the supremum norm ‖ · ‖∞, we obtain

inf
f∈SH,l

(t,r)

‖γ − f‖∞ = inf
f∈SH,l(t,r)

‖γ − f‖∞ ≤ Cl,αL
l∑

j=1

t
−αj
j . (3.7.27)

Therefore, following from (3.7.26), (3.7.27) and Lemma 3.7.3, for all α ∈ (R∗+)l, L > 0,

any γ? = γ ◦ γ ′ ∈ G[v−,v+](α, L) and all t = (t1, . . . , tl) ∈ (N∗)l,

inf
f∈SH,l

(t,r)
, gj∈SCd

‖γ ◦ γ ′ − (f ◦ g ∨ v−) ∧ v+‖22,PW

≤ inf
f∈SH,l

(t,r)
, gj∈SCd

‖γ ◦ γ ′ − (f ◦ g ∨ v−) ∧ v+‖2∞

≤Cl,αL2

 l∑
j=1

t
−αj
j

2

. (3.7.28)
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Moreover, for any r ∈ N and t = (t1, . . . , tl) ∈ (N∗)l, with the fact that

∆(t, r) =

l∑
j=1

tj + r ≤ l
l∏

j=1

tj + r ≤ l

 l∏
j=1

tj

 (r + 1)l

and Proposition 3.4.2, we have

VM
(t,r) + ∆(t, r) ≤ Cl

d+

 l∏
j=1

tj

 (r + 1)l

 log

 l∑
j=1

tj

+ lr + l + 1


≤ Cl,α

d+

 l∏
j=1

tj

 log

 l∑
j=1

tj

+ lr + l + 1

 , (3.7.29)

where Cl is a numerical constant depending only on l and Cl,α is a numerical constant

depending on l, α only

Under Assumption 3.3.1, applying (3.2.8) together with the inequalities (3.7.28) and

(3.7.29), we derive that for all α ∈ (R∗+)l and L > 0, any γ? = γ ◦ γ ′ ∈ G[v−,v+](α, L),

whatever the distribution of W ,

E
[
h2(Rγ? , Rγ̂)

]
≤Cκ inf

(t,r)∈(N∗)l×N

[
inf

γ̃∈ΓM(t,r)

‖γ ◦ γ ′ − γ̃‖22,PW +
∆(t, r)

n
+
VM

(t,r)

n
(1 + log n)

]

≤Cκ,l,α(1 + log n) inf
t∈(N∗)l

L2

 l∑
j=1

t
−αj
j

2

+

∏l
j=1 tj

n
+
d

n

 log(U), (3.7.30)

where U =
∑l

j=1 tj + lr+ l+ 1. We then optimize the risk bound given on the right hand

side of (3.7.30). For each j ∈ {1, . . . , l}, we choose tj ≥ 1 satisfying

tj − 1 < (nL2)
α

(2α+l)αj ≤ tj ,

where α denotes the harmonic mean of α1, . . . , αl. Therefore, we have

L2

 l∑
j=1

t
−αj
j

2

≤ l2L2(nL2)−
2α

2α+l = l2L
2l

2α+ln−
2α

2α+l . (3.7.31)

If nL2 ≤ 1, then tj = 1 for all j ∈ {1, . . . , l} hence∏l
j=1 tj

n
≤ 1

n
(3.7.32)

and for some numerical constant Cl,α depending on l and α only

log(U) = log

 l∑
j=1

tj

+ lr + l + 1

 ≤ Cl,α. (3.7.33)



3.7 Proofs 91

Otherwise,

∏l
j=1 tj

n
≤
∏l
j=1 2(nL2)

α
(2α+l)αj

n
=

2l(nL2)
α

2α+l

∑l
j=1

1
αj

n

≤ 2l
(nL2)

l
2α+l

n
≤ 2lL

2l
2α+ln−

2α
2α+l (3.7.34)

and

log

 l∑
j=1

tj

+ lr + l + 1

 ≤ log

l
 l∏
j=1

tj

+ lr + l + 1


≤ log

[
Cl
(
nL2

) l
2α+l + Cl,α

]
≤ Cl,α

(
log n ∨ logL2 ∨ 1

)
. (3.7.35)

Plugging (3.7.31), (3.7.32), (3.7.33), (3.7.34), (3.7.35) into (3.7.30), we have that whatever

the distribution of W , for all α ∈ (R∗+)l and L > 0, any γ? ∈ G[v−,v+](α, L)

E
[
h2(Rγ? , Rγ̂)

]
≤ Cκ,l,α

(
L

2l
2α+ln−

2α
2α+l +

d

n

)(
log n ∨ logL2 ∨ 1

)2
, (3.7.36)

where Cκ,l,α is a constant depending only on κ, l and α. The conclusion finally follows by

taking the supremum over the set G[v−,v+](α, L).

Proof of Corollary 3.5.1

For any γ? ∈ F[v−,v+](t, l,p,K), we first rewrite it as γ? =
∑

k∈N∗ t
kγ1

(
γ◦k2
)
, where t ∈

(−1, 1), γ1 ∈ S(l,p1) and γ2 ∈ S(l,p2). For any m ∈ N∗, we denote γ?m =
∑m

k=1 t
kγ1

(
γ◦k2
)

the m-partial sum of the function γ?. We then apply Proposition 4.4 of Daubechies

et al. (2019) and obtain that γ?m ∈ S(l(m+1),p1+p2+2). We note that for any γ?m =∑m
k=1 t

kγ1

(
γ◦k2
)
, there exists a sequence of functions {γi}i∈N with γi =

∑m
k=1 t

k
i γ1

(
γ◦k2
)
∈

S(l(m+1),p1+p2+2) and ti ∈ (−1, 1) ∩Q such that

lim
i→+∞

‖γ?m − γi‖∞ = lim
i→+∞

∣∣∣∣∣
m∑
k=1

(
tk − tki

)
γ1

(
γ◦k2

)
(w)

∣∣∣∣∣
≤ K lim

i→+∞

m∑
k=1

∣∣∣tk − tki ∣∣∣
≤ Km(m+ 1)

2
lim

i→+∞
|t− ti| = 0, (3.7.37)
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since Q is dense in R. Therefore, with the fact that γ? taking values in [v−, v+] and

(3.7.37), we have

inf
γ∈Γ(l(m+1),p1+p2+2)

‖γ? − γ‖∞ ≤ inf
γ∈S(l(m+1),p1+p2+2)

‖γ? − γ‖∞

≤ ‖γ? − γ?m‖∞ + inf
γ∈S(l(m+1),p1+p2+2)

‖γ?m − γ‖∞

≤ sup
w∈[0,1]

∣∣∣∣∣
+∞∑

k=m+1

tkγ1

(
γ◦k2 (w)

)∣∣∣∣∣
≤ Ct,K |t|m+1, (3.7.38)

where Ct,K stands for a numerical constant depending on t and K only. We denote

V(l(m+1),p1+p2+2) the VC dimension of Γ(l(m+1),p1+p2+2). With the fact that S(l(m+1),p1+p2+2)

is a subset of S(l(m+1),p1+p2+2), Proposition 3.5.1 and

Γ(l(m+1),p1+p2+2) =
{

(γ ∨ v−) ∧ v+, γ ∈ S(l(m+1),p1+p2+2)

}
,

we derive that for some numerical constant C

V(l(m+1),p1+p2+2) ≤ Cl0
[
p2

0(l0 − 1) + p0(l0 + 2) + 1
]

log

[
(l0 + 1)

(
p0l0

2
+ 1

)]
,

where l0 = l(m+ 1) and p0 = p1 + p2 + 2. Then it follows by a basic computation that

V(l(m+1),p1+p2+2) + ∆(l(m+ 1), p1 + p2 + 2) ≤ Cl,p(m+ 1)3, (3.7.39)

where Cl,p is a numerical constant depending on l and p only.

We take L = l(m + 1) and p = p1 + p2 + 2. Under Assumption 3.3.1, applying

(3.2.8) together with the inequalities (3.7.38) and (3.7.39), we have no matter what the

distribution of W is, for all t ∈ (−1, 1), l ∈ N∗, p ∈ (N∗)2 and K ≥ 0, for any γ? ∈
F[v−,v+](t, l,p,K),

E
[
h2(Rγ? , Rγ̂)

]
≤Cκ,p,l inf

m∈N∗

[
inf

γ∈Γ(l(m+1),p1+p2+2)

‖γ? − γ‖22,PW +
(m+ 1)3

n
(1 + log n)

]

≤Cκ,p,l,t,K inf
m∈N∗

[
|t|2(m+1) +

(m+ 1)3

n
(1 + log n)

]
. (3.7.40)

Now we only need to optimize the right hand side of (3.7.40). If |t|4 ≤ 1/n, we choose

m = 1 so that

E
[
h2(Rγ? , Rγ̂)

]
≤ Cκ,p,l,t,K

1

n
(1 + log n). (3.7.41)

Otherwise, we choose m ∈ N∗ such that

m <
log n

−2 log |t|
≤ m+ 1.
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With this choice, |t|2(m+1) ≤ 1/n and we derive from (3.7.40),

E
[
h2(Rγ? , Rγ̂)

]
≤ Cκ,p,l,t,K

(1 + log n)4

n
. (3.7.42)

Combining the results in (3.7.41) and (3.7.42), whatever the distribution of W , for all

t ∈ (−1, 1), l ∈ N∗, p ∈ (N∗)2 and K ≥ 0, any γ? ∈ F[v−,v+](t, l,p,K), we have

E
[
h2(Rγ? , Rγ̂)

]
≤ Cκ,p,l,t,K

1

n
(1 + log n)4. (3.7.43)

Then the conclusion follows by taking the supremum over F[v−,v+](t, l,p,K) on both sides

of (3.7.43).

Proof of Corollary 3.5.2

For any (L, p, s) ∈ (N∗)2 × {0, 1}p, let S
′
(L,p,s) ⊂ S(L,p,s) be the collection of functions

based on sparse neural network, where all the non-zero parameters vary in [−1, 1] and

S′(L,p,s) ⊂ S
′
(L,p,s) be the collection of functions, where all the non-zero parameters vary

in [−1, 1] ∩Q. We first show the following result.

Lemma 3.7.4. For any (L, p, s) ∈ (N∗)2×{0, 1}p, S′(L,p,s) is dense in S
′
(L,p,s) with respect

to the supremum norm ‖ · ‖∞.

Proof. By the definition of dense with respect to the supremum norm, we need to show

that for any function f ∈ S′(L,p,s), there is a sequence of functions fi ∈ S′(L,p,s), i ∈ N such

that

lim
i→+∞

‖f − fi‖∞ = 0.

The idea is inspired by the proof of Lemma 5 of Schmidt-Hieber (2020). Recall for any

f ∈ S(L,p), it can be written as

f(w) = ML ◦ σ ◦ML−1 ◦ · · · ◦ σ ◦M0(w), for all w ∈ [0, 1]d .

For l ∈ {0, . . . , L + 1}, we define pl = p for l ∈ {1, . . . , L}, p0 = d and pL+1 = 1. For

l ∈ {1, . . . , L}, we define the function f+
l : [0, 1]d → Rp,

f+
l (w) = σ ◦Ml−1 ◦ · · · ◦ σ ◦M0(w)

and for l ∈ {1, . . . , L+ 1}, we define f−l : Rpl−1 → R

f−l (x) = ML ◦ σ ◦ · · · ◦ σ ◦Ml−1(x).

We set the notations f+
0 (w) = f−L+2(w) = w. Given a vector v = (v1, . . . , vp) of any size

p ∈ N∗, we denote |v|∞ = maxi=1,...,p |vi|.
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For any f ∈ S′(L,p,s), with the fact that the absolute values of all the parameters are

bounded by 1 and w ∈ [0, 1]d, we have for all l ∈ {1, . . . , L}

∣∣f+
l (w)

∣∣
∞ ≤

l−1∏
k=0

(pk + 1)

and f−l , l ∈ {1, . . . , L + 1}, is a multivariate Lipschitz function with Lipschitz constant

bounded by
∏L
k=l−1 pk.

For any f ∈ S′(L,p,s) with weight matrices and shift vectors {Ml = (Al, bl)}Ll=0 and for

all ε > 0, since Q is dense in R, there exist a Nε > 0 such that for all i ≥ Nε, all the

non-zero parameters in fi ∈ S′(L,p,s) are smaller than ε/(L+ 1)
[∏L+1

k=0 (pk + 1)
]

away from

the corresponding ones in f . We denote the weight matrices and shift vectors of function

fi as {M i
l = (Ail, b

i
l)}Ll=0. We note that

fi(w) = f−i,2 ◦ σ ◦M
i
0 ◦ f+

0 (w)

and

f(w) = f−i,L+2 ◦ML ◦ f+
L (w).

Therefore, for all i ≥ Nε and all w ∈ [0, 1]d

|fi(w)− f(w)| ≤
L∑
l=1

∣∣∣f−i,l+1 ◦ σ ◦M
i
l−1 ◦ f+

l−1(w)− f−i,l+1 ◦ σ ◦Ml−1 ◦ f+
l−1(w)

∣∣∣
+
∣∣M i

L ◦ f+
L (w)−ML ◦ f+

L (w)
∣∣

≤
L∑
l=1

(
L∏
k=l

pk

)∣∣M i
l−1 ◦ f+

l−1(w)−Ml−1 ◦ f+
l−1(w)

∣∣
∞

+
∣∣M i

L ◦ f+
L (w)−ML ◦ f+

L (w)
∣∣

≤
L+1∑
l=1

(
L+1∏
k=l

pk

)∣∣M i
l−1 ◦ f+

l−1(w)−Ml−1 ◦ f+
l−1(w)

∣∣
∞

≤
L+1∑
l=1

(
L+1∏
k=l

pk

)[∣∣(Ail−1 −Al−1

)
◦ f+

l−1(w)
∣∣
∞ + |bil−1 − bl−1|∞

]
<

ε

(L+ 1)
[∏L+1

k=0 (pk + 1)
] L+1∑
l=1

(
L+1∏
k=l

pk

)(
pl−1

∣∣f+
l−1(w)

∣∣
∞ + 1

)
<ε.

Hence, by the definition we can conclude that S′(L,p,s) is dense in S
′
(L,p,s) with respect to

the supremum norm ‖ · ‖∞.

Then, we borrow the approximation result, more precisely (25) and (26), in the proof

of Theorem 1 of Schmidt-Hieber (2020). For all k ∈ N∗, K ≥ 0, d ∈ (N∗)k+1, t ∈ (N∗)k+1
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with tj ≤ dj for j ∈ {0, . . . , k}, α ∈ (R∗+)k+1 and all γ? ∈ F[v−,v+](k,d, t,α,K), there

exists a sparse neural network which can be embedded into S
′
(L,p,s), for sufficiently large

n, satisfying

(i)
∑k

i=0 log2(4ti + 4αi) log2 n ≤ L . nφn,

(ii) nφn . p,

(iii) ‖s‖0 � nφn log n,

such that

inf
γ∈S′(L,p,s)

‖γ? − γ‖2∞ ≤ Ck,d,t,α,K max
i=0,...,k

n
− 2α′i

2α′
i
+ti ,

where Ck,d,t,α,K is a numerical constant depending only on k, d, t, α and K. Moreover,

with the fact that γ? taking values in [v−, v+] and Lemma 3.7.4, we have

inf
γ∈Γ(L,p,s)

‖γ? − γ‖2∞ ≤ inf
γ∈S(L,p,s)

‖γ? − γ‖2∞ ≤ inf
γ∈S′(L,p,s)

‖γ? − γ‖2∞

≤ inf
γ∈S′(L,p,s)

‖γ? − γ‖2∞

≤ Ck,d,t,α,K max
i=0,...,k

n
− 2α′i

2α′
i
+ti . (3.7.44)

Let Ck,t,α and C ′k,d,t,α be two numerical constants depending only on their subscripts.

We choose

L = Ck,t,α log2 n and p = C ′k,d,t,αnφn,

which satisfy the conditions (i) and (ii) for n large enough. It follows by Proposition 3.5.1

and the definition of Γ(L,p,s) that for n sufficiently large, the VC dimension V(L,p,s) of

Γ(L,p,s) satisfies

V(L,p,s) ≤ Ck,d,t,αnφn(log n)2 log

[
(L+ 1)

(
pL

2
+ 1

)]
≤ Ck,d,t,αnφn (log n)3 . (3.7.45)

Moreover, with our choices of L, p, s and n large enough,

∆(L, p, s) ≤ ‖s‖0 log (2ep) + p+ L

≤ Ck,d,t,α (nφn log n log p+ nφn + log2 n)

≤ Ck,d,t,αnφn(log n)2. (3.7.46)

Under Assumption 3.3.1, applying (3.2.8) together with (3.7.44), (3.7.45) and (3.7.46),

whatever the distribution of W , we derive that for all k ∈ N∗, K ≥ 0, d ∈ (N∗)k+1, t ∈
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(N∗)k+1 with tj ≤ dj for j ∈ {0, . . . , k} and α ∈ (R∗+)k+1, any γ? ∈ F[v−,v+](k,d, t,α,K),

with a sufficiently large n

E
[
h2
(
Rγ? , Rγ̂

)]
≤ Cκ

[
inf

γ∈Γ(L,p,s)

‖γ? − γ‖22,PW +
∆(L, p, s)

n
+
V(L,p,s)

n
log n

]
≤ Cκ

[
inf

γ∈Γ(L,p,s)

‖γ? − γ‖2∞ +
∆(L, p, s)

n
+
V(L,p,s)

n
log n

]
≤ Cκ,k,d,t,α,Kφn

[
1 + (log n)2 + (log n)4

]
≤ Cκ,k,d,t,α,Kφn (log n)4 .

We complete the proof by taking the supremum over F[v−,v+](k,d, t,α,K).

Proof of Corollary 3.6.1

We note that according to Proposition 1.5.1, the collection of models
{
Γm, m ∈M

}
satisfies Assumption 3.2.1 with Vm = |m| + 1. By Lemma 3.6.1, the associated weights

∆(m) satisfy inequality (3.2.2) with Σ ≤ 1 + π2/6. Moreover, for each m ∈ M, the

countable subset Γm is dense in Γm for the topology of pointwise convergence so that

h(Q?,Qm) = h(Q?,Qm).

We apply (3.2.8) and derive that whatever the distribution of W , the resulted estimator

Rγ̂ satisfies

E
[
h2(Rγ? , Rγ̂)

]
≤ c2(c3 + Σ)(Bo ∧ Bc), (3.7.47)

where

Bo = inf
m∈Mo

[
h2(Rγ? ,Qm) +

2 log(1 + |m|)
n

+
|m|+ 1

n

[
1 + log+

(
n

|m|+ 1

)]]
,

Bc = inf
m∈M\Mo

[
h2(Rγ? ,Qm) +

|m|
n

log

(
2ep

|m|

)
+
|m|+ 1

n

[
1 + log+

(
n

|m|+ 1

)]]
.

