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Abstract

Tail biting is a damaging behaviour that impacts the welfare and health of pigs. Early detec-

tion of precursor signs of tail biting provides the opportunity to take preventive measures,

thus avoiding the occurrence of the tail biting event. This study aimed to build a machine-

learning algorithm for real-time detection of upcoming tail biting outbreaks, using feeding

behaviour data recorded by an electronic feeder. Prediction capacities of seven machine

learning algorithms (Generalized Linear Model with Stepwise Feature Selection, random

forest, Support Vector Machines with Radial Basis Function Kernel, Bayesian Generalized

Linear Model, Neural network, K-nearest neighbour, and Partial Least Squares Discriminant

Analysis) were evaluated from daily feeding data collected from 65 pens originating from

two herds of grower-finisher pigs (25-100kg), in which 27 tail biting events occurred. Data

were divided into training and testing data in two different ways, either by randomly splitting

data into 75% (training set) and 25% (testing set), or by randomly selecting pens to consti-

tute the testing set. In the first data splitting, the model is regularly updated with previous

data from the pen, whereas in the second data splitting, the model tries to predict for a pen

that it has never seen before. The K-nearest neighbour algorithm was able to predict 78% of

the upcoming events with an accuracy of 96%, when predicting events in pens for which it

had previous data. Our results indicate that machine learning models can be considered for

implementation into automatic feeder systems for real-time prediction of tail biting events.

Introduction

Tail biting (TB) is abnormal behaviour in pigs that is thought to have a multi-factorial origin.

A lack of enrichment material, unfavourable environmental conditions, an unbalanced diet, or

a poor health status could trigger it. In addition to the welfare and ethical concerns associated

with this cannibalistic behaviour, TB events cause pain, trigger infections, impair growth and

devalue the carcasses [1–5].
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Routine tail docking is prohibited in Switzerland [6] and in the EU [7], and farmers are

asked to set up measures to prevent TB outbreaks. One strategy is to pinpoint the farm-specific

risk factors for TB and to find solutions to reduce them [4, 6]. Another strategy is to monitor

animals’ behaviours to detect early signs of forthcoming outbreaks [8–10]. Early identification

of TB indicators is important for efficient intervention. The behavioural monitoring can be

done at the pen and at the individual animal level. Identification at the individual animal level

can support preventive measures such as removing the biter or the bitten pigs. Observations at

the pen level are more efficient to detect the TB event [3].

To date, only a few behavioural indicators were studied at the pen level. Early indicators—

such as changes in activity levels, tail posture, changes in exploratory behaviour, and drinking

and feeding behaviours—can be observed up to 63 days before outbreaks occur, but observa-

tions are sometimes inconsistent. For instance, Statham et al. reported that pigs spend less

time lying and more time standing and sitting within four days before an outbreak [11], but

Wedin et al. did not observe this difference in postures [10]. Zonderland et al. reported

decreasing exploratory behaviour six days before TB events [12], whereas Statham et al.

observed increasing environmental manipulations one day before [11]. In contrast, Ursinus

et al. did not observe any change in explorative behaviour before TB events [13]. Larsen et al.

detected a change in activity and object manipulation within the 7 days before an event [14]. A

lower tail position seems also to indicate an outbreak, and several authors have reported an

increased incidence of tucked or hanging tails in pens before and during TB outbreaks [8–11,

15]. Using automated analysis of camera recordings, D’Eath et al. and Liu et al. detected low

tail posture, which was positively associated with more tail damage [8, 16]. Nonetheless, the

tail posture may not specifically indicate a TB event, since low tail posture has also been associ-

ated with negative emotional responses in pigs [10], which could be caused by other factors

like sickness. All of the above studies described behavioural changes when comparing a control

(CTL) pen to a TB pen, which is the first step in developing of early detection of TB event. The

statistical analyses identify significant changes in behaviour before and during a TB outbreak,

but none of the authors attempted to use the detected differences to predict upcoming events.

In addition, the behavioural traits monitored in the previous studies require regular observa-

tions or additional material (camera) to detect changes in behaviour, which is either time con-

suming or costly.

Nowadays, more and more pig farms are equipped with electronic feeding systems. The

technology offers individually tailored feeding, reduces pigs feed usage, improves health and

welfare, and reduces farm workload. Automatic pig feeding systems bring increased efficiency,

convenience and control to the feeding process. Electronic feeding systems with single-spaced

feeders also enable automatic monitoring of the feeding behaviours of each individual. Record-

ing the identity of the pig, feeder entry and exit times and the amount of food consumed allows

the calculation of the frequency of feeder visits per day, feeding rates, mean feeder occupation

time, mean food intake per feeder visit, total food intake and total feeder duration per day for

each pig. In 1994, Young and Lawrence found that pigs housed in groups and fed from auto-

matic feeders showed a temporal pattern of feeding behaviour [17]. They also suggested that

the feeding behaviour might be altered by social conditions. It has been later described that

changes in feeding behaviours with automatic feeders were associated with negative events like

aggressive behaviour or disrupted social dynamics [8]. If a TB event can be predicted from

behaviour, as postulated by Statham et al. [11], then data from electronic feeders could be used

to monitor in real time the feeding behaviour of the pigs. In fact, the feeding behaviour of pigs

assessed by electronic feeders appears to change before a TB event. Some studies describe

changes in feeding behaviours before TB events [18–20]. These findings suggest that feeding

behaviours recorded by electronic feeders could be a valid tool to detect early signs of a TB
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event. Indeed, Maselyne et al. developed an online warning system for individual fattening

pigs based on their feeding pattern [21]. This study investigated whether abnormal changes in

the feeding pattern can be detected automatically and used as an (early) indicator for health,

welfare and productivity problems of an individual animal. They observed the number of

feeder visits per day and the average time interval between two visits and determined a thresh-

old above which the behaviour was considered abnormal. Every pig was categorised each day

as ‘green’ (globally healthy), ‘orange’ or ‘red’ status (the latter including severe infection of the

tail). However, the authors worked at the individual pig level and did not focus on TB detec-

tion at the pen level.

