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Abstract: Polymeric membranes are selective materials used in a wide range of applications that
require separation processes, from water filtration and purification to industrial separations. Because
of these materials’ remarkable properties, namely, selectivity, membranes are also used in a wide
range of biomedical applications that require separations. Considering the fact that most organs
(apart from the heart and brain) have separation processes associated with the physiological function
(kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace
the function of these organs with the help of polymer membranes. This review presents the main
biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease),
membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and
membranes for osseointegration and drug delivery systems based on membranes.

Keywords: polymeric membranes; biomedical applications; hemodialysis; drug delivery; artificial
organs; tissue engineering

1. Introduction

The biomedical field is a transdisciplinary field that combines knowledge from
medicine, biology, biochemistry, materials science, and biomechanics. A considerable
part of biomedical fields is represented by the development of biomedical applications,
such as the evolution of biocompatible implants and other medical devices, imaging equip-
ment, regenerative tissue engineering, and drug delivery systems [1]. Biomedical devices,
such as bone implants, contact lenses, stents, artificial hearts, tissue adhesives, surgical
sutures and dialysis membranes, are obtained by using biomaterials [2–5]. Biocompatibility
is an important property when it comes to the materials used in biomedical applications
because it is necessary to use some friendly materials, which are able to not harm the living
tissue [6]. Further, the testing of biocompatibility through in vitro and in vivo specific tests
is an essential step in developing biomedical devices [7].

In recent years, the use of membranes in various medical applications has been con-
stantly evolving [8–13]. Membranes are defined as porous films that act as a separating barrier
between two adjacent phases, capable of allowing the transport of substances from one phase
to another in a selective manner [14,15]. In general, membranes utilized in the biomedical field
can be used in tissue engineering, with a role in purification and in obtaining implants and scaf-
folds, in obtaining controlled release systems of active substances and in diagnosis, in the form
of sensors and various diagnostic tests [16]. Membranes are classified according to their nature
into natural membranes and artificial membranes. Synthetic membranes can be further classi-
fied according to the material into organic, inorganic or composite membranes [17]. Organic
membranes are generally obtained from natural polymers such as cellulose, chitosan, collagen

Polymers 2023, 15, 619. https://doi.org/10.3390/polym15030619 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15030619
https://doi.org/10.3390/polym15030619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-7191-7471
https://orcid.org/0000-0002-0790-2264
https://doi.org/10.3390/polym15030619
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15030619?type=check_update&version=2


Polymers 2023, 15, 619 2 of 26

and alginates or from synthetic polymers such as poly (ethylene glycol) (PEG), polyurethane,
polysulfone, polylactic acid, poly (acrylic amide), poly (N-vinyl-2-pyrrolidone) [18–24]. In the
biomedical field, membranes are used to detoxify the blood. A well-known example is repre-
sented by the membranes used in hemodialysis, in cases of end-stage renal disease, where part
of the kidney function is replaced by using a flat membrane or empty fiber dialyzer to remove
excess water, salts and excreted metabolic products [24]. However, membranes are often
used in other biomedical applications, such as in the developing of artificial organs (artificial
liver, oxygenator and pancreas) for increasing the optimal functionalization of physiological
functions of the organs [25–27]. Further, the application of polymeric membranes in tissue
engineering has been highly studied due to their biofunctionality, good mechanical properties
and the ability of a possible reparation and regeneration of injured tissues/organs [28–33].
Another application of polymeric membranes in the biomedical field is represented by the
developing drug delivery system based on membranes [34] or different separation interest
molecules such as antibiotics [35–37] or proteins [38]. The release of the drug is achieved by
the diffusion of the active substance through the polymeric membrane so that the drug release
could be controlled and targeted [39–41]. This article presents the recent developments of
polymeric membranes in biomedical applications (Figure 1).
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Figure 1. Polymeric membrane applications in the biomedical field.

2. Biomedical Applications of Membranes
2.1. Hemodialysis

Renal failure is one of the major problems suffered by >850 million people world-
wide [42]. In chronic kidney failure disease, the kidney functions of the patients are
deteriorated, leading to the incapacity of filtering the blood by removing waste products
from the body, such as metabolic-resulted toxins with molecular weights more equal to less
than 58 kDa [43,44]. Generally, hemodialysis is used in order to ensure a better quality of
life for patients suffering from chronic kidney failure [45]. The US Data Renal System (US-
RDS) reports that almost 80% of hemodialysis patients started dialysis using an indwelling
catheter [46]. Further, hemodialysis is defined as an extracorporeal blood purifying method
using a semipermeable membrane to conduct blood purification and remove uremic tox-
ins [44,45]. The principle of the hemodialysis membrane is the diffusion of the solvent
through a semipermeable membrane [47]. The hemodialysis treatment is used to remove
small molecules such as small water-soluble toxins (molecular weight, MW < 500 D), but
also a small amount of the middle molecules (MW 500–32,000 Da) from the blood [48]. In
hemodialysis treatment, the patient is connected to a dialysis machine and their blood is
pumped out via vascular access and filtered using a dialyzer, which is called an artificial
kidney. The filtered blood is then pumped back into the patient’s body [49].

The major drawbacks of using semipermeable membranes in hemodialysis are the
hemocompatibility through blood exposure to the membrane’s material, which could lead
to activation of proinflammatory molecules, and the incapacity of successfully removing
some larger toxins molecules [44]. The development of upgraded hemodialysis membranes
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for increased hemocompatibility and anticoagulant properties was reported [44,50–54].
These membranes were obtained from natural or synthetic polymers, such as polysul-
fone (PSF) [55–57], polyethersulfone (PES) [58,59], polyvinyl alcohol (PVA) [60–62], cellu-
lose triacetate (CTA) [63–65], polymethylmethacrylate (PMMA) [66,67], polyacrylonitrile
(PAN) [53,68], and polyamide (PA) [67].

The first used hemodialysis membranes were made from cellulose-based membranes.
Cuprophan®(Wuppertal, Germany) was the first used cellulose-based hemodialysis mem-
brane that was obtained from cotton [48]. Nowadays, cellulose-based hemodialysis mem-
branes are obtained via acrylation with acetate groups resulting in cellulose acetate, cel-
lulose diacetate (CDA), and cellulose triacetate (CTA) with free hydroxyl groups on the
surfaces [48,69]. Figure 2 presents the main cellulose-based derivates [65]. The cellulose-
based hemodialysis membranes have good toughness, biodegradation, sustainability, and
biocompatibility and are cheap in comparison to other polymers [70]. Cellulose acetate
(CA) is the most utilized cellulose derivate due to its great solubility in diverse organic
solvents and insoluble in water. Dumitriu et al. [63] showed CA functionalization with
TiO2 nanoparticles, followed by heparin incorporated via dopamine polymerization. The
contact angle results showed that both the neat CA membrane and composite membrane
present a hydrophilic nature, but a slight decrease in the contact angle for the composite
membrane was observed. Faria et al. [71] studied the potential uremic blood purification
with cellulose acetate (CA) functionalized with SiO2 nanoparticles. It was observed that at
higher SiO2 content (18%) the hydrophilicity of the membrane increases. The hydraulic
permeability increases after the addition of SiO2 nanoparticles, and the rejection of BSA
was 99%. Azhar et al. [60] presented the CA-based membrane modified with PVP for
better hemocompatibility. The results showed increased hydrophilicity, the pure water
flux, BSA rejection, urea, and creatine clearance obtained is 42.4 ± 2 L/m2 h, 95 ± 1.023%,
93 ± 1.023% and 89 ± 1.023%.
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Polysulfone (PSF) is the most used material in the fabrication of the hemodialysis
membrane, with almost 90% of hemodialysis membranes being made of PSF and PSF
derivates [72]. PSF is a thermoplastic polymer with great mechanical properties, thermal
stability, biocompatibility, and water permeability [47,73]. The PSF membrane showed
great stability in extreme basic or acidic environments [74]. Additionally, PSF membranes
are resistant to sterilization with steam, ethylene oxide, and gramma radiation [75]. The
main disadvantage of PSF is its hydrophobic nature, which favors the molecule adhesion
on the membrane surface, inducing blood clot formation [76]. In the past years, researchers
investigated the functionalization of PSF in order to increase surface hydrophilicity, result-
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ing in improved hemocompatibility and antifouling properties [54,77]. Polyether sulfone
(PES) has similar properties as PSF, with great oxidative, thermal and mechanical proper-
ties [78]. The same as PSF, the limitation of PES is represented by the hydrophobic nature,
which affects the hemocompatibility of the membrane, even if it is more hydrophilic than
PSF due to the presence of the higher atomic weight ratio of sulfone groups [79]. The
biocompatibility of neat PES isn’t satisfactory enough and in the past years, researchers
obtained different PES-based membranes by adding different additives or by function-
alizing the pristine PES. Irfan et al. [80] proposed membrane composites based on PES,
multi-wall carbon nanotubes (f-MWCNT) and polyvinylpyrrolidone (PVP) via the phase
inversion process for hemodialysis application. The contact angle of the nanocomposite
membrane was significantly lower than the PES contact angle (from 88◦ for PES to 51◦ for
nanocomposite). Further, pure water permeation flux (PWP) rate up to 72.20 L m−2 h−1

