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Motivation

Consider Laplace eqn. with non-linear conductivity law,

V- (o(p)Ve) = 0, (1)
flo,9) =0 )

where f(o, ¢) is a known implicit relation.

¢ = Function(mesh, P1Space)

8¢ = TestFunction(mesh, P1Space)

0 = Function(mesh, QuadratureSpace)

50 = TestFunction(mesh, QuadratureSpace)

F_p = ufl.inner(oc * ufl.grad(p), ufl.grad(dp)) * ufl.dx # Egn. (1)
F_o = ufl.inner(f(o, @), 60) * ufl.dx # Egn. (2)

3 [11]]



I am once again asking
to use Quadrature elements.
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Motivation

Linearised problem:

OF, OF,

k) k') A E
) oo ¢ ¢
oF, 9F, Ao E
3¢ 90 g

Cons:
> global problem size N = N, + N,,
> size of the augmented block N, depends on quadrature rule,
» there is no continuity to g, so has even more DOFs globally,
> you almost certainly won't have a solver which scales linearly wrt. the problem size,

> complicated (non-linear) block structure makes it very challenging to find a good
preconditioner.
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Option 1: Schur condensation

Linearise.
Algebraically eliminate.
Note: Last iterate (¢, ;) satisfies both equilibria.
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Option 2: Non-linear condensation

For a known global state ¢, find consistent local state ¢, s.t. E,(¢,,0,) = 0.
Compute tangent consistent with this algorithmic dependence.
Note: Each iterate (¢,,, 0,,) satisfies local equilibrium.
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Comparison

Schur condensation/global Non-linear condensation
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YOU NEED,TO HOOKINTO

FFCK GENERATED C KERNELS.
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Common interface

H (locally) How to assemble condensed tangent?

(locally) How to assemble condensed residual?

(locally) How to reconstruct local state o, knowing global state ¢,,?
(globally) How to update previous local state?

1s = dolfiny.localsolver.LocalSolver(
function_space=[P1Space, QuadratureSpace],
local_spaces_1id=[1],
J_integrals={...},
F_integrals={...},
local_integrals={...},
local_update=...

)
problem = dolfiny.snesblockproblem.SNESBlockProblem(..., localsolver=1s)

10 [11]]



Common interface

In essence, user wraps local kernel code and has information about all FFCx compiled kernels
provided.

@numba.njit
def J(A, J, F):
# Adventurous user code here ...
# A i1s NumPy array where you assign the result
# J 1s list of lists of KernelData (tangents)
# F 1s list of KernelData (residuals)

Provided information:

collections.namedtuple("KernelData", ("kernel", # Callable kernel fn()
"array", # NumPy array where fn() assembles
w', # DOF values of all Coefficients
e, # Values of Constants
""coords", # Cell geometry
"entity_local_index",
"permutation",
""constants", # Information about Constants
"coefficients", # Information about Coefficients

)

n [11]]



Common interface

H (locally) How to assemble condensed tangent?

@numba.njit
def J(A, J, F):
A[:] = J[0][0].array - J[O][1].array @ np.linalg.solve(J[1][1].array,
J[1][0].array)

Internally provided for snessetJacobian() .



Common interface

(locally) How to assemble condensed residual?

for ”"Schur condensation”:

@numba.njit
def F(A, J, F):
A[:] = F[O0].array - J[0][1].array @ np.linalg.solve(J[1][1].array,
F[1].array)

or "Non-linear condensation”:

@numba.njit
def F(A, J, F):
A[:] = F[O].array

Internally provided for snessetFunction() .
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Common interface

(locally) How to reconstruct local state o,, knowing global state ¢,,?

for "Schur condensation”:

@numba.njit
def solve_sigma(A, J, F):
# Extract increment A
Ap_idx = ..
Ap = F[1]. w[Aw 1dx[0]:Ap_1dx[1]]
# Extract local state o
o_ ldX = ..
o = F[1]. w[c 1dx[0]:o_1dx[1]]

A[:] = 0 - np.linalg.solve(J[O][O].array,
F[O].array - J[O][1].array @ A®)
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Common interface

for “"Non-linear condensation”:

@numba.njit

def solve_sigma(A, J, F):
# Extract local state o
o_idx = ...
o = F[1].w[o_idx[0]:0_1dx[1]]

maxiter = 15
for it in range(maxiter):
F[1].array[:] = 0.0 # Re-evaluate residual
F[1].kernel(F[1].array, F[1].w, F[1].c, F[1].coords,
F[1].entity_local_1index, F[1].permutation)
if np.linalg.norm(F[1].array) < le-12: # Check convergence
break

J[1][1].array[:] = 0.0 # Re-evaluate tangent
J[1][1].kernel(J[1]1[1].array, J[1]1[1].w, J[1][1].c, J[1][1].coords,
J[1][1].entity_local_1index, J[1][1].permutation)

Ao = np.linalg.solve(J[1][1].array, -F[1].array)
o += Ao

J[1][1].wlo_1dx[0]:0o_1dx[1]] = o # Update local state for tangent

A[:] = ¢ # Copy over the final result ""
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"Simple things should be simple, complex things should
be possible.”

Alan Kay



Plasticity

Find displacement , plastic strain increment Ae,, and plastic multiplier A\ s.t.

V.o =0, momentum balance, (3)
- A)Laf 0, flowrule, (4)
min(AA, —f(cr)) =0, equiv.to KKT conditions, (5)

where o = o(u, €,) is stress tensor and f = f(o) is ayield function.



Plasticity

E.g. in 2D, u € P, and 16-point quadrature rule the problem sizes are locally (12, 48, 16),

oF,

ou
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3
J von mises = \/Edev(a) : dev(o) — Oy J rankine = miax 0; =0y (6)

Local solver: 13k DOFs, monolithic: 205k DOFs.
1o [[1]



Other applications

> static condensation/hybridisation,

> custom material laws, stress-strain relation provided as black-box, or with neural network
(which is essentially a black-box),

> custom local solvers/return mappings for constrained optimisation - not limited to Newton
method to solve local equilibrium,

» goodol’ Locatlsolver from legacy FEnICS,
» debugging and printing UFL operators.
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Summary and outlook

Honest column:

> performance of internal Numba wrappers is terrible and has many limitations — needs a
rewrite in C,

» condensation happens within the cell entity — across entities (facet-to-cell) or over patches
is also interesting.
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