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The need for flexibility in forest harvesting services – a case study on contractors’ 
workflow variations
Malin Johansson , Emanuel Erlandsson, Thomas Kronholm, and Ola Lindroos

Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden

ABSTRACT
In many parts of the world, contractors account for the main share of harvesting work. Harvesting is 
characterized by innate complexity and volatility, and this can affect contractors’ workflow and ultimately 
their profitability. Thus, there is certainly a need for flexibility in harvesting service provision and 
procedures, but our current knowledge about contractors’ workflow variations are limited. This study 
investigates workflow variations in harvesting services by comparing monthly variations between con-
tractors’ workload in terms of harvested volumes and the time spent on operations. The data originates 
from 77 machines belonging to contractors and their harvesting of 6.6 million m3 of roundwood in 
Sweden during a two-year period. The results indicate differences between contractors’ workflow varia-
tions which can be attributed to the number of machines, machine sizes, and the workload in harvested 
volume and hours. These findings are relevant for guiding both the customer and contractor in this 
business relationship, and they could also serve as a basis for further research on the need for flexibility to 
effectively increase and decrease volume production in harvesting services.
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Introduction

Like many other countries (see, e.g., the work of Drolet and 
LeBel 2010; Mac Donagh et al. 2017; Jylhä et al. 2020), the main 
share of harvesting work in Sweden is done by independent 
contractors hired by forest companies or forest owner associa-
tions to cut and transport the trees from forest to roadside 
(Ager 2014; Eriksson 2016; Erlandsson 2016). In Sweden, the 
main part of harvesting work was outsourced by forest com-
panies during the 1980s and 1990s, aiming for increased capa-
city flexibility and decreased fixed capital in machinery for the 
service-buying companies (Lidén 1995; Ager 2014). Moreover, 
competitive forces among the service-providing contractors 
were considered to boost the development in harvesting opera-
tions. Nowadays, the competitive market forces in harvesting 
services are weak (Eriksson 2016). There are only a few, albeit 
large, customers of harvesting services on the market 
(Kronholm et al. 2019). Typically, contractors rely heavily on 
a business relationship with a single customer (Kronholm et al.  
2021), which has immense influence on the contractor’s busi-
ness model (Benjaminsson et al. 2019).

Contractors providing harvesting operation services play an 
important role in handling the volatility and complexity of 
wood supply. Their work affects not only the cost and avail-
ability of raw material but also the environmental and social 
value of forests (Ollikainen 2014). Not surprisingly, customers 
of harvesting service providers place high demands on their 
performance (Eriksson et al. 2015; Erlandsson et al. 2017). 
Contractors’ flexibility is highly appreciated in the harvesting 
service but is experienced by contractors to have negative 
effects on their own economic viability (Johansson et al.  
2021). Flexibility in harvesting operation can mean different 

things (see, e.g., the work of Gautam et al. 2013; Erlandsson 
et al. 2017). In this study, contractors’ flexibility is viewed 
according to the Johansson et al. (2021) description as a value 
attribute in harvesting service, meaning that the contractor 
adapts to variations and changes according to customer 
needs. That can, for instance, be customer needs to change 
the contractor’s cutting plan, immediate adjustment of wood 
assortments and shortening or lengthening of time for harvest-
ing. These needs can result in contractors’ machines being 
utilized in uneven and unexpected levels during the year. Due 
to high investment costs, a consistent utilization of the 
machines is important for the contractors’ profitability and 
their ability to provide competitive harvesting services to 
their customers (Mäkinen 1997; Erlandsson 2016; Erlandsson 
and Fjeld 2017).

How wood supply is managed by the customer affects the 
contractors. It is possible to collect detailed information from 
the machines about the trees, the machine work, and produc-
tivity during harvesting. Such information can be used to 
anticipate the wood flow and ensure that the demanded 
volumes are delivered on time to the industry despite the 
complexity of the wood supply chain (Eriksson and Lindroos  
2014; Lindroos et al. 2015; Noordermeer et al. 2021). 
Delivering data to the customer that is produced by the 
machines during operations is normally a part of the contrac-
tors’ harvesting services. However, some of this data is 
undoubtedly sensitive in that it relates to core business activ-
ities, and thus there are legitimate concerns about business 
partners’ right to access it; for instance, work time data from 
machines could be counted as personal data. Legislation and 
agreements between the parties are some examples of measures 
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that regulate the access, right and usage of data. Issues about 
data protection and ownership of data processed and produced 
by harvesting machines currently lack clarity (Regulation EU  
2016/679; Metsäteho Oy 2017; Kemmerer and Labelle 2020).

Aiming to keep the machines busy, but still with the ability 
to adjust the wood flow requires that the machines are used in 
working conditions that meet the desired output of wood 
quantity. Workflow can be managed in the customer’s selec-
tion of stands for harvesting in the cutting plan by purposely 
using the differences in productivity when working in different 
conditions. For contractors to accept this type of management, 
the pricing of the work needs to be adjusted for the variations 
in work conditions. Payment per work time meets this require-
ment but might in many cases not be preferred by the custo-
mer. Payment per produced unit, on the other hand, is 
considered to promote work efficiency. For this pricing 
model to adequately compensate for work condition differ-
ences, there is a need to adequately predict the productivity 
of harvesting operations under various work conditions. 
Moreover, such business models also enable the matching of 
work conditions to desired wood quantities by selecting har-
vesting stands based on the predicted time it will take for the 
contractor to harvest the standing volume. With specialized 
machines, different conditions within thinning or final felling, 
respectively, can be chosen to manage the wood flow. 
Multipurpose machines can be used in both thinning and 
final felling. This gives opportunities to decrease relocation 
distances, as well as, rapidly increase or decrease delivered 
volume by changing between thinning and final felling 
(Andersson and Eliasson 2004; Erlandsson 2013).