exhibited 58.82% reduced protein absorption and better uremic waste clearance of 56.30%,
55.08% and 27.90% of urea, creatinine and lysozyme. Abdelrasoul et al. [52] proposed
PES-PVP composite membrane via UV-assisted photochemical synthesis. The addition of
PVP increased the hydrophilicity of the composite membrane and showed better resistance
to fibrinogen adsorption compared to the pristine PES membrane. Hoseinpour et al. [81]
presented carboxymethylcellulose (CMC), and SCMCs were immobilized on the surface of
the aminated PES membranes (PES-NH2) via amide bonds. The hydrophilicity of compos-
ites was increased in comparison with the hydrophilicity of neat PES due to the surface
functional groups of NH2 in PES-NH2, COO− in PES-CMC and COO− and SO3− in
PES-SCMC membranes engaging in hydrogen bonding interactions with H2O. The bovine
serum albumin (BSA) rejection increases in the case of the composite’s membrane up to
99% in comparison with pristine PES (95%). Xing et al. [82] described the antimicrobial
properties of polydopamine (PDA) and PES composites to immobilize antimicrobial metal
ions with their functional groups. The hydrophilicity increases after the addition of PDA
such that the contact angle decreases from 102◦ for PES to 40◦ for the composites.

Generally, the addition of polyvinylpyrrolidone (PVP) is used as an additive in order
to increase the hydrophilicity of PES and PSF membranes [83]. In membrane synthesis
via phase inversion, PVP plays a major role in the pore formation of the membrane [84].
Mansur et al. [85] presented the effect of the addition of different PVP concentrations (3 wt%
and 18 wt%) on the PSF membrane. It was observed that at a higher concentration of PVP,
the membrane pores were larger than after the addition of a lower PVP content, leading
to increased hydrophilicity of the membrane and also leading to an increased flux and
permeability of the membrane, but the BSA rejection was significantly lower at higher
concentrations of PVP.

Researchers had proposed surface functionalization with different anticoagulant
agents, such as heparin or heparin-like molecules, for better hemocompatibility. Heparin
is an anticoagulant agent used in medicine for the prevention of thrombus formation and
limits thrombus extension [86]. Heparin has been immobilized onto membranes to increase
hemocompatibility through physical absorption or ionic bonding [87–89]. Huang et al. [90]
presented the chemical binding of heparin onto PSF sheets via a three-step synthesis
method (Figure 1). A decrease in the contact angle after functionalization was observed,
leading to increased hydrophilicity and hemocompatibility. Ren et al. [91] described the
PSF functionalization of heparin via covalent immobilization in order to improve antico-
agulant properties. After functionalization, the contact angle decreased from 87◦ to about
30o, and the coagulation time was prolonged with less fibrin generated in the process of
hemodialysis. The limitations of heparin treatment are the expensive cost and potential
side effects [92,93].

Different molecules were studied in order to replace the addition of heparin. The
heparin-like molecules present an alkyl backbone for synthesized polymers or a uronic
backbone for modified biomacromolecules [94]. Zhang et al. [95] used tannic acid as a
heparin-like substitute to increase the anticoagulant properties of the PES membrane. The
BSA rejection rate and urea clearance rate were 97.1% and 92.0% after the addition of tannic
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acid. Additionally, the hydrophilicity of the composites reduced platelet adhesion and
activation, improving the PES membranes’ hemocompatibility. Tannic acid is a bio-based
polyphenol that can be found in all aerial plant tissues [96]. Ma et al. [94] proposed sodium
alginate as a heparin-mimicking molecule. The results showed that the presence of sulfonic
groups and uronic main chain structure gives excellent anticoagulant activity. Lu et al. [97]
proposed heparin-like anticoagulant polypeptides due to the carboxyl and hydroxyl side
groups for anticoagulant and thrombolytic therapy. In addition, by simply adjusting the
feeding ratio of monomers, anticoagulant activity can be regulated. Song et al. [87] proposed
carboxymethyl chitosan nanoparticle (CMCN) and poly (vinyl alcohol) (CMCN/PVA) onto
the surface of modified bacterial cellulose sulfate (BCS) membranes via electrospinning
as heparin-like substituent membrane. The similarity between heparin and heparin-like
membranes (CPBS) is the presence of -SO3, COO−, and -OH groups on the surface of the
CPBS membrane. The CPBS membrane hydrophilicity was higher than the BC sulfate
membrane, which could provide anticoagulant properties of the heparin-like membrane.

2.2. Drug Delivery Systems

Drug delivery systems are defined as a device or a formulation that is able to deliver
an active substance to a target tissue to increase the efficiency of the active substance [98].
These DDS-based membranes have the ability to increase pharmacological activity, thereby
reducing the side effects, increasing the solubility of the active substance, protecting the
active substance from biodegradation and gradually releasing the active substance [99].
Additionally, to improve the drug release efficiency, different DDS sensitive to both exter-
nal (magnetic, photothermal and electrical responsive) and internal stimuli (temperature,
pH and redox responsive) have been developed. The first attempt to develop DDs was
reported in 1950 in agriculture when they tried to develop systems for the controlled
release of pesticides from a polymer matrix [100]. After that, this concept of the con-
trolled release of the active substance was borrowed in the biomedical field [101]. In the
past years, many biodegradable and bioabsorbable polymers were studied for the pro-
duction of DDS. The release mechanism from a polymeric matrix is represented through
drug diffusion, dissolution, and degradation of the carrier matrix [102]. Moreover, the
usage of DDS leads to a decrease in the need for frequent administration of the active
substance, leading to improved quality of life. The polymeric membranes used in DDS
application require good stability during administration, biocompatibility, biodegradability
and absorbability [103–105]. Depending on the size of the pores, the membranes can be
classified into membranes with micropores (less than 2 nm), membranes with mesopores
(between 2 and 50 nm) and membranes with macropores (more than 50 nm) [106]. Apart
from the pores’ size, the pores’ shape is very important, so the pores of the membranes
can have different shapes, such as cylindrical, conical or irregular. These morphological
characteristics are very important when it comes to the development of DDS.