Different authors attempted to predict three behavioural changes (pen fouling, diarrhoea

and TB) using multiple data types extracted from the pen [22–24]. A multivariate dynamic

model and/or machine neural network and Bayesian ensemble were created by combining

information from the drinking and feeding behaviours of pigs and the pen’s environmental

conditions. In these articles, the authors acknowledged that feed and water consumption are

highly correlated [22] and that changes in water consumption are better predictors of beha-

vioural changes than environmental parameters [24]. Due to a lack of TB data during the

period of Jensen et al.’s analysis, the researchers were unable to predict TB event [23]. The

aforementioned studies were limited by the fact that they rely on water/climate sensors, which

are not routinely installed in farms. Further, the authors did not address whether their model

could be generalized to another farm data set.

In our study, we used feeding behaviour data paired with machine learning (ML) algo-

rithms to predict TB outbreaks in real time. The study’s objectives are: 1) assessment of the

impact of the data framework on TB detection; 2) implementation and evaluation of the pro-

posed framework on two different farm datasets; 3) assessment of a data-independent model;

4) evaluation of the framework’s impact on TB detection.

In summary, the contributions of our research are:

1. Provide a new data framework to allow a ML approach to predict TB using feeding behav-

iour data;

2. Demonstrate that Machine Learning Models—Generalized Linear Model with Stepwise

Feature Selection (glmnet), random forest (rf), Support Vector Machines with Radial Basis

Function Kernel (svmRadial), Bayesian Generalized Linear Model (bayesglm), Neural net-

work (nn), K-nearest neighbour (kNN), and Partial Least Squares Discriminant Analysis

(pls)—can predict TB events using pigs’ feeding behaviours at the pen level with the new

data framework;

3. Simulate two conditions: one where the model has access to previous data of the pen, and

another where the model makes predictions in one pen, based on data from other pens;

4. Achieve a prediction of 70–80% of the upcoming TB events with a True Negative Rate

(TNR) of>99% (rf and kNN models), when the model has access to previous data of the

pen, and

5. Evaluate and compare prediction performances in two different farm conditions.

A TB monitoring tool would open up new opportunities for the farmer to take targeted

action in specific pens to prevent the TB event. Being able to prevent TB would serve the wel-

fare of the animals and provide economic benefits to the farmer. Since the tool requires only

data that are already available from pig farms equipped with automatic feeders, it could be eas-

ily implemented in commercial practice as an additional management tool.
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Material and methods

Data collection

This study analyses the feeding behaviours of two herds of grower-finisher pigs weighing

between 25 and 100 kilograms. One data set originates from a testing boar station in Sweden

and contains data collected from October 2004 to July 2007. The data set comes from a previ-

ous retrospective study that Wallenbeck and Keeling published [20]. The second data set con-

tains data from the experimental pig farm of Agroscope and comprises recordings from

November 2018 to April 2020. As tail docking is prohibited in Sweden and in Switzerland, the

data are from pigs with intact tails.

The Swedish data set includes data from 42 pens (21 TB and 21 CTL) of boars (purebred

Yorkshire, Landrace or Hampshire) recorded 70 days before and after the TB date. Boars were

housed in groups of 7 to 14 animals per pen. Each pen measured 15.7 m2 and had a slatted

floor and plain resting area. All pigs had ad libitum access to the pelleted feed, which was opti-

mised according to the Swedish nutrition norms for fattening pigs [25]. Water was provided

ad libitum and straw was offered daily.

The Swiss data set consisted of 23 pens (six TB and 17 CTL) of females and castrated male pigs

(Swiss Large White), recorded 100 days before and after the TB date. Twenty pens (18 m2) con-

tained 11 to 15 pigs each and were equipped with two automatic feeders; three pens (78 m2) were

equipped with eight automatic feeders for 31 to 55 pigs each. All pens had straw in racks and saw-

dust on the floor. Water was available ad libitum through nipple drinkers. The pelleted finisher

diet was formulated to have 20% lower dietary crude protein and essential amino acids compared

to a standard diet formulated according to the Swiss feeding recommendations for pigs [26].

For both study sites, data were collected by individual automatic feeders (ACEMO 48,

Acemo, France; or MLP, Agrotronic Schauer, Austria) that recorded the number of visits to

the feeder and the amount of feed consumed. The feeders were 0.6 m wide and 1.5–2.2 m long.

Only one pig could enter the feeder at a time, and other pigs could not dislodge the pig feeding

inside the feeder. Each pig had access to only one feeder.

A pen was assigned to the TB category if at least one pig had to be treated for tail damages.

The TB date (day 0) was defined as the date at which the first treatment was recorded. For the

Swedish data set, each pen in the TB category was paired to a pen in the CTL category. For the

Swiss data set, all the 23 farrowing batches reared under the same housing and feeding condi-

tions were considered for analysis.

Definitions of the observations, analysis in time series, and missing value

imputation

The frequency of daily feeder visits (DFV), the daily feed consumption (DFC), and the stan-

dard deviation of the feed consumption at each visit (StdFC) were calculated per day and per

pig (Table 1). These parameters were considered as ‘observations’ to predict TB events at the

pen level and were derived from the data collected by the automatic feeder.

The time dependency of the observations was taken into account by analysing the data by

groups of consecutive data points, called the ‘analysis window’. The prediction model

Table 1. Observations used for tail biting predictions.

Observations Definition Units Abbreviated

Frequency of daily feeder visits Number of visits to the feeder (from 0:00 to 23:59:59 that date) n DFV

Daily feed consumption Total feed consumption (from 0:00 to 23:59:59 that date) g DFC

Standard deviation of the feed consumption Daily standard deviation of the feed consumption at each visit g StdFC

https://doi.org/10.1371/journal.pone.0252002.t001

PLOS ONE Predicting Tail biting event in pigs using feeding behaviour records

PLOS ONE | https://doi.org/10.1371/journal.pone.0252002 January 5, 2023 4 / 18

https://doi.org/10.1371/journal.pone.0252002.t001
https://doi.org/10.1371/journal.pone.0252002


considered the analysis window to achieve a prediction at the pen level. The analysis window

was first defined to contain observations from 14 consecutive days (Fig 1). The A_date was

defined as the first day of the analysis window. The analysis window slides along the timeline

and the A_date defines the class of the analysis window, i.e., “TB” or “CTL”. Analysis windows

from CTL pens were always classified as “CTL”, whereas analysis windows from TB pens were

considered as “TB” class only between day -35 and day 10 (TB window). The analysis window

of a TB pen was classified as “TB” if the A_date was inside the TB window and “CTL”, if out-

side the TB window. Missing values were computed using median imputation (by data set)

and a principal component analysis was performed before ML analysis. In addition, data were

centered and scaled by data set.