For Bo, we observe that

Bo ≤ inf
m∈Mo

[
h2(Rγ? ,Qm) +

|m|+ 1

n
+
|m|+ 1

n

[
1 + log+

(
n

|m|+ 1

)]]
≤ 2 inf

m∈Mo

[
h2(Rγ? ,Qm) +

|m|+ 1

n

[
1 + log+

(
n

|m|+ 1

)]]
= 2Bo. (3.7.48)

We also note that function f(x) = x log (2ep/x) is increasing on (0, 2p]. Therefore, for Bc
we have

Bc ≤ inf
m∈M\Mo

[
h2(Rγ? ,Qm) +

|m|+ 1

n

[
1 + log

(
2ep

|m|+ 1

)
+ log+

(
n

|m|+ 1

)]]
≤ 2 inf

m∈M\Mo

[
h2(Rγ? ,Qm) +

|m|+ 1

n

[
1 + log

(
(2p) ∨ n
|m|+ 1

)]]
. (3.7.49)
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Moreover, we note that for any m ∈Mo,

log+

(
n

|m|+ 1

)
≤ log

(
(2p) ∨ n
|m|+ 1

)
. (3.7.50)

Combining (3.7.47), (3.7.48), (3.7.49) and (3.7.50), we have

E
[
h2(Rγ? , Rγ̂)

]
≤ 2c2(c3 + Σ)(Bo ∧Bc),

which concludes the proof.

3.7.2 Proofs of lemmas

Proof of Lemma 3.3.1

Proof. Let us first prove SB,d(s,r) is dense in S
B,d
(s,r) with respect to the supremum norm.

By the definition of dense with respect to the supremum norm, it is enough to show

for any γ ∈ SB,d(s,r), there exists a sequence of functions γl ∈ S
B,d
(s,r), l ∈ N such that

liml→+∞ ‖γl − γ‖∞ = 0.

For any w ∈ [0, 1]d, there is a vector (k1, . . . , kd) ∈ Ψ(s1) × · · · × Ψ(sd) such that

w ∈
∏d
j=1 Ij(kj). Without loss of generality, we only need to show for any function γ̃ on∏d

j=1 Ij(kj) of the form

γ̃(w) =
∑

(r1,...,rd)∈{0,...,r}d
γ̃(r1,...,rd)

d∏
j=1

wj
rj , (3.7.51)

where γ̃(r1,...,rd) ∈ R, for all 0 ≤ rj ≤ r, 1 ≤ j ≤ d, there is a sequence of functions {γ̃l}l∈N
on
∏d
j=1 Ij(kj) of the form

γ̃l(w) =
∑

(r1,...,rd)∈{0,...,r}d
γ̃l(r1,...,rd)

d∏
j=1

wj
rj , (3.7.52)

with γ̃l(r1,...,rd) ∈ Q, for all 0 ≤ rj ≤ r, 1 ≤ j ≤ d and l ∈ N such that

lim
l→+∞

sup
w∈
∏d
j=1 Ij(kj)

|γ̃l(w)− γ̃(w)| = 0.

In fact, since Q is dense in R, for all γ̃(r1,...,rd) ∈ R with (r1, . . . , rd) ∈ {0, . . . , r}d and

all ε > 0, there is a sequence of rational numbers γ̃l(r1,...,rd) ∈ Q and a Nε > 0 such that

for all l ≥ Nε, ∣∣∣γ̃(r1,...,rd) − γ̃l(r1,...,rd)

∣∣∣ < ε

(r + 1)d
.
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Hence, for any γ̃ defined by (3.7.51) and all ε > 0, there exists a Nε > 0 and a sequence

of functions {γ̃l}l∈N defined by (3.7.52) such that for all l ≥ Nε,

sup
w∈
∏d
j=1 Ij(kj)

|γ̃l(w)− γ̃(w)| ≤

∣∣∣∣∣∣
∑

(r1,...,rd)∈{0,...,r}d

(
γ̃(r1,...,rd) − γ̃l(r1,...,rd)

)∣∣∣∣∣∣
≤

∑
(r1,...,rd)∈{0,...,r}d

∣∣∣γ̃(r1,...,rd) − γ̃l(r1,...,rd)

∣∣∣
<

∑
(r1,...,rd)∈{0,...,r}d

ε

(r + 1)d
≤ ε.

The conclusion then follows by the definition of limit.

To prove that ΓB,d(s,r) is dense in Γ
B,d
(s,r) with respect to the supremum norm, it is enough

to note that for any f ∈ SB,d(s,r) and g ∈ SB,d(s,r)

‖(f ∨ v−) ∧ v+ − (g ∨ v−) ∧ v+‖∞ ≤ ‖f − g‖∞.

Proof of Lemma 3.3.2

Proof. For any D ∈ N∗, let Md
D stand for the set of partitions which divide [0, 1]d into D

hyperrectangles. Since ∪s∈NdM
B,d
s ⊂ ∪D∈N∗Md

D, we have

∑
(s,r)∈M

exp

− log(8d)

d∏
j=1

2sj − r

 ≤∑
r∈N

∑
D∈N∗

∑
π∈Md

D

e− log(8d)|π|−r, (3.7.53)

where |π| denotes the cardinality of hyperrectangles given by the partition π of [0, 1]d.

By the proof of Proposition 5 in Akakpo (2012), a partition over [0, 1]d into D hyper-

rectangles addresses to choosing a vector (l1, . . . , lD−1) ∈ {1, . . . , d}D−1 for the partition

directions and growing a binary tree with root [0, 1]d and D leaves. The number of parti-

tions belonging to Md
D satisfies |Md

D| ≤ (4d)D. Therefore, we derive from (3.7.53) that

∑
(s,r)∈M

exp

− log(8d)
d∏
j=1

2sj − r

 ≤∑
r∈N

e−r

(∑
D∈N∗

(4d)D (8d)−D
)

≤
∑
r∈N

e−r =
e

e− 1
.
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Proof of Lemma 3.4.2

Proof. It is equivalent to prove

∑
(s,t,r)∈Nd×N∗×N

e−∆(s,t,r) ≤ e

e− 1
,

where

∆(s, t, r) = 3 log 2

 d∑
j=1

2sj

+ r + t.

For (D1, . . . , Dd) ∈ (N∗)d, let M1
Dj

represent the set of partitions which divide [0, 1]

into Dj subintervals. Recall that MB,1s denotes the dyadic partition of [0, 1] into 2s subin-

tervals, hence we have for any j ∈ {1, . . . , d}, ∪sj∈NM
B,1
sj ⊂ ∪Dj∈N∗M1

Dj
. As an immediate

consequence,

∑
(s,t,r)∈Nd×N∗×N

e−∆(s,t,r)

=
∑

(s,t,r)∈Nd×N∗×N

exp

−t− d∑
j=1

2sj log 8− r


≤
∑
r∈N

e−r

 d∏
j=1

 ∑
Dj∈N∗

∑
πj∈M1

Dj

e−|πj | log 8


(∑

t∈N∗
e−t

)
, (3.7.54)

where |πj | denotes the cardinality of segments given by the partition πj . Moreover, as

we have mentioned in the proof of Lemma 3.3.2, it follows from Proposition 5 in Akakpo

(2012) that |M1
Dj
| ≤ 4Dj for j ∈ {1, . . . , d}. Therefore, we derive from (3.7.54) that

∑
(s,t,r)∈Nd×N∗×N

e−∆(s,t,r) ≤
∑
r∈N

e−r

(∑
D∈N∗

4D8−D

)d(∑
t∈N∗

e−t

)

≤
∑
r∈N

e−r ≤ e

e− 1
.
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Proof of Lemma 3.4.3

Proof.

∑
(t,r)∈(N∗)l×N

e−∆(t,r) =
∑

(t,r)∈(N∗)l×N

exp

− l∑
j=1

tj − r


≤
∑
r∈N

e−r

 ∑
t∈(N∗)l

e−
∑l
j=1 tj


≤
∑
r∈N

e−r

(∑
t∈N∗

e−t

)l
≤ e

e− 1
.

Proof of Lemma 3.5.1

We hereby introduce a combinatorial result given by Proposition 2.5 of Massart (2007):

for all integers |m| and p with 1 ≤ |m| ≤ p,

|m|∑
k=0

(
p

k

)
≤
(
ep

|m|

)|m|
. (3.7.55)

Proof. First, we note that

∑
(L,p,s)∈(N∗)2×{0,1}p

e−∆(L,p,s)

=
∑
L∈N∗

e−L

∑
p∈N∗

e−p

1 +
∑

s∈{0,1}p\{0}p
exp

[
−‖s‖0 log

(
2ep

‖s‖0

)]
≤
∑
L∈N∗

e−L

∑
p∈N∗

e−p

[
1 +

p∑
s=1

(
p

s

)
exp

(
−s log

(
2ep

s

))] . (3.7.56)

By (3.7.55), we know for any 1 ≤ s ≤ p,

(
p

s

)
≤

s∑
h=0

(
p

h

)
≤
(
ep

s

)s
. (3.7.57)
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Plugging (3.7.57) into (3.7.56), we obtain∑
(L,p,s)∈(N∗)2×{0,1}p

e−∆(L,p,s)

≤
∑
L∈N∗

e−L

∑
p∈N∗

e−p

[
1 +

p∑
s=1

(
ep

s

)s(2ep

s

)−s]
≤
∑
L∈N∗

e−L

∑
p∈N∗

e−p

(
p∑
s=0

2−s

)
≤
∑
L∈N∗

e−L

∑
p∈N∗

e−p

(
+∞∑
s=0

2−s

) ≤ 2.

Proof of Lemma 3.6.1

Proof. By (3.7.55), we derive that

Σ =
∑
m∈M

e−∆(m) =
∑

m∈Mo

e−∆(m) +
∑

m∈M\Mo

e−∆(m)

≤
p∑
d=0

1

(1 + d)2
+

p∑
|m|=1

(
p

|m|

)
exp

[
−|m| log

(
2ep

|m|

)]

≤
+∞∑
k=1

1

k2
+

p∑
|m|=1

(
ep

|m|

)|m|
exp

[
−|m| log

(
2ep

|m|

)]

≤ π2

6
+

+∞∑
|m|=1

2−|m|

≤ π2

6
+ 1.

3.7.3 Proofs of VC dimensions

The proofs in this section are inspired by the proof of Theorem 7 in Barlett et al. (2019).

We first introduce three results which we shall use later for deriving the VC dimension

bounds. The first one is the result of Lemma 1 in Barlett et al. (1998).

Lemma 3.7.5. Suppose f1(·), f2(·), . . . , fT (·) are fixed polynomials of degree at most d in

s ≤ T variables. Define

N := |{(sgn(f1(a)), . . . , sgn(fT (a))) , a ∈ Rs}| ,
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i.e., N is the number of distinct sign vectors generated by varying a ∈ Rs. Then we have

N ≤ 2(2edT/s)s.

The second Lemma is the weighted AM-GM Inequality.

Lemma 3.7.6 (Weighted AM-GM Inequality). If 0 ≤ ci ∈ R and 0 ≤ λi ∈ R for all

i = 1, . . . ,K such that
∑K

i=1 λi = 1, then

K∏
i=1

cλii ≤
K∑
i=1

λici.

The third result comes from the Lemma 18 of Barlett et al. (2019).

Lemma 3.7.7. Suppose that 2m ≤ 2t(mr/w)w for some r ≥ 16 and m ≥ w ≥ t ≥ 0.

Then, m ≤ t+ w log2(2r log2 r).

Proof of Proposition 3.4.1

Proof. For a given r ∈ N, t ∈ N∗ and π = (π1, . . . , πd) ∈ (MB,1)d, we define Γ̃
A

(π,t,r) the

collection of all the functions on W = [0, 1]d of the form

γ(w) = f [(g(w) ∨ 0) ∧ 1] , for all w = (w1, . . . , wd) ∈ [0, 1]d ,

where g(w) =
∑d

j=1 gj(wj) with gj ∈ S
B,1
(πj ,r), for all j ∈ {1, . . . , d} and f ∈ SH,1(t,r). The class

of functions S
B,1
(πj ,r) has been defined in Section 3.3 and S

H,1
(t,r) in Section 3.4. Let V Ã

(π,t,r)

denote the VC dimension of Γ̃
A

(π,t,r). We first prove the conclusion holds for Γ̃
A

(π,t,r), i.e.

V Ã
(π,t,r) ≤ 2 +

t(r + 1) + 2

d∑
j=1

|πj |(r + 1)

 log2 [4eU log2 (2eU)] ,

where U = t + r + 2. Then, by rewriting Γ
A
(π,t,r) =

{
(γ ∨ v−) ∧ v+, γ ∈ Γ̃

A

(π,t,r)

}
, the

conclusion also holds for Γ
A
(π,t,r) according to the properties of VC-subgraph we introduced

in Section 3.2.

Recall that S
B,1
(πj ,r) is a |πj | (r+ 1) dimensional vector space for any j ∈ {1, . . . , d} and

S
H,1
(t,r) is a t(r + 1) dimensional vector space. Therefore, any element belonging to Γ̃

A

(π,t,r)

is determined by a vector of real numbers a ∈ Rs with s =
(
t+
∑d

j=1 |πj |
)

(r + 1) which

we call parameters in the sequel. We denote ga the function g(w) =
∑d

j=1 gj(wj) and fa

the function in Γ̃
A

(π,t,r) induced by the parameters vector a ∈ Rs hence we have Γ̃
A

(π,t,r) =

{fa, a ∈ Rs}. Given a fixed point w on W , for any a ∈ Rs, we denote hw(a) = fa(w) and

h′w(a) = ga(w).
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We take m fixed points (w1, v1), . . . , (wm, vm) ∈ W ×R, where for each i ∈ {1, . . . ,m},
wi = (w1

i , . . . , w
d
i ) ∈ [0, 1]d. We first derive a bound for the total number of signs patterns

given fixed (w1, v1), . . . , (wm, vm) ∈ W × R, i.e.

N(m) =
∣∣∣ {(sgn(hw1(a)− v1), . . . , sgn(hwm(a)− vm)), a ∈ Rs}

∣∣∣.
The idea is to construct a special partition S of Rs where within each region S ∈ S the

functions hwi(a)−vi, i ∈ {1, . . . ,m} are all fixed polynomials of a with a bounded degree.

We start with S0 = {Rs}. For any i ∈ {1, . . . ,m}, we note that h′wi(a) is a fixed

polynomial depending on at most
∑d

j=1 |πj |(r+1) variables with the total degree no more

than 1. We recall that for a given t ∈ N∗, MH,1t defined in Section 3.4 is the regular

partition of [0, 1] into t subintervals. Let {b1, . . . , bt−1} be the breakpoints on the interval

(0, 1) given by MH,1t and denote b0 = 0, bt = 1. Applying Lemma 3.7.5 to the collection

of polynomials

C =
{
h′wi(a)− bl, i ∈ {1, . . . ,m}, l ∈ {0, . . . , t}

}
,

we know that when a varies in Rs, it attains at most

N1 := 2

(
2em(t+ 1)∑d
j=1 |πj |(r + 1)

)∑d
j=1 |πj |(r+1)

distinct signs patterns. Therefore, one can partition Rs into N1 pieces with the refined

partition S1 = {S1, . . . , SN1} such that all the polynomials in C have fixed signs within

each region S ∈ S1. For any S ∈ S1 and any i ∈ {1, . . . ,m}, when a varies in S, hwi(a)

is a fixed polynomial of at most (t+
∑d

j=1 |πj |)(r + 1) variables with the total degree no

more than r + 1. Hence by Lemma 3.7.5 again, on each S ∈ S1,

{(sgn(hw1(a)− v1), . . . , sgn(hwm(a)− vm)), a ∈ S}

has at most

N2 := 2

(
2em(r + 1)

(t+
∑d

j=1 |πj |)(r + 1)

)(t+
∑d
j=1 |πj |)(r+1)

distinct signs patterns. We intersect all these regions with S ∈ S1 which yields a refined

partition S2 = {S1, . . . , SN1N2} over Rs with at most N1N2 pieces such that within each

region S ∈ S2,

(sgn(hw1(a)− v1), . . . , sgn(hwm(a)− vm))

have unchanged signs patterns when a varies in S. We denote

λ1 =

∑d
j=1 |πj |(r + 1)

t(r + 1) + 2
∑d

j=1 |πj |(r + 1)
, λ2 =

(t+
∑d

j=1 |πj |)(r + 1)

t(r + 1) + 2
∑d

j=1 |πj |(r + 1)
,

c1 =
2em(t+ 1)∑d
j=1 |πj |(r + 1)

, c2 =
2em(r + 1)

(t+
∑d

j=1 |πj |)(r + 1)
.
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For any arbitrarily chosen m points (w1, v1), . . . , (wm, vm) ∈ W × R, we have

N(m) ≤
N1N2∑
k=1

| {(sgn(hw1(a)− v1), . . . , sgn(hwm(a)− vm)), a ∈ Sk} |

≤ N1N2 ≤ 4
(
cλ11 cλ22

)t(r+1)+2
∑d
j=1 |πj |(r+1)

. (3.7.58)

Applying Lemma 3.7.6 to (3.7.58), we derive that

N(m) ≤ N1N2 ≤ 4 (λ1c1 + λ2c2)t(r+1)+2
∑d
j=1 |πj |(r+1)

≤ 4

(
2em(t+ r + 2)

t(r + 1) + 2
∑d

j=1 |πj |(r + 1)

)t(r+1)+2
∑d
j=1 |πj |(r+1)

. (3.7.59)

From the definition of VC-dimension together with (3.7.59),

2
V Ã
(π,t,r) = N

[
V Ã

(π,t,r)

]
≤ 4

 2e(t+ r + 2)V Ã
(π,t,r)

t(r + 1) + 2
∑d

j=1 |πj |(r + 1)

t(r+1)+2
∑d
j=1 |πj |(r+1)

.

We denote U = t+ r+ 2. Since r ∈ N and t ∈ N∗, we have U ≥ 3 and 2eU ≥ 16. We then

can apply Lemma 3.7.7 and obtain

V Ã
(π,t,r) ≤ 2 +

t(r + 1) + 2

d∑
j=1

|πj |(r + 1)

 log2 [4eU log2 (2eU)] .

The conclusion finally follows by V A
(π,t,r) ≤ V

Ã
(π,t,r).

