
UNIVERSITY OF CASTILLA-LA MANCHA

Computing Systems Department

Improvements to Bluetooth Low Energy and
Bluetooth mesh towards the new Generation

of IoT-based Heterogeneous Networks

A dissertation for the degree of Doctor of Philosophy in Computer Science
to be presented with due permission of the Computing Systems

Department, for public examination and debate.

Author: Diego Hortelano Haro
Advisors: Dr. Teresa Olivares Montes

Dr. M. Carmen Ruiz Delgado

Albacete, December 2020

UNIVERSIDAD DE CASTILLA-LA MANCHA

Departamento de Sistemas Informáticos

Improvements to Bluetooth Low Energy and
Bluetooth mesh towards the new Generation

of IoT-based Heterogeneous Networks

Tesis Doctoral presentada al Departamento de Sistemas Informáticos de la
Universidad de Castilla-La Mancha para la obtención del título de Doctor

en Tecnologías Informáticas Avanzadas.

Autor: Diego Hortelano Haro
Directores: Dr. Teresa Olivares Montes

Dr. M. Carmen Ruiz Delgado

Albacete, diciembre de 2020

A todos mis seres queridos,
vosotros habéis hecho esto posible.

Acknowledgments

The completion of this Doctoral Thesis represents the end of a stage, and therefore the
beginning of another. During this time I have not only learned and grown as a researcher,
but also as a person, and I owe all this to the people I was lucky to share this stage with.
Without knowing what the future holds, they have made it di�cult to imagine anything
being better than my experience with them. Therefore, I would like to dedicate at least
these few lines to them.

I must necessarily begin by mentioning my advisors, Teresa and M. Carmen. I would
like to thank them for their invaluable help, as well as for their support and dedication,
�nding time whenever I needed them. I would also like to thank them for their advice,
given with their inestimable voice of experience. Without them, this stage would not have
been the same. I am sure I will miss our weekly meetings.

I would also like to thank the remaining lecturers at the Faculty of Computer Science
Engineering, both for providing the basis for completing this Doctoral Thesis and for their
approachability, always available for help when needed.

I would also like to thank all the people of the High-Performance Networks and Archi-
tectures group, extending my thanks to the entire Albacete Research Institute of Informat-
ics. My colleagues during these years, you have greatly facilitated this task with your help
and support, even after your stay here was �nished. I will not forget the co�ees together,
nor the after-hours trips from the laboratory before a deadline.

I would like to thank Marco Zimmerling, who was responsible for my research stay in
Dresden, for his predisposition and help before my arrival. I would also like to include his
entire team, who welcomed me from the �rst day and from whom I learned much more
than network synchronization.

I would also like to thank enormously all my friends, although I consider that many of
those mentioned above are also included in that category. Thank you for putting up with
me all this time, for your interest, your encouragement and your support throughout this
stage.

I would also like to thank my family, especially my parents and my brother, but also
the rest of the family. Thank you for putting up with me during this stage, which I know

i

has not always been easy. You have always been there to support me and help me with
everything, not only in this stage, but since I can remember.

Finally, I would like to thank Alba for all her support. I know that only a few lines are
never enough, but you have always given me the necessary determination when mine was
weak, and you have been there for me. I would love to continue discovering the villages of
Castilla-La Mancha with you.

This work was supported by the Castilla-La Mancha Community Council under the grant POII-
2014-010P, by the Spanish Ministry of Economy and Competitiveness and the European Commission
(MINECO/FEDER funds) under the grants TIN2015-66972-C5-2-R and TIN2015-65845-C3-2-R, by the
Spanish Ministry of Science, Education and Universities, the European Regional Development Fund
and the State Research Agency under the grant RTI2018-098156-B-C52, by the University of Castilla-
La Mancha with the European Regional Development Fund under the grant 2019-GRIN-27060 and
also by the University of Castilla-La Mancha R&D plan with the European Social Fund.

ii

Agradecimientos

La �nalización de esta Tesis Doctoral supone el �nal de una etapa, y por lo tanto, el comienzo
de otra. Durante este tiempo no solo me he formado y he crecido como investigador, si no
también como persona, y todo ello se lo debo a las personas con las que tenido la suerte
de compartir esta etapa. Ellas han hecho que, sin tener conocimiento de qué deparará el
futuro, me cueste mucho imaginar que pueda superar lo vivido con ellas. Me gustaría por
ello dedicar al menos estas líneas.

Se me hace imposible no comenzar estas líneas con mis directoras de Tesis, Teresa y
M. Carmen . Me gustaría agradecerles su inestimable ayuda, así como su apoyo y dedica-
ción, sacando tiempo siempre que me ha hecho falta. Me gustaría agradecer igualmente
sus consejos, provenientes de esa voz de la experiencia de incalculable valor. Sin ellas esta
etapa no habría sido la misma. Estoy seguro de que voy a echar de menos esas reuniones
semanales.

Me gustaría agradecer también al resto de profesores de la Escuela Superior de Inge-
niería Informática, tanto por aportar los cimientos que han permitido completar esta Tesis
Doctoral como por su cercanía, dispuestos siempre a ayudar cuando se les necesita.

Así mismo, me gustaría dar las gracias a toda la gente del Grupo de Investigación de
Redes y Arquitecturas de Altas Prestaciones (RAAP), extendiendo mi agradecimiento al
Instituto de Investigación en Informática de Albacete completo. Compañeros durante estos
años, me habéis facilitado enormemente esta tarea con vuestra ayuda y apoyo, incluso tras
�nalizar vuestra estancia aquí. No olvidaré los cafés compartidos, ni las salidas del labora-
torio a las tantas antes de un deadline.

Me gustaría recordar en estas líneas al responsable de mi estancia de investigación en
Dresde, Marco Zimmerling, por su predisposición y ayuda desde antes de mi llegada. Me
gustaría incluir también a todo su equipo, que me acogió desde el primer día y de los que
aprendí mucho más que sincronización de redes.

También me gustaría agradecer enormemente a todos mis amigos, aunque considero que
muchos de los mencionados anteriores se encuentran también aquí incluidos. Gracias por
aguantarme todo este tiempo, por vuestro interés, vuestro ánimo y vuestro apoyo durante
toda esta etapa.

iii

Quiero agradecer también en estas líneas a mi familia, especialmente a mis padres y a mi
hermano, pero también al resto de la misma. Gracias por aguantarme durante esta etapa,
que sé que no siempre ha sido fácil. Siempre os ha faltado tiempo cuando he necesitado
algo, y siempre habéis estado ahí para apoyarme y ayudarme con todo, no solamente en
esta etapa, si no desde que tengo uso de razón.

Por último, me gustaría agradecer todo su apoyo a Alba. Sé que en ningún caso unas po-
cas líneas son su�cientes, pero siempre me has aportado la determinación necesaria cuando
la mía �aqueaba, y has estado ahí para mí. Me encantaría seguir descubriendo los pueblos
de Castilla-La Mancha junto a ti.

Este trabajo ha sido co�nanciado por la Junta de Comunidades de Castilla-La Mancha bajo el
proyecto POII-2014-010P, por el Ministerio de Economía y Competitividad y la Comisión Europea
(fondos MINECO/FEDER) bajo los proyectos TIN2015-66972-C5-2-R y TIN2015-65845-C3-2-R, por
el Ministerio de Ciencia, Innovación y Universidades, el Fondo Europeo de Desarrollo Regional y
la Agencia Estatal de Investigación bajo el proyecto RTI2018-098156-B-C52, por la Universidad de
Castilla-La Mancha y el Fondo Europeo de Desarrollo Regional bajo el proyecto grant number 2019-
GRIN-27060 y por el plan I+D de la Universidad de Castilla-La Mancha co�nanciado por el Fondo
Social Europeo.

iv

Summary

In recent years, the term Internet of Things (IoT) has been gaining momentum, moving
from traditional sensor networks in home automation to large networks in di�erent areas,
such as smart buildings, smart cities or smart factories. The last of these is having a great
impact, with di�erent initiatives arising to facilitate its adaptation, in what is already known
as Industry 4.0. The applications of these new trends bring with them new requirements
that are challenging the current wireless communication networks. These requirements
include transmission reliability (zero fails), total area coverage and sustainability, both in
terms of network e�ciency and network cost.

In this context, Bluetooth Low Energy (BLE) technology was developed, maintaining the
classic Bluetooth objective of facilitating the connection between devices, but with a min-
imum power consumption. We opted for research into this particular technology because
of the ease with which users can be included in the network, through their smartphone
or wearable device, while providing low consumption, ideal for sensor devices. However,
after an initial evaluation, we found that the topologies included in the speci�cation did
not ful�l the requirements demanded by the latest trends in IoT and Industry 4.0.

In order to use BLE technology in these new networks, we proposed a standard compli-
ant mesh network using the broadcast capability of the devices. This network was deployed
in a real environment, enabling communication between a wide range of devices, includ-
ing sensor nodes, tablets, wearable devices and a BLE server. The evaluation carried out
showed an excellent percentage of transmissions successfully completed, as well as total
coverage of the area.

Due to the rising number of applications demanding a new topology and the large num-
ber of proposals from both academia and companies, the Bluetooth Special Interest Group
(Bluetooth SIG) released a suite of speci�cations to include mesh topology in BLE. This
speci�cation is called Bluetooth mesh, and is built over the lower layers of BLE (the Link
Layer and the Physical Layer). Bluetooth mesh uses a controlled �ood routing through
the broadcast capabilities of the BLE devices. The provisioning procedure stands out in
the speci�cation. This procedure enables the devices to receive the network key and other
information required to take part in the network in a secure manner.

Following its release, we decided to focus on the Bluetooth mesh speci�cation, as well
as on the devices which used the early versions of BLE. The Bluetooth SIG advanced that

v

any BLE device capable of sending broadcast messages could be part of a Bluetooth mesh
network. However, there were no studies on this, and the available implementations were
built on the lower layers of the latest versions of BLE. Therefore, and in order to verify this
compatibility, this Doctoral Thesis also includes our implementation of Bluetooth mesh, as
well as the provisioning procedure, which is supported by many devices. The evaluation
carried out with devices with the �rst versions of BLE showed their compatibility, although
these early versions had more limitations than the later versions. Moreover, after the eval-
uation of the standard provisioning procedure, a lighter alternative is proposed, specially
designed for use on devices with the earlier versions of BLE.

Finally, focusing on the Bluetooth mesh speci�cation, it is remarkable for its great power
consumption, since the devices need to constantly scan the network to receive the messages,
which can be sent at any time. To address this problem, and to enable battery-powered
devices to take part in the network, the Bluetooth mesh speci�cation proposes a mechan-
ism called friendship. Thus, one of the devices, called friend node, is constantly scanning
the network, receiving and storing the messages sent to the low power node. These mes-
sages are sent to the low power node on demand, allowing it to scan the network only
at short intervals. However, this friendship mechanism uses data transmissions similar to
the stop-and-wait protocol, which is highly ine�cient. For this reason, Burst Transmis-
sions and Listen Before Transmit (BTLBT) technique was proposed, which minimises the
consumption of these nodes.

vi

Resumen

En los últimos años, el término Internet of Things (IoT) está teniendo un gran impacto, pa-
sando de las tradicionales redes de sensores en domótica a grandes redes en diferentes áreas,
como los edi�cios inteligentes, las ciudades inteligentes o la industria inteligente. Ésta últi-
ma ha tenido un gran impacto, surgiendo diferentes iniciativas para facilitar su adaptación,
en lo que ya se conoce como Industria 4.0. Las aplicaciones de estas nuevas tendencias traen
consigo nuevos requisitos que desafían las redes de comunicación inalámbricas actuales.
Entre estos requisitos destaca la necesidad de realizar transmisiones �ables, proporcionar
una cobertura total del área y ser sostenibles, tanto en lo referente a la e�ciencia de la red
como a su coste.

En este contexto surge la tecnología Bluetooth Low Energy (BLE), que mantiene el ob-
jetivo del Bluetooth clásico de facilitar la conexión entre dispositivos, pero con un consumo
mínimo. Nosotros nos decantamos por la investigación de esta tecnología en particular por
su facilidad para incluir al usuario en la red, a través de su teléfono inteligente o dispositivo
wearable, a la vez que proporciona un bajo consumo, ideal para los dispositivos sensores.
Sin embargo, tras una evaluación inicial, comprobamos que las topologías incluidas en la
especi�cación no permitían satisfacer los requisitos impuestos por las últimas tendencias
en IoT y la Industria 4.0.

Con el �n de utilizar la tecnología BLE en estas nuevas redes, propusimos una red en
malla que cumplía totalmente con el estándar utilizando la capacidad broadcast de los dis-
positivos. Esta red se desplegó en un entorno real, permitiendo la comunicación entre dis-
positivos muy variados, entre los que se incluyeron nodos sensores, tablets, dispositivos
wearables y un servidor BLE. La evaluación realizada mostró un excelente porcentaje de
transmisiones realizadas correctamente, así como una cobertura total del área.

Debido al creciente número de aplicaciones que demandaban una nueva topología y
al gran número de propuestas realizadas tanto por la comunidad investigadora como por
diferentes compañias, el Grupo de Especial Interés de Bluetooth (Bluetooth SIG) lanzó un
conjunto de especi�caciones para incluir la topología en malla en BLE. Esta especi�cación
se denominó Bluetooth mesh, y está construida sobre las capas inferiores de BLE (la capa de
enlace y la capa física). Bluetooth mesh utiliza un enrutamiento por inundación controlado
a través de las capacidades broadcast de los dispositivos BLE. Destaca en la especi�cación
el procedimiento de provisionamiento, que permite a los dispositivos recibir la clave de

vii

red, así como el resto de información necesaria para formar parte de la red, de una manera
segura.

Tras el lanzamiento de esta especi�cación, decidimos centrarnos en ella, así como en
los dispositivos que utilizan las primeras versiones de BLE. A pesar de que el Bluetooth
SIG anunció que cualquier dispositivo BLE con capacidad para enviar mensajes en broad-
cast podría formar parte de una red Bluetooth mesh, no existían estudios sobre esto, y las
implementaciones disponibles se construían sobre las capas inferiores de las últimas ver-
siones de BLE. Por ello, y con el �n de comprobar esta compatibilidad, esta Tesis Doctoral
también incluye nuestra implementación de Bluetooth mesh, así como del procedimien-
to de provisionamiento, compatible con multitud de dispositivos. La evaluación realizada
con dispositivos con las primeras versiones de BLE demostró su compatibilidad, aunque
estas primeras versiones cuentan con más limitaciones que las versiones posteriores. Así
mismo, tras la evaluación del procedimiento de provisionamiento estándar, se propone una
alternativa más ligera, especialmente diseñada para su uso en dispositivos con las primeras
versiones de BLE.