In each pen, the analysis window contained observations from 10 pigs for 14 days, to stan-

dardize the size of the analysis window. Observations from 10 pigs were considered to give

enough information on the pen, without creating too many missing data points, for the few

occurrences that contained fewer than 10 pigs.

At the end of the data framing, each analysis window contained 420 observations [3 vari-

ables (DFV, DFC, StdFC) × 10 pigs × 14 days], and one outcome (the class of the window: TB

or CTL). The Swiss and the Swedish data set were merged into a third data set, called Swedish

+Swiss, to incorporate more diverse observations and further increase the model’s generaliz-

ability for unseen data (pen/country). In total, the combined data set (Swedish and Swiss data)

contained 6605 analysis windows, with 5479 and 1126 CTL and TB windows, respectively. The

characteristics of the TB windows compared to CTL are presented in Table 2.

Fig 1. Analysis of the time dependency of the data thanks to the analysis window approach. Analysis window slides along the

timeline (blue arrow). The analysis window is classified as TB class, when the A_date (first day of the analysis window) enters the TB

window and as CTL class when it is outside the TB window. Control pens are always classified as “CTL”.

https://doi.org/10.1371/journal.pone.0252002.g001

Table 2. Characteristics of the data sets.

Swedish Swiss

Observations Statistics CTL TB CTL TB

DFC1 Mean 2337.1� 2005.7 2282.3� 2438.8

SD 757.4 708.6 600.2 678.2

DFV2 Mean 24.9� 24.0 12.3� 12.0

SD 19.4 18.0 6.0 7.2

StdFC3 Mean 128.6� 113.8 166.8� 195.6

SD 85.9 71.2 96.3 129.7

�Significant difference between CTL and TB analysis window classes (p<0.0001)
1 DFC: frequency of daily feeder visits
2 DFV: daily feed consumption
3 StdFC: standard deviation of the feed consumption at each visit.

https://doi.org/10.1371/journal.pone.0252002.t002
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Models

All data were analysed with R3.6.3, using the caret package to build ML models [27].

Commonly used classification ML methods were first tested on all three data sets (i.e.,

Swedish, Swiss and Swedish+Swiss) [28, 29]. Table 3 presents a list of common ML methods

considered and implemented with R packages in this study with binary outcome.

For each data set, predictive models were first trained on a subset of data (training set), and

the models’ performances on this training set were then compared. The predictive perfor-

mances of the models were further compared using the unseen data (test set). The test set con-

tained either new unseen analysis windows (cross-validation (CV) approach) or new pens

(leave one out cross-validation (LOOP) approach) [30]. The LOOP approach gives estimate

metrics that are valuable when a new pen is presented to the model for prediction, as there is

no pen overlapping between the training and testing data sets. This represents the situation

where the farmer tries to predict a TB event in a hitherto unknown pen. The CV resampling

approach predicts TB events based on data previously recorded in the pen. This approach is

correct when the model can be continuously updated with previous records of the pen so that

the prediction model already knows the feeding behaviour of the pen and tries to classify the

analysis window of the testing set based on previous knowledge of this pen. In the training set

and for both the LOOP and CV approaches, a 200 fold cross validation resampling was

applied, so that the validation set constituted 1% of the training set. Hyper-parameters were

optimized using a random search [31], and the total number of parameter combinations evalu-

ated was limited to 10. All models were optimized on the true positive rate (TPR).

Model evaluation: Performances metrics

This is a classification problem with binary outcomes (TB or CTL), and performances of the

models should be assessed on parameters calculated with a confusion matrix [32]. Models’

measures of performances and confusion matrix are presented in Table 4. The TPR (rate of

predicted TB class given the actual TB class) assesses the capacity of the model to detect an

upcoming TB event. The positive predictive value (PPV) evaluates the capacity of the model to

correctly predict a TB class. All models were optimized to maximize the TPR, as this study

aimed to detect early warnings of TB events. The true negative rate (rate of predicted CTL

given the actual CTL class, TNR) assesses the capacity of the model to detect a normal behav-

iour. The Cohen’s Kappa statistic assesses how the model outperforms a model that simply

always predicts “CTL”. According to Landis and Koch, a kappa of 0–0.20 is slight, 0.21–0.40 is

fair, 0.41–0.60 is moderate, 0.61–0.80 is substantial, and 0.81–1 is almost perfect [33]. The p-

value assesses the statistical significance of the difference in accuracy between the model that

simply always predicts “CTL” and the tested model. Each model’s accuracy is presented with

its 95% confidence interval (CI). In addition, the resampling distribution of the models were

Table 3. The seven machine learning methods used to predict tail biting events from feeding behaviour data.

Machine Learning R Package Function

Generalized Linear Model with Stepwise Feature Selection glmnet glmnet

Random forest ranger rf

Support Vector Machines with Radial Basis Function Kernel kernlab svmRadial

Bayesian Generalized Linear Model arm bayesglm

Neural network nnet nn

K-nearest neighbour caret kNN

Partial Least Squares Discriminant Analysis pls pls

https://doi.org/10.1371/journal.pone.0252002.t003
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analysed as a way to compare their predictive performances [34, 35]. To do so, models were fit

on the same versions of the training data (using the same random number seed). Differences

in the resampling profiles were then computed, using a simple t-test to evaluate the null

hypothesis that there is no difference between models. P values were adjusted for multiple

comparisons using the Bonferroni correction.

Results

Model performances

Table 5 presents the model performances on the three training data sets. All models performed

significantly better than the prediction model (that simply always predict CTL), with kappas

ranging from 0.30 to 1.00. Even if the criteria for optimization was the TPR, this performance

criterion was always lower or equal to the specificity, which is most likely due to the imbalance

between the numerous CTL and the rare TB classes.

Model prediction performances

Tables 6 and 7 summarize the performances of the models to predict unseen analysis windows

(CV) or unseen pens (LOOP), respectively. The TPR of the models are compared in Tables 8

and 9, for the windows (CV) or unseen pens (LOOP) analysis, respectively. For the Swedish

+Swiss data set, the performances of the model on CV and LOOP were assessed on the com-

bined testing set (Swedish+Swiss) and on subsets of the Swedish or Swiss data set separately.

