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Abstract
Use of battery-electric vehicles has become common in different sectors, as 
a measure to reduce greenhouse gas emissions. Driveline electrification in 
agricultural machinery could reduce emissions and increase driveline 
efficiency, but implementation has been hindered by the low energy-carrying 
capacity of batteries compared with conventional fuels. Combining battery-
electric drivelines and autonomous operation would provide important 
synergies by mitigating or eliminating many of negative aspects of 
electrification, while retaining the benefits from both systems. 

This thesis evaluated the potential and analysed the intricate workings of 
a battery-based autonomous electric vehicle system by applying systems 
analysis, economic analysis and life cycle assessment, through simulations
and modelling. The vehicle system was evaluated on a theoretical Swedish
grain farm of 200 ha using a conventional cropping system. Soil compaction, 
battery ageing, queueing dynamics, field trafficability, energy storage and 
weather effects were all included in simulations. This allowed comparison of 
performance, cost and environmental impacts for a conventional fieldwork 
tractor and a system with several smaller autonomous battery-electric 
tractors.

The evaluation showed that the autonomous electric tractors were able to 
match or exceed the daily work rate of the conventional tractor, while 
reducing energy use (by 47-75%), lowering annual costs (by 32-37%) and 
reducing soil compaction. The environmental impact was generally also 
lower, with up to a 74% reduction in greenhouse gas emissions over the 
system’s life cycle. These results indicate great potential for autonomous
electric tractors in future agricultural fieldwork, as combining the electric 
driveline and autonomous technologies allowed the benefits from both to be
used to greater effect than either by itself.

Keywords: Agriculture, autonomy, economy, battery-electric vehicles, life cycle 
assessment, modelling, simulation, soil compaction, tractor

Electric autonomous tractors in Swedish 
agriculture



 

Sammanfattning 
Elektriska fordon är en vanlig åtgärd för att minska utsläppen av 
växthusgaser i olika sektorer. Elektrifiering av lantbruksmaskiner har 
potential att minska utsläppen och öka verkningsgraden i fordonens 
drivlinor, men på grund av låg energidensitet i batterier jämfört med 
konventionella fordonsbränslen har introduktionstakten varit låg. Genom att 
kombinera batterielektriska fordon med autonom teknik kan man uppnå 
synergieffekter, vilket gör det möjligt att minska eller eliminera nackdelarna 
med elektriska fordon och samtidigt nyttja fördelarna hos båda systemen.  

Denna avhandling syftar till att utvärdera potentialen och analysera de 
komplexa sambanden hos system av autonoma, elektriska fordon med hjälp 
av systemanalys, ekonomiska kalkyler och livscykelanalyser utförda i 
modeller och simuleringar. Fordonssystemet utvärderades på en teoretisk 
svensk spannmålsgård på 200 hektar, där en konventionell odlingsmetod 
simulerades. Markpackning, batteriåldrande, kö-dynamik, körbarhet på fält, 
energilager och väderberoende inkluderades i simuleringarna. Detta 
möjliggjorde jämförelsen av arbetskapacitet, kostnader och miljöpåverkan 
mellan en konventionell traktor och ett system bestående av flera mindre, 
autonoma eltraktorer. 

Eltraktorer visades kunna ha liknande eller högre daglig arbetstakt än 
konventionella traktorer, samtidigt som dem reducerade energianvändningen 
(41-75%), den totala årliga kostnaden (32-37%) och minskade 
markpackningen. Generellt minskade miljöpåverkan, med en  minskning av 
växthusgasutsläppen med upp till 74% över hela livscykeln. Dessa resultat 
visade på den stora potentialen hos autonoma, elektriska traktorer i 
lantbrukets fältarbeten. Genom att kombinera teknologierna kunde 
fördelarna från båda systemen utnyttjas på ett bättre sätt än var för sig. 

Nyckelord: Autonomi, batterifordon, ekonomi, lantbruk, livscykelanalys, 
modellering, markpackning, simulering, traktor 

Elektriska, autonoma traktorer i svenskt 
lantbruk 



Dedicated to everyone who works to make the world a better place, in ways 
big or small.

“Step-by-step, year-by-year, the world is improving. Not on every single 
measure every single year, but as a rule. Though the world faces huge 
challenges, we have made tremendous progress. This is the fact-based 
worldview.”

-Hans Rosling, Factfulness
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1. Introduction
Agriculture is generally considered to be a green sector, due to the nature of 
agricultural production and its close symbiotic relationship with nature. 
However, agriculture has an impact on the climate and other parts of the 
environment and is sensitive to changes in both of these (Smith et al., 2014).
Long-term global food production will require effective and sustainable 
agriculture, so a truly green agriculture sector with limited environmental 
impact and resilience to changes is an important goal for the near future.

Agricultural machinery is a small contributor to the total environmental 
impacts of agriculture, producing roughly 1% of global greenhouse gas 
(GHG) emissions in 2014, while agriculture in total produced 21-24% (Smith 
et al., 2014; Tubiello et al., 2015). Machinery emissions are easier to reduce 
than those from other emissions hotspots, since reducing the impacts from
e.g. land use, fertilisers, N2O and field emissions may require land-use
changes or ambitious yield improvements.

One technical solution to reduce emissions is driveline electrification. 
Electric drivelines have higher driveline efficiency, require less maintenance 
and have a reduced fuel import demand, and are therefore being considered 
as a viable solution for mobile non-road machinery, such as agricultural 
tractors, as well as road vehicles. Electrification of vehicle drivelines is now
a commonly proposed solution for reducing vehicle emissions, due to 
technical improvements in drivelines, chargers and batteries, political 
ambitions to cease using fossil fuels and reduced cost of driveline 
components, most notably the price of batteries, which has dropped by over 
90% in the past 20 years (IPCC, 2022). Electrification has particular potential 
for GHG emissions reduction when low-emission electricity is available, as 
is the case in Sweden (Swedish Environmental Protection Agency, 2020).

There are challenges to using electric tractors in conventional fieldwork, 
in particular the low amount of energy carried by the vehicles. Conventional 
diesel tractors generally carry enough fuel to perform a day’s worth of 
fieldwork, which is practical since it fits with driver schedules and means 
little to no unproductive time due to transport between field and farm. 
Replacing conventional tractors by simply changing the driveline would lead 
to fieldwork times shorter than a day’s work before recharging, resulting in
sub-optimal use of the driver, who often represents a large part of the 
operating costs in modern agriculture. It would also lead to long recharge 



times for the batteries, i.e. yet more unproductive time not spent working
(Caban et al., 2018). This increase in non-productive time would delay 
completion of fieldwork, leading to sub-optimal crop establishment, 
fertilisation and pesticide application. Alternatively, several tractors and/or 
drivers could be hired or a very large battery could be used, which again 
would lead to high costs. In order for electric tractor systems to be successful,
these challenges need to be resolved (Beligoj et al., 2022).

A solution to some of these challenges is autonomous operation, where 
the tractors operate without a driver in the cab. This would decouple the 
productivity of the tractors from the schedule of the driver and negate most 
of the challenges posed by electric drivelines, while retaining the benefits. It 
would allow the tractor to work all suitable hours of the day, and not only 
when the driver is scheduled to work. It would also reduce the negative 
effects of carrying a smaller amount of energy, since there is no driver who 
needs to be paid while the recharging takes place. In addition, it would enable 
the use of multiple lighter tractors instead of the single large machine used 
in conventional systems. Self-driving tractors are already being introduced 
on the market and are commonly cited as an essential factor in the next step 
of increased agricultural productivity.

Some field tests have been performed on electric and/or autonomous 
tractors and multiple large manufacturers are testing prototypes, but there are 
very few large-scale studies available and there is a general lack of empirical 
data (Gil et al., 2023; Rahmadian & Widyartono, 2020; Scolaro et al., 2021).
To evaluate the potential effects of introduction of autonomous battery-
electric vehicles on Swedish agriculture, simulations and system analysis are 
required. By using discrete-event simulation, discrete occurrences can be 
accounted for, while by using a varied interval of parameters (such as years),
variances and extreme values can be explored. Since a system change to
autonomous battery-electric vehicles would affect multiple aspects of the 
system, multi-level analysis with several goal variables would be required.
Economic viability and environmental impact would need to be explored, 
through annual cost of operation and life cycle analysis (LCA), respectively.

The aim in this thesis was to bridge the gap between the established 
theoretical understanding of the individual parts of the system (autonomous 
vehicles, electric vehicles, battery technology, agricultural cropping 
systems) and empirical data emerging from field tests and real-world 
validation, by combining these in a Swedish context.

14
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2. Aim and scope 

2.1 Aim and objectives 
The overall aim of the work described in this thesis was to improve 
understanding of the effects of introducing autonomous battery-electric 
tractors into Swedish agriculture in terms of operation, economics and 
environmental impact, compared with conventional manned diesel tractors. 
The following research questions were addressed: 

 
 Can battery-electric tractors provide comparable work rate to 

diesel tractors and, if so, under what circumstances? 
 Can autonomous battery-electric tractors reduce the 

environmental impact of agricultural machinery use in Sweden? 
 Can autonomous battery-electric tractors do the above while 

being economically competitive compared with conventional 
tractors? 

 What are the important technology choices and can they be 
optimised for Swedish agriculture? 

 
Specific objectives of the work were to: 

 
 Study the energy efficiency, use and storage of energy for 

autonomous battery-electric tractors (Papers I-III). 
 Investigate technology choices that can contribute to the 

development of optimal systems for autonomous battery-electric 
tractors (Papers I & III). 

 Analyse how different technology choices and system structures 
affect work rate (Papers I & II), cost (Paper II) and resource 
use (Paper IV). 

 Quantify the resulting environmental and climate impacts 
through systems analysis and LCA (Papers IV & V). 

  



2.2 Scope
The work in this thesis encompassed different vehicle systems, all centred 
on the theoretical framework of a contemporary Swedish grain farm growing 
barley, oats, spring wheat and winter wheat on 200 ha, with a conventional 
machinery operation chain consisting of harrowing, sowing, rolling, 
fertilisation, pesticide spraying and ploughing. Harvesting was not included,
as the focus was on tractor-based fieldwork. The cost and environmental 
impacts of implements were also omitted, although the power need and 
working width of the implements were used as inputs in dynamic simulations
of the system.

The vehicle systems studied consisted of one or more tractor, its fuel and 
its charging/refuelling infrastructure, including the potential for off-board 
energy storage. Interactions between the vehicle system and impacts from 
weather and soil were included in a simplified form, as were driver 
scheduling, breakdown rates and field-to-farm transport. The analysis 
focused on the vehicle system and the associated infrastructure. Further 
details on the scope of the analyses performed in Papers I-V are presented 
in the respective paper.

2.3 Research structure
The work performed is described in detail in Papers I-V and graphically 
explained in Figure 1. All papers explored a different facet of autonomous 
(self-driving) battery-electric tractors, each focusing on a different system 
perspective.

In Paper I, a model for simulating fieldwork activities on a Swedish grain 
farm was developed. The model is dynamic and uses a decision system based 
on discrete events and states. The model and its subsystems were assessed 
and the vehicle capacity of autonomous battery-electric tractors was analysed 
and compared with that of a conventional diesel tractor. Analyses were
performed on the ‘plug-in’ conductive charging (CC) and battery-exchange 
(BES) charging systems for electric vehicles. Vehicle power, battery size, 
distance to fields and numbers of vehicles and charging stations were all 
varied, to find impactful technology choices and make rudimentary 
optimisations. Recommendations for effective vehicle systems were made 
and the model was further used in Papers II-V.

16
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The total cost of autonomous battery-electric tractors was explored in 
Paper II. In addition to adding an economic sub-system to the model, 
timeliness and battery degradation were examined through separate models 
and their economic effects were quantified.  

The possibility of local energy production and storage was explored 
through additional simulations in Paper III. A scenario with photovoltaic 
solar cells and battery storage on the farm was analysed and the effect of 
having storage for different lengths of time was assessed.  

The environmental effects of the technology switch from conventional 
diesel tractors to autonomous battery-electric tractors were explored in 
Paper IV, where an LCA was performed. A full inventory was made and the 
environmental effects of production, manufacturing, use and the end-of-life 
(EoL) phase were analysed, choosing categories important for electric 
vehicles, battery research and agriculture. 

Lowering the weight of tractors is a side-effect of using self-driving 
technology and reduces unwanted soil compaction. The effect of this on costs 
and environmental impacts was analysed in Paper V, using the models 
established in previous papers. 

 

 
Figure 1. (Left) Graphical representation of the structure and links between research 
performed in this thesis. (Right) Venn diagram showing the intersection of previous 
fields of research, which was the scope of the thesis. 
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3. Background 

3.1 Problem description 
The past decades have seen intensification of agriculture in response to a 
growing global population, with the caloric supply per capita increasing by 
one-third since 1961 (Shukla et al., 2019). This has led to a nine-fold increase 
in the use of inorganic fertilisers, increasing machine weight and increased 
GHG emissions from the agriculture sector (Lobell et al., 2011; Shukla et al., 
2019). 

In order to limit human-induced global warming, GHG emissions need to 
be drastically reduced. The remaining carbon budget for the goal of limiting 
global warming at 1.5oC is 500 Gt CO2eq, while for a limit of 2oC it is 1150 
Gt CO2eq. Annual global emissions in 2019 were an estimated 52-66 Gt 
CO2eq (IPCC, 2022) and are on average still increasing year on year. Thus 
to stay within the carbon budget, rapid action is required. In an effort to 
combat climate change and mitigate its effects, the European Union (EU) has 
set the goal of net carbon neutrality by 2050 (European Comission, 2018). 
The Swedish government has set similar goals with a smaller time frame, 
aiming to have a fossil-free vehicle fleet by 2030 and to be net carbon neutral 
by 2045 (The Government of Sweden, 2013).  

These goals affect machinery in the agriculture sector, where transport is 
heavily dependent on diesel use. In addition, agriculture in Europe and North 
America is facing difficulties in finding skilled labour, while also being 
under pressure to achieve more sustainable production and maintain 
economic feasibility in production (Bouge, 2016; Lowenberg-DeBoer et al., 
2021). Thus there is a need for fossil-free vehicle solutions that have lower 
environmental impacts while providing good economic and technological 
feasibility. 

3.2 Electric drivelines  
Conventional vehicles work via thermochemical combustion of petroleum-
based fuels (petrol and diesel) in an internal combustion engine (ICE) that 
powers the drivetrain. Electric drivelines replace the ICE with an electric 
power source and an electric motor. Electrification of vehicle drivelines 
gives advantages in emissions reduction and automotive engineering, as well 



as providing high torque, less need for maintenance and increased 
controllability (Lajunen et al., 2018). The electric motor generally has higher 
efficiency than the ICE because electromagnetic conversion from electricity 
to mechanical motion is more efficient than the equivalent thermodynamic 
conversion used in ICE engines, where a large proportion of fuel energy is 
lost as heat (Andersson, 2019). The electric motor also has fewer moving 
parts and makes electric transmission possible, both of which further increase 
driveline efficiency.

Electric motors exhibit high efficiency in their entire operating region, as 
shown in Figure 2. This contrasts with the ICE, which has an optimal 
operating region where it operates at peak efficiency of 40-50% (Chu & 
Majumdar, 2012). Outside this region, it quickly loses efficiency, leading to 
lower overall driveline efficiency, with 30% being cited for tractors 
(Wasilewski et al., 2017). This loss can be mitigated somewhat by using 
modern continuously variable gears that maximise the time spent in the 
optimal region, but ICEs inherently have lower overall driveline efficiency.

Figure 2. Simplified diagram of motor efficiency as a function of speed and torque for a 
warm permanent magnet synchronous motor (PMSM) designed for heavy-duty vehicles. 
Adapted from simulations by Andersson (2019).

Electricity is a flexible fuel that can be created locally and from low-emission 
sources. The Swedish average electricity mix has been shown to have a well-
to-wheel climate impact of 50 g CO2eq kWh-1 (Itten et al., 2014), compared 
with 266-321 g CO2eq kWh-1 for diesel (Eriksson & Ahlgren, 2013; 
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Jungbluth, 2007). Fully electric drivelines have no local emissions, which is 
beneficial for work indoors or in emissions-free zones. 

Electric vehicles can be divided into several categories, with fully electric 
and hybrid electric vehicles as a common subdivision. Hybrid electric 
vehicles utilise electricity alongside another energy source to provide 
propulsion, while fully electric vehicles only use electricity (Moreda et al., 
2016). Hybrid solutions are a well-researched subject, both in agriculture and 
in general (Lajunen et al., 2018; Moreda et al., 2016; Propfe et al., 2012), 
and were not explored in depth in this thesis, where the focus was on battery-
electric tractors.  

Electric drivelines in agriculture 
Agricultural tractors performing fieldwork usually operate in a single engine 
mode for extended periods of time and do not have a large amount of braking. 
In addition, long working times at high energy make high carried energy 
content important. 

Hybrid tractors with both electric and ICE drivelines (parallel and series 
hybrids) have been researched, but have been found to be insufficiently 
profitable to take a large market share (Lajunen et al., 2018; Moreda et al., 
2016). The low profitability is because the increased component costs with 
hybrid tractors exceed any fuel savings enabled by the regenerative braking 
and reduction in fuel use (Beligoj et al., 2022; Lajunen et al., 2018). 
Generally, hybrid vehicles are a good solution when there are frequent 
changes in engine speeds, where the higher efficiency of the motor can 
improve fuel economy, and where there is a good amount of braking, to 
regenerate energy (Grunditz, 2016). Neither of these is true for agricultural 
tractors performing fieldwork (Moreda et al., 2016).  

In addition, failure to carry sufficient energy has been identified as a 
problem for electric agricultural vehicles, as the working time in fields can 
be long and any interruption in order to recharge comes at an economic cost 
in the form of paying driver wages for unproductive time or delaying optimal 
establishment of crops (Moreda et al., 2016). There have been some attempts 
to make electric field tractors with sufficient batteries to enable up to four 
hours of mixed fieldwork (John Deere, 2017) or to provide power using a 
direct grid connection via cable (John Deere, 2019), but neither of these 
drivelines has been introduced on the market. Use of electric drivelines in 
combination with autonomy has been pointed out as a key step in mitigating 
the downsides of electric machines (Lajunen et al., 2018).  



Batteries
The main task of a battery is to store chemical energy and discharge it as 
electric energy when needed. It is therefore the enabler of battery-electric 
vehicles and serves the same role as the fuel tank on a conventional vehicle.
Rechargeable batteries use a reversible electrochemical redox process that 
allows them to utilise the transformation from electric energy to chemically 
stored energy (charging) and that from chemically stored energy to electric 
energy (discharging) with high efficiency (Berg, 2015). Batteries based on 
lithium (especially Li-ion batteries) can achieve high energy and power 
densities compared with other batteries, and have therefore become the
prevalent choice of rechargeable batteries in vehicles and in consumer 
electronics (Berg, 2015). However, they still have much lower energy-
carrying capacity than liquid fuels (~0.1 kWh kg-1 for Li-ion batteries (Le 
Varlet et al., 2020) compared with ~12.5 kWh kg-1 for diesel (Reif & 
Dietsche, 2014)).

Charging stations
There are a variety of different charging systems available for electric 
vehicles. Two main off-board charging systems, conductive charging (CC) 
and a battery exchange system (BES), were studied in this thesis. A
simplified diagram of these charging system is provided in Figure 3.
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Figure 3. Graphical representation of the conductive charging (CC) system and battery 
exchange system (BES). Approximate time spent recharging on-site at the farm is shown
in dials on the right.

Conductive charging, also known as plug-in charging, involves 
connecting the vehicle to the charger via a conductive plug. Power is then 
delivered via one of several charging methods until the battery is fully 
charged. The different charging methods mainly differ in how current and/or 
voltage is varied, and whether they use AC or DC (Yilmaz & Krein, 2013). 
In the CC system, charging times are dependent on the energy content of the 
battery being charged and the power of the charger.

The BES works by removing an empty battery pack and replacing it with 
a fully charged pack. The vehicle can then leave, while the empty battery 
pack is recharged via a CC system. Exchange times have been shown to be 
as low as one minute for buses and forklift trucks (Cheng et al., 2013; Song 
& Choi, 2015). This makes the recharging time independent of the battery 
energy content, which is highly advantageous for vehicles doing time-critical 
tasks, for example in agriculture.



3.3 Autonomy

Autonomous vehicles
Vehicle autonomy, a technology that has become prominent in the past
decade, has the potential to reduce on-road fatalities and provide significant 
economic transformation in several sectors (Brummelen et al., 2018),
(Lampridi et al., 2019). The level of autonomy in vehicles is defined on the
six-point SAE/BAST scale (range 0-5) (SAE, 2021), where a fully manned 
vehicle without driver assistance systems is at level 0 and a fully autonomous
driverless vehicle is at level 5. The levels are as follows:

Level 0: No driving autonomy
Level 1: Driver assistance
Level 2: Partial driving autonomy
Level 3: Conditional driving autonomy
Level 4: High driving autonomy
Level 5: Full driving autonomy

Levels 0-2 are considered to refer to manned vehicles, with varying levels of 
driver-assistance systems present. At this level, the driver is still legally 
responsible for the vehicle at all times and is expected to monitor the 
environment. Vehicles at levels 3-5 are considered self-driving or 
autonomous, and have complicated legality outside research or safe, well-
enclosed areas (Svedberg, 2016). Levels 3 and 4 have a driver present, but 
the vehicle can operate on its own under specific circumstances (on 
motorways, in garages or on fields). Level 3 generally requires the driver to 
be ready to assume control at short notice, while level 4 vehicles can operate 
independently in the specified environment. Level 5 is full autonomy and 
requires no input from the driver/operator during operation. Vehicles at this 
level require no driver to be present (SAE, 2021).

Autonomous vehicles in agriculture
Driver-assistance systems are common in agriculture and parts of field work 
are commonly automated (GPS-steering, controlled traffic farming, 
headland turn assistance etc.) (Mousazadeh, 2013). Therefore tractors score
higher on the SAE/BAST scale than on-road vehicles and are technologically 
closer to fully autonomous operation. Several autonomous agricultural 
vehicles on levels 4-5 have been proposed, from small single-task vehicles 
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(Fendt, 2017; Young et al., 2018) to lighter implement carriers (Bawden et 
al., 2014; Grimstad & From, 2017) and conventional-sized tractors (Case IH 
Agriculture, 2019). In addition, agricultural fieldwork contains tasks that are 
predictable, plannable and requiring high precision, all factors that favour 
autonomy. The fieldwork tasks, geometry and environment are all simpler 
than in complex on-road vehicle autonomy. The main stated benefits of 
autonomous vehicles in agriculture are labour cost savings, increased work 
periods, increased precision and potential for reducing soil compaction via 
lighter machines (Lampridi et al., 2019; Lowenberg-DeBoer et al., 2021). 
Autonomy also has the potential to mitigate the shortage of farm labour 
experienced in Europe and North America (Lowenberg-DeBoer et al., 2021), 
by increasing utilisation of existing manpower and replacing driver-based 
fieldwork with driverless work. 

3.4 Systems analysis 
When studying complex systems, systems analysis can be an important tool 
for simplifying, understanding and making decisions about such systems. It 
is based on the assumption that a system is more than its sum of its parts and 
can act differently from its components, including showing behaviours or 
dynamics only visible at the systems level (emergent behaviour). By thinking 
about the way individual components interact in a system, it is possible to 
gain a greater understanding than if each component were studied on its own 
(Gustafsson et al., 1982; Liljenström & Svedin, 2005). 

3.5 Life cycle assessment 
To determine the environmental impact of any process or product throughout 
its life cycle, LCA is a common and internationally recognised methodology 
that has its own ISO methodology standards (14040, 14044) (ISO, 2006). 
LCA includes all the process stages of a product’s life cycle, from raw 
material acquisition to manufacturing, assembly, use and ultimately EoL 
(recycling, reuse or waste management). It is a commonly used tool in 
environmental assessment of electric vehicles, energy production and 
batteries (Duce et al., 2013; Loon et al., 2018; Marmiroli et al., 2018). LCA 
can be used to compare different processes or products in a quantitative way, 
or to learn about systems and the hotspots for environmental impacts. To 



easier facilitate comparison, each study uses one or more functional unit that 
is decided by the focus of the study.

The ISO standard (which was used in this thesis and related works) 
recognises four distinct phases of LCA: i) Goal and scope definition, where 
the purpose of the study, its system boundaries and scope are defined; ii)
inventory analysis (LCI), which involves data gathering and modelling of the 
system, including its resource use, material and energy flows, to quantify its 
emissions related to the functional unit; iii) impact assessment (LCIA) where
resource uses and emissions from the life cycle are translated into
environmental impact and other damage categories using characterisation
factors that define the contribution of each type of emission or resource to an 
impact category; and iv) interpretation, where the results from the three 
previous phases are collectively evaluated in order to answer the questions 
of the study (Duce et al., 2013; ISO, 2006).
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4. Method and models 

4.1 Overview 
For the work presented in this thesis, different equations, models, simulations 
and forms of analysis were developed. This chapter presents each of these, 
the assumptions made during their development and the data used. Figure 4 
provides an overview of model structure. The majority of the simulations 
were performed using the discrete-event simulation (DES) farm model. The 
resulting outputs were used in the economic and LCA models to determine 
the resulting costs and environmental impacts, respectively. 

 
Many sub-systems, equations and calculations were used from input to 

results. In summary, these were: 
 

 Vehicle scenarios. Choice of size and number of vehicles, fuel 
type and degree of autonomy. Infrastructure design (charging 
stations, fuel pumps, extra batteries etc.) were decided in this step 
(see section 4.2.3). 

 DES farm model (Matlab/Simulink). This was used to simulate an 
entire growing season, including the behaviour of the tractors, 
energy use, weather effects and fieldwork operations (see section 
4.2). 

 Energy storage model (Simulink/PVGIS). This was used to 
simulate on-site storage of energy used in powering electric 
tractors (see section 4.5). 

 Economic model (MS Excel). This calculated the cost of 
investment, operation and ownership, based on the vehicle 
scenario, empirical cost data and the results from the DES model 
(see section 4.3). 

 LCA model (SimaPro). This analysed the environmental impact 
of the entire vehicle life cycle, both emissions and the resulting 
impacts and damage, based on vehicle scenarios, inventory data 
and the results from the DES model (see section 4.4) 

 
The nomenclature presented in Figure 4 is used throughout the thesis.  



Figure 4. Overview of inputs (parallograms), models used (rectangles) and results (ovals)
used, and connections between these (grey fields).
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4.1.1 Model philosophy  
“All models are wrong. But some are useful.” 

George Box (1987) 0F

1 
 

In systems analysis, all models show a simplified picture of reality. They 
approximate the real-world system under study, as reality is too complex to 
model in its entirety. By choosing the key dynamics and interactions in the 
system, a rudimentary understanding of what is important can be gained. The 
researcher is responsible for deciding what is included and what is not, based 
on the objective of the research. Every modelling study rests on these 
assumptions and shows some degree of error when compared against reality. 
This does not mean that models are completely without value; rather, they 
are useful in the context for which they are created but lose usefulness 
outside that context. 

The models created for the studies described in Papers I-V were all 
created with a specific context in mind. In all cases, the models were created 
to reflect real-world systems and the studied vehicles were then added. Note 
that the models were not created around the vehicles, as that would have 
included bias in the analysis. Instead, commonly used best-practice models 
and equations were used.  

The concept of self-driving battery-based tractors itself has not been 
thoroughly studied previously, but the component parts are well understood. 
The aim in this thesis was to evaluate the new system obtained on combining 
these component parts. To overcome the lack of existing models for the 
entire system, several higher-degree models were created from the building 
blocks of existing sub-models that are generally well-researched and have 
been independently validated in different studies. These higher-degree 
models were created to show the general dynamics, in terms of different goal 
variables and effects, of the change in technology from single, manned 
diesel-fuelled tractors to multiple lighter, autonomous battery-electric 
tractors. Efforts were made to keep the models simple enough to be widely 
understood and the results to be somewhat general, but complex enough to 
have scientific depth and achieve an approximation of reality that was 
accurate enough to have wider implications beyond this thesis.  

                                                      
1From ‘Empirical Model-Building and Response Surfaces’ (1987), p. 424. 



4.2 Discrete-event model

4.2.1 Model methodology
Practical field tests of a vehicle system with emerging technologies such as 
combined autonomous and battery-electric drivelines would be costly. In 
addition, since the technology is still under development and no dominant 
system structure has emerged, field tests would not be able to test the system 
at a mature stage. Since the aim of the studies in Papers I-V was to increase 
understanding of the potential effects of autonomous electric tractors on
Swedish agriculture, simulations were employed as a practical alternative to 
assess the vehicles at fully realised potential. By simulating several years’
worth of weather, where each year was simulated separately and weather 
factors were the only difference between the years, natural variations and 
extreme events were accounted for. Apart from the number of cycles on the 
batteries, no factors were carried over between years. Combining this sample 
size with the ability of the DES model to make decisions on specific 
occurrences made it possible to develop a flexible and resilient model.

In order to simulate operation of autonomous battery-electric tractors, a 
model was implemented in Matlab (R2022a; Mathworks, Natick, MA, USA)
(Paper I). This model is a dynamic, deterministic model that uses DES and 
state-based logic for decision-making, utilising the Matlab toolboxes 
Simulink, StateFlow and SimEvent. In this context, deterministic means that 
the model has no stochastic (random) properties, while dynamic means that 
it describes a change over time, with the state at each time-step based on the 
previous step. Discrete-event simulation means that the state of the system is 
affected by certain events, e.g. in the model a tractor (‘agent’) can only refuel
if there is a refuelling station (‘resource agent’) available without queue 
(‘event’).

The main agents for the discrete events were the tractors, as they were the 
main focus of the system, but batteries and charging stations were also agents 
in the simulation. A simplified flowchart of the decision tree for the control 
logic and different states can be seen in Figure 5.

30



31 

 
Figure 5. Simplified flowchart of the discrete-event simulation (DES) model, showing 
the states (grey squares) and decision points (white diamonds) for each vehicle. 

4.2.2 Farm model and cropping system 
In order to perform relevant analysis, a representative Swedish farm was 
modelled in Paper I. This hypothetical farm was assumed to grow grain, and 
barley, oats, spring and winter wheat were chosen as they are the most 
commonly grown cereals in Sweden (Statistics Sweden, 2018). The farm was 
assumed to have 200 ha of arable land, as this is the farm size for which 
autonomous battery-electric vehicles would be feasible, due to adequate 
investment capacity and machine need (Lowenberg-DeBoer et al., 2021). It 
is also a common arable farm size in Sweden. The arable land was assumed 
to be distributed as 12 fields (size 6-26 ha) at varying distance from the farm 
centre. These values were chosen to represent common conditions in the 
Uppsala region in Uppland County, central Sweden. Each crop was assumed 
to be equally distributed and grown on three fields totalling 50 ha. Field 
distribution, sizes and distances are shown in Table 1. 
Table 1. Size, distance from farm, field number and crop on the simulated fields 

Crop (g) Oats Barley Spring wheat Winter 
wheat 

Field no., n 1 6 8 3 4 11 5 9 12 2 7 10 
Area, An [ha] 10 26 14 20 13 17 15 22 13 16 6 28 
Distance, DF , km 1 3 4 2 2 6 3 5 6 1 4 5 



Fieldwork operations
A conventional cropping system was simulated, as the high power 
requirement of conventional tillage and ploughing was assumed to be a good 
test of the capacity of the new vehicles. Conventional cropping is also the 
most common method in Swedish agriculture, enabling easy comparison to 
other studies and field data. A no-till or no-ploughing cropping system would 
arguably be more fitting for the capacity of the electric vehicle system, but 
the choice was made to optimise the vehicles to the existing conditions, and
not to change the conditions to fit the vehicles.

The growing periods and the operations used for each crop are shown in
Figure 6. The operations and their order were based on Nilsson (1976), while 
the length of the growing season and that of each working period were based 
on empirical data for the Uppsala region (Myrbeck, 1998). A reserve period 
of one month, not included in Myrbeck (1998), was added, as ploughing can
often be performed even after the dedicated autumn period.

Figure 6. Working periods and crop operations for different cereal crops in the Uppsala 
region. 1Harvesting was not included in the simulations, but is included in the diagram 
for a better representation of the order of operations.

The power requirement for fieldwork operations of both the electric and ICE 
tractors was taken as the sum of the power required to move the tractor and 
provide draught for the implement (for details, see Paper I). Standard 
equations for vehicle dynamics were used for the tractors, including rolling 
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resistance, gradient force, acceleration force and drag force (Reif & Dietsche, 
2014). The equations on the force and power requirement for the fieldwork 
operations were taken from ASABE standards (ASABE, 2011; ASAE, 
2000), and the same equations were used for both the ICE and battery-
electric tractors. The power equations optimised the working width of the 
implement, up to a cut-off point decided by the largest available implement 
of that type (as detailed in Paper I). Appropriate values for soil clay were 
used for rolling resistance, soil parameters, tillage depth and implement 
width. Exact values and equations are given in Paper I. They were used as 
written for Papers I-IV, but the power requirement was reduced in Paper 
V, as several sources have stated that the equations give roughly 15% higher 
values than real-world testing (Grisso et al., 2010; Safa et al., 2010). 

Soil type, weather and trafficability 
The geographical position of the simulated farm influenced the choice of soil 
type, growing season and various weather effects. The Uppsala region lies 
within the plains district of Svealand (Myrbeck, 1998), where soils with a 
high clay content (25-60%) are common (Paulsson et al., 2015) (Figure 7). 
Soil type affected the vehicle power requirement (presented in Paper I) and 
several factors in the soil water balance model used, as further described by 
Witney (1988) and Nilsson and Bernesson (2010).  

 



Figure 7. (Left) Map of Sweden with the study region of Uppland County around the 
city of Uppsala shown in red (adapted from Wikimedia Commons under CC BY-SA 3.0). 
(Right) Soil map of Uppland County showing clay content in the region (adapted from 
Paulsson et al. (2015)).