To obtain DDS-based membranes, several techniques are used such as phase sep-
aration technique, interfacial polymerization, stretching, ion-track etching, lithography
and electrospinning [107,108]. In the ion-track etching method, a membrane can be ob-
tained by irradiating a film with heavy ions forming ion tracks and leading to pore for-
mation [108,109]. The films used for irradiation have been made of polymers, such as
polycarbonate (PC), polyethylene terephthalate (PET), polyimide (PI), polypropylene (PP),
polyethylene naphthalate (PEN) and also biodegradable polymers, such as polylactic acid
(PLA), which are used as a polymer matrix to create track-etched membranes [110–115].
Ivanova et al. [115] reported the preparation of a biodegradable membrane based on PLA
via the ion-track etching method. The pore size of the obtained biodegradable membrane
was reported between 0.6 to 1.5 µm with a shape close to cylindrical. Further, it was
observed that an increase in the etching time over 20 min shows a decrease in the rough-
ness of both membrane sides. Lithography is another method for obtaining membranes.
Through lithography, an ordered array of nano/micro pores on the surface can be ob-
tained [108]. An example of the use of lithography in the developing of DDS is related
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by Patil et al. [116], who reported the well-defined pore formation on polyimide (PI), to
be the support membrane for grafting poly(acrylic acid) (PAAc) hydrogel via free radical
polymerization applying the same excimer laser. This type of DDS is pH-sensitive so at
different pH levels (pH 7 and pH 3), it changes its permeability.

The electrospinning method is widely used in obtaining membranes with various
applications in the medical field, such as in delivery systems and in tissue engineering,
using the application of a high electric field to generate nanofibers from a charged polymer
solution or melt [117,118]. It has been observed that if the electrospinning parameters are
varied, such as polymer, solvent, polymer solution, processing parameters, and ambient
conditions, different morphologies can be obtained in order to improve the mechanical
strength and drug loading/releasing performance of membranes [119,120]. To obtain
fibers and later membranes by electrospinning, both synthetic polymers can be used,
such as polystyrene (PS), poly (vinylchloride) (PVC), and PLA, as well as natural poly-
mers, such as silk fibroin, fibrinogens, dextran, chitin, chitosan, alginate, collagen, and
gelatin [120]. Ren et al. [121] reported an electrospun membrane for controlled drug deliv-
ery for the acceleration of diabetic wound healing based on PLA and dimethyloxalylglycine
(DMOG)-loaded mesoporous silica nanoparticles (DS). All the membranes showed well-
organized topological structures, with ellipsoidal-shaped nanopores, which were arranged
with the major axis along the fiber direction. Co-electrospinning method, also known as
coaxial electrospinning, is a method derived from electrospinning, the difference being
that in the case of co-electrospinning, two needles are used instead of one needle, which
makes it possible to obtain a core-shell nanofiber [122]. Al-Badani et al. [123] reported a
possible polycaprolactone/gelatin membrane as a tunable drug delivery system for bone
tissue regeneration via co-electrospinning (Figure 3). It was observed that by adjusting
the poly(ε-caprolactone) (PCL) fibers, the degradation of gelatin and the release profile of
hydrophilic drugs/proteins could be effectively controlled.
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The phase separation technique is one of the simplest methods for obtaining mem-
branes. Phase separation can occur when the thermodynamic quality of a polymer so-
lution usually decreases when the temperature is decreased, and by immersion precip-
itation [124]. Zeinali et al. [125] reported Poly(butylene succinate) (PBS) membrane via
thermally-induced phase separation (TIPS) for Curcumin (CUR) and piperine (PIP) release.
Additionally, it was reported that the variation of solvent system, thermal gradient and
cooling direction changed the pores’ architecture, which could affect the release profile.
The interfacial polymerization method is used for membrane formation, which is one of
the most important processes in commercial fabrication [126]. In this method, the polymer
solution and the solvent are poured onto a flat surface to form a film. After that, the
controlled process of exchanging solvent for a nonsolvent takes place, leading to a mem-
brane formation [127]. Ding et al. [128] described an antibacterial and anti-inflammatory
membrane based on porphyrin-covalent organic frameworks (COF) with encapsulated
ibuprofen (IBU) via an in situ interfacial polymerization and impregnation approach. The
reported membrane displayed high O2 generation and controllable ibuprofen release at
body temperature for wound healing.

Generally, the surface modification of membranes is carried out for better biocompati-
bility and biodegradability [108]. The biocompatibility of the membrane is represented by
it is represented by the response to the interaction with biological fluids, without triggering
any kind of immune response or infection. The most used techniques for membrane surface
modification are blending [129], grafting [130] and plasma initiation [131]. The blending
surface modification method is one of the most convenient methods due to reduced cost.
Liang et al. [132] proposed the improvement of the blending strategy for membrane mod-
ification via surface segregation using surface-tailored amphiphilic nanoparticles. After
the functionalization, the membranes achieved a notably increased blending efficiency,
resulting in a dramatically enhanced surface hydrophilicity. Parveen et al. [133] reported
chitosan/PEG blended PLGA nanoparticles for cancer drug delivery. The functionalization
with PLGA decreases the aggregation due to the repulsion of serum proteins, leading to
very good stability for days and the lowest percentage of uptake by macrophages. Surface
modification of polymeric membranes via grafting has become a very popular method
in recent years for preparing a “tailored” membrane surface with desired functions [134].
For example, through this method of functionalization, membranes sensitive to pH varia-
tion can be obtained only by grafting different functional groups or such polymers onto
the surface of the membrane [135]. Surface modification by grafting can be achieved
through several techniques, such as grafting through light [136,137], grating via thermal
treatment [138,139], grafting polymerization through plasma irradiation [140,141], atom
transfer radical polymerization (ATRP) surface initiated method [75,142–144], reversible
addition fragmentation chain transfer (RAFT) polymerization [145–147] and redox reac-
tions grafting [148].

In the modification of the membrane surface with plasma treatment, plasma is a confined
ionized gas obtained from the dissociation of gas-forming plasma after applying an electric
field in the reactor [149]. The plasma effect on the membrane occurs only on the surface, not
affecting the properties of the bulk [150]. The plasma treatment can introduce chemically
reactive functional groups onto polymer substrates to increase biodegradability or biocompat-
ibility [151]. For example, an O2 plasma is able to generate –OH radicals on the membrane
surface, leading to an influence on the hydrophilicity of the membrane surface [152].

Further, the hydrophobic or hydrophilic character of the membrane can have a say
in increasing biocompatibility, so hydrophilic membranes are preferred for biomedical
applications as they improve the flux through the membrane and fouling properties [131].
The degree of hydrophilicity or wettability of the membrane is one of the most impor-
tant parameters to control cell behavior through protein adsorption [153]. However, the
hydrophilic/hydrophobic character of the active substance is a criterion to be taken into
account, so that the functionalization of the membrane surface can improve the inter-
action between the membrane and the active substance. Hardin et al. [154] shared the
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functionalization of polyacrylic acid membrane for potential drug delivery application via
condensation reaction with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochlo-
ride as our coupling reagent. It was shown that the choice of the hydrophobic group
has an effect on the polymer solubilization properties. Sagitha et al. [155] reported the
functionalization of the polyurethane membrane with β-Cyclodextrin, leading to increased
hydrophilicity and thermal stability. The addition of β-Cyclodextrin provides a higher
vapor transmission rate, hemocompatibility and cell viability for functionalized membrane.
Moreover, the obtained β-Cyclodextrin- polyurethane membrane was functionalized with
nanochitosan for better biocompatibility.

Stimuli-responsive membranes have attracted attention in recent years due to their
extraordinary properties such as the ability to change their physicochemical properties in
response to changes in their environment [156–158]. These stimuli-responsive membranes
are able to respond to changes in pH, temperature, light and magnetic fields, being able
to release various therapeutic agents in a targeted and gradual manner [157]. For exam-
ple, pH-responsive membranes are obtained from polymers with ionizable acidic/basic
residues which can be employed in drug delivery applications, and this is possible due to
the variation of a normal pH in the body and also the variation in pH caused by different
conditions, such as inflammation, infection and cancer [159,160]. Notably, pH-responsive
membranes are able to target a specific area in the body and release their active agent with
an increased therapeutic impact and reducing the side-effects [161]. These pH variations
can result in the modification of crosslinking processes so that the protonation or deproto-
nation of acidic/basic groups can generate distinct interactions between a therapeutic agent
and a material, resulting in the release of the active substance [159]. Additionally, a very
prominent example of pH-responsive DDS membranes is based on the alginate-chitosan
complex, due to advantageous properties such as biocompatibility, biodegradability, pH
sensitivity, and mucoadhesive property [162]. Additionally, the protonation of the amino
groups leads to the polymeric backbone of chitosan becoming charged, resulting in charge
repulsion and swelling [163]. Further, due to their opposite charged polymeric backbones
of chitosan and alginate, polyelectrolyte complexes are obtained [164]. Schoeller et al. [163]
reported the deposition of chitosan and alginate layers forming polyelectrolyte complex
through layer-by-layer assembly on Poly(lactic-co-glycolic acid ) (PLGA) nanofibers to
introduce pH-sensitivity for the controlled release of ibuprofen. The results show the inhi-
bition of ibuprofen release at an acidic pH due to the pH-sensitive membrane suggesting
that the obtained membrane protects the active substance in the acidic environment of the
stomach, leading to an improved release at higher pH values without an early release and
reduction in drug concentrations.