The RF model showed the best predictive performances on both the unseen analysis windows

and the unseen pens, with an average accuracy of 84% and a TPR of 38% on all data sets.

Table 4. The confusion matrix and measures of performances used to assess the performances of the models.

Confusion Matrix

Actual

TB CTL

Predicted TB TP FP

True positive False-positive

predicted TB class that are actually TB class predicted TB class that are actually

CTL class

CTL FN TN

False-negative True negative

TB class not detected by the model (predicted as

CTL class)

predicted CTL class that are actually

CTL class

Measures of Performances

True Positive Rate TPRð Þ ¼ TP
TPþFN (1)

Positive Predicted Value PPVð Þ ¼ TP
TPþFP (2)

True Negative Rate TNRð Þ ¼ TN
TNþFP (3)

Accuracy ACCð Þ ¼ TNþTP
TNþFPþTPþFN (4)

k ¼
po � pe
1� pe

where ρo is the overall accuracy of the model and ρe is the

measure of the agreement between the model predictions and the actual

class values as if happening by chance.

(5)

P-value: statistical significance of the difference with a model always

predicting CTL class.

A confusion matrix analysis was applied to evaluate the prediction performances of the ML models for this classification problem with a binary outcome (tail biting,

"TB" or control "CTL" class). The definitions of the measures of performances are presented.

https://doi.org/10.1371/journal.pone.0252002.t004
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Predictive performances were higher on unseen analysis windows than on unseen pens, and

always lower than the model performances on the training set. In the Swedish data set, the pre-

dictive performances of the RF model on unseen pens were poor (kappa<0). Models trained

on the Swedish+Swiss data set showed a poorer performance (low kappa) in predicting new

analysis windows of a Swedish or Swiss subset data set than the same model trained on the

Swedish or Swiss data sets individually. Lower kappas were also obtained for prediction on

new pens—except for glmnet, bayesglm, and pls models—that had improved predictive per-

formances (kappa) on the Swiss subset.

Impact of TB and analysis windows

We have tested the influence of the size of the analysis window and the size of the TB window

on predictive performances for the Swedish data set. Accuracy of models with analysis

Table 5. Models performances on training data sets for the Swiss, Swedish and Swedish+Swiss data sets.

Swedish

Models ACC (CI) TPR TNR PPV Kappa p-value

glmnet1 0.88 (0.87–0.89) 0.63 0.94 0.76 0.61 <0.0001

rf2 1.00 (0.99–1.00) 1.00 1.00 1.00 1.00 <0.0001

svmRadial3 0.94 (0.93–0.95) 0.80 0.98 0.90 0.81 <0.0001

bayesglm4 0.88 (0.87–0.89) 0.63 0.94 0.76 0.61 <0.0001

nn5 1.00 (0.99–1.00) 1.00 1.00 1.00 1.00 <0.0001

kNN6 0.99 (0.99–1.00) 0.99 0.99 0.98 0.98 <0.0001

pls7 0.87 (0.86–0.88) 0.53 0.96 0.80 0.56 <0.0001

Swiss

Models ACC (CI) TPR TNR PPV Kappa p-value

glmnet 0.92 (0.91–0.93) 0.40 0.99 0.79 0.50 <0.0001

rf 1.00 (0.99–1.00) 1.00 1.00 1.00 1.00 <0.0001

svmRadial 0.99 (0.98–0.99) 0.88 1.00 1.00 0.93 <0.0001

bayesglm 0.92 (0.91–0.93) 0.41 0.99 0.78 0.50 <0.0001

nn 0.99 (0.99–1.00) 0.98 0.99 0.96 0.97 <0.0001

kNN 0.95 (0.94–0.96) 0.54 1.00 0.98 0.67 <0.0001

pls 0.91 (0.90–0.92) 0.19 1.00 0.96 0.30 <0.0001

Swedish + Swiss

Models ACC (CI) TPR TNR PPV Kappa p-value

glmnet 0.86 (0.85–0.87) 0.30 0.97 0.67 0.35 <0.0001

rf 1.00 (0.99–1.00) 1.00 1.00 1.00 1.00 <0.0001

svmRadial 1.00 (0.99–1.00) 0.99 1.00 1.00 1.00 <0.0001

bayesglm 0.86 (0.85–0.87) 0.30 0.97 0.66 0.35 <0.0001

nn 0.97 (0.96–0.98) 0.87 0.99 0.96 0.90 <0.0001

kNN 0.97 (0.96–0.97) 0.82 1.00 0.98 0.88 <0.0001

pls 0.85 (0.84–0.86) 0.13 0.99 0.75 0.18 <0.0001

1Generalized Linear Model with Stepwise Feature Selection
2Random forest
3Support Vector Machines with Radial Basis Function Kernel
4Bayesian Generalized Linear Model
5Neural network
6K-nearest neighbor
7Partial Least Squares Discriminant Analysis

https://doi.org/10.1371/journal.pone.0252002.t005
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Table 6. Performances of models to predict unseen analysis windows [cross validation (CV) approach] of the Swedish, Swiss and Swedish+Swiss testing data sets.

