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Abstract—Dual-rate dynamic systems consisting of a sensor
with a relatively slow sampling rate and a controller/actuator
with a fast updating rate widely exist in control systems. The
control bandwidth of these dual-rate dynamic systems is severely
restricted by the slow sampling rate of the sensors, resulting in
various issues like sluggish dynamics of the closed-loop systems,
poor robustness performance. A novel alternating predictive
observer (APO) is proposed to significantly enhance the control
bandwidth of a generic dual-rate dynamic systems. Specifically, at
each fast controller/actuator updating period, we will first imple-
ment the prediction step by using the system model to predict the
system output, generating a so-called virtual measurement, when
there is no output measurement during the slow sampling period.
Subsequently, the observation step is carried out by exploiting
this virtual measurement as informative update. An APO-based
output feedback controller with a fast updating rate is developed
and rigorous stability of the closed-loop system is established. The
superiority of the proposed method is demonstrated by applying
it to control a permanent magnet synchronous motor system.

Index Terms—alternating predictive observer; higher control
bandwidth; dual-rate dynamic system; virtual measurement.

I. INTRODUCTION

W ITH the significant demand on application of advanced
instruments and smart sensors in new generation of

sophisticated control systems, the research of dual-rate control
methods which can effectively improve the control perfor-
mance, particularly control bandwidth, has attracted increased
research attentions from both academia [1]–[3] and industrial
sectors [4]–[6]. In these dual-rate systems, the updating rate
of the controller/actuator is generally faster than the sampling
rate of the sensor. The reason is that the actual measurement
is usually generated at a relatively slow rate due to limitations
of sensor hardware, so a fast updating controller/actuator is
required to improve control performance and reduce possible
vibration excitation [7]. The slow sampling rate significantly
reduces the control bandwidth, resulting in significant perfor-
mance degradation such as poor tracking control accuracy and
dynamic disturbance rejection performance [8].

In view of the above background, some significant efforts
have devoted to improve the control performance of dual-
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rate dynamic systems. The most promising mechanism to
address this problem is to exploit state interpolation over
the sampling interval [9], [10]. For discrete-time dual-rate
dynamic systems, the state interpolations can be obtained by
using model iteration based on the measured states at the
sampling instant [11]–[13]. While for continuous-time dual-
rate dynamic systems, the pre-integration approach is usually
exploited to generate continuous state information over the
digital sampling interval such that the missing states over the
sampling interval are recovered and can be utilized for con-
troller design [14]–[16]. These state interpolation approaches
work well in the case of full state measurements [17], [18].
However, when it comes to output-feedback control problems
where a state observer is required, the updating rate of the
state observer is consistence with the sensor measurement
rate, which significantly restricts the control bandwidth [19]–
[21]. We attempt to develop a new alternating prediction and
observation mechanism that renders the updating rate of the
observer as fast as the controller/actuator updating rate.

A novel alternating predictive observer (APO) will be
proposed as a dynamic prediction method for state estimate
and prediction over the sampling interval. At each fast con-
troller/actuator updating instant, when there is no output mea-
surement throughout the slow sampling period, we will first
implement the prediction step by using the system dynamic
model to predict the virtual system output, generating a so-
called virtual measurement. Subsequently, the observation
step is carried out by exploiting this virtual measurement as
the informative update of the observer. These prediction and
observation steps alternate at each fast actuation period. At
each slow sampling instant, the real sensor measurement is
used to correct the predicted and observed states. An APO-
based output feedback controller with a fast updating rate
is further developed. The closed-loop system with this APO
works like one that has a sensor with a sampling rate as
fast as the actuation rate. Consequently, the bandwidth of
the system is substantially enhanced by APO, which has the
ability to predict the dynamics between the sampling interval.
Rigorous stability of the closed-loop system is established
and it has been shown that under some mild conditions, the
state of the dual-rate system can converge asymptotically to a
bounded region. Finally, the feasibility of the proposed method
is validated by conducting simulation studies on a position
control example of a permanent magnet synchronous motor.

II. PROBLEM FORMULATION

Let N+ stands for the set of positive integers and R denotes
the set of real numbers. Given a real matrix A ∈ Rn×m, AT
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denotes the transpose of A. Given a real symmetric matrix
P = PT ∈ Rn×n, λmax(P ) and λmin(P ) represent the
maximum and minimum eigenvalues of matrix P , respectively.