Temperature-responsive membranes for DDS are obtained from temperature-sensitive
polymers with the property of sol-gel transitions above a certain temperature [165]. The
temperature-responsive polymeric membranes are able to change their phase below the
lower critical solution temperature (LCST), leading to the hydrogen bonds between the
polymer and water molecules, allowing the polymer to swell and release the active sub-
stance [166]. The magnetic-responsive membranes are usually filled with magnetic-active
nanoparticles of metals, metal oxides, or ferromagnetic materials which under the action
of electromagnetic radiation can release the active substance in a targeted manner and
enhance drug accumulation at the sites [167–169]. Photo-responsive membranes are able
to release drugs using light sources, such as ultraviolet (UV), visible, and near-infrared
(NIR) light [34]. The permeability of the photo-responsive membrane is influenced by
switching irradiation between ultraviolet light (UV) and green light (Vis) [170]. The photo-
responsiveness property is ensured by the presence of different photo-reactive groups,
such as azobenzene, triphenylmethane and spiropyran groups in the polymer matrices by
entrapping, cross-linking, and introducing them as a side chain or part of the main chain of
the polymeric matrix [171]. Other physical characteristics, besides stimuli-responsiveness,
which are studied and discussed in the DDS field are particle size distribution and poly-
dispersity index (PDI) and length of polymers [172,173]. The PDI is an important physical
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characteristic to be considered in DDS development due to its influence on stability, drug
release profile and drug penetration [172,174]. The length of the polymer can influence the
release of the active substance from the DDS-based membrane by increasing the release
rate as the polymer length decreases [173].

Further, opsonization is an essential characteristic of biological barriers in order to
control drug delivery so that the macrophage cells identify the presence of the membrane-
based release system as a foreign body and remove them to protect the body [175,176]. A
method to combat opsonization is represented by PEGylation to prevent phagocytosis [176].
PEGylation is used to increase the efficiency of drug and gene delivery and decrease the
immunogenicity of the proteins without significantly affecting the activity [177]. The
molecular weight (MW) of the PEG link can influence the internalization so that an increase
in MW leads to the increased flexibility of the PEG chain, leading to the entanglement of
PEG chains and reducing the binding of the ligand to the receiver [178].

2.3. Membrane Oxygenator

Recently, due to the COVID-19 pandemic, the need to develop artificial oxygenators is
growing. As the name implies, oxygenators are defined as medical devices for respiratory
support. An example of an oxygenator is represented by extracorporeal membrane oxygena-
tion (ECMO), which is used in the treatment of severely ill patients with cardiopulmonary
impairment caused by infectious diseases [179]. The general principle of the operation
of oxygenators is that when the blood passes through the oxygenator, the oxygen level
increases, and the CO2 level decreases so that the non-oxygenated blood is oxygenated
(Figure 4) [26,180,181]. The extracorporeal membrane oxygenators are they are made up of
a pump that has the role of pumping the blood and the oxygenating membrane that has
the role of oxygenating the blood [179,182,183]. The most common causes of complications
in patients using an oxygenator are clotting and bleeding [184]. The material from which
the oxygenating membrane is obtained must have high permeability, high mechanical
strength, free defects, high biocompatibility and hemocompatibility [179,185]. For example,
in the case of hemodialysis, membranes are completely sterile and the whole tubes used
for extracorporeal circulation of blood are also sterile in order to prevent sepsis. Normally,
in order to avoid the formation of clots in the oxygenation installation, they administer
anticoagulant drugs, such as heparin. Unfortunately, this method has the disadvantage of
the possibility of severe bleeding [186–189]. Another limitation of the ECMO system is the
adherence of various biomolecules on the surface, which can be overcome by incorporating
small molecules, such as heparin, in the coating of the ECMO system surface [190]. The
anaphylatoxins are attached to the biomaterial surface and have numerous implications in
hemostasis. The polymers under the ECMO system have an effect on the CR3 granulocyte
receptor, resulting in the adhesion of principal neutrophils and monocytes [190].
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Hollow fiber membranes have been used as an oxygenator and are usually ob-
tained via a phase inversion process [191,192]. The commonly used polymers for hol-
low fiber membranes are hydrophobic polymers, such as polymethylpentene (PMP),
polypropylene (PP), PDMS, polysulfone (PSf), polyethersulfone (PES), polyethylene (PE)
and polyvinylidene fluoride (PVDF) [26,192–198]. Wang et al. [194] reported the production
of poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) with
a PVA/PSS coating was anchored on the membrane surface via crosslinking and PDA
binding for membrane oxygenator application. PMP is used in oxygenator membrane
production due to increased gas exchange properties, low diffusion resistance and absent
plasma leakages. After surface modification of membranes showed excellent hydrophilicity
and coagulant factors, adsorption capability, which significantly inhibits the activation
of platelets and the adhesion of proteins, thus blocking the blood coagulation due to
increased sulfonate groups. Park et al. [199] proposed the fabrication of functionalized
poly(vinylidene-co-hexafluoropropylene) or PVDF-co-HFP coated, using Hyflon AD60X to
minimize pore wetting and interactions with blood. These functionalized membranes have
very low protein adsorption and a high contact angle for both water and blood, leading to
improved hemocompatibility.

2.4. Artificial Liver

Liver disease is a worldwide major public health problem, being one of the most
life-threatening diseases caused by obesity, non-alcoholic fatty liver disease, high alcohol
consumption, hepatitis B or C infection, autoimmune diseases, cholestatic diseases, and
iron or copper overload [200]. Chronic liver diseases (CLDs) are more liver-related dis-
eases characterized by a decreased hepatic function as a result of chronic inflammation
of the liver, leading to the development of cirrhosis [201]. The only established success-
ful treatment for end-stage liver disease is liver transplantation [202]. The drawback of
liver transplantation is organ shortage [203]. As a solution to the transplant limitation,
researchers have tried to develop an artificial liver able to provide detoxification, synthesis,
biotransformation and excretion functionality as performed by the liver [202]. Various
polymeric membranes have been reported in order to develop an artificial liver [25,204,205].
The developed membranes are able to mimic the physiological environment. Further, in
the last years, the development of membrane bioreactors was reported, which are able to
potentially optimize the treatment during reversible acute liver disease or while waiting
for a liver transplant [206]. The hollow fiber membrane bioreactors (HFMBRs) are used to
develop liver tissue constructs for bioartificial liver (BAL) or as an in vitro drug discovery
and testing platform [207]. Salerno et al. [204] developed biodegradable hollow fiber (HF)
membranes of poly(ε-caprolactone) (PCL) with permeability, structural and mechanical
properties that supported the cell adhesion and functionality (Figure 5). The endothelial
cells were cultured in the lumen of the fibers, and hepatocytes in the shells of the fibers, com-
municating through their secreted molecules that permeate into the microporous structure
of the HFs membrane wall. The sustaining glucose consumption, albumin synthesis, urea
production and drug biotransformation function were sustained for 18 days by the hepatic
tissue. The biocompatibility of PCL was studied by Slivac et al. [208] where PCL was used
as a matrix for electrospun PCL Mats for tissue scaffolds for hepatic cell application. The
hepatic cells are grown and attached on obtained scaffolds, yet the PCL scaffolds are able to
mimic the bioactivity found in the original tissue matrix. Teotia et al. [25] presented a hollow
fiber membrane based on asymmetric porous polysulfones and polysulfone-Tocopheryl
polyethylene glycol succinate (PsfTPGS) composite via phase inversion procedure and
subsequently surface modified with chitosan using sulfonation with concentrated sulfuric
acid. The addition of chitosan confers biocompatibility to the obtained composite mem-
branes due to structural similarity to glycosaminoglycans, a native liver Extracellular matrix
(ECM) component leading to supporting cell growth, proliferation and the expression of
the liver-specific function.
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Figure 5. Poly(ε-caprolactone) (PCL) hollow fiber (HF) membrane bioreactor and scheme of the 3D
human hepatic tissue realized by culturing human hepatocytes over and between PCL HF membranes
parallel assembled at a distance of 250 µm, and endothelial cells compartmentalized in the lumen of
the fibers. The cells were in communication through the porous wall of the membranes (reproduced
with permission after [204]).