Swedish

Models ACC (CI) TPR TNR PPV Kappa p-value

glmnet1 0.81 (0.78–0.83) 0.45 0.90 0.57 0.38 0.04

rf
2

0.95 (0.94–0.97) 0.80 0.99 0.98 0.85 <0.0001

svmRadial3 0.86 (0.84–0.88) 0.54 0.95 0.75 0.54 <0.0001

bayesglm4 0.81 (0.78–0.83) 0.45 0.90 0.57 0.39 0.04

nn
5

0.87 (0.84–0.89) 0.73 0.91 0.68 0.62 <0.0001

kNN6 0.97 (0.96–0.98) 0.94 0.98 0.94 0.92 <0.0001

pls7 0.81 (0.78–0.83) 0.36 0.93 0.60 0.35 -

Swiss

Models ACC (CI) TPR TNR PPV Kappa p-value

glmnet 0.85 (0.83–0.88) 0.22 0.94 0.30 0.17 -

rf 0.94 (0.92–0.96) 0.50 0.99 0.95 0.63 <0.0001

svmRadial 0.91 (0.89–0.93) 0.28 1.00 0.92 0.39 0.006

bayesglm 0.85 (0.83–0.88) 0.22 0.93 0.30 0.17 -

nn 0.90 (0.87–0.92) 0.47 0.95 0.56 0.46 -

kNN 0.93 (0.91–0.95) 0.41 1.00 1.00 0.55 <0.0001

pls 0.89 (0.86–0.91) 0.11 0.99 0.56 0.15 -

Swedish + Swiss

Models ACC (CI) TPR TNR PPV Kappa p-value

glmneta 0.82 (0.80–0.84) 0.15 0.96 0.43 0.15 -

Swedishb 0.77 (0.74–0.80) 0.21 0.93 0.46 0.18 -

Swiss
c

0.88 (0.85–0.90) 0.02 0.99 0.20 0.02 -

rfa 0.94 (0.93–0.95) 0.70 0.99 0.96 0.78 <0.0001

Swedishb 0.95 (0.93–0.96) 0.80 0.99 0.95 0.83 <0.0001

Swissc 0.94 (0.92–0.96) 0.48 1.00 1.00 0.62 <0.0001

svmRadiala 0.88 (0.86–0.89) 0.38 0.98 0.80 0.46 <0.0001

Swedish
b

0.86 (0.84–0.88) 0.48 0.97 0.80 0.52 <0.0001

Swissc 0.90 (0.88–0.92) 0.16 1.00 0.76 0.23 -

bayesglma 0.82 (0.81–0.84) 0.16 0.96 0.43 0.16 -

Swedish
b

0.77 (0.75–0.80) 0.21 0.93 0.46 0.19 -

Swissc 0.82 (0.85–0.90) 0.16 0.96 0.43 0.15 -

nna 0.88 (0.87–0.90) 0.58 0.94 0.69 0.56 <0.0001

Swedishb 0.88 (0.86–0.90) 0.65 0.95 0.79 0.64 <0.0001

Swissc 0.88 (0.85–0.90) 0.42 0.94 0.47 0.38 -

kNN
a

0.94 (0.93–0.95) 0.70 0.99 0.94 0.77 <0.0001

Swedishb 0.96 (0.94–0.97) 0.87 0.98 0.94 0.88 <0.0001

Swissc 0.92 (0.90–0.94) 0.32 1.00 1.00 0.46 0.0006

pls
a

0.83 (0.81–0.85) 0.06 0.99 0.62 0.09 -

Swedishb 0.79 (0.76–0.81) 0.09 0.98 0.62 0.11 -

Swissc 0.89 (0.86–0.91) 0.00 1.00 0.00 0.00 -

Models in bold are considered as the best predictive models regarding their TPR.
1Generalized Linear Model with Stepwise Feature Selection
2Random forest
3Support Vector Machines with Radial Basis Function Kernel
4Bayesian Generalized Linear Model
5Neural network
6K-nearest neighbour
7Partial Least Squares Discriminant Analysis
aPrediction performances of the models on testing data set containing Swedish and Swiss data.
bPrediction performances of the models on the Swedish subset of the testing data set.
cPrediction performances of the models on the Swiss subset of the testing data set.

https://doi.org/10.1371/journal.pone.0252002.t006
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Table 7. Performances of models to predict unseen pens [leave one out cross-validation (LOOP) approach] of the Swedish, Swiss and Swedish+Swiss data sets.