The weather effects considered were precipitation, temperature and daily 
number of sunshine hours, using data taken from weather stations in Uppsala, 
Stockholm and Enköping for the years 1989-2108 (SMHI, 2019, 2020).
Multiple years of weather data were used to reduce the effect of differences
between years on the results. The weather data were used as inputs for the 
soil water balance model, which calculated the soil moisture content for a 
uniform soil layer of 300 mm. The result was then compared to limits of 
trafficability for general tillage and ploughing, taken from de Toro and 
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Hansson (2004). If the soil moisture content was lower than the limit, the 
field was deemed dry enough for traffic, without a risk of negative soil effects 
(Figure 8), and the tractors were cleared to begin fieldwork. If the soil 
moisture level was above the threshold, the tractors waited. In Paper I, data 
for the years 1989-2018 were used. In the other studies, the number of years 
was reduced to lower the computational strain, as the full 30-year period was 
deemed unnecessary for acceptable resolution. Papers II, III & V used data 
for the years 2008-2018, while Paper V used data for 1988-2018 for 
simulations on hydraulic conductivity and data for 2008-2018 for machine 
simulations. 

 
Figure 8. Example of soil moisture content in spring 2008 (ma, solid grey line) according 
to the water balance model. Hourly precipitation (Qp, right axis) is shown as black bars. 
Trafficability limits for general tillage (grey dashed line, bottom) and ploughing (black 
dashed line, top) are indicated. 

4.2.3 Vehicle scenarios 
Several different scenarios were simulated and compared in Papers I, II, IV 
& V. These were mainly vehicle scenarios with differing energy carriers 
(fuel/electricity), degree of autonomy, energy-carrying capacity and power 
(Table 2). For simplicity, they were generally divided into primary and 
secondary scenarios. The primary scenarios compared a conventional diesel 
tractor with a driver and an equivalent unmanned electric tractor system, with 
the aim of identifying differences between the systems, where the 
conventional tractor constituted the technological starting point and the 



electric system the technological goal. In addition, some possible variations 
of scenario parameters (number of vehicles, fuel, charging types etc.) were 
explored (see section 5.5) to increase understanding of the effect of 
technology and component choices. Sensitivity analysis on selected
parameters was also performed in Papers I, II, IV & V.
Table 2. Key inputs used for the conventional internal combustion engine (ICE) tractor 
and the battery-electric driveline (BED) tractors in the primary scenarios

Working 
time 
[h d-1]

No. of 
vehicles

Power
(PV)
[kW]

Energy 
carried
(EB)
[kWh]

Charger 
type

Charger 
power 
(PC)
[kW]

Weight
(m)
[kg]

ICE 10 1 250 4,684
(463 L)

Fuel
pump

30,345 10,800

BED 24 2 50 4x100 BES
2xCC1

50 3,527

1BES = battery exchange system, CC = conductive charging.

Variations in inputs such as soil compaction effects, soil type, farm-to-
field distances and fieldwork operations were possible in the model, but the 
values were kept static to focus the analysis on the different vehicle systems.

4.2.4 Electric vehicles
The electric tractors used throughout Papers I-V were assumed to be general 
agricultural field machines with the main purpose of providing draught for 
fieldwork implements. A general, technology-agnostic electric motor was 
modelled, using variables from permanent magnet synchronous motors 
(PMSM) described by Andersson (2019). Motor efficiency was assumed to 
be a static average of 95%, with driveline efficiency (motor to wheels) of 
85% (Ryu et al., 2003). The latter efficiency value was based on conventional 
tractors, even though increased transmission efficiency is likely for electric 
drivelines in heavy work machinery (Lajunen et al., 2018). The total 
efficiency from charger to wheels was assumed to be 74%.

Charging infrastructure
Charging infrastructure was assumed to exist at the farm centre and the 

tractor drove there when it needed to recharge or refuel. Recharge was either 
by conductive charging (CC) of permanently installed batteries in the tractor
or a battery exchange system (BES) where depleted batteries were replaced 
by fully charged batteries in the tractor. The CC system (Yilmaz & Krein, 
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2013) was assumed to consist of a number (NV) of fast chargers with a 
charging power variable (PC, kW). They were assumed to recharge the 
batteries by a linear method, which has been shown to give an adequate fit 
to the constant current/constant voltage (CC/CV) recharging method often 
used in CC (Harighi et al., 2018; Shen et al., 2012) (Figure 9). The recharge 
rate was dependent on the power and efficiency of the charger and the 
effective energy content of the battery (EB, kWh), as described in Equation 
1: 

 
 (1) 

 
where θ(t) and θ(t0) is the state of charge at time t and when arriving at the 
charger (t0), respectively, θ min and θ max denotes the minimum and maximum 
battery charge level, respectively (20% and 100% in this study), EB is 
maximum battery energy content in kWh, PC is charger power in kW and ηc 
is charger efficiency (95%).  
  



Figure 9. Simplified constant current/constant voltage (CC/CV) recharge methodology
(adapted from Shen et al. (2012)). (a) Current and voltage dynamics and (b) battery state-
of-charge variable (θ) and the straight-line approximation used in the model.

In the BES system, the entire depleted battery pack was replaced with a 
fully charged pack. The tractor could then resume operation directly after the 
exchange, while the depleted battery was recharged using a conductive plug-
in fast charger as described above. Therefore the BES system needed both a 
CC system and battery exchange infrastructure. In addition, extra battery 
packs were required. The BES was based on existing industrial automatic 
transfer carriage systems (Solus Group, 2019). The exchange time was set to 
10 minutes to give a margin of error, although shorter times have been 
demonstrated for cars (Adegbohun et al., 2019) and buses (Song & Choi, 
2015).
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Batteries 
When modelling the battery, it first served as a general energy reservoir for 
the tractor, a role performed by the fuel tank in the ICE driveline. Thus the 
battery-electric vehicle system was kept more general than in previous 
studies. A Li-ion battery with nickel-cobalt-aluminium (NCA) chemistry 
was assumed, as it is common in electric vehicles (Paper II). The dynamic 
state-of-charge (SoC) level, θ(t), of the batteries was monitored as a single-
variable way of knowing the state of energy capacity of the batteries 
(Grunditz & Thiringer, 2016; Tremblay et al., 2007). It describes the fraction 
of full charge remaining and was set to increase linearly when the battery 
was charged and decrease linearly when a load (commonly fieldwork or road 
transport) was applied, which was found to correspond adequately to the 
more realistic charge-discharge curves in Paper II. The battery had an 
energy variable denominating the maximum energy carried, EB, in kWh.  

 A minimum SoC value, θmin, was introduced at 20% to avoid damage or 
accelerated deterioration caused by deep discharging of the battery. In the 
model, the tractor was programmed to never discharge the battery under this 
limit. 

Battery ageing 
Batteries deteriorate electrochemically in two ways, through use or over 
time. This deterioration is mainly evident as capacity fade (reducing the 
energy-carrying capacity of the battery) and power fade (increasing the 
internal resistance and reducing power efficiency) (Uddin et al., 2016). 
Calendar ageing was omitted from the analysis, as one of the defining 
characteristics of Li-ion batteries is low capacity fade during storage (Barré 
et al., 2013). Instead, the focus was on capacity fade as the batteries were 
used frequently, which tends to lead to capacity fade being the main ageing 
factor, rather than time (Uddin et al., 2016). 

There are several factors influencing the rate of battery deterioration, or 
ageing in colloquial terms, and many of these are interconnected, making 
clear separation of causes difficult. In this thesis, the focus was on cycle 
ageing, as described in Barré et al. (2013), where the batteries deteriorate 
over time due to charging or discharging. Charging or discharging with 
higher power accelerates this deterioration, so the charging rates (C-rates) 
were studied. The C-rate is a unit describing the rate of charge/discharge, 
describing how many times the battery can be fully charged in an hour. A C-



rate of 1C means that the battery is fully charged in an hour, while a C-rate 
of 4C means the battery is fully charged in quarter of an hour (i.e. 15 min).
C-rates of 0.5C, 1C and 4C were analysed. Due to the type of use, it was 
assumed that the number of cycles and the C-rate were the most influential 
factors (Uddin et al., 2016; Wenzl et al., 2005). Capacity fade, or ageing, can 
also be tracked as a battery’s state of health (SoH), which tracks the fraction
of the original energy-carrying capacity that remains at a given point in time. 

Ageing was modelled in Paper II for a one-dimensional battery cell, 
using COMSOL Multiphysics (v5.5, COMSOL AB, Stockholm, Sweden) by
S. Dhillon from Uppsala University. Modelling was based on the porous 
electrode theory and concentration solution theory (Thomas et al., 2002),
using a graphite negative electrode, a LiPF6-based electrolyte and a NCA 
positive electrode. A stable ambient temperature of 293 K was assumed, and
a minimum SoC of 20% (or, inversely, depth-of-discharge, DoD, of 80%). It 
was assumed that fast charging was used in the SoC interval 20-80% and 
slower charging during the interval 80-100% (Figure 9), in accordance with 
best practice in electric vehicle charging (Berg, 2015). Where several 
batteries were used, such as in the BES scenario, the cycling was assumed to 
be distributed equally. When the capacity fade exceeded 20% of EB (i.e. SoH 
was 80%), the battery was assumed to be replaced after the current working 
year, as it is a common cut-off point in the electric vehicle industry (Berg,
2015). To use the simulation results in the DES model, the capacity fade of 
the batteries was fitted by a third-order polynomial. These values were then 
used in the remaining sub-systems and models to reduce computation times. 
Equations, parameters and details are presented in Paper II.

Autonomy
The simulated tractors were assumed to be autonomous to a high degree, 
reaching level 4 or above on the SAE scale (sometimes known as the BAST-
scale), meaning high (level 4) or full driving autonomy (level 5) (SAE, 
2021). For practical purposes, this means that the vehicle was able to perform 
all tasks with only occasional monitoring. In the model, it was assumed that 
the autonomous vehicles were unmanned and self-driving and that an
operator monitored their systems and status remotely. 

The fraction of time monitoring that was required was described for each 
task by a decimal operator factor, O, where 0 is fully autonomous operation, 
and 1 is fully monitored. Previous studies have suggested values of 0.1-0.2 
for all operations (Engström & Lagnelöv, 2018; Goense, 2005). Road
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transport was assumed to have additional complexities and was given a 
higher value to compensate. The operator factors used are shown in Table 3.  
Table 3. Operator factors for different tasks modelled, showing the fraction of hours in 
which the tractors needed to be monitored 

Task Operator factor 
Fieldwork, OF 0.2 
Road transport, OR 0.3 
Charging/refuelling, OC 0.1 
Manned operation (conventional 
system) 

1 

Waiting for drier fields 0 
 

Although the subject of self-driving or autonomous vehicles is well-
researched, no specific sensor system, components or technology were 
chosen for the simulations, in order to avoid producing technology-
dependent results. In addition, as the scope of the study was system-scale 
impacts of changing to autonomous battery-electric tractors, a general 
autonomy system with mature technology readiness level was assumed, to 
better analyse the impacts of the technology in common use rather than in 
experimental trials. Recommendations on autonomous technology given by 
Mousazadeh (2013) and Hirz and Walzel (2018) were considered. 

4.2.5 Conventional internal combustion engine tractor 
A conventional tractor vehicle system was modelled, as it is the current 
system and sets the baseline for comparisons. The conventional scenario was 
assumed to consist of a single, manned diesel tractor with PV of 250 kW, 
weighing 10,800 kg, with a fuel tank containing 463 L diesel (or 4680 kWh). 
Tractor weight and fuel tank size were based on modern tractor models 
(Valtra S294, Fendt 933 Vario, John Deere 7R330), verified with data from 
Mantoam et al. (2016). Manned systems were modelled to give a maximum 
active working time of 10 hours per day for seven days per week, partly to 
simplify the simulation and because this is not an uncommon work schedule 
in time-critical situations. A 10-hour workday was also used by Lowenberg-
DeBoer et al. (2021). In practice, the actual time spent working was lower 
due to weather and non-trafficable fields.  



The efficiency of the combustion engine was set to an average value of 
30%, with total driveline efficiency of 25.5%. This corresponds to an average
to high value for agricultural tractors (Wasilewski et al., 2017).

The farm centre was assumed to have a pre-existing diesel pump with a 
flow rate of 50 L min-1, corresponding to an energy flow of 30.3 MW min-1.
Refuelling times were less than 10 minutes, so there was never a need for 
more than one fuel pump. It was assumed that the fuel pumps had perfect 
efficiency and no spill.

4.2.6 Soil compaction
In agricultural field operations, the weight of the vehicle plays an important 
role. High vehicle weight can lead to soil compaction, which can adversely 
affect soil health and plant growth (Bennett et al., 2019; Hamza & Anderson, 
2005). To analyse the effect of the lighter vehicles possible with autonomous 
operation, long-term soil compaction was included in the model (Paper V).
The assumption was that the tractors with lower weight compacted the soil 
in a reversible way, while the heavier machines led to long-lasting or 
irreversible soil compaction (Figure 10). In practice, the effect of vehicle 
weight on soil compaction is more gradual, but since the main comparison 
was between vehicle systems of very different weights, this assumption was 
used.
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Figure 10. Simplified graphic of soil compaction impact for heavy and light vehicles.

Soil compaction is a complex field, so key changes that had large 
potential impacts and were likely to be affected by the change in vehicle 
weight were selected for analysis. These were: 

1) Reduced trafficability due to a 74% reduction in soil hydraulic 
conductivity (Keller et al., 2017).

2) An 8% decrease in crop yield due to rooting difficulties (Keller et al., 
2019).

3) Increased fuel use for seedbed preparation due to increased soil 
density/resistance (Keller et al., 2017). These were increased by 87%, 
which led to a total yearly energy increase of 29%.

These three factors are directly related to the use of vehicles and have 
been identified as impactful in both economic and environmental terms 
(Hamza & Anderson, 2005; Keller et al., 2019). The specific values are for 
soils with a high clay content, i.e. soils in the Uppsala region.



4.3 Economics
The economic model described in Paper II was based on total annual cost 
(CAN), consisting of ownership costs (COW) and operating costs (COP). This 
was based on methods proposed by Wu et al. (2015) and Lampridi et al. 
(2019), with additional cost calculation of autonomous systems by 
Marinoudi et al. (2019) included, as well as straight-line value depreciation 
and the average interest rate method. Additional levels of detail were used in 
the calculation of battery costs, as they are an important part of the economics 
of electric vehicles. Several factors normally included in agricultural cost 
assessment were assumed to be similar for all scenarios, and were thus
omitted. These included the farm itself, vehicle housing, harvest, combine 
harvester, insurance, inputs and seeds. The cost of the diesel pump was 
omitted, as it was assumed to be already present on-site, but electric 
infrastructure was included since the change in fuel necessitated new
investment in infrastructure.

4.3.1 Investments
The investment costs of the different components are shown in Table 4,
together with the assumed lifetime and the sources of data. Where possible, 
existing data from the agricultural or electric vehicle industry were used, 
while in the remaining cases assumptions were made. A general resale or 
salvage value of 10% of the investment cost was assumed. More details on
the basis of the costs are given in Paper II.

44



45 

Table 4. Investment costs used to calculate cost of ownership (COW) (adapted from Paper 
II) 

Component Investment 
cost (c)  

Lifetime 
[y] 

Source 

Batteries 146 € kWh-1 Varies (Comello & Reichelstein, 2019) 
Charger 50,000 € 20 (Engström & Lagnelöv, 2018; 

Swedish Energy Agency, 2019) 
Additional 
chargers 

25,662 € 20 (Engström & Lagnelöv, 2018; 
Swedish Energy Agency, 2019) 

Battery 
changing 
system 

10,000 € 20 (Solus Group, 2019) 

Autonomy 
system 

17,446 € 15 (Bösch et al., 2018) 

Tractor, P=50 
kW 

45,005 € 15 (Engström & Lagnelöv, 2018; 
Maskinkalkylgruppen, 2020) 

Tractor, P=250 
kW 

191,550 € 15 (Engström & Lagnelöv, 2018; 
Maskinkalkylgruppen, 2020) 

 
The equations used are given in detail in Paper II, but followed the general 
form:  
 

                                              (2) 
and: 

                          (3) 
 

where COW is the ownership cost in €, Cx is the component cost, R is the 
salvage value (normally 10%) in €, T is the economic lifetime in years, ir is 
the real interest rate, i is the interest rate (2.75%) and d is the inflation rate 
(2%). 
 
The different operating costs were then summarised for each cost (i.e. fuel, 
timeliness etc.) and combined with the ownership cost to give the total annual 
cost:  

 (4) 
where COP is the operating cost and CAN is the total annual cost, both in € y-

1. 



4.3.2 Operating costs
In calculation of the operating costs, the focus was on the running costs of 
vehicle use, with the major contributors being fuel, maintenance and the cost 
of vehicle operators. The indirect cost of reduced crop yield because of 
delayed or sub-optimal establishment (known as ‘timeliness’) was also 
included in the operating costs. Maintenance was assumed to be reduced by 
28% compared with the normal maintenance cost of an agricultural field 
tractor (Pettersson & Davidsson, 2009) (Table 5), as electric drivelines 
generally have a lower maintenance requirement than ICE drivelines 
(Delucchi & Lipman, 2010).

Since both electricity and diesel prices tend to vary, three-year averages 
(2018-2020) were used. For both, VAT was not included, as farmers are 
exempt from VAT. In addition, farmers are entitled to a carbon tax refund 
on diesel with a base level of 178 € m-3 (1930 SEK m-3) and a proposed 
increase to 363 € m-3 (3930 SEK m-3) (Swedish Ministry of Finance, 2022),
which was used. This gave a price of 0.77 € L-1, or 0.076 € kWh-1 using 
conversion factors from Reif and Dietsche (2014).
Table 5. Operating costs assumed in economic calculations (adapted from Paper II, with 
updated energy prices from Paper V)

Parameter Unit cost Source
Electricity 0.076 € kWh-1 (Statistics Sweden, 2022)
Diesel 0.076 € kWh-1

(0.77 € l-1)
(Drivkraft Sverige, 2022; European 
Comission, 2022b)

Maintenance ICE 48.8 € ha-1 (Olt et al., 2010; Pettersson & Davidsson, 
2009)

Maintenance BED 35.1 € ha-1 (Delucchi & Lipman, 2010; Propfe et al., 
2012)

Operator 28.2 € h-1 (Maskinkalkylgruppen, 2020)
ICE =internal combustion engine, BED = battery-electric driveline. 

The operator cost was chosen to be a fixed hourly cost modified by the 
operator fraction, O. For example, for an hour of fieldwork (where O=0.2),
the operator cost per vehicle would be 20% of the price shown in Table 5. In
previous studies, Lowenberg-DeBoer et al. (2021) assumed a full-time 
employee with the possibility of extra help paid per hour, while Lampridi et 
al. (2019) assumed full-time oversight, but 50% lower operator cost. An
hourly cost was chosen in this thesis with the intention of having high 
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resolution for the operator costs, in order to differentiate between the 
scenarios in a more nuanced way and create a model with wide applicability. 
Moreover, prediction of the dominant future business model for autonomous 
vehicle management is difficult and hourly cost was an easy metric to 
transfer to other methods.  

Timeliness 
The cost resulting from non-optimal establishment or operation timing 
(timeliness) was included in the cost estimate (Paper II). It was mainly based 
on previous studies that characterised the loss curve as linear (Gunnarsson & 
Hansson, 2004)] (as done in this thesis) or parabolic [(Witney, 1988). In both 
those studies, sowing was shown to have a significant impact on the 
timeliness cost, and was chosen as the main activity to focus on. In studies 
of timeliness, the optimal day for establishment or machine operations is 
often identified, but in the model developed in this thesis it was assumed that 
the first trafficable day was ideal for sowing and that cost-inducing delay 
started from that day. The cost ( ) was then assumed to depend linearly on 
the number of delay days (Gunnarsson & Hansson, 2004): 

 
                       (5) 

 
where Sn is the timeliness cost in € y-1, lg is the timeliness factor in kg ha-1 d-
1, tn is the time delay from the optimal day of sowing in days, pg is the grain 
price in € kg-1 and An is the area in ha. The subscript n indicates the field 
number and g the type of grain. 

 
Timeliness factors were taken from Gunnarsson (2008), yield figures 

were taken from a three-year (2019-2021) average of normal yields for the 
Uppsala region (Statistics Sweden, 2018, 2019, 2021) and grain prices were 
five-year (2017-2021) average aggregates from major wholesale buyers 
(Jordbruksverket, 2022). The values are presented in Table 6. Values for An 
can be found in Table 1 and tn was determined through dynamic simulation. 
  



Table 6. Factors used to calculate timeliness costs. Adapted from Papers II & V and 
Gunnarsson (2008)

Factor Winter 
wheat

Spring
wheat

Barley Oats

Yield, Yg [kg ha-1] 6,809 4,557 4,847 4,321
Wholesale price ]SEK kg-1] 1.65 1.76 1.57 1.36
Wholesale price, pg [€ kg-1] 0.152 0.163 0.145 0.125
Timeliness factor, lg [kg ha-1 d-

1]
55 59 40 23

Timeliness [% d-1] 0.8 1.3 0.8 0.5

4.3.3 Battery costs
Batteries were considered both as an investment cost and as an operating
cost, for ease of comparison. The cost of batteries over the lifetime of a 
vehicle depends on several factors, such as investment cost, lifetime, resale 
value and EoL threshold. The investment cost was set to 146 € kWh-1 for a 
NCA Li-ion battery module, including battery management system (BMS), 
housing and wiring (Comello & Reichelstein, 2019). Values of 113-215 € 
kWh-1 are cited in the literature and market predictions (Mauler et al., 2021; 
McKerracher et al., 2020; Nykvist & Nilsson, 2015; Tsiropoulos et al., 
2018). The resale value was set to 10% of the starting value, although the 
second-life market for batteries is expanding and the actual resale value 
might be higher.

In order to include battery costs as an operating cost, the value had to be 
recalculated to either cost per cycle (€ cycle-1) or cost per energy unit stored 
(€ kWh-1), both of which are common metrics in the field. Note that the cost 
per energy unit stored is different from the cost per unit of energy storage 
capacity, even though they share the units € kWh-1. The costs were calculated 
by using the number of charging cycles and energy use, respectively, from 
the DES model and dividing the battery ownership cost on these.

4.4 LCA
To quantify the environmental impact of battery-electric vehicles compared 
with conventional tractors, LCA was performed. The environmental impact 
of electric vehicles is an interesting topic that has been prolifically researched
(Dolganova et al., 2020; Ellingsen et al., 2017; Hawkins et al., 2012; 
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Hernandez et al., 2017). Since one of the goals of this research, and of 
electrification of tractors in general, was to reduce the negative 
environmental impact by replacing diesel as a fuel, a thorough analysis of 
the net environmental effects was critically important. 

4.4.1 Methodology 
In Paper IV, a process-based, mainly consequential LCA was performed, 
including production, assembly, use and EoL in its scope (Figure 11). The 
methodology was based on the ISO standard (ISO, 2006), with life cycle 
inventory (LCI), emissions characterisation, weighing and life cycle impact 
assessment (LCIA) included, using methods and data from previous 
publications (Huijbregts et al., 2017; National Institute for Public Health and 
the Environment, 2016). The main functional unit was one average ha of 
arable land growing cereal during one year (1 ha y-1). One kg of grain was 
chosen as a secondary functional unit for ease of comparison with other 
studies, as it is a very common functional unit used in LCA of food systems 
and agriculture (Holka  et al., 2016; Roer et al., 2012; Röös et al., 2011). 
Both midpoint and endpoint impact categories were included, in order to 
obtain a broader picture of the environmental impacts of the systems, since 
midpoint factors are useful in measuring emissions intensity and endpoint 
factors measure the resulting damage in several categories (Plevin et al., 
2014). 



4.4.2 Inventory
An inventory of the system (Paper IV) was made using the LCA software 
SimaPro (v9.0.0.49, PRé Sustainability, Amersfoot, Netherlands). Data from 
inventories of tractors and heavy-duty electric vehicles were primarily used, 
but components from other electric vehicles, heavy-duty vehicles and 
autonomous vehicles were assumed to be scalable and used in the system. 
The inventory is summarised in Table 7.

Table 7. Overview of the inventory made for the vehicle systems in life cycle analysis
(LCA). Components marked with * were partly included

Phase Category Component Electric Diesel

Manufacturing & 
assembly

Glider
(vehicle w/o
driveline)

Cab ●
Tyres and wheels ● ●
Frame ● ●
Chassis ● ●

Driveline
Lead-acid battery ●
Engine ●

Figure 11. System boundaries applied in life cycle analysis (LCA), comprising direct system 
boundaries (inner rectangle) and indirect system boundaries (outer oval with dashed border). The
indirect processes are not described specifically in the diagram, but were included in the results. 
Dashed arrows indicate energy flow.
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Diesel tank  ● 
Transmission ●* ● 
Auxiliary fluids (oil, 
lubricants, AdBlue 
etc.) 

 ● 

Li-ion battery ●  
Electric motor ●  

Other 
components 

Autonomous system 
and sensors 

●  

Infrastructure 
Electric charger ●  
Battery exchange 
system 

●  

Use phase 
Fuel 

Diesel  ● 
Electricity ●  

Repair and 
maintenance 

Repair ● ● 
Maintenance ●* ● 

End-of-life 
Disposal 

Vehicle disposal ● ● 
Infrastructure disposal ●  

Recycling Battery recycling ●  
 

Manufacturing and assembly 
Two different main scenarios were assumed in this thesis, with several 
possible variations. These scenarios were: i) a contemporary ICE system 
with a single diesel tractor of 250 kW weighing 10,800 kg, and ii) two 
autonomous, battery-electric tractors with assumed unloaded weight of 2527 
kg, exchangeable NCA Li-ion batteries of 100 kWh and power of 50 kW 
through a PMSM motor (Nordelöf et al., 2017), all which needed to be 
manufactured. The materials used for repair and maintenance were modelled 
as extra tractor components in the manufacturing process. The 
manufacturing of necessary infrastructure for battery recharging and 
exchange was also included in the inventory, as was their installation on-site. 

Use phase 
In the use phase the focus was on fuel use, which has been proven to be a 
major contributor to the environmental impact of heavy-duty vehicles 
(Mantoam et al., 2016). Data on fuel use by the battery-electric tractors were 



taken from the dynamic DES over the vehicle lifetime of 15 years. For the 
ICE, a dataset based on emissions from combusting diesel in agricultural 
machinery was used, as it was a good fit for the system described (Jungbluth, 
2007). For electricity, Swedish marginal mix, consisting of 41.4% imported 
electricity from natural gas, 35.1% wind power and 23.5% produced from 
woody biomass (Itten et al., 2014), was assumed. This was validated with 
more recent electricity mix data (Swedish Environmental Protection Agency, 
2020). For both scenarios, repair and maintenance data followed guidelines 
for agricultural machinery, with the exception that engine oil, AdBlue and 
some lubricants were omitted for the electric vehicle scenario, where they 
are not used (Mantoam et al., 2016; Nemecek & Kägi, 2007). The batteries 
were considered in the use phase, as they were replaced when they reached 
SoH of 0.8. Depending on the C-rate, this gave the batteries different 
lifetimes, with the main scenario having a service life of 15.5 years and a 
cycle life of 7760 cycles (Paper II).

End-of-life
The EoL stage was modelled in line with a method following guidelines for 
electric vehicles (Loon et al., 2018; Siret et al., 2018) and agricultural 
machinery (Nemecek & Kägi, 2007). Disposal of the ICE tractor was 
included in the dataset used (Nemecek & Kägi, 2007), so the disposal 
described here is for the electric vehicle driveline. Battery disposal is an 
uncertain process that is reported to need extra care when larger batteries are 
used (Loon et al., 2018; Siret et al., 2018), so it was given an additional level 
of detail. In this thesis, the method proposed by Siret et al. (Siret et al., 2018)
was used. Generally, the components of the tractor could be recycled, 
incinerated for energy recovery, incinerated as hazardous waste management
or sent to landfill. The material in metal parts was assumed to be recycled to 
100% after an additional metal-working process, while rubber, plastics and 
paper were assumed to be incinerated for energy. Concrete and glass were 
assumed to be sent to landfill. Additional disassembly and shredding of the 
vehicles were required for some disposal, and all disposal types were 
assumed to be performed within Sweden, for logistics reasons. The disposal
pathway for each component is described in detail in Paper IV.
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4.4.3 Life cycle impact assessment (LCIA) 
Impact assessment categories were taken from the ReCiPe method and the 
SimaPro software (National Institute for Public Health and the Environment, 
2016; PRé Sustainability, 2020). Eighteen impact categories are available 
and all 18 were used to calculate damage categories and the weighted score 
(Figure 12). The most frequently used impact categories from LCAs on 
electric vehicles, batteries and agricultural machinery were compared to the 
18 available and 11 were chosen to be presented, based on frequency (Paper 
IV). This was done to encompass the vital emissions and impacts within the 
scope of all sectors described, since agriculture and electric vehicles 
represent different areas of study in environmental analysis. 

The emissions in the respective midpoint impact categories were then 
weighed to get an endpoint damage impact in three categories: human health, 
ecosystem impact and resource scarcity. Human health was measured in 
disability-adjusted life years (DALY), where each unit represents the 
equivalent loss of one year of life. Ecosystem impacts were measured as 
number of species lost over a set period (species y), while resource scarcity 
was measured as cost increase of future resource production (US$2013) (PRé 
Sustainability, 2020). The conversion factor to go from midpoint to endpoint 
impact category depends on the perspective chosen. In this thesis the ReCiPe 
hierarchist perspective was chosen, as it is the default perspective and offers 
a good balance between short and long-term scopes (National Institute for 
Public Health and the Environment, 2016). The conversion from emissions 
to impacts is shown in Figure 12. The conversion factors can be found in 
Paper IV. 
 



Figure 12. Framework for the life cycle impact assessment (LCIA) used in Papers IV & 
V, with all impact categories shown, divided between the fully represented (solid 
rectangles) and indirectly included (dashed rectangles).

4.5 Local energy production & storage
Simulation of local energy photovoltaic (PV) production and storage in 
combination with the electric tractors was performed in Paper III. The 
model used in simulation consisted of three main components: a power
source (PV solar cells), stationary energy storage (Li-ion batteries) and a 
power sink (charging station for the electric tractor). A simplified system 
overview can be seen in Figure 13. The aim was to investigate the 
relationship between storage and production on-site, in order to identify
suitable storage periods that might reduce costs. 
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Figure 13. Simplified system structure with system components and power flow (black 
arrows) used in simulation of local energy photovoltaic (PV) production and storage. 
Complementary models used are shown with dotted squares. EV = electric vehicle. 

Production was estimated using PVGIS (European Comission, 2022a) for 
four different solar cell mountings that each had their configurations (slope 
and azimuth) optimised in PVGIS. Production was set to equal the yearly 
power requirement of the electric tractors, so that with infinite storage 
potential, no additional energy would need to be purchased. The system 
always delivered electricity to the tractors on need, so if the energy storage 
was empty the electricity was purchased from the power grid. The energy 
storage size was the main variable investigated, and the value was varied. 
The storage was simulated for three types of period: between night and day, 
between trafficable field conditions and between seasons.  
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5. Results and discussion 

5.1 Driveline comparison  

5.1.1 Technology pathways and system structures 
In order to create an autonomous electric-battery tractor system that was 
comparable to a conventional diesel tractor, the simulations were run 
iteratively to find a system structure and adequate values for the simulation 
inputs and parameters. Several different alternatives in technological 
development were simulated, to assess the changes caused by individual 
parameters to the studied metrics and how these changes were connected. By 
iterating system structures and studying the effects on performance, costs 
and environmental impact, a system with good performance in all metrics 
was identified. The steps visited along the way showcased the general 
dynamics involved in the different choices of system structure. The 
following paragraphs briefly describe how the system structure was changed 
in Papers I-V. 

In Paper I, performance comparisons were made between a conventional 
diesel tractor, autonomous electric tractors with CC or BES charging and an 
autonomous system with two 50 kW diesel tractors. The results showed that 
autonomy was required for the electric systems to have comparable 
performance (tracked as active vehicle time) to the conventional systems. 
The electric systems achieved lower duration in-field and a resulting increase 
in transport between farm and field. The time spent on recharging was also 
higher, both because of the higher frequency of recharge required and 
because recharging was slower than refuelling. The diesel tractor refuelled 
~250 times per year, with each refuelling event taking 2-3 minutes, while the 
electric tractors recharged 500-1250 times per year, with each recharge event 
taking 10 minutes for the BES and 1-2 hours for the CC system. The electric 
chargers had power of 50 kW, while the fuel pump had power corresponding 
to 30,300 kW (50 L min-1). To reduce the charging time, BES was chosen as 
the standard charging technology in subsequent studies, as it was able to 
reduce the recharging time by up to 90% compared with a CC system and 
was therefore better suited for time-sensitive situations. 

An evaluation of different sizes and numbers of batteries, charging 
stations and tractors was performed in Paper I, as a nominal range sensitivity 



analysis (changing one parameter at a time). The results indicated that an 
increase in individual parameters did not have a large impact on the 
performance, but instead that it was important to find and eliminate
bottlenecks. An increase in battery size or in number of vehicles without 
increasing the charging capacity led to less transport time, but longer 
recharge times. Increased vehicle power without increasing battery size led 
to a higher work rate, but more frequent recharging. Thus a balanced system 
that sought to minimise unproductive time (mainly transport and charging)
gave the best performance results. A system of two autonomous electric 50 
kW tractors with 50 kWh batteries and BES charging met these criteria and 
was used in subsequent studies. The analysis also showed that electrification 
of conventional systems provided too low a work rate, but that autonomy 
without electrification was a plausible pathway, as it provided an increase in 
performance over the manned system.

Economic performance and battery management were further explored in 
Paper II, where a scenario analysis of different systems was performed.
Unlike in Paper I, several parameters were varied for each scenario. It was 
found that ensuring long battery lifetime and usage through good battery 
management was highly economical. Therefore the original battery size was
increased from 50 kWh to 100 kWh and the number of chargers was 
increased to two. This led to a lower charging rate (C-rate) and a reduced 
number of yearly charge/recharge cycles, leading to longer battery life and 
lower battery costs over the lifetime. The results for different secondary 
scenarios investigated showed that a small on-board battery (25 kWh) with 
several exchange batteries was a poor replacement for a system with larger
on-board batteries but fewer available for exchange, as the time spent in-field 
became too short to be functional, while also ageing the batteries quickly and 
requiring frequent replacements. It was also shown that partial autonomy (18 
h d-1) was economically comparable to a conventional diesel system, while
full (24 h d-1) autonomy showed better economic and work rate performance
than the conventional system.