Using productivity predictions to anticipate the wood sup-
ply requires accurate data about the forest to be harvested, the 
machines that will be used, and accurate productivity models. 
Data acquisition and methods to produce models are con-
stantly being refined (Eriksson and Lindroos 2014; Liski et al.  
2020). Even though the increased data quantities and improved 
qualities provide more reliable predictions, the outcome of 
a given operation may still deviate due to, for instance, large 
differences between machine operators (Purfürst and Erler  
2011; Häggström and Lindroos 2016; Manner et al. 2016). 
The information about the forest that will be harvested can 
be insufficient (Gustafsson 2017) and the ability to handle 
variations in wood demand by adjusting the work conditions 
is also limited to the available harvestable stands during a given 
period (Guatam et al. 2013). Therefore, variations to the 
planned needs for harvesting services can be expected due to 
many different sources of uncertainties.

Customers can manage their varying need for harvesting 
services by hiring some of the contractors on short-term con-
tracts or through spot purchases, but this increases the risk of 
lacking harvesting capacity when it is needed the most. 
Therefore, when there is a perceived lack of contractors on 
the market, it can be beneficial to secure the main, or even the 
full, share of the estimated annual capacity need on long-term 
contracts and then restructure the fleet of contractors to be 
tolerant to wood demand variations (Erlandsson 2016).

In general, profitability in the harvesting service sector is low, 
although it varies between different contractor groups (Kronholm 
et al. 2019, 2021). A study in Finland found that larger companies 

were more profitable in providing harvesting services. Profitability 
was attributed to their capacity to deliver large amounts of 
volume, versatile services, negotiation power and cost-effective 
operations (Jylhä et al. 2020). In comparison, contractors in 
Sweden are smaller (Häggström et al. 2013) and have, in general, 
weak negotiation power against their customers (Eriksson 2016; 
Kronholm et al. 2019). The service-buying companies also have 
leverage to affect the contractors’ business models by influencing 
resource investments and their service delivery (Benjaminsson 
et al. 2019). Therefore, if there is a need for contractors’ flexibility, 
then the customers should have an interest to enable it and at the 
same time promote contractors’ profitability. Business manage-
ment skills have also been cited as a reason behind contractors’ 
profitability (Ollonqvist 2006; Jylhä et al. 2020), as well as good 
performance in harvesting services (Drolet and LeBel 2010). Thus, 
the need for flexibility in harvesting services is also a concern for 
the contractors themselves to handle. Success in this endeavor will 
lead to profitability and to the provision of competitive harvesting 
services to their customers.

How much flexibility different contractors actually need to 
manage has so far been barely investigated. Therefore, this 
study investigated contractors’ workflow variation and identi-
fied differences between contractors. Specifically, this study 
measures the level of variation in contractors’ workload 
between months in terms of wood volumes handled and time 
spent on the operation, and compared contractors’ level of 
variation depending on their total workload, number of 
machines, and the type and size of the machines.

Materials and methods

This study was based on data from a forest company operating 
in central Sweden, with a large part of its harvesting work 
outsourced to contractors.

Data collection

Data on contractors’ harvesting work during the calendar years 
of 2018 and 2019 were collected from the forest company’s 
records stored in its IT system. To derive machines’ monthly 
variation in harvesting volume, data about reported volumes 
were extracted per machine, stand, and date. The data was 
reported per day but aggregated per month in the data extrac-
tion. Moreover, information about type of operation, estimated 
productivity, reported time and compensation for other har-
vesting work, and hourly compensation rates were extracted to 
enable the derivation of machines’ monthly variation in terms 
of work time. The information in the dataset also included 
machine size and type, and to what contractor the machine 
belonged (see Table 1). All data on log volumes were reported 
in solid cubic meters under bark (m3).

The volumes were either automatically recorded from the 
machines or manually entered by the machine operator. In 
some cases, the reported volume was negative for a given 
stand in a month, which indicated a correction of previously 
reported volumes. All negative volumes were therefore trans-
ferred to the same machine and stand in the previous month, 
meaning that the reported volume for the machine and stand 
was reduced by the corresponding volume.
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Estimated productivity was recorded for normal machine 
work in final felling and thinning and was used by the 
forest company to reimburse the contractors for the har-
vesting work. The productivity rate was defined as volume 
of logs produced per productive machine hour including 
downtime of a maximum 15 minutes per occasion (m3 

/PMh15). The estimated productivity rates used in the ana-
lysis were determined by the forest company as a mean 
value per stand and based on information about productiv-
ity-affecting factors, for instance mean stem size, based on 
data available after harvesting. Multiple productivity rate 
registrations for the same machine and stand occurred in 
578 out of 40,546 cases. All duplicates were reduced by 
keeping only the latest updated value. Hours of normal 
work was calculated for each machine, stand and month 
by dividing the reported volume by the estimated produc-
tivity rate for the corresponding machine and stand.

The dataset also contained information defined as “other 
harvesting work,” mainly about payments related to the 
machine-specific work of such a character that was not 
recorded or paid for as normal harvesting work in final 
felling or thinning. Such other harvesting work could be 
e.g. different actions for nature, cultural and social consid-
erations, as well as salvage loggings after windstorms. This 
data was manually registered by the contractor either as 
a monetary sum or in number of work hours, and accepted 
by the production supervisor. Negative values in the mone-
tary sum and number of hours were controlled with respect 
to associated notes. Most of the notes indicated repayments 
or resets for previous time reports. In such cases, the values 
for the stand and machine in question were reduced with 
the corresponding value. Normally, the time reporting for 
other harvesting work was done in connection with the 
summary for the month’s invoicing, which was normally 
done on one of the first five workdays of the following 
month. Therefore, all time for other harvesting work and 
extra compensation reported on one of the first five work-
days of a month were transferred to the previous month to 
represent the month in which the work had actually been 
carried out.

