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ABSTRACT

Thermoelectricity converts heat energy into electricity
through a simple mechanism, in which a potential difference is
generated due to the temperature difference between the hot and
cold contact electrodes (AT) of coupled thermoelements. There are
many types of thermoelements used in developing thermoelectric
generators. However, metal thermoelements offer cheaper
solutions, easier fabrication processes, and can produce
substantial electricity at smaller A7. The strong correlations of
electrical and thermal conductivities in metal thermoelements
have resulted in lower Seebeck coefficients along with reduced
thermoelectric power-generating performances. Alternatively, a
thermoleg cross-sectional area (A4) optimization approach may
optimize these disruptive correlations and improve their power-
generating effectiveness. A sandwiched planar structure can also
allow more thermopiles to be integrated without affecting the
generator’s size. In this study, thermoelectric devices based on a
flexible copper (Cu)-clad polyimide substrate with simpler
fabrications using Cu, nickel (Ni), and cobalt (Co) metal
thermoelements were explored. Planar and lateral device
structures may assist in generating larger AT and output power
through their longer thermoleg length (/) and larger 4. Thus, for
the first time, Cu thermoleg-based generators were built on planar
and lateral structures, and Co was introduced and implemented in
this study too. This study also investigated the roles of previously
unexplored geometrical structures such as the / and thermoleg
width. Hereby, a sandwiched planar Cu/Co device was optimized
by increasing the thermoleg thickness (f) of Co by 3.86 times the
t of Cu, and this generator showed improvement factors of 23.5
and 40.2 times than the earlier-fabricated non-optimized Cu/Co
and Cu/Ni generators, respectively. Promisingly, the 4 optimized
sandwiched planar and lateral thick film device structures were
found to be very compatible and favorable for metal-based
thermoelectric generators.



ABSTRAK

Termoelektrik menukarkan tenaga haba kepada elektrik
menerusi satu mekanisme yang mudah, di mana perbezaan potensi
dijana disebabkan oleh perbezaan suhu di antara penghubung
elektrod panas dan sejuk (AT) pada termogandingan. Terdapat
banyak jenis bahan termoelektrik yang digunakan di dalam
pembinaan penjana termoelektrik. Namun, bahan termoelektrik
logam menawarkan penyelesaian yang murah, proses fabrikasi
yang mudah, dan boleh menghasilkan elektrik yang ketara pada
AT yang kecil. Korelasi kuat di antara kekonduksian elektrik dan
haba dalam bahan termoelektrik logam menyebabkan pekali
Seebeck menjadi rendah di samping prestasi penjanaan kuasa
termoelektrik yang merosot. Secara alternatifnya, pendekatan
pengoptimuman kawasan keratan rentas bahan termoelektrik (A4)
boleh mengoptimumkan korelasi yang menjejaskan ini dan
meningkatkan keberkesanan penjanaan kuasa termoelektrik.
Struktur satah berlapis juga akan membenarkan lebih banyak
integrasi termogandingan tanpa mempengaruhi saiz penjana.
Dalam kajian ini, peranti termoelektrik berdasarkan substrat
fleksibel kuprum (Cu)-berlapik polyimide dengan fabrikasi
mudah menggunakan bahan termoelektrik logam Cu, nikel (Ni),
dan kobalt (Co) telah diterokai. Struktur peranti satah dan datar
boleh membantu menghasilkan AT dan kuasa pengeluaran yang
besar menerusi panjang bahan termoelektrik (/) yang memanjang
dan A yang luas. Oleh itu, buat pertama kalinya, penjana
berasaskan-bahan termoelektrik Cu dibina di atas struktur satah
dan datar, dan Co turut diperkenalkan dan dilaksanakan dalam
kajian ini. Kajian ini juga menyiasat peranan struktur geometri
yang belum diterokai seperti / dan lebar bahan termoelektrik.
Dengan ini, peranti satah berlapis Cu/Co dioptimumkan dengan
meningkatkan ketebalan bahan termoelektrik (7) Co sebanyak 3.86
kali berbanding ¢ Cu, dan penjana ini menandakan faktor
peningkatan sebanyak 23.5 dan 40.2 kali masing-masing
berbanding penjana Cu/Co dan Cu/Ni yang tidak dioptimumkan
sebelumnya. Secara positifnya, peranti filem tebal berstruktur
satah dan datar berlapis yang dioptimumkan 4 didapati sangat
serasi dan sesuai untuk penjana termoelektrik berasaskan logam.
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CHAPTER 1