Proof of Proposition 3.4.2

Proof. For a given r ∈ N and t = (t1, . . . , tl) ∈ (N∗)l, we define Γ̃
M

(t,r) the collection of all

the functions γ on [0, 1]d of the form

γ(w) = f (g1(w), . . . , gl(w)) , for all w ∈ [0, 1]d (3.7.60)

where f ∈ SH,l(t,r), gj(w) = [((〈aj ,w〉+ 1) /2) ∨ 0] ∧ 1 with aj ∈ Rd for all j ∈ {1, . . . , l}.

We denote V M̃
(t,r) the VC dimension of the class of functions Γ̃

M

(t,r). We first prove

V M̃
(t,r) ≤ 2 +

2ld+

 l∏
j=1

tj

 (r + 1)l

 log2 [4eU log2 (2eU)] ,

where U =
∑l

j=1 tj + lr + l + 1.

Let us recall that by the definition of S
H,l
(t,r) in Section 3.4 and (3.7.60), any function

belonging to Γ̃
M

(t,r) is determined by a vector of real numbers a ∈ Rs with s = ld +
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(∏l
j=1 tj

)
(r + 1)l which we call parameters in the sequel. We denote fa the function in

Γ̃
M

(t,r) induced by the parameters vector a ∈ Rs hence we can rewrite Γ̃
M

(t,r) = {fa, a ∈ Rs}.
Given a fixed point w on W , for any a ∈ Rs, we denote hw(a) = fa(w).

We start with fixing m points (w1, v1), . . . , (wm, vm) ∈ W × R. Provided m fixed

points (w1, v1), . . . , (wm, vm) ∈ W ×R, we first bound the total number of signs patterns,

i.e.

N(m) =
∣∣∣ {(sgn(hw1(a)− v1), . . . , sgn(hwm(a)− vm)), a ∈ Rs}

∣∣∣.
The idea is similar to the proof of Proposition 3.4.1 which is to construct a special partition

S of Rs such that within each region S ∈ S, the functions hwi(a)− vi, for i ∈ {1, . . . ,m}
are all fixed polynomials of a with a bounded degree. Therefore, we can conclude by

applying Lemma 3.7.5.

We initialise our partition of Rs with S0 = {Rs}. We recall that for a given t =

(t1, . . . , tl) ∈ (N∗)l, MH,lt defined in Section 3.4 is the partition of [0, 1]l, where in all the

directions j ∈ {1, . . . , l}, the interval [0, 1] is divided into tj regular subintervals. Let

{bj1, . . . , b
j
tj−1} be the breakpoints on the interval (0, 1) in the j-th direction given by the

partition MH,lt and denote bj0 = 0, bjtj = 1 for all j ∈ {1, . . . , l}. We consider the collection

of polynomials

C =

{
1

2
(〈aj ,wi〉+ 1)− bjk, i ∈ {1, . . . ,m}, j ∈ {1, . . . , l}, k ∈ {0, . . . , tj}

}
.

Since all the functions in C can be written as a fixed polynomial of degree no more than

1 in ld variables of a, C attains at most

N1 := 2

(
2em

∑l
j=1(tj + 1)

ld

)ld
distinct signs patterns when a varies in Rs according to Lemma 3.7.5. Therefore, we

partition Rs into N1 pieces with the refined partition S1 = {S1, . . . , SN1} such that within

each region S ∈ S1, all the polynomials in C have fixed signs when a varies in S. Now we

consider on each S ∈ S1, for any i ∈ {1, . . . ,m}, hwi(a) with a ∈ S is a fixed polynomial

of at most ld +
(∏l

j=1 tj

)
(r + 1)l variables with the total degree no more than lr + 1.

Hence by Lemma 3.7.5 again, on each S ∈ S1,

{(sgn(hw1(a)− v1), . . . , sgn(hwm(a)− vm)), a ∈ S}

attains at most

N2 := 2

 2em(lr + 1)

ld+
(∏l

j=1 tj

)
(r + 1)l

ld+(
∏l
j=1 tj)(r+1)l
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distinct signs patterns when a varies in S. We intersect all these regions with S ∈ S1

which yields a refined partition S2 = {S1, . . . , SN1N2} of Rs with at most N1N2 pieces

such that within each region, (sgn(hw1(a) − v1), . . . , sgn(hwm(a) − vm)) have unchanged

signs patterns when a varies. We denote

λ1 =
ld

2ld+
(∏l

j=1 tj

)
(r + 1)l

, λ2 =
ld+

(∏l
j=1 tj

)
(r + 1)l

2ld+
(∏l

j=1 tj

)
(r + 1)l

,

c1 =
2em

∑l
j=1(tj + 1)

ld
, c2 =

2em(lr + 1)

ld+
(∏l

j=1 tj

)
(r + 1)l

.

For any arbitrarily chosen m points (w1, v1), . . . , (wm, vm) ∈ W × R, we have

N(m) ≤
N1N2∑
k=1

| {(sgn(hw1(a)− v1), . . . , sgn(hwm(a)− vm)), a ∈ Sk} |

≤ N1N2 ≤ 4
(
cλ11 cλ22

)2ld+(
∏l
j=1 tj)(r+1)l

. (3.7.61)

Applying Lemma 3.7.6 to (3.7.61), we derive that

N(m) ≤ N1N2 ≤ 4 (λ1c1 + λ2c2)2ld+(
∏l
j=1 tj)(r+1)l

≤ 4

2em
(∑l

j=1 tj + lr + l + 1
)

2ld+
(∏l

j=1 tj

)
(r + 1)l

2ld+(
∏l
j=1 tj)(r+1)l

. (3.7.62)

From the definition of VC-dimension together with (3.7.62),

2
V M̃
(t,r) = N

[
V M̃

(t,r)

]
≤ 4

2e(
∑l

j=1 tj + lr + l + 1)V M̃
(t,r)

2ld+
(∏l

j=1 tj

)
(r + 1)l

2ld+(
∏l
j=1 tj)(r+1)l

.

We denote U =
∑l

j=1 tj + lr+ l+1. Since r ∈ N and t ∈ (N∗)l with l ∈ N∗, we have U ≥ 3

and 2eU ≥ 16. We then can apply Lemma 3.7.7 and obtain

V M̃
(t,r) ≤ 2 +

2ld+

 l∏
j=1

tj

 (r + 1)l

 log2 [4eU log2 (2eU)] .

For a given r ∈ N and t = (t1, . . . , tl) ∈ (N∗)l, we define the class of functions
˜̃
Γ
M

(t,r) on

W = [0, 1]d as˜̃
Γ
M

(t,r) =

{
f (g1, . . . , gl) , f ∈ S

H,l
(t,r), gj(w) =

〈aj ,w〉+ 1

2
with aj ∈ Cd, j ∈ [l]

}
and denote V

˜̃
M

(t,r) the VC dimension of it. We observe that
˜̃
Γ
M

(t,r) is a subset of Γ̃
M

(t,r),

therefore we have V
˜̃
M

(t,r) ≤ V
M̃

(t,r). The conclusion finally follows by the connection Γ
M
(t,r) ={

(γ ∨ v−) ∧ v+, γ ∈
˜̃
Γ
M

(t,r)

}
so that VM

(t,r) ≤ V
˜̃
M

(t,r).
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Proof of Proposition 3.5.1

Proof. We note that for any function f ∈ S(L,p,s), it is determined by the values of

non-zero parameters in the weight matrices Al and shift vectors bl, l ∈ {0, . . . , L}. For

each l ∈ {0, . . . , L}, we denote sl the number of non-zero parameters in Al and bl and

s =
∑L

l=0 sl which is exact the value of ‖s‖0. Given L ∈ N∗, p ∈ N∗ and s ∈ {0, 1}p, the

total number of parameters determining f ∈ S(L,p,s) is s. We denote fa the function in

S(L,p,s) induced by the parameters vector a ∈ Rs. Given a fixed point w ∈ W , for any

a ∈ Rs, we denote hw(a) = fa(w).

For given L, p ∈ N∗, if ‖s‖0 = 0, there is only one function f ≡ 0 in S(L,p,s)

so that V(L,p,s) = 0 by the definition of VC dimension which satisfies the conclusion.

Therefore, given L, p ∈ N∗, we only need to consider the situation where ‖s‖0 ≥ 1, i.e.

s ∈ {0, 1}p\{0}p.
Given m fixed points (w1, t1), . . . , (wm, tm) ∈ W ×R, we first study the total number

of signs patterns for the ReLU neural network S(L,p,s) can output when a varies in Rs, i.e.

N(m) =
∣∣∣ {(sgn(hw1(a)− t1), . . . , sgn(hwm(a)− tm)), a ∈ Rs}

∣∣∣.
Once we have knowledge of it, the necessary condition for V(L,p,s) being the VC dimension

of S(L,p,s) is to satisfy the inequality

2V(L,p,s) ≤ N
[
V(L,p,s)

]
,

from which we finally deduce the bound for V(L,p,s). The idea of bounding N(m) is to

construct a partition S of Rs such that within each region S ∈ S, the functions hwj (a)− tj
j ∈ {1, . . . ,m} are all fixed polynomials of a with a bounded degree.

The partition is constructed layer by layer for each l ∈ {0, . . . , L} through a sequence

of successive refinements S0,S1, . . . ,SL in the following way:

1. |S0| = 1. For all l ∈ {1, . . . , L},
|Sl| = |Sl−1| , if

∑l−1
i=0 si = 0,

|Sl| ≤ 2

(
2emlp∑l−1
i=0 si

)∑l−1
i=0 si

|Sl−1| , if
∑l−1

i=0 si 6= 0.
(3.7.63)

2. For each l ∈ {1, . . . , L} and each S ∈ Sl−1, when a varies in S, the input to each

node in response to each wj , j ∈ {1, . . . ,m} in the l-th layer is a fixed polynomial

of total degree no more than l in at most
∑l−1

i=0 si variables of a.

We take S0 = {Rs}. We check that with this choice both two rules mentioned above

are satisfied. It is trivial that |S0| = 1. Moreover, for each fixed wj , j ∈ {1, . . . ,m},
the input to each node in the first layer can be written as a linear combination of the
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parameters in A0 and b0. Therefore, it is a fixed polynomial of degree no more than 1 in

at most s0 variables of a. The second rule of constructing the partition is also satisfied.

Suppose that we could do such a successive partition up to l − 1 and get a sequence of

refinements S0, . . . ,Sl−1, we now consider to define Sl, where 1 ≤ l ≤ L. For any wj with

j ∈ {1, . . . ,m}, k ∈ {1, . . . , p} and S ∈ Sl−1, we denote hwj ,k,S(a) the input of the k-th

node in the l-th layer in response to wj for some a ∈ S. By the induction rules, hwj ,k,S(a)

is a fixed polynomial of total degree no more than l in at most
∑l−1

i=0 si variables.

If
∑l−1

i=0 si 6= 0, for each S ∈ Sl−1, applying Lemma 3.7.5 to the collection of polynomials

C = {hwj ,k,S(a), k ∈ {1, . . . , p}, j ∈ {1, . . . ,m}},

we know that for 1 ≤ l ≤ L, there are at most

Nl = 2

(
2emlp∑l−1
i=0 si

)∑l−1
i=0 si

distinct signs patterns when a varies in S. If
∑l−1

i=0 si = 0, for any S ∈ Sl−1, any k ∈
{1, . . . , p} and any j ∈ {1, . . . ,m}, hwj ,k,S(a) is zero so that C only attains one signs

pattern and Nl = 1. The successive partition is then based on a refinement of Sl−1 such

that within each region, all the polynomials belonging to C have fixed signs when a varies.

Thus, for each region S ∈ Sl−1, we partition it into at most Nl subregions and get a

refined partition Sl which satisfies the first rule of the partition. To check that Sl satisfies

the second rule, recall that for any S′ ∈ Sl, since the input to any node in the l-th layer

is a fixed polynomial in at most
∑l−1

i=0 si variables of degree no more than l and all the

polynomials in the collection

{hwj ,k,S′(a), k ∈ {1, . . . , p}, j ∈ {1, . . . ,m}}

have unchanged signs when a varies in S′, we have for each 1 ≤ l ≤ L, the input to any

node in the (l+ 1)-th layer in response to any wj is a fixed polynomial of degree no more

than l + 1 in at most
∑l

i=0 si variables of a.

We proceed the partition procedure until getting SL. Since every step of the partition

satisfies (3.7.63), we derive

|SL| ≤
L∏
l=1

Nl. (3.7.64)

For any S ∈ SL, since s ≥ 1, the output of the whole network in response to any wj is a

fixed polynomial of degree no more than L + 1 in at most s variables. By Lemma 3.7.5

again, we have for any S ∈ SL,

NL+1 =
∣∣∣{(sgn(hw1(a)− t1), . . . , sgn(hwm(a)− tm)), a ∈ S}

∣∣∣
≤ 2

(
2em(L+ 1)

s

)s
. (3.7.65)



3.7 Proofs 109

We intersect all these regions with each S ∈ SL which yields a refined partition SL+1 =

{S1, . . . , SN} over Rs with N =
∏L+1
l=1 Nl combining (3.7.64) and (3.7.65). We denote

pl = p for all l ∈ {1, . . . , L} and pL+1 = 1. Let l stand for the smallest number be-

longing to {1, . . . , L + 1} such that
∑l−1

i=0 si ≥ 1. Therefore, for any m arbitrarily chosen

(w1, t1), . . . , (wm, tm) ∈ W × R,

N(m) ≤
N∑
k=1

∣∣∣{(sgn(hw1(a)− t1), . . . , sgn(hwm(a)− tm)), a ∈ Sk}
∣∣∣

≤
L+1∏
l=1

Nl = 2L+2−l

L+1∏
l=l

(
2emlpl∑l−1
i=0 si

)∑l−1
i=0 si

 . (3.7.66)

For l ∈ {l, . . . , L+ 1}, let us denote

cl =
2emlpl∑l−1
i=0 si

, λl =

∑l−1
i=0 si∑L+1

l=l

∑l−1
i=0 si

.

We then apply Lemma 3.7.6 to (3.7.66) and obtain

N(m) ≤ 2L+2−l

L+1∏
l=l

cλll


∑L+1

l=l

∑l−1
i=0 si

≤ 2L+2−l

L+1∑
l=l

λlcl


∑L+1

l=l

∑l−1
i=0 si

≤ 2L+2−l

(
2em

∑L+1
l=1 lpl∑L+1

l=l

∑l−1
i=0 si

)∑L+1

l=l

∑l−1
i=0 si

≤ 2L+2−l

(
2em

∑L+1
l=1 lpl∑L+1

l=1

∑l−1
i=0 si

)∑L+1
l=1

∑l−1
i=0 si

.

As we have mentioned, by the definition of VC-dimension, it is necessary to have

2V(L,p,s) ≤ N
[
V(L,p,s)

]
≤ 2L+2−l

2e
(∑L+1

l=1 lpl

)
V(L,p,s)∑L+1

l=1

∑l−1
i=0 si


∑L+1
l=1

∑l−1
i=0 si

.

Provided L, p ∈ N∗, we have
∑L+1

l=1 lpl ≥ 3 so that 2e(
∑L+1

l=1 lpl) ≥ 16. We then apply

Lemma 3.7.7 with m = V(L,p,s), t = L + 2 − l, r = 2e(
∑L+1

l=1 lpl) and w =
∑L+1

l=1

∑l−1
i=0 si,

and obtain

V(L,p,s) ≤ L+ 2− l +

(
L+1∑
l=1

l−1∑
i=0

si

)
log2

[(
4e

L+1∑
l=1

lpl

)
log2

(
2e

L+1∑
l=1

lpl

)]

≤ L+

(
L+1∑
l=1

l−1∑
i=0

si

)
log2

[(
4e

L+1∑
l=1

lpl

)
log2

(
2e

L+1∑
l=1

lpl

)]
+ 1

≤ (L+ 1)(s+ 1) log2

2

(
2e

L+1∑
l=1

lpl

)2
 .

We complete the proof.





Chapter 4

Estimation by estimator selection

with application to changepoint

detection

4.1 Introduction

In this chapter, we study the same estimation problem introduced in Chapter 1 with an-

other estimation strategy based on estimator selection. Let us briefly recall our statistical

setting described in Chapter 1: we observe n pairs of independent (but not necessarily

i.i.d.) random variables, i.e. Xi = (Wi, Yi) for i ∈ {1, . . . , n}, with values in a measur-

able product space (W × Y ,W ⊗Y). For each i, we assume the conditional distribution

Q?i (wi) of Yi exists and is given by the value of a measurable function Q?i ∈ QW at the

point wi, where QW denotes the set of all measurable mappings from (W ,W) into (T , T )

(see Section 2.2). Our statistical interest lies in estimating Q? the n conditional distri-

butions Q∗i (wi) of Yi given Wi = wi on the basis of the observations X = (X1, . . . , Xn).

We do as if there exists an unknown function γ? on W such that for each i ∈ {1, ..., n},
the conditional distribution of Yi given Wi = wi belongs to a one-parameter exponential

family with parameter γ?(wi) ∈ R. Throughout this chapter, unless otherwise specified,

we assume the exponential family Q has been parametrized under its general form and

write it as Q = {Rγ = rγ · ν, γ ∈ J} with the densities rγ given in (2.3.12).

In Chapter 2, we have introduced an estimation procedure based on one model, where

the idea comes from ρ-estimation (Baraud et al. (2017) and Baraud and Birgé (2018)).

As we have commented in Chapter 3, this approach performs well if one knows a suitable

model for the potential regression function γ? in advance which means a model can provide

a good enough approximation and is also not too complicated. But such a model can be

difficult to design in some situations where only few prior information is known. A safer
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strategy has been discussed in Chapter 3 where the problem is solved by a model selection

procedure. However, one disadvantage of this strategy is the expensive numerical cost

especially when the number of the models becomes large. At this point, an interesting

problem could be can we come up with a new estimation strategy overcoming the above two

limitations? This is to say the desired strategy should be capable of comparing estimators

from several different models with a reasonable numerical cost.

Another motivation comes from the context of changepoint detection problem in expo-

nential families. To be more precise, statisticians consider a specific situation in our setting

where Wi = (i− 1)/n are deterministic and γ? : [0, 1)→ J ⊂ R is a right-continuous step

function with an unknown number N − 1 of changepoints (i.e. N segments, N ≥ 1).