We consider a class of continuous linear time-invariant
dynamic systems as follows

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (1)

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny stand for the
system state, the control input and the controlled/measurement
output, respectively. A, B, and C are system matrices with
compatible dimensions. Define the fast updating period of the
controller as T . The sampling rate of the sensor is slower
than the updating rate of the controller, and the sampling
period is supposed to be MT with M > 1 and M ∈ N+.
We define the control period and sampling period as Tc := T
and Ts := MTc, respectively. The output measurement y(t)
is collected by the sensor with a slow sampling period Ts,
which is depicted by y(t) = y(tks), ∀t ∈ [tks , tks+1) and
tks = ksTs (ks = 0, 1, 2, · · · ) is the slow-rate sampling instan-
t. The connection between the sampled-date measurement y(t)
and control input u(t) is established. Suppose that the control
input remains unchanged by using a zero-order holder (ZOH).
The sampled-date control input in the slow sampling period
t ∈ [tks , tks+1) is depicted by u(t) = u(tk), ∀t ∈ [tk, tk+1)
and tk = kTc (k = ksM,ksM + 1, · · · , ksM + M − 1)
is the fast-rate updating instant of the controller. The above
description shows that the controller updates at intervals
Tc := T and the sensor samples at intervals Ts := MTc.

The research objective of this paper is to develop a new
dual-rate dynamic controller which renders the observer works
with the same updating rate as the fast updating controller even
in the presence of a slow output measurement rate. Due to
the effectiveness in recovering the states, the proposed control
method will substantially improve the control bandwidth.

III. CONTROLLER DESIGN

We first construct a sampled-date state observer for state
reconstruction of system (1), which is given by

ζ̇ ′(t) = Aζ ′(t) +Bu(tk) + L(y(tk)− Cζ ′(t)) (2)

where ζ ′(t) is the estimate of x(t) and L ∈ Rnx×ny is the
observer gain.

It should be highlighted that the inputs of the observer
(2), namely u(tk) and y(tk), provide informative updates.
However, these two inputs exhibit a considerable rate gap
in the dual-rate scenario. To be specific, u(tk) is updated in
each instant tk = kT , e.g., a time sequence of {0, T, 2T, · · · },
while y(tk) only provides update at the slow sampling instant
in the sense that we can only access the measurement at
time instant tk = ksTs = ksMT , e.g., a time sequence of
{0,MT, 2MT, · · · }. To solve this problem, we propose a new
manner to add multiple virtual sampling points with period T
during the slow sampling period Ts = MT . Based on the
above principles, a new sampled-date APO is designed as

ζ̇(t) = Âζ(t) +Bu(tk) + Lȳ(tk), ∀t ∈ [tk, tk+1), (3)

where ζ(t) is the estimate of x(t) and L ∈ Rnx×ny is the
observer gain, ȳ(tk) is a mixed actual/virtual measurement and

Â = A−LC. The mixed actual/virtual measurement ȳ(tk) in
(3) is designed as ∀t ∈ [tk, tk+1)

ȳ(tk) =

{
y(tk), k = ksM,
yp(tk), k = ksM + 1, · · · , ksM +M − 1.

(4)

where y(tk) and yp(tk) stand for actual measurement and
virtual measurement, respectively. The actual output y(tk)
in the sampling instant k = ksM is obtained by the real
sensor measurement. An important concept of virtual output
measurement is newly defined in this paper to facilitate the
APO design. To be specific, the virtual output measurement
yp(tk) in non-sampling instant, e.g., k ̸= ksM of the sensor
is inferred and obtained by using system dynamic model,
the control input and the estimated state in the last fast-rate
updating instant tk−1. We use the integrations of (1) to obtain

x(tk) = Āx(tk−1) + B̄u(tk−1), y(tk) = Cx(tk) (5)

where Ā = eAT, B̄ =
∫ T

0
eAτ dτB. From (5), the output

measurement prediction yp(tk) is obtained and given by

ζp(tk) = Āζ(tk−1) + B̄u(tk−1), yp(tk) = Cζp(tk) (6)

It can be seen from (3) and (4) that at the actual sampling
instant, APO uses the actual measurement y(tk) of sensor,
which can effectively improve the observation effect and make
the observation effect close to the actual measurement to
achieve the correction effect. Then the continuous-time APO
(3) with a sampler provides the same state estimate in sampling
instant tk as the following discrete-time observer

ζ(tk+1) = Fζ(tk) +Gu(tk) +Hȳ(tk) (7)

where F = eÂT , G =
∫ T

0
eÂτdτB and H =

∫ T

0
eÂτdτL.