For cases in which contractors reported other harvesting 
work as a monetary sum, the corresponding work times were 
derived by dividing the sum by the hourly compensation rate 

unique for the specific machine, month and type of operation. 
Hours of other harvesting work was then derived for each 
machine on each stand and month. For the analysis, the 
reported volume and derived hours were aggregated and 
handled on a monthly basis.

The dataset also included information about machine sizes, 
classified by the service-buying forest company based on 
machine weight for harvesters and load capacity for forwarders. 
The machine weight for small, medium and large harvesters was 
<12 tonnes, 12–18.9 tonnes and >18.9 tonnes, respectively. The 
load capacity for small, medium and large forwarders was <12 
tonnes, 12–16 tonnes and >16 tonnes, respectively.

Data reduction

The extracted data were, of course, initially entered into the 
company’s systems for operational purposes and not for the 
purpose of this study. It was also a mix of data being manually 
entered into the system by different persons or automatically 
recorded from the machines. Thus, the occurrence of data errors 
was considerable, and this flaw had to be handled in order to get 
as reliable a reconstruction of the volume and time workflow as 
possible. To be able to investigate the workflow at machine level, 
it was important that the included machines had produced 
reliable data during the studied period. Therefore, the original 
data was refined by removing machines that did not meet the 
criteria of the three steps below. The aim being to minimize the 
effect of poor data quality on the results (Table 1).

Step 1: study time coverage
This step was to ensure that the included machines had oper-
ated for the main part of the studied period. Only machines for 
which volume had been reported for at least 22 of the studied 
24 months were included in the analysis. Two months absence 
from operations was accepted due to the possibility that many 
machines that continuously operated for the customer could 
still be having long periods of inactivity. For instance, the risk 
of forest fires was exceptionally high during summer 2018, and 
machine operation in the forest was therefore not allowed at 
many locations. It was also taken into account that some 
contractors and their operators may have four continuous 
weeks of vacation per year, without hiring any substitute 
operators. Step 1 resulted in more than half of the machines, 
just about one-fifth of the total volume and one-fourth of the 
total time being removed from the dataset.

Table 1. Data quantities before and after data reduction.

Variable
Before 

reduction
After 

reduction Description

Types of 
operations (n)

3 3 Final felling, Thinning, Other harvesting work.

Machine type (n) 2 2 Harvester, Forwarder
Machine size (n) 3 2 Small, Medium, Large
Months (n) 24 24 January 2018–December 2019
Forest stands (n) 9,700 4,300 Number of different stand identification numbers (rounded to hundreds).
Machines (n) 408 77 Number of different machine identification numbers.
Contractors (n) 130 39 Number of different contractors.
Volume 

(million m3)
17.5 6.6 Cubic meters of solid wood under bark in total for all machines the whole study period.

Work time (million  
PMh15)

1.1 0.4 Estimated productive machine hours including downtime of maximum 15 minutes per occasion in total for all 
machines throughout the whole study period.
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Step 2: completeness of work time estimations
The second step was to ensure that it was possible to determine 
the total number of worked hours. In some cases, the produc-
tivity rate and/or hours of other work was missing although 
volumes were reported. The reasons for the missing data could 
be, for instance, pure errors but also because of deliberate 
unconventional data recording for solving operational matters. 
The missing data meant that worked time by a machine would 
be either impossible to determine or seriously underestimated. 
Therefore, it was decided that the data completeness regarding 
estimated productivity rate and/or hours of other harvesting 
work on the reported volume for the machines should be high 
in order to keep them in the dataset.

Due to different productivities in the different types of 
operations (Table 1) it was considered to be insufficient to 
solely reduce machines based on the proportion of volume 
without an estimated productivity rate and/or hours of 
other harvesting work. Therefore, the time for the volumes 
with missing data was estimated in each month by dividing 
the volume, distributed on types of operations by the 
machine’s mean volume weighted productivity during the 
total period for the corresponding types of operations 
(Table 1). If the total estimated missing time for a month 
corresponded to more than 10% of the reported estimated 
time for the month, the machine was excluded from the 
study. The estimated missing time was handled on 
a monthly basis because of the risk that a substantial 
amount of the unreliable time occurred during one or 
a few months, with a high impact on specific months. 
The level of 10% was set due to the observation that the 
main part of machines had been treated with a “special 
solution” resulting in the absence of some estimated pro-
ductivity data and/or reported hours during the studied 
period. That can be explained by the long period, and the 
fact that all machines harvested many stands during this 
period. In normal operations, it is likely that situations 
which need “special solutions” will be encountered. Thus, 
tolerating up to 10% of unreliable time per month resulted 

in a set of machines with a relatively low and similar 
proportion of unreliable time. Step 2 resulted in almost 
half of the machines, volume and time remaining from 
step 1 removed from the dataset.

Step 3: quality of reported data
The third step of data reduction focused on ensuring good 
quality in terms of the reporting of data used to derive monthly 
volume and time for the machines. This reduction step consists 
of four parts.

Step 3, part 1, was set to ensure that the reported volume from 
the machines corresponded with the volume from the indepen-
dent measurement organizations. That was done by comparing 
the reported volume for each machine with the volume recorded 
by industry or at a terminal by an independent wood measure-
ment organization and registered for legal and payment pur-
poses. Reported volumes were almost always lower than the 
volumes registered at the terminal or industry (see Figure 1). 
One possible reason for this may be that the contractors prefer to 
get an additional payment at a later stage, rather than incur 
a debt with the customer. Due to this frequent and systematic 
difference, up to 15% higher volume registered by industry than 
finally reported was accepted. All machines with 16% and higher 
differences were excluded. Step 3, part 1, resulted in 7% of the 
machines (Figure 1), and 4% of the volume and time remaining 
from step 2 removed from the dataset.