Paper IV confirmed the findings in Paper II in terms of system structure, 
showing that even when large (100 kWh) battery packs were used, the 
environmental impact was lower than for the conventional system, where
fuel use had a major impact. To reduce unproductive time and ensure that 
the system had the necessary capacity, two extra batteries (making a total of 
four 100 kWh batteries) and two fast chargers were assumed. Paper V
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related the system structure to the weight of the vehicle and showed that 
heavier vehicles had negative consequences in the form of soil compaction. 

The assumed final system structure was two fully autonomous 50 kW 
tractors with exchangeable 100 kWh NCA batteries, with each vehicle 
having one extra battery for quick replacement at a BES location. Two 50 
kW CC/CV chargers were assumed to be available at the same location to 
charge the empty batteries. These chargers also each had a 3 kW charger for 
‘slow’ charging during the off-season, in periods of bad weather or for 
maintenance charging. Each tractor weighed 2527 kg unloaded and 3527 kg 
with a battery pack on-board. 

5.2 Time and delays 

5.2.1 Time distribution and fieldwork operations 
The main consequence of the vehicle shift explored in Paper I was a change 
in performance. A change to autonomous electric vehicles led to both a 
change in the total time taken for different fieldwork operations and a change 
in the distribution of time (Figure 14). The inclusion of autonomy removed 
the requirement for driver rest, while electrification of the driveline gave a 
triple effect. The first effect was that a reduction in the amount of energy 
carried (from 4684 kWh in diesel tank to 100 kWh in a battery) reduced the 
duration of each fieldwork stay before recharging was required. This can be 
seen in the increased fraction of time spent in transit between farm and field 
(Figure 14). The second effect was more efficient energy use for the electric 
driveline (see section 5.2.2). The third effect was increased time spent 
replacing the battery or queueing for a fully charged battery. The time spent 
waiting for better weather was independent of other factors and was similar 
for both the conventional and autonomous electric vehicle scenarios. It is 
worth noting that even though the fraction of time spent on fieldwork 
differed, the absolute active time spent was similar (18-19 days’ worth of 
active time). The sum of yearly active time was 97 days for the manned diesel 
tractor and 70 days for the autonomous electric tractors, with most of the 
reduction being explained by autonomy. 



Figure 14. Time distribution, as fraction of total time, for (left) the conventional diesel 
tractor scenario and (right) the autonomous battery-electric tractor scenario, with the sum 
of active time shown under each chart. Values shown are averages for 11 consecutive 
years with differing weather (2008-2018).

An effect of the reduction in rated vehicle power was inability to use 
implements of the same size as in the conventional scenario. The model 
handled this by calculating the power required to move the tractor and then
sizing the implement so that the remaining power was used on the 
implement, up to a maximum implement size taken from empirical sources 
(Paper I). The resulting working width, and consequently the rate of work, 
is shown in Figure 15. This assumption explains why the diesel tractor 
seemed to have spare power for some operations compared with the electric 
tractors (Figure 16).
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Figure 15. Working width and average rate of work (CO) of the electric and diesel tractors 
in different fieldwork operations. For the electric tractor scenario, the rates with both one 
and two tractors are shown. 

 
Figure 16. Average power requirement for fieldwork and average road transport in the 
primary electric and diesel tractor scenarios.  

It is worth noting that the rate of work shown is per hour and that the 
autonomous electric system had the potential for more active hours than the 
conventional system, and therefore likely a higher rate of work on a daily 
basis than shown in Figure 16. In any case, the rate of work for the system 



with two electric tractors was comparable to that of the conventional diesel
tractor system on an hourly basis. 

To evaluate the difference brought about by increased fieldwork speed, 
simulations were run with differing in-field average speeds for the 
conventional tractor, up to 10 km/h (Figure 17). Higher average speeds were 
not tested in previous studies or included in standards (Kitani et al., 1999; 
Lindgren et al., 2002; Witney, 1988). It can be seen from Figure 17 that the 
required time approached a value similar to that of the autonomous electric 
tractors at tavg=70 days, and a similar cost of timeliness for both cases at 9-
10 km/h can be assumed. The rate of improvement decreased with higher 
vehicle speeds, indicating diminishing returns on higher vehicle speeds. 

Figure 17. Average active time (simulated) for the conventional internal combustion 
engine (ICE) tractor as a function of vehicle speed in-field. The simulation was run for 
11 separate years for each speed. Error bars show +/- 1 SD.

The completion dates for different fieldwork operations also differed 
between the scenarios, with the electric tractor scenario able to complete 
operations at an earlier date than the conventional scenario (Figure 18). The 
time-critical spring operations were completed in 35 days, compared with 48
days for the conventional system. Compared with the dates given by
Myrbeck (1998) for timely establishment and sowing, both systems were 
within the normal range and completed work earlier than the average date 
for central Sweden (5/5), indicating adequate machine capacity by Swedish 
standards. A comparable rate of work to the conventional system and an 
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increased number of workable hours per day for the autonomous electric 
system allowed it to complete the fieldwork tasks at an earlier date than the 
conventional system. 

 
Figure 18. Order of fieldwork operations and date of completion, with the date for 
working periods (spring summer, autumn) and sowing recommendations by Myrbeck 
(1998) also shown (light grey fields). Black dotted arrows indicate the range of 
recommended sowing dates and the average sowing date for central Sweden is shown as 
a black dotted line. 

5.2.2 Impact of electrification 

Energy use 
Electrification of the vehicle driveline led to increased driveline efficiency, 
as shown in Figure 19, and an associated reduction in energy use, resulting 
in total efficiency of 74%, compared with 26% for the conventional system.  



Figure 19. Cascade graph of driveline and vehicle efficiencies in each main step for the 
internal combustion engine (ICE) and autonomous electric vehicle (EV) scenarios, with 
losses and final available energy distribution. Energy distribution describes the ratio 
between energy used to move the tractor and energy available for implement draught. 
Note that transmission was η=0.85 in both cases.

The energy use in the different scenarios came to a yearly average of 58,500
kWh y-1 for the electric system and 153,800-230,600 kWh y-1 (76-113 l ha-1)
for the diesel tractor (Figure 20), with the range of values depending on 
whether additional fuel use caused by soil compaction (Paper V) was 
included or not. For comparison, data obtained in a field test on conventional 
tillage in the Uppsala region under similar conditions as those simulated, 
when converted to the same operation order and frequency used in the model, 
indicated energy use of 107,600 kWh y-1 when omitting further soil 
compaction and 152,000 kWh y-1 when it was included (53 and 75 L diesel
ha-1, respectively). This resulted in an energy use reduction of 47-75% when 
transitioning from the conventional diesel vehicle system to the autonomous
electric system. These results are in line with literature results, albeit slightly 
higher.
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Figure 20. Energy use in the internal combustion engine (ICE) and electric vehicle 
scenarios, with the simulated values shown in comparison to field test values (Lindgren 
et al., 2002) and literature values (interval and grey dots, (Baky et al., 2010; Daalgard et 
al., 2001; Grisso et al., 2010; Safa et al., 2010; Wells, 2001; Witney, 1988)). Note that 
the literature values do not include roller packing or road transport. Harvesting was 
omitted in all cases. 

Battery results 
Battery management was found to be important for the electric tractors 
(Paper II). As the charging rate and cycles were determined to have the 
greatest effect, the resulting simulation showed the different cut-off points at 
which batteries should be replaced for different C-rates and cycle numbers 
(Figure 21). The cut-off point was set at SoH = 0.8, which for C/10 occurred 
at 7760 cycles, for 1C at 4240 cycles and for 4C at 1200 cycles (Paper II). 
The number of batteries and recharging frequencies affected the number of 
years that elapsed before this number of cycles was reached. Systems with 
more batteries spread the cycles evenly and large batteries required fewer 
recharges per year. This led to systems with many and/or large batteries 
having the best cycle life. 



Figure 21. Battery ageing simulation of state-of-health (SoH) with increasing number of 
cycles and (b) increasing number of years at different charging (C)-rates (4C, 1C, C/10.
End-of-life (EoL) is indicated at SoH = 0.8 (horizontal dotted line) and curve-fitting 
approximation used in simulations is shown in (a). The replacement frequency shown in 
(b) was simulated for the primary autonomous electric tractor scenario.

A commonly cited solution to the low energy-carrying capacity of batteries 
compared with a tank of diesel is to use larger batteries. This parameter 
change was tested and found not to yield the expected results. Since 
increasing the energy-carrying content of the batteries (EB) increased both 
the time the tractor could work in-field and the time it took to recharge a 
battery with conductive charging, these effects almost cancelled each other 
out. This meant that there was only a small performance increase on doubling 
EB from 50 to 100 kWh without any other changes. What was gained in work 
time was lost in charge time, as can be seen in Figure 22, so increased battery 
size only gave minor net benefits.

It was found in Paper I that other changes were required when changing
the battery size, depending on the charging system. When the CC system was 
chosen, an increase in battery size also needed an increase in charger power 
to keep the charging time low and not create queues. Alternatively, BES 
could be adopted if there was an adequate number of batteries available, and
then the charging power could be lowered. The number of batteries available 
would ideally allow the tractors to always receive a full battery when they 
returned for recharging. With the 100 kWh batteries and 50 kW CC chargers
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assumed in this thesis, there were equal numbers of chargers and tractors and 
each tractor had one extra battery, making a total of two per tractor.  

A similar effect was found for increases in vehicle power (PV), as 
increased useful power led to an increase in working speed, but also faster 
discharging of the batteries, which in turn led to more frequent recharging. 
This can be seen in Figure 22, where doubling the vehicle power led to only 
a minor decrease in the time required for field operations. In order to gain 
the full benefit, increased battery size was also required, which in turn 
necessitated an increase in charging potential. Thus, no single parameter was 
key to higher system productivity and the system as a whole needed to be 
optimised, as almost all parameters showed a similar trend of diminishing 
returns (Figure 22). 

 
 

 
Figure 22. Active time requirement for fieldwork as a function of battery energy content 
for conductive charging (CC) and two cases of battery exchange systems (BES). All 
cases showed a diminishing return from only increasing a single parameter. 

5.2.3 Energy storage simulations 
It was shown in Paper III that production of PV solar cells did not match 
the energy requirement of the autonomous electric tractors. They worked 
whenever the fields were trafficable, which spread the distribution of 
charging times across 24-h periods, while the solar cells produced electricity 
only during daytime, so storage was deemed necessary to benefit from local 



solar energy production. There was also a mismatch in seasons, as the solar 
cells produced more energy in the summer, when demand by the electric 
tractors was low, than in early spring (March-April) or early autumn 
(September-October) when the demand was highest (Figure 23).

Figure 23. Average solar energy production levels (o, ●) and demand (xxx) as a function 
of hour of the day during spring, summer and autumn. ‘Two-axis’ and ‘fixed’ refer to 
different solar cell configurations.

The simulation results obtained in Paper III showed that the storage 
batteries needed to be at least as large as the batteries on the tractor in order
to be useful. The batteries had three states, full, empty and active, with active 
being the state when the battery had energy to discharge but could also store 
more, i.e. it was the most useful state. Batteries with storage capacity of 
under 50 kWh acted in a binary manner, either being empty (if a charging 
event had recently happened) or full, with no active time between. Batteries 
that could store more than 10 hours of production were able to store all 
electricity produced from day to night, while batteries that could store 100-
300 hours were able to store energy between periods with workable 
conditions. Storage between seasons required very large batteries and was 
found to be unfeasible.

With the electric and battery costs assumed in Paper III, there was no
economic benefit in local production and storage based solely on use by the 
electric tractors. Even though the production cost was low, the cost of buying 
sufficiently large batteries to ensure a high degree of availability proved to
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be excessive. It is possible that with decreasing battery prices, increased 
electricity prices and more on-farm uses than for tractor energy, the system 
could become profitable. The storage battery was available for alternative 
uses for 76% of the year, so the profitability of the system would be highly 
dependent on alternative uses. 

5.3 Economic impact 

5.3.1 Investment costs 
The investment costs of the different scenarios varied in terms of where the 
main costs arose (Paper II). In the conventional system, one of the few 
capital investments was in the tractor itself (in addition to implements and 
combine harvester, which were omitted), which had a purchase cost of 
191,600 € with an additional 4,000 € in capital costs (interest rate and 
inflation over the vehicle lifetime), giving a total of 195,600 € (Figure 24). 

The investments needed for the autonomous electric tractor were more 
varied, but generally comprised machine costs and infrastructure. It was 
assumed that the electric charging infrastructure (charging station 
establishment, additional fast chargers and battery exchange systems) needed 
to be established on-site, at a total cost of 85,700 €. Each electric tractor had 
a purchase cost of 71,200 €, which included the electric driveline, 
autonomous system and two 100 kWh batteries. Each battery had a cost of 
14,600 €, giving a total battery cost of 58,400 € for the system. The battery 
could also be characterised as an operating cost, of 7.5 € cycle-1 or 0.067 € 
kWh-1.  

The total investment cost for the electric scenario was 262,600 €, of which 
177,000 € was machine costs. This is comparable to the machine costs for 
the conventional scenario, although the total investment cost was higher for 
the electric tractors. This is in line with results from other sources, where 
electric vehicles often have a higher investment cost than their conventional 
counterparts (Wu et al., 2015). 



Figure 24. Investment cost for the conventional and electric tractor scenarios.

5.3.2 Operating costs
The investment costs were recalculated over component lifetimes to 
ownership cost, or annuity, and included as an operating cost (Paper II),
along with the cost of operator/s, maintenance, timeliness, fuel and potential 
yield loss from soil compaction (Figure 25).

Electrification of the driveline had several apparent effects. First, the 
annuity for the electric system was much higher (22,500 € y-1) than for the 
conventional case (15,500 € y-1). Second, there was a reduction in fuel cost 
due to the higher efficiency of the driveline, as the fuel price per unit of 
energy was very similar for electricity and diesel (0.076 € kWh-1). The 
electric driveline analysed in this thesis had theoretical potential to reduce 
energy use by 75%, but the more frequent refuelling compared with the 
conventional system, increased road transport and the net energy reduction 
in the studied scenarios was 62%. This resulted in a cost reduction from 
11,700 € y-1 to 4,400 € y-1 when using field test data for diesel fuel 
consumption (Lindgren et al., 2002). Finally, the reduction in maintenance
requirement was minor but non-negligible (2,900 € y-1).

The impact of vehicle autonomy was evident as a reduction in timeliness
cost and operator cost. The increased work rate led to improvement in 
timeliness, as discussed in section 5.2.1. Two small autonomous battery-
electric tractors had higher machine capacity than the conventional system 
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and this allowed earlier crop establishment and more timely fieldwork 
operations. The reduction in operator cost was due to a combination of 
reduced fraction of time the machine needed to be operated by a human 
driver and increased work rate reducing the total number of hours the 
machine was active. Despite the high level of autonomy, the operator cost 
was not eliminated, but reduced by 41%. Overall, autonomy reduced the 
timeliness cost by 3,000 € y-1 and the operator cost by 6,100 € y-1 compared 
with the conventional scenario. More importantly, autonomy of the electric 
tractors was a key technology in making the electric driveline competitive, 
as the main cost disadvantages of manned electric tractors (high operator 
costs and low fieldwork rate of work) were eliminated, resulting in a total 
operating cost reduction of 32-37%. 
 

 
Figure 25. Total annual cost and normalised annual cost for the two scenarios, with both 
simulated and field-test fuel use included. Soil compaction impact in the conventional 
scenario is indicated as cross-hatched squares. 

5.4 Environmental impact  
The model results were split into gate-to-gate (GTG) results and cradle-to-
grave (CTG) results, where GTG is the life cycle from material to finished 
product at the factory gate, focusing on material, manufacturing and 
assembly, and CTG is the entire vehicle life cycle, including production, use 



and recycling/disposal. The midpoint results used both CTG and GTG, while 
the endpoint results focused exclusively on CTG.

5.4.1 Midpoint results

Gate-to-gate (GTG)
In the manufacturing and assembly processes for the electric tractor scenario, 
production of the NCA-C Li-ion battery had a significant impact (42-83%) 
in all impact categories analysed in the GTG scope, except for ozone 
depletion (Paper IV). The impact and source in the most common impact 
category, global warming, are shown in Figure 26. The battery had a climate 
impact of 15.5 kg CO2eq kg-1 or 155 kg CO2eq kWh-1. This was slightly above 
common literature values of 120-133 kg CO2eq kWh-1 for NCA-C batteries
(Bauer, 2010; Le Varlet et al., 2020; Samaras & Meisterling, 2008) and
above average but in line with measured values for general Li-ion batteries 
with non-specified or aggregated chemistries (range 61-175 kg CO2eq kWh-

1) (Aichberger & Jungmeier, 2020; Dai et al., 2019; Emilsson & Dahllöf, 
2019; Hischier et al., 2009).

Figure 26. Climate impact data for the NCA Li-ion battery, showing a) material 
composition, b) weight distribution and c) global warming potential (GWP) impact per 
component.

Other key impacts during production of the electric tractor system were 
the glider (vehicle w/o driveline) and the charging infrastructure, as they 
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included many high-impact metals and many processes and had high weight. 
The electric motor and the autonomous system components had a 
comparatively small total impact, even though they had a high impact per 
weight unit, as their total weight was low compared with that of the batteries 
or the charging infrastructure (Figure 27). 

 
Figure 27. Gate-to-gate (GTG) results for the autonomous electric tractor scenario, 
showing the climate impact in the 11 selected impact categories and the impact of the 
main vehicle components. 

The conventional tractor scenario had a less complex impact distribution, as 
most of the impacts arose in the vehicle production and assembly processes. 
Using a pre-defined dataset inventory from EcoInvent (Nemecek & Kägi, 
2007), although verified, meant that some resolution of components was lost 
and impacts were aggregated. On comparing the GTG results for the 
conventional and autonomous electric tractors, the latter had a higher 
midpoint GTG impact in all categories studied (Figure 28). As in the cost 
comparison, the environmental impact burden of the autonomous electric 
vehicle was also higher in the investment phase. Much of this impact 
originated from production of four 100 kWh (roughly 4,000 kg) batteries for 
the system. A finding worth noting is that the GTG global warming impact 
of the autonomous electric vehicle was close to that of the conventional 
vehicle (3-17% higher for the electric tractor). In previous studies, the high 
impacts of manufacturing electric vehicles (batteries in particular) have been 
identified as an impediment to electric vehicles fulfilling their potential to 
reduce climate impacts. The similar values obtained for conventional and 



electric tractors in this thesis indicate that this might not be the case for 
agricultural machinery.

Figure 28. Comparative gate-to-gate results in the 11 selected climate impact categories 
for the autonomous electric tractor (light grey) and conventional tractor (dark grey)
scenarios.

Cradle-to-grave (CTG)
The CTG analysis included the use and EoL phases, in addition to materials
and production. The results obtained for the conventional tractor scenario
indicated that the energy used as fuel (diesel) was highly impactful in all 
categories and was the main contributor in all but one impact category
(Figure 29). For the autonomous electric tractor system, the battery and 
charging infrastructure contributed heavily to the impacts, in addition to the 
electricity impact. The vehicle, including the electric motor, glider, chassis, 
repairs, maintenance, driveline and autonomy components, had a minor 
effect, due to the low vehicle weight (3,527 kg) compared with the 
conventional tractor (10,800).
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Figure 29. Cradle-to-grave (CTG) climate impact in the 11 selected impact categories 
for (left) the conventional tractor scenario and (right) the autonomous electric tractor 
scenario. For the conventional scenario, repair, maintenance and disposal are included in 
“Vehicle”.  

The conventional tractor scenario had a higher climate impact in eight of the 
11 selected impact categories (Figure 30). The autonomous electric tractor 
scenario had a higher impact only in terrestrial ecotoxicity, freshwater 
ecotoxicity and mineral resource scarcity, where the large quantity of 
batteries needed in the system was highly impactful. Further normalising the 
impact values per hectare and year, assuming a 15-year vehicle lifetime and 
200 hectares of arable land worked, gave a climate impact of 77 and 269 kg 
CO2eq ha-1 y-1 for the autonomous electric tractor and conventional tractor 
scenario, respectively. 



Figure 30. Comparison of cradle-to-grave climate impacts in the 11 selected categories 
for the autonomous electric (light grey) and conventional (dark grey) scenarios.

Table 8: Gate-to-gate (GTG) and cradle-to-grave (CTG) life cycle assessment midpoint 
results in the 11 selected categories for the autonomous electric tractor and conventional 
tractor scenarios

GTG CTG

Impact category Conv. Elect. Conv. Elect. Units
Global warming 8.7 9.0 10.2 2.3 105 kg CO2 eq.
Stratospheric ozone 
depletion

0.4 1.3 5.9 3.5 10-3 kg CFC11 eq.

Fine particulate matter 
formation

0.2 0.5 3.3 0.5 103 kg PM2.5 eq.

Terrestrial 
acidification

0.2 1.2 5.4 1.2 103 kg SO2 eq.

Freshwater 
eutrophication

76 185 250 174 kg P eq.

Terrestrial ecotoxicity 1.0 3.6 2.0 3.5 106 kg 1,4-DCB eq.
Freshwater ecotoxicity 0.9 3.0 1.4 5.5 104 kg 1,4-DCB eq.
Human carcinogenic 
toxicity

0.7 1.6 1.7 97.9 104 kg 1,4-DCB eq.

Human non-
carcinogenic toxicity

0.03 0.16 4.8 1.5 106 kg 1,4-DCB eq.

Mineral resource 
scarcity

2.1 6.8 2.5 4.5 103 kg Cu eq.

Fossil resource scarcity 2.5 3.1 34.0 9.0 104 kg oil eq.
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In the most commonly used midpoint impact category (global warming), the 
autonomous electric tractor scenario had 23% of the impact of the 
conventional diesel tractor system. As 91% of the climate impact for the 
conventional tractor scenario and 67% for the autonomous electric tractor 
scenario derived from the fuel, the type, mix and source of fuel were factors 
with high significance for the global warming impact. In this thesis, marginal 
Swedish electricity mix was assumed to be used for the autonomous electric 
tractors and in manufacturing, assembly and EoL .  

A comparison between different fuel sources was made, considering both 
the unit climate impact of fuels and the impact per useful unit, after the 
different driveline efficiencies had been taken into account (Figure 31). 
Diesel had a lower climate impact per unit than electricity produced from 
natural gas, hard coal and the global electricity mix (which consists of 
majority natural gas and coal and is comparable to the European mix and 
Swedish marginal electricity). However, after driveline losses, diesel had a 
higher impact than all electricity mixes except hard coal, even when 17% 
HVO blend-in was assumed. HVO from Swedish feedstock, considered a 
sustainable ICE option (Källmén et al., 2019; Soam & Hillman, 2019), had 
a higher impact than both Swedish marginal and European electricity. 
Renewable electricity and the Swedish average mix gave a significantly 
lower climate impact per useful energy unit than any ICE option (Figure 31).  

 



Figure 31. Climate impact for different fuel mixes and origins, shown as useful energy 
(at wheel, after driveline losses).

5.4.2 Endpoint results
The endpoint results (Figure 32) strongly indicated that the autonomous 
electric tractor scenario had a lower impact than the conventional tractor, 
regardless of whether field test energy demand or simulated demand was
used in calculations. On weighing all the midpoint factors together and
converting them to their damage categories, the impact of the autonomous 
electric tractor scenario was 75-83% lower for human health, 54-68% lower 
for ecosystem impacts and 71-80% lower for resource scarcity. The damage 
category “resource scarcity” was weighed from the fossil and mineral 
resource use midpoint categories, and even though the autonomous electric 
scenario had high mineral resource use, the fossil resources used for fuel in 
the conventional case significantly outweighed this. Collected to a single 
score, the reduction was 74-82%.
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Figure 32. Damage category impacts for the autonomous electric tractor and 
conventional tractor scenarios, with simulated and field test fuel use included for the 
conventional scenario. Impact is divided between vehicle (dark grey) and fuel (light 
grey), where vehicle includes infrastructure, disposal, repair and maintenance. 

Soil compaction 
The soil compaction component of the environmental impact was distributed 
into two main factors; increased amount of fuel used and loss of yield. The 
increased amount of fuel for the conventional case contributed to a 26% 
increase in the climate impact and a 26-27% increase in the different damage 
categories (Paper V). It is important to note that this impact was specific to 
the soil type, which was clay-rich. 

General comparison & verification  
The loss of yield effect of 8% due to soil compaction for the conventional 
tractor compared with the lighter autonomous electric tractors was only 
apparent when using a secondary functional unit of loss per mass (kg) of 
grain produced (Figure 33). This resulted in global warming potential of 
0.057 kg CO2eq kg-1 grain, or 0.039 kg CO2eq kg-1 grain, without soil 
compaction effects. For comparison, the autonomous electric tractor scenario 
had an impact of 0.015 kg CO2eq kg-1 grain (Paper V). This can be compared 
to a total value of 0.22-0.70 CO2eq kg-1 grain for Swedish wheat production 
reported in the literature (Henryson et al., 2020; Moberg et al., 2019; Röös 
et al., 2011), with a value for machinery production and use of 0.07 kg CO2eq 
kg-1 grain reported by Moberg et al. (2019). The results for the conventional 



tractor are therefore in line with literature values, and the autonomous
electric tractor showed potential for a significant reduction in climate impact.

Figure 33. Global warming potential per unit of grain produced for different levels of 
soil compaction effects in the conventional diesel tractor and autonomous electric tractor 
scenarios (Paper V).

5.5 Scenario and sensitivity analyses
In order to broaden the scope slightly and show the outcomes of different
technological choices and component sizes, other possible scenarios were
explored in addition to the two primary scenarios. These scenarios are
described in full in Papers I, II and V, and that analysed in Paper V is also 
discussed below.

5.5.1 Scenario analysis
The different scenarios simulated in Paper V included tractor systems of 
different sizes, fuel energy, number of vehicles and degrees of autonomy 
(Table 9), in order to cover other system structures.
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Table 9: Key parameters used in the different scenarios analysed in Paper V. The 
two main scenarios discussed in this thesis are shown in italic font 

Fuel No. of 
vehicles 
(Nv) 

Rated 
power 
(Pr, 
[kW]) 

Energy 
carried 
[kWh, 
(l)] 

Extra 
battery 
packs 

Working 
time  
[h d-1] 

Mass,  
incl. 
batteries 
[kg] 

Diesel 1 250 4,684 
(463) 

- 10a  10,800 

1 250 4,684 
(463) 

- 24 10,800 

2 50 1,315 
(130) 

- 24 2,527 

Electric  
(BES) 

2 50 100 2 24 3,527 
3 50 100 2 24 3,527 
1 250 200 2 24 12,800 

aDriver. 

Performance 
Compared with the machine capacity of the manned diesel tractor, which was 
used as a benchmark for adequate machine capacity, all other scenarios had 
a lower active time requirement (Figure 34). This indicates that autonomy 
can be a useful tool for increasing machine work rate in almost any system, 
enabling more timely crop establishment. It was also found that autonomous 
diesel tractor scenarios in general had a higher rate of work and spent a larger 
fraction of their time on fieldwork than autonomous electric tractor 
scenarios. Two smaller battery-electric tractors had a lower time requirement 
than one large electric tractor, even though their time distribution was very 
similar, indicating that using two tractors can give a more efficient system 
structure. 

 



Figure 34. Results of scenario analysis for six scenarios differentiated by number of 
vehicles (Nv), rated power in kW (PV) and fuel (diesel, electric). (a) Length of working 
periods and (b) time distribution. All values are 11-year averages (2008-2018).

Costs
The annual cost varied greatly between the different scenarios, with heavier 
vehicles having the highest annual costs, mainly due to soil compaction 
effects (Figure 35). When soil compaction effects were disregarded, the 
autonomous diesel tractor scenarios had a lower cost than the autonomous 
electric tractor scenarios, mainly due to reduced annuity and operator costs,
while the autonomous electric tractor scenarios reduced fuel and 
maintenance. The increased machine capacity (see Figure 34) reduced the 
timeliness cost, but was not critical. All scenarios had a lower cost than the 
250 kW autonomous electric tractor and the manned diesel tractor, with the 
system comprised of two small autonomous diesel tractors having the lowest 
annual cost, followed by the main autonomous electric tractor scenario. The 
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scenario with three autonomous electric vehicles provided increased 
machine capacity at the cost of increased annuity. 

 
Figure 35. Total annual cost of six scenarios differentiated by number of vehicles (NV), 
rated power (Pv) and fuel (diesel, electric), distributed per category of costs (left axis) 
and normalised to annual cost per hectare (right axis).  

Environmental impact 
The LCA results showed that the autonomous electric vehicle systems had a 
lower impact in terms of climate impact and in the damage categories human 
health, ecosystem impact and resource scarcity than the diesel vehicles 
(Figure 36). The only exception was the 50 kW diesel vehicle in the 
“ecosystem impact” damage category, where it had slightly lower impact 
than the largest autonomous electric tractor scenario. In all other metrics, the 
reduced fuel impact of the autonomous electric tractors was shown to be 
defining. However, those scenarios also had a large manufacturing impact, 
mainly due to the large amount of batteries manufactured. Overall, therefore, 
the two-vehicle system had the lowest impact, as it did not require as much 
manufacturing as the other electric tractor scenarios. The reduction in fuel 
impacts had a two-fold effect, as the increased energy efficiency led to a 
higher amount of energy being used for useful work and as electricity 
generally had a lower impact per unit of fuel compared with diesel.  

 Using low-impact fuel efficiently, having a low manufacturing impact 
and having low vehicle weight seemed to be the most impactful factors for 
low environmental impact.  



Figure 36. General life cycle assessment (LCA) results showing (a) global warming 
potential (GWP) and impact in the damage categories (b) human health, (c) ecosystem 
impact and (d) resource scarcity in six scenarios differentiated by number of vehicles 
(NV), rated power (PV) and fuel (diesel, electric). End-of-life, infrastructure, repairs and 
maintenance are included in “Vehicle”.

5.5.2 Sensitivity analysis
Sensitivity analysis was performed in order to analyse the impact of 
individual parameters on system performance (Paper I), annual cost (Paper 
II, V) and environmental impact (Paper IV, V),. This was done as a way of 
verifying the assumptions made and assessing parameter variation or 
uncertainty. The sensitivity analysis of system performance (Paper I)
showed that increasing the individual parameters had a diminishing return in
terms of effectiveness. The sensitivity analysis of cost (Paper II) identified 
rate of autonomy, operator cost and investment cost of the tractor as 
impactful factors, while also showing that the battery investment was 
comparatively less impactful, in contrast to the case for passenger vehicles
(Delucchi & Lipman, 2010). The sensitivity analysis of environmental 
impacts (Paper IV) showed that choice of fuel was the main factor to 
consider, with battery size and vehicle lifetime also being impactful. 
Analyses performed in Paper V confirmed these findings.
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6. Further discussion 
The performance of the agricultural vehicle systems analysed in this thesis 
showed significant dependence on location, farm type and the scope of the 
analysis. Therefore the applicability of the findings for real-world operations 
and for other vehicle systems, farm types, locations and technologies can be 
questioned. However, the conclusions reached were in accordance with those 
found in previous simulations or calculations for similar systems (Baek et 
al., 2020; Lampridi et al., 2019), and the individual findings were verified 
whenever possible. While it bears repeating that other system boundaries, 
scopes or assumptions might produce different results, the general changes 
and conclusions should be generally applicable to similar systems. As such, 
they may prove useful for future research on electric vehicles in agriculture. 
In addition, the decision was made to perform a simulation-based study due 
to a lack of feasible alternatives for a study of this scope. This made it 
possible to conduct a more explorative study with a wide scope, which also 
gave the opportunity to assess system choices that had a large impact and 
provided flexibility in changing parameters to find general connections and 
trends.   

In the short-term, transition to biofuel has been suggested as an effective 
way to reduce GHG emissions from transport and machinery, as commonly 
available biofuels can often be used in existing vehicles, with HVO replacing 
diesel being of particular interest to the agriculture sector (Soam & Hillman, 
2019). It could be argued that the most logical subject of research would be 
biofuels powering autonomous vehicles, providing low GHG emissions and 
strong economic potential without the challenges of battery drivelines. 
Biofuel is undoubtedly a good solution to reduce GHG emissions in the 
short-term, to reach environmental goals set for the coming decade 
(European Comission, 2018; The Government of Sweden, 2013) and as an 
important component in a fossil-free vehicle fleet. However, biofuel vehicles 
are already close to wider market implementation and are at high technology 
readiness level, and thus require less research and more adaptation. In 
addition, electric drivelines provide further benefits over ICEs, regardless of 
fuel. Examples include higher efficiency, lower environmental impacts, the 
potential for local production and cheaper fuel. IPCC (2022) argues that 
electric vehicles have large GHG emissions reduction potential, while 
biofuels can provide similar effects in the short- and medium-term. In line 



with this, the scope of the research in this thesis was on autonomous electric
tractors, as this is a more transformative technology where the knowledge 
gap is wider and more research is needed.