Finalmente, pasando a centrarnos en la especi�cación Bluetooth mesh, destaca su ele-
vado consumo de energía, debido a que los dispositivos necesitan escanear constantemente
la red para recibir los mensajes, que pueden ser enviados en cualquier momento. Ante este
problema, y para permitir que dispositivos alimentados con baterias formen parte de la red,
la especi�cación Bluetooth mesh propone un mecanismo denominado relación de amistad.
Así uno de los dispositivos, el nodo amigo, está constantemente escaneando la red, recibien-
do y almacenando los mensajes destinados al nodo de bajo consumo. Estos mensajes son
enviados al nodo de bajo consumo bajo demanda, permitiendole escanear la red únicamente
en momentos puntuales. Sin embargo, este mecanismo de amistad utiliza un intercambio
de datos similar al protocolo de parada y espera, poco e�ciente. Por ello, se propuso el uso
de transmisiones a ráfagas con escucha antes de transmitir, lo que permitió minimizar el
consumo de los nodos de bajo consumo.

viii

Contents

Contents ix

List of Figures xiii

List of Tables xvii

List of Acronyms xxi

1 Introduction 1
1.1 Motivation and Justi�cation . 1
1.2 Objectives . 4
1.3 Methodology and Work Plan . 5
1.4 Dissertation Outline . 9

2 Background 11
2.1 IoT and Industry 4.0 . 11
2.2 Bluetooth Low Energy . 14

2.2.1 De�nition and Objectives . 15
2.2.2 Technical Information . 15
2.2.3 Protocol Stack . 16

2.3 Bluetooth mesh . 28
2.3.1 Overview of Mesh Operation . 28
2.3.2 Layered Architecture . 31
2.3.3 Bluetooth mesh Security . 36
2.3.4 Provisioning Procedure . 36

2.4 Conclusions . 54

3 Preliminary Evaluation: BLE Topologies for Industry 4.0 55
3.1 BLE Standard Topologies Evaluation . 55

3.1.1 Coverage Range of Waspmote Devices 55
3.1.2 Packet Received in Broadcast Transmissions 57
3.1.3 Path Through a BLE Broadcast Network 61
3.1.4 Time Required to Establish a Point-to-Point Connection 64

3.2 CSRmesh Evaluation . 66

ix

Contents

3.2.1 CSRmesh . 66
3.2.2 PRR in CSR Devices . 67
3.2.3 Coverage Study for CSR1010 Devices 68
3.2.4 CSRmesh Evaluation . 70

3.3 Conclusions . 73

4 Our Proposal for BLE Mesh 75
4.1 Collaborative Mesh Proposals . 75
4.2 Evaluation of our New Mesh Proposals . 78

4.2.1 Individual Mesh Evaluation . 79
4.2.2 Collaborative Mesh Evaluation . 84

4.3 GreenISF . 89
4.4 GreenISF Evaluation . 93

4.4.1 Supervisor Request through a Mobile Device 94
4.4.2 Supervisor Requests using OperaBLE Taps 96
4.4.3 Movements Transmission by the Mesh Network 98

4.5 Conclusions . 99

5 Providing Interoperability in Bluetooth mesh 101
5.1 Preliminaries . 101
5.2 Bluetooth mesh Implementation . 102

5.2.1 Open-Source Software Modules Included 103
5.2.2 Our Implementation of Bluetooth mesh Library for Bluetooth non-

mesh Devices . 104
5.2.3 Implementation using Available Bluetooth mesh Stacks 105

5.3 Lightweight Provisioning . 106
5.4 Experimental Results . 108

5.4.1 Experiment 1: Provisioning Time and Robustness 109
5.4.2 Experiment 2. End-to-End Mesh Delay 121
5.4.3 Experiment 3. Packet Reception Rate (PRR) 125

5.5 Conclusions . 126

6 Optimisation of the Friendship Mechanism 129
6.1 Preliminaries . 129
6.2 Initial Improvement Proposals . 130

6.2.1 Improving the Bearer Layer . 130
6.2.2 Improving Time Synchronization 131
6.2.3 Improving Advertising Channel Utilisation 132

6.3 Our Improvement Proposal: Bursts Transmissions and Listen Before Trans-
mit (BTLBT) . 133

6.4 Experimental Results . 136
6.4.1 Performance of the Bluetooth mesh Standard Friendship Mechanism 137
6.4.2 Performance of Bluetooth mesh Friendship using Burst Transmissions 138

x

Contents

6.4.3 Performance of Bluetooth mesh Friendship with BTLBT 141
6.4.4 Comparison . 143

6.5 Estimated Consumption . 144
6.6 Conclusions . 147

7 Conclusions and Future Work 149
7.1 Conclusions . 149
7.2 Future Work . 151
7.3 Author’s Biography . 151

7.3.1 Projects . 152
7.3.2 List of Publications . 152

A Hardware and Software 157
A.1 Hardware Platforms . 157

A.1.1 Waspmote . 157
A.1.2 CSR1010 . 158
A.1.3 LightBlue Bean . 158
A.1.4 EFR32BG13 . 159
A.1.5 nRF52840 . 159
A.1.6 nRF Sni�er . 160

A.2 Software . 160
A.2.1 Waspmote IDE . 161
A.2.2 Apache Cordova . 161
A.2.3 Node.js . 161
A.2.4 Android Studio . 161
A.2.5 Simplicity Studio . 162
A.2.6 Zephyr . 162

Bibliography 163

xi

List of Figures

2.1 Top 10 IoT application areas 2020 according IoT analytics 12
2.2 IoT and Industry 4.0 . 14
2.3 BLE protocol stack. 17
2.4 BLE frequency channels. 18
2.5 Link Layer state machine . 19
2.6 Advertising and scanning representation. 20
2.7 Connection events. 21
2.8 BLE packet format. 22
2.9 Bluetooth Low Energy and Bluetooth mesh Protocol Stack using Advert-

ising Bearer . 28
2.10 Example topology of a Bluetooth mesh network. 30
2.11 Bluetooth mesh LPN state machine. 31
2.12 Bluetooth mesh friendship procedure. 32
2.13 Network PDU �elds. 33
2.14 Incoming Network PDU Processing Flow 35
2.15 Provisioning Protocol Stack. 37
2.16 Transaction Start PDU. 40
2.17 Transaction Acknowledgment PDU. 40
2.18 Transaction Continuation PDU. 41
2.19 Provisioning Bearer Control PDU. 41
2.20 Complete Provisioning Protocol. 43
2.21 Unprovisioned Device Beacon. 44
2.22 Advertising Packet sent by Unprovisioned Devices. 45
2.23 Generic Provisioning PDU for Link Open Message. 45
2.24 Generic Provisioning PDU for Link ACK Message. 46
2.25 Con�rmation Provisioner and Con�rmation Device generation �owchart. . 50
2.26 Device Key, Session Key and Session Nonce generation �owchart. 52

3.1 PRR for an observer receiving packets from a broadcaster transmitting with
an Advertising Interval of 20 ms. 58

3.2 PRR for an observer receiving packets from a broadcaster transmitting with
an Advertising Interval of 1 s. 58

xiii

List of Figures

3.3 PRR for an observer receiving packets from a broadcaster transmitting with
an Advertising Interval of 5 s. 59

3.4 PRR for an observer receiving packets from a broadcaster transmitting with
an Advertising Interval of 10 s. 59

3.5 Comparison of experiments according to their duration. 60
3.6 Results obtained in preliminary test to check the performance in a BLE IoT

installation with minimum TX power and 1-second Advertising Interval. . 62
3.7 Results obtained in preliminary test to check the performance in a BLE IoT

installation with medium TX power and 1-second Advertising Interval. . . 63
3.8 Results obtained in preliminary test to check the performance in a BLE IoT

installation with minimum TX power and 0,5-second Advertising Interval. 64
3.9 Comparison of the time required to establish a connection according to the

scan method selected for the advertiser discovery. 66
3.10 X, Y and Z plans in a CSR1010 device. 69
3.11 Network deployed using 2 sensor devices and CSRmesh topology. 70

4.1 Di�erences between Advertising and Scanning processes in BLE version 4.0
and 4.1. 76

4.2 Proposed mesh packet format. 77
4.3 Network deployed using 8 Waspmote (sensor devices) and 3 CSR devices. . 79
4.4 PRR in our mesh proposal for 8 sensor devices with Individual Mesh con�g-

uration and 3 CSR devices with default con�guration. 81
4.5 PRR in our mesh proposal for 8 sensor devices with Individual Mesh con�g-

uration and 3 CSR devices with saving con�guration. 84
4.6 PRR in Collaborative Mesh for 8 sensor devices and 3 CSR devices in default

mode. 86
4.7 PRR in Collaborative Mesh for 8 sensor devices and 3 CSR devices in saving

mode. 88
4.8 GreenIS Factory scenario for human-machine interaction. 90
4.9 Smart regulatory industrial equipment. 91
4.10 Android application developed. 92
4.11 OperaBLE device. 92
4.12 Supervisor equipped with OperaBLE requesting a report. 93
4.13 Histogram of time lap from sending request to receiving response obtained

for operator information requests from supervisor 95
4.14 Histogram of time lap from sending request to receiving response obtained

for context information requests from supervisor. 96
4.15 Histogram of time lap from sending request to receiving response obtained

for context and operator information request from supervisor. 96
4.16 Histogram of time lap from sending tap packet (from OperaBLE) to receiv-

ing response (in mobile device) obtained for machine node information re-
quest from supervisor. 97

xiv

List of Figures

4.17 Time required for transmitting movements according to their number of
packets (data size) . 99

5.1 Relations between Bluetooth mesh library implemented (in the centre), the
software modules needed (light) and the hardware Bluetooth Low Energy
(BLE) Radio Chip (dark). 103

5.2 Lightweight Provisioning procedure proposal. 107
5.3 Device behaviour when sending and repeating a PDU fragmented into three

segments, each sent in a di�erent message. 110
5.4 Table-top testbed for provisioning procedure evaluation. 110
5.5 Time for each standard provisioning stage using EFR32 provisioner. 112
5.6 Time for each standard provisioning stage for nRF52840 provisioner using

Zephyr (1500 ms retransmission interval). 114
5.7 Time for each standard provisioning stage for nRF52840 provisioner using

Zephyr (200 ms retransmission interval). 114
5.8 Time for each Lightweight Provisioning stage for nRF52840 provisioner

(1500 ms retransmission interval). 116
5.9 Time for each Lightweight Provisioning stage for nRF52840 provisioner

(200 ms retransmission interval). 116
5.10 Average time of each provisioning stage for every evaluated con�guration.

SL: standard Provisioning of Silicon Labs Software Development Kit (SDK)
in EFR32 provisioner; Zephyr: nRF52840 provisioner using standard Provi-
sioning in Zephyr RTOS; LP: the Lightweight Provisioning proposal. The
number in brackets indicates the retransmission interval in seconds. 117

5.11 Network setup for provisioning procedure robustness evaluation. 119
5.12 Time for each standard provisioning stage for nRF52840 provisioner located

20 metres from the unprovisioned device. 120
5.13 Time for each Lightweight Provisioning stage for nRF52840 provisioner loc-

ated 20 metres from the unprovisioned device. 121
5.14 Network setup for end-to-end delay evaluation. 122
5.15 Time per di�erent phase when transmitting 200 packets (ms). 124
5.16 Table-top testbed for packet reception rate evaluation. 125
5.17 Packet Reception Rate varying the number of repetitions and the interval

between di�erent packets. 126

6.1 Examples of transmissions using Bluetooth mesh standard friendship and
burst transmission friendship. 134

6.2 Bluetooth mesh BTLBT friendship state machine. 135
6.3 Network friendship topologies used in our experiments. 137
6.4 Consumption comparison between di�erent approaches and number of sim-

ultaneous LPNs. 146
6.5 Lifetime comparison between di�erent approaches and number of simul-

taneous LPNs. 147

xv

List of Figures

A.1 Waspmote device from Libelium. 157
A.2 CSR1010 device from Qualcomm Techonolgies International. 158
A.3 LightBlut Bean device from Punch Through. 158
A.4 EFR32BG13 device from Silicon Labs. 159
A.5 nRF52840 DK from Nordic Semiconductor. 160
A.6 nRF Bluetooth Smart Sni�er from Adafruit. 160

xvi

List of Tables

2.1 Generic Provisioning Control Format values for each Generic Provisioning
PDU. 39

3.1 Maximum distances (in metres) for di�erent RSSI between two Waspmote
devices. 56

3.2 Maximum distances (in metres) for di�erent RSSI between a Waspmote
device and a mobile device. 57

3.3 PRR (%) in data transmission between a single broadcaster and a single ob-
server, according to the number of packet repetitions. 68

3.4 Average RSSI obtained in di�erent scenarios. 69
3.5 Packets sent by sensor nodes and received by BLE server, for each CSR

devices con�guration. 71
3.6 Packets received by CSR devices and BLE server in CSRmesh evaluation,

for each CSR device con�guration. 71
3.7 PRR for 2 sensor devices using the CSRmesh proposal, for di�erent CSR

device con�gurations. 72
3.8 Packets per second received by CSR devices in a CSRmesh network with 2

sensor devices and a BLE server. 72

4.1 Number of packets received by CSR devices and BLE server for each Wasp-
mote device con�guration in Individual Mesh with CSR devices in default
mode. 80

4.2 Number of packets sent by each sensor node and received by BLE server, for
each Waspmote device con�guration in Individual Mesh with CSR devices
in default mode. 81

4.3 Packets per second received by CSR devices in default mode. Waspmote
devices were con�gured as Individual Mesh. 82

4.4 Number of packets received by CSR devices and BLE server for each Wasp-
mote device con�guration in Individual Mesh with CSR devices in saving
mode. 83

4.5 Number of packets sent by each sensor node and received by BLE server, for
each Waspmote device con�guration in Individual Mesh with CSR devices
in saving mode. 83

xvii

List of Tables

4.6 Packets per second received by CSR devices in saving mode. Waspmote
devices con�gured as Individual Mesh con�guration 84

4.7 Number of packets received by CSR devices and BLE server for each Wasp-
mote device con�guration in Collaborative Mesh with CSR devices in de-
fault mode. 85

4.8 Number of packets sent and relayed by each sensor node and received by
BLE server, for each Waspmote device con�guration in Collaborative Mesh
with CSR devices in default mode. 86

4.9 Packet per second received by CSR devices when they relay each packet 3
times (default mode). Waspmote devices con�gured as Collaborative Mesh. 87

4.10 Number of packets received by CSR devices and BLE server for each Wasp-
mote device con�guration in Collaborative Mesh with CSR devices in saving
mode. 87

4.11 Number of packets sent by each sensor node and received by BLE server,
for each Waspmote device con�guration in Collaborative Mesh and CSR
devices in saving mode. 88

4.12 Packets per second received by CSR devices in saving mode. Waspmote
devices con�gured as Collaborative Mesh. 89

4.13 BLE devices in our collaborative BLE mesh network. 90
4.14 Summary of experimental results obtained for operator information requests

from supervisor. 94
4.15 Summary of experimental results obtained for context information requests

from supervisor. 95
4.16 Summary of experimental results obtained for context and operator inform-

ation request from supervisor. 95
4.17 Summary of experimental results obtained for information for machine nodes

request from supervisor using tap movement. 97
4.18 Results for evaluation 50 movement data transmissions 98

5.1 De�ned Times for each Provisioning Protocol Stage. 110
5.2 De�nition of Times. 123

6.1 Results for 1 FN and 4 LPNs using the three advertising channels. 133
6.2 Results for 1 FN and 4 LPNs using the same single advertising channel. . . 133
6.3 Results for 1 FN and 4 LPNs using a di�erent single advertising channel. . 134
6.4 Results for 1 and 4 LPNs that requested messages simultaneously to the FN

using the Bluetooth mesh standard friendship mechanism. 138
6.5 Results for 1 LPN that send polls to the FN using di�erent burst sizes. . . . 139
6.6 Results for 4 LPNs that send polls simultaneously to the FN using di�erent

burst sizes. 139
6.7 Results for 4 LPNs requesting to the FN simultaneously, using our proposal

BTLBT. 142

xviii

List of Tables

6.8 Average results for 4 LPNs requesting to the FN simultaneously using the
Bluetooth mesh standard friendship mechanism and our proposal BTLBT. . 143

6.9 Estimated consumption for each state of the LPN. 144

xix

List of Acronyms

ACK Acknowledgement

ADV Advertising

AES Advanced Encryption Standard

AES-CCM Advanced Encryption Standard - Counter with Cipher Block Chaining Mes-
sage Authentication Code

AES-CMAC Advanced Encryption Standard - Cipher Block Chaining Message Authentic-
ation Code

AFH Adaptative Frequency Hopping

API Application Programming Interface

ATT Attribute Protocol

BLE Bluetooth Low Energy

BTLBT Burst Transmissions and Listen Before Transmit

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

CTL Network Control

DK Development Kit

DST Destination Address

ECDH Elliptic Curve Di�e-Hellman

FCS Frame Check Sequence

FN Friend Node

GAP Generic Access Pro�le

GATT Generic Attribute Pro�le

GFSK Gaussian Frequency Shift Keying

xxi

List of Acronyms

GPCF Generic Provisioning Control Format

HCI Host Controller Interface

I3A Albacete Research Institute of Informatics

ICT Information and Communication Technologies

IIoT Industrial Internet of Things

IoT Internet of Things

ISM Industrial, Scienti�c and Medical

IV Initialisation Vector

IVI Initialisation Vector Index

L2CAP Logical Link Control and Adaptation Protocol

LBT Listen Before Transmit

LL Link Layer

LoRaWAN Long Range Wide Area Network

LPN Low Power Node

LTS Lightweight Time Synchronization

MIC Message Integrity Check

MTU Maximum Transmission Unit

NID Network Key Identi�er

OOB Out Of Band

PDU Protocol Data Unit

PHY Physical Layer

PN Proxy Node

ppm Parts per million

PRR Packet Reception Rate,plural=PRRs

RF Radio Frequency

RFU Reserved for Future Use

RN Relay Node

RSSI Received Signal Strength Indicator

RTOS Real Time Operating System

xxii

List of Acronyms

SDK Software Development Kit

SEQ Sequence Number

SIG Special Interest Group

SM Security Manager Protocol

SoC System-on-Chip

SRC Source Address

TTL Time To Live

TX Transmission

URI Uniform Resource Identi�er

UUID Universally Unique Identi�er

xxiii

CHAPTER 1

Introduction

This chapter �rstly introduces the motivation behind this Doctoral Thesis. Secondly, the
main objective of this Doctoral Thesis is presented. Thirdly, the methodology followed to
achieve this objective is described. Finally, an outline of the dissertation is included.

1.1 Motivation and Justi�cation

Internet of Things (IoT) is a new paradigm that combines features and technologies from
di�erent approaches (ubiquitous computing, embedded devices, sensor networks, Internet
protocols and communication technologies). The main elements of IoT are smart objects.
These are objects of daily use capable of collecting environmental information and inter-
acting with or controlling the physical world. They can also be interconnected, to exchange
data and information [1].