Step 3, part 2, was to ensure that the estimated time to 
harvest or extract the reported volume was realistic. Each 
machine’s volume weighted mean productivity for the study 
period was calculated and compared to each other. This indi-
cated the existence of some outliers. Hence, based on the 
observed clustering of mean productivities and comparison 
with documented long-term productivity levels (e.g. Eriksson 
and Lindroos 2014), machines with mean productivities of 
more than 40 m3/PMh15 were excluded. Step 3, part 2, resulted 
in 6% of the machines (Figure 1), 6% of the volume and 5% of 
the time remaining from step 3, part 1, removed from the 
dataset.

Figure 1. Data reduction of machines based on difference between volume registered by industry in relation to reported volume (N = 91 machines before outlier 
reduction) and mean productivity (N = 85 machines before outlier reduction, which also represent the number of machines after reduction based on mean correction). 
The gray bars illustrate the outliers of machines that were removed from the dataset.
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Step 3, part 3, was conducted to ensure the reliability in the 
time report for the hours of other harvesting work. Two of the 
remaining machines from step 3, part 2, had unknown negative 
values in this time report and were therefore excluded from the 
dataset.

Step 3, part 4, was performed so that the time variation was 
realistic for the remaining machines from step 3, part 3. One 
machine deviated with an unusually high work time for one 
month (661 PMh15) compared to the machine’s mean monthly 
work time (170 PMh15). That machine was not close to that 
amount of time during any other month. Moreover, the high 
work time would basically require the machine to work con-
tinuously for the whole month, since 24 hours of work during 
30 days gives 720 hours. Hence, the recording was considered 
unrealistic and the machine was excluded.

The remaining dataset
The 77 remaining machines accounted for 19% of the 
machines, 38% of the total harvested volume and 36% of the 
total time in the original dataset (Table 1). In the original 
dataset, 3.4% of the machines were of small size, 67.4% of 
medium size and 29.2% of large size. All small size machines 
had been reduced in the first data reduction step because none 
of them operated continuously for the customer, and, thus, the 
remaining machines were of medium and large sizes. Medium 
machines operated mainly in thinning, but some were also put 
to final felling, while large size machines worked mainly in final 
felling. The volume in different types of operations (Table 1) 
also differed between machines. The analysis had to account 
for the machines’ different workflows in volume and time in 
order to make their variations comparable.

Data analysis

The analysis was done with two main variation focuses 
(Performance variation and Workflow variation) and on two 
main aggregation levels (individual machines and contractor). 
For analysis at the contractor level, the volume and time on the 
machines owned by the same contractor were aggregated per 
month for the corresponding contractor. The statistical analy-
sis was carried out in Minitab 18, with the significance level set 
to 5%.

Performance variation
Relative monthly performance variation for a machine was 
calculated by comparing monthly values with the mean value 
for the studied period, for both volume and time as well as for 
individual machines and for contractors. This created monthly 

performance variation values that were normalized to the per-
formance of individual machines or contractors and were 
therefore comparable between machines or contractors.

Seasonal differences in relative performance variation in 
volume and in time were analyzed by one-way Analysis of 
Variance (ANOVA) with Tukey pairwise comparisons, with 
months as fixed main effect (with 24 levels). Relationships 
between relative volume and time variation were analyzed by 
use of Pearson correlations.

Workflow variation
The coefficient of variation (CV) was used to establish a single 
value per machine or contractor for the workflow variation 
during the studied period. CV is a relative measure of variation, 
in which the standard deviation is put in relation to the mean 
value. This created workflow variation values that were nor-
malized to the workflow of the individual machine or contrac-
tor and were therefore comparable between machines or 
contractors. The workflow variation in volume will from 
hereon be expressed as CVvolume and workflow variation in 
time as CVtime.

A Pearson correlation was used to analyze relationships 
between CVvolume and CVtime, for all machines, as well as 
within groups based on machine size and type. Similarly, 
relationships between CVvolume and CVtime were also analyzed 
for all contractors, as well as within groups based on how many 
and what type of machines the contractor owned. Moreover, 
a Pearson correlation was used to analyze relationships 
between CVvolume and total work time and total volume, 
respectively, for the whole studied period. One-way ANOVA 
with Tukey pairwise comparisons were used to analyze differ-
ences in CVvolume and CVtime, respectively, between contrac-
tors having one, two or more than two machines (i.e. 
contractor size as fixed effect, with three levels).

Results

Performance variation

When analyzing the performance variation between months 
within the 77 machines, there was a large dispersion in 
both worked time and volume produced. It ranged from 
the lowest possible relative variation value of −100%, indi-
cating that the machine had not been used or produced any 
volume at all, to more than 100% – which indicated a value 
more than double the machine’s mean performance during 
the observed 24 months (Table 2). For all of the studied 
24 months, there were many machines that substantially 
deviated from their mean values. Nevertheless, there were 
seasonal patterns during which most of the machines 

Table 2. Distribution of relative monthly variation within individual machines or for all machines a contractor owned. Since the variation is reported relative to the mean 
value, the relative mean value is zero for all aggregation levels and variables. The lowest possible relative variation value −100% indicates that the machine had not 
been used or produced any volume at all that month. N = number of observations, where one observation represents one machine or contractor and one month.

Aggregation level Variable N SD Min. Quartile 1 Median Quartile 3 Max.

Machine Volume 1,848 37.9 −100 −23.9 0.7 22.4 182.4
Time 1,848 34.3 −100 −18.9 2.0 21.1 149.2

Contractor Volume 936 35.4 −100 −21.2 1.9 21.8 152.0
Time 936 32.5 −100 −16.7 3.4 19.7 130.7
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performed above or below their mean volume and time 
values, with the most notable being the lower relative per-
formances during the spring and summer months (May– 
July) (Figure 2). The observed significant differences 
between months (Tukey test, p < 0.001) were mainly 
observed for months in different seasons. However, the 
largest difference between all 24 months was observed 
between July and August 2018. For only two months, the 
machine performances were significantly different between 
years; performance in both time and volume were signifi-
cantly higher in May 2018 compared to May 2019, whereas 
time performance was significantly higher in August 2018 
compared to August 2019.