Since the discrete-time APO (7) and the sampled-data APO
(3) will produce exactly the same estimate ζ(tk), we will use
the discrete-time APO (7) for the design of the output feedback
controller and practical implementation, while adopting the
sampled-data APO (3) for stability analysis to restore a more
realistic sample-date system. Consequently, the fast updating
output feedback control law is constructed as

u(tk) = Kζ(tk), ∀t ∈ [tk, tk+1) (8)

where K ∈ Rnu×nx is the feedback control gain.
To show the essential differences between the proposed

APOBC approach and the existing paradigm of interpolation-
based dual-rate control approaches, a schematic diagram show-
ing the signal flow and updating rate of observer, predictor and
sensor measurement is given in Fig. 1. As clearly shown in
Fig. 1, the updating period of the state observer is MT for
the traditional approach, while it is merely T for the proposed
APOBC approach. This indicates that the APOBC approach
can significantly enhance the sampling efficiency in a soft
manner, and consequently exhibits great potential to enhance
the control bandwidth of the dual-rate systems.

IV. STABILITY ANALYSIS

The dynamics of the dual-rate closed-loop dynamic systems
consisting of (1) are formulated in this subsection. It should
be pointed out that, according to (4), we divide the analysis
into two cases.
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Fig. 1. Schematic diagram of signal flows, updating rates and logic of the observation, the prediction and the sensor measurement of the DRC-PMI (up)
and DRC-APO (down) approaches.

Case 1: t ∈ [tk, tk+1)(k = ksM +1, ksM +2, . . . , ksM +
M−1) . Defining the state estimation error of APO as ξ(t) =
x(t) − ζ(t) and substituting the control law (8) into (1) and
(3) leads to the following closed-loop system[

ẋ(t)

ξ̇(t)

]
=

[
A 0
0 A

] [
x(t)
ξ(t)

]
+

[
B
0

]
Kζ(tk)

−
[

0
L

]
(ȳ(tk)− Cζ(t)) (9)

which can be further rewritten as[
ẋ(t)

ξ̇(t)

]
=

[
A+BK −BK

0 Â

] [
x(t)
ξ(t)

]
+

[
B
0

]
K(ζ(tk)− ζ(t))−

[
0
L

]
(y(tk)

− y(t))−
[

0
L

]
(yp(tk)− y(tk)) (10)

Case 2: t ∈ [tk, tk+1)(k = ksM). Similar to the deviation
process in Case 1, the dual-rate closed-loop dynamic system
in Case 2 is the same as (10) without yp(tk) − y(tk). Con-
sequently, Case 2 can be considered as a special scenario of
Case 1 when the prediction error yp(tk) − y(tk) is zero and
the system is less restricted under Case 2.

To facilitate the establishment of stability, denote the system

matrix as Ã =

[
A+BK −BK

0 Â

]
.

Since there exists matrices L and K such that Â = A−LC
and A + BK are both Hurwitz stable matrices respectively,
the system matrix Ã is also a Hurwitz matrix. Consequently,
there exists a symmetric, positive definite matrix P = PT > 0
such that ÃTP +PÃ = −I . We define a candidate Lyapunov
function as V (χ) = χTPχ with χ(t) = [x(t), ξ(t)]T . The
derivative of V (χ(t)) along system (10) is

V̇ (χ(t)) =− ∥χ(t)∥2 + 2χT (t)P

[
B
0

]
K(ζ(tk)− ζ(t))

− 2χT (t)P

[
0
L

]
(y(tk)− y(t))

− 2χT (t)P

[
0
L

]
(yp(tk)− y(tk)) (11)

The last three terms in (11) are estimated subsequently for
further establishment. To begin with, keeping ζ(tk) = x(tk)−
ξ(tk) in mind, one can obtained from the dynamic system (1)
that ∀t ∈ [tk, tk+1) and ∀τ ∈ [tk, t]

|ẏ(τ)| ≤
∥CA∥

√
V (χ(τ)) + 2∥CBK∥

√
V (χ(tk))√

λmin(P )
(12)

It can be further derived from (12) that

|y(tk)− y(t)| ≤
∫ t

tk

|Cẋ(τ)|dτ ≤ α1Vm(t, tk) (13)

where Vm(t, tk) =
√
Vmax(t)(t − tk), α1 = (∥CA∥ +

2∥CBK∥)/
√
λmin(P ) and Vmax(t) = maxτ∈[tk,t] V (χ(τ)).