Frick et al. (2013) proposed a simultaneous multiscale changepoint estimator (SMUCE for

short). For each candidate estimator, Frick et al. (2013) designed a multiscale statistic

to evaluate the maximum over the local likelihood ratio statistics on all discrete intervals

such that the estimator is constant on these intervals with some value. Then provided a

threshold q, the quantity N is estimated by N̂(q) which is the number of segments of the

estimators satisfying their threshold condition with the minimal segments. Finally, their

estimator is the likelihood maximizer over a constrained set in which all the estimators

satisfy the threshold condition with exact N̂(q) segments. Cleynen and Lebarbier (2014,

2017) considered partitions given by the pruned dynamic programming algorithm (Rigaill

(2015)) and proposed a penalized log-likelihood estimator following the work of construct-

ing the penalty function done by L. Birgé and P. Massart (see Barron et al. (1999) and

Birgé and Massart (1997) for instance). They also showed that the resulting estimator

satisfies some oracle inequalities. Similar to the existing literature we mentioned in Chap-

ter 1, these two methods are also both, more or less, based on the maximum likelihood

estimation. When there are outliers presenting in the observations, both of the two pro-

cedures infer extra changepoints to fit the outliers while identifying the true ones in the

signal. For this point, we shall illustrate it in a more straightforward way in the simulation

part of this chapter. A natural question is can we find a procedure to enhance the stability

of their estimators?

Besides these procedures specially designed for the changepoint detection problem in

exponential families, detecting changes in the characteristics of a sequence of observed ran-

dom variables has a long history and experienced a renaissance in recent years boosted by

a flourishing development in bioinformatics (e.g. Olshen et al. (2004), Huang et al. (2005),

Tibshirani and Wang (2007), Zhang and Siegmund (2007) and Muggeo and Adelfio (2010)).

It also has attracted attention from other fields including climatology (e.g. Reeves et al.

(2007) and Gallagher et al. (2013)), financial econometrics (e.g. Spokoiny (2009)) and

signal processing (e.g. Blythe et al. (2012) and Hotz et al. (2013)), among many others.

Within the regime of univariate mean changepoint detection, theoretical analysis has been

established recently by Verzelen et al. (2020) and Wang et al. (2020). A recently selective
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review of the related literature can be found in Truong et al. (2020). We only mention some

representative procedures here. Scott and Knott (1974) proposed a binary segmentation

(BS for short) method to detect the changes in means. A modified procedure circular bi-

nary segmentation (CBS for short) was provided by Olshen et al. (2004) and then a faster

algorithm was given in Venkatraman and Olshen (2007) which has achieved a big success

in genome analysis. Later, to enhance the robustness to departures from standard model

assumptions, another method (denoted as cumSeg in the sequel) had been tailor-made

by Muggeo and Adelfio (2010) to detect changes in genomic sequences. To reduce the

complexity for computation, the pruned exact linear time method was proposed (PELT

for short) by Killick et al. (2012) where they also showed PELT leads to a substantially

more accurate result than BS. Wild binary segmentation (WBS for short) is an approach

proposed by Fryźlewicz (2014) based on a development of BS and it becomes quite popu-

lar nowadays due to its nice performance and easy implementation. Aimed at improving

SMUCE (Frick et al. (2013)) especially under the situation with low signal-to-noise ratio

or with many changepoints compared to the length of the observations, Li et al. (2016)

proposed an alternative multiscale segmentation method (denoted as FDR in the sequel)

by controlling the false discovery rate of the whole segmentation. In the direction of being

robust in the presence of outliers, Fearnhead and Rigaill (2019) proposed an algorithm

(denoted as robseg in the sequel) based on the idea of adapting existing penalized cost

methods to some loss functions which are less sensitive to the outliers. Two examples

of the loss functions to which their procedure applies are Huber loss and biweight loss.

In practice, based on the same observations, different approaches mentioned above may

give different estimators. As it was point out by the comparison study in Fearnhead and

Rigaill (2020), it is rather rare that one particular method uniformly outperforms another.

Given so many experts’ suggestions, a realistic and also interesting question is which one

we should pick? Or in another word, can we let the data decide the preference of several

(possibly random) estimators case by case?

These three problems mentioned above are the main motivations to propose the content

in this chapter. In fact, we shall see that all of them can be solved simultaneously by an

estimation strategy based on a data-driven estimator selection (denoted as ES in the

sequel). More precisely, given the observations X = (X1, . . . , Xn), we assume to have

at disposal an arbitrary but at most countable collection of piecewise constant (possibly

random) candidates for the potential regression function γ? mapping W into J written

as Γ̂ = {γ̂λ(X), λ ∈ Λ}. The dependency of each candidate in Γ̂ on the observations

X can be unknown. We design an algorithm to compare these candidates in Γ̂ pair by

pair based on the same observations X and let the data choose the desired one denoted

as γ̂
λ̂
(X) (or γ̂

λ̂
for short). Once obtaining γ̂

λ̂
, our estimator of Q? is given by Rγ̂

λ̂
=

(Rγ̂
λ̂
, . . . , Rγ̂

λ̂
) ∈ QW = Qn

W . With a slight abuse of language, sometimes we also call γ̂
λ̂

an estimator of γ? though we know that such a γ? may not necessarily exist. It is also
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worthy to emphasis hereby that besides the independence, we assume nothing about the

distributions of the covariates Wi which therefore can be unknown.

To evaluate the performance of the selected estimator Rγ̂
λ̂
, we need to introduce a

loss function and we use the same Hellinger-type (pseudo) distance h on QW defined

by (2.2.2) as we do in Chapter 2 and 3. In particular, in the context of changepoint

detection problem in exponential families where Wi are deterministic, the loss function

h is nothing but the sum (from i = 1 to n) of the Hellinger distance between each two

probabilities. From this point of view, unlike the typical methods detecting changes for

some parameter of a distribution (for example detecting changes in means for Gaussian

and Poisson distributions), our approach validates the changes along the sequence if there

are abrupt variations with respect to the distribution.

The remainder of this chapter is organized as follows. We present our estimator selec-

tion procedure as well as the theoretical properties of the resulting estimator in Section 4.2.

In Section 4.3, we explain how to apply this procedure to changepoint detection problem

in exponential families. Section 4.4 is devoted to a comparative simulation study for il-

lustrating the practical performance of the selected estimator. The performance on two

real datasets (DNA copy numbers and British coal disasters) is exhibited in Section 4.5.

Finally, all the proofs in this chapter are left to Section 4.6 and information about the

testing signals we used in Section 4.4 is provided in Section 4.7.

4.2 Estimator selection strategy

As already mentioned, given the observations X = (X1, . . . , Xn), we assume that we have

at disposal an at most countable (possibly random) candidates Γ̂ = {γ̂λ(X), λ ∈ Λ}
for γ?, where for each λ ∈ Λ, γ̂λ is piecewise constant on W . This Γ̂ may contain

the estimators based on the minimization of some criterions, estimators based on Bayes

procedures or just simple guesses by some experts. The dependency of these estimators

with respect to the observations X can be unknown. Our goal is to select some γ̂
λ̂
(X)

among the family Γ̂ = {γ̂λ(X), λ ∈ Λ} based on the same observations X such that the

risk of our estimator is as close as possible to the quantity infλ∈Λ E
[
h2(Q?,Rγ̂λ

)
]
.

4.2.1 Estimator selection procedure

LetM be a finite or countable set of partitions on W . We begin with a family of collections

{Γm, m ∈M} indexed by the partition m on W , where for each m ∈ M, Γm stands for

an at most countable collection of piecewise constant functions on W with values in J

based on the partition m. Setting the notation Γ = ∪m∈MΓm, we assume the family of

(possibly random) candidates Γ̂ = {γ̂λ(X), λ ∈ Λ} for γ? (may not exist) with values

in Γ. This is to say, for each λ ∈ Λ, there is a (possibly random) partition m̂(λ) ∈ M
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such that γ̂λ ∈ Γm̂(λ). For any γ ∈ Γ, we define M(γ) = {m ∈M, γ ∈ Γm}, therefore

naturally we have m̂(λ) ∈M(γ̂λ). Let ∆(·) be a map fromM to R+ = [0,+∞). For each

m ∈ M, we associate it with a nonnegative weight ∆(m) and assume the following holds

true.

Assumption 4.2.1. There exists a positive number Σ such that

Σ =
∑
m∈M

e−∆(m) < +∞. (4.2.1)

We remark that when Σ = 1, the weights ∆(m) define a prior distribution on the

collection of partitions M, which gives a Bayesian flavour to our selection procedure.

Given two partitions m1,m2 ∈M, we define a refined partition m1 ∨m2 on W gener-

ated by m1,m2 as

m1 ∨m2 = {K1 ∩K2 | K1 ∈ m1, K2 ∈ m2, K1 ∩K2 6= ∅} .

For any partition m on W , we denote the number of its segments by |m|. To define our

selection procedure, we also make the following assumption on the family M.

Assumption 4.2.2. There exists some constant α ≥ 1 such that |m1 ∨m2| ≤ α(|m1| +
|m2|), for all m1,m2 ∈M.

We give some examples of the family M here such that Assumption 4.2.2 holds true.

When W is either R or some subinterval of R, for any finite or countable family M of

partitions on W , it is easy to observe that Assumption 4.2.2 is satisfied with α = 1.

Another example can be the nested partitions, i.e. the family M is ordered for the

inclusion. In this situation, m1 ∨m2 either equals to m1 or m2 so that Assumption 4.2.2

also holds true with α = 1. Besides, when W = [0, 1)d with d ≥ 2, a specific example

satisfying Assumption 4.2.2 with α = 2 has been introduced in Example 3 of Baraud and

Birgé (2009).

Our selection procedure is based on a pair-by-pair comparison of the candidates, where

the selection mechanism is inspired by a sequence of work of the ρ-estimation (see Baraud

et al. (2017) and Baraud and Birgé (2018)). However, we generalize the comparison device

into the situation where the elements in Γ̂ can be random. Let us first recall the monotone

increasing function ψ from [0,+∞] into [−1, 1] defined in (2.3.1) as

ψ(x) =


x− 1

x+ 1
, x ∈ [0,+∞),

1 , x = +∞.

For any γ,γ ′ ∈ Γ, we define the T-statistic as

T(X,γ,γ ′) =
n∑
i=1

ψ

(√
rγ′(Wi)(Yi)

rγ(Wi)(Yi)

)
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with the conventions 0/0 = 1 and a/0 = +∞ for all a > 0. Let Dn be a map from M to

R+ defined as, for any m ∈M,

Dn(m) = |m|
[
9.11 + log+

(
n

|m|

)]
,

where log+(x) = max {log(x), 0}. We define the penalty function from Γ to R+ such that

for all γ ∈ Γ,

pen(γ) ≥ C0

(
2α+

1

2

)
inf

m∈M(γ)
[Dn(m) + ∆(m)] , (4.2.2)

where C0 > 0 is a universial constant. For each λ ∈ Λ, we set

υ(X, γ̂λ) = sup
λ′∈Λ

[T(X, γ̂λ, γ̂λ′)− pen(γ̂λ′)] + pen(γ̂λ).

We select γ̂
λ̂

as any measurable element of the random (and non-void) set

E (X) =

{
γ̂λ ∈ Γ̂ such that υ(X, γ̂λ) ≤ inf

λ′∈Λ
υ(X, γ̂λ′) + 1

}
. (4.2.3)

The final selected estimator Rγ̂
λ̂

of Q? is given by Rγ̂
λ̂

=
(
Rγ̂

λ̂
, . . . , Rγ̂

λ̂

)
.

We comment that the number 1 in (4.2.3) does not play any role, therefore can be

substituted by any small number δ > 0. We choose δ = 1 here just for enhancing the legi-

bility of our results. Moreover, to improve the performance of the selected estimator Rγ̂
λ̂
,

the choice of a γ̂
λ̂

such that υ(X, γ̂
λ̂
) = infλ∈Λ υ(X, γ̂λ) should be preferred whenever

available, which is the case when Γ̂ is a finite set.

4.2.2 The performance of the selected estimator

In this section, we establish non-asymptotic exponential inequalities of deviations between

the selected estimator Rγ̂
λ̂

and Q?.

Theorem 4.2.1. Under Assumption 4.2.1 and 4.2.2, whatever the conditional distribu-

tions Q? = (Q?1, . . . , Q
?
n) of Yi given Wi and the distributions of Wi, there exists a uni-

versal constant C0 > 0 such that the selected estimator Rγ̂
λ̂

given by the procedure in

Section 4.2.1 among a family of (possibly random) candidates Γ̂ = {γ̂λ(X), λ ∈ Λ} based

on the observations X = (X1, ..., Xn) satisfies for any ξ > 0, on a set of probability larger

than 1− Σ2e−ξ

h2(Q?,Rγ̂
λ̂
) ≤ inf

λ∈Λ

[
c1h

2(Q?,Rγ̂λ
) + c2pen(γ̂λ)

]
+ c3 (1.471 + ξ) , (4.2.4)

where c1 = 91.4, c2 = 42.7 and c3 = 12666.9.

The proof of Theorem 4.2.1 is postponed to Section 4.6. We hereby give a short

discussion for the numerical constant C0 in the penalty function (4.2.2). In the proof
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of Theorem 4.2.1, we show that there does exist a numerical constant C0 > 0 such that

for all the penalties satisfying (4.2.2), the procedure defined in Section 4.2.1 results in a

selected estimator fulfilling the performance stated in Theorem 4.2.1. Unfortunately, this

theoretical constant C0 turns out to be quite large and we do not have enough information

about the smallest value of C0 which validates the non-asymptotic exponential inequalities

in (4.2.4). In practice, when we implement our estimator selection procedure we regard

this C0 as a tuning parameter instead of using the theoretical value. For this point, we

will make it more clear in the simulation study, where it also turns out the value of C0 in

theory seems to be too pessimistic.

To comment on the performance of the selected estimator further, we integrate (4.2.4)

with respect to ξ and obtain the following risk bound.

Corollary 4.2.1. Under Assumption 4.2.1 and 4.2.2, whatever the conditional distri-

butions Q? = (Q?1, . . . , Q
?
n) of Yi given Wi and the distributions of Wi, there exists a

universal constant C0 > 0 such that the selected estimator Rγ̂
λ̂

given by the procedure in

Section 4.2.1 among Γ̂ = {γ̂λ(X), λ ∈ Λ} satisfies

E
[
h2(Q?,Rγ̂

λ̂
)
]
≤ E

[
inf
λ∈Λ

(
c1h

2(Q?,Rγ̂λ
) + c2pen(γ̂λ)

)]
+ c3

(
Σ2 + 1.471

)
≤ inf

λ∈Λ

{
E
[
c1h

2(Q?,Rγ̂λ
) + c2pen(γ̂λ)

]}
+ c3

(
Σ2 + 1.471

)
.

In particular, if the equality in (4.2.2) holds,

E
[
h2(Q?,Rγ̂

λ̂
)
]
≤ Cα,Σ inf

λ∈Λ

{
E
[
h2(Q?,Rγ̂λ

)
]

+ E [Ξ(γ̂λ)]
}
, (4.2.5)

where for all λ ∈ Λ,

Ξ(γ̂λ) = inf
m∈M(γ̂λ)

[
|m|

(
9.11 + log+

(
n

|m|

))
+ ∆(m)

]
≤ |m̂(λ)|

[
9.11 + log+

(
n

|m̂(λ)|

)]
+ ∆(m̂(λ))

and

Cα,Σ =

[
c2C0

(
2α+

1

2

)
+
c3

(
Σ2 + 1.471

)
9.11

]
∨ c1.

The result in (4.2.5) compares the risk of the selected estimator Rγ̂
λ̂

to those of Rγ̂λ

plus an additional nonnegative term E [Ξ(γ̂λ)]. One nice feature of this approach implied

by (4.2.5) lies in the fact that the risk bound does not depend on the cardinality of the set

Γ̂. This entails that if we enlarge the collection of our candidates by keepingM unchanged

(so that ∆(m) will not change), the risk bound for the selected estimator only decreases

over the larger collection of candidates. On the other hand, our procedure is based on

O(|Γ̂|2) times of pair-by-pair comparisons. Therefore, the payment for enlarging set Γ̂ is

the computation time.
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The risk bound (4.2.5) in Corollary 4.2.1 also accounts for the stability of our selection

procedure under a slight misspecification framework. To illustrate, let us first consider the

ideal situation where Q? = Rγ? = (Rγ? , . . . , Rγ?) with γ? a piecewise constant function

based on the partition m? of W . We denote Γm? the class of all piecewise constant

functions with values in J ⊂ R based on the partition m? and assume for simplicity

Γ̂ = Γm? , where Γm? stands for a dense (for the topology of the pointwise convergence)

and countable subset of Γm? . Taking ∆(m?) = 0, we deduce from (4.2.5) that the estimator

Rγ̂ based on the selection among Γm? satisfies

E
[
h2(Rγ? ,Rγ̂)

]
≤ C|m?|

[
1 + log+

(
n

|m?|

)]
, (4.2.6)

where C is a numerical constant. As we have seen in Chapter 2, up to a logarithm

term, the right hand side of (4.2.6) is of the expected order of magnitude |m?| for the

quantity h2(Rγ? ,Rγ̂). If it is not the ideal case, an approximation error h2(Q?,Qm?)
with Qm? = {Rγ , γ ∈ Γm?}, will be added into the right hand side of (4.2.6) according to

(4.2.5). However, as long as this bias term remains small, the performance of our selected

estimator will not deteriorate too much as compared to the ideal situation.

4.2.3 Connection to model selection

The work done in this chapter differs from the corresponding result (3.2.7) given by model

selection procedure in Chapter 3. In fact, one can regard Corollary 4.2.1 as a more general

result of the one in Chapter 3. We illustrate this connection as follows.

We consider the particular application of our selection procedure in the context of

model selection. For simplicity, let the equality holds in (4.2.2). We take Λ = {1, . . . , |Γ|}
which is the index set of all the functions belonging to Γ = ∪m∈MΓm so that in this

case, Γ̂ = Γ = {γλ, λ ∈ Λ} is a collection of deterministic candidates. Moreover, for each

λ ∈ Λ, there exists a deterministic m(λ) ∈ M such that γλ ∈ Γm(λ). Let us denote

Qm = {Rγ , γ ∈ Γm}, for each m ∈ M. We can immediately deduce from (4.2.5) that

the estimator Rγ̂ based on the selection among the family {Γm, m ∈M} satisfies

E
[
h2(Q?,Rγ̂)

]
≤ Cα,Σ inf

m∈M

[
h2(Q?,Qm) +Dn(m) + ∆(m)

]
,

which is, up to constants, the result (3.2.7) in Chapter 3 when one takes Γm as the

collection of piecewise constant functions on W . The difference is the model selection

procedure, on the one hand, does not require Assumption 4.2.2 to be satisfied and can

be applied to other types of models to approximate the potential γ? besides piecewise

constant ones. On the other hand, when the number of models becomes large, model

selection strategy is more of theoretical interest due to its expensive numerical cost. The

estimator selection strategy, however, allows to deal with random partitions which can be
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obtained for example from dynamic programming algorithm (see Rigaill (2015)) or CART

algorithm (see Breiman et al. (1984)). Efficiently reducing the cardinality of Γ̂, these algo-

rithms together with our estimator selection procedure take the model selection strategy

into practice. Moreover, the idea that selecting among random candidates set makes the

selection between estimators given by different model selection strategies possible.