2.5. Artificial Pancreas

The pancreas is an internal organ located in the abdominal cavity just behind the stom-
ach with a role in the regulation of body metabolism [209]. The function of the pancreas
is to control glucose homeostasis through the secretion of endocrine hormones, such as
insulin, and to produce exocrine enzymes required for digestion [210]. In type 1 diabetes,
patients are unable to produce insulin due to an autoimmune response to the body’s insulin-
producing beta cells. As a result, they need insulin treatment [211]. In the case of type
2 diabetes, the organism develops insulin resistance, and the glucose level remains high.
The purpose of the artificial pancreas is to protect the pancreatic islets from the immune
system’s response, allowing the transfer of insulin, oxygen and other nutrients [212]. The
encapsulation of islets could be intravascular or extravascular, depending on the position
of the implant. Over the last 40 years, were studied different bio-artificial pancreas (BAP)
devices [213]. The semipermeable membranes for intravascular encapsulation are obtained
from synthetic polymers, such as polyacrylonitrile-polyvinylchloride (PAN-PVC) copoly-
mer, polycarbonate, ethylene vinyl alcohol copolymer (EVAL) fibers, poly-amino-urethane,
nonwoven polytetrafluoroethylene (PTFE) fabric and nylon [214]. These membranes must
fulfill several characteristics, so that they can be used to protect and segregate the islet cell
from the immune response, allowing the oxygen, glucose, and other nutrients to permeate
so that the level of glucose in the blood could be controlled. Further, these membranes
must present a high hemocompatibility and biocompatibility, and they must be easy to
implant so that, in case of failure, can be replaced very easily [214].

2.6. Osteosynthesis Membrane

Another application of membranes in the medical field is represented by tissue engi-
neering, or more precisely, osteosynthesis and bone regeneration. The research of materials
with applicability in bone regeneration started from the need to replace the materials from
which metal implants were obtained in order to fix fractures. The major disadvantage of
these materials was that after implantation, followed by fracture healing; another surgery was
performed to remove the metal implants. Following this implant extraction operation, there
is a slight possibility of the apparition of infection, removal problems of jammed implants,
implant migration and associated extra health care costs. The solution was to develop new
polymeric materials capable of fixing bone defects, as did metal implants, but with the abil-
ity to biodegrade at the same time as the actual healing and to facilitate bone healing [215].
Biodegradable materials are defined as materials that, after a period following implantation in
the body, are disintegrating [216]. An example of biodegradable materials can be constituted
some polymer materials which may disintegrate in vivo via the effect of the biological envi-
ronment on the integrity of the material, leading to surface erosion or bulk erosion [215]. An
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osteoconductive material is a material able to serve as a scaffold onto which bone cells, such as
osteoblasts and osteoclasts, can attach, migrate, grow and/or divide [217]. The main properties
of biodegradable materials for osteosynthesis are excellent mechanical properties, control over
degradation time, and biocompatibility [218]. Generally, membranes for osteosynthesis are
made of biopolymers from natural sources, such as collagen, chitosan and cellulose, and syn-
thetic sources, such as expanded polytetrafluoroethylene (e-PTFE), poly lactic acid (PLA), and
polycaprolactone (PCL) [219–221]. Synthetic polymers are more susceptible to an inflammatory
response in comparison with natural polymers. Still, an advantage worth mentioning is the
capability to control biodegradability, processability, and drug-encapsulating ability [219]. Some
of the most used biopolymers in osteosynthesis membranes are chitosan, collagen and cellulose
due to increased biocompatibility through a lower immune response and osteoblastic adhe-
sion [222–224]. The limitation of collagen is that if collagen is of animal origin, it could transmit
disease from animal to human and also, the mechanical properties are lower [225]. In order to
increase the mechanical properties, it was reported that collagen crosslinked with glutaralde-
hyde [226]. Unfortunately, glutaraldehyde shows cytotoxicity due to by-product degradation
in later metabolic pathways [227]. As a result, cross-linking materials have been studied,
such as EDC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)-NHS(N-hydroxysuccinimide),
genipin and oligomeric proanthocyanidins (OPCs) [221,226,228]. Liu et al. [229] used genipin,
which is a natural cross-linker for collagen type 1 immobilization on Ti surfaces for improvement
of the ensuing biological responses.

Further, many researchers are adding hydroxy apatite for an additional increase
in osteosynthesis. Zheng et al. [230] presented a multilayer membrane based on colla-
gen/chondroitin sulfate (COL/CS) which was assembled onto an electrospun PCL mem-
brane followed by apatite mineralization (Figure 6). It was shown that the multilayer
membrane has favorable mechanical properties, hydrophilicity, biodegradability, and
outstanding biocompatibility. It also showed that the multilayer membrane promotes
proliferation and osteogenic differentiation due to the addition of the apatite, which is able
to promote bone-implant bonding and osteoinduction. The osteoconductivity of the mem-
brane could be used as adjuvant films for osteointegration of a metallic implant, leading to
better compatibility of the implant, as the membrane is placed between the implant and
the bone. Pandele et al. [20] proposed polylactic acid and micro-structured hydroxyapatite
particles in order to obtain composite films. The addition of hydroxyapatite doesn’t affect
the degradation temperature, but a decrease in the crystallinity of the composite films
was observed.
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Cellulose acetate is a cellulose-derivate biopolymer extremely used in membrane
development for osteosynthesis membranes due to its biocompatibility, biodegradability
and hydrophilicity properties [231–233]. Sofi et al. [234] described the development of a
scaffold for tissue engineering applications based on cellulose acetate functionalized with
hydroxyapatite and silver nanoparticles (Figure 7). The mineralization with hydroxyapatite
gives an environment for adhesion, growth, and proliferation of chicken embryo fibroblasts,
thus with more hydroxyapatite content which leads to better cell proliferation. The addition
of silver nanoparticles confers antimicrobial properties to the composite’s membrane.
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Figure 7. Schematic representation of the fabrication of regenerated cellulose nanofiber mats contain-
ing HAp and Ag NPs. Sequential steps are shown to describe the various process involved in the
fabrication process (reproduced with permission after [235]).