The relative variation of time and volume within months for 
all of the 77 machines pooled was positively correlated (r 
(1848) = 0.78, p < 0.001). The correlation was significant 
(p < 0.001) for all four combinations of machine types and 
sizes, but with the lowest correlation coefficient value for med-
ium size harvesters and the highest value for large forwarders. 
Large harvesters and medium size forwarders had both corre-
lation coefficient values similar to the large forwarders. It 
should be noted that the range of dispersion was considerably 
smaller for negative values compared to positive values of 
relative variation (Figure 3).

The dispersion of relative variation decreased when 
aggregating the machines on the 39 contractors that 
owned them. The dispersion was highest for the relative 
volume values, for both machine and contractor levels. The 
widest dispersion was observed for volume variation on 
machine level, in terms of standard deviation values, 
range between minimum and maximum values as well as 
in terms of range between the first and third quartile 
values. The lowest dispersion was found for the relative 
time variation on the contractor level (Table 2).

Workflow variation

Machines’ and contractors’ workflow variation was indicated by 
their CV of volume produced and worked time over the studied 
24 months. When analyzing and comparing workflow variation 
in volume (CVvolume) and time (CVtime) within and between 
aggregation levels, a range of differences were observed (see 
Table 3). There was a wide dispersion between the 77 machines’ 
CVvolume and CVtime, which indicated differences between 
machines in their workflow variation in both volume and time.

The mean CVvolume was higher than CVtime at both aggre-
gation levels. The standard deviation on CVvolume and CVtime 
was higher, and mean CVvolume and CVtime lower, for contrac-
tors than for machines, indicating bigger differences between 
contractors than between machines (Table 3). The distribution 
of CVvolume differed from the distribution of CVtime. CVtime 
had a more concentrated distribution for both machines and 
contractors compared to CVvolume. When aggregating to con-
tractors, the CVtime was shifted to lower values, with a similar 
but less distinct effect on the CVvolume. (Figure 4).

In general, there was a strong positive correlation between 
CVvolume and CVtime at both machine (Figure 5) and contractor 
(Figure 6) levels. However, there were also examples of sub-
stantial deviations between CVvolume and CVtime at both levels. 
The examples were especially common for medium size har-
vesters and forwarders (Figure 5) and contractors with med-
ium size machines (Figure 6). Consequently, the correlation 
was low and not significant for medium harvesters (r 
(20) = 0.39, p = 0.093). For medium forwarders, there was 
a significant correlation, but less strong (r(16) = 0.66, 
p < 0.001) compared to big harvesters (r(17) = 0.94, 
p < 0.001) and big forwarders (r(24) = 0.97, p < 0.001).

It should be noted that most of the large correlation devia-
tions were below the line that represents a perfect correlation 
(Figure 5 and 6). This indicates that in general there was 
a higher CVvolume than CVtime. Contractors with two medium 
size machines had the weakest correlation between CVvolume 
and CVtime. However, CVvolume and CVtime did not seem to 
only depend on machine size, since all machine sizes showed 
both low and high CV values (Figure 5 and 6). In contrast, 
number of machines seemed to matter, since contractors with 
more than two machines all had relatively low values in both 
CVvolume and CVtime (Figure 6).

Both CVvolume and CVtime were negatively correlated to the 
machine’s total work time and total volume produced for the 
24 month study period (Table 4). Thus, CVvolume and CVtime 
decreased with increased amount of work time and increased 
amount of volume produced. These observed correlations were 
not strong, and there were also differences between the 
machine types and sizes. For instance, CVvolume and total 
work time was correlated for all machines except for medium 
size harvesters. CVvolume and total volume was correlated for 
the large but not for the medium machines. CVtime and total 
work time was correlated for all machine sizes and types, so 
also with CVtime and total volume, with the strongest correla-
tion for the forwarders.

Total time and total volume at contractor level depended 
both on the number of machines and total time, respectively, 
on the machines. The mean value for CVvolume and CVtime 

Figure 2. Relative variation in the machines’ volume produced (dark gray) and 
worked time (light gray) over months for 2018 (upper panel) and 2019 (lower 
panel). Boxes indicate median and quartile values. A relative variation value of 0% 
indicates that the value for that month was the same as the mean value for the 
machine’s performance during the observed 24 months. The lowest possible 
relative variation value −100% indicates that the machine had not been used or 
produced any volume at all that month. N = 77 machines per month.
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decreased the more machines a contractor owned (Table 5). 
Contractors with three or more machines had significantly 
lower CVvolume and CVtime compared to contractors with one 
machine (Tukey test, p-value = 0.032 (volume) and 0.018 
(time). The dispersion in both CVvolume and CVtime between 
contractors owning a certain number of machines decreased 
with the number of machines owned (Figure 7). From one, two 
to three or more machines, the standard deviation decreased 
(Table 5).

The near-lack of observations above the perfect correlation 
line in Figure 8 indicates both CVvolume and CVtime were in 
general lower at the contractor level than at the machine level. 
For the few exceptions, the difference was small (i.e. observa-
tions close to the perfect correlation line). The exceptions were 

eight forwarders of both medium and large sizes for which the 
CVvolume was lower at the machine level than when aggregated 
at the contractor level. For CVtime, three harvesters that had a 
lower CVtime than the contractor owning them.