The �eld of Industry 4.0 is one of the most active in IoT [2]. Industry 4.0 [3] or Indus-
trial IoT (IIoT) is the new trend emerging today, although it has a long way to go before its
standards are established. This paradigm will enable the development and optimisation of
industrial infrastructure with new manufacturing practices that use Information and Com-
munication Technologies (ICT). However, the purpose of this trend is not only to introduce
new technologies in industry, but also to connect and unify the di�erent components of
ICT in a network system. The innovations implemented in smart factories eliminate de-
�ciencies, save costs and enable the automation of processes, while improving operator
safety [4].

Today, we are surrounded by di�erent types of devices and applications that collect
large amounts of data. Of all these devices, smartphones are still the leaders. However,
wearable devices are also enjoying unstoppable success. A problem arises, however, in
this new scenario, since not all these new devices use the same communication protocols,
so they are unable to work together. New communication standards, such as Bluetooth
Low Energy (BLE), provide great possibilities for communicating sensors, clothing, smart

1

1.1. Motivation and Justi�cation

phones and smart objects with end users, allowing the use of network infrastructure to
introduce or enhance a wide variety of emerging applications. Moreover, these communic-
ation protocols must take into account another key requirement in IoT: energy e�ciency.
BLE will become an important technology for IoT, due to its low power, low cost and small
devices [5].

BLE was included for the �rst time in the Bluetooth 4.0 Core Speci�cation [6]. Since
then, it has been growing at extraordinary speed, due to its connection with smartphones,
tablets, wearables and mobile computing in general, as well as its early and active adoption
by mobile industry heavyweights [7]. This rapid development enabled BLE to be used in
several IoT applications and projects. Some of these applications were: the Array of Things
project of Chicago [8]; inter-vehicular communications [9]; power management in smart
homes [5]; passengers control [10]; or remote lock system [11].

From the time BLE was �rst introduced in Bluetooth until its latest Bluetooth speci�ca-
tion (version 5.2 [12]), it has maintained the same network topologies: point-to-point (1:1)
and broadcast communications (1:m). However, its performance in terms of range, through-
put, power consumption and payload capacity has been improved with each speci�cation
to deal with the new challenges arising. For example, broadcast topology was initially de-
signed to send advertisements enabling a point-to-point connection. It was later used to
send beacons, and now it enables the sending of data to multiple devices simultaneously.
Meanwhile, point-to-point topology has increased the number of devices connected sim-
ultaneously to the same central node, and the combination of central/peripheral roles has
become more �exible, enabling a peripheral device to be the central device of another node.

The topologies de�ned by the BLE speci�cation can be applied to a multitude of applica-
tions, but they are unable to meet the requirements of the latest trends, such as smart cities,
smart buildings or smart factories. These cases require great reliability, total coverage and
sustainability, both in terms of energy consumption and the number of devices used.

In order to meet these new requirements, academia and companies made di�erent pro-
posals for the use of a new BLE network topology: the mesh network. Some of these
proposals were BLEMesh [13], RT-BLE [14], CSRmesh [15] and the nRF OpenMesh [16].
Among the di�erent proposals of BLE mesh networks was our proposal: the Collabor-
ative Mesh, presented in depth in Chapter 4. Finally, the mesh topology was standard-
ised by the Bluetooth Special Interest Group (SIG) with the release of a suite of speci�ca-
tions [17, 18, 19], providing many-to-many communications in large-scale device networks
through a standard mesh topology.

Compared to the previous broadcast topology, the Bluetooth mesh speci�cation not
only provides a greater range, but also improves data capacity due to its extremely compact
packet format [20]. In addition, it includes signi�cant improvements in security capabilities
at di�erent levels. This has relegated broadcast communications to use in indoor location
and beacon solutions (to provide point of interest information and item and path �nding
services). Point-to-point communications, the other network topology provided by the BLE

2

Chapter 1. Introduction

speci�cation, has a completely di�erent approach than the Bluetooth mesh topology. This
topology is mainly designed for data transmission between connected devices in the same
area (Body Area Network, BAN) [21].

The mesh network topology available in the BLE allows for the creation of large-scale
networks. This converts this topology into the ideal candidate for use in IoT and IIoT ap-
plications [21], as lighting or smart warehousing solutions [22] (tracking or reporting data).
The Bluetooth mesh speci�cation de�nes a managed-�ood-based mesh network, which
uses the broadcast capability of BLE devices to transmit mesh messages. These messages
are received and relayed by other nodes, extending the coverage range of the original device.

After the release of Bluetooth mesh, di�erent devices especially designed for this to-
pology were launched, as well as multiple implementations developed by companies such
as Nordic Semiconductor [23] or Silicon Labs [24]. Other open-source implementations
have been developed by communities (such as Zephyr [25] or BlueZ [26], the o�cial Linux
Bluetooth protocol stack), and the number of products quali�ed by the Bluetooth SIG and
of Bluetooth mesh stack implementations is continuously increasing [27].

Despite the development of new devices and implementations designed for Bluetooth
mesh, all of them focused on the latest versions of BLE, leaving devices with previous ver-
sions aside. The devices using the �rst versions of BLE were not designed for the Bluetooth
mesh. However, the Bluetooth SIG claimed that all BLE devices could be part of the mesh
network, since it is built on top of the lower layers of BLE, as detailed in Chapter 2. Could
these devices be updated and used in heterogeneous Bluetooth mesh networks together
with the new devices, or would the limitations of the �rst versions make their use unfeas-
ible?

In order to answer this question, we developed and then evaluated an implementation
of the Bluetooth mesh protocol stack in devices with the �rst version of BLE. This imple-
mentation and the subsequent evaluation are described in detail in Chapter 5, as well as
our proposal to improve devices with earlier BLE versions.

Bluetooth mesh provides a solution that ful�ls the requirements of the latest IoT trends.
However, the mesh nodes must constantly scan the medium to relay the received messages
and thus increase the total coverage range. This involves a high energy consumption that
battery-powered nodes cannot withstand. For these cases, the Bluetooth mesh speci�cation
provides the friendship mechanism. This mechanism enables the nodes that are constantly
scanning the network to store the messages destined to the low power nodes, allowing
these nodes to be in sleep mode for most of their lifetime.

The friendship mechanism proposed by the Bluetooth mesh speci�cation is necessary
to avoid the exhaustion of batteries. However, it cannot currently be adjusted to the needs
of speci�c applications. This may be related to the fact that it is the �rst version of the
Bluetooth mesh speci�cation and, given the novelty of the speci�cation, the friendship
mechanism is insu�ciently optimised. The current standard friendship mechanism is based

3

1.2. Objectives

on a stop and wait protocol and although it is simple to implement, it has very ine�cient
channel utilisation.

Chapter 6 of this dissertation addresses the proposal for an improvement of the standard
friendship mechanism, in order to optimise the use of the channels and minimise energy
consumption of the low power nodes.

1.2 Objectives

The main objective of this Doctoral Thesis was to design a heterogeneous BLE network,
which allows the inclusion of any BLE device, and which ful�ls the requirements of the new
trends in IoT and Industry 4.0 in a sustainable way. The way in which this objective was
addressed changed signi�cantly during the progress of the Doctoral Thesis with the release
of a new Bluetooth speci�cation, the Bluetooth mesh speci�cation, which was designed to
take into account the requirements of the new applications. In order to deal with this main
objective, the following goals were proposed:

• Goal 1. Review of the state of the art in the area of wireless networks, with special
emphasis on BLE technology. This review focused on both the topologies included in
the standard and the proposed topologies to improve the speci�cation. Moreover, an
in-depth study of the Bluetooth 4.0 speci�cation (the �rst where BLE appears) was
carried out. A review of the requirements of new applications for IoT and Industry
4.0 was also necessary, in order to be able to design and implement networks that
ful�l them.

• Goal 2. Preliminary evaluation of both the topologies included in the BLE speci�c-
ation and the proposed topologies to improve the existing ones. In order to verify
whether these topologies satisfy the requirements demanded by IoT and Industry 4.0,
an evaluation with current hardware platforms in a real environment was required.

• Goal 3. Design, implementation and deployment of a BLE network with mesh topo-
logy that enables the integration of many di�erent BLE devices, both static (beacons
and nodes with sensors) and mobile (users through their smartphone or di�erent
wearables). Furthermore, this network had to satisfy the communication require-
ments imposed by the latest trends.

• Goal 4. Inclusion of di�erent types of devices in our heterogeneous network. In ad-
dition to the sensor and relay nodes, a BLE server was included, which acted as a
gateway between di�erent technologies (BLE and Long Range Wide Area Network
(LoRaWAN)). Moreover, in order to support the human-in-the-loop approach of In-
dustry 4.0, special importance was given to the inclusion of user devices, with smart-
phones and wearables being the most outstanding.

• Goal 5. In-depth study of the Bluetooth mesh speci�cation, including both the pro-
tocol stack and the provisioning procedure, which allows new devices to be added to

4

Chapter 1. Introduction

the network. Furthermore, a review of the state of the art regarding the Bluetooth
mesh speci�cation was necessary.

• Goal 6. Implementation and evaluation of the Bluetooth mesh protocol stack and the
provisioning procedure in BLE 4.0 devices. Although the Bluetooth SIG claimed this
was the �rst version to be supported, no previous studies were conducted using the
earliest BLE versions.

• Goal 7. Design, implementation and evaluation of the Lightweight Provisioning pro-
cedure, our proposal to improve the provisioning procedure de�ned by the Bluetooth
mesh speci�cation.

• Goal 8. In-depth study of the friendship relationship proposed by the Bluetooth mesh
speci�cation. In addition, a review of the state of the art regarding this mechanism
was necessary.

• Goal 9. Design, implementation and evaluation of our proposal for the optimisation
of the friendship relationship, the Bluetooth mesh approach to reduce consumption
in low power devices.

1.3 Methodology and Work Plan

In order to achieve the goals introduced in the previous section, a methodology and work
plan needed to be de�ned. This methodology established the set of tasks, each of which
was directly related to a goal, in order to achieve it. Each task was divided into sub-tasks,
which are described below:

• Task 1. Review of the state of the art.

– Task 1.1. To study the Bluetooth 4.0 speci�cation, which includes the �rst ver-
sion of BLE, in order to understand its functionality and limitations, focusing
particularly on its lower layers: the Physical Layer and the Link Layer. Further-
more, it is necessary to have an in-depth understanding of the two topologies
proposed by the standard: point-to-point connections and broadcast commu-
nications.

– Task 1.2. To analyse the requirements demanded by the new IoT applications
for wireless networks.

– Task 1.3. To understand the new Industry 4.0 paradigm, in order to obtain a
global image of the requirements of the new trends.

– Task 1.4. To review the research work related to BLE, in order to know the
di�erent existing projects, as well as the strengths, weaknesses and challenges
of this technology.

5

1.3. Methodology and Work Plan

– Task 1.5. To review research work related to proposals regarding di�erent to-
pologies than those included in the BLE speci�cation.

• Task 2. Preliminary evaluation.

– Task 2.1. To evaluate the hardware platforms used in the following experi-
ments, in order to facilitate the understanding of the results obtained in these
experiments.

– Task 2.2. To evaluate the broadcast topology proposed by the BLE speci�cation
in a real environment, drawing conclusions from the results obtained.

– Task 2.3. To evaluate the point-to-point connection topology included in the
BLE speci�cation in a real environment, drawing conclusions from the results
obtained.

– Task 2.4. To implement a basic BLE server using node.js environment to be
used in the CSRmesh evaluation.

– Task 2.5. To evaluate CSRmesh, the proprietary mesh network topology pro-
posed by CSR to deal with the limitations of the initial BLE topologies.

– Task 2.6. To identify the BLE parameters with a signi�cant impact on the net-
work performance.

• Task 3. Implementation of our BLE mesh network proposal.

– Task 3.1. To design a mesh network that: (1) ful�ls the requirements of Industry
4.0, (2) complies with the BLE standard and (3) is a heterogeneous network,
enabling the data to be exchanged between any BLE devices.

– Task 3.2. To implement the proposed mesh network in the available BLE devices,
which use BLE 4.0 and 4.1.

– Task 3.3. To design and to conduct the necessary experiments to evaluate the
proposed mesh network in a real environment with the coexistence of other
wireless networks, verifying its correct operation. These results can be com-
pared with those obtained in the CSRmesh evaluation.

• Task 4. Inclusion of new devices in our BLE mesh network.

– Task 4.1. To design an Android application for mobile devices: smartphones
and tablets.

– Task 4.2. To develop the application designed in Android, enabling any Android
device to be part of the mesh network.

– Task 4.3. To verify the correct operation of the Android application.

– Task 4.4. To implement the necessary functions so that the wearable devices
are able to transmit information using the mesh network.

6

Chapter 1. Introduction

– Task 4.5. To verify the correct transmission of information by the wearables
through our BLE mesh network.

– Task 4.6. To design and carry out the experiments to evaluate the operation
of the proposed heterogeneous network, using di�erent devices, focusing on
the mobile devices that facilitate the inclusion of users in the deployed mesh
network.

• Task 5. In-depth study of the Bluetooth mesh speci�cation.

– Task 5.1. To study the architecture of Bluetooth mesh in depth, the speci�cation
of which entailed the o�cial inclusion of mesh topology in BLE.

– Task 5.2. To study and understand the provisioning procedure de�ned by the
Bluetooth mesh speci�cation. This procedure is of crucial importance as it
provides BLE devices with the necessary information to send and receive mes-
sages from the rest of the devices in the network.

– Task 5.3. To review the research work related to this speci�cation in order to
know its strengths and limitations.

• Task 6. Implementation of the Bluetooth mesh in BLE 4.0 devices.

– Task 6.1. To conduct a study of existing Bluetooth mesh implementations, des-
pite being developed over later BLE versions.

– Task 6.2. To study the security algorithms used in Bluetooth mesh. Bluetooth
mesh considers data security to be of great importance and therefore imple-
ments symmetric encryption algorithms for data transmissions as well as asym-
metric encryption algorithms for sending keys.

– Task 6.3. To design the implementation of the provisioning procedure, in which
the provisioner device sends the necessary information (including the network
key) to the new network devices. This design establishes, among other things,
the relationship between the di�erent security modules, as well as their integ-
ration.

– Task 6.4. To implement the provisioning procedure, as de�ned in the Bluetooth
mesh speci�cation. To verify the correct functioning of our implementation, a
set of experiments will carry out using BLE 5.0 devices with di�erent imple-
mentations of this procedure as provisioners.

– Task 6.5. To design the implementation of the di�erent layers of the archi-
tecture de�ned in the Bluetooth mesh speci�cation, taking into consideration
aspects such as the roles required at each moment, the data structures or the
use of the appropriate parameters, among others.

7

1.3. Methodology and Work Plan

– Task 6.6. To implement the Bluetooth mesh architecture for BLE 4.0 devices.
Being built on top of the lower BLE layers, this implementation is compatible
with most BLE devices.

– Task 6.7. To verify the correct operation of our implementation by exchanging
data with di�erent BLE 5.0 devices using Bluetooth mesh, once the provisioning
procedure is completed.

– Task 6.8. To evaluate the performance of BLE 4.0 devices. Although Bluetooth
mesh is compatible with the �rst version of BLE, this has a number of limitations
that can reduce its performance, so an evaluation is necessary.

• Task 7. Improvement of the provisioning procedure.

– Task 7.1. To design a proposal to make the provisioning procedure lighter,
allowing devices with the �rst versions of BLE to be provisioned in a shorter
time.

– Task 7.2. To carry out the implementation of our proposal, verifying its correct
operation.

– Task 7.3. To evaluate the implementation of our provisioning proposal, com-
paring the results with those obtained for the standard provisioning procedure.

• Task 8. In-depth study of the friendship relationship.

– Task 8.1. To study the friendship mechanism provided by the Bluetooth mesh
speci�cation in depth.

– Task 8.2. To review the state of the art related to this mechanism, in order to
be familiar with the releated research.

• Task 9. Optimisation of the friendship relationship of Bluetooth mesh.

– Task 9.1. To study di�erent approaches for the optimisation of low consump-
tion Bluetooth mesh nodes. These approaches include: improving the Bearer
Layer, improving time synchronisation and improving advertising channel util-
isation.

– Task 9.2. To design a proposal to optimise low power Bluetooth mesh nodes us-
ing Burst Transmissions with the Listen Before Transmit technique. This design
requires taking into account parameters such as the number of messages per
burst, or the established listening time.

– Task 9.3. To implement our optimisation proposal for the low power nodes.

– Task 9.4. To evaluate our proposal, comparing the results with those obtained
by using the method proposed by the Bluetooth mesh speci�cation.

8

Chapter 1. Introduction

1.4 Dissertation Outline

In order to achieve the goals described above, the rest of this Doctoral Thesis is organised
into the following chapters:

• Chapter 2. Background. This chapter presents an overview of the context of this
dissertation, the IoT and IIoT paradigms, as well as the BLE and Bluetooth mesh tech-
nologies.

• Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0. This
chapter contains our initial evaluation, conducted using the topologies included in
the BLE speci�cation.

• Chapter 4. Our Proposal for BLE Mesh. This chapter details our proposal for a
BLE mesh network, called collaborative mesh, as well as its evaluation, with special
emphasis on the di�erent interconnected devices.

• Chapter 5. Providing Interoperability in Bluetooth mesh. This chapter covers
our implementation of the Bluetooth mesh protocol stack for devices equipped with
BLE 4.0, including the provisioning procedure, as well as our proposal for improve-
ment and posterior evaluation.

• Chapter 6. Optimisation of the FriendshipMechanism. This chapter focuses on
the proposed improvement of the friendship mechanism provided by the Bluetooth
mesh speci�cation.

• Chapter 7. Conclusions and Future Work. This chapter concludes this Doctoral
Thesis and presents some ideas for future work.

• Appendix A. Hardware and Software. This appendix includes the hardware plat-
forms and software used throughout this Doctoral Thesis.

9

CHAPTER 2

Background

The requirements of current IoT applications are highly challenging for wireless systems.
These requirements include: interoperability, robustness, reliability, low delay and low en-
ergy consumption [28]. In this scenario, and especially related to IoT, BLE was released.
BLE was included for the �rst time in the Bluetooth 4.0 Core Speci�cation [6] in 2010. Since
then, it has been growing at extraordinary speed, due to its connection with smartphones,
tablets, wearables and mobile computing, and its active and early adoption by mobile in-
dustry heavyweights [7]. However, the latest trends of IoT and Industry 4.0 demands new
requirements [29] unmet by the available BLE topologies. For this reason, a new topology
was proposed for BLE, �rstly by academia and companies and �nally by the Bluetooth SIG
itself in the Bluetooth mesh suite of speci�cations [17, 18, 19] released in 2017.

The following section presents the terms of IoT and Industry 4.0, while the remaining
sections describe in detail the main concepts of Bluetooth Low Energy and Bluetooth mesh.

2.1 IoT and Industry 4.0

IoT, also called the Internet of Everything, is a new technological paradigm conceived as a
global network of machines and devices with the capacity to interact with each other. With
IoT, many objects will take part in this global network invisibly embedded in the environ-
ment around us. Among the most important components of IoT we can distinguish [30]:

• Connected smart objects. As mentioned, smart objects are the core element of IoT.
These objects are equipped with all types of sensors that allow a large amount of data
to be collected. Furthermore, these smart objects are connected to each other, usu-
ally through wireless technology (such as Bluetooth, Wi-Fi, LoRa or ZigBee), which
enables them to transmit the data collected.

• The IoT gateway, which manages the data �ow between the di�erent networks and
protocols. These gateways are usually compatible with TCP/IP, allowing the data
collected to be sent for processing.

11

2.1. IoT and Industry 4.0

• IoT cloud. The data collected is usually sent to the IoT cloud for e�cient processing.
IoT clouds are high performance server networks that enable huge amounts of data
to be processed, analysed, managed and stored. In addition, they can be remotely
accessed.

• Analytics. The process of converting data collected by sensors into useful information
that can be interpreted and analysed in depth.

• User interface: the visible part of the IoT systems, which allows users to access the
information obtained.

IoT has very di�erent areas of application, such as the manufacturing or industrial sec-
tors, transportation or mobility, energy, retail, cities, healthcare, supply chain, agriculture,
buildings, enterprise, �nance, smart homes and wearables. Figure 2.1 [2] shows the main
areas of the 1414 published IoT projects (not including consumer projects) and the trend in
each area compared to the 2018 study.

Figure 2.1: Top 10 IoT application areas 2020 according IoT analytics [2].

As stated above, the main area of application of IoT is the manufacturing or industrial
area. This is closely related to another concept, Industry 4.0.

IoT is recognised as one of the most important areas of the technology of the future and
is receiving extensive attention from a great variety of industries. However, the real value
of IoT for companies lies in the interconnected devices becoming fully integrated with their
di�erent systems and applications [31].

Industry 4.0 represents the Fourth Industrial Revolution and can be de�ned as the integ-
ration of complex machinery, devices with connected sensors and software used to predict,
control and plan, enabling improved business and societal outcomes [32]. The �ve main
characteristics of Industry 4.0 are digitalisation, optimisation and customised production,
automation and adaptation, Human-Machine Interaction (HMI), value-added services and

12

Chapter 2. Background

companies with automatic data exchange and communication. These characteristics are not
only strongly related to Internet technologies and advanced algorithms, but also indicate
that Industry 4.0 is an industrial process of added value and knowledge management [33].
Mobile and Cloud computing, Big Data and the IoT are key-enabler technologies for In-
dustry 4.0 (which corresponds to the Manufacturing area of the IoT [32]) enabling the es-
tablishment of smart factories, services and products. Furthermore, Industry 4.0 has a great
opportunity to create sustainable industrial value in the three dimensions of sustainability:
economic, social and environmental [34].

Industry 4.0 has emerged to transform the current industrial model and introduce di-
gitalisation into traditional factories, improving production rates and promoting collabor-
ation [33]. The 4.0 attribute focuses on the IoT [1] applied to industrial systems in order
to interconnect objects, machines and humans in smart factories. However, IoT is not the
only pillar of Industry 4.0, being able to di�erentiate a total of 9 technologies that are trans-
forming industrial production [35]. These are listed below:

• Big Data and Analytics. In an Industry 4.0 context, the collection and comprehensive
analysis of data from many di�erent sources will support real-time decision making.

• Autonomous Robots. Robots will interact with each other and with humans, learning
from them.

• Simulation. Simulations will make it possible to use the data in real time and mirror
the physical world in a virtual model. This will permit testing and optimising changes
in the virtual world before physical change, thus reducing time and increasing quality.

• Horizontal and Vertical System Integration. Companies, departments, functions and
capabilities will become much more cohesive, as universal data integration networks
between companies evolve and allow for truly automated value chains.

• The Industrial Internet of Things. Industry 4.0 means that more devices will bene�t
from embedded computing. This will allow �eld devices to communicate and interact
with each other as well as with centralised controllers.

• Cybersecurity. With increased connectivity and use of communication protocols, the
need to protect industrial systems from cyber security threats increases dramatically.
As a result, secure and reliable communications and sophisticated identity and access
management for machines and users become essential.

• The Cloud. More companies will require greater data exchange across sites and en-
terprise boundaries. With the improved performance of cloud technologies, data and
machine functionality will increasingly be deployed in the cloud, enabling more data-
based services.

• Additive Manufacturing. Additive manufacturing, such as 3-D printing, is mainly
used to make prototypes and produce individual components. With Industry 4.0,

13

2.2. Bluetooth Low Energy

these additive manufacturing methods will be widely used to produce small batches
of custom products.

• Augmented Reality. Augmented-reality-based systems will support a variety of ser-
vices, to provide workers with real-time information that improves decision making
and work procedures.

Once the concepts of IoT and Industry 4.0 have been established, their relationship can
be appreciated. This relationship is illustrated by Figure 2.2, with the work of this Doctoral
Thesis being contextualised at the intersection between both concepts: connectivity and
communication among devices. Previous network topologies were enough to cover small
and medium IoT installations. However, the recent emergence of Industry 4.0 includes
IoT networks in factories, and changes the requirements of these networks. These new
requirements demanded in the new communication protocols are as follows [36, 37]:

• Total coverage: the entire building space must be completely covered by the network,
avoiding dead zones where users cannot communicate.

• Zero Fails: each transmitted packet must be received at its destination, with a Packet
Reception Rate (PRR) close to 100% in communications to provide high performance.

• Sustainability: covering both software (devices using e�cient programs) and hard-
ware (reducing the number of devices and using a low power standard). In this con-
text, two new concepts emerge: green-by (IoT network linking physical devices with
operators to a�ord e�cient operation) and green-in (techniques to encourage the
deployment of cost e�cient networks) [34, 38, 39].

IoT IIoT Industry 4.0
Common concepts:

• Data Management

• Connectivity

• Communication

• Device Security

• Secure Cloud

Figure 2.2: IoT and Industry 4.0 [40].

2.2 Bluetooth Low Energy

BLE was �rst included in the Bluetooth speci�cation in its 4.0 version, and the aims of its
design are di�erent to those of classic Bluetooth. The starting point of BLE was Wibree,
a very low power technology designed by Nokia in 2006 to replace Bluetooth in this type

14

Chapter 2. Background

of low power application [7]. Despite this initial idea, Wibree technology was incorpor-
ated into the main Bluetooth standard in 2010 by the Bluetooth SIG with the adoption of
Bluetooth Core Speci�cation 4.0 [6]. This section focuses on BLE, given the importance of
this technology for the realisation of this dissertation.

2.2.1 De�nition and Objectives

BLE can be de�ned as a smarter, low-power version of Bluetooth, designed to complement
it and have the lowest power consumption possible. Although BLE operates in the same
ISM band and borrows much of the technology from its predecessor, it should be considered
a di�erent technology as it pursues di�erent objectives and is targeted at di�erent market
niches [41]. To achieve this, BLE has taken a di�erent path to that of Bluetooth, opting for
minimum consumption and renouncing throughput. In exchange for not having large data
transfers, BLE provides the possibility of maintaining a connection for several days. This
minimal consumption has made it ideal for battery-powered devices that do not yet have
appropriate wireless technology.

For all these reasons, it is clear that the main objective of BLE was to create a short-
range wireless technology with the lowest possible consumption, but without forgetting
the objectives established by Bluetooth:

• Worldwide use, through the use of the 2.4 GHz Industrial, Scienti�c and Medical (ISM)
frequency band, which is available worldwide without license cost.

• Low cost, an objective related to that of low consumption, being possible to satisfy
both using a smaller volume of memory and a lower processing power, at the cost of
forgoing high power and the use of more complex network topologies, for example.

• Robustness, using the Adaptative Frequency Hopping (AFH) technology of Bluetooth,
which helps to detect and avoid interference, being very useful in such a widely used
frequency band.

• Short range, a simple objective for BLE to ful�l, as, being a low consumption system,
it must emit with low power and maintain high sensitivity in the receiver, reducing
the power required to collect the signals. In any event, a short range does not imply
that the devices should be excessively close, as BLE is designed to be a personal area,
with the target range being around 100 metres.

• Low consumption, an objective that, although already included in the classic version,
BLE has intensi�ed, reducing consumption by one or two levels of magnitude.

2.2.2 Technical Information

Regarding the technical information of BLE, some of the most important features de�ned
by the speci�cation are:

15

2.2. Bluetooth Low Energy

• Data transmission in very small packets (8 to 27 bytes) Version 5.0 of BLE increased
this maximum size to 255 bytes with the extended advertisements.

• Throughput of 1 Mbps, increased to 2 Mbps in the latest versions.

• Use of AFH technology to minimise interference.

• Control of the host from the controller, allowing the host to be suspended and react-
ivated when required.

• Very low latencies in data transmissions and connection establishment (< 3 ms).

• Range of more than 100 metres. In the latest versions the communication range has
been increased up to about 300 metres.

• Use of 24-bit Cyclic Redundancy Check (CRC) for greater robustness against inter-
ference.

• Use of Advanced Encryption Standard (AES) encryption to authenticate and protect
the packets.

• 32-bit device addresses, allowing a huge number of devices in the star topology. Later
versions have made this topology more �exible, providing more complex connections.

2.2.3 Protocol Stack

BLE is de�ned in the speci�cation as a layered architecture. This architecture is divided
into three parts, namely application, host and controller, which are shown in Figure 2.3:

• The application is the upper layer, and contains the logic and user interface. It is also
responsible for controlling the data related to the application that is running at any
given time.

• The host includes the following layers of the BLE architecture.

– Generic Access Pro�le (GAP).

– Generic Attribute Pro�le (GATT).

– Security Manager Protocol (SM).

– Attribute Protocol (ATT).

– Logical Link Control and Adaptation Protocol (L2CAP).

– Host Controller Interface (HCI).

• The controller contains the following layers of BLE:

– HCI

– Link Layer (LL)

– Physical Layer (PHY)

16

Chapter 2. Background

Physical Layer (PHY)

Link Layer (LL)

Logical Link Control and Adaptation Protocol

(L2CAP)

Attribute Protocol

(ATT)

Generic Attribute Profile

(GATT)

Generic Access Profile (GAP)

Security Manager Protocol (SM)

Application

GATT-based profiles

Host-Controller Interface (HCI)

API

Application

Host

Controller

Figure 2.3: BLE protocol stack.

The main characteristics of each of the layers of the BLE protocol are presented below.
Given the importance of the lower layers, both for our work and for the Bluetooth mesh
speci�cation, they are presented in more detail.

2.2.3.1 Physical Layer

The physical layer is responsible for modulating and demodulating the analogue signals
sent and received, respectively, transforming the digital signals into analogue ones and
vice versa.

For communication, BLE uses the 2.4 GHz ISM band, which is divided into 40 2-MHz
channels, ranging from 2.4000 GHz to 2.4835 GHz. Of all these channels, the last three (37,
38 and 39) are called advertising channels, and are used to send broadcast messages and
advertisements to establish connections, while the remaining channels are used for data
transmission once the connection has been established. This division is shown in Figure 2.4.

The ISM radio band has signi�cant advantages, including being free to use and having
no licence requirements worldwide, making it cheaper for devices using BLE. However,
this means that the ISM band is used by di�erent technologies, such as Wi-Fi, ZigBee or
Bluetooth, and interference can easily occur.

BLE technology is designed to minimise possible interference. In order to do this, broad-
cast messages are normally sent through all three advertising channels, while messages sent

17

2.2. Bluetooth Low Energy
C

h
a
n

n
e
l

3
7 0 1 2 3 4 5 6 7 8 9 1
0

3
8

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
9

F
re

q
u

en
cy

2
4

0
2

 M
H

z

2
4

0
4

 M
H

z

2
4

0
6

 M
H

z

2
4

0
8

 M
H

z

2
4

1
0

 M
H

z

2
4

1
2

 M
H

z

2
4

1
4

 M
H

z

2
4

1
6

 M
H

z

2
4

1
8

 M
H

z

2
4

2
0

 M
H

z

2
4
2
2
 M

H
z

2
4

2
4

 M
H

z

2
4

2
6

 M
H

z

2
4

2
8

 M
H

z

2
4

3
0

 M
H

z

2
4

3
2

 M
H

z

2
4

3
4

 M
H

z

2
4

3
6

 M
H

z

2
4

3
8

 M
H

z

2
4

4
0

 M
H

z

2
4

4
2

 M
H

z

2
4

4
4

 M
H

z

2
4

4
6

 M
H

z

2
4

4
8

 M
H

z

2
4

5
0

 M
H

z

2
4

5
2

 M
H

z

2
4

5
4

 M
H

z

2
4

5
6

 M
H

z

2
4

5
8

 M
H

z

2
4

6
0

 M
H

z

2
4

6
2

 M
H

z

2
4

6
4

 M
H

z

2
4

6
6

 M
H

z

2
4
6
8
 M

H
z

2
4

7
0

 M
H

z

2
4

7
2

 M
H

z

2
4

7
4

 M
H

z

2
4

7
6

 M
H

z

2
4

7
8

 M
H

z

2
4

8
0

 M
H

z

Data Channels Advertising Channels

Figure 2.4: BLE frequency channels.

through the data channels use AFH technology. By means of this technique, the channel
through which data messages are sent is changed, avoiding possible collisions if any tech-
nology is using a channel on the same radio frequency.

Like classic Bluetooth, BLE uses Gaussian Frequency Shift Keying (GFSK) modulation
to encode the information. The bit rate de�ned for BLE is 1 Mbit/s, although in practice
this limit is never reached, due to the extra data introduced into each of the layers of the
protocol.

2.2.3.2 Link Layer

The Link Layer is directly connected to the Physical Layer, and consists of a hardware part
and a software part, since most of its functionality is easily automated by hardware but
complicated to implement by software. The Link Layer is the only layer with real time
restrictions, since it needs to meet the requirements de�ned by the standard, so is usually
isolated from the rest of the layers to hide its complexity and time requirements.

The operation of the link layer can be described as a state machine with �ve di�erent
states:

• Standby: In this state no packets are transmitted or received, and the device can only
switch to another state

• Advertising: This state allows for the transmission of packets through the channels
intended for advertisement packets. A device in this state is known as an advertiser.

• Scanning: The device listens to the advertising channels to receive the advertising
packets that other devices are transmitting. A device in this state is also known as a
scanner

• Initiating: The device scans the advertising channels for packets from one or more
particular devices, responding to these packets to initiate a connection. A device in
this state is called an initiator.

18

Chapter 2. Background

• Connection: Two devices in this state are connected, transmitting data between them.
Within this state two di�erent roles are de�ned:

– Master: This is the device that has reached the connection state from the ini-
tiating state. It will communicate with one or more devices in the slave role,
de�ning transmission times.

– Slave: This is the device that has reached the connection state from the advert-
ising state. It can only be connected to one master device at a time.