Besides functionalization with hydroxyapatite for better osteosynthesis of the mem-
branes, resveratrol is also utilized for a stimulatory effect on bone formation [234,236].
Resveratrol is a polyphenol compound present in fruits and vegetables with great antioxi-
dant properties, antitumoral and antibacterial properties, and also it was reported that it
might control cell proliferation [237]. Pandele et al. [238] described the functionalization
of cellulose acetate membrane with resveratrol using aminopropyl triethoxysilane (APTS)
and glutaraldehyde as linker molecules in order to improve osteointegration (Figure 8).
The results showed that the resveratrol functionalization confers osteoblasts viability and
differentiation potential in terms of alkaline phosphatase (ALP) activity, which is present in
a large amount in the cells of mineralized tissue and bone mineralization and is essential to
the formation of hard tissue [239].
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A limitation in osteosynthesis application is represented by poor bonding strength
between bioceramics and biopolymers due to their dissimilarity in physical and chemical
properties, leading to poor bonding strength between the two phases [240]. As a solution
to this limitation, the use of coupling agents has been reported with two-parent groups
(hydrophilic and hydrophobic) can improve the interface between the polymer and ceramic
material, thus improving the properties [241–243]. As mentioned earlier, these coupling
agents are able to help the interaction between the polymer matrix and the ceramic matrix
through two different functional groups, one of which can react with organic molecules,
and the other can absorb inorganic surfaces in order to obtain a firm bond [240]. An
example of a coupling agent often used is represented by Amino-propyl-triethoxy-silane
(APTES) used as a surface modifier for glass and ceramic in order to increase the strength
properties of biodegradable composites, as well as to improve the adhesion of the ma-
terial to tissues [35,244,245]. Biernat et al. [245] reported the functionalization of porous
calcium phosphate ceramics (Ca-P)/poly(L-lactide) (PLA) composites with APTES and
alendronate in order to improve the mechanical properties and cytocompatibility. After the
functionalization with APTES, an increase in mechanical properties of the composites and
an improvement in biocompatibility were observed through Sodium alendronate binds to
hydroxyapatites in the bone.

2.7. Membranes for Sensors

Sensors and biosensors based on polymeric membranes used in biomedical applica-
tions mainly use three types of membranes — functionalized, molecularly imprinted and
composite. The functionalized membranes offer the possibility of immobilization on the sur-
face of the various species that interact with the analyte of interest, the most important being
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the enzymes for the detection of various organic species [246] or molecules with complexing
capacity for the detection of ions (such as crown ethers) [247]. The detection system involves
both the use of electrodes and complex structures such as Surface Acoustic Wave (SAW)
platforms [248]. Urease immobilized onto poly(vinyl alcohol) was used as an indicator
electrode for the urea sensor with a detection limit in the range of 1 × 10−5–5 × 10−4 M and
a sensitivity of 19,069 mV/decade [249]. A sensor for triglyceride detection was developed
by immobilization of lipase on a polyethyleneimine film (using glutaraldehyde as a linker
molecule) deposited on a glassy carbon electrode. The sensor showed a detection limit in
the range of 100–500 mg/dL with average recovery values from 95.47% to 101.05% [250].
Introduced by Wulff in 1972 [251], molecularly imprinted polymers found their applicabil-
ity in a wide range of biomedical applications, such as the controlled release of drugs or
even sensors and biosensors [252] due to the remarkable properties of molecular or even
species with larger dimensions recognition. Thus, molecularly imprinted membranes were
used for the detection of cells [253], DNA fragments [252], various saccharides present in
the urine [254], proteins [255] or genes [256]. The detection systems used are based either
on Quartz Crystal Microbalance (QCM) [257] or the volumetric principle detection [258].
The simultaneous determination of cholesterol and cholestanol was performed with a
sensor based on molecularly imprinted polymer membranes obtained from methacrylic
acid, ethylene glycolmethacrylate, 2,2-dimetthoxy-2-phenyliacetonephenon. To ensure the
electronic conductivity of the entire sensitive structure, the membranes incorporated carbon
nanotubes (MWCNTs) and were deposited on the screen-printed carbon electrode with
gold nanoparticles [259]. The sensor has been tested both in terms of signal accuracy from
simulated solutions and complex matrices, as well as from the point of view of stability in
time, at repeated measurements of 8 times a day, maintaining its stability and accuracy for
45 days. Qualitative and quantitative detection of lysozyme was successfully performed us-
ing a biosensor from molecularly imprinted membranes embedded with l-cysteine-capped
Mn2+-doped ZnS quantum dots [260]. The novelty of the method lies in the possibility of
using the optical signal (much more precise than the electronic one), due to the fluorescence
effect of quantum dots. The sensor presented linear detection ranged from 1.0 × 10−7 to
1.0 × 10−6 mol L−1 with the detection limit of 10.2 nM. The simultaneous detection of
three chemical species - insulin, proinsulin and C-peptides, was achieved by mixing those
species with N-methacryloyl-(L) 3-histidine methyl ester, 2-hydroxyethyl methacrylate and
ethylene glycol dimethacrylate, followed by the polymerization of the precursors under
UV at the surface of the electrode (thick-film boron doped diamond electrode) [261]. The
detection limit was in the range of 1–16 pM for insulin, 4–25 pM for proinsulin and 8–88 pM
for C-peptide, respectively, in both artificial and real human serum samples. The composite
membranes used in the field of biosensors are mainly based on the use as a filler of carbon
nanotubes or graphene functionalized with enzyme specific for a certain biological species,
the polymer representing usually the matrix that protects the sensitive part and ensures the
deposition on different electrodes [262].

3. Conclusions and Future Perspectives

The field of polymer membranes for biomedical applications is one in continuous
development, and the challenges that must be solved contribute to the dynamics of this
field. The future perspectives are equally addressed to all the applications that membrane
materials have in relation to this field. Some of them will be presented below. In the field
of hemodialysis, it is unlikely that polysulfone will be replaced too soon. Instead, the
process will be able to be combined, in particular with the controlled release of drugs in
order to make especially efficient the treatment of diseases derived from chronic renal
dysfunction, such as liver cancer, for example. The synthesis of supramolecular architec-
tures that can download the drug under the action of the tumor marker - alpha-fetoprotein.
Additionally, in the field of membranes that combine two therapeutic procedures, the
development of membranes that treat diabetes, either by releasing insulin or by releas-
ing other active substances used in the treatment of this medical condition, would be
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equally useful. Another challenge in the field of hemodialysis is the easy development
of membranes, especially custom-made for ‘one-day’ hemodialysis processes to remove
compounds that have reached the body as a result of various intoxications. The retention of
heavy metals [263,264] from the blood or various organic compounds (pesticides, overdoses
of medicines or drugs) could be achieved by filtering the blood with the help of the one-day
hemodialysis procedure. The future of hemodialysis depends on a combination of the
current membranes, as we know them at the moment, and microfluidics. Devices are
to be worn permanently by the patient and to filter the blood with membranes that can
be changed every two to three days. In the field of artificial liver and artificial pancreas
applications, cell viability still presents a problem. The use of hepatocytes of porcine origin
or Langerhans cells is limited by the extremely short time in which they maintain their
viability inside the membranes used. Finding solutions to condition the membranes or
to ‘freeze’ them immediately after obtaining them would make possible the sustainable
use of these therapeutic solutions. Related to polymers used for these applications, most
probably due to economic and environmental reasons, we will assist in a transition from
synthetic polymers to natural ones. Cellulose and its derivatives are the most promising
candidates, especially for osseointegration, but also for hemodialysis or drug delivery. The
main advantage is given not only by the fact that it is a natural source polymer and presents
high biocompatibility but also by the fact that is bioresorbable due to its chemical structure.
The only residue resulting from decomposition is glucose.
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38. Voicu, Ş.I.; Dobrica, A.; Sava, S.; Ivan, A.; Naftanaila, L. Cationic surfactants-controlled geometry and dimensions of polymeric
membrane pores. J. Optoelectron. Adv. Mater. 2012, 14, 923–928.