Discussion

The need for flexibility

The results showed a seasonal variation in harvesting activity 
(Figure 2), which is in line with other studies (Carlsson and 
Rönnqvist 2005; Uusitalo 2005; Audy et al. 2012; Erlandsson  
2013, 2016). Typically, in Sweden demand and harvested 
volumes decrease during the spring and summer months, 

Figure 3. Relative monthly volume variation plotted against relative monthly time variation for the four combinations of machine sizes and types (a. = medium 
harvester, b. = medium forwarder, c. = large harvester, and d. = large forwarder). A relative variation value of 0% indicates that the value for that month was the same as 
the mean value for the machine’s performance during the observed 24 months. The lowest possible relative variation value −100% indicates that the machine had not 
been used or produced any volume at all that month. The gray line indicates a perfect correlation between time and volume variation. r = Pearson correlation 
coefficient. The numbers in parentheses represent the number of observations, with an observation representing one machine and one month.

Table 3. Distribution of CV (%) for machines and contractors on their performance in terms of monthly volume and work time. N = number of observations, where one 
observation represents one machine on machine level or one contractor on contractor level. For each observation, the mean and SD values were based on the 24 values 
of volume produced or worked time within each machine or contractor.

Aggregation level Variable N Mean SD Min. Quartile 1 Median Quartile 3 Max.

Machine CVvolume 77 37.4 10.3 19.7 29.6 35.1 44.0 73.9
CVtime 77 33.8 9.4 14.5 27.7 31.1 36.4 69.8

Contractor CVvolume 39 34.4 11.2 17.1 26.4 31.7 40.3 73.9
CVtime 39 31.5 10.4 18.5 25.4 29.4 36.3 69.8
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only to increase again in autumn. Even if the pattern of seaso-
nal variations is well known, the study showed that there can 

still be differences between months in different years. For 
instance, differences were found between May 2018 and 2019 
and between August 2018 and 2019. These are the months 
when the amount of harvesting operations typically starts to 
decrease and increase, respectively, and this is often related to 
the current levels of market demand, weather conditions and 
stock levels in the industry as a whole (Carlsson and Rönnqvist  
2005; Uusitalo 2005). There were notably weather differences 
between the two years, with considerably more rainfall in 
May 2019 compared to 2018 and a drought during the summer 
of 2018. This drought resulted in decreased and halted opera-
tions due to the risk for starting fires during June and July. To 
compensate for the production loss, it is possible that many 
machines operated on extra time during August 2018. More 
extreme and unexpected weather contiditons are likely to 
influence the need for flexibility in workflow. Such changes 
should motivate further research into the relationships 
between harvesting operations efficiencies and the impact of 
the changing environmental conditions and climate.

This study investigated actual volumes delivered by con-
tractors, and not the actual or predicted wood demand from 
the customer. As shown by Erlandsson (2016), the outcome 
can differ significantly from the prediction of delivered volume. 
Thus, there is an uncertainty and a need for flexibility due to 
changes in and from predicted production plans, as well as due 
to the fact that delivered volume may differ from the volume 
demanded. Wood demand also varies and thus managers at the 

Figure 4. Relative distribution of volume and time coefficient of variation for the machines (upper panels, N = 77) and contractors (lower panels, N = 39).

Figure 5. Relationship between the machines’ CVvolume and CVtime, distributed 
over machine type and size. The closer to the line, the more equal CVvolume and 
CVtime. Machines under (to the right of) the line have a lower CVtime than CVvolume. 
r = Pearson correlation coefficient. The number in parenthesis represents the total 
number of machines. n = number of machines in each combination of machine 
size and type.
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customer companies steer production to correspond to actual 
demanded wood volume, which can affect utilization of con-
tractor resources (Erlandsson 2013).

In the case of the present study, the customer used produc-
tivity prediction models to direct the wood flow toward satisfy-
ing demand, while at same time trying to enable the 
contractors to utilize their resources at a high and consistent 
level through the year. Indeed, if the customer is able to achieve 

Figure 6. The contractors’ machines’ CVvolume and CVtime with information about machine size and number of their machines. The closer to the line, the more equal 
CVvolume and CVtime. Contractors under (to the right of) the line have a lower CVtime than CVvolume. r = Pearson correlation coefficient. The number in parenthesis 
represents the total number of contractors. n = number of contractors in each combination of number and sizes of machines.

Table 4. The relationship between CVvolume and CVtime, respectively, with total work time and total volume distributed over machine sizes and types. r = Pearson 
correlation coefficient. n = number of machines.

Medium sized Large sized

Variable

Harvester (n = 20) Forwarder (n = 24) Harvester (n = 17) Forwarder (n = 16) All machines (n = 77)

r p-value r p-value r p-value r p-value r p-value

Correlation between CVvolume and;
Total work time −0.22 0.355 −0.50 0.012 −0.67 0.004 −0.73 0.001 −0.55 <0.001
Total volume 0.02 0.930 −0.38 0.065 −0.64 0.005 −0.73 0.001 −0.44 <0.001

Correlation between CVtime and;
Total work time −0.48 0.032 −0.68 <0.001 −0.61 0.009 −0.77 <0.001 −0.66 <0.001
Total volume −0.50 0.024 −0.63 0.001 −0.63 0.007 −0.78 <0.001 −0.28 0.012

Table 5. Mean coefficient of variation (CV) on volume and time for contractors 
depending on number of machines the contractors have in the dataset. 
N = number of contractors with the number of machines.

CVvolume CVtime

Number of machines N Mean SD Mean SD

1 18 37.6 13.1 35.8 12.2
2 12 35.8 8.6 30.7 7.7
≥3 9 26.1 4.2 24.1 4.3
–All pooled 39 34.4 11.1 31.5 10.4

Figure 7. CVvolume and respective CVtime in relation to the contractors’ number of machines in the dataset.
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that goal, it has positive effects on contractor profitability and 
satisfaction (Erlandsson and Fjeld 2017). It will also reduce the 
cost of unused machines and manpower for which the custo-
mer may have to compensate contractors according to the 
common standard for agreements between customers and for-
est contractors (Skogforsk 2020). The assumption was there-
fore that the time would vary less than the volume. However, 
this study shows a significant correlation between volume and 
time-relative performance variation (see Figure 3). Therefore, 
the need for contractors’ flexibility probably means variations 
for contractors in both delivered volume and their work time. 
Since the range of dispersion was considerably smaller for 
negative values compared to positive values of relative varia-
tion (Figure 3), the result indicates that flexibility to increase 
volume produced would be desirable, without the same need of 
flexibility in work time. If the need is for contractors’ flexibility 
to decrease volume produced it would probably mean a need of 
contractors’ flexibility in decreasing work time to manage as 
well.