4.3 Application to changepoint detection in exponential fam-

ilies

In this section, we consider the application of our estimator selection procedure to change-

point detection problem in exponential families. In such a context, people usually as-

sume the exponential family Q = {Rγ , γ ∈ J} has been parametrized in its natural form

which entails u is taken as the identity function in (2.3.12). We observe a sequence Y =

(Y1, . . . , Yn) with values in Y n and assume that there exists a vector γ? = (γ?1 , . . . , γ
?
n) ∈ Jn

with N − 1 changepoints, N ≥ 1 such that within each segment, the values of γ? remain

a constant and for each i ∈ {1, . . . , n}, the distribution of Yi is given by Rγ?i . This

corresponds to the situation in our setting when Wi = (i− 1)/n are deterministic, for all

i ∈ {1, . . . , n} so that W = [0, 1) and the function γ? : [0, 1)→ J ⊂ R is a right-continuous

step function with N ≥ 1 segments. For a consistency with the former paragraphs, we

take Wi = (i− 1)/n throughout this section and use the function notation γ? rather than

the vector γ? ∈ Jn in the sequel.

For each 1 ≤ k ≤ n, let Mk stand for the collection of all possible partitions of the

sequence 1, . . . , n into k segments and denoteM = ∪1≤k≤nMk. In changepoint detection

problem, for each m ∈M, we assign its weight as

∆(m) = log

(
n− 1

|m| − 1

)
+ |m|. (4.3.1)

With (4.3.1), a basic computation leads to Σ =
∑

m∈M exp [−∆(m)] ≤ 1/(e − 1) which

entails Assumption 4.2.1 is satisfied. Moreover, since W = [0, 1) ⊂ R, for any m1,m2 ∈M,

|m1 ∨m2| ≤ |m1|+ |m2| − 1, Assumption 4.2.2 also holds true with α = 1.

Supposing that we have a finite collection of (possibly random) piecewise constant

candidates Γ̂ = {γ̂λ(X), λ ∈ Λ}, we associate each γ̂λ(X) with the penalty

pen(γ̂λ) = κ

{
|m̂(λ)|

[
10.11 + log

(
n

|m̂(λ)|

)]
+ log

(
n− 1

|m̂(λ)| − 1

)}
,

where κ = 2.5C0 is the parameter to be tuned later. Once the value of κ is given, our

estimator selection procedure can be implemented by running Algorithm 2.
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Algorithm 2 Estimator selection

Input:

X = (X1, · · · , Xn): the observations.

Output: γ̂
λ̂

1: Collect Γ̂ = {γ̂λ, λ ∈ Λ} based on X.

2: for λ ∈ Λ do

3: υ(X, γ̂λ)← supλ′∈Λ [T(X, γ̂λ, γ̂λ′)− pen(γ̂λ′)] + pen(γ̂λ).

4: end for

5: λ̂← argminλ∈Λ υ(X, γ̂λ).

6: Return γ̂
λ̂
.

4.3.1 Calibrating the value of κ

We take κ = 0.08 uniformly over all the exponential families. The reason for this choice

of κ is explained in this section.

The idea to calibrate the value of κ is rather simple. Roughly speaking, we first

simulate data of size n and prepare a collection of candidates Γ̂ which can be done by

running the algorithm in R package Segmentor3IsBack (implementing the procedure

proposed by Cleynen and Lebarbier (2014, 2017)). Then we take different values of κ

to design our penalty and obtain a sequence of the selected γ̂
κ,λ̂

among Γ̂ associated to

various κ. For each value of κ, we repeat the experiment in each simulation setting 100

times and finally evaluate the risk E
[
h2
(
Q?,Rγ̂

κ,λ̂

)]
of the selected estimator Rγ̂

κ,λ̂
by

its empirical mean, namely we compute

R̂n

(
γ̂
κ,λ̂

)
=

1

100

100∑
l=1

[
n∑
i=1

h2

(
Q?i , Rγ̂l

κ,λ̂
( i−1
n )

)]
,

where γ̂l
κ,λ̂

is the l-th realisation of the selected estimator associated to a fixed κ.

Simulating data

The experiments have been done for three models: Gaussian, Poisson and exponential

changepoint detection.

Let γ? be piecewise constant on [0, 1) with N segments and Q? = Rγ? . For each

model, we design the experiments under three settings where for all the settings n = 500,

but N = 5, N = 10 and N = 20 respectively. For all the three settings, the changepoints

are uniformly located, i.e. every 100 data-points for the first setting, every 50 data-points

in the second setting and every 25 data-points in the third setting.

— Under all the settings of Gaussian model, for 1 ≤ i ≤ n, if Yi locates at the j-th

segment with 1 ≤ j ≤ N , Yi follows a Gaussian distribution with mean (j+ 1)/2, variance

σ2 = 1.
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Figure 4.1: The 1st graph (top) corresponds to one profile of the simulated data (dots)

and γ? (solid line) for Gaussian model; The 2nd graph (middle) corresponds to one profile

of the simulated data (dots) and exp(γ?) (solid line) for Poisson model; The 3rd graph

(bottom) corresponds to one profile of the simulated data (dots) and 1/γ? (solid line) for

exponential model.

— Under all the settings of Poisson model, for 1 ≤ i ≤ n, if Yi locates at the j-th

segment with 1 ≤ j ≤ N , Yi follows a Poisson distribution with mean j which means γ?

takes value log(j) on the j-th segment.

— Under all the settings of exponential model, for 1 ≤ i ≤ n, if Yi locates at the j-th

segment with 1 ≤ j ≤ N , Yi follows an exponential distribution with natural parameter

0.01j.

Figure 4.1 exhibits one example of the simulated data (when N = 10) and the true

value of the regression function γ? (or a suitable transformation of γ?) on each segment.

Collecting candidates in Γ̂

In the work of Cleynen and Lebarbier (2014, 2017), they solved this problem by a model

selection procedure via some suitable penalty function based on the partitions given by

the pruned dynamic programming algorithm (PDPA for short) proposed by Rigaill (2015).

Given Nmax the maximum number of segments for consideration, for each integer λ with

1 ≤ λ ≤ Nmax, PDPA searches the optimal partition with exact λ segments. We set

Nmax = 30 hence 30 partitions of the sequence 1, . . . , n are returned by PDPA. Provided

a partition, the value of γ? on each segment is given by MLE as in Cleynen and Lebarbier

(2014, 2017). By doing so, we collect 30 candidates which we denote as Γ̂c = {γ̂λ, 1 ≤
λ ≤ Nmax}.
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Results

Under each setting of all the three models, one experiment means we simulate n = 500

observations with N segments based on the corresponding γ? introduced in Section 4.3.1.

We then select the estimator among the candidate ones Γ̂c by Algorithm 2 via the penalty

functions associated to different values of κ. Finally we observe the quantity R̂n(γ̂
κ,λ̂

)

and regard it as the criterion to calibrate a suitable value of κ. The results for all nine

settings are shown in Figure 4.2, where the horizontal axis represents the values of κ and

the vertical indicates the quantity R̂n(γ̂
κ,λ̂

).

(a) Gaussian (b) Poisson

(c) exponential (d) 3 in 1

Figure 4.2: R̂n(γ̂
κ,λ̂

) with respect to κ under nine settings.

In Figure 4.2, the quantities R̂n(γ̂
κ,λ̂

) under all nine settings have a tendency to first

decrease and then increase with respect to the increasing of κ, which is consistent to

the theoretical results. When κ is too small, the penalty function is relatively small for

the complexed models therefore the overfitting issue may happen. However, when κ is

too large, the penalty function is excessively large for the complexed models which will

cause an overpenalization. Moreover, the minimizers of κ for the quantities R̂n(γ̂
κ,λ̂

)

in all nine settings are close to each other and all concentrate within a short interval

[0.05, 0.1]. From the slope in all nine settings, we observe that overfitting issue will cause
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a more seriously negative influence to the accuracy than overpenalization. Considering the

optimal performance of all the settings and also being safe with respect to overfitting, we

choose κ as the largest minimizer of R̂n(γ̂
κ,λ̂

) among nine settings which approximately

equals to 0.08 and implement our procedure with κ = 0.08 in later studies.

4.4 Simulation study and discussion

Throughout this section, we carry out a comparative simulation study with the state-of-

art competitors available in R packages for changepoint detection problem in exponential

families. Unless otherwise specified, the competitors are implemented under the default

settings in their packages. For Gaussian model, some of our competitors use the estimated

value of the standard deviation σ. To make the comparison as fair as possible, we also

implement the median absolute deviation estimator for σ while running our procedure,

which is the one adopted in Killick et al. (2012) and Fearnhead and Rigaill (2019).

To evaluate the performance of an estimator, besides the empirical risk R̂n(·) obtained

from replications, we also record N̂ −N which computes the difference between the esti-

mated number of segments and the truth for each replication.

4.4.1 Accuracy

In this section, we study the changepoint detection problem for Gaussian model where nu-

merous literature can be found tackling this issue. We construct our candidates set Γ̂ as a

collection of some cutting-edge estimators with implemented R packages and these ones are

also regarded as the competitors of our estimator ES. More precisely, the competing pack-

ages we consider are: PSCBS, which implements the CBS procedure proposed in Olshen et

al. (2004); cumSeg, which performs the method given by Muggeo and Adelfio (2010);

changepoint, which implements the PELT approach provided by Killick et al. (2012);

StepR, which implements the SMUCE given by Frick et al. (2013); Segmentor3IsBack,

which implements CL proposed by Cleynen and Lebarbier (2014, 2017); wbs, which imple-

ments the wild binary segmentation methodology proposed in Fryźlewicz (2014); FDRSeg,

which implements the approach given in Li et al. (2016); robseg, which implements the

procedure proposed by Fearnhead and Rigaill (2019). We would like to study the perfor-

mance of our estimator ES based on the selection among these state-of-art ones.

We follow the test signals considered by Fryźlewicz (2014) and then by Fearnhead and

Rigaill (2019) which involves 5 different formats of signals with length from n = 140 to

2048: (1) blocks, (2) fms, (3) mix, (4) teeth10 and (5) stairs10. The specific

settings of these signals including the sample sizes and noise standard deviations are given

in Appendix B of Fryźlewicz (2014). Following the experiments done in Fearnhead and

Rigaill (2019), we also consider an additional signal setting by changing the standard
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deviation of (2) fms from 0.3 into 0.2, which is also one of the settings studied in Frick

et al. (2013). An example of one profile of the simulated data and the underlying signals

γ? are plotted in Figure 4.3. For each signal, the experiment has been replicated 1000

times. The results are shown in Table 4.1. The performance of each estimator is stated

as follows.

(a) blocks (b) fms (σ = 0.3) (c) fms (σ = 0.2)

(d) mix (e) teeth10 (f) stairs10

Figure 4.3: The six signals (solid line) and simulated data (dots).

CBS and cumSeg. The CBS and cumSeg in general behave poorly compared with

other procedures. The CBS only has satisfactory performance of detecting changes for

blocks and fms (σ = 0.2) but it turns out CBS always results in a relatively large R̂n(·).
Except acceptable performance for fms (σ = 0.2) and stairs10, cumSeg always tends

to underestimate the number of changes and also yields an estimator with quite large

empirical risk.

PELT. The PELT has excellent performance for both of the fms signals and stairs10.

For blocks signal, it is above the average but does not belong to the first class among

all. As for mix and teeth10, it performs rather average.

SMUCE. The SMUCE has very excellent performance for fms (σ = 0.2). However, it

behaves poorly for all the other signals.

CL. The CL has nice performance for teeth10. For blocks and mix, its performance

is satisfactory though not belonging to the first class. For both of the fms signals, it
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N̂ −N

Method Signal ≤ −2 -1 0 1 ≥ 2 R̂n(·) Contribution

ES blocks 0.005 0.278 0.656 0.055 0.006 5.61 ± 0.12 -

CBS blocks 0.006 0.090 0.575 0.184 0.145 7.57 ± 0.14 0.000

cumSeg blocks 0.653 0.335 0.011 0.001 0.000 15.71 ± 0.40 0.000

PELT blocks 0.014 0.389 0.574 0.020 0.003 5.69 ± 0.11 0.035

SMUCE blocks 0.940 0.060 0.000 0.000 0.000 16.02 ± 0.37 0.010

CL blocks 0.010 0.356 0.595 0.035 0.004 5.67 ± 0.12 0.533

WBS sSIC blocks 0.021 0.412 0.532 0.032 0.003 6.11 ± 0.13 0.013

FDR(α = 0.05) blocks 0.008 0.447 0.478 0.059 0.008 6.15 ± 0.13 0.332

robseg(Huber) blocks 0.004 0.234 0.674 0.072 0.016 5.84 ± 0.12 0.063

robseg(biweight) blocks 0.020 0.404 0.558 0.017 0.001 5.88 ± 0.12 0.014

ES fms(0.3) 0.008 0.002 0.915 0.069 0.006 2.16 ± 0.07 -

CBS fms(0.3) 0.007 0.012 0.796 0.139 0.046 5.10 ± 0.09 0.000

cumSeg fms(0.3) 0.706 0.041 0.224 0.028 0.001 7.07 ± 0.44 0.000

PELT fms(0.3) 0.007 0.003 0.922 0.061 0.007 2.15 ± 0.08 0.054

SMUCE fms(0.3) 0.074 0.537 0.388 0.001 0.000 5.15 ± 0.18 0.293

CL fms(0.3) 0.002 0.001 0.837 0.119 0.041 2.28 ± 0.08 0.199

WBS sSIC fms(0.3) 0.007 0.003 0.933 0.048 0.009 2.26 ± 0.08 0.008

FDR(α = 0.05) fms(0.3) 0.001 0.027 0.879 0.076 0.017 2.28 ± 0.09 0.409

robseg(Huber) fms(0.3) 0.001 0.001 0.825 0.130 0.043 2.37 ± 0.08 0.007

robseg(biweight) fms(0.3) 0.013 0.005 0.928 0.049 0.005 2.23 ± 0.08 0.030

ES fms(0.2) 0.000 0.000 0.923 0.071 0.006 1.61 ± 0.06 -

CBS fms(0.2) 0.000 0.000 0.871 0.086 0.043 5.79 ± 0.07 0.000

cumSeg fms(0.2) 0.094 0.009 0.812 0.083 0.002 5.19 ± 0.22 0.002

PELT fms(0.2) 0.000 0.000 0.929 0.060 0.011 1.59 ± 0.06 0.022

SMUCE fms(0.2) 0.000 0.001 0.994 0.005 0.000 1.49 ± 0.06 0.734

CL fms(0.2) 0.000 0.000 0.840 0.128 0.032 1.74 ± 0.07 0.102

WBS sSIC fms(0.2) 0.000 0.000 0.945 0.050 0.005 1.65 ± 0.06 0.003

FDR(α = 0.05) fms(0.2) 0.000 0.000 0.871 0.103 0.026 1.66 ± 0.06 0.115

robseg(Huber) fms(0.2) 0.000 0.000 0.830 0.135 0.035 1.83 ± 0.07 0.008

robseg(biweight) fms(0.2) 0.000 0.000 0.937 0.058 0.005 1.63 ± 0.06 0.014

ES mix 0.264 0.243 0.434 0.056 0.003 5.91 ± 0.12 -

CBS mix 0.313 0.201 0.324 0.109 0.053 11.18 ± 0.17 0.000

cumSeg mix 0.999 0.001 0.000 0.000 0.000 32.61 ± 0.92 0.000

PELT mix 0.375 0.270 0.321 0.032 0.002 6.11 ± 0.12 0.070

SMUCE mix 0.922 0.076 0.002 0.000 0.000 12.59 ± 0.42 0.042

CL mix 0.305 0.244 0.390 0.053 0.008 6.04 ± 0.12 0.585

WBS sSIC mix 0.342 0.269 0.351 0.032 0.006 5.99 ± 0.12 0.029

FDR(α = 0.05) mix 0.411 0.358 0.181 0.038 0.012 6.71 ± 0.13 0.190

robseg(Huber) mix 0.209 0.240 0.444 0.088 0.019 6.10 ± 0.12 0.051

robseg(biweight) mix 0.403 0.264 0.305 0.026 0.002 6.30 ± 0.12 0.033

ES teeth10 0.215 0.025 0.721 0.037 0.002 5.69 ± 0.24 -

CBS teeth10 0.999 0.000 0.001 0.000 0.000 24.69 ± 0.07 0.000

cumSeg teeth10 1.000 0.000 0.000 0.000 0.000 24.85 ± 0.01 0.005

PELT teeth10 0.274 0.029 0.657 0.037 0.003 6.03 ± 0.24 0.090

SMUCE teeth10 0.984 0.013 0.003 0.000 0.000 20.11 ± 0.22 0.003

CL teeth10 0.029 0.013 0.679 0.204 0.075 4.71 ± 0.13 0.321

WBS sSIC teeth10 0.067 0.021 0.752 0.120 0.040 5.30 ± 0.26 0.010

FDR(α = 0.05) teeth10 0.309 0.135 0.508 0.040 0.008 7.68 ± 0.32 0.356

robseg(Huber) teeth10 0.105 0.026 0.748 0.102 0.019 4.94 ± 0.15 0.016

robseg(biweight) teeth10 0.318 0.028 0.635 0.019 0.000 6.31 ± 0.25 0.199

ES stairs10 0.00 0.004 0.949 0.044 0.003 3.33 ± 0.09 -

CBS stairs10 0.012 0.172 0.789 0.027 0.000 13.81 ± 0.16 0.000

cumSeg stairs10 0.024 0.090 0.819 0.067 0.000 8.61 ± 0.24 0.000

PELT stairs10 0.000 0.004 0.955 0.039 0.002 3.32 ± 0.09 0.017

SMUCE stairs10 0.801 0.137 0.062 0.000 0.000 22.26 ± 0.58 0.050

CL stairs10 0.000 0.001 0.768 0.184 0.047 3.50 ± 0.09 0.178

WBS sSIC stairs10 0.000 0.001 0.608 0.301 0.090 3.91 ± 0.10 0.004

FDR(α = 0.05) stairs10 0.002 0.028 0.896 0.053 0.021 3.57 ± 0.12 0.703

robseg(Huber) stairs10 0.000 0.000 0.867 0.110 0.023 3.45 ± 0.09 0.006

robseg(biweight) stairs10 0.000 0.005 0.964 0.031 0.000 3.36 ± 0.09 0.042

Table 4.1: Frequencies of N̂ −N and R̂n(·) of ES and its competitors for Gaussian model

over 1000 simulated sample paths. Contribution denotes the frequency of each competitor

being selected as ES. Bold: highest empirical frequency of N̂ − N = 0 and those with

frequencies within 10% off the highest. The uncertainty is obtained by computing 2σ̂/
√
nr,

where σ̂2 is the empirical variance and nr is the number of replications.
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shows rather average performance. The CL does not behave well for the stairs10

signal where it tends to overestimate the number of changes compared to other methods.