39. Stamatialis, D.F.; Papenburg, B.J.; Gironés, M.; Saiful, S.; Bettahalli, S.N.M.; Schmitmeier, S.; Wessling, M. Medical applications of
membranes: Drug delivery, artificial organs and tissue engineering. J. Membr. Sci. 2008, 308, 1–34. [CrossRef]

http://doi.org/10.1007/s40735-022-00656-2
http://doi.org/10.1007/s11696-022-02544-y
http://doi.org/10.3390/membranes11080557
http://doi.org/10.1016/j.polymer.2006.01.084
http://doi.org/10.1515/psr-2021-0052
http://doi.org/10.1007/s00289-018-2616-3
http://doi.org/10.1016/j.jobab.2021.02.003
http://doi.org/10.1016/j.ijbiomac.2021.03.108
http://doi.org/10.3390/ma13020274
http://doi.org/10.1016/j.carbpol.2016.03.030
http://doi.org/10.1016/j.carbpol.2019.115419
http://doi.org/10.1016/j.surfin.2017.10.009
http://doi.org/10.1046/j.1525-1594.2002.06876.x
http://doi.org/10.1021/ab500061j
http://doi.org/10.1016/j.cjche.2022.05.027
http://doi.org/10.1016/S0376-7388(02)00137-0
http://doi.org/10.1007/s10856-022-06643-w
http://www.ncbi.nlm.nih.gov/pubmed/35072812
http://doi.org/10.1016/j.jmbbm.2022.105464
http://doi.org/10.3390/app11156929
http://doi.org/10.3390/membranes11100763
http://doi.org/10.3390/ma13112481
http://doi.org/10.3390/ma13235347
http://www.ncbi.nlm.nih.gov/pubmed/33255827
http://doi.org/10.3390/polym14235249
http://www.ncbi.nlm.nih.gov/pubmed/36501642
http://doi.org/10.1016/j.cogsc.2021.100480
http://doi.org/10.1016/j.seppur.2020.117145
http://doi.org/10.1007/s00339-020-3408-9
http://doi.org/10.1016/j.memsci.2007.09.059


Polymers 2023, 15, 619 18 of 26

40. Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and
Demonstration of Stimuli-Responsiveness. Polymers 2021, 13, 1285. [CrossRef]

41. Abbasnezhad, N.; Kebdani, M.; Shirinbayan, M.; Champmartin, S.; Tcharkhtchi, A.; Kouidri, S.; Bakir, F. Development of a Model
Based on Physical Mechanisms for the Explanation of Drug Release: Application to Diclofenac Release from Polyurethane Films.
Polymers 2021, 13, 1230. [CrossRef]

42. Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication-
worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019, 96, 1048–1050. [CrossRef] [PubMed]

43. Said, N.; Lau, W.J.; Ho, Y.-C.; Lim, S.K.; Zainol Abidin, M.N.; Ismail, A.F. A Review of Commercial Developments and Recent
Laboratory Research of Dialyzers and Membranes for Hemodialysis Application. Membranes 2021, 11, 767. [CrossRef]

44. Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. A critical review of recent advances in hemodialysis membranes hemocompatibility
and guidelines for future development. Mater. Chem. Phys. 2020, 248, 122911. [CrossRef]

45. Vachharajani, T.J.; Taliercio, J.J.; Anvari, E. New Devices and Technologies for Hemodialysis Vascular Access: A Review. Am. J.
Kidney Dis. 2021, 78, 116–124. [CrossRef] [PubMed]

46. Saran, R.; Robinson, B.; Abbott, K.C.; Bragg-Gresham, J.; Chen, X.; Gipson, D.; Gu, H.; Hirth, R.A.; Hutton, D.; Jin, Y.; et al. US
Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2020,
75, A6–A7. [CrossRef] [PubMed]

47. Mohammadi, F.; Mohammadi, F.; Yavari, Z. Characterization of the cylindrical electrospun nanofibrous polysulfone membrane
for hemodialysis with modelling approach. Med. Biol. Eng. Comput. 2021, 59, 1629–1641. [CrossRef]

48. Chen, Y.-A.; Ou, S.-M.; Lin, C.-C. Influence of Dialysis Membranes on Clinical Outcomes: From History to Innovation. Membranes
2022, 12, 152. [CrossRef]

49. Swift, O.; Vilar, E.; Farrington, K. Haemodialysis. Medicine 2019, 47, 596–602. [CrossRef]
50. Salimi, E.; Ghaee, A.; Ismail, A.F.; Othman, M.H.D.; Sean, G.P. Current Approaches in Improving Hemocompatibility of Polymeric

Membranes for Biomedical Application. Macromol. Mater. Eng. 2016, 301, 771–800. [CrossRef]
51. Song, X.; Ji, H.; Zhao, W.; Sun, S.; Zhao, C. Hemocompatibility enhancement of polyethersulfone membranes: Strategies and

challenges. Adv. Membr. 2021, 1, 100013. [CrossRef]
52. Abdelrasoul, A.; Shoker, A. Induced hemocompatibility of polyethersulfone (PES) hemodialysis membrane using polyvinylpyrroli-

done: Investigation on human serum fibrinogen adsorption and inflammatory biomarkers released. Chem. Eng. Res. Des. 2022,
177, 615–624. [CrossRef]

53. Zhang, W.; Yue, P.; Zhang, H.; Yang, N.; Li, C.; Li, J.h.; Meng, J.; Zhang, Q. Surface modification of AO-PAN@OHec nanofiber
membranes with amino acid for antifouling and hemocompatible properties. Appl. Surf. Sci. 2019, 475, 934–941. [CrossRef]

54. Radu, E.R.; Voicu, S.I. Functionalized Hemodialysis Polysulfone Membranes with Improved Hemocompatibility. Polymers 2022,
14, 1130. [CrossRef]

55. Zhong, D.; Wang, Z.; Zhou, J.; Wang, Y. Additive-free preparation of hemodialysis membranes from block copolymers of
polysulfone and polyethylene glycol. J. Membr. Sci. 2021, 618, 118690. [CrossRef]

56. Maggay, I.V.B.; Aini, H.N.; Lagman, M.M.G.; Tang, S.-H.; Aquino, R.R.; Chang, Y.; Venault, A. A Biofouling Resistant Zwitterionic
Polysulfone Membrane Prepared by a Dual-Bath Procedure. Membranes 2022, 12, 69. [CrossRef]

57. Abidin, M.N.Z.; Goh, P.S.; Said, N.; Ismail, A.F.; Othman, M.H.D.; Abdullah, M.S.; Ng, B.C.; Hasbullah, H.; Sheikh Abdul Kadir,
S.H.; Kamal, F.; et al. Polysulfone/amino-silanized poly(methyl methacrylate) dual layer hollow fiber membrane for uremic toxin
separation. Sep. Purif. Technol. 2020, 236, 116216. [CrossRef]

58. Kaleekkal, N.J.; Thanigaivelan, A.; Tarun, M.; Mohan, D. A functional PES membrane for hemodialysis—Preparation, Characteri-
zation and Biocompatibility. Chin. J. Chem. Eng. 2015, 23, 1236–1244. [CrossRef]

59. Gores, F.; Montag, P.; Schall, C.; Vienken, J.; Bowry, S.K. Verification of the chemical composition and specifications of haemodial-
ysis membranes by NMR and GPC-FTIR-coupled spectroscopy. Biomaterials 2002, 23, 3131–3140. [CrossRef] [PubMed]

60. Azhar, O.; Jahan, Z.; Sher, F.; Niazi, M.B.K.; Kakar, S.J.; Shahid, M. Cellulose acetate-polyvinyl alcohol blend hemodialysis
membranes integrated with dialysis performance and high biocompatibility. Mater. Sci. Eng. C 2021, 126, 112127. [CrossRef]
[PubMed]

61. Amri, C.; Mudasir, M.; Siswanta, D.; Roto, R. In vitro hemocompatibility of PVA-alginate ester as a candidate for hemodialysis
membrane. Int. J. Biol. Macromol. 2016, 82, 48–53. [CrossRef]

62. Yu, X.; Zhu, Y.; Zhang, T.; Deng, L.; Li, P.; Wang, X.; Hsiao, B.S. Heparinized thin-film composite membranes with sub-micron
ridge structure for efficient hemodialysis. J. Membr. Sci. 2020, 599, 117706. [CrossRef]

63. Dumitriu, C.; Voicu, S.I.; Muhulet, A.; Nechifor, G.; Popescu, S.; Ungureanu, C.; Carja, A.; Miculescu, F.; Trusca, R.; Pirvu, C.
Production and characterization of cellulose acetate–titanium dioxide nanotubes membrane fraxiparinized through polydopamine
for clinical applications. Carbohydr. Polym. 2018, 181, 215–223. [CrossRef] [PubMed]