Swedish

Models ACC (CI) TPR TNR PPV Kappa p-value

glmnet1 0.56 (0.51–0.61) 0.14 0.71 0.14 <0.00 -

rf
2

0.63 (0.58–0.68) 0.11 0.81 0.17 <0.00 -

svmRadial3 0.55 (0.50–0.60) 0.20 0.66 0.17 <0.00 -

bayesglm4 0.56 (0.51–0.61) 0.14 0.71 0.14 <0.00 -

nn
5

0.54 (0.49–0.59) 0.03 0.71 0.03 <0.00 -

kNN6 0.62 (0.57–0.67) 0.00 0.83 0.00 <0.00 -

pls7 0.58 (0.53–0.63) 0.10 0.75 0.12 <0.00 -

Swiss

Models ACC (CI) TPR TNR PPV Kappa p-value

glmnet 0.82 (0.77–0.86) 0.18 0.96 0.50 0.19 -

rf 0.84 (0.79–0.88) 0.18 0.99 0.75 0.24 -

svmRadial 0.81 (0.76–0.86) 0.02 0.99 0.25 0.01 -

bayesglm 0.82 (0.76–0.86) 0.18 0.95 0.47 0.18 -

nn 0.73 (0.67–0.78) 0.04 0.88 0.07 <0.00 -

kNN 0.84 (0.79–0.88) 0.12 0.99 0.86 0.18 -

pls 0.82 (0.77–0.87) 0.08 0.99 0.57 0.10 -

Swedish + Swiss

Models ACC (CI) TPR TNR PPV Kappa p-value

glmneta 0.73 (0.69–0.76) 0.12 0.90 0.27 0.03 -

Swedishb 0.62 (0.58–0.67) 0.00 0.84 0.00 <0.00 -

Swiss
c

0.87 (0.83–0.91) 0.37 0.99 0.86 0.45 0.008

rfa 0.74 (0.71–0.77) 0.00 0.96 0.00 <0.00 -

Swedishb 0.69 (0.64–0.73) 0.00 0.93 0.00 <0.00 -

Swissc 0.82 (0.77–0.86) 0.00 1.00 0 0 -

svmRadiala 0.71 (0.67–0.75) 0.03 0.91 0.08 <0.00 -

Swedish
b

0.63 (0.58–0.68) 0.03 0.84 0.06 <0.00 -

Swissc 0.82 (0.77–0.87) 0.02 1.00 1.00 0.03 -

bayesglma 0.73 (0.70–0.76) 0.13 0.91 0.28 0.04 -

Swedish
b

0.63 (0.58–0.68) 0.01 0.84 0.02 <0.00 -

Swissc 0.87 (0.83–0.91) 0.37 0.99 0.86 0.46 0.009

nna 0.63 (0.59–0.66) 0.17 0.76 0.17 <0.00 -

Swedishb 0.56 (0.51–0.61) 0.24 0.67 0.20 <0.00 -

Swissc 0.72 (0.66–0.77) 0.02 0.87 0.03 <0.00 -

kNN
a

0.74 (0.71–0.77) 0.00 0.95 0.00 <0.00 -

Swedishb 0.69 (0.64–0.73) 0.00 0.93 0.00 <0.00 -

Swissc 0.82 (0.77–0.86) 0.00 1.00 0.00 0.00 -

pls
a

0.77 (0.73–0.80) 0.08 0.97 0.41 0.07 -

Swedishb 0.70 (0.65–0.74) 0.00 0.94 0.00 <0.00 -

Swissc 0.86 (0.81–0.90) 0.24 0.99 0.92 0.34 0.04

Models in bold are considered as the best predictive models regarding their TPR.
1Generalized Linear Model with Stepwise Feature Selection
2Random forest
3Support Vector Machines with Radial Basis Function Kernel
4Bayesian Generalized Linear Model
5Neural network
6K-nearest neighbour
7Partial Least Squares Discriminant Analysis
aPrediction performances of the models on testing data set containing Swedish and Swiss data.
bPrediction performances of the models on the Swedish subset of the testing data set.
cPrediction performances of the models on the Swiss subset of the testing data set.

https://doi.org/10.1371/journal.pone.0252002.t007

PLOS ONE Predicting Tail biting event in pigs using feeding behaviour records

PLOS ONE | https://doi.org/10.1371/journal.pone.0252002 January 5, 2023 10 / 18

https://doi.org/10.1371/journal.pone.0252002.t007
https://doi.org/10.1371/journal.pone.0252002


windows of seven or 21, or with different TB windows (-49 to +10 days, or -10 to +5 days)

were compared with the default windows size (analysis window: 14 days; TB window: -35 to

+10 days). Each model’s measure of performances were calculated with its 95% confidence

interval (CI). The RF model was chosen for this analysis, as it was the model with the best pre-

dictive performances over the three data sets and for the two (CV and LOOP) approaches.

The predictive performances of the RF model increased when the analysis window con-

tained 21 days (instead of 14 days) or when the TB window was larger (-49 to +10 days)

(Table 10). Interestingly, the RF model never predicted TB class in CTL pens, thus ML models

Table 8. Comparisons of models’ TPR performances when predicting unseen analysis windows [cross validation (CV) approach] of the Swedish, Swiss and Swedish

+Swiss data sets. Estimated differences in TPR between the model indicated in the line header and the model indicated in the column header. Models in bold are consid-

ered as the best predictive models regarding their TPR.

Swedish

Models glmnet rf svmRadial bayesglm nn kNN pls

glmnet1 -0.37��� -0.07� 0.00 -0.36��� -0.49��� 0.06���

rf2 0.30��� 0.37��� 0.01��� -0.12��� 0.43���

svmRadial3 0.06� -0.29��� -0.42��� 0.13���

bayesglm4 -0.36���� -0.49��� 0.07���

nn5 -0.13��� 0.42���

kNN6 0.55������

pls7

Swiss

Models glmnet rf svmRadial bayesglm nn kNN pls

glmnet -0.19�� 0.01 0.00 -0.37��� -0.25��� 0.12���

rf 0.20��� 0.20�� -0.18�� -0.06 0.31���

svmRadial -0.01 -0.38��� -0.26������ 0.11���

bayesglm -0.38��� -0.26��� 0.12���

nn 0.12� 0.49���

kNN 0.37���

pls

Swedish + Swiss

Models glmnet rf svmRadial bayesglm nn kNN pls

glmnet -0.49��� -0.17��� 0.00 -0.40��� -0.49��� 0.11���

rf 0.33��� 0.49��� 0.09��� 0.00 0.60���

svmRadial 0.16��� -0.24��� -0.33��� 0.28���

bayesglm -0.40��� -0.49��� 0.11������

nn -0.09�� 0.51���

kNN 0.60���

pls

1Generalized Linear Model with Stepwise Feature Selection
2Random forest
3Support Vector Machines with Radial Basis Function Kernel
4Bayesian Generalized Linear Model
5Neural network
6K-nearest neighbour
7Partial Least Squares Discriminant Analysis

�P-value<0.05

��P-value<0.001

���P-value<0.0001

https://doi.org/10.1371/journal.pone.0252002.t008
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were able to discriminate CTL pen behaviour from TB pen behaviour. In addition, the predic-

tion of a TB event for a TB pen was almost exclusively within the TB window (high accuracy).

The detection of an upcoming TB event was not better near the TB date (day 0) than at the

beginning of the TB window (day -35, for default TB window size).

Discussion

In this study, TB events could be detected up to 35 days in advance using an ML model that

analysed feeding behaviours recorded by electronic feeders. Early indicators of TB events were

Table 9. Comparisons of models’ TPR performances when predicting unseen pens [leave one out cross-validation (LOOP) approach] of the Swedish, Swiss and

Swedish+Swiss data sets. Estimated differences in TPR between the model indicated in the line header and the model indicated in the column header. Models in bold are

considered as the best predictive models regarding their TPR.

Swedish

Models glmnet rf svmRadial bayesglm nn kNN pls

glmnet1 -0.36��� -0.10��� 0.00 -0.36��� -0.40��� 0.10���

rf2 0.25��� 0.36��� -0.01 -0.04� 0.45���

svmRadial3 0.10��� -0.26��� -0.30��� 0.20���

bayesglm4 -0.36��� -0.40��� 0.09���

nn5 -0.04 0.46���

kNN6 0.50���

pls7

Swiss

Models glmnet rf svmRadial bayesglm nn kNN pls

glmnet -0.23��� 0.04 0.00 -0.40��� -0.26��� 0.12���

rf 0.27��� 0.23��� -0.17��� -0.03 0.35���

svmRadial -0.04 -0.43��� -0.30��� 0.08�

bayesglm -0.40��� -0.26��� 0.12���

nn 0.14� 0.52���

kNN 0.38���

pls

Swedish + Swiss

Models glmnet rf svmRadial bayesglm nn kNN pls

Glmnet -0.54��� -0.23��� 0.00 -0.44��� -0.52��� 0.12���

rf 0.30��� 0.53��� 0.09�� 0.02 0.65���

svmRadial 0.23��� -0.21��� -0.29��� 0.35���

bayesglm -0.44��� -0.52��� 0.12���

nn -0.08�� 0.56���

kNN 0.64���

pls

1Generalized Linear Model with Stepwise Feature Selection
2Random forest
3Support Vector Machines with Radial Basis Function Kernel
4Bayesian Generalized Linear Model
5Neural network
6K-nearest neighbour
7Partial Least Squares Discriminant Analysis

�P-value<0.05

��P-value<0.001

���P-value<0.0001

https://doi.org/10.1371/journal.pone.0252002.t009
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more easily identified when the model had access to previous records of the pen. Thus, one

should consider performing continuous analysis of the data of each pen, even in the absence of

TB events. To our knowledge, this is the first time an ML algorithm is able to predict TB events

in pigs using feeding behaviour data.