In the BLE speci�cation 4.0, a device can be in a single state at any given time. Although
these limitations have been made more �exible in later versions, the states as de�ned in
speci�cation 4.0 are presented here, as this is the one used in our work. The state machine
is shown in Figure 2.5. The di�erent states are presented in detail below

Advertising

Connection

Standby Initiating

Scanning

Figure 2.5: Link Layer state machine [6].

Connectionless States

Regarding the connectionless states of the Link Layer state machine, we �nd four di�erent
states: standby, advertising, scanning and initiating.

The standby state is the default state of the link layer. In this state the device does
not receive or send packets, but keeps the controller in a standby mode that allows it to
consume less power. A device in this state can access the advertising, scanning or initiating
states.

19

2.2. Bluetooth Low Energy

Concerning the advertising and scanning states, both work with advertisement type
packets. These packets are sent by an advertiser at a �xed time rate, de�ned by the ad-
vertisement interval, which can vary from 20 ms to 10.24 s (plus a pseudo-random delay,
introduced by the Bluetooth controller to avoid collisions, which ranges from 0 to 10 ms).
The shorter this interval, the higher is the transmission frequency, which increases the
possibilities of the message being received, but also increases the power consumption of
the device. A longer interval decreases the power consumption, but also the possibility of
the packet being received. The Bluetooth speci�cation de�nes sub-ranges of values within
this advertising interval depending on whether the function of the advertiser is to estab-
lish a connection (shorter time intervals), or to send data in broadcast mode (longer time
intervals).

Since there are three frequency channels for transmitting advertisement packets and the
advertiser and scanner are not synchronized in any way, the packets will only be received
when the listening coincides randomly with the transmission, as illustrated in Figure 2.6.

Adv.

Interval

Scanner

Advertiser

Scan Interval Scan Interval Scan Interval

Scan Window

Channel 38

Scan Window

Channel 39

Adv.

Interval

Adv.

Interval

Adv.

Interval

Adv.

Interval

Adv.

Interval

Adv.

Delay

Adv.

Delay

Adv.

Delay

Adv.

Delay

Adv.

Delay

Scan Window

Channel 37

Advertising Interval = 40 ms

Scan Interval = 100 ms

Scan Window = 50 ms

Advertising on channels 37, 38 and 39

Figure 2.6: Advertising and scanning representation.

The parameters related to the scanner are the scan interval and the scan window. These
parameters de�ne the frequency and the time for which a scanner will scan the network
for advertisement messages. As in the previous case, these parameters a�ect the power
consumption of the scanner. Regarding the scanning process, the speci�cation de�nes two
types, which are detailed below:

• Passive scanning: The scanner only scans the network, so the advertiser is unable to
know if any device is receiving its messages

• Active scanning: The scanner sends a scan response packet after receiving the advert-
ising packet. This allows the advertiser to send a greater amount of data, although,
theoretically, this type of scan is not designed to provide a way for the scanner to
send data to the advertiser.

Finally, the initiating state is similar to the already mentioned scanning. However, an
intiator scans the network for advertisers that could establish a connection, sending a con-

20

Chapter 2. Background

nection request to the desired device. If this process is successfully completed, the two
devices involved will change their status to connection, as detailed below.

Connection State

When establishing a connection between two devices, the advertising and initiating states
intervene, according to the following steps:

1. The initiator, which will play the role of master, scans the network for advertisers
that accept connection requests. A master device can select the slave based on its
address or the data sent.

2. Once the desired advertiser has been found, the initiator sends a connection request.
This packet contains the frequency hop increment, which determines the frequency
hops that will be used by the master and slave during connection (see AFH, in Sec-
tion 2.2.3.1).

3. The advertiser sends a response to the initiator, establishing the connection and chan-
ging its states to connection. As mentioned above, the connection state has two roles:
the master, which will be played by the initiator, and the slave, which will be played
by the advertiser.

A connection can be de�ned as a sequence of data that is exchanged between the master
and slave devices, using the parameters speci�ed when it is established. Each of these data
exchanges is called a connection event and is shown in Figure 2.7. During a connection
event, the master and the slave device alternately send and receive packets.

Master

Slave

Connection Interval Connection Interval Connection Interval

Connection

Event

Slave Latency

Connection

Event

Connection

Event

R

X

R

X

T

X

T

X

T

X

T

X

R

X

R

X

R

X

R

X

T

X

T

X

R

X

R

X

T

X

T

X

R

X

T

X

T

X

T

X

R

X

R

X

T

X

T

X

R

X

R

X

T

X

T

X

R

X

Connection Interval

Figure 2.7: Connection events.

A connection event is considered open as long as the devices continue to send packets
and can be closed by any of the devices. The reasons for closing a connection event are
that: (1) data transmission has been completed, (2) multiple messages have been received
with an erroneous CRC, or (3) packets have stopped being received.

There are di�erent parameters in the connection events:

• Connection interval: Sets the time between the start of two consecutive connection
events. The master device is responsible for preventing overlaps by closing one con-
nection event before the start of the next. The value of this parameter ranges from

21

2.2. Bluetooth Low Energy

7.5 ms (higher data �ow and also higher consumption) to 4 s (lower data �ow and
lower consumption).

• Slave latency: Enables the slave device to use a reduced number of connection events,
establishing the maximum number of connection events that the slave device can skip
without losing the connection.

• Connection supervision timeout: Sets the maximum time between the reception of
two data packets before the connection is considered lost.

• Connection Transmit Window: Enables the master device to e�ciently manage the
various connection events or other activities that need to be performed. This provides
�exibility in choosing the start of a connection event, within a time window.

Once two devices have established a connection, data packets are used to bidirectionally
transport information between the master and the slave device.

BLE Packet Format

The Link Layer has only one packet format used for both advertising and data packets. This
format is shown in Figure 2.8.

Header

Payload (0 – 37 bytes)

Preamble

CRC
Access

Preamble

Figure 2.8: BLE packet format.

A brief de�nition of each of the �elds that each packet consists of is shown below:

• Preamble: 1-byte size �eld, which is sent �rst. This �eld contains a succession of al-
ternate ones and zeros to enable the receiver to carry out tasks related to the transmis-
sion, such as synchronization of the frequency. This �eld has a �xed value depending
on whether the packet is sent through an advertising channel or a data channel.

• Access Address: 4-byte length �eld. This �eld also varies depending on the type of
packet involved. The advertisement packets always carry the same access address
(0x8E89BED6). Data packets contain a 32-bit access address that is generated in the
Initiating state and sent to the device which the connection is established with.

• Header: 2-byte �eld. Although usually included in the PDU, both advertisement and
data packets include it, although its content varies:

– The advertisement packet header contains: (1) Type of Protocol Data Unit (PDU);
(2) TxAdd and (3) RxAdd �elds that specify whether the included addresses are
public or random; (4) Length of the included payload �eld; and (5) some Re-
served for Future Use (RFU) �elds.

22

Chapter 2. Background

– The data packet header includes: (1) Logical Link ID (LLID), which indicates the
type of data packet in question: control packet, full data packet or data fragment;
(2) Next Expected Sequence Number (NESN), which allows a device to notify its
peer that a packet has been received; (3) Sequence Number (SN), used to identify
the packet; (4) More Data (MD), which indicates whether there are more data
fragments; (5) Length in bytes of the Payload �eld and the MIC (if used); and (6)
RFU �elds.

• PDU: This �eld varies depending on the packet type:

– In advertisement packets, the PDU contains the 6-byte public or random address
of the advertiser device. The rest of the PDU is divided into AD structures with
three �elds: (1) AD structure length; (2) AD type, which indicates the type of
data in the structure; and (3) AD data. The speci�cation de�nes di�erent AD
types, but additional types can be de�ned by the user.

– Regarding data packets, two types of payloads are de�ned, data and control.
Data payloads contain the data of the upper layers. If the connection estab-
lished is encrypted, the payload contains an MIC �eld to allow the receiver to
decrypt the data. Control payloads contain the code of the control operation to
be performed as well as the data necessary to complete this operation.

• CRC: 24-bit CRC calculated using the PDU �eld.

Link Layer Security

To provide security and maintain the con�dentiality and integrity of data, the BLE Link
Layer uses the following techniques:

• CRC: this layer is responsible for checking that all received packets are free of CRC
errors.

• Encryption: the link layer provides an encrypted link for secure data exchange. The
keys are generated and managed by the upper layers, but this layer is responsible for
encrypting and decrypting the packets transparently to the upper layers.

• White List: These lists contain only BLE device addresses, �ltering the received mes-
sages when the device is in the advertising, scanning or initiating states.

2.2.3.3 Host Controller Interface

The HCI is a protocol that enables communication between host and controller parts via
a serial interface. This separation is due to the controller module having a temporarily
stricter protocol stack, as well as being less appropriate for more advanced CPUs (common
on the host part). Some examples of this con�guration are found in most devices, such as
computers, tablets or smart phones, where the host module runs on the main CPU, which
sends commands to a separate hardware chip, connected via a UART or USB interface.

23

2.2. Bluetooth Low Energy

The Bluetooth speci�cation de�nes the HCI interface as a set of commands and events
that enable interaction between the host and the controller, as well as a format for data pack-
ets and a set of rules for �ow control. There are di�erent standards for the HCI transport
layer, used according to the di�erent hardware interfaces, allowing the same commands,
events and data packets to be transmitted. These standards include USB (for PCs) and UART
(for mobile devices).

Currently, since semiconductor technology is su�ciently a�ordable, it is possible to
incorporate the controller, host and application layers into a single package (System-on-
Chip (SoC)). This can be very of great use in embedded system applications, since it reduces
the size and cost of the end device. In the case of BLE, it is common to implement all three
parts on a single chip with a low-power CPU. Although, in these cases, the HCI is optional,
it is usually implemented as an internal software interface.

2.2.3.4 Logical Link Control and Adaptation Protocol

L2CAP o�ers the service of a multiplexer protocol that receives packets from the upper lay-
ers and encapsulates them in the standard BLE packet for sending, performing the reverse
action on reception.

L2CAP also provides fragmentation and recombination of packets from the upper lay-
ers, enabling the division of oversized packets into packets with a load of up to 27 bytes
(including the header, which implies that the size of the �nal data �eld is 23 bytes), which
is the maximum size supported by the BLE technology. This protocol can receive multiple
fragmented packets, recombining them into the original packet and sending it to the upper
layers. This enables applications to send and receive data packets of up to 64 kilobytes.

L2CAP is responsible for routing packets to two superior protocols: the ATT, for the
exchange of application data, and the SM, which provides a framework for generating and
distributing security keys between devices. Both are described below.

2.2.3.5 Attribute Protocol

The ATT protocol enables a device, known as a client, to access a set of attributes, with
their associated values, exposed by another device called a server. Usually, the device in
the master role described in Link Layer corresponds to the client device, while the device
in the slave role corresponds to the server. Each attribute has the following associated �elds:

• Attribute type, de�ned by a variable size Universally Unique Identi�er (UUID), spe-
ci�es what the attribute represents.

• 16-bit length attribute handler, which uniquely identi�es a server attribute

• A set of permissions de�ned by the upper layers that use the attribute.

• Value of the attribute, in an array of bytes, with a length that can be �xed or variable,
depending on the type of data that is stored in the attribute.

24

Chapter 2. Background

The ATT protocol also de�nes a series of operations to work with these attributes.
These include operations related to protocol con�guration or error handling, to �nd in-
formation on attributes, to allow the client to read and write the attributes from the server,
and to indicate and notify the client of changes in attributes. There are di�erent versions for
each operation, allowing the action to be performed in di�erent ways, as well as specifying
whether an Acknowledgement (ACK) packet is required when the action is completed.

2.2.3.6 Security Manager Protocol

The SM protocol de�nes security methods and algorithms for pairing, generating and dis-
tributing keys between devices, as well as a set of security algorithms for these methods.
This provides BLE with the capabilities to generate and exchange security keys, enabling
secure communication between a pair of connected devices through an encrypted link.

The SM protocol provides support for performing the following security procedures:

• Pairing: This procedure generates a temporary security key in order to create a secure
and encrypted link. The SM protocol provides three di�erent methods for the pairing
procedure: (1) Just Works, through an exchange of plain text packets, (2) Passkey
Entry, in which the user is required to enter into the device a 6-digit key (passkey)
generated by the other device; and (3) Out Of Band (OOB), which transfers the data
through a di�erent technology.

• Bonding: This process starts with the pairing procedure, followed by the genera-
tion and exchange of permanent security keys, which are stored in the device’s non-
volatile memory. This enables the creation of a permanent link between two devices,
which will allow the creation of secure links in subsequent connections without the
need to repeat the entire process again.

• Encryption Re-establishment: This procedure de�nes how the keys generated and
stored in the bonding procedure shall be used to re-establish a secure and encrypted
connection without the need to perform the previous processes again.

The SM protocol also includes three types of security mechanisms that can be used
to provide di�erent levels of security. These mechanisms can be used in a connection or
during the advertising state:

• Encryption: This feature allows all the packets transmitted in an established connec-
tion to be encrypted.

• Privacy: This mechanism enables an advertiser to hide its public Bluetooth address,
using instead a randomly generated address, which can be recognised by the scanners
with which it has a bonding type connection.

• Signing: This feature allows devices to send signed and unencrypted packets through
an established connection..

25

2.2. Bluetooth Low Energy

Each of these mechanisms can be used independently of the others, and more than one
can be used simultaneously.

2.2.3.7 Generic Attribute Pro�le

The GATT Pro�le is built over the ATT protocol and establishes common operations and
a framework for the transport and storage of data by this protocol, de�ning in detail how
the ATT protocol is used to work with the attributes. In contrast to GAP, which de�nes
the low-level interactions between BLE devices, GATT is responsible only for the processes
and formats actually related to the data transfers.

GATT uses the ATT protocol to transport data between devices, for which it organises
this data hierarchically into sections called services. Each of these services is divided into
characteristics. Thus, each of the characteristics contained in a service contains the union
of di�erent user data with metadata which describes them.

Moreover, GATT de�nes a number of generic data objects that can be used in a variety
of application pro�les, which are known as GATT-based pro�les. These pro�les maintain
the same client/server architecture used by the ATT protocol, but encapsulate the data in
services. GATT-based pro�les are the top elements in the GATT Pro�le data hierarchy.
These pro�les are designed to be used by an application or another pro�le, and allow a
client to communicate with a server.

Each GATT-based pro�le speci�es the structure in which its data is exchanged. This
structure mainly de�nes two elements used in the pro�les (upper levels of the hierarchy):
services and characteristics, which are stored in attributes. Therefore, a GATT-based pro�le
is composed of one or more services, which are necessary to perform a use case. Similarly,
each of these services consists of characteristics or references to other services. A charac-
teristic contains a value and may optionally contain information about that value. In other
words, the services, characteristics and their components contain the data corresponding
to their pro�le, all of which are stored in attributes.

2.2.3.8 Generic Access Pro�le

GAP enables a BLE device to work in conjunction with other devices using the same pro-
tocol. In order to do so, it provides a framework that every BLE device shall follow to allow
other devices to correctly perform the operations speci�ed in the standard. This framework
includes the GAP service, based on the service o�ered by the GATT pro�le and that all BLE
devices must include among their attributes.

GAP de�nes the procedures related to the discovery of BLE devices and to aspects of
connection management. It also de�nes procedures related to the use of di�erent levels of
security, in addition to the data formats required to provide accessibility to parameters at
the user interface level.

Four roles are de�ned for the devices in the GAP pro�le:

26

Chapter 2. Background

• Broadcaster: a device in this role sends advertisement-type messages.

• Observer: a device operating in this role receives advertisement-type messages.

• Peripheral: when a device accepts the establishment of a BLE connection using any
procedure, it enters the role of Peripheral, which coincides with the slave role of the
Link Layer.

• Central: this role is assigned to the devices that initiate the establishment of a con-
nection, and coincides with the role of master of the Link Layer.

Modes and Procedures

This section shows the modes and procedures available in GAP, de�ned in the BLE spe-
ci�cation, divided into groups according to their functionality:

• Broadcast mode and Observation procedure. This mode and procedure enables two
devices to communicate unidirectionally, without the need to establish a connection,
using advertisement messages instead.

• Discovery modes and procedures. All devices shall be in one of the three modes in-
cluded in this group: Non-discoverable (allows the device not to be discovered by any
procedure), Limited Discoverable (allows the device, temporarily, to be discovered by
devices using the Limited Discovery or General Discovery procedures), General Dis-
covery (allows the device to be discovered by devices using the General Discovery
procedure).

• Connection modes and procedures. These modes and procedures enable the device
to establish a connection with other devices, as well as to modify the parameters
of connections already established. The modes included are: Non-Connectable (the
device does not permit a connection to be established), Directed Connectable (the
device accepts connection requests, but only from previously known devices) and
Undirected Connectable (the device requests connection from any device).