64. Yamazaki, K.; Matsuda, M.; Yamamoto, K.-i.; Yakushiji, T.; Sakai, K. Internal and surface structure characterization of cellulose
triacetate hollow-fiber dialysis membranes. J. Membr. Sci. 2011, 368, 34–40. [CrossRef]

65. Eduok, U.; Abdelrasoul, A.; Shoker, A.; Doan, H. Recent developments, current challenges and future perspectives on cellulosic
hemodialysis membranes for highly efficient clearance of uremic toxins. Mater. Today Commun. 2021, 27, 102183. [CrossRef]

http://doi.org/10.3390/polym13081285
http://doi.org/10.3390/polym13081230
http://doi.org/10.1016/j.kint.2019.07.012
http://www.ncbi.nlm.nih.gov/pubmed/31582227
http://doi.org/10.3390/membranes11100767
http://doi.org/10.1016/j.matchemphys.2020.122911
http://doi.org/10.1053/j.ajkd.2020.11.027
http://www.ncbi.nlm.nih.gov/pubmed/33965296
http://doi.org/10.1053/j.ajkd.2019.09.003
http://www.ncbi.nlm.nih.gov/pubmed/31704083
http://doi.org/10.1007/s11517-021-02404-z
http://doi.org/10.3390/membranes12020152
http://doi.org/10.1016/j.mpmed.2019.06.004
http://doi.org/10.1002/mame.201600014
http://doi.org/10.1016/j.advmem.2021.100013
http://doi.org/10.1016/j.cherd.2021.11.027
http://doi.org/10.1016/j.apsusc.2018.12.179
http://doi.org/10.3390/polym14061130
http://doi.org/10.1016/j.memsci.2020.118690
http://doi.org/10.3390/membranes12010069
http://doi.org/10.1016/j.seppur.2019.116216
http://doi.org/10.1016/j.cjche.2015.04.009
http://doi.org/10.1016/S0142-9612(02)00057-1
http://www.ncbi.nlm.nih.gov/pubmed/12102184
http://doi.org/10.1016/j.msec.2021.112127
http://www.ncbi.nlm.nih.gov/pubmed/34082944
http://doi.org/10.1016/j.ijbiomac.2015.10.021
http://doi.org/10.1016/j.memsci.2019.117706
http://doi.org/10.1016/j.carbpol.2017.10.082
http://www.ncbi.nlm.nih.gov/pubmed/29253966
http://doi.org/10.1016/j.memsci.2010.11.008
http://doi.org/10.1016/j.mtcomm.2021.102183


Polymers 2023, 15, 619 19 of 26

66. Maduell, F.; Broseta, J.J.; Rodríguez-Espinosa, D.; Hermida-Lama, E.; Rodas, L.M.; Gómez, M.; Arias-Guillén, M.; Fontseré, N.;
Vera, M.; Rico, N. Evaluation and comparison of polysulfone TS-UL and PMMA NF-U dialyzers versus expanded hemodialysis
and postdilution hemodiafiltration. Artif. Organs 2021, 45, E317–E323. [CrossRef]

67. Koh, E.; Lee, Y.T. Development of an embossed nanofiber hemodialysis membrane for improving capacity and efficiency via 3D
printing and electrospinning technology. Sep. Purif. Technol. 2020, 241, 116657. [CrossRef]

68. Ding, S.; Zhang, T.; Li, P.; Wang, X. Dialysis/adsorption bifunctional thin-film nanofibrous composite membrane for creatinine
clearance in portable artificial kidney. J. Membr. Sci. 2021, 636, 119550. [CrossRef]

69. Clark, W.R.; Hamburger, R.J.; Lysaght, M.J. Effect of membrane composition and structure on solute removal and biocompatibility
in hemodialysis. Kidney Int 1999, 56, 2005–2015. [CrossRef]

70. Seddik, A.A.; Bashier, A.; Alhadari, A.K.; AlAlawi, F.; Alnour, H.H.; Bin Hussain, A.A.; Frankel, A.; Railey, M.J. Challenges in
management of diabetic ketoacidosis in hemodialysis patients, case presentation and review of literature. Diabetes Metab. Syndr.
Clin. Res. Rev. 2019, 13, 2481–2487. [CrossRef]

71. Faria, M.; Moreira, C.; Eusébio, T.; Brogueira, P.; de Pinho, M.N. Hybrid flat sheet cellulose acetate/silicon dioxide ultrafiltration
membranes for uremic blood purification. Cellulose 2020, 27, 3847–3869. [CrossRef]

72. Bowry, S.K.; Gatti, E.; Vienken, J. Contribution of Polysulfone Membranes to the Success of Convective Dialysis Therapies. Contrib.
Nephrol. 2011, 173, 110–118.

73. Serbanescu, O.S.; Voicu, S.I.; Thakur, V.K. Polysulfone functionalized membranes: Properties and challenges. Mater. Today Chem.
2020, 17, 100302. [CrossRef]

74. Voicu, S.I.; Sandru, M. Composite Hybrid Membrane Materials for Artificial Organs. In Handbook of Bioceramics and Biocomposites;
Antoniac, I.V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 407–429.

75. Yue, W.-W.; Li, H.-J.; Xiang, T.; Qin, H.; Sun, S.-D.; Zhao, C.-S. Grafting of zwitterion from polysulfone membrane via surface-
initiated ATRP with enhanced antifouling property and biocompatibility. J. Membr. Sci. 2013, 446, 79–91. [CrossRef]

76. Said, N.; Hasbullah, H.; Ismail, A.F.; Othman, M.H.D.; Goh, P.S.; Zainol Abidin, M.N.; Sheikh Abdul Kadir, S.H.; Kamal, F.;
Abdullah, M.S.; Ng, B.C. Enhanced hydrophilic polysulfone hollow fiber membranes with addition of iron oxide nanoparticles.
Polym. Int. 2017, 66, 1424–1429. [CrossRef]

77. Pandele, A.M.; Oprea, M.; Dutu, A.A.; Miculescu, F.; Voicu, S.I. A Novel Generation of Polysulfone/Crown Ether-Functionalized
Reduced Graphene Oxide Membranes with Potential Applications in Hemodialysis. Polymers 2022, 14, 148. [CrossRef] [PubMed]

78. Zhao, C.; Xue, J.; Ran, F.; Sun, S. Modification of polyethersulfone membranes—A review of methods. Prog. Mater. Sci. 2013,
58, 76–150. [CrossRef]

79. Abe, T.; Kato, K.; Fujioka, T.; Akizawa, T. The Blood Compatibilities of Blood Purification Membranes and Other Materials
Developed in Japan. Int. J. Biomater. 2011, 2011, 375390. [CrossRef]

80. Irfan, M.; Idris, A.; Yusof, N.M.; Khairuddin, N.F.M.; Akhmal, H. Surface modification and performance enhancement of
nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. J. Membr. Sci. 2014, 467, 73–84. [CrossRef]

81. Hoseinpour, V.; Ghaee, A.; Vatanpour, V.; Ghaemi, N. Surface modification of PES membrane via aminolysis and immobilization
of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr. Polym. 2018, 188, 37–47. [CrossRef]
[PubMed]

82. Xing, J.; Wang, Q.; He, T.; Zhou, Z.; Chen, D.; Yi, X.; Wang, Z.; Wang, R.; Tan, G.; Yu, P.; et al. Polydopamine-Assisted
Immobilization of Copper Ions onto Hemodialysis Membranes for Antimicrobial. ACS Appl. Bio Mater. 2018, 1, 1236–1243.
[CrossRef] [PubMed]

83. Kourde-Hanafi, Y.; Loulergue, P.; Szymczyk, A.; Van der Bruggen, B.; Nachtnebel, M.; Rabiller-Baudry, M.; Audic, J.-L.; Pölt, P.;
Baddari, K. Influence of PVP content on degradation of PES/PVP membranes: Insights from characterization of membranes with
controlled composition. J. Membr. Sci. 2017, 533, 261–269. [CrossRef]
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