Let us remark here that the performance of CL in our simulation study is better than

the corresponding context in Fryźlewicz (2014). This is because when implementing the

package Segmentor3IsBack, users need to set the maximum number of segments Nmax.

We set Nmax = 20 for all the six signals considering the maximal number of changepoints

(i.e. N−1) among six signals is 14 and they set Nmax = 15 which resulted in a systematical

underestimation of the number of changepoints for CL in their study.

WBS sSIC. We implement the package wbs combining the WBS method with the sSIC

stopping criterion which, as it has been shown in Fryźlewicz (2014), is the overall winner

compared to combining the WBS method with other thresholding stopping rules. The

WBS sSIC has excellent performance for both of the fms signals and teeth10. However,

it performs rather average for blocks and mix. As for stairs10, the performance of

WBS sSIC is a little poor as a consequence of overestimating the number of changepoints.

Such a result has also been confirmed by the study of WBS sSIC in Fryźlewicz (2014).

FDR. The FDR with α = 0.05 performs well for fms (σ = 0.3) and satirs10 signals.

For fms (σ = 0.2), it has an average performance. But it behaves below the average under

other test signals.

robseg. We consider Huber loss and biweight loss when implementing the package

robseg which are the recommended ones (especially the biweight loss) according to Fearn-

head and Rigaill (2019). The robseg (Huber) performs excellently for blocks, mix and

teeth10. It behaves rather average for both of the fms signals and stairs10. The

robseg (biweight) performs excellently for both of the fms signals and stairs10. As for

blocks, mix and teeth10 signals, it performs rather average.

ES. As we can observe from the column named “Contribution” in Table 4.1, under

different test signals, our estimator selection procedure tends to allocate different pref-

erence to the candidates in Γ̂ based on their practical performance. For example, when

SMUCE shows obvious outperformance for the signal fms (σ = 0.2), we select it with a

frequency 0.734 as our ES estimator. However, we automatically reduce the frequency to

select SMUCE as ES when it performs poorly under other signals but prefer some more

competitive ones. As a final result, the ES estimator shows a very competitive perfor-

mance under all the test signals. The interesting point is that this cannot be achieved

by any single candidate in Γ̂ since as we have seen above, each of them only outperforms

others for some of the test signals but not all.

4.4.2 Stability when outliers present

As we have mentioned in the theoretical analysis part, our estimator selection procedure

possesses the stability when there is a slight departure from the presumption Q? = Rγ?
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with γ? being piecewise constant on W . One of the application scenario for this property

is when there is a small amount of outliers in the observations which has attracted more

attention recently in the changepoint detection. In this section, we test the practical

performance of ES as well as its competitors when outliers present. We take the signal

fms (σ = 0.2) as an example since most of the existing methods behave rather well under

this signal. Based on this signal, we add outliers by randomly choosing five points among

the sequence of length n = 497 and modifying the values of them into 3. The results of

all the estimators are shown in Table 4.2.

N̂ −N

Method Signal Outlier ≤ −2 -1 0 1 ≥ 2 R̂n(·) Contribution

ES fms(0.2) Yes 0.000 0.000 0.956 0.043 0.001 1.64 ± 0.06 -

CBS fms(0.2) Yes 0.660 0.282 0.038 0.016 0.004 34.55 ± 0.79 0.000

cumSeg fms(0.2) Yes 0.801 0.056 0.083 0.021 0.039 16.96 ± 0.51 0.000

PELT fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.27 ± 0.07 0.000

SMUCE fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 8.02 ± 0.11 0.000

CL fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.29 ± 0.07 0.000

WBS sSIC fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.33 ± 0.07 0.000

FDR(α = 0.05) fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.44 ± 0.07 0.000

robseg(Huber) fms(0.2) Yes 0.000 0.000 0.000 0.000 1.000 7.51 ± 0.08 0.000

robseg(biweight) fms(0.2) Yes 0.000 0.000 0.956 0.043 0.001 1.64 ± 0.06 1.000

Table 4.2: Frequencies of N̂ − N and R̂n(·) of ES and its competitors for fms (σ =

0.2) signal with 5 outliers over 1000 simulated sample paths. Contribution denotes the

frequency of each competitor being selected as ES. Bold: highest empirical frequency of

N̂ −N = 0. The uncertainty is obtained by computing 2σ̂/
√
nr, where σ̂2 is the empirical

variance and nr is the number of replications.

We can observe from Table 4.2 that in such a scenario PELT, SMUCE, CL, WBS

sSIC, FDR and robseg (Huber) are all not robust with respect to the outliers and they all

overestimate the number of changepoints due to fitting the outliers. The CBS and cumSeg

still systematically underestimate the number of changepoints. It is not that surprising

robseg (biweight) proposed in Fearnhead and Rigaill (2019) is quite robust in this scenario

since it was designed to handle such an issue. It shows a very high frequency 0.956 to

recover the correct number of changepoints. Moreover, from the quantity of empirical risk

R̂n(·), it turns out robseg (biweight) outperforms all the other candidates significantly

which also indicates an excellent performance of localising the changepoints as well as

estimating the value of γ? on each segment. Our selection procedure automatically gives

the preference to robseg (biweight) in this case with frequency 1.000 which confirms the

stability of our selection rule practically.

4.4.3 From Gaussian to Poisson and exponential models

As we have mentioned in Section 4.1, there are not too many work in the statistical litera-

ture addressing changepoint detection for Poisson and exponential models and establishing
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a theoretical guarantee for the proposed estimator. The CL method proposed by Cleynen

and Lebarbier (2014, 2017)) performs a model selection procedure based on the partitions

given by Rigaill (2015) and they have proved the resulting estimator satisfies some oracle

inequality. Implementing their procedure, we find the R package Segmentor3IsBack

tackling both of Poisson and exponential models. Another approach is given by Frick

et al. (2013) with the R package StepR where algorithm is only available for Poisson

segmentation.

Recall that in Section 4.2.2, one feature of our selection procedure is enlarging the

(possibly random) collection Γ̂ but keepingM unchanged, the risk bound for the selected

estimator only decreases (or at least keeps unchanged) over the larger collection. Therefore,

for Poisson and exponential models, besides CL and SMUCE (if available), we would like

to recruit some reasonable estimators into our candidates set Γ̂. Although these estimators

do not exist in the literature and no quantitative or qualitative analysis for them, once

they are selected as ES by our selection procedure, the theoretical guarantee we built in

Section 4.2.2 indicates that, up to a constant, they perform better than the state-of-art

ones (CL and SMUCE).

One natural idea is to borrow the estimators for Gaussian model which is the case

intensively studied. Inspired by Brown et al. (2010) where they implemented a mean-

matching variance stabilizing transformation (MM-VST for short) to turn the problem

of regression in exponential families into a standard homoscedastic Gaussian regression

problem, we can perform a similar technique to the observations Y . For more details

of MM-VST, we refer to Section 2 of Brown et al. (2010). Let us remark that while

implementing MM-VST, we need to choose the value of m which corresponds to the

number of data-points binned for transformation. Although it turns out that for regression

problem, this m needs to be suitably chosen (see Section 4 of Brown et al. (2010)), we

do not want this pre-process step presumes any information of the segmentation as we

are in the context of changepoint detection. Therefore, we simply take m = 1 in their

transformation procedure and implement the formula Y ′i = 2
√
Yi + 1/4 for Poisson model

and Y ′i = log(2Yi) for exponential model to derive new sequences of observations Y ′ =

(Y ′1 , . . . , Y
′
n). We then apply the algorithms introduced in the last section to Y ′ to get the

locations of changepoints. Based on these locations, we associate ρ-estimators introduced

in Chapter 2 to the estimated values of γ? on each segment to improve the performance.

Recall that as we have seen in Section 2.5, under some suitable conditions and when

the model is exact, ρ-estimator recovers the accurate result given by MLE. Moreover,

it possesses more robustness compared to MLE when there is a model misspecification
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and/or data contamination. To conclude, the candidates set for Poisson model is given by

Γ̂ =
{

SMUCE,CL,CBSt + ρ, cumSegt + ρ,PELTt + ρ,WBS sSICt + ρ,

FDRt(α = 0.05) + ρ, robseg(Huber)t + ρ, robseg(biweight)t + ρ
}
, (4.4.1)

where the character “t” indicates the procedure is implemented on the transformed data.

For exponential model, Γ̂ is constructed the same as (4.4.1) except we change SMUCE to

SMUCEt + ρ since it is no longer available.

To investigate the performance of ES and the candidates in Γ̂, we mimic the test

signals fms and mix for Poisson model and teeth10 and stairs10 for exponential

model. We also study the scenario when outliers present in the observations for the mimic

signals fms (Poisson) and teeth10 (exponential). We shall describe the specific settings

of these signals as well as how we add outliers in Section 4.7. Figure 4.4 exhibits the four

underlying signals together with one profile of the simulated data for each signal.

N̂ −N

Method Signal Outlier ≤ −2 -1 0 1 ≥ 2 R̂n(·) Contribution

ES fms-type No 0.002 0.050 0.878 0.062 0.008 2.51 ± 0.09 -

SMUCE fms-type No 0.288 0.528 0.184 0.000 0.000 6.21 ± 0.19 0.184

CL fms-type No 0.000 0.046 0.854 0.082 0.018 2.54 ± 0.10 0.725

CBSt + ρ fms-type No 0.030 0.254 0.546 0.131 0.039 5.34 ± 0.11 0.000

cumSegt + ρ fms-type No 0.424 0.374 0.193 0.009 0.000 7.26 ± 0.20 0.001

PELTt + ρ fms-type No 0.003 0.054 0.867 0.062 0.014 2.56 ± 0.10 0.015

WBS sSICt + ρ fms-type No 0.010 0.132 0.781 0.051 0.026 3.08 ± 0.12 0.013

FDRt(α = 0.05) + ρ fms-type No 0.288 0.528 0.184 0.000 0.000 5.97 ± 0.18 0.000

robseg(Huber)t + ρ fms-type No 0.001 0.035 0.800 0.130 0.034 2.68 ± 0.10 0.032

robseg(biweight)t + ρ fms-type No 0.005 0.073 0.867 0.048 0.007 2.63 ± 0.10 0.030

ES fms-type Yes 0.001 0.092 0.825 0.070 0.012 3.78 ± 0.11 -

SMUCE fms-type Yes 0.000 0.000 0.000 0.000 1.000 12.76 ± 0.21 0.000

CL fms-type Yes 0.000 0.000 0.000 0.000 1.000 8.58 ± 0.11 0.000

CBSt + ρ fms-type Yes 0.521 0.354 0.086 0.035 0.004 11.98 ± 0.36 0.000

cumSegt + ρ fms-type Yes 0.795 0.164 0.038 0.003 0.000 12.01 ± 0.28 0.009

PELTt + ρ fms-type Yes 0.000 0.000 0.000 0.000 1.000 8.45 ± 0.10 0.000

WBS sSICt + ρ fms-type Yes 0.000 0.000 0.000 0.000 1.000 8.82 ± 0.12 0.000

FDRt(α = 0.05) + ρ fms-type Yes 0.000 0.000 0.000 0.000 1.000 11.35 ± 0.18 0.001

robseg(Huber)t + ρ fms-type Yes 0.000 0.008 0.048 0.062 0.882 6.13 ± 0.13 0.053

robseg(biweight)t + ρ fms-type Yes 0.000 0.092 0.839 0.066 0.003 3.74 ± 0.11 0.937

ES mix-type No 0.005 0.371 0.523 0.091 0.010 3.98 ± 0.09 -

SMUCE mix-type No 0.128 0.828 0.044 0.000 0.000 4.67 ± 0.13 0.339

CL mix-type No 0.014 0.439 0.466 0.071 0.010 3.99 ± 0.09 0.481

CBSt + ρ mix-type No 0.034 0.448 0.358 0.122 0.038 13.39 ± 0.11 0.000

cumSegt + ρ mix-type No 0.990 0.010 0.000 0.000 0.000 31.18 ± 0.45 0.000

PELTt + ρ mix-type No 0.010 0.443 0.466 0.071 0.010 4.03 ± 0.09 0.027

WBS sSICt + ρ mix-type No 0.018 0.509 0.402 0.056 0.015 4.03 ± 0.09 0.013

FDRt(α = 0.05) + ρ mix-type No 0.128 0.828 0.044 0.000 0.000 4.67 ± 0.12 0.000

robseg(Huber)t + ρ mix-type No 0.003 0.293 0.530 0.149 0.025 4.15 ± 0.09 0.099

robseg(biweight)t + ρ mix-type No 0.014 0.486 0.458 0.040 0.002 4.06 ± 0.09 0.041

Table 4.3: Frequencies of N̂−N and R̂n(·) of ES and its competitors for Poisson model over

1000 simulated sample paths. Contribution denotes the frequency of each competitor being

selected as ES. Bold: highest empirical frequency of N̂−N = 0 and those with frequencies

within 10% off the highest. The uncertainty is obtained by computing 2σ̂/
√
nr, where σ̂2

is the empirical variance and nr is the number of replications.

The results of Poisson model are shown in Table 4.3. Let us first comment the two
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(a) fms-type (b) mix-type

(c) teeth-type (d) stairs-type

Figure 4.4: (A) and (B): the test signals of the form exp(γ?) (solid line) and simulated

data (dots) for Poisson model. (C) and (D): the test signals of the form of 1/γ? (solid

line) and simulated data (dots) for exponential model.

existing estimators in the literature, namely SMUCE and CL. In both of the scenarios

with or without outliers, the performance of SMUCE is quite poor at least under these

two test signals. When no outlier presents in the observations, SMUCE has a tendency

to underestimate the number of changepoints for both of the two signals fms-type and

mix-type. When there are outliers, SMUCE is sensitive to them therefore overestimates

the number of changepoints. The CL performs much better than SMUCE in the scenario

that no outlier presents in the observations but it is also not robust with respect to the

outliers. When no outlier presents, our estimator ES slightly improves the performance

of CL on detecting changes under both of the two signals. When the outliers present, ES

obviously outperforms CL as a consequence of enjoying the excellent performance given
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by robseg (biweight)t. Interestingly, we find that when there is no outlier presenting in

the observations, the combinations PELTt + ρ and robsegt + ρ are perhaps nice choices

at least under these two signals.

The results for exponential model are shown in Table 4.4. Under the teeth-type

signal without an outlier, the ES obviously outperforms any single candidate by selecting

mainly from CL and robseg (biweight)t +ρ. When there are outliers, robseg (biweight)t +

ρ is the best one among all and we observe that ES improves the frequency to select

robseg (biweight)t + ρ as the final estimator so that finally ES achieves a competitive

performance compared to robseg (biweight)t+ρ and significantly outperforms the existing

estimator CL. For stairs-type signal, CL performs quite nice but ES still slightly

improves it by enjoying the contribution from other candidates in Γ̂.

N̂ −N

Method Signal Outlier ≤ −2 -1 0 1 ≥ 2 R̂n(·) Contribution

ES teeth-type No 0.327 0.077 0.468 0.106 0.022 7.69 ± 0.25 -

CL teeth-type No 0.381 0.055 0.411 0.116 0.037 9.27 ± 0.38 0.766

SMUCEt + ρ teeth-type No 0.998 0.002 0.000 0.000 0.000 20.29 ± 0.14 0.000

CBSt + ρ teeth-type No 1.000 0.000 0.000 0.000 0.000 22.52 ± 0.06 0.000

cumSegt + ρ teeth-type No 1.000 0.000 0.000 0.000 0.000 22.56 ± 0.05 0.000

PELTt + ρ teeth-type No 0.134 0.068 0.241 0.191 0.366 9.14 ± 0.19 0.015

WBS sSICt + ρ teeth-type No 0.829 0.022 0.058 0.036 0.055 18.62 ± 0.37 0.007

FDRt(α = 0.05) + ρ teeth-type No 0.998 0.002 0.000 0.000 0.000 20.30 ± 0.14 0.000

robseg(Huber)t + ρ teeth-type No 0.076 0.096 0.263 0.227 0.338 8.42 ± 0.18 0.023

robseg(biweight)t + ρ teeth-type No 0.435 0.122 0.348 0.082 0.013 8.86 ± 0.21 0.189

ES teeth-type Yes 0.383 0.082 0.303 0.151 0.081 9.38 ± 0.25 -

CL teeth-type Yes 0.500 0.048 0.169 0.128 0.155 12.42 ± 0.42 0.534

SMUCEt + ρ teeth-type Yes 1.000 0.000 0.000 0.000 0.000 22.02 ± 0.14 0.000

CBSt + ρ teeth-type Yes 1.000 0.000 0.000 0.000 0.000 24.43 ± 0.07 0.001

cumSegt + ρ teeth-type Yes 1.000 0.000 0.000 0.000 0.000 24.49 ± 0.06 0.000

PELTt + ρ teeth-type Yes 0.090 0.069 0.131 0.162 0.548 10.48 ± 0.18 0.023

WBS sSICt + ρ teeth-type Yes 0.908 0.014 0.017 0.024 0.037 21.82 ± 0.32 0.008

FDRt(α = 0.05) + ρ teeth-type Yes 1.000 0.000 0.000 0.000 0.000 22.02 ± 0.14 0.001

robseg(Huber)t + ρ teeth-type Yes 0.090 0.074 0.202 0.222 0.412 9.37 ± 0.18 0.105

robseg(biweight)t + ρ teeth-type Yes 0.456 0.106 0.316 0.105 0.017 9.48 ± 0.20 0.328

ES stairs-type No 0.000 0.000 0.923 0.067 0.010 2.09 ± 0.08 -

CL stairs-type No 0.000 0.000 0.907 0.075 0.018 2.10 ± 0.08 0.977

SMUCEt + ρ stairs-type No 0.000 0.008 0.489 0.225 0.278 4.28 ± 0.19 0.003

CBSt + ρ stairs-type No 0.006 0.134 0.594 0.193 0.073 6.27 ± 0.31 0.000

cumSegt + ρ stairs-type No 0.002 0.120 0.682 0.192 0.004 7.54 ± 0.32 0.000

PELTt + ρ stairs-type No 0.000 0.000 0.032 0.041 0.927 6.56 ± 0.18 0.000

WBS sSICt + ρ stairs-type No 0.000 0.003 0.456 0.094 0.447 4.63 ± 0.17 0.001

FDRt(α = 0.05) + ρ stairs-type No 0.000 0.008 0.489 0.225 0.278 4.27 ± 0.19 0.002

robseg(Huber)t + ρ stairs-type No 0.000 0.000 0.207 0.144 0.649 4.84 ± 0.16 0.001

robseg(biweight)t + ρ stairs-type No 0.000 0.000 0.699 0.183 0.118 3.21 ± 0.12 0.016

Table 4.4: Frequencies of N̂−N and R̂n(·) of ES and its competitors for exponential model

over 1000 simulated sample paths. Contribution denotes the frequency of each competitor

being selected as ES. Bold: highest empirical frequency of N̂ − N = 0 and those with

frequencies within 10% off the highest. The uncertainty is obtained by computing 2σ̂/
√
nr,

where σ̂2 is the empirical variance and nr is the number of replications.
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4.5 Real data examples

In this section, we apply our estimator selection procedure to two real datasets and in-

vestigate its performance. The first one is the observations of DNA copy numbers from

biological research where Gaussian model is considered to detect changes. The second one

is the British coal disasters dataset to which Poisson model is applied.