Regarding the procedures related to the connections between devices, GAP provides
the following: Auto Connection Establishment procedure (enables connections to
be established automatically), General Connection Establishment procedure (enables
connections to be established with a set of known devices), Selective Connection
Establishment procedure (enables connections to be established with a set of devices
in the White List), Direct Connection Establishment procedure (enables connections
to be established with a speci�c device), Connection Parameter Update procedure
and Terminate Connection procedure.

• Bonding modes and procedures enable two connected devices to exchange and store
information related to security and identity, allowing the creation of a reliable con-
nection. There are two modes depending on whether the devices allow (Bondable)

27

2.3. Bluetooth mesh

or not (Non-Bondable) this type of connection, and a procedure to create it (Bonding
Procedure).

• In addition to the procedures presented, GAP provides a number of security-related
procedures and modes to authenticate, authorize and encrypt transmissions

2.3 Bluetooth mesh

This section presents an overview of the entire Bluetooth mesh, delving deeper into the
most important aspects for our work. The Bluetooth SIG recently released the Bluetooth
mesh suite of speci�cations [17, 18, 19]. These provide BLE with many-to-many commu-
nications in large-scale networks using a standard mesh topology.

The Bluetooth mesh is de�ned as a layered architecture built over the lowest layers of
BLE speci�cation (see Section 2.2), as illustrated in Figure 2.9. This enables all BLE devices
to take part in a Bluetooth mesh network. There are �ve Bluetooth mesh layers (see Sect. 3
in [17]): Bearer Layer, Network Layer, Transport Layer, Access Layer and Mesh Models.

Physical Layer

Link Layer

Logical Link Control and Application Protocol (L2CAP)

Attribute Protocol (ATT)

Security

Manager (SM)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

GATT Services Mesh Models

Advertising Bearer

Access

Transport

Network

Provisioning

Application

Bluetooth Low Energy Core Specification Layers
Bluetooth Mesh Specification Layers

Figure 2.9: Bluetooth Low Energy and Bluetooth mesh Protocol Stack [42].
In order to join the mesh network, a BLE device needs to follow a procedure beforehand.

This is known as the provisioning procedure, and it allows the device to securely receive
the information needed to be a node in the mesh.

2.3.1 Overview of Mesh Operation

The Bluetooth mesh speci�cation de�nes a mesh network based on a managed �ooding
mechanism. Using this mechanism, the nodes transmit messages using the broadcast cap-
ability of the BLE. These messages are relayed by the devices that receive them, which
increases the coverage range of each individual device to the entire mesh network area.
This speci�cation uses two main mechanisms to manage �ooding: Time To Live (TTL) and
the message cache. Every message in the mesh network includes a TTL �eld, limiting the
packet lifespan (hops) in the network. The use of message cache allows devices to avoid

28

Chapter 2. Background

relaying messages more than once. To do this, all received messages are added to a cache
list. This list is revised when receiving a message, discarding it if it is already in the list.
When a packet is �rst received, it is stored in the list for future comparison and relayed.

Bluetooth mesh is de�ned as a layered protocol built over the two lowest layers of BLE:
the Physical Layer and the Link Layer, both explained in detail in Section 2.2. The Physical
Layer uses the 2.4 GHz frequency band, where 40 channels are de�ned: 37 data channels
and 3 advertisement channels. The Link Layer de�nes the two communication modes: es-
tablishing a connection between two devices, using data channels to transmit information,
or using broadcast messages, where the advertising channels are used. Bluetooth mesh uses
these broadcast transmissions as long as the BLE devices allow it, usually transmitting each
message over all three advertisement channels. The other layers de�ned by the Bluetooth
mesh speci�cation are explained in Section 2.3.2.

With regard to the network topology, all the nodes are at the same level, with no central
nodes or hierarchies. However, Bluetooth mesh de�nes some optional features that the
nodes can use to improve the operation of the network. These features are:

• Relay feature: the nodes that enable this feature are called Relay Nodes (RNs). These
nodes are the core of the mesh network, relaying the received messages over the
advertising bearer, increasing the individual coverage range up to the entire coverage
of the network.

• Proxy feature: this feature enables Proxy Nodes (PNs) to act as a bridge between
the devices that need to establish a point-to-point connection to send data (over the
GATT bearer) and the rest of nodes in the network (using the advertising bearer).

• Low power feature: this feature enables the nodes to remain in sleep mode for long
periods. Since messages are easily lost when devices are not permanently scanning
the network, Low Power Nodes (LPNs) require another device, the Friend Node (FN),
which is continually scanning and stores the messages sent to LPNs. These nodes
periodically wake up and obtain data from their FNs using asynchronous requests.

• Friend feature: this feature allows a node to be an FN. These nodes are usually also
RNs that are constantly scanning the network. They have su�cient capacity to store
the messages sent to the LPNs, permitting them to spend a signi�cant part of their
life cycle in sleep mode.

Figure 2.10 shows an example of a Bluetooth mesh network. Nodes 1-6 are LPNs which
have established a friendship relationship with an FN. Nodes 7 and 8 are FNs and RNs.
These nodes have relay and friend features enabled, so they relay the received and relay
messages, as well as storing the messages for the associate LPNs. Nodes 9 and 10 are RNs
which relay the received messages. Node 11 is an RN and a PN, and therefore, besides
forwarding messages, it acts as a bridge to devices that are unable to take part in the mesh
using the advertising bearer. This is the case of Node 12, which maintains a connection via

29

2.3. Bluetooth mesh

the GATT bearer. Finally, Nodes 13-18 have no enabled features; they receive packets at
any time, but only send their own messages.

LPN PNRNFNNode

ADV bearer ADV bearer (friendship) GATT bearer

1

2

3

7

9
10

8
18

12

14

13

15

17

16

4

6

5

11

Figure 2.10: Example topology of a Bluetooth mesh network.

Both the low power and the friend features are used in the most important Bluetooth
mesh optimisation mechanism, which is known as friendship. Considering its importance
for our work, the friendship relationship is described in detail in the next section.

2.3.1.1 Friendship

Due to the mode of operation of Bluetooth mesh, battery-powered devices can drain their
batteries quickly as a result of the consumption required by constant scanning of the net-
work. To prevent this and enable any BLE device to be part of the mesh network, Bluetooth
mesh de�nes the friendship relationship in its Upper Transport Layer. This allows an LPN
to establish a relationship with a nearby (one-hop) FN. Once the friendship relationship is
established between two devices, the FN stores the messages addressed to the LPN, as well
as all those related to the groups the LPN is subscribed. In order to receive these messages,
the LPN makes asynchronous requests to the FN (using Friend Poll messages), which sends
timed responses to the LPN.

When the friendship is established, the FN and the LPN de�ne the parameters for friend-
ship data exchange. These parameters are the PollTimeout, the ReceiveDelay and the Re-
ceiveWindow. The PollTimeout represents the maximum time between two consecutive
LPN requests. The speci�cation de�nes this time as a range from 1 second to 96 hours.
When the LPN makes a request, there is a delay period for the FN to process the request
and prepare the message, known as a ReceiveDelay, in which the LPN may enter sleep
mode. The ReceiveDelay ranges from 10 to 255 ms. After this delay, the LPN scans the
medium for a period of time called ReceiveWindow, which gives the FN su�cient time to

30

Chapter 2. Background

send the message. Once the message is received, the LPN returns to sleep mode. When no
message is received in the ReceiveWindow, the LPN retries the request, until reaching the
maximum number of retries. Exceeding this number terminates the friendship. The range
of the ReceiveWindow is from 1 to 255 ms. Figure 2.11 shows the LPN state machine.

FRIENDSHIP

ESTABLISHED

INIT

WAIT
RECEIVE

DELAY

WAIT
UPDATE

poll timeout expires
request message
(send friend poll)

timer expires
(ReceiveDelay)

no response received
in ReceiveWindow

(request_attempts++)

 max request_attempts
with no response

 Establish
Friendship

 response
received

Figure 2.11: Bluetooth mesh LPN state machine.

The FN stores the packets destined for the LPN in a Friend Queue, the size of which
is determined by the hardware speci�cations of the device. After making a request and
receiving a data message from the FN, the LPN should make further requests until the
Friend Queue is empty. To indicate this, the FN sends a Friend Update message. When this
message is received, the LPN switches into sleep mode until the time required to make a
new request expires. This process is shown in Figure 2.12.

2.3.2 Layered Architecture

Extending the capabilities of Bluetooth Low Energy, Bluetooth mesh networks support re-
liable, scalable and secure solutions for a wide range of commercial and industrial IoT ap-
plications for control, monitoring, and automation where tens, hundreds, or thousands of
devices need to reliably and securely communicate with one another [43]. This section
provides a brief summary of the main features and functionalities of the Bluetooth Mesh
layers, which are shown in Figure 2.9.

2.3.2.1 Bearer Layer

Bearers permit the transport of mesh messages through the lower layers of BLE. Bluetooth
mesh de�nes two bearers: the Advertising (ADV) bearer and the GATT bearer.

31

2.3. Bluetooth mesh

LPN FN

 Request [Friend Poll]

 Response [Message]

ReceiveDelay ReceiveDelay

Scanning < ReceiveWindow

Sleep

Sleep

Sleep

Wait for next
Friend Poll

Sleep

 Request [Friend Poll]

 Response [Friend Update]

ReceiveDelay ReceiveDelay

Scanning

Sleep

Sleep
< PollTimeout

Sleep

< ReceiveWindow

R
ec

ei
ve

W
in

do
w

R
ec

ei
ve

W
in

do
w

Wait for next
Friend Poll

Figure 2.12: Bluetooth mesh friendship procedure.

ADV Bearer

When using the advertising bearer, which is shown in Figure 2.9, a mesh packet is encap-
sulated in a BLE advertising PDU using the Mesh Message AD Type identi�er. The Mesh
Message AD Type contains the Network PDU received from the Network Layer. These
advertising packets are sent in the broadcaster role, which is the essence of the Bluetooth
Mesh.

The advertisement packets which uses the Mesh Message AD Type are non-connectable
and non-scannable undirected advertising events.

GATT Bearer

The GATT bearer enables devices that are incapable of supporting the ADV bearer to par-
ticipate in a mesh network. Using the GATT bearer requires the Proxy protocol de�ned
in Bluetooth Mesh speci�cation to transmit and receive Proxy PDUs over a BLE connec-
tion. The GATT bearer uses a characteristic to write and receive noti�cations of mesh

32

Chapter 2. Background

messages using the Attribute Protocol (ATT) de�ned by BLE speci�cation and explained in
Section 2.2.

2.3.2.2 Network Layer

The Network Layer de�nes the network message format required to address transport mes-
sages towards one or more mesh elements through the Bearer Layer. It is responsible for
deciding whether messages are relayed, accepted for processing in upper layers or rejected.
This layer also de�nes how the network messages are encrypted and authenticated using
the Network Ley, as well as how the header of each message is obfuscated using the Privacy
Key. This subsection provides an overview of the most important aspects of the Network
Layer.

Network PDU

The mesh Network PDU is encapsulated in a BLE packet. Depending on the bearer used to
send it, the format of the �nal BLE packet will be one or another. Figure 2.13 illustrates the
�elds of the Network PDU, and they are brie�y explained below:

Octet 5Octet 3Octet 0
7 0 7 0

7 07 0

Transport PDU

7 0
Octet 4

7 0

NID TTL Sequence Number (SEQ) Source Address (SRC)

Destination Address (DST) Network MIC

Octet 1
7 0

Octet 2
7 0

Octet 6
7 0

Octet 7
7 0

Octet 8
7 0

IV
I

C
T

L

Encrypted and Authenticated

Obfuscated

Figure 2.13: Network PDU �elds.

• Initialisation Vector Index (IVI), the least signi�cant bit of the Initialisation Vector
(IV) used to encrypt and authenticate the Network PDU.

• Network Key Identi�er (NID), the 7-bit identi�er of the Network Key from which the
Encryption Key and the Privacy Key used to authenticate and encrypt, respectively,
the Network PDU were generated.

• Network Control (CTL), a 1-bit value that indicates whether the message is a Control
Message or an Access Message.

• TTL, a 7-bit value used to limit the maximum number of packet hops through the
network.

33

2.3. Bluetooth mesh

• Sequence Number (SEQ), 24-bit value which, combined with the IV Index, shall be
unique for each Network PDU, protecting against replay attacks.

• Source Address (SRC), 2-byte address to identify the element that originated the Net-
work PDU.

• Destination Address (DST), 2-byte address to identify the element (or group of ele-
ments) that the Network PDU is directed towards.

• Transport PDU: data received from the Transport Layer, which is not changed by the
Network Layer. The Transport PDU and the Network Message Integrity Check (MIC)
shall be a maximum of 160 bits.

• Network MIC: 32-bit or 64-bit (depending on the CTL bit) �eld which authenticates
that the DST and Transport PDU �elds have not been modi�ed.

Network Layer Behaviour

When a message is received by a bearer and has passed the input �lter, it is delivered to
the Network Layer. In this layer, the NID value of the packet is checked to match one
or more NIDs In that case, the message is deobfuscated and decoded using the Privacy
and Encryption Keys relating to the matched Network Key, respectively. If the message
authenticates the Network MIC, the addresses are valid, and the packet is not yet in message
cache, the message is forwarded to the Lower Transport Layer.

Additionally, if Relay feature is supported and enabled, the TTL value has a value of 2
or greater, and the DST �eld is not a unicast address of an element of this node, then the
TTL �eld is decremented, maintaining the rest of the original values, and the message is
again encrypted, obfuscated and delivered to the Bearer Layer. Figure 2.14 represents the
�owchart of an incoming Network PDU.

When a message is transmitted by an element of the device, it crosses the Network
Layer. Although some �elds are de�ned by upper layers, the Network Layer is responsible
for setting the rest of them, namely the IVI, the NID and the SEQ. Furthermore, this layer
encrypts the Transport PDU, calculating the Network MIC.

2.3.2.3 Transport Layer

The Transport Layer is split into the Lower Transport Layer and the Upper Transport Layer.

The Lower Transport Layer segments and reassembles Upper Transport Layer PDUs if
necessary. These PDUs include the �elds needed to identify a single/segmented packet and
to reassemble whether required.

The Upper Transport Layer encrypts and authenticates Access Layer messages using the
Application Key con�gured for the speci�c model or the Device Key, and is also responsible

34

Chapter 2. Background

NID is

known?

Add to Network cache

Deobfuscate and

decrypt packet

Discard packet

Forward to Transport

Layer

Relay packet

Packet received by

Mesh Bearer

END

NO

YES

YES

YES

YES

YES

NO

NO

NO

NO

A Network Key

verifies MIC?

SRC and DST

valid?

Packet in

cache?

Is Relay feature

enabled?

Figure 2.14: Incoming Network PDU Processing Flow [17].

for the Friendship mechanism. The Upper Transport Layer PDU contains the encrypted
Access Layer PDU and the generated MIC.

2.3.2.4 Access Layer

The Access Layer de�nes how higher layers (applications) can use the Upper Transport
layer, de�ning the format of the application data. This layer also de�nes and controls the
security aspect (encryption and decryption) of the Upper Transport Layer. Moreover, it
checks whether the application data has been received in the correct context (regarding
Network Key and Application Key), before sending it to the upper layer.

2.3.2.5 Mesh Model Layer

The Mesh Model Layer is usually divided into Foundation Model Layer and Model Layer.
Both layers de�ne di�erent models, messages and states: the Foundation Model Layer
de�nes those required to con�gure and manage the mesh network, while the Model Layer

35

2.3. Bluetooth mesh

de�nes those used to standardise the operation of the di�erent use cases. The Foundation
Models are de�ned in [17], while models for some of the most typical use cases are de�ned
in the Bluetooth Mesh Model speci�cation [18].

2.3.3 Bluetooth mesh Security

Bluetooth Mesh uses the Advanced Encryption Standard-Counter with a Cipher Block
Chaining-Message Authentication Code (AES-CCM) algorithm to secure messages at two
di�erent layers: at the Upper Transport Layer and at the Network Layer. The Upper Trans-
port Layer uses the Application Key to encrypt and authenticate access payloads received
from the Access Layer. The Network Layer uses the Encryption Key to encrypt and au-
thenticate, as well as the Privacy Key to obfuscate di�erent �elds of Network PDUs, as
shown in Figure 2.13. Both encryption and privacy keys are derived from the Network Key
received in the provisioning procedure (see Section 2.3.4) using the Advanced Encryption
Standard - Cipher Block Chaining Message Authentication Code (AES-CMAC) algorithm,
among others, as de�ned in Sect. 3.8.2.6 in [17].

This double encryption-authentication system permits the data to remain protected not
only from external attacks (using theNetwork Key) but also from network devices which can
rely these messages but are not authorised to access its speci�c data (using the Application
Key). Additionally, the header of all network messages is obfuscated to hide identifying
information, while the use of the IVI and the SEQ �elds provides protection against replay
attacks.