An important consideration is that the choice and structure of systems 
compared in this thesis are at different technology readiness levels (European 
Comission, 2019). The conventional diesel tractor system is widely used and 
has been developed over decades. The autonomous electric tractor system,
on the other hand, was based on a combination of different technologies that 
are assumed to become operational in the near future, in contexts close to 
contemporary farming. Common current-day technologies were used for 
autonomous systems, electric motors and drivelines, batteries and charging 
stations. By using current technology, costs, emissions and component 
parameters for a near-future system, some accuracy in the results was lost,
as future developments were omitted. However, sensitivity analysis was
performed where possible (Papers I, II, IV & V) to assess the potential 
impact of changing different parameters. Transformative technologies are 
seldom competitive early in their development, especially when compared 
with established technology. The general trend is for new technologies to 
become cheaper, more efficient and have better-developed supply chains as 
they become more widely used (Arvidsson et al., 2017). As battery-electric 
vehicles and autonomous vehicles are both of high market interest, this is a 
likely future trajectory for these technologies. As an example of this trend,
the cost of Li-ion vehicle batteries has decreased by 89% over the past 10
years (IPCC, 2022). In comparison, fossil fuels and ICEs are unlikely to see 
significant further development and fossil fuels are expected to be 
significantly less used (through policy changes or market incentives) in the 
near future (European Comission, 2018; IPCC, 2022). Due to the different 
nature of the systems (both in degree of autonomy and type of fuel), it is not 
certain that the autonomous battery-electric tractor system will be used in the 
same manner or have the same business model as the conventional tractor 
system when fully developed, as transformative technologies often lead to 
new modes of use. However, trying to predict future trends is a difficult 
endeavour, so contemporary technology and trends were used as an 
approximation in order to fulfil the research aims of this thesis.
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7. Conclusions 
This thesis compared a conventional system of manned diesel tractors with 
a system of smaller autonomous battery-electric tractors, in simulation 
analyses of a 200-ha grain farm in Uppland County, Sweden. Simulations 
and theoretical analysis proved to be useful tools in assessing future 
agricultural vehicle systems that cannot yet be field-tested in a practical 
context due to cost or lack of technological maturity. Such analyses also 
made it possible to study many different system structures in a flexible and 
timely way. Using a multi-disciplinary approach that included dynamic 
simulation, economic analysis and life cycle analysis, potential system 
effects were studied, general dynamics were identified and recommendations 
were made on ways to optimise the system in terms of all three metrics 
analysed (performance, costs and environmental impact). The main 
conclusions were as follows: 

 Autonomous battery-electric tractors were capable of similar or better 
work rate than a conventional diesel tractor used in contemporary 
Swedish agriculture in a simulated setting, reducing the active time 
required for field operations by 17 days per year and allowing a larger 
fraction of useful work.  

 Vehicle autonomy was the main driver behind the improved work rate. 
Autonomy was required to mitigate the drawbacks of electric vehicles 
in terms of energy capacity, frequent recharging and slow recharging 
rate.  

 Utilisation of a battery exchange system (BES) was more beneficial 
than conductive charging (CC), as it shortened recharging times. 

 Use of autonomous electric tractors increased the energy efficiency of 
the vehicle system, with an average driveline efficiency of 74% from 
charging station to implement, due to higher efficiency in components, 
compared with 26% energy efficiency for the conventional diesel 
tractor. This reduced the energy use from 153,800 kWh y-1 (76 L diesel 
ha-1 y-1) for the conventional tractor system to 58,500 kWh y-1 
(equivalent to 29 L ha-1 y-1) for the autonomous electric tractor system, 
a reduction of 62%. 

 Lower annual cost of the autonomous electric tractor system made it 
competitive relative to the conventional diesel tractor system. While the 



electric tractor had higher investment cost, autonomy led to lower 
operator cost and the electric driveline led to lower maintenance and
fuel costs compared with the conventional system. This led to a net
reduction in annual costs of 32-37% for the studied system. The cost 
assumptions for autonomy, batteries, fuel and electricity may be 
challenged, but the conclusion after economic scenario and sensitivity 
analysis was that equal or lower operating costs are possible with 
autonomous electric tractor systems.
In LCA, the autonomous battery-electric tractor system reduced the 
climate impact by up to 74% compared with the conventional diesel 
tractor system. The main driver behind this was emissions associated 
with fuel use, which was a significant contributor to the climate impact 
for agricultural machinery use. Since the Swedish marginal mix 
assumed in the analysis had a lower impact per energy unit compared 
with diesel and the electric driveline used less energy in total, this led to 
a large reduction in climate impact. The choice of fuel was by far the 
most impactful factor for both systems. 
Utilising a full LCA with LCI, LCIA and 18 impact categories gave 
high-resolution results and clearly identified battery manufacturing and 
fuel use as two hotspots for emissions and damage impacts. In eight out 
of 11 impact categories studied in detail, the conventional system had 
higher impacts. In the human health, ecosystem impact and resource 
scarcity damage categories, the autonomous electric tractor system gave
54-80% lower impact than the conventional system, showing good
potential to reduce the environmental impacts of agricultural machinery, 
especially if low-impact electricity is used.
Reduced vehicle weight was shown to be an important additional 
benefit of the autonomous electric tractors compared with the 
conventional diesel tractor, especially for the clay-rich soil in the study 
area (Uppland County). Use of vehicles weighing 3,500 kg instead of 
10,800 kg was possible due to vehicle autonomy, which led to
avoidance of further soil compaction. This effect alone may not be a
strong enough incentive for a technology shift, but it provided a strong 
additional argument by amplifying existing trends. 
Batteries were found to be an important technological choice and 
warrant further research. Simulated battery ageing as a function of 
cycling showed different rates of ageing depending on the charging rate 
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used for charging/discharging and led to optimisation of the battery 
towards a longer cycle life. The chosen 100 kWh NCA battery had a 
cycle life of 7760 cycles before reaching EoL and being replaced. From 
a cycle-based capacity fade perspective, a larger battery with a lower 
effective charging rate was preferable to smaller batteries that are cycled 
more intensively. On-site battery storage was shown to have some 
benefits, but the load of electric tractors was insufficient to reach 
feasibility. 

 Good battery sizing and management were shown to be critical from a 
work efficiency, economic and environmental perspective. For a 200-
ha farm, a 100 kWh battery provided a high work rate, a low rate of 
cycle ageing and a good balance (both economically and 
environmentally) between initial investments and effective use. These 
factors were linked, i.e. an efficiently used battery with a long time 
before replacement was both economically and environmentally sound.  

 All metrics analysed benefited from being optimised as a system and 
not as individual components, since increasing the value of individual 
parameters did not resolve bottlenecks and often suffered from 
diminishing returns. A balanced approach to number of vehicles, 
batteries and charging stations and vehicle power, carried energy 
content and charging power was the most beneficial solution, allowing 
non-productive time to be kept at a minimum while not investing in 
unused overcapacity. This was confirmed in analysis of likely 
alternative scenarios involving other possible system structures, where 
the autonomous battery electric tractor system showed balanced results 
for all metrics.  

 
Overall, this thesis and the individual papers showed that autonomous 
battery-electric tractors can be economically and environmentally 
competitive with contemporary diesel tractors in the near future. By 
combining the battery-electric driveline with autonomy, the benefits from 
both can be used to greater effect than either by itself.  
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8. Future research 
 

Research is a continuous and iterative process where each answer to a 
question leads to greater understanding and also new questions. Some 
additional questions and lines of research requiring further exploration 
emerged during the work in this thesis.  

The work presented in this thesis is theoretical, so it is important to 
explore similar vehicle systems in field tests. There have recently been some 
successful tests on similar systems (Fendt, 2017; Grimstad & From, 2017; 
Young et al., 2018), but field tests on all-purpose autonomous electric 
implement carriers are rare. Verification and testing is needed to confirm the 
hypothesis and conclusions presented in this thesis and to provide further 
insights into applied use of electric and autonomous fieldwork tractors. It 
would also bring the technology closer to farmers, who were among the main 
intended beneficiaries of the research in this thesis. 

On moving from theoretical research and simulation to successful 
application, additional fieldwork types should be simulated and preferably 
field-tested. It was found in Papers I, II & V that heavy soil tillage 
operations such as harrowing, cultivation and ploughing were responsible for 
much of the final energy use and in-field time. Exploring fieldwork methods 
with lighter tilling or no-till techniques could be highly beneficial for the 
autonomous electric vehicle systems described here, as heavy field 
operations have also been cited as a limiting factor in electrification of 
tractors due to their high power need (Caban et al., 2018; Moreda et al., 
2016). It is claimed that the high accuracy of autonomous or heavily driver-
assisted agricultural vehicles could provide sufficient field resolution to 
apply implements to specific plants (Gonzalez-de-Santos et al., 2017; 
Mousazadeh, 2013), rather than specific rows as is done today. This could 
further reduce the power requirement of field implements and should be 
explored in future research.  

This thesis focused on battery-electric vehicles, but other fuel choices are 
possible. HVO and other biodiesels have a high technology readiness level 
and are already available on the market as a drop-in replacement for diesel 
with lower GHG emissions (Källmén et al., 2019). For this reason, they were 
not included in this thesis, but they can be a valid short-term replacement for 
diesel without the scale of system change necessary for electric tractors. 



Other low-emission biofuels are also interesting for further research, as they 
are close to implementation and can provide a good replacement for diesel 
in the near future. Hydrogen, used in fuel cell tractors, is another interesting 
technology choice, as it would combine the high efficiency of the electric 
driveline with energy-carrying capacity similar to that normally found in 
conventional tractor fuels. Its use would require substantial infrastructure, 
both locally and nationally, but it would entail a high degree of GHG
reduction compared with diesel and it could be produced nationally in a low-
fossil process (Cetinkaya et al., 2012; Iannuzzi et al., 2021). Although some 
hydrogen-powered tractors have been tested in pilot projects, further 
research is needed as the most probable replacement for diesel in agricultural 
machinery will not be one fuel, but a combination of several biofuels and 
electricity-based fuels.

Paper III explored the feasibility of storing energy locally on-farm and 
showed that it depended heavily on secondary uses for the stored energy.
Further research into energy storage on-farm is needed, particularly where
additional energy loads use the stored energy and where changes in 
electricity price over periods (both over the day and over seasons) are taken 
into account. 

Vehicle autonomy was included in the systems analysed in this thesis in 
a simplified manner, both technically and legally, to explore its impact once 
fully integrated in fieldwork. The steps necessary for this transformation 
should be studied carefully (Lajunen et al., 2018). There has been much
research on technological components, ethical considerations and the 
economic potential of autonomous vehicles and all these aspects warrant 
continued research. In addition, the management aspect, possible business 
models and field tests to determine reasonable rates of autonomy require
further exploration, as the work in Paper II suggests. In this thesis, it was
assumed that the tractors were mainly autonomous and were wholly owned 
and operated by the farmer, with no extra services required. However, it is 
likely that autonomous vehicles would have different business or 
management models (subscriptions, rented services, leases, external 
operators etc.). Autonomy was found to be a key enabling technology for 
electric fieldwork tractors (Paper I & II) and the viability of using autonomy 
requires a good technological foundation and a solid understanding of the 
non-technical aspects. Studying non-technical barriers to implementation 
and market penetration could shorten the time to widespread operational use.
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Agriculture is important for producing food, feed and other products, but the 
tractors used in agriculture today run on diesel, which has a negative climate 
effect. One way to reduce this effect is to change fuel to electricity, as it has 
less negative climate effects than diesel, but this presents some challenges. 
Batteries can hold a hundred times less energy per unit weight than a fuel 
tank, so an electric tractor would work a shorter time and need to return from 
the field to refuel more often than a diesel tractor. This would be expensive 
and would give a slower work rate than for diesel tractors. One solution to 
this would be to make the tractors self-driving, or autonomous. This would 
allow them to work more hours per day and the frequent trips back to the 
farm would not be as expensive, as a driver would not need to be paid to be 
present during that unproductive time.  

This thesis examined the effect of autonomous electric tractors on 
fieldwork by considering a system with two 3-tonne tractors with rated 
power of 50 kW, 100 kWh batteries and on-farm charge and exchange of 
batteries. This system was compared to a manned modern 10-ton 250 kW 
tractor run on diesel. Since autonomous electric tractors are rare and since 
field testing would be cumbersome, expensive and limited, they were instead 
simulated using a computer model based on a 200-ha grain farm in Sweden 
and conventional implement use. Simulations of both the conventional 
tractor system and an autonomous battery-electric tractor system were used 
to evaluate whether the tractors could get all field operations done in time, 
the cost, the environmental impact (climate warming and other categories), 
the overall structure of the different systems and the challenges they faced. 

The results showed that the autonomous electric tractors were able to 
complete fieldwork operations in the same time, or faster, than the 
conventional tractor. This was mostly because the autonomous tractors could 
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work for much longer. Being electric slowed the tractors down, since they 
could only work for a few hours before returning to the farm for recharging,
but being autonomous compensated for this. It was also important to have as 
little unproductive time as possible, such as queueing, charging, driving to 
or from the field, and waiting for the soil to dry up.

The autonomous electric tractors had a larger initial investment cost,
mainly since charging stations had to be built and large batteries are 
expensive. However, the electric drivelines used less fuel and required less
maintenance, while being autonomous reduced the driver costs and made it 
possible to use lighter tractors with less soil compaction. These factors gave 
the autonomous electric tractors similar or up to 37% lower total yearly costs 
compared with the diesel tractor.

The environmental impact of the systems was calculated over the entire 
lifetime of the tractors, from manufacturing to use and finally
recycling/disposal. Eleven different environmental impact categories were 
considered, as well as damage to human health, ecosystems and resources. 
Manufacturing the batteries had a clear negative environmental impact, as it 
required much energy and many different materials. However, fuel use had 
the largest impact in almost all categories. Diesel has a greater negative 
impact than electricity in general, and especially Swedish electricity, and it 
was the largest contributor to the negative climate impact of the diesel tractor 
system. By switching from diesel tractors to autonomous battery-electric 
tractors, the climate impact could be reduced by up to 74%, and similar 
reductions could be made in damage to human health, ecosystems and 
resource use.

Simulations comparing autonomous battery-electric tractors and diesel 
tractors showed that the electric tractor system could carry out fieldwork with 
equal or improved performance, at equal or lower cost, with clear 
environmental benefits. By combining the battery-electric driveline with 
autonomy, the benefits from both were used in a better way than each on its 
own.
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Lantbruk är en viktig sektor som producerar mat, foder och andra viktiga 
produkter. De maskiner som används i dagens lantbruk använder nästan 
uteslutande diesel som bränsle, vilket har en negativ klimatpåverkan. Ett sätt 
att minska denna påverkan är att byta bränsle till elektricitet, eftersom den 
har mindre klimatpåverkan jämfört med diesel. Det bytet kommer dock med 
några utmaningar. Batterier kan hålla en hundradel så mycket energi per 
viktenhet som diesel gör, vilket betyder att en batteritraktor kan arbeta 
kortare tid ute på fälten och behöver tanka oftare än en dieseltraktor. Det kan 
bli dyrt och leda till att arbetstakten blir långsammare än dagens traktorer. 

En lösning är att göra traktorerna självkörande, även kallat autonoma. Det 
skulle innebära att de kan arbeta fler timmar än en människa och att oftare 
köra tillbaka till gården för att ladda skulle inte vara så dyrt eftersom man 
inte skulle behöva betala en förare under tiden. 

Den här avhandlingen har som mål att undersöka vilken effekt dessa 
autonoma eltraktorer skulle kunna ha på fältarbete i svenskt lantbruk. 
Maskinerna som undersöktes var två stycken självkörande 3-tons traktorer 
med 50 kW motoreffekt och 100 kWh batterier (motsvarande 10 liter diesel). 
De jämfördes med en 10-tons traktor med 250 kW motoreffekt, som drevs 
på diesel och hade en förare. Eftersom det inte finns många självkörande 
eltraktorer och eftersom fälttester snabbt skulle bli dyrt och begränsat i vad 
man kan testa så simulerades fordonen med hjälp av en datormodell. 
Modellen byggde på en svensk spannmålsgård i Uppland som brukade 200 
ha med en konventionell odlingsmetodik. Både en konventionell 
dieseltraktor och eltraktorerna simulerades. Studien undersökte om 
traktorerna fick alla sysslorna gjorda i tid, hur mycket det kostade och vilken 
miljöpåverkan det bidrog med (både i klimatpåverkan och andra faktorer). 

Populärvetenskaplig sammanfattning 



Den undersökte också hur maskinsystemen fungerade och vilka utmaningar 
de stötte på.

Det visade sig att de autonoma eltraktorerna kunde utföra fältarbeten på 
liknande eller kortare tid än dieseltraktorerna. Detta berodde främst på att 
traktorerna var självkörande, eftersom de då kunde arbeta under längre tid. 
Batteridrivlinan saktade ner takten, då de bara kunde arbeta ett fåtal timmar 
innan de behövde återvända till gården för laddning, men autonomin 
kompenserade för detta. Det visade sig också vara viktigt att ha så lite icke-
produktiv tid som möjligt genom att minimera köande, laddtid, transporttid 
och att vänta på torrare fält.

Investeringskostnaden för eltraktorerna var större än för dieseltraktorn, 
främst för att man behövde bygga laddstationen och för att stora batterier är 
dyra. Eltraktorerna använde dock mindre bränsle, behövde mindre underhåll 
och att de var självkörande betydde mindre förarkostnader och att man kunde 
undvika markpackning genom att ha lättare fordon. Sammanvägt gjorde 
detta att eltraktorerna hade liknande eller lägre total årlig kostnad, upp till 
37% lägre.

Miljöpåverkan beräknades över hela fordonets livslängd, från tillverkning 
till användning och slutligen återvinning. 11 olika kategorier av 
miljöpåverkan beräknades, samt skada på human hälsa, ekosystem och
resurstillgång. Tillverkningen av batterier hade en klar negativ 
miljöpåverkan eftersom det krävdes mycket energi och många olika material. 
Den största miljöpåverkan för de flesta kategorier visade sig dock bero på 
bränsleanvändningen, för både diesel och el. Diesel hade generellt en större 
påverkan än el, speciellt om svensk el användes, och var det som gav störst 
klimatpåverkan hos dieseltraktorn. Genom att byta från dieseltraktorer till 
autonoma eltraktorer kunde klimatpåverkan minskas med upp till 74% och 
med liknande värden för påverkan på humanhälsa, ekosystem och 
resurstillgång.

Genom att simulera autonoma eltraktorer och jämföra med dieseltraktorer 
visade det sig att de kunde göra samma arbete med liknande eller bättre 
prestanda, med liknande eller lägre kostnad och med tydliga miljövinster. 
Genom att kombinera eltraktorer med teknik för autonomi så kunde båda 
teknologiernas fördelar användas bättre än var för sig.
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Amodel simulating an autonomous battery electric vehicle system for agricultural field use

was created, assuming a 200-ha conventional cereal farm in Swedish conditions. The

different subsystems were verified against sources in the literature, field experiments and

general common practice. The model was used to compare two different charging systems

(conductive charging and battery exchange) for battery electric tractors to each other. A

comparative simulation was made with conventional diesel systems (fully autonomous or

manned for 10 h d�1). The simulation results indicated that battery exchange was generally

a faster system than conductive charging. The results also showed that both electric sys-

tems were able to achieve similar active time during spring field operations as a corre-

sponding system of a simulated manned diesel tractor for battery sizes from 50 kWh and

charge powers from 50 kW.

© 2020 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Agricultural field machinery is currently almost exclusively

driven by internal combustion engines (ICEs), usually diesels.

There are various research paths as regarding renewable drive

options, with electric drive seen as a natural step in the evo-

lution of heavy vehicles (Andersson, 2019; Moreda, Mu~noz-

Garcı́a, & Barreiro, 2016). In recent years, there have been

significant developments in off-road electric drives formining

loaders, excavators, heavy-duty dump trucks and also agri-

cultural vehicles (Moreda et al., 2016).

Battery electric vehicles (BEV) for agricultural field work

have been described previously (Alcock, 1983; Engstr€om &

Lagnel€ov, 2018; Moreda et al., 2016; Volpato, Paula, Barbosa,

& Volpato, 2016, p. 162458121), but have not made significant

inroads on the market. Previous studies have indicated that

conventionally sized field-work tractors with a battery electric

drives reduce emissions, increase driveline efficiency and
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lower fuel import dependency (Engstr€om & Lagnel€ov, 2018).

The benefits are achieved at the expense of lower profitability,

since battery electric drives are less compatible with the

normal working hours of tractor drivers. This is because the

energy storage capacity of batteries is generally too low to

support several hours of heavy field work, which would

require recharging repeatedly during the working day or

choosing a large battery. In a study on a John Deere field

tractor, a battery of 130 kWh was not sufficient for an entire

working day requiring a 3-h recharge after 4 h of mixed field

work (John Deere, 2017). Thus, using a battery electric drive

(BED) tractor would lead to a trade-off between a longer

working day for the driver or a reduced total field time, so

conventional-sized, manned BED tractors are currently not an

economically competitive option for field operations.

There are two options to overcome this, autonomous drive

and rapid recharging systems. Autonomous drive could enable

a similar or higher workload by operating a low-powered

vehicle for a larger proportion of the day compared with a

conventional, manned tractor. Several autonomous agricul-

tural vehicles currently exist in various stages of development.

These range fromvehicles based on conventional tractors (Case

IH Agriculture, 2019; Oksanen, 2015) to small robots designed

for very specific tasks (Fendt, 2017; Young, Kayacan, & Peschel,

2018) and even smaller autonomous implement carriers like

Thorvald II (Grimstad & From, 2017), SRFV (Bawden, Ball, Kulk,

Perez, & Russell, 2014; Young et al., 2018) and Robotti

(AgroIntelli, 2019; Green et al., 2014).

There are currently two main solutions for BEVs to achieve

faster, more optimised recharging: conventional plug-in

conductive charging (CC) with a high-power contact charger

(commonly used with on-road BEVs), or the use of

exchangeable battery packs that recharge at lower power. The

latter are mainly used in industries where a high vehicle up-

time is essential, such as in city-buses or forklifts in depots

and warehouses. In a previous study, one such battery ex-

change system (BES, also called battery-swap system) was

shown to replace a city bus battery in 60 s without needing

manual assistance (Song & Choi, 2015). Several of the needs

match those in agriculture, so the method should theoreti-

cally fit in agricultural applications.

The aim of this modelling study was to compare two

different battery rechargingmethods (CC and BES) with regard

to active time required, time distribution and energy use for

multi-vehicle BED systems. Comparisons with simulated

diesel-driven vehicle systems were also made. The model

used was a dynamicmodel designed to simulate a BEV system

for agricultural field operations in a Swedish context.

Nomenclature

A, B, C Machine parameters

A Vehicle front area (m2)

a Acceleration (m s�2)

Bn Machine/soil ratio parameter

BES Battery exchange system

BED Battery electric drive

BEV Battery electric vehicle

CD, Crr Drag and rolling resistance coefficients (decimal)

Co Overall rate of work (ha h�1)

CC Conductive charging

CC/CV Constant current/constant voltage

DF Distance field-to-farm (km)

DT Tillage depth (m)

DES Discrete Event Simulation

ER Rated battery energy content (kW h)

EB Battery energy content (kW h)

ERoad Road transport energy requirement (kW h)

FC Field capacity of soil (mm m�1)

fi Soil texture adjustment parameter

FMR Motion resistance (kN)

FRoad, FField Sum of forces on vehicle when on road/field (N)

Fa, Fgrad, Fdrag, Frr Acceleration, gradient, drag and rolling

resistance forces (N)

FN Normal force (N)

FD Draught force (N)

n Field order number

ICE Internal combustion engine

ma Soil moisture content (mm)

x Field task

mp Soil moisture content at previous time step (mm)

m Mass (kg)

NB Number of additional batteries

NV Number of vehicles

NC Number of chargers

PC Charger power (kW)

PD Draft power requirement (kW)

PField Total field work power requirement (kW)

PR Rated vehicle power (kW)

PV Vehicle power (kW)

Qd Drainage water flow (mm)

Qr Run-off water flow (mm)

Qe Evapotranspiration water flow (mm)

S, SRoad Field and road speed (km h�1)

s Slippage (decimal)

SoC, q State of charge

qmin Minimum state of charge (decimal)

qmax Maximum state of charge (decimal)

q(t) State of charge at time t (decimal)

t Simulation time (h)

Tcc Charging time (h)

TField Available work time before recharging (h)

TD Total active time (d

TSpring Total active time during spring (d)

v Vehicle speed (m s�1)

W Machine width (m or no. of tools)

X Fieldwork task

a Gradient (%)

hField Field efficiency factor (decimal)

hMotor, hTransmission, hBattery, hCharger Efficiency factors

(decimal)

rair Density of air (kg m�3)
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2. Method

2.1. Farm and crop system

A hypothetical cereal farm of 200 ha, located in Uppsala,

Sweden, and operated during one growing season, was

modelled. The cereal farm was assumed to grow barley, oats,

winter wheat and spring wheat, in equal amounts (Table 1).

Barley, oats and winter wheat are the most commonly grown

cereals in Sweden (Statistics Sweden, 2018), while spring

wheat is a normal complementary cereal.

The cropping period was split into three working periods,

spring, summer and autumn (Fig. 1). The operations in each

working period followed a typical conventional cereal-

dominated cropping system in Sweden, with soil cultivation

and drilling (in autumn or spring), use of mineral fertilisers,

spraying with chemical pesticides and combine harvesting.

The necessary field operations were decided by the crop

grown on each field according to normal agricultural

practices. The intervals between the working periods were

designated non-active growing periods in which no opera-

tions were required.

The number of days assumed for each period was based on

data for Swedish wheat fields (Nilsson, 1976) (Table 2). Dates

for the working periods for winter wheat and barley were

similar to those described by Myrbeck (1998) for the Uppsala

region. The start dates shown in Table 2 were used to trigger

the start of operationswithin each period (i.e. spring, summer,

autumn) and the non-active growing periods, when no oper-

ations were scheduled and the tractors were inactive. If tasks

from the previous period were delayed, they were assumed to

be completed before the next period began.

2.2. Control logic

A dynamic model was developed using discrete event simu-

lation and state-based logic for decision making. The simu-

lation was performed in MATLAB (R2017b, The MathWorks

Inc. (Natick, MA, USA)) and its toolboxes Simulink, StateFlow

and SimEvent (versions 9.0). A simplified decision tree for the

control logic and the different simulation modules and states

is shown in Fig. 2. Sections 2.3-2.7 describe in detail the states

and modules, in the order shown in Fig. 2.

The model was run with the list of inputs shown in Table 3.

The main variable used to evaluate the results was the total

number of active days (TD), which is the sumof all time spent in

the following states: field work, road transport, charging and

workability control. It was chosen as it represents a metric of

the capacity of the system. In addition, the time when each

field operation finished was recorded, as was the amount of

time spent in each state and the total energy needed.

2.3. Vehicle model

In discrete event simulation, an agent or entity is required. In

the present case, the agent was the electric agricultural field

Table 1 e Properties of the model fields. All crops were
grown on an equal number of fields. Distances based on
the assumption that field work started on fields closest to
the farm centre.

Crop Field
size [ha]

Distance
field-to-farm

[DF, km]

Field order
no. [n]

Barley 22, 13, 15 2, 2, 6 3, 4, 11

Oats 10, 26, 14 1, 3, 4 1, 6, 8

Spring

wheat

15, 22, 13 3, 5, 6 5, 9, 12

Winter

wheat

16, 6, 28 1, 4, 5 2, 7, 10

Total area ha

Barley Oats Spring Wheat Winter Wheat

50 50 50 50

Fig. 1 e Working periods (spring, summer, autumn), crop operations and order of operation in the working periods
1Harvesting is not included in the simulation, due to use of a combine harvester instead of tractor as the main vehicle.
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tractor, modelled as a general BEV. General variables were

used for the agent vehicle, instead of empirical technical data,

as the aim was to understand the dynamics and the differ-

ences between the different charging methods. The main in-

puts used to define the vehicle were effective vehicle power

(PV) and rated battery energy content (ER). In addition, rated

vehicle power (PR) denotes the rated engine power for com-

parison and effective battery energy content (EB) denotes the

useable fractions after losses of ER:

PV ¼ PR hTransmission (1)

EB ¼ ER hBattery (qmax e qmin) (2)

where, hTransmission and hBattery are assumed average decimal

efficiency factors. Exact values are given in Table A.1 in an

appendix to this paper.

Every battery has a dynamic stateeofecharge parameter

(q(t)) that varies dynamically between its minimum (qmin) and

maximum value (qmax), indicating the fraction of ER that re-

mains at any given time. It was the only internal battery

variable measured for this study.

To better study a multi-vehicle system of smaller vehicles,

PV was kept constant at 50 kW, which gives the vehicles a PR of

58.5 kW. A permanent magnet direct current motor

(Andersson, 2019) was assumed. Different numbers of iden-

tical vehicles (NV) with the qualities PV and ER were then

created as simulation agents. To study the autonomy of the

vehicles, it was assumed that the BED systems worked

autonomously for 24 h d�1 and the diesel systems had the

option of full 24-h autonomy or 10 h of manned operation.

2.4. Soil moisture and workability

Workability is defined by Mueller, Lipiec, Kornecki, and

Gebhardt (2011) as the capability of the soil to support

tillage. To determine when field operations could be

Table 2 e Definitions of the different working and non-
active periods in the model, and the number of days
available for each period.

Start date No. of days Simulation time
interval [t, h]

Spring period: 16/3 61 0e1464

Non-active period 1 16/5 30 1465e2184

Summer period 15/6 31 2185e2928

Non-active period 2 16/7 47 2929e4056

Autumn period 1/9 61 4057e5520

Simulation end 1/11 e 5520

Fig. 2 e Flowchart of the control logic of the vehicle in the simulation. The grey squares represent states and the white

diamonds decisions. The dark grey rounded squares represent start and end points, and t, n and x denote time, field

number and task number, respectively.
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performed, workability based on weather had to be estimated

as shown in Fig. 3. The calculated soil moisture level was

continuously compared against a threshold for workability

taken from de Toro and Hansson (2004). It in turn is based on a

value of the field capacity (FC) of clay soils (27.2% or 89.8 mm

for a 300 mm soil layer) taken from Witney (1988). A work-

ability threshold of 85% of FC (76.3 mm) was assumed for all

general tillage operations except ploughing, for which a

threshold of 110% of FC (98.7 mm) was assumed. If the soil

moisture content (ma) was higher than the workability

threshold, the vehicle had to wait on the farm until the soil

had dried out to below the threshold (Fig. 3). The vehicle then

resumed operations. If the vehicle was out in the field, it was

assumed to complete its current task before returning to the

farm.

In order to calculate soil moisture content, and by exten-

sion workability, soil and weather data were needed. The

hypothetical Swedish cereal farm was assumed to lie in the

production area “Plain districts of Svealand (Ss)” categorised

by Myrbeck (1998). The dominant soil type in the region is

loamy clay soil with a high clay content (range 25e60%,

mainly 40e60%) (Paulsson, Djodjic, Ross, & Hjerpe, 2015). Data

on hourly precipitation, monthly mean air temperature and

daily number of sunshine hours for the period 1989e2018

were obtained from the Swedish Hydrological and Meteoro-

logical Institute (SMHI, 2019). These data derived from

different weather stations. A weather station in Uppsala

(59.8586, 17.6523) supplied data on precipitation in the periods

1989e2008 and 2013e2018 and on monthly air temperature

1989e2018. As data for some years and some parameters were

unavailable from the Uppsala station, other stations nearby

were used and similar weather conditions were assumed. A

weather station in Enk€oping (59.6557, 17.1121; 40 km from the

Uppsala station) supplied precipitation data for 2009e2012,

while a weather station in Stockholm (59.3534, 18.0634; 60 km

from the Uppsala station) supplied data on daily number of

sunshine hours 2008e2018. Data on number of sunshine

hours 1989e2007 were not available from any nearby weather

station, so the average value for 2008e2018 was used.

The weather and soil data were used to calculate hourly

soil moisture content (ma) in soils in a temperate climate with

the water balance model described by Witney (1988) and

Nilsson and Bernesson (2010):

ma ¼ mp þ Qp - Qr - Qd - Qe (3)

where (units mm in all cases): mp is soil moisture content in

the previous time step, Qp is precipitation, Qr is surface runoff,

Qd is drainage and Qe is evapotranspiration, calculated ac-

cording to Nilsson and Bernesson (2009). This equation is only

valid for the top 300 mm of the soil layer and assumes the

layer to be uniform.

Values for clay loam and additional values from Witney

(1988) were used for Qp, Qr, Qd and Qe. At the start of the

simulation, it was assumed that the soil moisture started at

field capacity, due to thawing and early spring precipitation.

The validity of the model has been tested by Nilsson and

Table 3 e Variable inputs used in the model. Each
simulation used a combination of one parameter from
each row to define the system configuration. It was
assumed that every vehicle had one on-board battery and
NB denotes the number of additional batteries available.
For conductive charging (CC), NB is irrelevant andwas not
included. The chosen parameters for the base case
configurations are shown in bold type.

Input Range of values

Vehicle power (PV, kW) 50

Charger power (PC, kW) 10, 25, 50, 75, 100

Rated battery energy capacity (ER, kWh) 25, 50, 75, 100, 150

Yearly weather data 1989e2018

Number of tractors (NV) 1, 2, 3, 4, 5

Number of additional batteries (NB) 1, 2, 3,4

Number of chargers (NC) 1, 2, 3

Fig. 3 e Calculated hourly soil moisture content (ma, solid line) of the top 300 mm soil layer in the spring period (first 61 days

of the simulation) using data from 2008. Hourly precipitation (QP) is shown as black bars. The workability thresholds for

ploughing (black dashed line) and for general tillage (grey dashed line) are also indicated. In 2008, 84% of hours were

predicted to be workable for ploughing and 55% for general tillage.
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Hansson (2001) against COUP (a hydrological model for soils,

previously named SOIL) and found to be adequate.

2.5. Road transport

Each field was assigned a distance from the farm, along with

other field parameters (see Table 1). It was assumed that the

field operations were executed in order of distance from the

farm, starting with the field closest to the farm, represented in

the model by the field order number, n.

2.5.1. Vehicle dynamics
Calculations of vehicle dynamics were made for the forces

acting upon the vehicle on the road (FRoad). Rolling resistance,

drag force, grading force and acceleration force for road

transport were calculated continuously, using equations and

constants from Reif and Dietsche (2014):

FRoad ¼ SF ¼ Fa þ Fgrad þ Fdrag þ Frr (4)

Fa ¼ m a (5)

Fgrad ¼ FN sin(a) (6)

Fdrag ¼1
2
rairv

2CDA (7)

Frr ¼ FN Crr (8)

where (all in N): Fa is acceleration force,m is vehicle mass in

kg, a is acceleration in m s�2, Fgrad is grading force, FN is the

normal force, a is the gradient or incline angle in degrees (o),

Fdrag is the drag force, rair is the density of air in kgm�3, v is the

vehicle's speed relative to the air in m s�1, CD is drag coeffi-

cient, A is the frontal area of the vehicle in m2, Frr is the rolling

resistance force and Crr is the rolling resistance coefficient.

The driveline was designed to have peak power and handle

accelerations up to 2 m s�2 or gradients of up to 10%.