Next we will proceed to estimate the term K(ζ(tk)− ζ(t)).
Note that |K(ζ(tk) − ζ(t))| ≤

∫ t

tk
|Kζ̇(τ)|dτ . Similar with

(12) and (13) and one has that from (3) that ∀τ ∈ [tk, t]

|K(ζ(tk)− ζ(t))| ≤α2Vm(t, tk) + ∥KL∥|ep(tk)| (14)

where α2 = (2∥KÂ∥+2∥KBK∥+∥KLC∥)/
√
λmin(P ) and

ep(tk) = yp(tk)− y(tk).
From (3), (7) and (6), we can also write a continuous form

of virtual output yp(tk) which is ẏp(t) = CAζ(t)+CBu(tk).
Noticing that ẏ(t)− ẏp(t) = CAξ(t), we can get

|yp(tk)− y(tk)| ≤ α3Vm(t, tk) (15)

where α3 = ∥CA∥/
√

λmin(P ).
Substituting (13), (14) and (15) into (11), one has that

V̇ (χ(t)) ≤− ∥χ(t)∥2 + 2α2∥χ(t)∥∥PB∥Vm(t, tk)

+ 2α1∥χ(t)∥∥PL∥Vm(t, tk)

+ 2α3∥χ(t)∥∥PB∥∥KL∥Vm(t, tk)

+ 2α3∥χ(t)∥∥PL∥Vm(t, tk) (16)

Noting that ∥B∥ = c1, ∥P∥ = λmax(P ) and ∥χ(t)∥ ≤√
V (χ(t))/λmin(P ), (16) can be rewritten as

V̇ (χ(t)) ≤ −∥χ(t)∥2 + α4

√
V (χ(t))Vm(t, tk) (17)

where α4 = 2(α2c1 + ∥L∥α1 + c1α3∥KL∥ +
α3∥L∥)λmax(P )/

√
λmin(P ). Suppose that the parameters
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satisfy the following condition

α4λmax(P )T < 1 (18)

In what follows, we will use (17) together with the parameter
conditions (18) to prove the following

max
∀τ∈[tk,tk+1]

V (χ(τ)) = V (χ(tk)) (19)

Suppose that (19) does not hold, which indicates that there
exists a time instant t1 ∈ [tk, tk+1] such that V (χ(t1)) >
V (χ(tk)). With (18) in mind, we can obtain from (17) that
for χ(tk) ̸= 0, V̇ (χ(tk)) < 0, which implies V (χ(tk))
will decrease in a short time period starting from tk. Hence,
there exists a time instant t2 ∈ [tk, t1] such that: (i)
V (χ(t2)) = V (χ(tk)), (ii) V̇ (χ(t2)) > 0, and (iii) V (χ(t)) ≤
V (χ(tk)), ∀t ∈ [tk, t2]. Based on the above three points, we
can get from (17)

V̇ (χ(t2)) ≤− (1− α4λmax(P )T )∥χ(t2)∥2 < 0 (20)

which contradicts to the assumption V̇ (χ(t2)) > 0. Thus, we
can conclude that V (χ(t)) is decreasing monotonically during
t ∈ [tk, tk+1) and (19) is true. Then it follows from (17) that

V̇ (χ(t)) ≤ − V (χ(t))

λmax(P )
+ α4

√
V (χ(t))

√
V (χ(tk))T (21)

Let κ(t) =
√
V (χ(t))/V (χ(tk)) and we can get κ̇(t) ≤

−κ(t)/(2λmax(P )) + (Tα4)/2. Noticing that κ(tk) = 1, one
has that κ(tk+1) ≤ φ where

φ = e−
T

2λmax(P ) + (1− e−
T

2λmax(P ) )Tα4λmax(P ) (22)

which implies V (χ(tk+1)) ≤ φ2V (χ(tk)). From (18), one has
that φ < 1, which implies that V (χ(tk)) converges to zero as
k tends to infinity and system (1) is globally stabilized by the
proposed APOBC law (8).

V. APPLICATION OF A AC SERVO SYSTEM

The position control-oriented mathematical model of a
permanent magnet synchronous motor (PMSM) system is
described as follows

diq
dt

=− R

Lq
iq −

pΨf

Lq
ω +

1

Lq
uq

dω
dt

=
KT

J
iq −

Bω

J
ω,

dθ
dt

= ω (23)

where iq is q axis currents, ω is electrical angular velocity,
θ is electrical angular position. The electrical and mechanical
parameters R = 0.54 Ω is stator resistance, Ψf = 0.61 Wb is
permanent magnet flux, Lq = 0.0096 H represent q axis induc-
tors, p = 4 is number of pole pairs, Bω = 0.0001 Nm/rad s−1

is the viscous friction coefficient, J = 0.016 kgm2 is rota-
tional inertia, and KT = 3.66 Nm/A is the torque constant,
respectively.