Customer’s opportunities to manage the need for 
flexibility

The findings of the CVvolume and CVtime for machines and 
contractors in the present study indicate that it is challenging 
to maintain an even workflow throughout the year, and the 
results also indicate that all contractors have demonstrated 
flexibility over the study time frame. In other words, their 
machines are utilized to a different extent each month, which 
can be caused by varying wood demands and weather condi-
tions (Uusitalo 2005). Another factor that may influence the 
contractors’ need to be flexible is the customer’s management 
of their contractor crew: for example, the type of contract 
agreements they apply, the harvesting stands that are assigned, 
the quality of the information about stands to be harvested, 
how far in advance the information about stands is provided to 
the contractor, distances between harvesting sites and so on 

(Erlandsson et al. 2017; Gustavsson 2017). This study found 
differences between contractors in both CVvolume and CVtime, 
as well as the correlation between CVvolume and CVtime, which 
could be attributable to the size of their machines, the amount 
of total work time and total volume produced on the machines 
and how many machines the contractor had.

Many of the medium machines had a relatively high 
CVvolume while still having relatively low CVtime (Figure 5). It 
is possible to use those machines in both thinning and final 
felling, which gives the opportunity to rapidly increase or 
decrease volume production (Erlandsson 2013) without the 
need to increase or decrease the time on the machines 
(Eriksson and Lindroos 2014). Since it is the customer that 
provides stands for harvesting to the contractors, the contrac-
tors with medium size machines may need to be flexible in 
changing between types of operations (Table 1). As can be 
noted from Figure 3, the difference between relative variation 
in volume and time is smaller in negative values compared to 
positive values of relative variation. An explanation for this 
may be that the medium size machines are normally used in 
thinning, but when wood demand increases some of the med-
ium machines are instead used in final felling to increase 
delivered volume. Increasing the woodflow in this way can be 
an effective way to rapidly handle a temporary increase in 
wood demand without requiring more work time.

It can also be effective to increase work time on the 
machines to meet increased wood demand and use the 
machines in the most suitable type of operation (Table 1). 
That may mean more variation in work time on the 
machines. Thus, it should be taken into account that large 
machines have higher productivity in final felling, even if 
the difference in productivity between the machine sizes 
decreases with smaller stem sizes and shorter extraction 
distances (Eriksson and Lindroos 2014). Final felling stands 
with small stem sizes can thus be used to either increase or 
decrease productivity in a short time depending on what 
machine size is used.

Figure 8. CVvolume and CVtime on the machines in relation to when machines are aggregated on the contractor that owns them. The closer to the line, the more equal the 
CV on the machine and contractor level. Machines under (to the right of) the line have a higher CV than they have aggregated on the contractor.

22 M. JOHANSSON ET AL.



The hours that a machine can be used per day are limited, 
and with a high utilization rate there is consequently less time 
left to use for meeting temporary increases of volume produc-
tion. This can be a part of the explanation as to why CVtime was 
correlated with both total work time and total volume pro-
duced (Table 4). A possibility to increase the production is, 
then, to provide stands in which the machines are expected to 
have high productivity. The results indicate just such success 
for some of the medium machines is due to high CVvolume with 
low CVtime, especially for the harvesters (Figure 5).

As discussed, medium size machines can be used in both 
thinning and final felling, which enables rapid adaption to 
variations in volume demand. Due to the machines’ different 
suitability for thinning and final felling, and differences in 
productivity depending on stand characteristics (Eriksson 
and Lindroos 2014), it may be possible to reach a more cost- 
effective flexibility by improving stand selection in final felling 
for large machines and in thinning for medium machines. That 
possibility may be limited to available stands to be thinned or 
harvested (Gautam et al. 2013), and the study does not inves-
tigate how much of the potential to manage variations in 
volume demand with stand selection was achieved in this 
case. Therefore, more research is needed on the potential to 
manage the needs for flexibility from the customer’s side by 
improving stand information and selection based on the 
attempt to maintain even workflow in time for the machines, 
even when external factors such as wood demand and weather 
conditions vary.

Contractors’ opportunities to manage the need for 
flexibility

As indicated by the results, contractors’ flexibility can have 
negative effects on their profitability and their ability to provide 
competitive harvesting services (Mäkinen 1997; Erlandsson  
2016; Erlandsson and Fjeld 2017). As highlighted in 
Johansson et al. (2021), adaptability, including flexibility, is 
highly appreciated in harvesting services. Given the observed 
CVvolume and CVtime, this is not surprising since there is 
obviously a need for contractors’ flexibility. Contractors seem 
to take different opportunities to manage the need for their 
flexibility (Figure 6).

It seems as though contractors can level their workflow 
between their machines (Figure 8), and that this possibility 
increases with more machines (Figure 7). The need to prior-
itize the use of the harvester or forwarder may differ over time 
due to, for instance, the difference between harvester and 
forwarder productivity varying between stand conditions and 
machine operators (Eriksson and Lindroos 2014; Liski et al.  
2020). With more machines, the contractor also has increased 
opportunities to use them to compensate for each other when 
needed, for instance when a machine is unavailable due to 
repairs or being serviced.