Every road transport event had the following phases: an 1-

min acceleration phase where the road speed increased from

0 to 35 km h�1 with a maximum acceleration of 2 m s�2, a 1-

min deceleration phase where the speed decreased from 35

to 0 km h�1 and a remaining time when the vehicle was

assumed to travel with an average speed of 35 km h�1, as also

assumed in Engstr€om and Lagnel€ov (2018) and Engstr€om et al.

(2015). The acceleration and deceleration phases included all

decelerations and accelerations made during the trip. The

resulting total average speedwas denoted SRoad and expressed

in km h�1.

2.6. Fieldwork and operations

The force (FField) and power (PField) requirements for field work

were based on the vehicle dynamics (Eqs. 4, 5, 6 and 8), with an

added factor for the force exerted by the implement (FD) as

shown in Eq. (10). In addition, appropriate values for rolling

resistance on clay soil and on-field vehicle speed were used.

For exact values, see Table A.1.

The value of FD was determined for each of the operations

in Fig. 1, using empirical implement draft equations and the

inherent motion resistance, calculated for firm clay soil based

on ASAE (2000):

PField(x) ¼ FField(x) v; PField(x)�PV (9)

FField(x) ¼ SF ¼ Fa þ Fgrad þ Fdrag þ Frr þ FD(x) (10)

FD(x) ¼ (A(x) þ B(x) S þ C(x) S2) fi W(x) 100 DT(x) þ FMR (11)

FMR ¼ FN

�
1
Bn
þ 0:04þ 0:05 sffiffiffiffi

Bn
p

�

1000
(12)

where FD(x) is draft force requirement for field work task x,

PField(x) is total power requirement for task x, fi is a dimen-

sionless soil texture adjustment parameter, A, B and C are

machine parameters, v is the vehicle's speed inm s�1, S is field

speed in km h�1, W is implement width for task x in m (or in

no. of tools), DT is tillage depth in m, FMR is motion resistance

in kN, s is decimal slippage and Bn is a dimensionless ratio

depending on wheel parameters and soil type.

Five of the seven field operations were calculated using this

method. The other two, fertiliser spreading and pesticide

spraying, were calculated using empirical data taken from

Lindgren,Pettersson,Hansson,andNor�en(2002),whomeasured

the power requirements for different operations by multiple

tractors in the field during a growing season. Spraying was not

measured in that study, so measured values for spraying recy-

cled urine under good conditions were used in the model

instead. Empirical values for ploughing, cultivation, sowing,

roller packing and harrowing taken from Lindgren et al. (2002)

were also used to validate the model (Fig. 4). It was assumed

that the battery would always need recharging before any

sprayingtankorfertiliserbinwasemptyandthat tank/binswere

refilled on the farm while the battery was recharging or being

replaced, and therefore no separatemodelling was needed.

The rate at which the tractor could perform each operation

was calculated according to Witney (1988):

CoðxÞ¼WðxÞShField

10
(13)

where Co is the overall rate of work for task x in ha h�1, hField is

a decimal field efficiency factor due to sub-optimal field ge-

ometry and implementwidth, and 1/10 is a conversion unit for

km m h�1 to ha h�1. All calculated Co values are shown in

Table A.2.

The tractor remained in the field until the current task was

completed or the battery energy reached a pre-set threshold of

the sum of qmin and the additional energy needed for transport

back to the farm.When one of these was triggered, the vehicle

returned to the farm for recharging and to prepare for the next

field or operation. If the tractor left the field with more battery

energy than the threshold, this resulted in a correspondingly

shorter charging time, as described in section 2.7.1. The

behaviour of the battery during work in field n and the

thresholds for exiting can be described as follows:

qðtÞ¼ qðt0Þ� PField

EB
t; qmin þERoadðnÞ

EB
� qðtÞ � qmax (14)

where t0 denotes the simulation time (h) when field work

started.
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2.7. Charging system and battery

2.7.1. Charging system modelling
The BEV was assumed to use one of two charging methods;

conductive charging (CC) as described in Yilmaz and Krein

(2013), or a battery exchange system (BES) where the entire

battery pack is replaced, as described in Cheng, Chang, Lin, and

Singh (2013) and Kim, Song, and Choi (2015). When the battery

was replaced in the BES, the empty battery was assumed to be

rechargedwithCCwhile the tractor returnedtoworkwitha fully

charged battery pack, meaning that the BES still needed a CC

system.The timerequired for replacementof abatterypackwas

set to a constant 10 min. Shorter changing times have been re-

ported for cars by Tesla and Better Place (Adegbohun, von

Jouanne, & Lee, 2019; Afonseca, 2018) and times down to 60 s

for large battery packs in buses (Kim et al., 2015). Here, a higher

changing time was set to give a margin of error.

For the CC system, the vehicle acquired a resource labelled

charger (of theNC available) in themodel and then proceeded to

charge up to the threshold shown in Equation (15). If no charger

was available, the vehicle was placed in a queue until a charger

was available. When a battery was fully charged, it released its

charger for furtheruse.TheBESwasmodelled inasimilarwayto

the mixed queue network used by Tan, Sun, Wu, and Tsang

(2018), also using multiple coupled queues for different re-

sources (vehicles, batteries etc.). In the present model, the

vehicle first acquired a fully charged battery in the form of a

resource labelled battery (of the NB available) and waited the

fixed battery replacement time before exiting fully charged. The

empty battery acquired a charger resource and charged via CC,

and when this was done the battery resource was made avail-

able for the next vehicle as a fully charged battery.

The process of CC battery recharging can be approximated

by a linear increase in SoC over time. This linear method can

be an adequate fit for some methods of charging at certain

intervals of SoC, in this study for the CC/CVmethod (constant

current/constant voltage (CC/CV), as described by Shen, Tu

Vo, and Kapoor (2012)), for SoC between 0.2 and 1. This has

been used in calculations and modelling in several studies

(Hamidi, Ionel, & Nasiri, 2015; Harighi, Bayindir, & Hossain,

2018; Klein et al., 2011).

The simulated behaviour of q(t) during charging via CC can

be described as follows:

qðtÞ¼ qðt0Þþ
Pc hcharger

EB
t; qmin � qðtÞ � qmax (15)

The tractor remained at the charger until q(t) was equal to

qmax. The tractor was then released. Both of the recharging

methods, CC and BES, in the BED system were simulated to

take place on the main farm.

2.7.2. Battery modelling
As the focus of the simulation was to identify general re-

lationships and patterns, the battery was modelled as an in-

ternal system with the function of an energy reservoir. The

dynamic SoC-level, q(t), was the only internal battery variable

that varied dynamically during the simulation, even though

energy use was also measured. Use of q(t) as the only state-

variable in simplified battery models has been described pre-

viously, by e.g. Tremblay, Dessaint, and Dekkiche (2007) and

Grunditz and Thiringer (2016). The battery had a set restriction

where the SoC-level could not go below qmin, to avoid deep

discharge damage and ensure adequate operational life time.

To achieve this, how much energy would need to be reserved

for transportation to and from the field (ERoad) was predicted.

The remaining part of the battery energy was used for field

work (Fig. 5).

For CC, the battery was modelled as using a simplified

method for discharging where q(t) decreases linearly with

time. It was assumed that the battery was able to receive

charging power and power the motor without constraints,

regardless of size. It was also assumed that the battery was

Fig. 4 e Comparison of calculated draft power requirement based on ASAE (2000) and measured values (Lindgren et al.,

2002). Draught force (FD) is the calculated value used in the model, other bars represent measured values for different tractor

models: Case 240 IH Max (A), Valtra 6650 (B) and Valtra 6600 (Ci).
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new and unused at the start of the simulation. Battery dete-

rioration and resulting loss of capacity was omitted from the

model, even though it is of great interest and it should be

included in future studies.

2.8. Diesel system

To make comparisons against conventional agricultural

vehicle systems, the model was modified to simulate diesel

tractors with the same vehicle power (PV) and number of ve-

hicles (NV) as the simulated BEVs. Two cases were simulated;

an autonomous diesel tractor operating 24 h d�1 and a diesel

tractor operating for 10 h d�1, the latter simulating a con-

ventional manned vehicle. The 10-h version was constrained

to never work more than 10 h d�1, but could start at different

times of the day, depending on the weather.

The main differences were replacing the battery with a

diesel tank and the charger with a diesel pump, and changing

the engine efficiency to match ICE levels. Data on diesel tank

volumewere for the CLAASATOS (55e79 kW) series of tractors

(CLAAS, 2018). The diesel tank was assumed to carry 130 l of

diesel, corresponding to a battery of 1315 kWh, which was

used as ER for the diesel systems as it was assumed that no

losses occurred in the tank and that all diesel was used. The

electric charging was replaced with a diesel pump with a flow

rate of 50 l [diesel] min�1. This corresponds to the energy flow

in an electric charger of 30.3 MW,which was used as PC for the

diesel systems. It would give a refuelling time of <3 min,

which made having more than one fuel pump redundant, so

NCwas set to 1. The engine efficiency of combustion engines is

non-constant in real use, but in this simulation it was set to a

constant 30%, which corresponds to an average to high value

for smaller agricultural tractors (Wasilewski et al., 2017).

2.9. Simulation inputs and base case configuration

A base case configuration was chosen as a basis for com-

parison, with the criterion that the resulting mean time

needed for field work in the spring period (TSpring) should be

roughly 30 days or less for the 30-year period 1989e2018. In

the model, the spring period is the most time-consuming and

time-sensitive period. It is also of high importance for the

remaining cropping period. Multiple configurations could

Fig. 5 e Example of state of charge (q) distribution of the

modelled battery in: field work (grey), road transport

(diagonal), qmin (black) and losses due to non-perfect

efficiency (white).

Fig. 6 e Distribution of total active time (TD) and total active time during spring (TSpring) for the base case configuration over

30 individual years, compared with the corresponding configuration for a battery exchange system (BES). TSpring is

calculated from the first workable hour of the spring period, not from the simulation start. Conductive charging (CC) (,), BES

(◊) and diesel systems with 24-h (�) and 10-h (:) working periods are shown.
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meet this criterion, but the base configurations shown in

Table 3 were chosen as they were compatible with the aim of

the study by allowing multi-vehicle system dynamics to be

considered. Both modes of recharging in the BED systems

were simulated using the base case configuration. In addi-

tion, the diesel systems were simulated for comparison with

the same inputs; apart from PC and ER as described in section

2.8. The different inputs were chosen as they all represented

different solutions that exists on the market today or have

been studied previously. Furthermore, they were chosen to

be reasonable for the economy and fuse size of a farm of the

given size.

3. Results

3.1. Base case configuration results

Simulating the base case scenario for 30 different years

(1989e2018) gave the TSpring and TD values shown in Fig. 6 for

CC, BES, diesel with a 10-h working day and diesel with a 24-h

working day.

The difference between years was significant and reflects

weather dependency, as only the weather data varied between

the years. Using BES always resulted in lower TD and TSpring than

using CC for this configuration (Fig. 6), although the difference

was small. For the spring period, the 10-h diesel system had

shorter TSpring than both the BES andCC systems,with amedian

value of 3.8 d.When considering the entire year, the 10-h diesel

system had consistently shorter TD than the BED systems,

because of the more demanding field work done in autumn

(ploughing and power cultivation). The average and median

values for the entire 30-year period are shown in Table 4.

Compared with CC, the average TD with BES was 0.2 d

longer, while TSpring was 2.2 d shorter. However, the median

values showed that BES was 2.5 and 2.1 days shorter for TSpring

and TD, respectively. The 24-h diesel system resulted in the

shortest average TD, 52.3 d. With the 10-h diesel system, TD

increased to 89.7d. The average time distribution for the

different base cases is shown in Fig. 7. Apart from different TD,

a shift in the distribution was also noted between the cases.

The average time spent on road transport per vehicle was

similar between the two modes of recharging in BED systems

(11.6 d for BES and 12.1 d for CC). This was unsurprising, as the

Table 4eAverage value,median and standard deviation for total active time (TD) and total active time during spring (TSpring)
for the base case configurations (see Table 3) in two battery electric drive (BED) systems (conductive charging (CC), battery
exchange system (BES)) and two diesel tractor systems with different work periods (10 or 24 h d¡1), 30-year sample size.

TD TSpring

CC BES Diesel (10) Diesel (24) CC BES Diesel (10) Diesel (24)

Average 115.2 115.4 89.7 52.3 37.2 35.0 30.2 16.1

Median 116.4 114.3 89.5 51.7 37.6 35.1 29.5 15.0

Std. Dev. 15.1 14.9 14.3 11.5 10.9 10.7 8.3 7.3

Fig. 7 e Average time distribution per vehicle for the base case for different charging methods (battery exchange system

(BES), conductive charging (CC)) and for two diesel systems with different work periods (10 and 24 h). Charge (white dotted)

denotes all types of refuelling, charge queue (grey dotted) is the time spent queuing for refuelling, weather (white diagonal)

is the time spent waiting for improved soil workability, transport (dark grey) is the time spent in transit between farm and

field, and field work (light grey) is the time spent doing field work. For the 10-h diesel system, rest (black) denotes the time

outside the working schedule of a driver.
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time in transit depended on the number of times recharging

was required. This in turn depended on the battery capacity,

which was equal between the modes. Since the time spent

refuelling and in transit was dependent on the energy carried

by the vehicle, the two diesel systems spent a low fraction of

their time on both, 1.95e1.96 d vehicle�1. The amount of time

spent working was roughly equal between the cases

(17.5e20.5 d vehicle�1, 35.0e40.9 d total), as a certain amount

of fixed work was needed to complete all tasks, but the frac-

tion of total time spent on field work varied greatly, from 16%

for BES to 39% for the 24-h diesel system. The BED systems

spent slightly less time working in the field due to their higher

driveline efficiency compared with the diesel systems. The

time spent waiting for acceptable weather, and by extension

field workability, was a large fraction (48e57%) of the total

time for all systems. The time spent waiting for acceptable

weather varied between the systems, from 29.8 to 55.7 d, but

the fraction was similar in all cases.

Comparing CC and BES, the main difference was in the

time spent charging. The time saved on charging for BES

constituted the difference in TD between the systems. Opti-

mising the BES configuration to avoid charging queues could

give a further 19.9 d reduction compared with CC, as queueing

took up 82% of the total time spent recharging for the BES.

Although NC and PC were equal between the modes, BES had a

larger queue time fraction than CC, implying a scheduling

problem with charging, i.e. greater risk of multiple vehicles

returning for recharging at the same time, creating queues.

It is important to note that, even though the states are

mutually exclusive, time spent in one can reduce the time spent

inanother, see Fig. 7. For example, timespent charging in theCC

system could be time that would otherwise be spent waiting for

better weather, or in the 10-h diesel system the workability

control comes before the daily working time control, meaning

that time spent waiting for better workability would otherwise

have been spent waiting for the working day to begin.

3.2. Variable input influence

In addition to the base case, simulations were run with the

inputs shown in Table 3 and where PC, ER and NV were all

varied from the base case separately, for both recharging

systems and both diesel systems (Fig. 8). For the BED systems,

both the series with the base case configurations and more

optimal systems in terms of NB and NC were included.

Charger power (PC) was influential for both CC and BES,

decreasing TD when increased to 75 kW where the number of

chargers could successfully service all vehicles. Further in-

creases gave only a limited effect. For the optimised BES, a

maximum PC of 50 kW sufficed, provided enough chargers and

batteries were available. For PC < 50 kW, CC had a lower TD

comparedwithBES,whileBEShad lowerTD in everyother case.

Fig. 8 e Change in total active time (TD) in response to changes in: charger power (PC, top left), battery energy content (ER, top

right) and number of vehicles (NV, bottom left), with all other parameters set to the base case configuration (NV ¼ 2, NC ¼ 1,

NB ¼ 1, EB ¼ 50 kW h, PC ¼ 50 kW). Variable distance from field to farm (DF, bottom right) is also shown for all cases. CC

(,) ¼ conductive charging, BES (◊) ¼ battery exchange system. CC*(D) and BES* (X) are configurations with no or minimal

charging queues, for comparison with a better optimised system. The two diesel systems, 10-h (dash-dotted line) and 24-h

(dashed line), with NV ¼ 2, are also displayed for comparison.
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Rated battery energy content (ER) had a similar effect on

both systems, with a decrease in TD with increased ER, and

subsequently EB. For CC, this was characterised as a dimin-

ishing return, since a larger ER meant more fieldwork before

recharging, but also longer charging times that counteracted

the gains. This is evident in Fig. 8, where the optimised CC

system was only slightly better than the base case for all

battery sizes. Further gains required an increase in PC in

addition to increases in ER to keep the charging time low. For

BES the benefits were more direct, as a large ER did not

necessarily correlate with a longer charging time. As long as

a fully charged battery was available when the tractor

returned for recharging, a larger ER simply meant more time

for field work. This is seen in the large difference between

the base case configuration and the optimised system for

BES in Fig. 8.

Increasing NV led to lower TD, especially for the optimised

systems. NV > 2 led to TD that was lower than for the manned

diesel system, and a higher number of vehicles could compete

with the unmanned diesel system. The distance between farm

and field (DF) was also varied, as can be seen in Fig. 8. For the

diesel systems this parameter had a low impact on TD, with a

difference of 9.2e12.2 d between DF ¼ 0.5 and DF ¼ 10 km. In

comparison the TD of both CC systems and the non-optimised

BES was highly impacted by an increase in DF, with an in-

crease of 73.8e79.6 d when DF increased from 0.5 to 10 km. An

optimised BES was less affected and showed an increase of

59.6 d under the same inputs. For DF > 4 km, both BES per-

formed better than their CC counterparts.

The results of varying number of chargers (NC) for different

PC and ER of the CC system are shown in Fig. 9. An increase in

NC gave a benefit in terms of lowered TD until elimination of

queues, after which a further increase gave minimal benefit.

As can be seen in Fig. 9, an increase in NC was most effective

with lower charger capacities, while at higher PC an increase

yielded no improvement, as the charger needwas alreadymet

by faster chargers. While NC affected TD for different battery

sizes, the effect was less pronounced than that of charger

power.

For the BES, some notable patterns emerged, as shown in

Fig. 10. Increasing PC, NB or NC was only beneficial up to the

point where queues and general waiting time could be avoi-

ded. Increases beyond that point had no orminimal benefit on

TD, most notably seen at NB � 2 (Fig. 10). Similar findings were

obtained for other configurations of the BES.

3.3. Energy and time consumption

Energy consumption for the different base cases was

measured and compared with that in other studies on similar

crops and environments (Daalgard, Halberg, & Porter, 2001;

Kitani et al., 1999; Chaston, 2008; Lindgren et al., 2002; Safa,

Samarasinghe, & Mohssen, 2010; Wells, 2001; Witney, 1988).

Fuel consumption data for field operations from these sources

were used in calculations for the spring wheat rotation shown

in Fig. 11, where simulated energy use is converted to equiv-

alent litres of diesel. This was done using a density of

845 kg m�3 and a net calorific value of 43.1 MJ kg�1 was taken

from Reif and Dietsche (2014) which is in accordance with the

European Union standard for diesel fuels, EN 590. The simu-

lated energy use was obtained through the following equation

of energy as a function of the integrated sum of powers for

each vehicle Ni and task x:

E¼
Z t

0

P
PðNi; xÞ

hMotor hTransmission

dt (16)

where hMotor is the decimal average motor efficiency.

The results showed that the energy consumption for the

BED systems was 58.0% lower than for the corresponding

Fig. 9 e Total active time (TD) for different configurations where number of vehicles, NV ¼ 3 for conductive charging (CC) and

charger power (PC, left) and battery energy content (ER, right) are varied. All values are 30-year averages, error bars show 2

SDs. On the left ER ¼ 50 kW h and on the right PC ¼ 50 kW. Number of chargers (NC) 1 (grey), 2 (black) and 3 (white).
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simulated diesel systems’ and 45.8% lower than average

empirical values presented previously for similar soil type and

weather conditions (Lindgren et al., 2002).

The total time required for eachhectarewasmeasured for all

cases by normalising the time spent doing fieldwork and

transport, inhours, over the total area. For the base case,CChad

an average time requirement of 7.8 h ha�1 and BES a require-

ment of 7.7 h ha�1. The time requirement for the diesel systems

with 10 and 24 h working time was 5.3 ha-1 in both cases.

4. Discussion

4.1. General results

There was a non-negligible difference between BES and CC in

terms of active time, with BES resulting in lower TSpring and TD

in the majority of years for the base case configurations. In

addition, a well-optimised BES was consistently as good as, or

Fig. 10 e Total active time (TD) for different configurations of number of additional batteries (NB, columns), number of

chargers (NC, top x-axis) and battery energy content (ER, bottom x-axis) in the sub-set for the battery exchange system (BES)

where number of vehicles NV ¼ 3 and charger power PC ¼ 50 kW. All values are 30-year averages, error bars show 2 SDs.

The columns show number of batteries NB ¼ 1 (light grey), 2 (black), 3 (white) and 4 (dark grey).

Fig. 11 e Fuel consumption per hectare for a spring wheat cropping system. Comparative values from literature sources on

consumption for specific operations and the 30-year average simulated base cases for battery exchange system (BES),

conductive charging (CC) and diesel (10-h day). Road transport was not included in the literature sources and data on roller

packing were missing from the marked sources (*), so these were omitted from the calculations. Fuel consumption during

harvesting was omitted in all cases.
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better than, a corresponding CC-system for all configurations.

Since the aim of the study was to compare the different

charging methods with each other and equivalent diesel sys-

tems, the choice of TD and TSpring were deemed adequate as an

indication of which system performed better. In further

studies, more in-depth comparisons featuring scheduling,

timeliness and time management optimisation are encour-

aged as they fell outside the scope of this study.

For CC systems, increasing NC was only relevant when

there was a queue to the chargers, which only occurred when

low PC was paired with high EB. Increasing PC had less of a

diminishing return than increasing EB, since larger battery

capacity meant longer field work runs, but also longer

charging times, while increased PC only yielded shorter

charging times. An increase in PC always yielded a greater

improvement in TD than adding more chargers (i.e. one 50 kW

charger resulted in lower TD than two 25 kW chargers, even

though the total charging capacity was the same). This in-

dicates that for CC, few large chargers were better than mul-

tiple less powerful chargers. The BES was more flexible and

there was no definitive better option. This is best shown in

Fig. 8, where a well optimised BES with PC ¼ 50 kWhad a lower

TD than the corresponding CC system with PC ¼ 100 kW. For

CC, periods of time spent charging coincided with bad

weather where the tractor would be unable to work regard-

less, thereby mitigating the disadvantage of longer charging

time compared with BES.

For BES, increasing PC was only efficient up to the point

where queues to a fully charged battery were eliminated, after

which no further advantage was gained from increasing the

available power. This is similar to the dynamics found by Tan

et al. (2018) in their simulation of a BES, particularly for vari-

ablesNB andNC. In contrast, for the CC system larger PC always

proved beneficial, albeit with diminishing returns. For BES,

larger batteries proved increasingly beneficial up to the point

where the chargers could not provide fast enough charging to

avoid queues. Furthermore, after increasing the battery ca-

pacity to a high enough level to complete any task in any field,

any further benefit was lost as the vehicle was assumed to

return to the farm after each field. However, this is a

constraint of the simulation and real-world use would derive

greater utility from such a battery. The BES also had a flat

battery changing time of 10 min on top of the time it took to

charge the batteries, which can explain why, for lower DF, BES

had a higher TD than CC. Inmost other scenarios this timewas

small compared with the charging time of the CC system,

which resulted in BES being the faster system in those cases.

Increasing the number of vehicles correlated directly with

an increase in rate of work (Co) and was an efficient way of

reducing TD, although again with diminishing returns. For

both CC and BES, it was important to increase other variables

along with the number of vehicles, as charger capacity and

battery availability quickly became bottlenecks and further

increases in vehicle numbers yielded no benefits (see Fig. 8).

The behaviour of the BED systems with increasing DF in-

dicates that, due to the frequent recharging of battery sys-

tems, they are better suited to an environment where

recharging infrastructure is as close as possible, to minimise

transport time. For DF > 4 km, both non-optimised BED sys-

tems had difficulties completing all operations, especially as

heavy tillage required frequent recharging due to the heavy

nature of the work. For BES the possibility of bringingmultiple

batteries to the field exists, and DF ¼ 0.5 km gives a good

indication of the optimal benefits of this solution, even though

this option was not explored in the present study. The results

indicate that it could be a feasible option for fields far away

from recharging infrastructure, provided that battery ex-

change can be facilitated on-site.

The modelled system assumed a heavy tillage cropping

system on clay-rich soil in a wet temperate climate, which is

energy-intensive and demanding on BED vehicles. This study

modelled and simulated a conventional cereal system, with

the assumption that BEDs would replace ICE tractors for every

activity, without altering the tasks or crops. A simplified and

static vehicle model was also assumed. The values obtained

for fuel consumption and work rate were similar to those

found in other sources, but further research and simulations

of vehicles, other environments, soils and cropping systems,

and more detailed simulations of vehicles could improve un-

derstanding of the benefits and restrictions of these kinds of

systems. Ideally, field tests would be a good complement.

4.2. Workability and weather

Weather was highly influential, with on average 50.7% of the

active time of the year spent waiting for better workability in

fields. In this study, no account was taken of the relationship

between vehicle weight and workability. Smaller, often ligh-

ter, machines were considered and they would probably have

a larger window of workability than larger machines. The

limit for trafficability (defined as the capability to support

agricultural traffic and not harm the soil or ecosystem), and

the potential gains from reduced soil compaction were also

omitted from the analysis, even though these are arguably

among the greatest advantages of smaller vehicles. Further

research is required in this area.

In the model, it was assumed that all fields were uniform

and identical as regards soil parameters and soil type. This is a

simplification, as these parameters can vary between neigh-

bouring fields and even within fields. Hydraulic conductivity

in particular is known to vary in-field (Nilsson, Larsolle,

Nordh, & Hansson, 2017), but was assumed here to be con-

stant and uniform, following Witney (1988). As weather and

soil workability was not the main focus of the study, this

simplification could be acceptable. Another assumption was

that the control for the workability criterion was made on the

farm and, ifmet, the vehicle completed a run before returning.

However, the difference between the simulated fraction of

time spent queueing for better workability and the calculated

fraction of time when the soil was too moist to be workable

was generally small (þ/�5% of the time spent waiting in an

average year), which indicates that this assumption had a

limited impact on the results.

The predicted workability for a certain period was esti-

mated for time steps greater than 1 h. Both de Toro and

Hansson (2004) and Nilsson and Bernesson, (2009) predicted

workability for a certain day and Witney (1988) suggested

predicting the number of working days per month or quarter.

Increasing the resolution to hours might lead to a harsher

assessment of workability. Daily variations in temperature or
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moisture (nighteday cycle and dew accumulation) were not

implicitly included in the model, which for a resolution of

daysmight be accurate but for a resolution of hoursmight be a

simplification. The proportion of time appropriate for field

work reported in different studies varies, with most citing

55e70% (de Toro & Hansson, 2004; Nilsson, 1976; Witney,

1988). In this study, the value was on average 48%. A value

more consistent with the literature might have been more

lenient towards BED systems, as weather was the greatest

cause of non-productive time. Apart from the weather in the

different years, changing the workability criterion would have

had a noticeable impact on the amount of time spent waiting

for better workability status. A more lenient criterion would

have permitted a larger number of feasible configurations.

4.3. Fixed power and scalability

The power of the vehicle was kept fixed in simulations, as the

focus was the charging systems and the general dynamic

relationship between BEV and autonomous vehicles. Larger,

or smaller, vehicle power would have a noticeable effect that

would vary with differentmode of use and for different farms,

but was not simulated here. The complexity of encompassing

all field work operations leads to a problem of optimisation

and this article chose to focus on smaller vehicles than the

current diesel tractors. Other vehicle concepts such as Thor-

vald II (Grimstad & From, 2017) solve this by being modular,

while the Fendt Xaver (Fendt, 2017) and the TERRA-MEPP

(Young et al., 2018) are small, specialist vehicles of lower

complexity than an all-operation vehicle and they avoid heavy

tilling operations altogether. In future studies, a “ploughing-

free” or “no-till” work cycle would be interesting to investi-

gate, as BED systems could be assumed to fit better there than

in a conventional work cycle including heavy tillage.

Scalability of the systems is an area of interest for future

studies. Systems of the kind studied here might not be used

primarily on farms of moderate size, but on larger farms with

greater ability to invest in new technology and a greater need

for hiredmanpower. Logistics is a greater bottleneck for farms

with large field area and long transport distances than for

farms with smaller field area (Engstr€om et al., 2015). In pre-

vious studies, field size and shape (Nilsson, Rosenqvist, &

Bernesson, 2014), road transport distances (Engstr€om et al.,

2015) and total field area have been described as important

parameters. Thus analysis of other total field sizes, layout,

motive powers and total farm area would be interesting in

future research.

5. Conclusions

Dynamic simulation results indicated that autonomous BEV

in both BES and CC systems could be similar to conventional

manned diesel tractors of corresponding sizes in terms of

yearly active days required. This was shown for battery en-

ergies significantly smaller than the contents of a diesel tank

and at charger powers that are feasible for the fuse size of

small-medium Swedish farms, with the lower work rate and

less on-board energy of BEDs being offset by autonomous

operation. It was also shown that the simulated BED systems

had lower energy consumption per hectare than the simu-

lated diesel systems (58% lower) and literature values for

diesel systems (17e46% lower).

In base configuration simulations, spring operations were

completed in 37.2 d on average for CC and 35.0 d for BES; an

improvement of 2.2 d. The average total active yearly time

required was 115.2 d for CC and 115.4 d for BES in the base

case, while the average values for well-optimised systems

showed that BES was 25.7 d faster than CC (TD(CC*) ¼ 111.6 d,

TD(BES*) ¼ 85.9 days) and the manned diesel system

(TD(Diesel10) ¼ 89.7 d). Choosing BES over CC for similar config-

urations lowered the required time in all cases except for

PC < 50 kW. When multiple chargers or batteries were avail-

able, BES consistently performed better than CC. These results

indicate that the BES simulated performed better than the CC

system on average and as an optimised system. The number

of calendar days needed to conduct the necessary work varied

asymptotically with component size (i.e. charger power, bat-

tery capacity; see Fig. 8). As long as the capacity was enough to

avoid bottlenecks, adding extra capacity provided limited

improvement. However, when the component sizes were too

low, the number of calendar days increased rapidly.

The difference in total active time between the BES and CC

systems was small for most of the configurations compared,

but BES consistently needed the same or less time to complete

all operations than similar CC systems. For both systems,

charging queues proved detrimental. As both BED systems

generally had a lower rate of work due to frequent recharging

than conventional diesel systems, it was important to maxi-

mise the time available for field work. Due to the frequent

recharging and lower recharging speed, the BED systems

spent more time in transit and recharging than the diesel

systems, meaning the BED tractors are better suited for farms

with their fields nearby. It proved important with a good un-

derstanding of the sources of non-productive time. The non-

productive time could be reduced by reducing queueing

through increasing the battery capacity (providing a longer

time between recharges), increasing the charger capacity

(decreasing the charging time), scheduling the vehicles to

avoid queues, or using non-productive time (mainly waiting

for better workability) to charge the vehicle batteries.
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Interest in the electrification of agricultural vehicles is increasing along with growing in-

terest in autonomous vehicles. Individual technologies have been well-explored, but not

their combined use and the effects on agricultural fieldwork. In this study, cost analysis

was conducted based on a simulated vehicle system with 50 kW self-driving battery-

electric drive (BED) tractors. The analysis included battery degradation due to cycling and

the cost of inadequate machine capacity, as these factors are suspected to be problems for

electric tractors. A dynamic discrete-event vehicle systemmodel, a linear timeliness model

and a one-dimensional battery cell ageing model were assumed. Costs obtained were

compared with those of contemporary manned diesel-based systems. BED systems had

equal or lower annual costs compared to conventional manned diesel-based systems; this

was due to lower costs for fuel and maintenance, while providing adequate capacity and

lower energy usage. Sensitivity analysis showed that operating costs were of greater sig-

nificance than investment costs. The generally more expensive investment costs of BED

systems were outweighed by the reduced operating costs for several different BED system

systems. Battery degradation costs and timeliness were influential, but not sufficient to

make the system uncompetitive. The synergistic effect of vehicular autonomy and BED

outweighed several of the drawbacks of BED systems, such as frequent recharging,

increased transport and reduced consecutive work time.

© 2021 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).

1. Introduction

Making agricultural systems autonomous can be an important

component in increasing agricultural productivity, feeding the

world and achieving sustainable food production (Bakken,

Moore, & From, 2019; Lampridi et al., 2019). Vehicle electrifi-

cation is seen as one of the main methods for reducing

vehicular emissions and reliance on fossil fuels, both on and

off road. Sweden aims to have its vehicle fleet independent of

fossil fuel by 2030 and to have net zero CO2 emissions by 2050,
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with electrification listed as one of the vital tools in achieving

this (The Government of Sweden, 2013).

In a previous study (Lagnel€ov, Larsson, Nilsson, Larsolle, &

Hansson, 2020), the technical possibility of a vehicle system

utilising smaller, self-driving, battery-electric drive (BED) field

tractors was explored. In terms of time required for spring and

yearly operations they were found to be comparable with

manned diesel vehicles and they were also better in terms of

energy use. However, to achieve broad appeal and market

uptake, a good understanding of the cost of the system is vital.

Lagnel€ov et al. (2020) provided a system model and technical

systemunderstanding but in this study the focus is on the cost

of autonomous vehicles and battery electric systems. Previous

research has examined the cost and utilisation of general

autonomous systems (Lampridi et al., 2019; Marinoudi,

Sørensen, Pearson, & Bochtis, 2019), performed cost analysis

on autonomous row-crop cultivation (Goense, 2005) and

analysed autonomous systems in specialist crops (Le,

Ponnambalam, Gjevestad, & From, 2020; Reiser, Sehsah,

Bumann, Morhard, & Griepentrog, 2019; Young, Kayacan, &

Peschel, 2018). However, the cost of electric autonomous

field tractor systems has not been thoroughly researched.

The possible cost to yield or quality loss due to lack of ca-

pacity in the system (i.e. lack of timeliness) and the cost and

limitations of batteries have been identified as potential

drawbacks for agricultural BED tractors (Caban, Vrabel,

Sarkan, Zarajczyk, & Marczuk, 2018; Magalh~aes et al., 2017;

Mocera & Soma, 2020; Moreda, Mu~noz-Garcı́a, & Barreiro,

2016). In cost analysis it is therefore important to include

these drawbacks and their system effects.