2.3.4 Provisioning Procedure

The provisioning procedure is the fundamental process that permits a BLE device to take
part in a Bluetooth mesh. In other words, through this process, an unprovisioned device
becomes a mesh node. The provisioning data received by the unprovisioned device in this
process include a network key, the current IV and the unicast address for each element. All
these data are necessary to correctly send and receive messages in the mesh network: For
this reason, they are securely exchanged over an insecure medium, using di�erent encryp-
tion algorithms, which are presented later.

The device responsible for managing this process is called a provisioner, and is usually a
mobile computing device. Each mesh network must have at least one provisioner, although
multiple provisioners may be used (coordinated and sharing data).

When provisioning an unprovisioned device, the Provisioning Bearer needs to be estab-
lished between this device and the provisioner. The unprovisioned device can be identi�ed
using its Device UUID. After that, the provisioner and unprovisioned device establish a
shared secret using the Elliptic Curve Di�e-Hellman (ECDH) protocol. This protocol en-
ables devices to authenticate and encrypt communications, using a key derived from the
shared secret.

36

Chapter 2. Background

The provisioning protocol uses a layered architecture, which is shown in Figure 2.15.
This protocol de�nes the PDUs transmitted in the communication between the provisioner
and an unprovisioned device during this process, using the Generic Provisioning Layer.
This layer de�nes the encapsulation of the provisioning PDUs in transactions, which can
be segmented and reassembled. Finally, these transactions are sent over a Provisioning
Bearer, which de�nes how communication is established, permitting the transactions to be
sent from the Generic Provisioning Layer to a single device.

Provisioning

Protocol

Transport

Bearer

Provisioning

Bearer Layer

Provisioning PDUs

Advertising

PB-ADV PB-GATT

Mesh Provisioning

Service

Proxy PDU
Generic

Provisioning Layer

Figure 2.15: Provisioning Protocol Stack.

This section details the entire Provisioning protocol, giving a complete view of this
process. To this end, this section is divided into the following parts: Provisioning Bearer
Layer, where the two di�erent bearers are exposed; Generic Provisioning Layer, which
details the Generic Provisioning PDUs (Transport Layer); and Provisioning Protocol, where
the entire packet exchange is described.

2.3.4.1 Provisioning Bearer Layer

Two di�erent Provisioning Bearers are de�ned in Bluetooth mesh speci�cation, depending
on the BLE communication used: PB-ADV, over the BLE advertising channels; and PB-
GATT, which uses Proxy PDUs within a point-to-point connection.

PB-ADV

PB-ADV permits the provisioner to provision a device using Generic Provisioning PDUs in
advertisement packets over the advertising channels. The Advertising Type �eld in these
packets is 0x29, to indicate it is a PB-ADV packet. The PDU of PB-ADV packets has three
di�erent �elds:

• Link ID: This 4-octet �eld is used to identify a link between the provisioner and an
unprovisioned device. Since the broadcast transmissions used in this type of provi-
sioning do not inherently establish a session, it is provided through the Link Estab-

37

2.3. Bluetooth mesh

lishment procedure described below. Speci�c messages are de�ned to establish and
terminate the link between a provisioner and a device.

• Transaction Number: This one-octet value identi�es each individual Generic Pro-
visioning PDU. When a PDU is segmented, all segments use the same Transaction
Number. The �rst transaction sent by the provisioner uses the Transaction Number
0x00, while the �rst Transaction Number used by an unprovisioned device is 0x80. In
both cases, this number is increased by one for each new transaction. In the case of
Transaction ACKs, the Transaction Number is set to the same value as the transaction
acknowledged.

• Generic Provisioning PDU: the �rst octet of this �eld contains the Generic Provision-
ing Control Format, which indicates the Generic Provisioning PDU Type. The dif-
ferent types are: Transaction Start, Transaction Acknowledgment, Transaction Con-
tinuation and Provisioning Bearer Control. These types are explained later. The other
�elds in the Generic Provisioning PDU depend on the type, so they are presented in
their corresponding sections.

When PB-ADV is used, advertisement packets must be non-connectable undirected ad-
vertising events.

Finally, to ensure the reception of most incoming Generic Provisioning PDUs, devices
should perform passive scanning with a duty cycle as close to 100% as possible. This means
that the duration of the scan window should be as close to the duration of the scan interval
as possible.

PB-GATT

PB-GATT is used to provision a device through Proxy PDUs, encapsulating the Provisioning
PDUs within the Mesh Provisioning Service. This bearer enables devices to be provisioned
when the provisioner or the unprovisioned device does not support the PB-ADV. However,
PB-GATT requires the unprovisioned device to have the Mesh Provisioning Service.

The Mesh Provisioning Service permits a provisioner to provision a device, enabling
this device to take part in the mesh network. This service has two di�erent characteristics:
Mesh Provisioning Data In and Mesh Provisioning Data Out. The Mesh Provisioning Data
In characteristic is used by the provisioner (Provisioning Client) to send a Provisioning PDU
encapsulated in a Proxy PDU to the unprovisioned device (Provisioning Server). The Mesh
Provisioning Data Out characteristic is used to notify and send a Provisioning PDU (also
encapsulated in a Proxy PDU) from a Provisioning Server to a Provisioning Client.

Mesh Provisioning Data In and Mesh Provisioning Data Out characteristic values are
both 66 octets long, providing enough space for the longest Proxy PDU containing a Provi-
sioning PDU. However, if the ATT Maximum Transmission Unit (MTU) negotiated in the
connection is less than the size required by a Proxy PDU, transmissions need to be frag-

38

Chapter 2. Background

mented and reassembled by lower layers. Each PDU must be reassembled before being
processed by the GATT pro�le.

Bluetooth mesh speci�cation recommends establishing the connection interval between
250 and 1000 milliseconds. This enables devices to perform calculations with a high com-
putational cost (such as Di�e-Hellman shared secret, or the di�erent keys used by security
algorithms) in a low power operation mode, avoiding the energy waste to maintain an idle
link.

This service and its characteristics are compatible with BLE devices using Bluetooth
Core Speci�cation 4.0 or later. However, not all BLE devices include this service. Some of
them can be upgraded easily, but in other cases, reprogramming the BLE chip is necessary.

2.3.4.2 Generic Provisioning Layer

As already explained, the di�erent Provisioning PDUs used in the provisioning process are
encapsulated in transactions, which can be segmented and reassembled. The Generic Pro-
visioning Layer de�nes the di�erent Generic Provisioning PDUs. The last two signi�cant
bits of the �rst byte of the Generic Provisioning PDU denote the Generic Provisioning Con-
trol Format (GPCF), which indicates its type. The corresponding values of the GPCF �eld
for each PDU are shown in Table 2.1.

Table 2.1: Generic Provisioning Control Format values for each Generic Provisioning PDU.

Value Generic Provisioning PDU
0b00 Transaction Start
0b01 Transaction Acknowledgment
0b10 Transaction Continuation
0b11 Provisioning Bearer Control

Transaction Start PDU

The Transaction Start PDU is used to start the transmission of a message. This can be a
complete or a segmented message. Figure 2.16 illustrates the �elds of a Transaction Start
PDU. These �elds are:

• SegN (6-bit size), which indicates the number of segments of the transaction. When
it is a single-segment transaction, the SegN is zero.

• The GPCF value (2-bit size). That corresponding to Transaction Start PDU is 0b00.

• Total Length (2-octet size), in octets, of the complete Provisioning PDU, considering
all segments.

• Frame Check Sequence (FCS) (1-octet size), calculated following the 3GPP TS 27.010
protocol [44] and considering the complete Provisioning PDU.

39

2.3. Bluetooth mesh

• The Data �eld of the Transaction Start PDU, which contains the segment 0 of the
transaction.

Octet 3Octet 2Octet 1

GPCF

SegN Data0 0

Octet 0
7 0 7 0

Total Length FCS

7 07 0

Figure 2.16: Transaction Start PDU.

Transaction Acknowledgment PDU

The Transaction Acknowledgment PDU is used to acknowledge an entire transaction, re-
gardless of its number of segments. The �elds of this PDU are shown in Figure 2.17, and
they are:

• A 6-bit padding, which shall be 0b000000.

• The corresponding 2-bit GPCF, which is 0b01.

GPCF

Padding 0 1

Octet 0
7 0

Figure 2.17: Transaction Acknowledgment PDU.

Transaction Continuation PDU

The Transaction Continuation PDU is used to transmit additional segments of a Provision-
ing PDU. When the length of a particular Provisioning PDU is greater than the length of
the data �eld in the Transaction Start PDU, it is divided into segments. The �rst segment is
sent in a Transaction Start PDU, while the rest of the segments are sent using Transaction
Continuation PDUs. Figure 2.18 shows the �elds of the Transaction Continuation PDU.
These �elds are:

• The Segment Index, a 6-bit �eld which indicates the position of the segment in the
current transaction.

• The 2-bit GPCF corresponding to the Transaction Continuation PDU, which is 0b10.

• The Data �eld in which the segment is transported.

Provisioning Bearer Control

The Provisioning Bearer Control PDU allows sessions to be managed on bearers that have
no inherent session management which is the case of the PB-ADV bearer. This PDU has
the following �elds, shown in Figure 2.19:

40

Chapter 2. Background

GPCF

Segment
Index Data1 0

Octet 0
7 0

Figure 2.18: Transaction Continuation PDU.

• The Bearer Operation Code is a 6-bit �eld that indicates the operation code of the
PDU. Di�erent operation codes are de�ned in Bluetooth mesh speci�cation: Link
Open (0x00), Link ACK (0x01) and Link Close (0x02). All these operations are de-
scribed in next sections.

• The 2-bit GPCF corresponding to Provisioning Bearer Control PDU, which is 0b11.

• A variable-length �eld whose parameters are related to the Bearer Operation Code
of the PDU.

GPCF

Bearer
Opcode Parameters1 1

Octet 0
7 0

Figure 2.19: Provisioning Bearer Control PDU.

2.3.4.3 Provisioning Protocol

The complete provisioning protocol can be divided into seven phases, enumerated below.
In case of using the GATT Bearer, which has an inherent session management, the steps
related to the Link Establishment Procedure (steps 2 and 7) are not necessary. However, in
that case, the establishment of a BLE connection between the provisioner and the unprovi-
sioned device is necessary .

1. Beaconing.

2. Link Establishment Procedure: Link Open.

3. Invitation and Capabilities.

4. Exchange Public Keys.

5. Authentication and Con�rmation.

6. Distribution of provisioning data.

7. Link Establishment Procedure: Link close.

In each of these phases, one or more messages with provisioning PDUs are interchanged
between the provisioner and the unprovisioned device. Bluetooth mesh speci�cation de�nes
ten di�erent types of provisioning PDUs:

41

2.3. Bluetooth mesh

1. Provisioning Invite.

2. Provisioning Capabilities.

3. Provisioning Start.

4. Provisioning Public Key.

5. Provisioning Input Complete.

6. Provisioning Con�rmation.

7. Provisioning Random.

8. Provisioning Data.

9. Provisioning Complete.

10. Provisioning Failed.

Figure 2.20 illustrates the entire process, which is detailed below.

Beaconing

Beaconing or advertising process has been widely used in BLE for di�erent applications.
It is used by peripheral devices, which broadcast advertising packets with basic informa-
tion, allowing a central device to establish a client-server connection [6]. This communic-
ation type is also used for BLE devices working as beacons. BLE beacons broadcast always
the same packet, permitting other devices to know their approximate location, so they are
widely used in solutions for indoor localisation. Advertising packets are also used by BLE
devices to broadcast data among them. The Standard Bluetooth mesh [17] transmit and
forward data in this way. However, in this phase of the provisioning process, it is used
similarly to establish a point-to-point connection: BLE unprovisioned devices send packets
containing relevant information to allow the provisioner to start the process.

When the PB-ADV is supported by an unprovisioned device, this sends speci�c ad-
vertising packets, known as unprovisioned device beacons. These beacons are used by a
provisioner to discover unprovisioned devices. Figure 2.21 illustrates the advertising data
�eld of an unprovisioned device beacon. It includes the following �elds:

• 1-byte Mesh Beacon Length, which, similarly to other advertising types, indicates the
length of the Advertising Data �eld.

• 1-byte Mesh Beacon ID, identi�er corresponding to Mesh Beacon Type (0x2B).

• 1-byte Unprovisioned Device Beacon Type, one-byte �eld indicating that the beacon
is transmitted by an unprovisioned device (0x00).

• 16-byte Device UUID, used to identify the beaconing device.

42

Chapter 2. Background

Link Close (Reason)

Provisioning Data

Provisioning Data ACK

Provisioning Complete

Provisioning Complete ACK

(enc. with session key)

Provisioning Random

Provisioning Random ACK

Provisioning Confirmation ACK

Provisioning Confirmation

Provisioning Confirmation ACK

Provisioning Random

Provisioning Random ACK

Provisioning Confirmation

(mode = no OOB Public Key)
Provisioning Start

Provisioning Capabilities ACK

Unprovisioned Device Beacon

(UUID, OOB info)

Provisioner Unprovisioned Device

Scan

Provisioner

chooses to

provision

device

Link Open (UUID)

Link ACK Link Establishment

Procedure

Provisioning

Protocol

Provisioning Invite

Provisioning Invite ACK
Invitation & Capabilities

Public Key ACK
Exchanging

Public Keys

(No OOB)

Provisioning Capabilities

Provisioning Public Key

Provisioning Start ACK

Public Key ACK

Provisioning Public Key

Authentication

(No OOB)

& Confirmation
Check

Confirmation

Check

Confirmation

Distribution of

provisioning Data

Calculate

Session Key

Calculate

Session Key

Device

Provisioned

Device

Provisioned

Calculate

ECDH

Calculate

ECDH

Link Establishment Procedure

Beaconing

(3 segments)

(3 segments)

Figure 2.20: Complete Provisioning Protocol.

43

2.3. Bluetooth mesh

• 2-byte OOB �eld with information about the possibility of using OOB authentication
in the provisioning process.

• 4-byte Uniform Resource Identi�er (URI) Hash, �eld with the �rst 4 bytes of the result
of the hash function to the URI that can be sent by the unprovisioned device. This
URI relates to the OOB information, and the URI Hash �eld enables the provisioner
to associate the URI with the received unprovisioned device beacon.

URI HashDevice UUID

Unprovisioned Device beacon type (0x00)

Advertising Data (Mesh Beacon)

Mesh Beacon Length

Mesh Beacon ID (0x2B)

OOB

1 octet

Figure 2.21: Unprovisioned Device Beacon.

If the unprovisioned device uses the PB-GATT bearer, the provisioning process is real-
ised through a BLE GATT service denominated Mesh Provisioning Service. In the beacon-
ing phase, the unprovisioned device broadcasts advertising packets including the identi�er
of this service, as well as the necessary data to identify the device itself. Figure 2.22 shows
the Advertising Data �eld of an advertisement packet sent by an unprovisioned device. This
is divided into three �elds. As indicated in the BLE speci�cation, the two �rst bytes of each
of these �elds indicates the length (one byte) and the advertising data type (one byte), which
is de�ned by Bluetooth mesh speci�cation. In this beacon packet, the following �elds can
be found:

• Flags, a 3-byte �eld that contains the length, the data type and the �ag values.

• Complete List of 16-bit Service Class UUIDs. This 4-byte �eld includes the length, the
data type and the value corresponding to the Mesh Provisioning Service (0x1827).

• Service Data 16-bit UUID, which contains the length, the data type and the value
itself. This value is divided into:

– Number assigned by the Bluetooth mesh speci�cation to Mesh Provisioning Ser-
vice: 0x1827.

– 6-byte device UUID, which is used to identify the advertising device (see Section
3.10.3 in [17]).

– 2-byte OOB information, which gives information to the provisioner about the
possibilities of use OOB authentication in the provisioning process.

44

Chapter 2. Background

Flags

Complete List of 16-bit Service Class UUIDs

Advertising Data

Service Data 16-bit UUID: Mesh Provisioning Service

1 octet

Figure 2.22: Advertising Packet sent by Unprovisioned Devices.

Link Establishment Procedure: Link Open

The Link Establishment procedure enables the provisioner to establish a link or session with
an unprovisioned device. This session is established when the used bearer has no inherent
session management, such as PB-ADV bearer. While this link is open, a randomly generated
Link ID is used to identify the session, being included in every provisioning packet. This
procedure allows the provisioner and unprovisioned devices to send provisioning messages
avoiding interference between di�erent sessions.

The provisioner shall scan the network for unprovisioned devices, which are sending
unprovisioned device beacons. As explained before, these beacons identify devices through
their Device UUIDs. When the provisioner receives a beacon from an unprovisioned device,
it sends an Open Link message to establish the session. This message is encapsulated in
a Generic Provisioning PDU (see Figure 2.23) with the recently created Link ID and the
unprovisioned device UUID, and sent in a non-connectable advertising packet.