INTRODUCTION

1.1 Miniature Power Generators

Miniature power-generating is the process of harvesting
small amount of electricity from external energy sources such as
solar, thermal, wind, vibration, and chemical sources. The main
motivations for small power-generating devices are to add
simplicity and ease in daily life, lower cost, portability, and
respect the nature of ecosystems. Besides, ambient energies and
radiation can be a great solution as they are ecologically friendly
and renewable. Also, in this way the life-times, capabilities, and
reliability of such energy scavenging systems can be upgraded.
Therefore, investigations of small energy harvesting methods are
very much welcomed for easy powering of diminutive wireless
and mobile electronics such as hand phones, cameras, chargers,
watches, and laptops. The invention of alternative miniature
power generators can augment or substitute for the use of
conventional batteries [1]. Such energy harvesters are also applied
in self-powered devices and wireless sensor networks as they can
sustain operation and work independently without requiring an

external power supply [2, 3].



Thermoelectric, thermo-photovoltaic, piezoelectric, and
microbial fuel cells are among the most popular and earliest found
power-generating mechanisms. A historical timeline on the
emergence of these power generators is shown in Figure 1.1.
Miniaturization efforts on the four power generators have drawn
ample of attentions and so their recent performances and trends
are investigated [4-6]. These four types of miniature power
generator are also known for their potential as renewable power
sources that can be applied for powering remote or wireless
sensors [7]. In addition, the four power generators have undergone
a vast evolution in their structures, capabilities, and applications.
Abrupt changes are observed in their sizes from large-scale to
micro- and nano-scales, leading to a better scope of mobile power
harvester. They are now commonly fabricated using

microfabrication approaches.

1839

1880 1931 1956
Aé%xrsr;i:jc- Jacqucs & Bamct Henrv Kolm
Becquerel Pierre Curie Cohen created
ider?tified discovered pioneered thermo-
hotovoltaic piezoelectric microbial photovoltaic
P effect effect fuel cell system
Figure 1.1 Timeline of the development of basic power

generators

Microfabrication is a process of fabricating miniature
devices, structures, sensors or actuators in micrometer dimension.
It is another alternative to conventional complementary metal

oxide semiconductor (CMQOS) fabrication processes that utilizes



ISi wafers mostly, to build its integrated circuit. Microfabrication
offers more sophisticated and modified techniques and has a
flexible usage over variety of substrates such as Si wafer,
polyimide, polymethyl methacrylate, polyethylene terephthalate
(PET), polystyrene, and glass. Microfabrication techniques have
been adapted to fabricate wide ranging of microdevices like
micro-pump [8-10], micro-heater [11, 12], micro-beam [13-16],
acoustic sensor [17-19], wireless sensor [20-22], fluidic or gas
sensor [23-26], micro-actuator [27-29], and micro-power
generator [30-32]. In the following Section 1.2, the study is
converged into thermoelectric power generators, discussing on

their operating principles and research overview.

1.2 Thermoelectric Generators

Thermoelectric generator is among the earliest initiated
energy harvesting methods. It is a very potential small power
generator that can convert wasted thermal energy into useful
electricity. A thermoelectric generator operates when two distinct
thermoelements (or thermoelectric materials) are attached
together by hot and cold contact electrodes. As the heat is supplied
to the hot contact electrodes, the temperature difference between
hot and cold contact electrodes (AT) derived open circuit voltage

(Voc) at the cold contact electrodes. As a whole, this basic two

! In this thesis, chemical elements are written based on the universal annotations
provided in the list of standard scientific notations from the periodic table.



thermoelements coupled configuration is known as thermocouple,
and a series of multiple thermocouples is called a thermopile. The
thermoelements are also named as thermolegs when they are
incorporated into thermocouple or thermopiles. However, this
thermoelectric generator often suffers from low energy conversion
rate due to its inconsistent heat source, inefficient material

performance, and incompetent structural issues.