Untimely or non-optimal operations can lead to indirect

costs, due to yield losses or a decrease in crop quality. Pre-

diction of optimal work time and the negative effects of non-

optimal work time have been well studied (ASAE, 2000;

Edwards, Dybro, Munkholm, & S€orensen, 2016; Gunnarsson,

Sp€orndly, Rosenqvist, De Toro, & Hansson, 2009; Nilsson,

1976; Rotz & Harrigan, 2005; Savin, Matic-Kekic, Dedovic,

Simikic,& Tomic, 2014; Witney, 1988). Witney (1988) identified

untimely establishment, spraying and harvesting as the most

important operations and concluded that adequate machine

capacity is vital, but it is difficult to assess, partly due to the

unique nature of each site and the erratic behaviour of the

weather. The common approach is therefore to have over-

capacity in the machine pool.

The effect of agricultural use and load cycles on electric

vehicle (EV) batteries is not well analysed. The concern with

the use of BED tractors in the field is that this heavy use will

rapidly age the batteries and therefore make the system

economically uncompetitive.

The aim of this study was to evaluate an autonomous

battery electric vehicle (BEV) system for a Swedish agricultural

context with regards to cost. Changes in timeliness and loss of

battery capacity, and related costs, were studied specifically

and included in the overall cost. The model developed in

Lagnel€ov et al. (2020) was used to develop basic data for the

calculations, but in addition, a sensitivity analysis was made

for several relevant variables, including component cost,

charger power, degree of autonomy, and battery size, lifetime

and cost.

2. Method

This section firstly presents the models used for battery

ageing and timeliness, and then describes the economic cal-

culations. Overall costs were calculated as a combination of

Nomenclature

A Total arable area (ha)

a,b,c Battery model parameters

An Area of field n (ha)

BED Battery electric drive

BES Battery exchange system

BEV Battery electric vehicle

cB,cyc Battery cost per eq. cycle (V)

CC Conductive charging

CC/CV Constant current/constant voltage

CAN, COW, COP Total annual cost, ownership cost and

yearly operating cost (V y�1)

Cx Total investment/operating cost for component

x (V)

cx Investment/operating cost for each unit of x

(var.)

d Inflation (%)

EB Battery energy content (kWh)

EOL End-of-life (primary, for batteries)

Etot Total yearly energy requirement (kWh y�1)

EV Electric vehicle

h Vehicle work hours per day (h d�1)

i Interest rate (%)

ir Real interest rate (%)

lg timeliness factor for grain g (kg ha�1 d�1)

MCTR Mean cycles to replacement

MTTR Mean time to replacement (yr)

n Field number

NB Number of (additional) batteries

NC Number of chargers

NCA Number of additional chargers

Ncycl Number of battery cycles

NV Number of vehicles

OF,OR,OC Fraction of time operator is required for

fieldwork, road transport and charging

(fraction)

PC Charger power (kW)

Pg Grain price for the grain g (V kg�1)

PV Vehicle power (kW)

Rx Salvage value of component x (V)

Sn Timeliness cost for field n (V yr�1)

SoC State-of-charge

TD Total active time (d)

tn Delay from optimal day for field n (d)

Tx Economic lifetime for component x (y)

xc Relation between battery energy capacity and

charger power (h)

Y Yield (kg ha�1)

q State-of-charge (fraction)

qEOL State-of-charge value at end-of-life (fraction)
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annual ownership costs and operating costs, including battery

and timeliness costs. The costs of ownership and operation

were calculated from the inputs (number and size of vehicles,

chargers etc.) or the main results from the system model

(numbers of hours a driver is needed etc.). For timeliness and

battery ageing, separate models were required, as shown in

Fig. 1.

The discrete-event model from Lagnel€ov et al. (2020) was

used to simulate the analysed vehicle systems. The model

simulates the machinery operations on a Swedish grain farm

in theUppsala region. To bring the farmmachinery operations

more in line with that commonly used in Sweden, a sow bed

harrow replaced the spring tooth harrow used in Lagnel€ov

et al. (2020) with power use described by Lindgren,

Pettersson, Hansson, and Nor�en (2002). The average power

usage and working width are shown in Fig. 2. Additionally

breakdown rates taken from ASAE (2000) were included in the

simulations. The breakdown rates were the combined factors

for a vehicle system with a field area of 200 ha and each

breakdown was assumed to put the vehicle out of operation,

leading to 12 h of downtime. The cost of repairing is included

in the maintenance cost, so the only cost effect of a break-

down was a delay of operations. Due to being a less well-

developed system it was assumed that the breakdown rate

for the autonomous electric tractors was double that of the

manned diesel tractors.

For timeliness, the model by Gunnarsson (2008) was used,

which takes the delay in key operations for each field and

turns it into an annual cost. For battery ageing, a one-

dimensional battery cell model for NCA Li-ion batteries that

connected voltage and capacity loss to the number of full use

cycles was used. These results were then used in the main

model to incorporate the effects of continuous degradation of

the vehicle batteries. In addition, the results were used to

dynamically determine the useful lifetime of the batteries

before they needed replacing, which led to a cost per year or

per cycle. All the costs were then summed to a total annual

cost of operations.

2.1. Battery ageing

Battery ageing is a common electrochemical process that is

dependent on different factors, including use pattern, depth of

discharge, battery temperature, charge/discharge rate etc.

(Barr�e et al., 2013; Uddin, Perera, Widanage, & Somerville,

2016). This often leads to EV batteries having a shorter life-

spans than the vehicles they power, and this might require a

change of battery before a change of vehicle. Therefore, it is

important to estimate and include the effect of battery ageing

in economic analysis of BEVs. For novel vehicle systems, the

effect of battery ageing is important information when

designing the system, especially if the work includes high-

Fig. 1 e Overview of the models used (sharp-cornered boxes) and costs analysed (rounded boxes). The dotted lines indicate

where system inputs were used for cost calculations.
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power use of the battery over a longer period, as is the case in

agricultural fieldwork. In this regard, the use of batteries in

heavy off-road applications is different from their use in on-

road personal vehicles. In this study, battery ageing was

characterised as capacity of NCA batteries depending on the

number of cycles for each battery and the charge rate (C-rate)

of the charging station.

2.1.1. Battery model
A one-dimensional battery cell model was created using the

‘Lithium-Ion Battery’ module in COMSOL Multiphysics 5.5

(COMSOL AB, Stockholm, Sweden). In this model, graphite is

used as the negative electrode (thickness 55 mm), LiPF6 in

3:7 EC:EMC as electrolyte (30 mm) and NCA (LiNi0.8Co0.15Al0.05-
O2) as the positive electrode (40 mm). The model was based on

the porous electrode theory and concentration solution theory

(Thomas, Newman, & Darling, 2002). It included ageing in the

graphite electrode, where a parasitic solid electrolyte interface

(SEI)-forming reaction results in irreversible loss of cyclable

lithium. The kinetic expression for the SEI-forming reaction

used here was based on work by Ekstr€om and Lindberg (2015).

More details regarding thismodel can be found in the COMSOL

library (COMSOL Multiphysics, 2020). Specific simulations in-

puts can be found in Table A1.

2.1.2. Model assumptions and adaptation
Calendar ageing of the batteries was omitted, as it is less im-

pactful for battery degradation than the number of cycles and

as one of the defining characteristics of Li-ion batteries is their

low capacity fade during storage (Barr�e et al., 2013). Ambient

temperaturewas assumed to remain constant at 293 K and the

vehicle was assumed to have a temperature control system

with adequate ability to keep a constant battery temperature

of 293 K during charging and discharging. The state-of-charge

(SoC) is limited in the system model to stay above 20% at all

times, giving a maximum depth-of-discharge interval of

20e100%, with fast charging applicable in the interval 20e80%

and slower charging during the interval 80e100%. Considering

field operations and type of use, it was assumed that C-rate

and number of battery cycles (Ncycl) would be the most influ-

ential direct factors (Uddin et al., 2016; Wenzl et al., 2005).

In the model, the cycles are calculated for each battery and

all batteries in operation are assumed to be used equally. The

number of cycles for each battery is carried over between each

year according to:

NcyclðiÞ¼Ncyclði� 1Þ þ NcyclðiÞ
ðNB þNVÞ (1)

where Ncycl is the number of cycles at the end of year i, NV is

the number of vehicles (as each vehicle carries one battery)

and NB is the number of spare batteries in the system.

Vehicles continue their operations even if the SoC of the

batteries dips below 80%, with the batteries being replaced

between working seasons. The SoC of a battery is related to

the number of cycles as:

q¼ aN3
cycl þ bN2

cycl þ cNcycl þ d (2)

where a, b, c and d are curve fitting parameters of the third-

order polynomial curve used as a representation of the

simulated values. High-order polynomials have been used to

represent battery capacity fade and voltage curves by e.g.

Stamps, Holland, White, and Gatzke (2005).

When the capacity fade is at q ¼ 0.8, the battery is sched-

uled for replacement in the model, as this is common practice

in the industry (Berg, 2015). The number of cycles this takes is

denoted mean cycles to replacement (MCTR). The MCTR for

each individual battery is the same, irrespective of EB and NB,

but themean time to replacement (MTTR) in years will change

depending on the number and size of the batteries. Since the

cycles were disturbed roughly evenly between the different

Fig. 2 e Average total power requirement (bars, left axis) and working width (circle markers, right axis) for the operations

used in the simulations for the tractor sizes 250 kW (dark gray) and 50 kW (white). The maximum power of the 50 kW

tractor is marked (dashed line).

b i o s y s t em s e ng i n e e r i n g 2 0 4 ( 2 0 2 1 ) 3 5 8e3 7 6 361



batteries in the system, it was assumed in this study that

MTTR increases with a higher number of batteries in the

system and with larger batteries.

2.2. Timeliness

When studying timeliness, there is often mention of an opti-

mum day, i.e. the day where the specific operation will pro-

duce the highest yield (Gunnarsson, 2008; Witney, 1988). In

this study, the timeliness of sowingwas themain focus, as the

simulation model used (Lagnel€ov et al., 2020) concentrates on

operations performed by tractors. Of those, sowing was

viewed as having the greatest impact and other operations

were considered generally as being preparation for sowing.

It was assumed that the first workable day of the year was

optimal for spring-based sowing and that the first day after

harvesting finished in autumn was optimal for autumn sow-

ing. This was based on the concept of delayed scheduling

presented by Gunnarsson (2008), where all the time that

elapses beyond the optimal day is assumed to incur a yield

loss. Since harvesting was not included in the simulation, it

was assumed that harvesting was carried out with adequate

capacity and that no timeliness penalty was incurred.

The slope and shape of the curve displaying yield loss are

different in different sources, e.g. Gunnarsson (2008) and

ASAE (2000) characterised the yield loss as linear and Witney

(1988) characterised it as parabolic. Here the linear method

was used, with the timeliness factors taken from Gunnarsson

(2008).

For each scenario, the total time elapsed from the first

possible day wasmeasured. The cost of yield loss for a specific

field n (Sn, in V y�1) due to non-optimal sowing date was

assumed to depend linearly on the delayed scheduling

described by Gunnarsson andHansson (2004) and Gunnarsson

et al. (2009).

A dynamic simulation was used to simulate many of the

events described by Gunnarsson and Hansson (2004) and

combine them into a single parameter for the particular field,

n (see Table 1). This allowed use of the following equation, as

also proposed by Nilsson (1976) and used by Gunnarsson and

Hansson (2004):

Sn ¼ lg � tn � pg �An (3)

where lg is the timeliness factor in kg ha�1 d�1 for grain g, tn is

the time delay from the optimal day in d for field n, pg is the

grain price in V kg�1 for grain g and An is the total crop area in

ha for field n. The delay, tn, wasmeasured at the completion of

each field.

The optimal day was calculated for sowing and was set as

the first workable day of the year. As explained in Lagnel€ov

et al. (2020), in the model it is assumed that the simulation

period starts with the soil saturated, due to thawing and

precipitation, so it takes a period of time before the first

workable day for the soil, and it is from that day that the delay

is calculated.

To calculate the cost of the delay, the optimum price for

grain, pg, and the yield needed to be defined. The price of grain

was taken from the agricultural wholesale dealer Lantm€an-

nen’s prices for 2019, and yieldwas based on the normal yields

given in Statistics Sweden (2019) for the Uppsala region for

2018 (Table 2). The timeliness factors proposed in Gunnarsson

(2008) were used (Table 2). For some grain crops, only the

factor values for organic production were available, but this

was assumed to have little effect on the results.

2.3. Economic analysis

2.3.1. Cost calculation
The cost of the autonomous BED system was calculated using

the total annual cost of operation (CAN) and comparedwith the

calculated cost for a diesel counterpart, and with literature

values. The calculation method based on combined invest-

ment, ownership and operating costs of vehicles found inWu,

Inderbitzin, and Bening (2015) and Lampridi et al. (2019) was

adapted and used, including straight-line depreciation as seen

in Eq. (4). When considering the cost of an autonomous sys-

tem and agricultural robotics, the methods found in Lampridi

et al. (2019) and Marinoudi et al. (2019) were used.

CAN ¼COW þ COP (4)

where CAN is the annual cost of operations, COW is the

ownership cost calculated as shown in Eq. (5) and COP is the

operating cost, calculated as shown in Eq. (6). All values are in

V yr�1.

COW is the combined cost of investment (fixed depreciation

cost and capital cost) as an equivalent annual cost with the

average interest rate method used, as used by Lampridi et al.

(2019):

COW ¼
XCx � Rx

Tx
þ ðCx � RxÞ

2
ir ; ½x¼B; C; CA; BCS; A; V� (5)

COP ¼
X

Cy;

�
y¼

�
E; ME; O ðBEDÞ
D; MD; O ðDieselÞ

�
(6)

where cx is the component investment cost in V, Rx is the

salvage value in V (normally 10% of purchase price), Tx is the

economic lifetime in years and Cy is the operating cost in V

yr�1 (where x and y are the specific component subscript for

the investment and operating costs respectively, described in

Tables 3 and 4) and ir is the real interest rate correction factor

(Lampridi et al., 2019), calculated as shown in Eq. (7).

ir ¼ iþ d
1þ d

(7)

where i is the interest rate and d is inflation, both in %.

Here, dwas set to 2% tomatch Sweden’s inflation goal, and

i was set to 2.75%, which is a reasonable interest rate for

agricultural businesses (L. Hylander (Swedbank), personal

communication, June 17, 2020).

The component costs and equations for each parameter

are shown in Tables 3 and 4. Sections 2.3.2, 2.3.3, 2.3.4, 2.3.5,

2.3.6, 2.3.7, 2.3.8 and 2.3.9 explain the costs, sources and as-

sumptions for each category. When no data were available, it

was assumed that both the BED system and the corresponding

diesel tractor system had equal costs. This included vehicle

housing, seeds, fertilisers, pesticides, insurance and non-

field-related farming expenses. For all conversions between

currencies, the following rates from May 7, 2020 were used: 1

V ¼ 10.64 SEK ¼ 1.10 US$.
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2.3.2. Charging infrastructure
The cost of chargers included the price for the charging sta-

tion, the grid connection cost, casing, site establishment,

wiring, installation safety control and the cost of contract

work. The total cost for this ranged from 35,000e80,000 V,

according to Swedish Energy Agency (2019). The assumed cost

was set to cC ¼ 50,000 V. It was assumed that the full cost of

establishing charging infrastructure was required for the first

charging station (NC ¼ 1), and that any additional charging

(NC > 1) just required investing in additional charging stations,

which was priced at cCA ¼ 25,660 V for a Siemens mode 3 fast

charger (Engstr€om & Lagnel€ov, 2018). It was assumed that the

connection of charging stations were within the limit of the

farms pre-existing power capacity and that no upgrade in fuse

size was needed.

2.3.3. Battery changing system
An industry sector that has similar needs to the agricultural

sector, and has solutions for battery replacement technology,

is the forklift sector. Its solutions are less complex and costly

than the large-scale systems found in mining vehicles or

buses. For example, a battery storage and replacement system

used for forklift trucks from the Solus Group costs

5000e10,000 V, depending on capacity and complexity (Solus

Group, 2019). The higher cost (cBCS ¼ 10,000 V) was chosen

here, since knowledge of the system is low.

2.3.4. Tractor prices
The cost of investing in a new field tractor was calculated

using Eq. (8) which was developed by Engstr€om and Lagnel€ov

(2018) and estimates the vehicle price based on the rated en-

gine power. The equation is regression-based and uses data

from Swedish tractor retailers. The equation was verified

using official data on the average price of tractors in 2018

(Statistics Sweden, 2019), with acquisition values from

Maskinkalkylgruppen (2020), and compared with linear re-

lationships between price and rated power presented in

Goense (2005). It was assumed that engine/motor and other

driveline components were included in this price. To repre-

sent the lack of mass production for BED systems, it was

Table 1 e Field number and area in the simulations, and type of grain grown; O¼ oats,W.W¼winter wheat, S.W¼ spring
wheat and B ¼ barley.

Field no. (n) 1 2 3 4 5 6 7 8 9 10 11 12

Area (An) [ha] 10 16 22 13 15 26 6 14 22 28 15 13

Grain O W.W B B S.W O W.W O S.W W.W B S.W

Table 2eTimeliness factors and yields for the grain crops
assumed in simulations. Timeliness factors from
(Gunnarsson, 2008) and yield data from Statistics Sweden
(2019).

Winter
wheat

Spring
wheat

Barley Oats

pg, Grain price [V kg�1] 0.130 0.130 0.118 0.143

Yg, Yield [kg ha�1] 5658 4221 4581 3823

lg, Timeliness factor

[kg ha�1 d�1]

55 59a 40 23a

Timeliness, [% d�1] 1.1 1.5 1.0 0.9

a Value for organic production instead of conventional.

Table 3 e Costs, lifetime and equations used to calculate combined cost of investment (COW), where C (capital) is the total
investment cost in V and c (lower-case) is the investment cost per component or unit in V. Sources given in sections 2.3.2,
2.3.3, 2.3.4, 2.3.5, 2.3.6, and 2.3.7.

Component (subscript) Component cost (cx) Assumed economic lifetime (Tx) [yr] Equation

Battery (B) 146 V kWh�1 (see section 2.3.6) CB ¼ cB ERðNV þNBÞ
Charger (C) 50,000 V 20 CC ¼ cC þ ðNC � 1ÞcCA
Additional charging stations (CA) 25,662 V 20

Battery changing system (BCS) 10,000 V 20 CBCS ¼ cBCS NBCS

Autonomy system (A) 17,446 V 15 CA ¼ cA NV

Tractor, PR ¼ 50 kW (V) 45,005 V 15 CV ¼ NV ð8107:2 � PR þ 10970Þ
10:64

Tractor, PR ¼ 250 kW (V) 191,550 V 15

Table 4 e Costs and equations used to calculate operating costs of the system (COP). Sources given in sections 2.3.2, 2.3.3,
2.3.4, 2.3.5, 2.3.6, 2.3.7, 2.3.8 and 2.3.9.

Parameter Variable Component cost (cx) Units Yearly cost [V yrs�1]

Electricity CE 0.08 V kWh�1 CE ¼ cE Etot

Diesel CD 0.086 V kWh�1 CD ¼ cD Etot

Maintenance Diesel CMD 48.8 V ha�1 CMD ¼ cMD A

Maintenance BED CME 35.1 V ha�1 CME ¼ cME A

Operator CO 28.2 V h�1 CO ¼ P
cO a hd

Battery cost per cycle CB,cyc (see section 2.3.6) V cycle�1 CB;cyc ¼ cB;cycNy
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assumed that the BED tractors had a 15% increase in invest-

ment cost compared to Eq. (8).

cT ½V� ¼ ð8107:2 *PR þ10970Þ½SEK�* 1
10:64

½V = SEK� (8)

2.3.5. Autonomous systems
The system architecture and sensory requirements for

autonomous systems can vary between different sectors, ve-

hicles and levels of autonomy. There is a lack of data for

autonomous systems in the agricultural sector, which neces-

sitates use of data from other sectors. Engstr€om and Lagnel€ov

(2018) used a 10,000 V template value based on the increased

price of Volvo cars when equippedwith autonomous capacity,

which is similar to the findings of Daziano, Sarrias, and Leard

(2017) for the add-on Cruise-RP1 system (Cruise, San Fran-

cisco, CA, USA), priced at 10,000 $ (~9000 V). Vedder, Vinter,

and Jonsson (2018) estimated that building a vehicle with

self-driving capacity was possible at prices from 2000 V.

Higher estimates have been given, putting the price for full

autonomous capability in cars at 70,000 $ (Fagnant,

Kockelman, & Bansal, 2015). B€osch, Becker, Becker, and

Axhausen (2018) assumed that for fleet-based cars, the price

increase would be 20% higher for cars with autonomous sys-

tems compared with those without, a value that Brundrett

(2014) found applicable for autonomous mining vehicles.

The autonomous diesel-powered tractor Robotti (Agrointelli,

Aarhus, Midtjylland, Denmark) is priced in range as modern

manned tractors, 133,170e192.447 V depending on rated

power and options (F. Rom (Agrointelli), personal communi-

cation, January 20, 2021). It was assumed that the cost for the

total autonomous system of SAE level 4 or above (SAE, 2018)

was 20% of the average Swedish tractor price (Statistics

Sweden, 2019), which resulted in cA ¼ 17,450 V.

2.3.6. Batteries
In a summary by Comello and Reichelstein (2019), the market

price for a Li-ion battery system in the US was projected to

range between 113 and 172 V kWh�1 in 2020. Tsiropoulos,

Tarvydas, and Lebedeva (2018) estimated a cost in the range

of 170e215 V kWh�1 for Li-ion battery packs in the EU in 2017.

This was based on predictions by Nykvist andNilsson (2015) of

a possible pack cost of 182 V kWh�1 in 2020. The actual cost

will depend on cell chemistry, producer and production

method (Tsiropoulos et al., 2018). Here, the cost, cB, was set to

146 V kWh�1, as it fitted multiple predictions, was the average

price given by Comello and Reichelstein (2019) and was close

to the 2019market average of 142V kWh�1 (McKerracher et al.,

2020). For clarity, batteries are shown as both an investment

cost and as an operating cost. Therefore it may be easier to

calculate the cost per year, cycle or unit of energy stored,

which is shown in Appendix B.

2.3.7. Fuel
Both electricity and diesel were considered as fuels in this

study. The base price of diesel was taken from the Swedish

average price for March 2020, as reported by SPBI (2020), and

reworked to the current net price for the agricultural sector.

Swedish agricultural businesses are exempt from VAT (25%)

on diesel and are entitled to a carbon tax refund of 181.8Vm�3

diesel. The total pump-price of 1.32 V l�1 is thereby reduced to

0.87 V l�1. Further conversion to price per unit of energy was

made using the density (845 kg m�3) and net calorific value

(43.1 MJ kg�1) of diesel found in Reif and Dietsche (2014) for a

total price of 0.086 V kWh�1. The price for electricity, 0.08 V

kWh�1, was taken from the official Swedish statistics for

businesses with annual consumption between 20 and

500 MWh (Statistics Sweden, 2020).

2.3.8. Maintenance
The maintenance costs for agricultural tractors were taken

from Pettersson and Davidsson (2009, pp. 1401e4963), who

analysed the maintenance costs for Swedish field tractors in

grain production on farms with 150e300 ha. This was verified

with data fromOlt, Traat, and Kuut (2010) for similarmachines

and production types. This put the maintenance costs within

the range 20.5e48.8 V ha�1 for diesel systems, and the highest

value of 48.8 V ha�1 was chosen for the present analysis.

For BED tractors there are less available data. Sources

studying on-road vehicles give the maintenance cost reduc-

tion for BED tractors compared with diesel at 19e28%

(Delucchi & Lipman, 2010; Propfe, Redelbach, Santini, &

Friedrich, 2012), which puts the maintenance costs for BED

tractors in the range 18.8e39.5 V ha�1. A maintenance cost of

72% of that of a diesel tractor (35.1 V ha�1) was chosen.

2.3.9. Driver & operators
For manned vehicles, it was assumed a driver needed to be

hired. It was assumed that this driver was contracted on a per-

hour basis related to the active time of the tractor, which is the

sumof the timespent performingfieldwork, road transport and

refuelling. For the autonomous systems, it was assumed that

an operator was required to control the vehicle during more

challenging operations and for general management of the

system. The fraction of vehicle time assumed to need an

operator was called operator factor, O. It was defined as a

fraction between 0 and 1, and describes the fraction of hours

that the vehicle needs to be managed by an operator for that

specific task, with 0 being fully autonomous and 1 being fully

monitored. Engstr€omand Lagnel€ov (2018) used a valueof 0.1 for

all tasks and Goense (2005) used 0.2 for field operations based

on the complexity level of different field manoeuvres, but did

not include road transport or refuelling. In this study, different

values were set for fieldwork (OF ¼ 0.2, i.e. 20% of all fieldwork

hours needed to be monitored), road transport (OR ¼ 0.3) and

refuelling (OC ¼ 0.1), as they had different levels of complexity,

with road transport assumed to be the most complex task.

The operator was assumed to have an hourly cost of 28.2V,

which is the rate recommended for the total cost of an expe-

rienced employee in the agricultural sector, including social

benefits, taxes, vacation and 15% write-up for non-productive

time (Maskinkalkylgruppen, 2020). For the manned systems,

the values were verified with the normal yearly tractor use of

650 h y�1 fromMaskinkalkylgruppen (2020), andwere found to

be within 10% of that value.

2.4. Simulation inputs

The vehicle system cases with the parameters shown in

Table 5 were simulated and analysed, unless specifically
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stated otherwise. They were chosen as a previous study

found that BES performed slightly better and that a two-

vehicle system provided adequate overall capacity for

200 ha, which was explored in Lagnel€ov et al. (2020). The

case D1 was chosen as being a reasonable diesel counter-

part and D2 was chosen to represent a system with

overcapacity.

The inputs were used in the dynamic discrete-event model

of a 200 ha Swedish grain farm presented in Lagnel€ov et al.

(2020). The weather data for the years 2008e2018 were used

in the soil water balance sub-system in the model, as the

model was run for those years, so some results are 11-year

averages.

3. Results

This section firstly presents the results of the simulation

concerning battery ageing and timeliness, and then calculates

the system cost from those results.

3.1. Battery ageing

Battery ageing due to cycling at different charging rates was

simulated as described in section 2.1 and the results are

shown in Fig. 3. The results for the capacity fade were fitted

with third-order polynomials and were used in the model as

an approximation of the capacity fade due to cycling. The

polynomial constants were decided by the charging rate of the

chargers, as depicted in Table 6.

The choice of charging rate for each case was determined

using Eq. (9) and Eq. (10). The polynomial they represent was

used as input in the main model:

C� rate ¼
8<
:

4C; 2 � xC

1C; 0:5 � xC < 2;
0:1C; xC < 0:5

(9)

xC ¼EB

PC
(10)

where xc is the relationship between battery energy (EB) and

charging power (PC) in h, and is used as a metric to decide the

C-rate.

Table 5 e Base case simulation inputs for the battery
electric drive (BED) tractor and inputs for the reference
cases with one and two diesel tractors (D1, D2).

Case name BED D1 D2

Number of vehicles (NV) 2 1 2

Vehicle power (PV, kW) 50 250 250

Battery energy eq. carried (EB, kWh) 50 1315 1315

Number of extra batteries (NB) 2 e e

Charging power (PC, kW) 50 30,345a 30,345a

Number of chargers/fuel pumps (NC) 1 1 1

Number of battery exchange stations (NBCS) 1 e e

Daily working time (h, h d�1) 24 10 10

a Diesel pump with a flow of 50 L min�1.

Fig. 3 e Decrease in (a) state-of-charge (SoC) and (b) voltage as a function of cycle number, simulated for three different

charging rates: C/10 (circles), 1C (squares) and 4C (diamonds). Line-fitting curves from Eq. (2) (dotted lines) for the three

different charging rates are shown in (a).
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3.2. Battery replacement

A higher charging rate led to a shorter charging time and

higher productivity, but it also aged the battery more rapidly

than lower charging rates. This can be seen in Fig. 4, as MTTR

for the given system at 4C was 2 years, while the same system

had a MTTR of 7 years with 1C. For the C/10 charging rate, the

chosen system did not reach the point of battery replacement

in the 11 years simulated.

The limit for end-of-life (EOL) was set at 80% of starting

capacity and the different charging rates reached it in

differing amount of cycles: 4C reached it in 1200 cycles, 1C in

4240 cycles and C/10 in 7760 cycles.

3.3. Timeliness

A plot of the average delay for different vehicle systems (Fig. 5)

revealed that the BED system has a longer delay in the spring

than the systems with manned diesel tractors (D1 & D2). It is

worth noting that the delay between fields was not insignifi-

cant, as even the best cases showed an average delay of 20

days for the highest numbered field. For autumn, none of the

systems showeda long delay comparedwith the spring period.

The sowing interval for the BED system (Fig. 6) was within

the range stated in Myrbeck (1998), with a comparable delay in

the spring period to the 1-vehicle system of diesel tractors (D1)

and with increased delay compared with the 2-vehicle system

(D2). The autumn period sowing interval was short in all three

scenarios and all systems were within the stated interval.

However, since harvest was not simulated, but was simply

assumed to be completed at the start of the autumn period, it

is plausible that the starting date for sowing should be akin to

that stated by Myrbeck (1998).

3.4. Economics

3.4.1. Timeliness
The delay for each grain and field in the three cases can be

seen in Fig. 5. The cost for the delay for the BED case was

20,846 V in total, 18,370 V for the spring-sown crops and 2476

V for the winter wheat. The total yield loss was 30.1%

compared with the optimum. For the diesel cases, the corre-

sponding yield loss was 19.6% (D1) and 10.6% (D2), which

resulted in costs of 13,569 V (D1) and 7321 V yr�1 (D2).

3.4.2. Battery and energy cost
The battery cost for the BED case, with 4 � 50 kWh NCA li-ion

batteries, was 29,200 V in investment costs. The average

yearly energy use was 91,462 kWh and the average number of

equivalent cycles was 2464 cycles yr�1 (616 per battery and

year). With a charging rate of 1C, the system had a theoretical

MTTR of 6.8 years (7 years in simulation) and a MCTR of 4240

cycles. Using linear depreciation, this resulted in a cost of 6.8V

cycle�1 or 0.17 V kWh�1. The total energy cost (including

electricity and battery cost) was then 0.97V kWh�1, compared

with 0.86 V kWh�1 for diesel. Compared with the diesel cases,

the BED systemhad lower energy consumption (54% of D1 and

52% of D2) and fuel costs (49e50% lower). The batteries made

up 6% of the total operating costs and 14% of the investment

costs for the BED case.

Table 6 e : Parameters used in Eq. (2) for different charge
rates shown in Fig. 3.

C-rate A b c d R2

0.1C �8.81 * 10�13 7.65 * 10�9 �2.97 * 10�5 0.9820 0.997

C �3.37 * 10�12 2.77 * 10�8 �9.60 * 10�5 0.9655 0.994

4C �7.07 * 10�12 5.43 * 10�8 �1.69 * 10�4 0.9371 0.982

Fig. 4 e Capacity fade and replacement rate for three different charging rates, 4C (dash-dotted line), 1C (full line) and C/10

(dashed line) over 11 years. Simulation of a system of four batteries with energy content of 50 kWh, assuming even load on

the batteries. End-of-life (qEoL) set at 0.8 (dotted line) and the battery packs were replaced at the end of the year where the

system on average reached q ¼ 0.8. Calendar ageing not included.
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3.4.3. Investment, operating and total annual costs
The total cost of investment for the autonomous BED system

with BESwas 218,868V, and the annual cost was 57,002V yr�1.

The BED system had slightly higher investment costs and

lower operating costs than the 1-vehicle diesel system (D1)

and lower costs of both compared with the 2-vehicle system

(D2) (Fig. 7). The investment costs for D1 were 196,554 V and

the annual costs were 69,774V yr�1, while the investment

Fig. 5 e Average delay (lines, left axis) from the optimum date of sowing for scenarios with a battery electric drive (BED)

tractor (dashed line) and a conventional manned diesel tractor system with two tractors (D2; full line) and one tractor (D1;

dashed double-dotted line). Field sizes (bars, right axis) are shown, with the pattern and shade in columns denoting the

type of grain crop grown in the field (winter wheat (grey), spring wheat (white), barley (vertical) and oats (diagonal)).

Fig. 6 e Actual sowing (dotted pattern) and harvesting (diagonal pattern) interval with mean values (black diamond) for

central Sweden from Myrbeck (1998) and simulated sowing dates in scenarios with a battery electric drive (BED) tractor and

a conventional manned diesel tractor system with one (D1) and two (D2) tractors. The three work periods are indicated in

light grey, while non-active periods (black) and the growing period (white) are shown in the bottom bar. A one-month

reserve period (medium grey) was included in the autumn period to make sure the simulation ran to completion. Ploughing

was the only task performed during the reserve period.
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costs for D2 were 393,108 V and the annual costs were

80,656 V yr�1.

The largest fraction of the investment costs for the BED

system was purchase of the tractor (41%) followed by instal-

lation of the charging system (23%) and the autonomous

system (16%). For the diesel systems, the investment costs

were similar for both D1 andD2, and comprised only purchase

of tractor/s (97%) and cost of interest (3%).

For the diesel cases the three largest components of the

annual cost (CAN) were cost of investment (COW), operator cost

and fuel, contributing 67e79% of the total operating costs

(Fig. 8). For the BED case the three largest components were

timeliness (30%), COW (23%) and operator cost (23%) for a total

of 76% of CAN. Timeliness was a relevant component for the

operating costs for all cases, at 20,847 V y�1 (30%) for the BED

system, 13,569 V y�1 (19%) for D1 and 7321 V y�1 (9%) for D2.

3.5. Sensitivity analysis

A sensitivity analysis of several parameters was performed to

assess their influence on different costs. The costs of batte-

ries, autonomous system, charger installation, operator and

electricity were varied in the BED case, to gain an under-

standing of their influence on the yearly cost of operations. In

addition, the interest rate, timeliness factors, economic life-

time and the autonomous fraction of different operations

and activities for the autonomous systems were varied. Ab-

solute change, absolute sensitivity and relative sensitivity

were measured.