In the following discussion, we compare the performances of our models with those of other

models that predict TB events based on other behavioural changes. In the next section, we dis-

cuss the challenge of generalizing the model to a different farm data set. Then, we conclude by

presenting an interpretation of the changes in feeding behaviour associated with a TB event.

Performances evaluation

This study obtained prediction performances comparable to studies that used drinking behav-

iour and climate data [22, 24], which obtained a TNR range of 44–72% and a TPR range of 59–

100% for TB prediction. The approach taken by Larsen et al. to predict TB events deserves con-

sideration [14]. They modelled different data sources (from drinking behaviour and climate

conditions) with dynamic linear models (similar to [23]) and data were used by an artificial

neural network to predict TB events, pen fouling and diarrhoea. As a parallel process, the dif-

ferent data sources were combined into a logistic regression model to estimate the probability

of events, which was then converted to an event prediction based on a prediction threshold.

Finally, these predictions were assembled in a Bayesian ensemble model to compute a final

prediction. Accordingly, Domun et al. included climate ventilation system data and pig char-

acteristics along with the same study data to compile three dynamic models and a long short-

term memory neural network to forecast TB events, pen fouling, and diarrhea [22].

Table 10. Prediction performances of the random forest (rf) model depending on the TB and analysis window size on the Swedish data set.

Swedish

Test set Analysis window size TB window size ACC TPR TNR PPV Kappa p-value

(CI) (CI) (CI) (CI)

7 days [-35;10] 0.94 0.76 0.99 0.96 0.81 <0.0001

(0.92–0.95) (0.70–0.82) (0.98–1.00) (0.92–0.98) - -

Unseen analysis windows (CV) 14 days [-35;10] 0.95 0.80 0.99 0.98 0.85 <0.0001

(0.94–0.97) (0.74–0.86) (0.99–1.00) (0.95–1.00) - -

[-49;10] 0.97 0.88 0.99 0.97 0.90 <0.0001

(0.95–0.98) (0.84–0.93) (0.98–1.00) (0.94–0.99) - -

[-10;5] 0.95 0.45 1.00 0.94 0.58 <0.0001

(0.93–0.96) (0.33–0.57) (0.99–1.00) (0.81, 0.99) - -

21 days [-35;10] 0.97 0.87 1.00 0.99 0.91 <0.0001

(0.96–0.98) (0.82–0.92) (0.99–1.00) (0.96–1.00) - -

7 days [-35;10] 0.65 0.00 0.87 0.00 <0.00 -

(0.60–0.70) (0.00–0.03) (0.83–0.90) (0.00–0.09) - -

Unseen pens (LOOP) 14 days [-35;10] 0.63 0.11 0.81 0.17 <0.00 -

(0.58–0.68) (0.06–0.19) (0.77–0.86) (0.09–0.29) - -

[-49;10] 0.61 0.19 0.82 0.35 0.02 -

(0.56–0.66) (0.13–0.27) (0.77–0.87) (0.24–0.47) - -

[-10;5] 0.91 0.00 1.00 0.00 0.00 -

(0.88–0.94) (0.00–0.10) (0.99–1.00) (0.00–1.00) - -

21 days [-35;10] 0.66 0.00 0.88 0.00 <0.00 -

(0.61–0.70) (0.00–0.04) (0.84–0.92) (0.00–0.11) - -

https://doi.org/10.1371/journal.pone.0252002.t010
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In the two studies cited above, data structures were different from those in the present

study. Larsen et al. had a TB windows ranging from 1 to 3 days [24], while Domun et al. had

an analysis window combining short-term memory (10 minutes beforehand) with long-term

memory (up to 7 days) [22]. As noticed in our study, the authors observed that increasing the

TB/analysis windows improved the prediction performances. The authors, however, did not

include both analysis and TB windows. The analysis window provided the possibility of detect-

ing abnormal feeding behaviour, as well as recognizing abnormal progress over 14 days. A TB

window offers the opportunity to predict an impending TB outbreak as it develops, even sev-

eral days before signs of tail biting damage become evident.

The data set used for the present paper contained 65 pens originating from 2 different herds.

This resulted in 6605 analysis windows, with 5479 and 1126 CTL and 194 TB windows, respec-

tively. Even if this is the first time 2 different herds are combined for a ML analysis, this data set

may be considered as a medium size for a machine learning application, and further work may be

needed on a larger data set, containing multiple farms, to assess the generalizability of the model.

Model generalisation

A system for detecting pigs’ tail biting events is difficult to develop since pigs’ behaviors tend

to be complex because of the multifactorial causes of tail biting. There is no clear answer about

what prediction method or pattern can be used for detecting specific events. It seems that the

feeding behaviour is not only specific to a pen, but each site has its own characteristics (e.g.,

breeds, climates, and feed compositions). The model trained on one data set (Swedish or

Swiss) was not able to detect events in the other data set, and the combination of the data sets

(Swedish + Swiss) had little effect on model performances. As a result, the combined Swedish

and Swiss data did not provide many advantages. It is difficult to generalize feature-based

models to unseen data, as health and welfare problems often differ between herds and mean-

ingful features are sometime hard to identify [22]. One explanation could be linked to site-spe-

cific risk factors. As acknowledged by the European Food Safety Authority in 2014, one of the

difficulties in preventing TB resides in the fact that every farm is different and has its own risk

factors. Prevention strategies therefore need to be designed at a farm-specific level [5]. Feeding

behaviour associated with a TB event will differ depending on the chronic risk factors on the

farm (breed, sex, feeding, and access to manipulable material, space, and group size). This

observation was already acknowledged by Taylor et al. [36] and Valros [4], when they defined

the four types of TB (two-stage, sudden-forceful, obsessive, and epidemic), associated with

four putative causations. For these authors, the two-stage type is the result of chronic and mod-

erate stress. Competition for resources is thought to cause sudden-forceful types. And gener-

ally, the epidemic type occurs after a significant change in the pig’s daily routine (e.g.: food

disturbance, temperature change). The obsessive type is caused by one individual pig (the tail

bitter) that possibly experience long-term challenges.