In a thermoelectric generator, the generated V,. are in
direct relativity with the amount of heat supplied to the device.
Thus, the heat sources applied to the thermoelectric generators
play a huge role in ensuring maximum output power (Pmax) and
high energy conversion. A constant heat source will ensure better
conversion efficiency and the generator may work for extended
hours. Heat sources like diesel engine [33, 34], radioactive isotope
[35], thermo-photovoltaic combustion [36], exhaust pipe [37], gas
turbine [38], wood stove [39], biomass waste [40], and combustor
[41] are very suitable to be adapted into large thermoelectric
power generators due to their high temperatures. However, these
sources are hazardous to the surrounding environment. Heat
sources from daily appliances like central processing unit [42],
table lamp [43], and water heater [44] as well as from natural
resources such as solar radiation [45, 46] and the human body [47,
48] may be applicable for low power generation. Nonetheless, a
heater has always been a preferred choice in most of the
thermoelectric experimental works as it is a constantly available

and reliable heat source, and operates at various temperatures.



Over the past years, many thermoelectric generator
researches are reported on Si wafer substrate [49-57]. However,
the costs for production of these devices are higher because they
are made based on expensive Si semiconductors. Despite the cost
issues, Si wafer substrate also undergoes complex device
fabrication processes. Instead, flexible polymer substrates like
polyimide and PET can be practiced into thermoelectric
generators, as they are low-cost and require less complicated
fabrication processes. Moreover, flexible polymers can be easily

attached on uneven heat source surfaces.

Thermoelectric generators are divided into three types:
bulk, thick, and thin films, depending on their thermoelement
thickness. Technically, bulk refers to a very thick device while a
device having more than 10 um thickness is considered as thick
film, and less than 10 pm is called a thin film device. Even though
the bulk thermoelectric generators offer higher Puqx than the thick
and thin films, the bulk device needs to endure complex
fabrications and requires high budgets. Subjected to low-cost
fabrications, thick and thin film devices are more countable due to
easier thermoelement deposition or growth. They also offer much
greater flexibility in terms of application than the bulk devices.
Thick and thin films concern on low energy consumptions and
provide better mechanical properties than bulk in terms of smaller
grain size, less surface roughness, and high purity [58]. Thick and
thin film structures also eventually increase a crucial

thermoelectric parameter called thermopower or Seebeck



coefficient («) and reduce thermal conductivity (k), which
provides slower heat transfer for a better thermoelectric
conversion [59]. Despite the easier device fabrications and
thermoelement depositions, as in general, the thick film structures

can produce more P than the thin films.

In this research, microfabrication-based thermoelectric
generator 1s focused due to its basic fabrication process, plain
configuration, and easy implementation. Overall, this research is
made to improve its power-generating efficiency. Henceforth, the
problem statements, research gaps, and motivations in the study
of thermoelectric generators are described in the succeeding

Section 1.3.

1.3  Problem Statements, Research Gaps, and Motivations

The material performance in thermoelectric generators is
very closely related to the figure of merit (z) parameter that needs
to be sustained well in order to attain high power generation.
Lately, there are many thermoelements composed to possess high
z as compared to conventional metals or alloys. Nevertheless, the
potential of metals as thermoelements ought to be studied too, as
it possess high electrical conductivity (o) and higher Fermi energy
level (Er) with less band gap energy (E) than any other types of
thermoelements [60, 61], and thus, highly feasible to be adapted

into low heat power-generating applications. Furthermore, metals



can be deposited easily on substrate through electroplating without
much complex setups. Besides, the fabrication cost of
thermoelectric generators that utilize metals is cheaper than the
cost of those using doped semiconductors or any other types of
thermoelements. So far, there are very few studies reported on the
usage of metals till to date [53, 54, 62-80], and the metals
implemented in all these past studies are Sb, Cu, Ag, and Cr as
their positive thermoelement (p), whereas, Bi and Ni as their
negative thermoelement (7). There are many other metals such as
Co, as yet unexplored that have potentials for application in
thermoelectric power generation. Since the a and z of metals are
lower than other types of thermoelements, their power-generating
capabilities can only be enhanced through proper structural
geometrical implementations and device structure manipulations,
as been realized in 50% of the past metal-oriented generator

studies [54, 68, 69, 78, 79].