4.5.1 Detecting changes in DNA copy numbers

In normal human cells, it is well known that the number of DNA copies is two. As it

has been revealed by much work in biological research (see Albertson and Pinkel (2003)

and Redon et al. (2006) for example), the pathogenesis of some diseases including various

cancers and mental retardation is often associated to chromosomal aberrations such as

deletions, duplications and/or amplifications which finally result in the copy number of

DNA from such regions differs from the normal number two. Including microarray and

sequencing experiments, biologists have developed various techniques to measure DNA

copy numbers of selected genes on some genome and they record their experimental results

as a sequence of observations Y = (Y1, . . . , Yn). The interest lies in finding abrupt changes

in the means of the observations. To address this issue, we consider Gaussian model with

an estimated variance.

In R package jointseg (Pierre-Jean et al. (2015)), they provide two real datasets

GSE11976 and GSE29172 to resample from, where the truth of changepoints is already

known. However, since we do not have the information of the associated value on each

segment, it is impossible to compute the pseudo Hellinger distance between each estimator

and the truth. Note that for both GSE11976 and GSE29172 datasets, we need to choose

the tumour fraction when resampling from them. We consider the tumour fraction levels

0.79 and 1 for the dataset GSE11976 and the levels 0.7 and 1 for GSE29172 which turns

out to be the situations where the size of each jump at the changepoint is relatively large as

indicated in Figure 9 of Fearnhead and Rigaill (2019). Therefore, we can roughly evaluate

the performance of each estimator by its frequency of correctly estimating the number

of changepoints. Although our selection procedure can be applied in the scenario where

small amount of outliers present in the observations, as we have seen in Section 4.4 some

candidates in Γ̂ are sensitive to the outliers. To avoid the phenomenon that an estimator

systematically underestimates the number of changepoints but due to the sensitivity to

outliers it accidentally gives a correct number of segments, we run a smooth procedure

on the data before applying all the estimation procedures by implementing the function

smooth.CNA from the famous R package DNAcopy. Moreover, since we have seen in the

simulation study that the performance of CBS and cumSeg is quite poor, we remove these

two estimators from our candidates set Γ̂ for simplicity. For each dataset and each level of

tumour fraction, we simulate 1000 profiles of length n = 1000 with 5 changepoints where
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the length of each segment is at least 20. The results are shown in Table 4.5. As one can

observe, among the state-of-art ones, robseg (biweight) is the best for correctly estimating

the number of changepoints on this dataset. By running a data-driven procedure to select

among the candidates set Γ̂, our selected estimator ES shows a competitive performance

in this situation as compared to the best one robseg (biweight).

N̂ −N

Method Dataset Fraction ≤ −3 -2 -1 0 1 2 ≥ 3 Contribution

ES GSE11976 0.79 0.003 0.028 0.044 0.771 0.108 0.031 0.015 -

PELT GSE11976 0.79 0.000 0.002 0.008 0.198 0.096 0.196 0.500 0.060

SMUCE GSE11976 0.79 0.004 0.021 0.124 0.391 0.203 0.139 0.118 0.147

CL GSE11976 0.79 0.011 0.066 0.053 0.550 0.117 0.118 0.085 0.393

WBS sSIC GSE11976 0.79 0.005 0.031 0.066 0.508 0.066 0.174 0.150 0.100

FDR(α = 0.05) GSE11976 0.79 0.000 0.005 0.011 0.096 0.056 0.126 0.706 0.020

robseg(Huber) GSE11976 0.79 0.001 0.012 0.022 0.569 0.193 0.110 0.093 0.121

robseg(biweight) GSE11976 0.79 0.002 0.046 0.045 0.778 0.102 0.019 0.008 0.159

ES GSE11976 1.00 0.000 0.003 0.007 0.790 0.100 0.046 0.054 -

PELT GSE11976 1.00 0.000 0.000 0.000 0.243 0.067 0.195 0.495 0.046

SMUCE GSE11976 1.00 0.000 0.002 0.035 0.395 0.178 0.177 0.213 0.208

CL GSE11976 1.00 0.001 0.011 0.011 0.604 0.098 0.170 0.105 0.357

WBS sSIC GSE11976 1.00 0.000 0.003 0.008 0.536 0.060 0.225 0.168 0.075

FDR(α = 0.05) GSE11976 1.00 0.000 0.000 0.004 0.138 0.059 0.126 0.673 0.018

robseg(Huber) GSE11976 1.00 0.000 0.002 0.004 0.559 0.163 0.126 0.146 0.155

robseg(biweight) GSE11976 1.00 0.000 0.010 0.006 0.794 0.101 0.043 0.046 0.141

ES GSE29172 0.70 0.014 0.136 0.133 0.596 0.088 0.028 0.005 -

PELT GSE29172 0.70 0.003 0.027 0.054 0.210 0.139 0.181 0.386 0.089

SMUCE GSE29172 0.70 0.016 0.112 0.307 0.247 0.176 0.087 0.055 0.099

CL GSE29172 0.70 0.035 0.159 0.155 0.305 0.129 0.126 0.091 0.302

WBS sSIC GSE29172 0.70 0.022 0.105 0.155 0.290 0.113 0.173 0.142 0.046

FDR(α = 0.05) GSE29172 0.70 0.003 0.024 0.075 0.133 0.112 0.133 0.520 0.032

robseg(Huber) GSE29172 0.70 0.007 0.068 0.087 0.533 0.163 0.092 0.050 0.224

robseg(biweight) GSE29172 0.70 0.018 0.168 0.153 0.597 0.052 0.012 0.000 0.208

ES GSE29172 1.00 0.000 0.005 0.003 0.828 0.093 0.051 0.020 -

PELT GSE29172 1.00 0.000 0.001 0.001 0.233 0.070 0.251 0.444 0.046

SMUCE GSE29172 1.00 0.000 0.004 0.044 0.416 0.193 0.199 0.144 0.185

CL GSE29172 1.00 0.001 0.009 0.006 0.684 0.077 0.163 0.060 0.427

WBS sSIC GSE29172 1.00 0.000 0.006 0.009 0.576 0.051 0.230 0.128 0.070

FDR(α = 0.05) GSE29172 1.00 0.000 0.001 0.002 0.119 0.063 0.133 0.682 0.018

robseg(Huber) GSE29172 1.00 0.000 0.001 0.001 0.594 0.145 0.158 0.101 0.120

robseg(biweight) GSE29172 1.00 0.000 0.007 0.006 0.833 0.098 0.043 0.013 0.134

Table 4.5: Frequencies of N̂ −N of ES and its competitors for DNA copy numbers data.

Contribution denotes the frequency of each competitor being selected as ES. Bold: highest

empirical frequency of N̂ −N = 0 and those with frequencies within 10% off the highest.

4.5.2 British coal disasters dataset

To investigate the performance of ES for Poisson model in practice, we apply our pro-

cedure to British coal disasters dataset. This dataset is quite well-known in the context

of Poisson segmentation see Green (1995), Yang and Kuo (2001), Fearnhead (2006) and

Lloyd et al. (2015) for example. We choose this dataset mainly because of two reasons.

First, the changepoints have been studied by many different methods which makes it eas-

ier to understand our result. Besides, the sequence has a general tendency to decrease

with the progress over time which can be correlated to implementing safety regulation in
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the history. Though pretty rough, we have some evidence to evaluate the changepoint

detection procedures on this dataset.

The data at hand include the number of each year coal disasters in UK during the

period from March 15th, 1851 to March 22nd, 1962 with length n = 112. In this situation,

Poisson model is considered based on the same candidates set (4.4.1) as described in

Section 4.4.3. We conclude the results of different estimators as follows. Concerning to

the changepoints, there are in total three suggestions:

(1) 1 changepoint at the year 1891: cumSegt+ρ, PELTt+ρ, WBS sSICt+ρ, FDRt(α =

0.05) + ρ and robseg(biweight)t + ρ;

(2) 2 changepoints at the year 1891 and 1947: SMUCE and CL;

(3) 3 changepoints at the year 1891, 1929 and 1942: robseg(Huber)t + ρ.

Our selection procedure finally choose SMUCE as ES, i.e. we support the suggestion with

two changepoints at the year 1891 and 1947. The dataset as well as the result of ES

(SMUCE) is plotted in Figure 4.5.

Figure 4.5: Coal mining disasters data (dots) and ES estimator (solid line).

Now we comment our result by comparing it with the existing ones in the literature.

In Green (1995), they used the coal mining disasters data recorded per day and pro-

posed a reversible jump MCMC approach to detect changepoints as well as estimating

intensity function. According to the Figure 2 in the same paper, the model with two

changepoints has the highest posterior probability. Moreover, according to their Figure 3,

in the two changepoints scenario, the posterior mode is approximately 14,000 days for

the first changepoint and 35,000 days for the second one. This is very close to our result

since counting from March 15th, 1851, 14,000 days is between the year 1889 and 1890

and 35,000 days is the time between the year 1946 and 1947. Later, a Bayesian binary
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segmentation procedure was proposed by Yang and Kuo (2001) to locate changepoints for

Poisson process. Based on two different tests they adopted, their procedure obtained two

different sets of changepoints (one changepoint for applying Bayes factor criterion and two

for applying BIC approximation criterion) where the locations of changepoints for these

two models are quite similar to the results (1) and (2) mentioned in the last paragraph.

On the other hand, as it was pointed out in Lloyd et al. (2015), UK parliament passed

several acts to improve the safety of mine works including the Coal Mines Regulation Acts

of 1872 and 1887 and a further one in 1954 with mines and quarries acts. In general, it is

reasonable to have a non-increasing expectation of the number of disasters after the year

releasing these regulations. As it is shown in Figure 4.5, the model with two changepoints

meets the releasing regulation years 1887 and 1954. Considering the best fit with the

time of released regulations and the results given in the literatures, we believe the two

changepoints model for this dataset is the most reasonable one to the truth.

4.6 Proofs of main and auxiliary results

Recall that (X ,X ) = (W × Y ,W ⊗ Y) and P f the set of all product probabilities on

(X n,X⊗n). For all i ∈ {1, . . . , n}, we denote the true distribution of Xi = (Wi, Yi)

by P ?i and denote the true joint distribution of X = (X1, . . . , Xn) by P? = ⊗ni=1P
?
i ∈

P f . We denote Pγ = ⊗ni=1Pi,γ the joint distribution of independent random variables

(W1, Y1), . . . , (Wn, Yn) for which the conditional distribution of Yi given Wi is given by

Rγ(Wi) ∈ Q for all i ∈ {1, . . . , n}. Under such a notation setting, we have P ?i = Q?i · PWi ,

Pi,γ = Rγ · PWi as well as the following equality

h2(P ?i , Pi,γ) =

∫
W
h2(Q?i (w), Rγ(w))dPWi(w). (4.6.1)

As an immediate consequence of (4.6.1) and (1.4.1), for any γ ∈ Γ,

h2(Q?,Rγ) =
n∑
i=1

∫
W
h2(Q?i (w), Rγ(w))dPWi(w)

=
n∑
i=1

h2(P ?i , Pi,γ) = h2(P?,Pγ). (4.6.2)

For each m ∈ M, we define the set of probabilities Pm = {Pγ , γ ∈ Γm} and P =

{Pγ , γ ∈ Γ} with Γ = ∪m∈MΓm. For any y > 0, P? ∈ P f , Pm1 ,Pm2 with m1,m2 ∈M,

we define the set

BPm1×Pm2 (P?, y)

=
{

(Pγ1
,Pγ2

)
∣∣ Pγ1

∈ Pm1 ,Pγ2
∈ Pm2 ,h

2(P?,Pγ1
) + h2(P?,Pγ2

) < y2
}
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and for any γ1,γ2 ∈ Γ, we set

Z(X,γ1,γ2) = T(X,γ1,γ2)− E [T(X,γ1,γ2)] .

We then introduce bellow Proposition 45 of Baraud et al. (2017) which is an extensional

version of Talagrand’s Theorem on the supremum of empirical processes proved in Massart

(2007).

Proposition 4.6.1. Let T be some finite or countable set, U1,...,Un be independent cen-

tered random vectors with values in RT and let

Z = sup
t∈T

∣∣∣ n∑
i=1

Ui,t

∣∣∣.
If for some positive numbers b and v,

max
i=1,...,n

|Ui,t| ≤ b and
n∑
i=1

E
[
U2
i,t

]
≤ v2 for all t ∈ T,

then, for all positive numbers c and x,

P
[
Z ≤ (1 + c)E(Z) + (8b)−1cv2 + 2(1 + 8c−1)bx

]
≥ 1− e−x.

4.6.1 Elementary results and proofs

Before showing the main theorem, we present two preliminary results and their proofs in

this section.

Lemma 4.6.1. Let m1,m2 ∈M be two partitions on W . The class of functions

F (m1,m2) =

{
rγ2

rγ1

: (w, y) 7→
rγ2(w)(y)

rγ1(w)(y)
, γ1 ∈ Γm1 , γ2 ∈ Γm2

}
on X = W × Y is VC-subgraph with dimension not larger than 2|m1 ∨m2|+ 1.

Proof. Recall that rγ : (w, y) 7→ exp [u(γ(w))S(y)−B(γ(w))] according to (2.3.12). For

any γ1 ∈ Γm1 and γ2 ∈ Γm2 , we define function gγ1,γ2
on W × Y as

gγ1,γ2
(w, y) = S(y) [u(γ2(w))− u(γ1(w))]− [B(γ2(w))−B(γ1(w))]

and define G (m1,m2) the class of functions as

G (m1,m2) =
{
gγ1,γ2

| γ1 ∈ Γm1 ,γ2 ∈ Γm2

}
.

With the fact that F (m1,m2) = {eg, g ∈ G (m1,m2)} and the exponential function is

monotone on R, by Proposition 1.5.2 (Proposition 42 of Baraud et al. (2017)), it is enough

to prove the conclusion holds for the class G (m1,m2).
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Let K = |m1 ∨m2| be the number of segments given by the refined partition m1 ∨m2

and I1, . . . , IK the resulted segments on W . For any γ1 ∈ Γm1 , we can rewrite it as

γ1(w) =
K∑
k=1

ak1Ik(w), where (a1, . . . , aK) ∈ JK

and any γ2 ∈ Γm2 ,

γ2(w) =
K∑
k=1

bk1Ik(w), where (b1, . . . , bK) ∈ JK .

As an immediate consequence, for any gγ1,γ2
∈ G (m1,m2), it can be rewritten as

gγ1,γ2
(w, y) =

K∑
k=1

[u(bk)− u(ak)]1Ik(w)S(y)−
K∑
k=1

[B(bk)−B(ak)]1Ik(w).

Therefore, G (m1,m2) is contained in a 2K-dimensional vector space spanned by

{1Ik(w), S(y)1Ik(w), k = 1, . . . ,K} .

By Proposition 1.5.1 (Lemma 2.6.15 of van der Vaart and Wellner (1996)), we conclude

G (m1,m2) is VC-subgraph on X = W × Y with dimension not larger than 2K + 1.

Proposition 4.6.2. Let m1,m2 ∈ M be two partitions on W . Under Assumption 4.2.2,

for any P? ∈ P f , η ≥ 1 and any y > 0 satisfying

y2 ≥ η [Dn(m1) +Dn(m2)] ,

we have

E

 sup
(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P?,y)

|Z(X,γ1,γ2)|

 ≤ [9.77

√
2α+ 1/2

η
+

90(2α+ 1/2)

η

]
y2.

Proof. We set µ = ⊗ni=1µi with µi = PWi ⊗ ν. For any γ ∈ Γ, we denote rγ a density

(with respect to µ) on X n = (W × Y )n as

rγ(x1, . . . , xn) = rγ(x1) · · · rγ(xn), for all (x1, . . . , xn) ∈X n

so that for any γ ∈ Γ, we have Pγ = rγ · µ. For any y > 0, we define Fy(m1,m2) the

class of functions on X as{
ψ

(√
rγ2

rγ1

)∣∣∣∣ γ1 ∈ Γm1 ,γ2 ∈ Γm2 ,h
2(P?, rγ1

· µ) + h2(P?, rγ2
· µ) < y2

}
.

Since Fy(m1,m2) is a subset of the collection{
ψ

(√
rγ2

rγ1

)∣∣∣∣ γ1 ∈ Γm1 ,γ2 ∈ Γm2

}
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and the function ψ is monotone, it follows from Lemma 4.6.1 and Proposition 1.5.2 (Propo-

sition 42-(ii) of Baraud et al. (2017)) that Fy(m1,m2) is VC-subgraph on X with dimen-

sion not larger than V = 2|m1 ∨m2|+ 1. Besides, by Proposition 3 of Baraud and Birgé

(2018), our choice of the function ψ satisfies their Assumption 2 and more precisely (11)

in their paper with a2
2 = 3

√
2. Proposition 3 of Baraud and Birgé (2018) together with

the definition of Fy implies that for any y > 0,

sup
f∈Fy(m1,m2)

n−1
n∑
i=1

E
[
f2(Xi)

]
≤ a2

2y
2

n
. (4.6.3)

Moreover, since the function ψ takes values in [−1, 1], we derive from (4.6.3) that

sup
f∈Fy(m1,m2)

n−1
n∑
i=1

E
[
f2(Xi)

]
≤
(
a2

2y
2

n

)
∧ 1 ≤ 1.