3.5.1. Parameter-based sensitivity analysis
Table 7 shows the absolute sensitivity and the relative

sensitivity for some key parameters included in the cost

analysis. Relative sensitivity is denoted as the change in the

total annual cost given a change of one unit in the given

parameter.

3.5.2. Rate of autonomy and operator factor
The amount of autonomy is a key concept in the analysis

of self-driving vehicle systems. Discussions on autono-

mous vehicles in agriculture usually focus on the amount

of autonomy in fieldwork (Engstr€om & Lagnel€ov, 2018;

Goense, 2005; Oksanen, 2015). However, for an indepen-

dent generalist vehicle it is also necessary to consider

additional activities, such as charging and road transport.

The intricacies of on-road autonomy are a complex sub-

ject outside the scope of this article, but the scenarios of

fully manned/monitored drive and fully autonomous

operation were explored as a cost function, as shown in

Table 8.

3.5.3. Battery cost and lifetime
As mentioned previously, the cost of the batteries was

assumed to be low compared with other annual costs, but it

is still critical for any electric vehicle. To verify the choices

made and see the potential effect of other assumptions

on prices and lifetimes, these parameters were varied

independently.

As can be seen in Fig. 9b, the annual battery cost varied

linearly with the pack cost. The battery cost was a small part

of the total annual cost for all values tested and, evenwith the

highest price in the interval, 330 V kWh�1 (Nykvist & Nilsson,

2015), the total annual cost was still lower than for D2 and

similar to D1. The operational lifetime of the battery before

replacement was important for the battery cost, as the cost

decreased exponentially with increased lifetime (Fig. 9a).

Extending the battery lifetime beyond the first few years is

paramount to keep a low annual cost.

Fig. 7 e Investment costs (COW) in V for a simulated battery electric drive (BED) tractor systemwith autonomous capacity and

two manned diesel counterparts (D1, D2). Columns show the cost of the tractor (grey), battery (diagonal stripes), charger

system (dotted), battery changing system (dark grey), autonomous system (vertial stripes) and cost of interest (black).
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3.6. Case-based cost analysis

Several other cases were simulated and their cost and active

time requirement calculated. The different cases included the

two different battery recharging methods described in

Lagnel€ov et al. (2020) and vehicles with larger batteries, mul-

tiple smaller batteries, high-powered chargers, lowered

working time and autonomous diesel systems (Table 9).

Figure 10 shows the different annual costs for the different

cases in Table 9. Notably, all but one of the electric cases had a

cost comparable or lower than the manned diesel cases,

Fig. 8 e Annual cost of operation (CAN) in V yr¡1 for a simulated battery electric drive (BED) tractor system with autonomous

capacity and two manned diesel counterparts (D1, D2). Columns show the annual costs of operator (white), fuel (thin

diagonal stripes), maintenance (grey), timeliness (dotted on light grey background), batteries (broad diagonal stripes) and

COW (annual cost of investment, dark grey).

Table 7 e Change in total annual cost given a change in a single parameter and relative sensitivity for different parameters
influencing the annual cost in the battery electric drive (BED) tractor scenario. The closer the relative sensitivity is to one,
the more sensitive the annual cost to changes in that parameter. Relative sensitivity of Tx is not shown as it is non-
constant. In addition, changes deemed unrealistic are represented with a dash (¡).

Parameter change
Absolute sensitivity, in % Relative sensitivity

¡50% ¡25% þ50% þ100%

Investments

Charger (cC) �3.3 �1.6 þ3.3 þ6.5 0.07

Battery (cB) e �1.5 þ2.9 þ5.8 0.06

Tractor (cV) �5.6 �2.8 þ5.6 þ11.1 0.11

Autonomous system (cA) �2.2 �1.1 þ2.2 þ4.3 0.04

Operating costs ¡50% þ50% þ100% þ200%

Operator (cO) �11.3 þ11.3 þ22.6 þ45.2 0.23

Electricity (cE) �4.0 þ4.0 þ7.9 þ15.9 0.08

Timeliness factor (l) �15.1 þ15.1 þ30.2 þ60.3 0.30

Other ¡50% þ50% þ100% þ200%

Interest rate (ir) �1.9 þ1.9 þ3.8 þ7.6 0.04

Economic life (Tx) þ16.4 �5.5 �8.2 e e

Table 8 e Change in annual cost (CAN, in %) compared
with the battery electric drive (BED) case. The operator
factor for three different activities (road transport,
charging and fieldwork) was varied from 0 (fully
autonomous operation) to 1 (fully monitored operation).
In the BED case, Or ¼ 0.3, Oc ¼ 0.1, Of ¼ 0.1 (section 2.3.9)
and CAN ¼ 57,002 V yr¡1 (section 3.4.3).

Operator factor 0 0.5 1

Road transport (Or) �13% þ9% þ30%

Charging (Oc) �2% þ7% þ15%

Fieldwork (Of) �8% þ12% þ32%

All (Or ¼ Oc ¼ Of) �23% þ27% þ77%
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indicating that multiple system designs, charging systems

and component sizes are competitive, even in the caseswhere

the number of active days were higher.

In total, the autonomous diesel system (D2A) had the

lowest annual cost and active number of days, indicating

the high profitability of autonomy. A system with multiple

smaller exchangeable batteries (BES2) had a significantly

higher cost than the other BED systems, mostly due to a high

number of active days, which led to high operator cost and

timeliness cost. The system with four vehicles (NV4 BES) had

the second lowest number of active days, but the third highest

annual cost of the BED systems, due to its large investment

cost and subsequent depreciation, as it provided expensive

overcapacity.

For both conductive charging (CC) and BES, the systems

with lowest total annual cost were those with large batteries

(CC3 and BES3). This shows that the rate at which the battery

ages is important, as the CC system with a higher powered

charger, but one-third the energy content in batteries (CC2),

had an annual battery cost that was more than seven times

that of CC3, due to the rapid replacement of the batteries.

The BES studied had a lower number of yearly cycles per

battery compared with CC, although they had similar total

yearly cycles, as the yearly cycles were distributed on a higher

number of batteries. This resulted in comparatively longer

time to EOL for BES and gave a lower battery cost per kWh,

even though the battery investment costs were higher

(Fig. 10). All BED systems shown had lower yearly energy

usage and cost compared with the diesel alternatives. Energy-

and battery-related results for the different cases are shown in

Table B1.

4. Discussion

4.1. Battery ageing

Battery ageing gave a large variation in MTTR between the

different C-rates studied (Fig. 4). Increased rate of degradation

with increased C-rate is discussed in the literature and linked

to high cell temperatures, Li-plating on the negative electrode

and electrolyte decomposition, which all lead to accelerated

Fig. 9 e Impact on annual battery cost of a) battery lifetime before replacement and b) battery pack cost for the battery

electric drive (BED) tractor case. The cost interval (dashed lines, arrow) from relevant literature is given (Comello &

Reichelstein, 2019; McKerracher et al., 2020; Nykvist & Nilsson, 2015; Tsiropoulos et al., 2018). The values used in the BED

case are shown as black triangles.

Table 9 e Cases simulated in cost analysis. D ¼ diesel, E ¼ electricity, CC ¼ conductive charging, BES ¼ battery exchange
system.

Case name D1 D2 BED D2A CC 1 CC 2 CC 3 BES 2 BES 3 NV4 BES BES 18 h

Fuel, Charging method D D E/BES D E/CC E/CC E/CC E/BES E/BES E/BES E/BES

Number of vehicles (NV) 1 2 2 2 2 2 2 2 2 4 2

Vehicle power (PV, kW) 250 250 50 50 50 50 50 50 50 50 50

Battery energy eq. carried (EB, kWh) 1315 1315 50 30,345 50 100 50 25 50 50 50

Number of extra batteries (NB) e e 2 e e e e 6 2 3 2

Charging power (PC, kW) 30,345 30,345 50 1315 50 50 150 25 100 50 50

Number of chargers/fuel pumps (NC) 1 1 1 1 1 1 1 2 2 3 1

Number of battery exchange stations (NBCS) e e 1 e e e e 1 1 1 1

Daily working time (h, h d�1) 10 10 24 24 24 24 24 24 24 24 18
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ageing. In particular, high cell temperature is reported to be a

major driver in battery ageing (Barr�e et al., 2013; Keyser et al.,

2017; Tomaszewska et al., 2019; Uddin et al., 2016). However,

Keyser et al. (2017) pointed out the difficulty in decoupling the

effect of high C-rates from that of increased cell temperature

in general, and the fact that different cell chemistries and

designs respond differently to high C-rates. Because of this, it

is difficult to compare the simulated results with literature

values. However, for parameters described in this study,

Keyser et al. (2017) gave a MTTR of 4e9 years for a NMC bat-

tery, depending on temperature, and de Hoog et al. (2017)

showed a MCTR ranging from 1200 to 3500 cycles, which is

similar to the results of this study. This indicates that the

MCTR and MTTR used in this study are feasible, but further

research is needed as data on the heavy duty off-road use of

batteries is sparse.

By using the relationship shown in Fig. 9, the assump-

tion of different lifetimes and the cost can be explored. As

the relationship between annual cost and lifetime of the

battery decreased exponentially, the most important

consideration appears to be to increase the lifetime beyond

the first years. In those intervals, the chosen C-rate was

highly influential.

Battery size appeared to be of less importance than battery

lifetime. However, the cases with larger batteries performed

better than other changes in battery parameters (Fig. 10). They

had a lower total annual cost and lower annual battery cost,

even though their investment costswere higher. Thiswas true

for both CC and BES, with similar results. This seems to

indicate that optimising the system for long-term battery use

gives a better pay-off than investing in fast charging.

4.2. Timeliness

In previous studies (Magalh~aes et al., 2017; Moreda et al., 2016),

it was assumed that a BED would suffer as regards capacity,

due to the need for frequent recharging. Thiswas encountered

in the simulations made as the BED case had a 54% larger

timeliness cost compared to D1. Inclusion of autonomy

seemed to mitigate this, as BED still had a slightly lower

annual cost. In addition, other cases were shown to have

comparable or lower timeliness cost, indicating that with the

right optimisation it is not an issue. Compared with other

literature values, the resulting cost of timeliness appeared

reasonable. Costs in the range 46e121 V ha�1 was shown for

different caseswith BED and 36e68V ha�1 for the diesel cases.

Gunnarsson and Hansson (2004) found a timeliness cost of 102

V ha�1 and de Toro (2005) a range of 30e145 V ha�1, with an

average of 60 V ha�1 for similar crops, conditions and climate.

It is worth noting that harvest is included in both these ranges

of values. However, as discussed in Lagnel€ov et al. (2020), the

number of workable hours in the field due to weather was

lower in those studies than in other similar studies, which

might explain part of the discrepancy.

The cost of timeliness is a theoretical comparison to an

assumed optimal yield. As the sowing dates for BED would

have been within the intervals shown by de Toro (2005);

Witney (1988) and Myrbeck (1998), it is possible that the actual

timeliness cost would have been lower than presented (Fig. 6).

However, as it affected all cases equally, it still shows the

dynamics of the concept. In addition, other climates and sites

often have awider window of suitable conditions, for example

the UK (Witney, 1988), USA (ASAE, 2000; Edwards et al., 2016)

Fig. 10 e Average annual costs (bars, left axis) and active time (grey diamonds, right axis) for different cases. The annual

costs are divided into costs for operator (white), fuel (thin diagonal stripes), maintenance (grey), timeliness (dotted on light

grey background), battery (broad diagonal stripes) and annuity of investment (dark grey). The number of active days is

shown, with error bars indicating one standard deviation.
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and southern Europe (Savin et al., 2014). Since timeliness was

not found to be an insurmountable part of the cost in the

northern European climate in Sweden, it follows that this type

of autonomous BED system would have a lower timeliness

cost in those other regions, provided that the other parame-

ters are similar.

4.3. Economics

For the BED case, part of the investment cost was for new

infrastructure in the form of charging stations and battery

changing stations, while all the infrastructure for the

diesel cases was assumed to be in place, with no further

need for improvement. This might appear to be an unfair

comparison, but when trying to replace an existing solu-

tion it is a reality that the cost of new infrastructure must

be included. Even with the installation of new infrastruc-

ture leading to a higher investment cost for BED compared

with D1, the BED case had slightly lower annual costs

thanks to the reduced operating costs, most notably fuel

and maintenance. The annuity on investment was a rela-

tively small part of the total annual costs, but the operating

costs were of high significance (Fig. 8). For on-road vehi-

cles, especially cars, the increased investment cost of BED

vehicles is seen as a barrier to effective market penetra-

tion. For heavy duty vehicles this is a much less severe

problem, as the vehicles in that market segment also have

higher operating costs.

A high number of active days often involved a high cost,

as it affected both timeliness (more delay) and operator costs

(more hours where the vehicles must be monitored) (Fig. 10).

In some exceptions, there was a trade-off with other costs,

for example CC1 had a higher number of active days than

CC2, but a lower cost due to the reduced battery cost. The

number of active days could not be used on its own to draw

conclusions on the annual cost of a system, but a high

number of active days was often indicative of a system with

poor optimisation, associated in turn with higher annual

costs.

The actual cost of autonomous systems is difficult to

determine correctly and only assumptions are possible

without calculating the cost on component level, which was

beyond the scope of this study. Instead, the investment cost

of the autonomous system was included in the sensitivity

analysis. The price of Robotti indicates that a tractor with a

high level autonomy can be made for a similar price to

manned tractor. Engstr€om and Lagnel€ov (2018) theorised that

the removal of driver comfort systems and cabin could make

for a cheaper vehicle and potentially make up for the

increased cost of the autonomous system. The degree of

automation is also important for the production cost of

autonomous systems (Table 8). Marinoudi et al. (2019) found

increased total costs at a certain level of automation for

agricultural vehicles at which the component costs overtake

the avoided labour cost and any further increase is

economically sub-optimal. As the present study considered a

highly autonomous system, it is possible that the cost of

automation would have increased non-linearly and posed

higher costs than presented here for highly autonomous so-

lutions. However, unless exorbitantly expensive, it would be

covered by the variations presented in the sensitivity

analysis.

Fieldwork proved to be the operation for which a high de-

gree of autonomy was most important, followed by road

transport. The most time-consuming operation needed to

have a high autonomy rate to have a low cost, which generally

proved to be fieldwork and, for some BED cases, road trans-

port. Road transport is a complex task to make autonomous,

but there are indications that fieldwork is a more suitable task

(Goense, 2005). Requiring the system to be monitored

constantly (Otot ¼ 1) would increase the annual cost by 77%,

making it more expensive than both the diesel cases studied

here and generally economically unsuitable. This indicates

that manned BED systemswill struggle to compete in terms of

costs with conventional diesel systems, whereas even partly

autonomous systems may be competitive. This was some-

what explored with the BED 18 h-case, which showed a slight

decrease in capacity but still had a comparable cost to the BED

case with a 24-h working day, and the D1-case. It also high-

lights the benefit of understanding and minimising the

number of hours of monitored non-productive work, most

notably road transport. Due to more time spent refuelling and

in transit the operator costs for BED andD1was similar, which

indicates an under capacity for the BED systems. Systems

with higher battery capacity reduced the time spent in transit

while having a slightly higher amount of time spent charging,

which overall led to a low operator cost, notable in the CC3

and BES3 cases.

It is also worth discussing the manner in which the driver

can be replaced. In this study, it was assumed that a single

operator would monitor a certain fraction of the machine-

hours. In reality, this function might hamper the vehicle’s

ability to work independently at all hours of the day, as the

restrictions of human supervisionwould still be imposed, only

at a higher level compared with a tractor driver’s more direct

involvement. The approach used in this study calculated the

cost for every manned or monitored hour and other ap-

proaches would likely give different operator costs. Our

approach was suitable for cost analysis, but there are many

questions regarding general management that require further

research.

4.4. Sensitivity analysis

The results from the sensitivity analysis showed that

changes in the operating costs were more influential than

changes in the investment costs, as the investments were

distributed over the economic lifetime of the system, but

changes in the operating costs were incurred directly. This

indicates that in order to achieve a low annual cost, the

operating costs need to be minimised and the economic

lifetime maximised.

The case-based cost analysis (Fig. 10) showed the effects of

different system design parameters, from large chargers to

many small, replaceable batteries. The main dynamics dis-

cussed in (Lagnel€ov et al., 2020) were confirmed, i.e. the dif-

ference between CC and BES was small but slightly favoured

BES, EB < 50 kWh led to a poorly optimised system; and a

balanced ratio between battery size and charging speed is

needed (here also shown as C-rate). It was also shown that
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cases with larger battery capacity (CC3 and BES3) had a

noticeably lower annual cost compared to the diesel system,

with BES3 having a comparable annual cost to D2A. This

indicate that BED tractor systems can cost-effectively

compete with manned and unmanned diesel systems. Addi-

tionally, the low costs obtained for most BED cases and the

autonomous diesel system indicate that autonomy in an

agricultural field setting can decrease the annual costs

substantially.

5. Conclusions

In a simulated scenario, autonomous BED systemswere found

to have comparable or lower annual costs than equivalent

cases with both one and twomanned diesel vehicles. The BED

systems had lower maintenance and fuel costs, but generally

higher investment and timeliness costs and a higher number

of required active days. The reduction in the operating costs

outweighed the higher investment costs in the BED cases.

To ensure equal or comparable working rate to contem-

porary diesel systems, autonomy was shown to be necessary

for the BED systems. The analysis revealed high sensitivity to

degree of autonomy, with a fully monitored BED system

having costs exceeding those of the diesel systems. Simula-

tions of a diesel system running on the same assumptions as

the BED systems (multiple smaller vehicles with a 24-h

working day) showed low cost and high capacity, indicating

the advantages of autonomy. These findings indicate that

many of the predicted problems with agricultural field BEVs

are solvable or can be mitigated by vehicular autonomy. In

addition, this study showed that the cost of timeliness was

generally larger for BED systems than for diesel systems but

still resulted in a lower annual cost due to savings in opera-

tional costs.

The increased investment costs associated with BEVs

proved to be a small proportion of the total annual costs of

operation. Battery ageing had a significant impact on the

associated costs, but using batteries larger than 50 kWh or

multiple batteries extended the lifetime of the batteries

significantly. In addition, it was shown that the operating

costs of the vehicle systems were more influential than the

investment costs. Cases that ensured low operating costs

through reduced maintenance, fuel, timeliness and operator

costs had lower annual costs.
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Appendix A. Battery model simulation
parameters

Table A1 e Simulation and modelling parameters used in simulation of battery ageing

Parameter [unit] Variable Value

Ageing parameter alpha 0.67

Surface area Av_neg 3*0.384/rp_neg

Bruggeman coefficient for tortuosity in

positive electrode

brugl_pos 2.98

Bruggeman coefficient for tortuosity in

separator

brugl_sep 3.15

Initial electrolyte salt concentration

[mol m�3]

cl_0 1200

[mol m�3] cs_pos_max 48,000

Initial SEI layer thickness [mm] dfilm_0 1

Maximum cell voltage [V] E_max 4.1

Minimum cell voltage [V] E_min 2.5

Electrolyte phase volume fraction

negative electrode

epsl_neg 0.444

Electrolyte phase volume fraction positive

electrode

epsl_pos 0.41

Electrolyte phase volume fraction

separator

epsl_sep 0.37

Solid phase volume fraction negative

electrode

epss_neg 1-epsl_neg-0.172

Solid phase volume fraction positive

electrode

epss_pos 1-epsl_pos-0.170

(continued on next page)
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Abstract: There is an increased interest for battery electric vehicles in multiple sectors, including
agriculture. The potential for lowered environmental impact is one of the key factors, but there
exists a knowledge gap between the environmental impact of on-road vehicles and agricultural
work machinery. In this study, a life cycle assessment was performed on two smaller, self-driving
battery electric tractors, and the results were compared to those of a conventional tractor for eleven
midpoint characterisation factors, three damage categories and one weighted single score. The results
showed that compared to the conventional tractor, the battery electric tractor had a higher impact
in all categories during the production phase, with battery production being a majority contributor.
However, over the entire life cycle, it had a lower impact in the weighted single score (−72%) and
all three damage categories; human health (−74%), ecosystem impact (−47%) and resource scarcity
(−67%). The global warming potential over the life cycle of the battery electric tractor was 102 kg
CO2eq.ha−1 y−1 compared to 293 kg CO2eq.ha−1 y−1 for the conventional system. For the global
warming potential category, the use phase was the most influential and the fuel used was the single
most important factor.

Keywords: life cycle assessment; battery electric vehicle; tractors; environmental impact; agriculture

1. Introduction

According to IPCC [1], reaching net-zero emissions of greenhouse gases (GHG) is
required in order to limit and stabilise human-induced global temperature increase. To limit
global warming to 1.5 ◦C above pre-industrial levels, the global carbon budget (amount
of CO2eq. that can be emitted before that temperature is reached) must be kept between
300 and 900 GtCO2 [1]. Globally, agriculture has a major impact on emissions of GHG. In
2010, 21–24% (9.5–11.9 Gt CO2 eq. y−1) of global GHG emissions originated from the AFOL
(agriculture, forestry and other land use) sector [2,3]. Of this, roughly half was attributable
to agricultural production, and 0.4–0.6 Gt CO2 eq. y−1 of that to agricultural machinery use.
To reach the net-zero emissions goal, agriculture cannot be ignored and environmentally
friendly solutions for agriculture are needed.

The European Union (EU) has set the goal of being carbon net neutral by 2050 [4].
The Swedish government has established similar goals, i.e., to have a fossil-free vehicle
fleet by 2030 and to be carbon net neutral by 2045 [5]. This includes areas that have
traditionally been difficult to shift from diesel to renewables, such as agriculture, forestry
and mobile work machinery. These sectors place high demands on their vehicles, so robust,
cost-effective solutions are needed. One such solution is implementation of battery electric
vehicles (BEV), for both on-road and nonroad vehicles, using electricity from fossil-free
sources. However, automotive batteries have been shown to have a large environmental
impact during their production [6–8], although EVs have also been shown to have a lower
impact during the use phase due to higher driveline efficiency and lower fuel impact [9,10].
In the agriculture sector, multiple research projects and demonstrations of BEVs for field
work have been conducted, with promising results [11–15]. It has therefore been concluded
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by the World Economic Forum [16] that electrification is a potentially cost-effective way of
reducing GHG emissions in agriculture. There is significant interest from policy makers in
a more renewable food production system.

In previous studies by our research group assessing the production capacity and
economic impact of autonomous battery electric tractors through simulations [17,18], they
were shown to have a comparable work rate and lower total annual costs for certain system
topographies. One of the main arguments for changing from a few large diesel-powered
tractors to multiple smaller battery electric tractors is the potential environmental benefit
in replacing diesel with electricity that has a smaller environmental footprint. For this
change to be feasible, we have shown that autonomous operation is a prerequisite, due to
economic factors [18]. While a multitude of environmental impact assessments and life
cycle assessments (LCAs) have been performed for agricultural machinery [19–21], Li-ion
batteries [6,7,22,23], components in the electric driveline [24,25] and on on-road BEVs [9,26],
there is a lack of LCAs on electric tractors and other electric mobile work machinery.

Many studies look exclusively at the climate impact in the form of GHG emissions
when performing an LCA, but several other impact categories are of interest in order
to obtain a more complete understanding of the impacts of a system. In a review of
existing LCAs on automotive batteries by Aichberger and Jungmeier [8], one of the main
conclusions was that inclusion of more impact categories than GHG and energy use is
recommended for LCAs concerning automotive batteries, as also stated by Loon, et al. [27].
For example, availability of key materials and resource scarcity are potential challenges
connected with automotive batteries [6]. Arvidsson et al. [28] recommend the use of several
impact factors in LCA of emerging technologies because new technologies may lead to
different environmental impacts than the systems they replace. In LCAs of agricultural
systems, several other impact categories are of interest, notably eutrophication of freshwater
and the effect on biodiversity. By combined studies of impact factors for agriculture and
BEVs, a more thorough understanding of the environmental impact of battery electric field
machinery can be gained, and a more informed comparison to the systems used today can
be made.

The aim of the LCA performed in this study was to determine the environmental
impact of a self-driving BEV tractor system and compare it with that of a contemporary
diesel tractor system for a Swedish grain farm. The hypothesis tested was that changing to
an electricity-based system leads to lower environmental impacts.

2. Materials and Methods

2.1. Goal and Scope

This LCA study assessed the potential environmental impact of an autonomous BEV
agricultural vehicle system and compared it with the impact of a conventional internal
combustion engine (ICE) diesel-powered system used today. The environmental impact
was represented by characterisation of several midpoint and endpoint impact categories,
damage assessment and a weighted single score, as explained in further detail in Section 2.5.
As midpoint impact categories can be used as a measure of emission intensity, and end-
point impact categories as a measure of the resulting impact on human health and the
environment [29], determining both gives a broader picture of a system’s impact.

The scope of the LCA was limited to production and assembly, use phase and end-of-
life of two small BEV agricultural field tractors, as described in Section 2.1. Comparisons
were made between a vehicle system consisting of these vehicles and a vehicle system
consisting of a conventional manned diesel-powered tractor. A full cradle-to-grave (CTG)
analysis was made, and the gate-to-gate (GTG) aspect was also assessed separately.

The tractors were assumed to be used on a Swedish grain farm of 200 ha growing
winter wheat, spring wheat, barley and oats, in the manner described in Lagnelöv, Larsson,
Nilsson, Larsolle and Hansson [17]. The LCA methodology presented in the ISO 14040:2006
standard [30] was used, together with scalable life cycle inventories (LCIs) for the vehicle
glider, the battery and the driveline. LCIs for conventional tractors, electric vehicles
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and trucks were used, due to data shortages. As the focus of the study was on the
impact of the machine system and on comparison with the systems used today, original
LCIs for components were not created and secondary sources were used when possible,
after verification.

To account for the emerging state of the technology studied, a process-based, conse-
quential LCA was performed to test the hypothesis that a system of autonomous BEVs
reduces the climate impact in agricultural machinery systems compared with a contempo-
rary diesel tractor system doing the same work under the same conditions.

Vehicle Definitions, System Boundary and Functional Unit

The BEV system analysed consisted of two autonomous tractors with 50 kW perma-
nent magnet synchronous machine (PMSM) electric motors and 100 kWh nickel cobalt
aluminium (NCA) Li-ion batteries. Each vehicle had one on-board battery and an addi-
tional battery for rapid battery replacement, making a total of four 100 kWh NCA batteries
(two per vehicle). Because the vehicles were assumed to be autonomous, it was assumed
that they had no cabin. This vehicle system has been shown in previous studies to have a
high theoretical work rate [17] and to compare favourably to contemporary tractor systems
in economic terms [18]. The infrastructure necessary for charging the vehicle system was
also included in the analysis. It comprised two 50 kW CC/CV DC chargers and a battery
exchange system.

As the reference case, a 250 kW contemporary diesel tractor was assessed using the
same methods and models. Production, fuel, repair, maintenance and end-of-life steps
were included in the life cycle of the conventional vehicles and in that of the BEV vehicles.

The system boundary of the study started at manufacturing of the main vehicle
components and ended after the end-of-life phase, as shown in Figure 1. As the focus
of the study was on machinery, the agricultural part of the use phase was not modelled
other than in terms of energy demand [18], as it was assumed to be similar for the cases
studied. In addition, the autonomous system only included the hardware on the vehicle
and a single base station, while any additional infrastructure was not included.

Figure 1. System boundary of the studied system. Direct system boundary (square) shows the system described in the
article—production & assembly (green), use phase (yellow) and end-of-life (blue). The indirect system boundary (dashed
border rounded square) shows processes that are not specifically studied or described, but are included in the result. The
functional unit (FU) is included, and energy flows are represented by dashed arrows.
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The functional unit was set as one average hectare of arable land growing cereal, as
defined and with the machinery operations simulated and cereal data used in Lagnelöv,
Larsson, Nilsson, Larsolle and Hansson [17] during an average year, giving a functional
unit of 1 ha−1 y−1.

2.2. Inventory Analysis

Inventory data for autonomous vehicles are sparse, and data for tractors are less
available than data for on-road heavy duty vehicles. It was assumed that data from other
vehicles can be scaled, adjusted and fitted to the autonomous system, mostly concerning
electrification and autonomisation of vehicles (Table 1). The inventory and subsequent
analysis were made in the LCA software SimaPro (v.9.0.0.49, PRé sustainability, Amers-
foort, The Netherlands) [31]. A complete inventory list can be found in Supplementary
Material S1.

Table 1. Components included in life cycle assessment (LCA) of the battery electric vehicle (BEV) and internal combustion
engine (ICE) cases. Categories marked with * were included, but to a reduced extent. Dataset names and complete inventory
list can be found in Supplementary Material S1.

Phase Category Component BEV ICE Main Sources

Manufacturing
and assembly

Glider

Cab X [32,33]

Tyres and wheels X X [32,33]

Frame X X [32,33]

Chassis X X [32,33]

Driveline

Lead-acid battery X [33]

Engine X [33]

Diesel tank X [33]

Transmission X * X [32,33]

Auxiliary fluids (engine oil,
AdBlue etc.) X [33]

Li-ion battery X [34]

Electric motor (PMSM †) X [35]

Other components Autonomous system
and sensors X See Section 2.2.6

Infrastructure
Electric charger X [36]

Battery exchange system X [37,38]

Use phase

Fuel
Diesel X [39]

Electricity X [40–42]

Repair and
maintenance

Repair X X [33,43]

Maintenance X * X [33]

End-of-life

Disposal Vehicle disposal X X [27,33,44]

Charging infrastructure
disposal X [27,33]

Recycling Battery recycling X [45]
† Permanent magnet synchronous machine.

Transport in the inventory was divided between freight shipping and road transport.
The road transport was assumed to be perfomed by truck or lorry in the 16–32 tonnage
interval and with a Euro 6 emission standard because it is the most common truck used
in Sweden and is also common in Europe according to logistics experts (A. Lagnelöv, J.
Peterson & C. Brus, VDAB, Uppsala, Sweden, Personal communication 2021-04-08).
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2.2.1. Glider

The inventory for the glider and other nondriveline parts of the vehicle can be found
in several publications. Wolff, Seidenfus, Gordon, Álvarez, Kalt and Lienkamp [32] give an
inventory for a general heavy-duty vehicle, while Lee, et al. [46] and Mantoam, Romanelli
and Gimenez [20] focus on agricultural tractors. However, their inventories include the
cabin and the conventional driveline, neither of which was included for the autonomous
battery electric drive (BED) tractors in this study. According to Nemecek and Kägi [33],
on-road heavy duty vehicles like lorries can be used as an approximation for material
composition and assembly of tractors where other data sources cannot be found. Because
the data in Wolff, Seidenfus, Gordon, Álvarez, Kalt and Lienkamp [32] are separated into
machine parts and are scalable, they were selected for use. A glider without internal
combustion engine (ICE) and cab was constructed and scaled to a total glider weight of
2500 kg, giving a scaling factor of 63.5% compared to the source data.

2.2.2. Battery

The battery considered in Lagnelöv, Dhillon, Larsson, Nilsson, Larsolle and Hans-
son [18] was a Li-ion battery with an NCA positive electrode (LiNi0.8Co0.15Al0.05O2) and
graphite as the negative electrode (NCA-C). Inventory data for a NCA-C battery module
taken from Le Varlet, Schmidt, Gambhir, Few and Staffel [34] were used to represent this
battery. Some materials were not found in the database, so recommended proxies listed in
Siret, Tytgat, Ebert, Mistry, Thirlaway, Schultz, Xhantopoulos, Wiaux, Chanson, Tomboy,
Pettit, Gediga, Bonell and Carrillo [45] were used. In addition, the electricity used for
battery assembly and some manufacturing was switched from Norwegian mix in the
original article to Swedish mix, due to the focus of the present study being the Swedish con-
text, but component manufacturing was assumed to use either local or Chinese electricity
mix [34,40].

It is worth noting that the inventory in Le Varlet, Schmidt, Gambhir, Few and
Staffel [34] is for residential batteries for local energy storage, which is a different use
from that of electromobility. However, the inventory data were based on batteries for
use in electric vehicles [9,47–50] and were therefore considered applicable. Because the
battery studied in Lagnelöv, Dhillon, Larsson, Nilsson, Larsolle and Hansson [18] was
specified in terms of energy content (in kWh) and the battery LCI was given in mass units,
a gravimetric energy content of 0.10 Wh g−1 taken from Le Varlet, Schmidt, Gambhir, Few
and Staffel [34] was assumed.

2.2.3. Battery Recycling

Standardised general invenory data for battery recycling, including resource use
and credits, are provided as part of the EU product environmental footprint (PEF) docu-
mentation for batteries in mobile applications (PEFCR) [45]. The PEFCR data cover the
broader-term Li-ion battery but are modelled specifically on LCO, NMC, LFP and Li-Mn
chemistries. It was assumed that this was an adequate stand-in for the recycling part of the
chemistries (NCA-based) used in the model in this study. Recycled materials were used as
credits and replaced virgin material in applications outside the system boundry, modelled
as a negative flow.

2.2.4. Electric Motor

A gate-to-gate LCI for a general PMSM electric motor of variable power and torque
was performed by [51], with additional data given in [35]. It details the production of the
motor, but not the rest of the driveline. End-of-life is also omitted. However, this still served
as a good base for the electric machines used in the driveline in the present assessment,
as PMSM is the most common electric motor technology used in electric vehicles [51] and
the resolution is high. This value was verified with values for an electric motor of the
same power presented in Spielmann, et al. [52], which, due to lower resolution, had lower
impacts but agreed on the key impact points and impact magnitudes.
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2.2.5. ICE Driveline

The conventional tractor used for comparison was assumed to be a 250 kW tractor,
using field tractor data from Nemecek and Kägi [33]. This included raw material extraction,
manufacturing, assembly, maintenance and disposal steps of the life cycle. However, these
factors are often aggregated to the manufacturing phase in the presentation of results in
this paper. The model used the tractor mass as a quantifying unit for the inventory. The
unloaded weight was assumed to be 10,800 kg, which was based on the average weight of
modern tractor models with approximate power 250 kW (Valtra S294, Fendt 933 Vario, John
Deere 7R330). The mass and inventory data were verified with data taken from [20] for a
246 kW tractor with mass 10,950 kg. The exact composition tends to vary between data
sources, but steel and ductile iron are key components, with rubber (in the form of tyres)
and oil frequently cited as a large part of the maintenance materials used [20,32,33,46]. A
comparison of key materials from different sources by weight can be seen in Figure 2.