In a thick or thin film generator, the applications of vertical
device structure often deliver lower AT and Puax due to its shorter
thermoleg length (/) (from fabrication and deposition limitations).
These issues can be alleviated through a planar lateral device
structure. In the planar lateral structure, thermolegs may have
longer / and thicker deposition [which enlarges the thermoleg
cross-sectional area (4)] that can concurrently increase their AT
and Puax [66, 68]. Preceding metal-oriented thermoelectric
generators have been developed on planar and lateral device

structures using Sb/Bi [62, 69, 70], Ag/Ni [74-77], and Ct/Ni [53,



54] thermoelements. Cu is an easily available low-cost
thermoelement with easier and compatible deposition options to
most substrates. It has higher o and z than most other metals
(especially than the frequently used Ag) and can be easily
electroplated for thicker deposition. Since Cu is very commonly
used as the contact electrode material [81], there are very limited
studies reported using Cu as thermoelement. Only Cu/Ni
generator studies have been reported [63-68], in which they are
built on corrugated [63-65] and vertically-configured [66-68]
device structures, and there is no Cu/Ni generator developed on
planar and lateral device structures till to date. This occurred most
probably because planar structure always require larger sizes to
achieve good power performances and attaching such device
structure to the heat source may also be a difficult task. But, with
proper device structure modifications, these issues can be
alleviated. A Cu-clad polyimide substrate can be used to fabricate
the Cu thermolegs-based generators, without any need for Cu

deposition, which may provide easier device fabrication.

On the other hand, very few studies are reported to date on
the geometrical characteristics and design structures of a
thermoelectric generator [82-86]. Moreover, previous studies on
planar and lateral device structures using metal thermoelements
only include studies on the variation effects of substrates [62],
number of thermocouples (m) [69, 70], hot contact electrode
temperature (7y) [69, 70, 74, 75], and thermoleg thickness (7) [54].

Thus, studies on the geometrical effects of / and thermoleg width



(w) on the enhancement of thermoelectric power generation are
lacking. Such geometrical analysis is essential for optimizing Prax,
as internal electrical resistance (Rg), internal thermal resistance
(Rr), and AT are closely associated with / and 4 (as such 4 = w x
f). In the same way, the strong correlation of ¢ and k from the
Wiedemann-Franz law, which limits the performances of metal

thermoelements, can be idealized.

Thermoelectric power generation can be extensively
optimized via structural geometries. One way is to optimize Rg
and Rr (or o and k) through A ratios. This is theoretically because
both Rr and Ry are interrelated with their / and A4, and since the /
is oftentimes similar, only the A4 ratio is included. Such theoretical
optimization is introduced by Nolas ef al. [87], and has only been
implemented by several past studies [88-91] on planar and lateral-
structured thick and thin film thermoelectric generators. These
past studies [88-91] only directly applied the introduced A
optimization formula into developing their thermoelectric devices.
However, the effects of such optimization on power-generating
performances have not been investigated and analyzed till now.
This is the only available geometrical optimization for
thermoelectric generators and such optimization is only favorable
to be performed in planar and lateral structures, due to their wider
length of generator (Ls) and width of generator (Ws). Increasing
m in planar and lateral structures can raise the Rg [69, 70] and Ws.
However, the A4 optimization approach can optimize AT and Rg

and together by implementing a sandwiched planar device



structure, it can help in raising the Vs and Pnax by stacking more
thermopiles (which increases m) without increasing the Lg and We
at all. Hereby, the AT is never disrupted by the increase in m
because the AT is only affected by changes in /, 4, and contact
electrode sizes. Previously, the sandwiched planar structure has
only been implemented by Kim and Lee [92], Kim [93], and
Markowski et al. [94] using chalcogenides and

metal/miscellaneous alloy thermoelements.

The original conversion efficiency (#) formula is shown in
Equation (1.1), wherein T is absolute temperature and 7c is the
cold contact electrode temperature. This # formula only correlates
the z and AT, and seems rather irrelevant and inappropriate for
small-scale generators made of lower z thermoelements.
Therefore, Strasser ef al. [95] introduced a new parameter known
as the thermoelectric efficiency factor (¢) to evaluate the

performances of thermoelectric generators.

AT -1

(e 1+zT+§—; (1L.1)

The ¢ is expressed as a division of the Puax over the Lg,
We, and the squared AT. This parameter displays the optimized
performances of the overall thermoelectric device, not only at its
Puax but also at its AT, Lg, We, m, [, and A. Hence, this parameter
has been accepted and used widely in the study of thermoelectric

generators [6]. Areal output power density (Pp) is another

10



important parameter for measuring the optimized power
performance in conjunction to its Lg, Ws, m, [, and 4. The Pp is
calculated as a division of Py.x over the Lg and We. LeBlanc [96]
stated that the measure Pp is necessary to deliver effective
information on the device size for possible integration into
applications. Therefore, the measure Pp conveys more compact
information on a device than the Py only. However, these Pp and
¢ measures are rarely utilized in most of the previous studies of
thermoelectric generators. Thenceforth, the succeeding Sections
1.4-1.8 elaborate the research objectives, scopes, contributions,

significances, and the outlines of thesis.