To bound the expectation of the supremum of an empirical process over a VC-subgraph

class, we apply Theorem 2.6.1 in Chapter 2 to Fy(m1,m2) and obtain

E

 sup
(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P?,y)

|Z(X,γ1,γ2)|


=E

 sup
(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P?,y)

|T(X,γ1,γ2)− E [T(X,γ1,γ2)]|


=E

 sup
(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P?,y)

∣∣∣∣∣
n∑
i=1

ψ

(√
rγ2(Wi)(Yi)

rγ1(Wi)(Yi)

)
− E

[
n∑
i=1

ψ

(√
rγ2(Wi)(Yi)

rγ1(Wi)(Yi)

)]∣∣∣∣∣


=E

[
sup

f∈Fy(m1,m2)

∣∣∣∣∣
n∑
i=1

(f(Xi)− E [f(Xi)])

∣∣∣∣∣
]

≤9.77y

√
V Ln(y) + 90V Ln(y), (4.6.4)

where Ln(y) = 9.11+log+

[
n/
(
3
√

2y2
)]
. Under Assumption 4.2.2, there exists a constant

α ≥ 1 such that

V = 2|m1 ∨m2|+ 1 ≤ 2α(|m1|+ |m2|) + 1 ≤
(

2α+
1

2

)
(|m1|+ |m2|). (4.6.5)

Therefore, combining (4.6.4) and (4.6.5), we obtain

E

 sup
(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P?,y)

|Z(X,γ1,γ2)|


≤9.77y

√(
2α+

1

2

)
(|m1|+ |m2|)Ln(y) + 90

(
2α+

1

2

)
(|m1|+ |m2|)Ln(y). (4.6.6)
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Recall that Dn(m) = |m|
[
9.11 + log+ (n/|m|)

]
. For any η ≥ 1, provided the condition

y2 ≥ η [Dn(m1) +Dn(m2)], on the one hand, we have

y2 ≥ η
[
|m1|

(
9.11 + log+

(
n

|m1|+ |m2|

))
+ |m2|

(
9.11 + log+

(
n

|m1|+ |m2|

))]
= η(|m1|+ |m2|)

[
9.11 + log+

(
n

|m1|+ |m2|

)]
. (4.6.7)

On the other hand, (4.6.7) also implies y2 ≥ |m1|+ |m2|. Therefore,

Ln(y) = 9.11 + log+

(
n

3
√

2y2

)
≤ 9.11 + log+

[
n

3
√

2(|m1|+ |m2|)

]
≤ 9.11 + log+

(
n

|m1|+ |m2|

)
. (4.6.8)

Plugging (4.6.7) and (4.6.8) into (4.6.6), we complete the proof.

4.6.2 Proof of Theorem 4.2.1

The proof of Theorem 4.2.1 is inspired by the proof of Theorem A.1 in Baraud and Birgé

(2018). Before we start to prove Theorem 4.2.1, we first show the following result.

Proposition 4.6.3. Let numbers a, η ≥ 1 and δ, ϑ > 1 such that

2 exp(−ϑ) +
+∞∑
j=1

exp(−ϑδj) ≤ 1. (4.6.9)

Under Assumption 4.2.1 and 4.2.2, for any ξ > 0 and for all m1,m2 ∈M simultaneously,

with probability at least 1− Σ2e−ξ,

sup
(Pγ1 ,Pγ2 )∈Pm1×Pm2

[
|Z(X,γ1,γ2)| − k1

[
h2(P?,Pγ1

) + h2(P?,Pγ2
)
]]

≤ k0a {η [Dn(m1) +Dn(m2)] ∨ (∆(m1) + ∆(m2) + ϑ+ ξ)} ,

where

k0 =16

√√√√9.77
√

2α+1/2
η + 90(2α+1/2)

η + 3
√

2
16

2a
+

4

a

+

(
9.77

√
2α+ 1/2

η
+

90(2α+ 1/2)

η

)
,

k1 =16

√√√√√δ

(
9.77

√
2α+1/2

η + 90(2α+1/2)
η + 3

√
2

16

)
2a

+
4

a

+

(
9.77

√
2α+ 1/2

η
+

90(2α+ 1/2)

η

)
δ.
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Proof. Let ξ > 0, δ, ϑ > 1, a, η ≥ 1 and m1,m2 ∈M be fixed. For each j ∈ N, we set

x0(m1,m2) = η (Dn(m1) +Dn(m2)) ∨ (∆(m1) + ∆(m2) + ϑ+ ξ) ,

xj(m1,m2) = δjx0(m1,m2), y2
j (m1,m2) = axj(m1,m2).

For each j ∈ N, we define the set

BPm1×Pm2
j (P?)

=
{

(Pγ1
,Pγ2

) ∈ Pm1 ×Pm2

∣∣ y2
j ≤ h2(P?,Pγ1

) + h2(P?,Pγ2
) < y2

j+1

}
and set

ZPm1×Pm2
j (X) = sup

(Pγ1 ,Pγ2 )∈B
Pm1×Pm2
j (P?)

|Z(X,γ1,γ2)| .

For simplifying the notations, let us drop the dependancy of xj and yj with respect to

m1,m2 for a while. Since BPm1×Pm2
j (P?) ⊂BPm1×Pm2 (P?, yj+1) and y2

j+1 > y2
0 = ax0 ≥

η [Dn(m1) +Dn(m2)], under Assumption 4.2.2, applying Proposition 4.6.2 yields,

E
[
ZPm1×Pm2
j (X)

]
= E

 sup
(Pγ1 ,Pγ2 )∈B

Pm1×Pm2
j (P?)

|Z(X,γ1,γ2)|


≤ E

 sup
(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P?,yj+1)

|Z(X,γ1,γ2)|


≤

(
9.77

√
2α+ 1/2

η
+

90(2α+ 1/2)

η

)
y2
j+1. (4.6.10)

For i ∈ {1, . . . , n}, we set

Ui,(rγ1 ,rγ2 ) = ψ

(√
rγ2(Wi)(Yi)

rγ1(Wi)(Yi)

)
− E

[
ψ

(√
rγ2(Wi)(Yi)

rγ1(Wi)(Yi)

)]
. (4.6.11)

With the fact that ψ takes values in [−1, 1], it is easy to observe that

max
i=1,...,n

∣∣∣Ui,(rγ1 ,rγ2 )

∣∣∣ ≤ 2.

Moreover, ψ satisfies the Assumption 2 more precisely (11) in Baraud and Birgé (2018)

with a2
2 = 3

√
2, we derive for each j ∈ N, all γ1 ∈ Γm1 , γ2 ∈ Γm2 such that (Pγ1

,Pγ2
) ∈

BPm1×Pm2
j (P?)

n∑
i=1

E
[
U2
i,(rγ1 ,rγ2 )

]
≤

n∑
i=1

E

[
ψ2

(√
rγ2(Wi)(Yi)

rγ1(Wi)(Yi)

)]
≤ 3
√

2y2
j+1.
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Then, for each j ∈ N, we can apply Proposition 4.6.1 with b = 2, v2 = 3
√

2y2
j+1 and

T = BPm1×Pm2
j (P?) and obtain that for all c > 0 and for all (Pγ1

,Pγ2
) ∈ BPm1×Pm2

j (P?)

with probability at least 1− e−xj ,

|Z(X,γ1,γ2)|

≤ZPm1×Pm2
j (X)

≤(1 + c)E
[
ZPm1×Pm2
j (X)

]
+

3
√

2y2
j+1c

16
+ 4

(
1 +

8

c

)
xj

≤(1 + c)

(
9.77

√
2α+ 1/2

η
+

90(2α+ 1/2)

η

)
y2
j+1 +

3
√

2y2
j+1c

16
+ 4

(
1 +

8

c

)
xj

≤(1 + c)

(
9.77

√
2α+ 1/2

η
+

90(2α+ 1/2)

η

)
y2
j+1 +

3
√

2y2
j+1c

16
+

4

a

(
1 +

8

c

)
y2
j

≤

[
(1 + c)

(
9.77

√
2α+ 1/2

η
+

90(2α+ 1/2)

η

)
δ +

3
√

2cδ

16
+

4

a

(
1 +

8

c

)]
y2
j .

Taking

c =

√√√√√ 32(
9.77

√
2α+1/2

η + 90(2α+1/2)
η + 3

√
2

16

)
δa

to minimize the bracketed term yields for all (Pγ1
,Pγ2

) ∈ BPm1×Pm2
j (P?), with probability

at least 1− e−xj

|Z(X,γ1,γ2)| ≤ k1y
2
j .

By the definition of BPm1×Pm2
j (P?), we get for all (Pγ1

,Pγ2
) ∈ BPm1×Pm2

j (P?), with

probability at least 1− e−xj ,

|Z(X,γ1,γ2)| ≤ k1y
2
j ≤ k1

[
h2(P?,Pγ1

) + h2(P?,Pγ2
)
]
.

We define

ZPm1×Pm2 (X) = sup
(Pγ1 ,Pγ2 )∈BPm1×Pm2 (P?,y0)

|Z(X,γ1,γ2)| .

With an analogous argument by applying Proposition 4.6.1 to ZPm1×Pm2 (X) with x = x0,

we can obtain for all (Pγ1
,Pγ2

) ∈ BPm1×Pm2 (P?, y0) and all c > 0, with probability at

least 1− e−x0 ,

|Z(X,γ1,γ2)|

≤ZPm1×Pm2 (X)

≤

[
(1 + c)

(
9.77

√
2α+ 1/2

η
+

90(2α+ 1/2)

η

)
+

3
√

2c

16
+

4

a

(
1 +

8

c

)]
y2

0.
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To minimize the bracketed term, we take

c =

√√√√√ 32(
9.77

√
2α+1/2

η + 90(2α+1/2)
η + 3

√
2

16

)
a

and therefore for all (Pγ1
,Pγ2

) ∈BPm1×Pm2 (P?, y0) with probability at least 1− e−x0 ,

|Z(X,γ1,γ2)| ≤ ZPm1×Pm2 (X) ≤ ak0x0.

Combining all the bounds together, we derive for all (Pγ1
,Pγ2

) ∈ Pm1 ×Pm2 simultane-

ously with probability at least 1− ε(m1,m2),

|Z(X,γ1,γ2)| ≤ k1

[
h2(P?,Pγ1

) + h2(P?,Pγ2
)
]

+ ak0x0(m1,m2),

where

ε(m1,m2) = 2 exp [−x0(m1,m2)] +
∑
j≥1

exp [−xj(m1,m2)] .

By the definition of xj(m1,m2), we notice that for all j ∈ N, xj(m1,m2) ≥ ∆(m1) +

∆(m2) + ϑδj + ξ. Hence, provided (4.6.9), we have

ε(m1,m2) ≤ exp [−ξ −∆(m1)−∆(m2)]

2 exp(−ϑ) +
∑
j≥1

exp(−ϑδj)


≤ exp [−ξ −∆(m1)−∆(m2)] .

Finally we can extend this result to all (Pγ1
,Pγ2

) ∈ P × P by summing these bounds

over (m1,m2) ∈M×M and using (4.2.1).

Proof of Theorem 4.2.1. We apply Proposition 4.6.3 with δ = 1.175, ϑ = 1.47 and as for

the values of η and a, we shall choose them later such that k1 = 3β/8, with some 0 < β < 1.

On a set Ωξ the probability of which is at least 1 − Σ2e−ξ, for all Pγ1
,Pγ2

∈ P and all

Pm1 ×Pm2 containing (Pγ1
,Pγ2

)

T(X,γ1,γ2) ≤ E [T(X,γ1,γ2)] +
3β

8

[
h2(P?,Pγ1

) + h2(P?,Pγ2
)
]

+ k0a [η (Dn(m1) +Dn(m2)) ∨ (∆(m1) + ∆(m2) + ϑ+ ξ)]

≤ E [T(X,γ1,γ2)] +
3β

8

[
h2(P?,Pγ1

) + h2(P?,Pγ2
)
]

+ k0a [ηDn(m1) + ηDn(m2) + ∆(m1) + ∆(m2) + ϑ+ ξ] .

Since the last inequality is true for all the Pm1 × Pm2 containing (Pγ1
,Pγ2

), provided

C0(2α+ 1/2) ≥ k0aη, we derive from (4.2.2) that with a probability at least 1− Σ2e−ξ,

T(X,γ1,γ2) ≤ E [T(X,γ1,γ2)] +
3β

8

[
h2(P?,Pγ1

) + h2(P?,Pγ2
)
]

+ pen(γ1) + pen(γ2) + k0a(ϑ+ ξ). (4.6.12)
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According to Proposition 3 of Baraud and Birgé (2018), the function ψ satisfies Assump-

tion 2 (more precisely (10)) in the same paper with a0 = 4 and a1 = 3/8. As a consequence,

for all Pγ1
,Pγ2

∈ P and P? ∈ P f ,

E [T(X,γ1,γ2)] ≤ 4h2(P?,Pγ1
)− 3

8
h2(P?,Pγ2

). (4.6.13)

Combining (4.6.12) and (4.6.13), we derive that for all Pγ1
,Pγ2

∈ P and P? ∈ P f , with

a probability at least 1− Σ2e−ξ,

T(X,γ1,γ2) ≤ (4 +
3β

8
)h2(P?,Pγ1

)− 3(1− β)

8
h2(P?,Pγ2

)

+ pen(γ1) + pen(γ2) + k0a(ϑ+ ξ). (4.6.14)

This entails that, for any (random) elements Pγ̂λ ,Pγ̂λ̂ ∈ P , on a set Ωξ with probability

at least 1− Σ2e−ξ

T(X, γ̂λ, γ̂λ̂) ≤ (4 +
3β

8
)h2(P?,Pγ̂λ)− 3(1− β)

8
h2(P?,Pγ̂

λ̂
) (4.6.15)

+ pen(γ̂λ) + pen(γ̂
λ̂
) + k0a(ϑ+ ξ)

and

υ(X, γ̂λ) = sup
λ′∈Λ

[T(X, γ̂λ, γ̂λ′)− pen(γ̂λ′)] + pen(γ̂λ)

≤ (4 +
3β

8
)h2(P?,Pγ̂λ)− 3(1− β)

8
inf
λ′∈Λ

h2(P?,Pγ̂λ′ ) (4.6.16)

+ 2 pen(γ̂λ) + k0a(ϑ+ ξ).

By the construction of ψ, T(X, γ̂
λ̂
, γ̂λ) = −T(X, γ̂λ, γ̂λ̂). Combining (4.6.15), (4.6.16)

and (4.2.3) leads to for any λ ∈ Λ, on a set Ωξ with probability at least 1− Σ2e−ξ

3(1− β)

8
h2(P?,Pγ̂

λ̂
) ≤ (4 +

3β

8
)h2(P?,Pγ̂λ)−T(X, γ̂λ, γ̂λ̂)

+ pen(γ̂λ) + pen(γ̂
λ̂
) + k0a(ϑ+ ξ)

≤ (4 +
3β

8
)h2(P?,Pγ̂λ) +

[
T(X, γ̂

λ̂
, γ̂λ)− pen(γ̂λ)

]
+ pen(γ̂

λ̂
) + 2 pen(γ̂λ) + k0a(ϑ+ ξ)

≤ (4 +
3β

8
)h2(P?,Pγ̂λ) + υ(X, γ̂

λ̂
) + 2 pen(γ̂λ) + k0a(ϑ+ ξ)

≤ (4 +
3β

8
)h2(P?,Pγ̂λ) + υ(X, γ̂λ) + 1 + 2 pen(γ̂λ) + k0a(ϑ+ ξ).

(4.6.17)

Plugging (4.6.16) into (4.6.17) yields, for any λ ∈ Λ, on a set Ωξ with probability at least

1− Σ2e−ξ,

3(1− β)

8
h2(P?,Pγ̂

λ̂
) ≤ (8 +

3β

4
)h2(P?,Pγ̂λ) + 4 pen(γ̂λ) + 2k0a(ϑ+ ξ) + 1.
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Therefore, for any λ ∈ Λ on a set Ωξ with probability at least 1− Σ2e−ξ,

h2(P?,Pγ̂
λ̂
) ≤ 64 + 6β

3(1− β)
h2(P?,Pγ̂λ) +

32

3(1− β)
pen(γ̂λ) +

16k0a(ϑ+ ξ) + 8

3(1− β)
. (4.6.18)

By the equality (4.6.2), we rewrite (4.6.18) as the following

h2(Q?,Rγ̂
λ̂
) ≤ 64 + 6β

3(1− β)
h2(Q?,Rγ̂λ

) +
32

3(1− β)
pen(γ̂λ) +

16k0a(ϑ+ ξ) + 8

3(1− β)
. (4.6.19)

Taking β = 0.75, η ≈ 9947.13(2α + 1/2), we can compute the value of a ≈ 2365.57 such

that k1 = 3β/8 and k0 ≈ 0.251. Therefore, provided C0 ≥ 5.9 × 106, plugging the values

of β, k0, a and ϑ into (4.6.19), we finally conclude.

4.7 Signals for testing Poisson and exponential models

fms-type (Poisson): n = 497, changepoints are located at the positions

l0 =

(
139

497
,
226

497
,
243

497
,
300

497
,
309

497
,
333

497

)
.

The Poisson mean on each segment is 4, 6, 10, 3, 7, 1, 5 respectively, i.e. γ? takes the

value log 4, log 6, log 10, log 3, log 7, log 1, log 5 on each segment. For this signal, we also

test the scenario when outliers present in the observations by randomly modifying five

points in the observations into 30.

mix-type (Poisson): n = 560 and γ? is a piecewise constant function on [0, 1) with

13 changepoints at a sequence of locations

l0 =

(
11

560
,

21

560
,

41

560
,

61

560
,

91

560
,
121

560
,
161

560
,
201

560
,
251

560
,
301

560
,
361

560
,
421

560
,
491

560

)
and on each segment the Poisson mean eγ

?
is given by the value 30, 2, 26, 4, 24, 6, 22, 8,

20, 10, 18, 12, 16, 14 respectively.

teeth-type (exponential): n = 140 and γ? is a piecewise constant function on [0, 1)

with 13 changepoints at a sequence of locations

l0 =

(
11

140
,

21

140
,

31

140
,

41

140
,

51

140
,

61

140
,

71

140
,

81

140
,

91

140
,
101

140
,
111

140
,
121

140
,
131

140

)
and on each segment the value of γ? is given by 0.5, 5, 0.5, 5, 0.5, 5, 0.5, 5, 0.5, 5, 0.5, 5,

0.5, 5 respectively. For this signal, we also test the scenario when outliers present in the

observations by randomly modifying two points in the observations into 20.

stairs-type (exponential): n = 500 and γ? is a piecewise constant function on [0, 1)

with 4 changepoints at a sequence of locations

l0 =

(
101

500
,
201

500
,
301

500
,
401

500

)
and on each segment the value of γ? is given by 24, 22, 1, 2−2, 2−4 respectively.
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