Figure 2. Material use in the assembly and maintenance phases of the vehicle body for key materials by weight [20,32,33].
Note that the data from Wolff, Seidenfus, Gordon, Álvarez, Kalt and Lienkamp [32] do not include maintenance and repairs,
and hence the usage of steel, rubber and lubricating oils is lower than in the other sources.

2.2.6. Autonomous System and Sensors

Because there are no industry standards for the equipment used for self-driving
vehicles, information on the components in these vehicles was gathered from previous
studies and industry practitioners. The sensors listed in Table 2 represent a realistic setup
according to industry experts (L. Ahlman (Agrodroids), F. Löfgren (Dynorobot), A. Stålring
& F. Gradelius (Tegbot), Linköping, Sweden, Personal communications). This is in line
with the technology recommendations in Mousazadeh [53], Hirz and Walzel [54].
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Table 2. Type and number of sensors and components used to represent the autonomous capacity of the vehicle system.

Component Weight (kg) Number of Components Model Example

Lidar 2.2 4 Sick MRS6124R-131001

GPS 0.5 1

Camera 0.037 3 Point Grey Firefly MV 0.3 MP Color USB
2.0 Research Camera

Radar 1.08 2 Sick RAS407-2801100

Wifi/5g router 0.23 1 Sick TDC-E200R6

Base station 0.23 1

GPU 0.25 1 Nvidia Jetson

Various sensors 0.1 6 Temperature, rainfall, gyro, air moisture,
rotation counter and position sensors

Switch 0.5 1

Control unit 0.5 1

Copper wiring 0.2 m 19

Due to the lack of detailed inventory data and the assumption that the sensors make
up a small part of the total impact, proxies were used where applicable. It was assumed
that all the basic sensors weighed 0.1 kg and consisted of equal ratios of active and passive
electronic components, with a wiring board making up half the total weight. Lidar, radar,
cameras, GPS units and routers were assumed to make up half the weight in the plastic
casing, with half of the remainder being wiring board. The remaining quarter was equally
distributed on passive and active electronics components. Each component was assumed
to require 20 cm of copper wiring for data and electricity transmission, at a weight of
0.045 kg m−1. A switch and control unit electronics were assumed to be needed.

2.3. Use Phase
2.3.1. Refueling Infrastructure

The LCI for the charging infrastructure was taken from Lucas, Silva and Neto [36]
and included two fast chargers (50 kW DC-DC) and two slow chargers (3 kW) for less
demanding charging during longer periods of vehicle downtime. Both chargers were
assumed to be located on the farm and grouped at two stations, each containing one 50 kW
and one 3 kW charger. In addition, it was assumed that 10 m3 of soil had to be excavated
and that 1 m3 of concrete was used for the foundation for each fast charger, which is in line
with values presented in Lucas, Silva and Neto [36].

The BEV system also requires a battery exchange system. Due to lack of existing
systems of the correct size, a 42-inch forklift automatic transfer carriage (ATC) with a
gross weight of 349 kg [37] was assumed. It was made of a steel frame including 10 steel
rollers and was modelled as a general steel product with a minor hydraulic system. It
was assumed to function using the motor and battery of an existing electric hand pallet
truck, which was modeled after a Toyota LWE200 electric pallet truck using the option to
exchange the battery pack to Li-ion, giving it a total weight of 374 kg [38].

It was assumed that a diesel fuel tank and a fuel pump were part of the existing
infrastructure on the farm because they are common equipment and often display a lifetime
longer than the vehicle itself.

2.3.2. Fuel

The amounts of fuel used were taken from Lagnelöv, Larsson, Nilsson, Larsolle and
Hansson [17] and amounted to an average of 79,302 kWh y−1 electricity for the BEV and
168,748 kWh y−1 in diesel for the conventional machine over the vehicle’s lifetimes of
15 years.
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The electricity used as fuel for the BEV was Swedish marginal electricity, a mix
consisting of 41.4% imported electricity produced from natural gas, 35.1% from wind
power and 23.5% from biomass in the form of wood products [40]. The origin of the
electricity used was varied in scenario analysis (see Section 3.3) to provide a thorough view
of the impacts of different mixes because the choice of electricity is reported to be one of
the most impactful assumptions in LCA of EVs [10,55].

Emissions from the diesel used as fuel for the conventional machine in this study were
based on emissions from burning diesel in agricultural machinery [39]. There is a legal
requirement for a blend with renewable fuels in Sweden, but pure diesel was used as the
default case, with renewable fuel additives included in the scenario analysis in Section 3.3.

2.3.3. Maintenance and Repair

It was assumed that repair and maintenance of the BEV followed the guidelines for
agricultural machinery [20,33,43]. However, engine oil, AdBlue and some lubricants were
ignored because they are not utilised in EVs. It was assumed that for every kg of tractor,
0.176 kg tyres and 0.103 kg of hydraulic oil were needed during the use phase [33], as well
as 27.2 MJ per kg material used. To account for repairs during the vehicle’s lifetime, a
repair factor of 0.2 was used, meaning that 20% of the initial material in the tractor needed
replacing during use [33]. This was handled by scaling up the glider by 20% because
the motor and charging infrastructure were assumed to last the lifetime of the tractor
without repairs and the battery was replaced instead of being repaired. This meant a total
glider scaling of 76.1% compared to the data in [32]. These values were verified with data
from [20,43].

2.3.4. Battery Replacement

The batteries assumed in the system are replaced as soon as their maximum state-of-
charge reaches 0.8 of the initial maximum value at full charge (this is sometimes called
a state-of-health of 0.8). This happens at different equivalent full cycles depending on
the charging speed. For the given charging rate, charging speed and battery size, the
lifetime of the battery was simulated to exceed 4000 cycles and was theoretically calculated
to be 15.5 years [18]. However, calender ageing was not included and the charging rate
was assumed to be the primary driver behind cell ageing. To include the uncertainties in
the battery simulations, variations in the battery lifetime were included in the sensitivity
analysis in Section 3.3.

2.4. End-of-Life

The end-of-life stage is reported to be the stage with the lowest life cycle emissions for
electric vehicles, when viewed in isolation [27]. It is also a stage that has high uncertainty
for EVs and is often simplified or omitted in studies of EVs [56]. Therefore, a simple method
in line with previous work on EVs [27,45] and agricultural machinery [33] was adopted.
The battery was assumed to be disposed of as recommended by Siret, Tytgat, Ebert, Mistry,
Thirlaway, Schultz, Xhantopoulos, Wiaux, Chanson, Tomboy, Pettit, Gediga, Bonell and
Carrillo [45], adjusted with battery production data from [34] to eliminate recycling of
materials not used in the production.

Following the suggestions of Loon, Olsson and Klintbom [27] and Nemecek and
Kägi [33], it was assumed that for the rest of the vehicle, the main metals (aluminium, cop-
per and steel) were recycled to 100%. To obtain a realistic energy demand, it was assumed
that the metals needed to go through a process before reuse. This was characterised by the
average metal working processes for each of the main metals and a general metal working
process for remaining metals, described by Steiner and Frischknecht [57].

The rubber in the tyres was assumed to be used for energy recovery. Oils were
assumed to be incinerated in hazardous waste incineration plants, while paper, plastics
and rubber were assumed to be incinerated for energy recovery and glass was assumed
to be sent to landfill [9,27]. The energy use for disassembly and shredding was set at
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139 kWh/ton machinery, based on Nemecek and Kägi [33]. All components were assumed
to be disposed of within Sweden and transported 150 km by lorry, a value used by Loon,
Olsson and Klintbom [27]. The same assumptions were made for recycling of refuelling and
recharging infrastructure. In addition, the concrete used for the foundation was assumed
to be sent to landfill for disposal. Recycling opportunities for concrete exist but are not
commonly used globally. The waste treatment allocation can be seen in Table 3.

Table 3. Waste treatment scenario allocation for each major component category, in mass fractions and with the total weight
scaled as described in Sections 2.2.1 and 2.3.3. Battery recycled as detailed in Siret, Tytgat, Ebert, Mistry, Thirlaway, Schultz,
Xhantopoulos, Wiaux, Chanson, Tomboy, Pettit, Gediga, Bonell and Carrillo [45].

Tractor Part Sub-Part
Reuse/Recycling

(%)
Landfill

(%)
Incineration

(%)
Hazardous Material,

Incineration (%)
Weight

(kg)

Glider

Frame 100 0 0 0 650

Chassis 97 0 3 0 1218

Tyres and wheel 67 0 33 0 503

Other components 51 0 46 4 629

Glider total 83 0 16 1 3000

Motor PMSM † motor 83 2 7 7 26.9

Charger Charger 14 73 13 0 3305

Battery
exchange

system

Body 99.7 0 0.3 0 349

Pallet truck 95 0 3 1 374
† Permanent magnet synchronous machine.

2.5. Impact Assessment (LCIA)

The most common impact assessment categories presented in previous LCAs on EVs, au-
tomotive batteries and agricultural field operations were compiled [9,20,25,27,45–47,50,58,59].
This was done to encompass the scope of both the EV and agricultural viewpoints. A
summary of the compilation can be seen in Table S3a in the Supplementary Material. The
chosen impact factors (Table S3b in the Supplementary Material) were also in line with
recommendations made by Loon, Olsson and Klintbom [27]. The most frequently used im-
pact category factors were then matched with the factors given in the ReCiPe method [60].
This resulted in 11 out of 18 midpoint characterisation categories from SimaPro being used.
When calculating damage assessment and single score value, all 18 original categories were
included so as not to undermine the original method [31] or introduce bias (Figure 3).

The perspective chosen decides the weight of impacts and the conversion factors
used. The hierarchist perspective was stated as the default perspective [60] and was used
in this study. Results for both midpoint and endpoint indicators are presented, with the
conversion factors in Table S3c in the Supplementary Material used to go from midpoint to
endpoint, according to this equation:

CFex,c,a = CFmx,c × FM→E,c,a (1)

where CFe is the endpoint characterisation factor, CFm is the midpoint characterisation
factor, c is the perspective (in this study hierarchist), a is the area of protection (human
health, ecosystems, resource scarcity), x is the stressor and FM→E,c,a is the midpoint-to-
endpoint conversion factor for perspective c and area of protection a [60].
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Figure 3. Life cycle impact assessment (LCIA) framework used in this study with all impact categories shown, divided
between those that are individually presented (full box) and those included in the damage assessment and weighted score,
but not presented separately (dashed box).

3. Results

3.1. Results for the BEV System
3.1.1. GTG

A GTG impact distribution for the battery electric tractor system can be seen in
Figure 4. For all impact categories apart from stratospheric ozone depletion, the battery
constituted the majority of the impacts, ranging from 42 to 83% of the gate-to-gate im-
pacts. Other notable components with high impacts were the glider and the chargers.
They included many metals, processes and weight, which in the cases translated to high
impacts, especially as the charger infrastructure was slightly oversized. Autonomous
sensors, although comprising a very small fraction of the total weight, had a relatively high
impact. The motor, despite including rare earth metals, had a small impact in all categories
compared with the other components.

Because the battery constituted a majority of the impact in most cases, the results of the
battery inventory and impact assessment are shown in Figure 5. The material composition
showed a roughly equal distribution of metals, with lithium and cobalt being less common
by weight than aluminium, copper, nickel and steel. Graphite and the electrolyte both
constituted 13% of the weight. The electrodes constituted 49% of the weight and 43% of the
global warming potential (GWP). The components made mostly from metal, mainly BMS
and module casing, also had a sizeable impact on the climate impact. In the functional unit,
the climate impact for the GTG, or manufacturing, phase resulted in 34 kg CO2eq.ha−1 y−1

in total, of which the battery contributed 21 kg CO2eq.ha−1 y−1 or 62%.
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Figure 4. Gate-to-gate (GTG) impact distribution using midpoint indicators for the battery electric vehicle (BEV) tractor
system, including infrastructure. The most commonly used impact categories are shown. “Glider” includes frame, chassis,
tyres and wheels, other components and glider assembly.

Figure 5. Weight distribution for the nickel cobalt aluminium-graphite electrode (NCA-C) battery module by (a) material
(b) and component, and (c) the global warming potential (GWP) impact by component.
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3.1.2. Cradle-to-Grave

The results of the CTG analysis showed that for all impact categories studied, the
manufacturing of the batteries and the electricity used as fuel were responsible for the
majority of the impacts (Figure 6). This indicates the need to focus on these parts when
analysing the overall impact of the system. The impact factors concerning mineral resource
scarcity, human toxicity, ecotoxicity, eutrophication and acidification comprised most of
the impact from battery manufacturing. The remaining categories, mainly global warming,
ozone depletion and fossil resource scarcity, comprised most of the impact from electricity
use (66–71%). Apart from these, the highest impact was generally seen for the charger
infrastructure and glider manufacturing. The full results can be seen in Supplementary
Material S2.

Figure 6. Cradle-to-grave (CTG) impact distribution using midpoint indicators for the battery electric vehicle (BEV) tractor
system, including vehicle and infrastructure manufacturing, use phase and disposal. The most commonly used impact
categories are shown. “Glider & motor” includes frame, chassis, tyres and wheels, other components, electric motor and
glider assembly.

3.1.3. Damage Assessment

The damage assessment results, calculated as per ReCiPe 2016 [60,61], can be seen
in Figure 7. The two major contributors to all three categories (human health, ecosys-
tems and resource scarcity) were electricity use as fuel and the battery, which together
contributed 75–89% of the impact. The battery was more significant for human health
impact (44%), while electricity was the greatest contributing factor to impacts on ecosys-
tems (68%) and resource scarcity (74%). In total, the BEV system resulted in an impact of
3.11 × 10−4 DALY ha−1 y−1 on human health, 9.09 × 10−7 species ha−1 y−1 on ecosystems
and 13.4 USD2013 ha−1 y−1 on resource scarcity.
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Figure 7. Damage assessment distribution for the battery electric vehicle (BEV) tractor system, showing impacts from
manufacturing to disposal for each component category.

3.2. Comparative Results

Comparisons between the BEV and ICE systems for the midpoint impact factors are
shown in Figure 8. The BEV tractor system had a larger impact than the ICE system in
all categories in the GTG analysis. This was mainly due to batteries comprising a large
proportion of the weight of the BEV. When comparing the CTG results, the BEV system
showed lower impact than the ICE system in all impact categories apart from mineral
resource scarcity, human carcinogenic toxicity and both kinds of ecotoxicity. The climate
impact from the BEV system (102 kg CO2eq.ha−1 y−1) was 35% of that from the ICE system
(293 kg CO2eq.ha−1 y−1).

On weighing and summarising the endpoint impact factors (Figure 9), it was found
that the BEV system had an overall lower impact than the ICE system in all damage
assessment categories: human health (−74%), ecosystem impact (−47%) and resource
scarcity (−67%). For the single score, the BEV system had 72% lower impact than the ICE
system. The results also showed that the use phase was most impactful for all categories
apart from human health, where battery manufacturing had a higher impact than the use
phase for the BEV system (Figure 9).
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Figure 8. Midpoint impact comparison of the battery electric vehicle (BEV) system (orange) and the internal combustion
engine (ICE) system (dark purple) in gate-to-gate (left) and cradle-to-grave (right) analyses of commonly used impact
categories. Values are given as fractions of the largest values, instead of absolute values.

Figure 9. Comparative results for the battery electric vehicle (BEV) system and internal combustion engine (ICE) system in
the damage assessment categories (a) human health, (b) ecosystem impact and (c) resource scarcity, as well as (d) Single
score in the Hierarchist perspective according to the guidelines and values in [60].
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3.3. Sensitivity and Uncertainty Analysis

A sensitivity analysis with one-at-a-time parameter change was performed. Absolute
change, absolute sensitivity and relative sensitivity were calculated for changes in key
parameters and are presented for both GWP and the weighted single score (Table 4). The
equations used were as follows:

Absolute change : ΔV = P(VΔ)− P(V0) (2)

Absolute sensitivity SA =
P(VΔ)− P(V0)

P(V0)
=

ΔV
P(V0)

(3)

Relative sensitivity SR =
SA
ΔP

(4)

where ΔV is the absolute change, P(V0) is the base value, P(VΔ) is the resulting value after
the parameter change (all three in the given impact unit), SA is the absolute sensitivity (frac-
tion), SR is the relative sensitivity (%−1) and ΔP is the change in the parameter (fraction).

Table 4. Results of sensitivity analysis for key parameters in the model for global warming potential (GWP) and single
score values (italic), along with absolute change, absolute sensitivity and relative sensitivity.

Base Case
P(V0)

Absolute Change
ΔV

Absolute Sensitivity
SA

Relative Sensitivity
SR

Parameter Change 0% −25% +25% −25% +25% −25% +25%

GWP (kg CO2eq.ha−1y−1)

Battery size 102.4 −5.2 5.2 −5% +5% 0.20 0.20

Battery lifetime 102.4 2.6 −2.6 +3% −3% −0.10 −0.10

Vehicle lifetime 102.4 10.1 −4.0 +10% −4% −0.40 −0.16

BEV Energy use 102.4 −18.0 18.0 −18% +18% 0.70 0.70

Motor size 102.4 −0.1 0.1 0% 0% 0.00 0.00

Glider material 102.4 −1.1 1.1 −1% +1% 0.04 0.04

Single score (kPt ha−1y−1)

Battery size 5.84 × 10−3 −3.99 × 10−5 3.99 × 10−5 −1% +1% 0.03 0.03

Battery lifetime 5.84 × 10−3 2.91 × 10−4 −2.76 × 10−4 +5% −5% −0.20 −0.19

Vehicle lifetime 5.84 × 10−3 1.14 × 10−3 −5.04 × 10−4 +19% −9% −0.78 −0.34

BEV Energy use 5.84 × 10−3 −6.04 × 10−4 6.04 × 10−4 −10% +10% 0.41 0.41

Motor size 5.84 × 10−3 −7.45 × 10−6 7.45 × 10−6 0% 0% 0.01 0.01

Glider material 5.84 × 10−3 −4.89 × 10−5 5.77 × 10−5 −1% +1% 0.03 0.03

Scenario Analysis

To evaluate different scenarios and changes in the assumptions made, key parameters
in the model were varied. Only the results for climate impact are shown because it is the
most prominently used category in the literature.

Because the Swedish electricity mix is not a good representation of electricity as a
fuel in general, the electricity mix was varied. The Swedish mix has a high fraction of
renewables and nuclear power, which the global or European mix does not. However,
the Swedish margin used as default in this study is more akin to the general European
electricity mix. It was found that the ICE system at 293 kg CO2eq.ha−1 y−1 had a higher
climate impact than all scenarios except electricity produced from hard coal. The Swedish
and European margin electricity mixes had 65% and 60% lower GWP, respectively, with
values of 102 and 116 kg CO2eq.ha−1 y−1, respectively. Electricity from hydropower and
photovoltaics showed 83% and 77% reductions compared to the ICE case. The Swedish
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average mix, as described in Itten, Frischknecht and Stucki [40], was also included for
comparison, with a total value of 45 kg CO2eq.ha−1 y−1.

Cases involving renewable fuel for the ICE were also considered because that is most
likely the first measure taken to reduce GWP impact. Regular retail diesel in Sweden has
a desired blend of 17.5% HVO (hydrated vegetable oil) [62], which was included, as was
pure HVO. The GWP of HVO varies significantly depending on allocation method and
feedstock used [63,64], so the possible range (7–78 g CO2eq. MJ−1) is shown in Figure 10, as
well as that of Swedish HVO from 2016 [63,64]. The results showed that the low admixture
diesel had a smaller impact than the case using global electricity mix, while the Swedish
HVO case had a lower impact than Swedish and European margin electricity. However, it
was still outcompeted by Swedish average mix and electricity from renewable sources.

Figure 10. Scenario analysis of climate impact for different fuel sources for the battery electric vehicle (BEV) and internal
combustion engine (ICE) systems, with the vehicle (purple) and fuel (green) presented separately. Disposal and end-of-life
were included in the vehicle part, as was repair and maintenance. Swedish margin mix was used as the default in the
modelling. The Swedish standard for drop-in blend of HVO in diesel is 17.5% [62]. HVO shown as the range presented
in [63] (green diagonals) and with the value of Swedish-produced HVO from [64] (white diamond).

In addition, to account for uncertainty and give a baseline for the environmental
potential of the end-of-life phase, a worst case scenario was explored with a different waste
management for the BEV case. The reused fraction was instead assumed to be sent to
landfill, resulting in a waste scenario with 84% of the material by weight ending up in
landfill and 14% being incinerated for energy recovery. The resulting impact in GWP was a
change in absolute sensitivity of +12%, and a single score increase of +20%. However, even
with both these increases, the BEV system still had lower impacts than the ICE system in
the stated categories.

4. Discussion

4.1. Assumptions and Scope

In this analysis, a consequential LCA with system expansion, instead of allocation and
marginal energy sources, was used. Consequential LCA tends to lead to higher impacts
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compared to allocation assessments [29], which could explain why many values obtained
in the calculations were higher than the literature values used for verification. However,
due to the emerging state of the technology and the experimental nature of the current
models, choice of the consequential LCA method can be considered reasonable because it
describes a change in the life cycle [29,65].

The functional unit used was set to one hectare for mixed cereal (winter wheat, spring
wheat, barley and oats) on a farm in the Uppland region of central Sweden. This functional
unit can be considered too specific, but it builds on two previous studies by our research
group using the same model, simulations and data [17,18] and allows for precise resolution.
The results presented can be used as a general guideline for BEV tractors and show general
dynamics that can also be seen in other analyses of battery electric work machines.

4.2. Inventory Model

The model used in this study was mainly based on secondary sources and little to no
first-hand information. The early market state of the autonomous BEV tractor technology
makes it difficult to find data, and there is no consensus on the best application of this kind
of system because machines ranging in size from contemporary tractors to small drones
are used. There are also different approaches to charging stations, suitable work and level
of autonomy. Therefore, the system described and analysed here should only be regarded
as a general exploration of one type of vehicle system, with all the assumptions and
simplifications that entails. However, high resolution was sought for the most impactful
inventory data points, such as battery production, battery recycling, diesel and electricity.

4.3. Model Outcome and Impact Assessment

The results of the inventory model in SimaPro showed that the BEV system had several
parts with large impacts, but in the manufacturing stage, the battery caused the majority
of the impact. This was partly due to the chemistry chosen, as several sources [6,7] state
that NCA has a higher climate impact in general than other chemistries. It was also partly
due to a BEV system with a requirement for several batteries being chosen. The battery
exchange system modelled needs more batteries due to the simple dynamic of how the
system works, where a depleted battery is quickly replaced with a fully charged one, thus
requiring spare batteries. However, 4000 kg of battery is a large amount for a system of this
size, even when divided between two vehicles, as each vehicle weighs ~2600 kg without
battery. Vehicle systems with a different optimisation solution or system topography can
be expected to have different impacts.

On comparing the two systems, it was found that the ICE system generally had a
lower impact in the manufacturing stage (GTG), where both the battery production and the
additional infrastructure provided a significant impact, on top of the vehicle manufacturing.
However, the climate impact of the ICE system was 85% of the impact of the BEV system,
so the difference was relatively minor, especially considering that 4000 kg of batteries were
produced in the latter system. In all other impact categories apart from fossil resource
scarcity, however, the ICE only had 40% or less of the impact of the BEV system, showing
the importance of studying several impact categories.

On studying the entire life cycle, it was found that the BEV system had lower im-
pacts than the ICE system in all categories apart from mineral resource scarcity, human
carcinogenic toxicity, and terrestrial and freshwater ecotoxicity. The BEV system gave
especially high reductions in global warming, fine particles and acidification, mostly due
to the higher energy efficiency of the BEV driveline and the lower impact of electricity as
a fuel compared with diesel. These factors combined meant that the use phase heavily
favoured the BEV system because, even though electricity was still a significant part of the
system impact, it had a lower impact than diesel. In addition, some of the high-impact
materials from the manufacturing phase could be recycled and reused, further lowering
the overall impact. In the damage assessment, the BEV system had lower impacts than
the ICE system for human health (−74%), ecosystem impact (−47%) and resource scarcity
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(−67%). For the single score, BEV had 72% lower impact than the ICE system. It is also
worth noting that the data on diesel emissions were from 2007, and since then advances
have been made in combustion engines in tractors.

It was found that the manufacturing of batteries and the electricity used as fuel
constituted the majority of the impacts, both in the midpoint and endpoint analysis. This
suggests that the type and size of battery are very impactful, as is the electricity used.
Several sources agree that the impact of batteries is highly relevant in BEV systems, and
they present similar findings to those in this study [10,50,56]. The results on the impact of
the origin of electricity used are in line with the findings in Nordelöf, Messagie, Tillman,
Söderman and Mierlo [10] and Marmiroli, Messagie, Dotelli and Mierlo [55].

4.4. Comparison to Other Studies

As the battery was the most impactful part of the manufacturing process for the BEV
system, it was important to check that the values used were in line with those reported in the liter-
ature. Verification against literature values on global warming potential (Figure 11) showed that
the value obtained for the modelled NCA battery module (155 kg CO2eq kWh−1) was slightly
higher than the literature values for NCA batteries (range 120–133 kg CO2eq kWh−1) [34,49,66].
It was also in line with or slightly higher than the general values for nondescribed
chemistries in the literature (range 61–175 kg CO2eq kWh−1) [6–8,67]. However, some
studies report significantly higher impacts, especially Emilsson and Dahllöf [6]. This led to
the conclusion that the simulated value was slightly high, but still realistic.

Figure 11. Comparison of global warming potential (GWP) impact for the modelled nickel cobalt aluminium-graphite
electrode (NCA-C) battery and the literature values. When given, the average value is represented by Δ, and high and low
values by ×.

The values used for the ICE system were found to be slightly higher than the literature
values. The value calculated for the modelled system was 293 kg CO2eq.ha−1 y−1 for
the entire life cycle (implement, fertiliser and field emissions excluded). Similar studies
have reported values of 140 kg CO2eq.ha−1 y−1 [59] and 160 kg CO2eq.ha−1 y−1 [20]
for machinery operations. However, the entire set of field operations was not studied in
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those cases, and the energy use was lower. In addition, as discussed by Lagnelöv, Larsson,
Nilsson, Larsolle and Hansson [17], the energy use of the studied simulated system was
slightly higher than corresponding studies in the literature, which most likely carried over
for both the ICE and BEV systems. This difference could be explained by the inclusion
of more operations, higher data resolution or more energy-demanding soil types (high
clay fraction).

The electricity mix used was of high importance. The Swedish margin electricity
mix gave a total CTG GWP impact of 102 kg CO2eq.ha−1 y−1, while that for the Swedish
average electricity mix was 45 kg CO2eq.ha−1 y−1, i.e., roughly half the total impact. The
marginal mix was based on 41% natural gas, 35% wind power and 24% biomass [40], while
the average mix consisted of 41% hydro power, 40% nuclear power, 7% wind power, 2.5%
biomass and the remainder imported [40]. These values are for 2014 but were verified and
found to be reasonably close to the values for 2018 [41,42]. It can be discussed whether one
or another of these mixes is the more methodically correct choice of electricity, but such
discussion fell outside the scope of this study. The scenario analysis in Section 3.3 gave an
overview, instead of a deeper analysis.

4.5. Sensitivity Analysis

Sensitivity analysis based on the resulting response in GWP and single score for
parameter changes showed that the energy use of the BEV system had the highest abso-
lute and relative sensitivity for both GWP and single score, as an increase of 25% in the
parameter led to an increase of 18% and 10%, respectively. It was followed by the vehicle
lifetime, indicating that the assumptions made for these parameters had a high impact.
The lifetime of the battery was varied separately and found to have a lower impact for
both GWP and single score than the total vehicle lifetime. Glider material use and the
size of the motor had very low importance in both categories, as had the battery size for
the single score category. However, battery size was impactful for GWP. By ensuring the
lowest possible energy use (or the use of cleanest possible energy) and a long lifetime over
which to attribute the manufacturing impact, a low impact is more likely.

Exploration of different end-of-life treatments for the BEV showed an increase in GWP
(+12%) and single score (+20%). This indicates that waste management is an important
part of the environmental impact for these kind of systems and that care should be taken in
relevant assumptions made when modelling. In LCAs, recycling is often assumed to be
done better or more frequently than the empirical data indicate, and general knowledge of
that part of the process is low [6,10,27]. Because a large part of the impact of the BEV system
was in the production stage, recycling and waste management are important because they
represent ways to mitigate the impact of the manufacturing phase and to reduce the need
for virgin material.

Replacing diesel with HVO was shown to be a way to reduce impact for the ICE system,
but it was heavily dependent on the feedstock and process used. The literature values vary
from 7 to 78 g CO2eq. MJ−1, and hence they suffer from inherent uncertainty in the data, as
shown in the review by [2], but also confirm that the interval used here was reasonable. In
addition, using HVO would still suffer from reduced driveline efficiency compared to the
electric driveline and result in higher overall energy use. However, use of biofuels can be
an important initial step to reduce the impact of machinery without replacing the current
tractor fleet, a process that is itself likely to have a substantial environmental impact.

Because the use phase was impactful for both the BEV and ICE cases, the fuel used is of
great importance. The difference between the best case for electricity (hydropower) and the
worst case (hard coal) was close to a nine-fold increase in climate impact. Of all the electric-
ity sources assessed, hard coal was also the only one with a worse climate impact than the
ICE system. Electricity origin was also important for the overall results, as there was a large
difference in the total GWP of the system when using Swedish (102 kg CO2eq.ha−1 y−1),
European (116 kg CO2eq.ha−1 y−1) or global electricity mix (262 kg CO2eq.ha−1 y−1).
Choosing Swedish marginal mix over Swedish average mix also doubled the total GWP
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impact. Based on these results, it seems that all other assumptions were eclipsed by the
origin of the electricity in the use phase. This is also partly true for on-road BEVs, but
the more intense use of work machinery and the higher yearly energy use in agriculture
make the choice of electricity even more important for that class of vehicles. There are large
reductions to be gained in changing to a BEV system, but choosing low-impact electricity
is vital.

4.6. Implications and Future Research

The results indicate that changing from a diesel vehicle to a battery electric one in
a work machinery setting has the potential to drastically decrease the environmental
impact in general and GHG emissions in particular over the entire lifespan, even when
a large number of batteries is required to be manufactured. While the manufacturing of
the batteries was a large part of the impact for the BEV system, it was not detrimental to
the overall result. This finding is important for both heavy on-road vehicles and mobile
nonroad machinery. Tractors are used intensely during critical points in production (sowing,
harvesting) but on a yearly basis work a low number of hours compared to other work
machinery. With the tractor system showing a general reduction in environmental impact
with a use phase—and therefore fuel use, limited to parts of the year—vehicles with higher
yearly usage have a higher potential reduction in environmental impact in the use phase.
The outcomes of this study can serve as a precursory positive example of the benefits of
transitioning work machinery from diesel to electricity as fuel, and they mark electricity
origins and battery manufacturing as important hotspots for further consideration.

The majority of the LCAs performed on BEVs have been focused on GWP as the
dominant, or only, impact category. The results impact assessment from this study showed
that the different systems, and the different system parts, had different impacts. The BEV
systems had a drastic reduction in fine particulate matters compared to the conventional
system in the CTG-perspective, but they showed an increase in ecotoxicity. In order to
obtain a full picture of the systems impact on the environment both locally and globally, an
expanded assessment of several categories and damage categories is beneficial in order to
gain important information. The usage of multiple impact categories when performing
LCAs has been stated previously [27,60] but remains a recommendation to the industry,
policymakers and researchers.

Future research is recommended on the practical applications of vehicle systems
similar to the one studied in this article. Verification of simulation data with field trials is an
important part in determining the long-term sustainability of the technology. Additional
research is also recommended on the secondary effects of using lighter, self-driving tractors,
such as soil compaction, marginal field use and increased field trafficability.

5. Conclusions

The LCI and LCIA of an autonomous battery electric tractor system were simulated
and calculated, considering a total of eleven midpoint impact categories, three endpoint
impact categories and an aggregated single score. The results showed a climate impact
of 34 kg CO2eq.ha−1 y−1 for GTG and 102 kg CO2eq.ha−1 y−1 for the entire life cycle
(CTG). This was only 35% of the CTG GHG emissions of the diesel tractor system studied
(293 kg CO2eq.ha−1 y−1), indicating that there is a high potential for a reduction of lifecycle
GHG emissions by using battery electric tractors.

Battery manufacturing and the electricity used for fuel represented important hotspots
for all types of impact categories. The BEV system showed a higher impact than the
ICE system across all categories in the manufacturing phase, with battery materials and
assembly in particular having a large impact.

In a CTG perspective, the BEV system had substantially lower impacts compared to
the ICE system in several impact categories, most notably climate change, eutrophication,
acidification, fine particulate matter and fossil resource scarcity. The BEV system had a
higher impact in categories dealing with mineral resource scarcity, carcinogenic toxicity
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and freshwater and terrestrial ecotoxicity. A long lifetime, energy-intense use phase and a
high recycling rate favours the BEV system.

For both the ICE and BEV systems, the use phase was the most impactful, and the
fuel used was highly relevant. For the BEV case, the choice of electricity mix used for
recharging resulted in a total GWP impact ranging from 45 (hydropower) to 445 (hard
coal) kg CO2eq.ha−1 y−1, i.e., an approximately 10-fold difference. Although all but one of
the electricity mixes had a lower impact than the diesel system, low climate impact was
highly dependent on low-impact electricity. The choice of electricity was by far the most
decisive factor for climate impact, eclipsing all other factors considered, as confirmed by
sensitivity analysis.

In CTG endpoint analysis, the BEV system was found to have a notably lower impact
than the ICE system in the categories human health (−74%), ecosystem impact (−47%) and
resource scarcity (−67%). In the summarised and weighed single score category, the BEV
system showed a 72% reduction in impact compared with the conventional ICE system.
This result corroborates the hypothesis that changing from a diesel based to an electricity-
based system, as described in this study, leads to lower total environmental impacts.
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