That contractors may try to utilize their operators more 
evenly than their machines could explain why aggregation on 
contractor level had lower CVvolume and CVtime than the indi-
vidual machines (Figure 8). Lack of machine operators is the 
main obstacle for high harvesting performance and business 
expansion (Kronholm et al. 2019), and it is also due to this that 

it can be expected that contractors will steer their operators to 
use the machine which is most needed at a given moment. 
Having many machines and employed operators also provides 
more possibilities for the operators to compensate for each 
other if needed. That requires good management skills by the 
contractor as well as skilled operators who are able to manage 
different types of machines and types of operations (Table 1).

Contractors with less work may take opportunities to 
increase the time on the machine when needed, and thus tem-
porarily contribute with additional volumes in short-term agree-
ments, as discussed by Erlandsson (2016). Also, contractors with 
only one or two machines may increase their chances of effec-
tively managing the need for flexibility by cooperating with 
other contractors, and by that means maintaining a more cost- 
effective utilization of the machines and machine operators.

It is proposed that more research is needed on how machine 
operators and machines can be utilized to effectively manage 
flexibility. In this analysis, it seems the more medium-sized 
machines a contractor has, the more opportunities to effec-
tively adapt the resources to varying wood demand. Most 
contractors in Sweden own just one, or a few, machines. 
Therefore, more research is needed about how cooperation 
models between contractors can be used to increase their 
opportunities to effectively respond to varying demands on 
their services. Contractors are competing for contracts and it 
should also be considered how such contractor-to-contractor 
relationships may affect the competitive forces to respond to 
varying demands.

Strengths and weaknesses

This study focused on contractor-owned machines that oper-
ated continuously for the same customer during the whole 
study period. The study did not represent the whole spectrum 
of the customer’s need for contractors’ flexibility. Instead, the 
study provided details in how contractors’ workflow can vary, 
as indications of how much flexibility contractors operating 
continuously for the same customer need to manage. The first 
data reduction step was to remove machines without contin-
uous work for the customer. Thus, all small machines, and also 
a large component of the medium and large size machines were 
removed from the original dataset. In this case, there were only 
a few small size machines in the original dataset and their 
potential to capture flexibility in volume production was there-
fore considered to be low. It is possible, but not investigated in 
this study, that the few small machines were used in special 
services requested by the customer.

The high share of machines being removed from the 
dataset due to not operating continuously during the whole 
study period is worth notice, since they probably account for 
some part of the flexibility in harvesting service. It is likely, 
but not shown in the study, that some of the customer’s 
management of varying need of harvesting capacity lies in 
the temporary contracting of some of the machines that were 
removed in that step. Even if the contractors often receive 
the majority of their income from one customer 
(Benjaminsson et al. 2019; Kronholm et al. 2021), it is still 
possible that some contractors in this dataset also provided 
harvesting services to other customers. The study does not 
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show if contractors level out the work between different 
customers, which can be a possible way to manage varying 
demands for their services.

What the result show is the variation for a part of the 
harvesting service, both in terms of the work of single machines 
and for machines owned by the same contractor that continu-
ously operate for the same customer. When comparing the 
delivered volume and worked time on the contractor level the 
result only represents the work from the machines in the 
dataset. Some of the contractors had additional machines 
operating for the customer during the two-year period which 
were excluded during the data reduction process. Even though 
the results do not represent the complete extent of harvesting 
services at the contractor level, it still indicates what can hap-
pen with the workflow when the work is compiled over more 
than one task. The results in this study are built on the same 77 
machines with relatively reliable information about their 
operations each month over the two-year study period. That 
made it possible to investigate and compare how the workload 
of individual machines differed over time on a monthly scale.

The estimated time in this study was calculated based on 
a productivity model used by the customer, taking different 
productivity-affecting factors into account at each stand. That 
is not the same as actual productivity, and it is likely that it is 
down to individual differences between machine operators to 
account for the difference between actual productivity and the 
estimated productivity (Purfürst and Erler 2011; Häggström 
and Lindroos 2016; Manner et al. 2016) – which affects the 
reliability of the estimated time result in relation to the real 
time. Therefore, it would also be beneficial to investigate 
CVtime for machines and contractors derived from operational 
monitoring data (e.g. drf files) as, for instance Purfürst and 
Erler (2011) and Eriksson and Lindroos et al. (2014) did for 
productivity modeling. In this study, the results represent the 
time that the contractor got paid for and the customer’s expec-
tation of how much time the contractors need to deliver the 
volumes. Therefore, the estimations could be expected to be 
reliable in the sense that they are approved by both parties as 
part of their business relationship.

In this kind of business relationship, the reliability of the 
productivity model and the accuracy of the included data is 
important for both the contractors’ profitability and the custo-
mer’s estimation of the required harvesting resources. Data 
collection and quality can be improved by use of modern 
data collection methods from forest operations. The utilization 
and availability of such real big data is limited due to regula-
tions of data protection and data ownership (Regulation EU  
2016/679). It should be considered how big data can be utilized 
in aiming to improve management of the customer’s need for 
contractors’ flexibility in a way that favors both parties in the 
business relationship.

Conclusions

Contractors’ workflow vary in both volume and time. The level of 
unevenness in workflow differs between contractors, which can be 
attributed to the number of machines, machine sizes and total 

workload of harvesting services. It seems as if contractors with 
more machines can level out the workflow between their 
machines, resulting in a more even workflow at the company 
level than on the individual machines. In general, workflow varia-
tion in volume and time are correlated. An exception was found 
for medium size machines and especially harvesters, which in this 
study had a relatively high variation in volume while still having 
a relatively low variation in time. Contractors with a larger work-
load had, in general, lower workflow variation than contractors 
with a smaller workload. One explanation can be limited oppor-
tunities to lengthening time on the machines when demand 
increases. These findings are relevant for both parties in the 
business relationship when considering the need for flexibility to 
increase and decrease volume production and still promote con-
tractor profitability.
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