It could be possible to circumvent the generalisation issue by continuously implementing

the model on farms, resulting in improved detection performances over time. Additionally, a

larger data set containing more than two farms may facilitate the extraction of features that are

not site-dependent.

Understanding changes in feeding behaviour

Previously, Munsterhjelm et al. [18] investigated feeding behaviours of pigs 70 days before and

28 days after the TB event was detected in a pen. Feeding behaviours in TB pens were com-

pared to matched CTL pens. Pigs in TB pens tend to visit the feeder less frequently than pigs in

CTL pens. Pigs in TB pens also had less time spent at the feeder, as well as a lower daily feed
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consumption (DFC). This tendency persisted after the TB date, and pigs continued to spend

less time in the feeder and visit less frequently, even if the difference from the control group

decreased with time. Pigs also tended to eat faster (more intake per second). They concluded

that the rapid change in feeding behaviour suggests that TB behaviour escalates 14 days before

the TB date.

The change in feeding behaviour in the TB pen was also observed by Tessier et al. [19] dur-

ing a TB outbreak in a pen. Specifically, they studied the evolution of DFV, the DFC and feed-

ing time seven days before (pre-injury phase), seven days during (acute phase), and seven days

after (recovery phase) the TB outbreak. The DFV decreased before the TB date, reached a min-

imum during the outbreak, and increased during the recovery phase. As the TB outbreak pro-

gressed (during the pre-injury and acute phases), the consumption time (for an equivalent

amount of feed eaten) decreased and remained low during the recovery phase. This study con-

firms that a change in feeding behaviour in a pen can indicate future TB. This also confirms

the gradual change of the feeding behaviour over time, reaching its maximum at the TB date.

In addition, Wallenbeck et al.’s statistical analysis of the Swedish data set revealed a signifi-

cant decrease in DFV 42 to 63 days before the TB event, when compared to matched CTL pens

[20]. The DFC was also always reduced in TB pens compared to CTL pens. This difference in

feeding behaviour between CTL and TB pens must have been noticed in the current analysis

by the ML models, which never predicts TB class in CTL pens. However, both studies did not

have the same reference. The Wallenbeck study compared TB pens to matching CTL pens in

an attempt to identify eating behaviour predictive of a future TB occurrence [20]. The present

analysis used each pen as its own control, as a TB pen was categorised in the TB class when

inside the TB window but in CTL when outside. The model could not only detect feeding

behaviour that is typical of a future TB event but also changes in feeding behaviour over time

that are indicative of TB events. Indeed, a drastic change in feeding behaviour is also indicative

of an upcoming TB event [18, 19]. Furthermore, the current approach takes into account a

combination of three feeding behaviour metrics (DFV, DFC, and StdFC), improving the likeli-

hood of detecting TB episodes. In a comprehensive book chapter on TB, Valros describes the

gradual change in feeding behaviour until the TB date [4]. Daily Feeder Visit can begin to

decline months to weeks before the TB date, but DFC appears to be impacted just six days

before a TB event [4]. As a result, combining these two indications should increase the model’s

accuracy.

Potential limitations of the study

Based on the proposed machine learning models, the KNN model had a maximum classifica-

tion accuracy of 96% when predicting events in pens for which it had previous data. We tested

the performance of the models on two datasets from farms with different breeding conditions.

Although our method provides promising results, it also has the following limitations:

As in most empirical studies, the research presented here is limited by the datasets used.

The combined data set (Swedish and Swiss data) contained 6605 analysis windows, with 5479

and 1126 CTL and TB windows, respectively. The size of this data set may be considered

medium when considering machine learning applications. Larger datasets would allow the use

of more complex models, such as deep neural networks. Additionally, the TB windows repre-

sent only 18% of the total data set. The imbalance between classes constitutes a challenge dur-

ing the training of the models, as only a few examples are available to characterize the minority

class. Furthermore, it is difficult to assess the generalizability of a model with only two data

sets available: more farm data would be required to be able to generalize over a wider number

of situations.
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A 200-fold cross validation was used to train all models, resulting in a validation set repre-

senting 1% of the training set. Training models with a smaller batch for cross-validation may

reduce computation time and increase the overall models’ performances.

As a result of the sliding analysis window method, predictions cannot be made for the first

couple of weeks, since the machine learning algorithm needs more than 14 days of input data

before it can alert the farmer that TB may occur.

Conclusion and future work

The TPR and TNR of certain models (e.g. RF) are very promising, but prediction perfor-

mances (especially TPR) could still be improved using an ensemble model for binary or multi-

class classification following the model developed by Iwendi et al. [37]. Indeed problem could

also be redefined as a multiclass classification problem (control, TB, and doubtful).

In addition, the same data framework, i.e., a 14 days analysis window combined with a [–

35–10] days TB window could be analysed by an elaborate neural network model like long

short-term memory recurrent neural network for improved TPR. Furthermore, an increased

TPR could potentially be achieved by combining predictions using feeding behaviour data

with predictions using other data sources, such as tail position.

In conclusion, a ML model can be deployed in farms with automatic feeders to detect early indi-

cators of TB behaviour at least 35 days before the actual TB event. Thanks to these early warnings,

farmers could implement measures to prevent the occurrence of the TB event—for example, by add-

ing more straw as occupational material. Farmers could also start a TB risk analysis to identify the

reasons why pigs are disturbed. Continuous implementation of the model on farms would also lead

to improved prevention of TB events, serving the welfare of the pigs and bringing an economic ben-

efit to the farmers. Finally, this ML approach could also be a useful tool by allowing the systematic

study of the effectiveness of different intervention strategies under controlled conditions.
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