Define the state vector as x(t) = [θ(t), ω(t), ω̇(t)]T , and
the control input as u(t) = uq(t). The PMSM model (23) is
rewritten as the same as (1) and

A =

 0 1 0
0 0 1

0 −RBω+KT pΨf

JLq
− R

Lq
− Bω

J

 ,

B =
[
0 0 KT

JLq

]T
, and C =

[
1 0 0

]
.

Suppose that the reference position of the motor system
is given by yd(t) = sin(σt) and σ is a real number.
A slightly modified tracking controller based on the pro-
posed APOBC approach is designed as u(t) = K ˆ̃x(t) +

ȳd(t), ˆ̃x(t) =
[
θ̂(t)− yd(t) ω̂(t)− ẏd(t) ˙̂ω(t)− ÿd(t)

]T
and

ȳd(t) = (
...
y d(t)+

RBω+KT pΨf

JLq
ẏd(t)+

RJ+BωLq

LqJ
ÿd(t))/(

KT

JLq
).

To highlight the benefit of the proposed dual-rate control
with APO (DRC-APO), quantitative comparisons with two
existing popular control approaches (i.e., single-rate control
(SRC) and pure model interpolation (DRC-PMI)) for dual-
rate dynamic systems, where SRC represents the case when
both the observer and controller update in a period of MT ,
while DRC-PMI indicates that the observer is updated with
a period of MT while the controller is updating with a faster
period of T by exploiting model-based pure state interpolation.
Different from these two existing control approaches, both the
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Fig. 2. The comparison of the two methods when the reference position
output yd = sin(0.5t) and e(t) = θ(t)− yd(t), θe(t) = θ(t)− θ̂(t).

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

2

DRC-PMI

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

2

DRC-APO
Fig. 3. The comparison of the two methods when the reference position
output yd = sin(1.5t).
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TABLE I
COMPARISON OF MAXIMUM TRACKING ERROR RATIO

Reference SRC DRC-PMI DRC-APO
sin(t/2) - 11.38% 1.02%
sin(t) - 13.89% 2.93%
sin(3t/2) - 18.21% 5.42%
sin(2t) - 24.73% 9.91%
sin(5t/2) - 33.85% 16.73%
sin(3t) - 42.03% 25.92%

controller and observer update with a fast updating period of
T for the proposed DRC-APO. The output measurement is
only available during actual slow sampling instant t = ksMT .
The initial system value is x(t) = [−0.5, 1,−1]T and the
parameters of above three control methods are selected as
T = Tc = 0.2s, M = 5, Ts = 1s, K = [−20 − 0.1 − 0.01]
and L = [0.45 0.9 0.9]T , respectively.

To demonstrate the improvement of dynamic control per-
formance of the proposed APOBC approach, two simula-
tion scenarios with position references yd = sin(0.5t) and
yd = sin(1.5t) are selected, where the state observation curve,
output tracking curve and error curve are shown in Figs. 2
and 3. Because the system under SRC is unstable, it is not
plotted in figures. As clearly shown by the simulation results,
compared with SRC and DRC-PMI, DRC-APO delivers a
much higher state estimation accuracy as well as much better
transient and static position reference tracking performances.

To further demonstrate the claimed benefits of the proposed
APOBC approach, a group of simulations with different har-
monic frequencies of the position references ranging from 0.5
rad/s to 3 rad/s, have been carried out for position tracking
performance comparisons among the three controllers. For
the sake of illustration, we set the maximum tracking error
ratio which is defined as the ratio of the maximum tracking
error to the amplitude of the reference position output. Then
the maximum tracking errors ratio are shown in Table. 1
for comparisons among SRC, DRC-PMI and DRC-APO. To
conclude, the proposed APOBC approach has the advantages
of simple implementation, better dynamic and static tracking
performance, and higher control bandwidth.

VI. CONCLUSION

In this paper, a new alternating predictive observer (APO)
based control (APOBC) approach has been proposed to signifi-
cantly improve the control performance of a class of dual-rate
dynamic systems. A promising feature within the proposed
APOBC method is that updating rate of the observer can be
set as fast as the controller/actuator updating rate even the sam-
pling rate of the sensor is relatively slow. To be specific, the
APOBC updates the output information of the state observer
by exploiting several virtual sampling points during the slow
sampling period when there is no actual sensor measurement.
The asymptotic stability of the resultant control system under
APOBC has been established under some standard conditions
by using Lyapunov stability theory. Finally, simulation studies
on a position tracking control system has been conducted,
which show that the proposed APOBC approach can achieve
much better dynamic and static tracking control performance
as well as much higher control bandwidth. This paper is a basic
version. APO is only a preliminary version at present, and the

proposed APO will be validated against the background of
more complex and practical systems in the future.
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