1.4  Research Objectives

Although the large-sized bulk thermoelectric generators
can outperform the small-sized thick and thin film generators,
their complex fabrications need higher cost. The highly-acclaimed
planar device structure can be implemented easily on thick and
thin film devices. Besides, the thick film devices may provide
better performances than the thin films. The device fabrications
using flexible substrates are simpler and easier than using
complicated CMOS fabrications on Si wafer substrate. Even
though only few studies are reported till to date on metal-based
thermoelectric  generators, metals are very potential as
thermoelement, low-cost, and own many other beneficial features

as described earlier in Section 1.3. Hereafter, the purpose of the
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research is to design and fabricate planar thick film and small-
sized thermoelectric devices using a plain microfabrication
technology on flexible Cu-clad polyimide substrate and metal
thermoelements, wherein the devices are then characterized using

a simple fabricated micro-heater.

Metal thermoelement is a basic electrical charge
conducting element with lower o and z, and unlike any other types
of thermoelements, it does not undergo material engineering or
modification processes to raise its z. Therefore, the major key to
improve the power-generating performances of using metal-based
thermopiles is just through structural geometrics and device
structure modifications. At the same time, the thermoelectric
power-generating improvements represented in this research are
analyzed using Pp and ¢ measures. Specifically, the research
objectives to be achieved through this metal-oriented

thermoelectric generator study are:

a) To demonstrate the power-generating competences of
planar and lateral device structures of Cu/Ni and Cu/Co

thermopiles.

b) To verify the geometrical effects of / and w on power
generations of planar and lateral device structures of Cu/Ni

and Cu/Co thermopiles.

c) To prove the efficacies of power generations through A

optimization on Cu/Co planar device structure.
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d) To validate the power-generating effectiveness of Cu/Co

sandwiched planar device structure.

1.5  Research Scopes

A huge collection of past studies on fabricated bulk, thick,
and thin film thermoelectric generators is gathered in this study to
analyze their performances over the past years. The Pp and ¢ are
the key performance measures in this study and since most past
studies do not include these two measures in their works, thus only
those works having mentioned these two measures or provided
information such as Puax, Lc, Ws, and AT to allow Pp and ¢ to be
calculated are included in this data collection. Technically, this
collected data of past studies is used thoroughly to support this
conducted research work. Special attention is given into finding
and recording all the past thermoelectric generator research works
that utilizes metal thermoelements (in conjunction to the research
objective). This helps to identify the research gaps and to support
the performance analysis and comparisons for this metal-oriented

thermoelectric generator study.

Mainly, the research is concentrated on developing planar
and lateral-structured thick film thermoelectric devices on flexible
Cu-clad polyimide substrate by utilizing Cu, Ni, and Co metals as
thermoelements. Basic microfabrication techniques are used to

fabricate these devices. In this study, the design structures are
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developed based on the selected geometrical ranges feasible for
fabrications. This study also analyses the influences of structural
geometric and device structure in enhancing the thermoelectric
power generations. Therefore, three prototypes are designated in
this study; the first and second are for investigating on the
influences of thermopile’s geometrical design structures (/ and w),
and the third is to explore the power delivering effectiveness
through A optimization and sandwiched planar device structure.
Simulation works are done on the designated thermopile structures
to estimate their A7 and P before finalizing and choosing the
designs to fabricate. The fabricated devices are then characterized
using micro-heater and compared their Pp and ¢ to the previous
works to evaluate their performances. Furthermore, the maximum
target performances to be achieved in this study are ¢ of 7.55 x
10 pWem2K™ [71-73] (the highest achievement in metal-based
thermoelectric generators till to date) and Pp of 10 pWem™ (to
attain Pmaxof 50 p W) for possible power application of a miniature

wireless remote sensor [97].

1.6 Research Contributions and Novelties

The highlights of research contributions and novelties

from this whole research work are:

a) A huge collection of bulk, thick, and thin film

thermoelectric generators established up to date are
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b)

d)

highlighted, and from here, the focus of research interests,
tremendous breakthroughs, and a novel quantitative
analyses of ¢ achievements fulfilled by fabricated
thermoelectric generators until today are emphasized for

the first time in this study.

Although there are only a few studies reported up to today
upon using metal thermoelements, this research promotes
the capability and potential use of metals in thermoelectric
generation by gathering and analyzing all the past research
works related to sole metallic thermoelectric generators for

the first time in this study.

The potential integration of an unexplored and unexploited
Co metal thermoelement into thermoelectric generation

has been firstly implemented in this research work.

The effectiveness of planar and lateral device structures in
uplifting the power generation of metal thermoelements
through longer / and allowing thicker depositions for larger

AT and Ppax 1s explored in this study.

Preceding studies on Cu/Ni generators are built on
corrugated and vertical device structures only, thus by
using Cu/Ni and Cu/Co thermoelements, this study has
developed the first Cu thermoleg-based planar and lateral-

structured thermoelectric generators.
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g)

h)

1.7

This research also proposes a simple, easier, novel, and out
of cleanroom device microfabrication technique for Cu/Ni
and Cu/Co planar, lateral, and thick film thermoelectric
devices on flexible Cu-clad polyimide substrate without
any need for Cu thermoelement deposition, which are later

tested using an economically fabricated micro-heater.

The past studies on metal-based lateral device structures
till today are focused on the effects of different substrates,
m, Ty, and ¢ only, therefore in this study, the geometrical
effects of / and w on improving power generations are

analyzed through two metrics: Pp and ¢.

The power generations of the developed planar
thermoelectric devices are further improved by A4
optimization and for the very first time, this 4 optimization
is studied and implemented in metal-based thermoelectric

generators.

A sandwiched planar device structure is introduced for the

first time into metal-oriented thermoelectric generators to

further improve their power-generating performances.

Research Significances

Thermoelectric generators is a green energy source with

simple configurations that can convert wasteful heat into useful
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electricity. Predominantly, this research reviews the emerging
trends of thermoelectric generators over the last years.
Accordingly, the growing research trends and evolutions of
research works in thermoelectric generators are analyzed, to
further insight their most research interests and the breakthroughs
achieved till to date. This also includes the highlights of promising
¢ ranges for bulk, thick, and thin film devices. Above all, this
research explores the past metal-oriented thermoelectric generator
studies and their potentials, evolutions, and research gaps so as to
endorse the credibility of metal thermoelements to equally
outperform with other types of thermoelements. Precisely, this
research has focused on the power-generating enhancements of
planar and lateral device structures through structural geometrical
and device structure optimizations. The geometrical effects on the
planar and lateral-structured thermoelectric power generations are
discussed in further detail. Herein, all the aforementioned research
works and methodologies are novel and introduced primarily in
this study. This study has also proven the efficiencies of planar
device structure in uplifting the thermoelectric power-generating
capabilities and metal thermoelements to perform equally
outstanding among other types of thermoelements. Moreover, this
research has realized a simple microfabrication method for
developing thermoelectric generators, and planar and lateral
device structures are found to be very encouraging for metal-

oriented thermoelectric generators.
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1.8 Thesis Outlines

This thesis is divided into six chapters, with each chapter
having significance contributions to this thesis presentation.
Chapter 1 discusses briefly on the miniature power generators,
thermoelectric generators, problem statements, research gaps, and
motivations, objectives of the research, research scopes,
contributions, and significances of the study. Chapter 2 provides
the literatures needed to understand the research that has been
carried out. Here, discussion about thermoelectricity is provided,
including its working principles, power applications studies,
performances, and research trends analyses of thermoelectric
generators. The chapter ends with detail descriptions of past
thermoelectric generators related to metal thermoelements and the
research plans for this study. Chapter 3 begins with details of
research methodology using a flow chart. It also elaborates the
rules of designing, simulations, and microfabrication works
involve in the fabrication of metal-based plain and optimized
lateral-structured thermoelectric devices. Chapter 4 holds the
testing and validation results as well as the performance
comparisons and analysis for the fabricated lateral-structured
generators (first and second prototypes). Similarly, all the testing
results obtained from the optimized lateral-structured generators
(third prototype), and their related performance comparisons and
analysis are gathered in Chapter 5. Finally, Chapter 6 summarizes

the research findings and achievements of the research objectives,
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and then several research limitations and recommendations for

future works are also included in this chapter.
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