GPCF: 0b11 (Provisioning Bearer Control)

Generic Provisioning PDU

16-byte Device UUID

Bearer Operation Code: 0b000000 (Link Open)

Octet 0 Octet 1 Octet 16
7 0 7 0 7 0

1 10 0 0 0 0 0

Figure 2.23: Generic Provisioning PDU for Link Open Message.

When a Link Open message is received by an unprovisioned device, unless it is already
being provisioned, it shall accept the link establishment sending a Link ACK message, using
the same Link ID. The Generic Provisioning PDU of this transaction is only one byte in
length, and contains the GPCF (in the two less signi�cant bits) and the Bearer Operation
Code (in the six more signi�cant bits). The GPCF is the same for every Provisioning Bearer
Control (0b11), and the Bearer Operation Code for Link ACKs is 0b000001. This is illustrated
in Figure 2.24.

Invitation and Capabilities

When the session between the provisioner and the unprovisioned device is established us-
ing PB-GATT bearer or the link establishment procedure in PB-ADV bearer, the provisioner
sends a Provisioning Invite PDU to indicate to the unprovisioned device that the provision-
ing process is starting. This PDU has two �elds: the one-octet Provisioning PDU Type (0x00

45

2.3. Bluetooth mesh

GPCF: 0b11 (Provisioning Bearer Control)

Generic Provisioning

PDU

0 0 0 0 0 1 1 1

Bearer Operation Code: 0b000001 (Link ACK)

Octet 0
7 0

Figure 2.24: Generic Provisioning PDU for Link ACK Message.

for Provisioning Invite); and the one-octet �eld denominated Attention Duration. The At-
tention Duration indicates the Attention Timer, which determines, if enabled, how long
the primary element of the unprovisioned device shall attract the human’s attention in a
human-recognisable way. After receiving the Provisioning Invite, the unprovisioned device
should acknowledge it with a Transaction ACK.

Once the unprovisioned device has received the Provisioning Invite and acknowledged
it, it sends a Provisioning Capabilities PDU. The length of this PDU is 12 bytes, and it
includes di�erent information about the unprovisioned device capabilities used in the next
provisioning phases. All �elds of this PDU type are enumerated below:

1. PDU Type (one-octet size), which for the Provisioning Capabilities PDU must be 0x01.

2. Number of Elements (one-octet size) supported by the device, required to calculate
the range of addresses assigned to the unprovisioned device.

3. Algorithms (two-octet size), which refer to the security algorithms supported by the
unprovisioned device. Currently, the only algorithm included in the Bluetooth mesh
speci�cation is the P-256 Elliptic Curve algorithm [45].

4. Public Key Type (one-octet size) indicates whether the device supports the use of the
OOB mechanism to exchange the Public Keys.

5. Static OOB Type (one-octet size) noti�es whether the device supports the use of static
OOB information.

6. Output OOB Size (one-octet size) refers to the maximum number of digits when the
Output OOB Action �eld is Output Numeric.

7. Output OOB Action (two-octet size) represents actions supported for Output OOB.
The Bluetooth mesh speci�cation de�nes the following actions: blink, beep, vibrate,
numeric and alphanumeric.

8. Input OOB Size (one-octet size) indicates the maximum number of digits to be entered
when the Input OOB Action �eld is Input Number.

9. Input OOB Action (two-octet size) refers to actions supported for Input OOB. Four
di�erent actions are de�ned in the Bluetooth mesh speci�cation, which are: push,
twist, input number and input alphanumeric.

46

Chapter 2. Background

All �elds referring to OOB information are related to the Authentication phase, which
is explained below. When the Provisioning Capabilities transaction is received, it should
be acknowledged by the provisioner.

Provisioning Start and Exchanging Public Keys

The objective of this phase is to exchange the public keys between the provisioner and the
unprovisioned device. These keys permit the calculation of the ECDH shared secret, which
is used to exchange secret keys over an insecure channel.

In the Bluetooth mesh provisioning procedure, the two most popular encryption schemes
are used: symmetric encryption (also called secret key encryption) and asymmetric encryp-
tion (or public key encryption), which are described brie�y below:

• Symmetric encryption involves using the same secret key to cipher and decipher
information. For this reason, both sender and receiver must know this secret key.
One example of this type of encryption is AES [46]. AES-128 (AES with a key size of
128 bits) is used in the last phases of the Bluetooth mesh provisioning procedure and
to encrypt Bluetooth mesh transmissions. This algorithm is e�cient in both software
and hardware, making it perfect for execution in embedded chipsets, which most BLE
devices are based on. However, the main weakness of this type of algorithm is that it
is di�cult to securely exchange the shared secret key over an insecure channel.

• Asymmetric encryption uses a related key pair to encrypt and decrypt messages: the
public key and the private key. The public key permits anyone to cipher a message,
being freely available for all devices. The private key is kept secret, and allows the
receiver to decrypt messages previously encrypted with the corresponding public
key. The method leverages this to send public keys over insecure channels, because
they are only used for encryption and not for decryption. However, the asymmetric
encryption is slower than the symmetric one, and requires more processing power
to both encrypt and decrypt messages. Asymmetric encryption is used in Bluetooth
mesh provisioning to solve the symmetric encryption problem of securely exchanging
secret keys. ECDH is an anonymous key agreement protocol based on asymmetric
cryptography that allows two devices, each having an elliptic curve public-private
key pair, to establish a shared secret over an insecure channel. Each device generates
this shared secret key using the public key from the other device and its own private
key, obtaining both devices exactly the same result.

Bluetooth mesh uses both symmetric and asymmetric encryption. The symmetric en-
cryption algorithm AES-128 is used to encrypt and decrypt every mesh message using the
Network Key, due to its low computational cost. The Network Key is distributed by the
provisioner in the provisioning process. The Network Key transmission is performed se-
curely over an insecure channel using asymmetric encryption: both the provisioner and
the unprovisioned device generate a public-private key pair, exchanging the public keys.
The provisioner always sends its public key in a provisioning message. However, there are

47

2.3. Bluetooth mesh

two di�erent possibilities for the unprovisioned device: over a Bluetooth link or through an
OOB tunnel, depending on whether or not the unprovisioned device supports this feature.
Although the use of an OOB tunnel provides extra security, it is not a hard requirement,
because only using the public key cannot compromise the network security, as explained
before.

In the Provisioning Start and Exchanging Public Keys phase, the provisioner sends a
Provisioning Start PDU to indicate the options it has selected from the Provisioning Capab-
ilities PDU sent by the unprovisioned device. The Provisioning Start PDU has the following
parameters:

1. PDU type (one-octet size), being the Provisioning Start PDU identi�er 0x02.

2. Algorithm (one-octet size), which indicates the algorithm selected for provisioning.

3. Public Key Type (one-octet size), setting whether the Public Key of the unprovisioned
device should be sent OOB.

4. Authentication Method (one-octet size), which selects the authentication method
used in the next phase.

5. Authentication Action (one-octet size), determining the action associated to the Au-
thentication Method if necessary.

6. Authentication Size (one-octet size), which determines the number of characters to
complete the Authentication Action, if necessary.

When the unprovisioned device receives the Provisioning Start transaction, it sends
the corresponding ACK. Afterwards, the public keys are exchanged. If the unprovisioned
device uses OOB, the provisioner sends its public key over a Bluetooth link, while the un-
provisioned device sends its public key via an OOB tunnel; if not, both public keys are sent
through the BLE technology. These keys are transported using the Provisioning Public Key
PDU, which has the following �elds:

1. PDU type (one-octet size), being the type assigned to the Provisioning Public Key
PDU 0x03.

2. Public Key X (32-octet size), which contains the X component (32 �rst bytes) of the
public key.

3. Public Key Y (32-octet size), which contains the Y component (32 last bytes) of the
public key.

Due to the total length of this PDU, it is divided into three di�erent segments to be
transmitted in Bluetooth mesh provisioning packets.

Once public keys have been exchanged, both provisioner and unprovisioned device cal-
culate the shared secret key using the ECDH protocol. This protocol allows two devices to

48

Chapter 2. Background

calculate the same shared secret key each one using its own private key and the public key
from the other device, as shown in the Equation 2.1:

���� (42A4C 4~ = % − 256 (?A8E0C4 :4~, ?44A ?D1;82 :4~) (2.1)

where % − 256 represents the P-256 elliptic curve de�ned in [45].

Authentication and Con�rmation

This phase has two di�erent purposes: authentication of the unprovisioned device and the
provisioning con�rmation. For authentication, three di�erent approaches are de�ned, de-
pending on what OOB mechanism is used to authenticate the unprovisioned device: Output
OOB, Input OOB and Static or No OOB,

Regardless of the authentication method, in the check con�rmation value operation
each device generates a 16-byte random number, known as RandomProvisioner ('0=3><%)
and RandomDevice ('0=3><�). Each of these numbers is concatenated to the 16-byte Auth-
Value (the value input by the user if output OOB or input OOB method is used, static or zero
value in other case). Finally, these 32-byte numbers are encrypted with theCon�rmationKey
using the AES-CMAC algorithm, generating the Con�rmationProvisioner (�>=5 8A<0C8>=%)
and Con�rmationDevice (�>=5 8A<0C8>=�), respectively (see Figure 2.25), as shown in Equa-
tion 2.2 and Equation 2.3:

�>=5 8A<0C8>=% = ��(−�"���>=5 8A<0C8>= 4~ ('0=3><% | |�DCℎ+0;D4) (2.2)

�>=5 8A<0C8>=� = ��(−�"���>=5 8A<0C8>= 4~ ('0=3><� | |�DCℎ+0;D4) (2.3)

The AES-CMAC [47] is a keyed hash function based on a symmetric key block cipher,
such as the AES. It provides stronger data integrity than a checksum or an error-detecting
code, since CMAC is designed to detect intentional and unauthorised modi�cations of the
data, as well as accidental modi�cations, while a checksum or an error-detecting code only
allows us to detect accidental modi�cations of the data. In this phase of the provisioning
process, AES-CMAC is used to generate the �>=5 8A<0C8>=% and the �>=5 8A<0C8>=� , en-
crypting the '0=3><% and '0=3><� , respectively, with the Con�rmationKey, as well as to
obtain this key.

The Con�rmationKey is generated using several rounds of AES-CMAC and SALT al-
gorithms. The AES-CMAC is presented below, while the SALT algorithm is an AES-CMAC
using a 128-bit ZERO key. As seen in Figure 2.25, the Con�rmationKey is generated as
shown in Equation 2.4:

�>=5 8A<0C8>= 4~ = ��(−�"�� 4~ (”?A2:”) (2.4)

49

2.3. Bluetooth mesh

where “prck” is the string used as input value, while the Key is computed as shown in
Equation 2.5:

 4~ = ��(−�"���>=5 8A<0C8>= (0;C (���� (ℎ0A43 (42A4C) (2.5)

and the Con�rmation Salt is calculated using the Equation 2.6:

�>=5 8A<0C8>= (0;C = ��(−�"��/4A> 4~ (�>=5 8A<0C8>= �=?DCB) (2.6)

being the Zero Key a 128-bit value where all bits are 0, and the Con�rmation Inputs the
concatenation of the previous provisioning PDU values, as well as both provisioner and
device public keys.

Note that the�>=5 8A<0C8>= 4~ is calculated using a double AES-CMAC process, where
the output obtained in the �rst calculation is used as key in the second operation. This
operation is called k1 function in Bluetooth mesh speci�cation.

(Input)

||

Provisioning Invite PDU Value

Provisioning Capabilities PDU Value

Provisioning Start PDU Value

Public Key Provisioner

Public Key Device

Confirmation Inputs (145 bits)

SALT

Confirmation Salt (128 bits)

ECDH Shared Secret (256 bits)

“prck” (32 bits)

Confirmation Key (128 bits)

AES

CMAC

||

Authentication Value (128 bits)

Random Device (128 bits)

Random Provisioner (128 bits)

Confirmation Device (128 bits)

Confirmation Provisioner (128 bits)

(Key)

(Key)

(Key)

(Input)

(Input)

AES

CMAC

AES

CMAC

Figure 2.25: Con�rmation Provisioner and Con�rmation Device generation �owchart.

Once the Con�rmation Values are calculated, the provisioner and unprovisioned device
exchange them using Provisioning Con�rmation PDUs. These PDUs have two di�erent
�elds:

• PDU type (1-octet size), being the type assigned to the Provisioning Con�rmation
PDU 0x05.

• Con�rmation value (16-octet size).

50

Chapter 2. Background

Subsequently, the provisioner sends its random number, the same one used to generate
the�>=5 8A<0C8>=% . This allows the unprovisioned device to recalculate the�>=5 8A<0C8>=% ,
and to verify whether it matches with the �>=5 8A<0C8>=% previously received. If the two
values are not the same, the unprovisioned device aborts the provisioning process sending
a Provisioning Failed message. In case of obtaining the same values, the unprovisioned
device sends its original random value.

When the provisioner receives the random number from the unprovisioned device, it
repeats the con�rmation checking, aborting the process if the recalculated con�rmation
device value does not match with the previously received.

The random values are transmitted in Provisioning Random PDUs, which have two
di�erent �elds:

• PDU type (1-octet size), being the type assigned to this PDU 0x06.

• Random number (16-octet size).

Distribution of Provisioning Data

Once the previous steps are complete, the bearer is secure enough to continue with the most
important step in the provisioning process: deriving and distributing the provisioning data.
The provisioning data is generated by the provisioner, and contains the following �elds, all
of which are necessary to include the unprovisioned device in the mesh network:

• The Network Key (16-octet size) is shared across all nodes in the network, securing
communications at the network layer. Possession of a Network Key is the require-
ment for a node to take part in the Bluetooth mesh network, enabling an unprovi-
sioned device to become a mesh node. For that reason, the secure transmission of the
Network Key is one of the primary objectives of the provisioning process.

• Device Key (16-octet size), a security key generated in the provisioning process. This
key is possessed by only the provisioner and the corresponding mesh node.

• Key Index (2-octet size), used to identify the network keys shortly, allowing these
keys to be managed more e�ciently given their length.

• Flags (1-octet size), bitmask used to indicate the current status of the associated key
or IV.

• IV Index (4-octet size), which provides entropy when message nonces are calculated.

• Unicast Address (2-octet size) assigned to the primary element of the provisioned
node.

The provisioning data is encrypted using the Advanced Encryption Standard - Counter
with Cipher Block Chaining Message Authentication Code (AES-CCM) algorithm [48] to
distribute it securely. CCM is a generic authenticated encryption block cipher mode that is
de�ned to be used with 128-bit block ciphers such as AES-128.

51

2.3. Bluetooth mesh

The AES-CCM uses two additional parameters, known as Session Key and Session Nonce.
These are generated in the provisioner and the unprovisioned device (allowing the provi-
sion data to be encrypted and decrypted), as well as the Device Key, following the same
�owchart, illustrated by Figure 2.26.

||

AES

CMAC

Provisioning Invite PDU Value

Provisioning Capabilities PDU Value

Provisioning Start PDU Value

Public Key Provisioner

Public Key Device

Confirmation Inputs (145 bits)

SALT

Confirmation Salt (128 bits)

ECDH Shared Secret (256 bits)

AES

CMAC
“prsk” (32 bits)

Session Key (128 bits)

(Key)

(Input)

(Key)
(Different

Inputs)

Provisioning Salt (128 bits)

Random Provisioner (128 bits) Random Device (128 bits)

||

SALT

“prsn” (32 bits)

“prdk” (32 bits)

Session Nonce (128 bits)Device Key (128 bits)

Figure 2.26: Device Key, Session Key and Session Nonce generation �owchart.

As Figure 2.26 shows, �4E824 4~, (4BB8>= 4~ and (4BB8>= #>=24 are generated in
the same function, depending on the last input, as shown in Equation 2.7 (�4E824 4~),
Equation 2.8 ((4BB8>= 4~) and Equation 2.9 ((4BB8>= #>=24).

�4E824 4~ = ��(−�"�� 4~ (”?A3:”) (2.7)

(4BB8>= 4~ = ��(−�"�� 4~ (”?AB:”) (2.8)

52

Chapter 2. Background

(4BB8>= #>=24 = ��(−�"�� 4~ (”?AB=”) (2.9)

Where the 4~ is generated using the ECDH Shared Secret, as shown in Equation 2.10:

 4~ = ��(−�"��%A>E8B8>=8=6 (0;C (���� (ℎ0A43 (42A4C) (2.10)

Finally, the %A>E8B8>=8=6 (0;C is the result of the (0;C function, using the concatenation
of �>=5 8A<0C8>= (0;C , '0=3>< %A>E8B8>=4A and '0=3>< �4E824 values as input, as shown
in Equation 2.11 and Equation 2.12:

8=?DC = �>=5 8A<0C8>= (0;C | |'0=3>< %A>E8B8>=4A | |'0=3>< �4E824 (2.11)

%A>E8B8>=8=6 (0;C = ��(−�"��/4A> 4~ (8=?DC) (2.12)

where the Con�rmation Salt is the result of the Salt function of the Con�rmation Inputs,
which are the concatenation of di�erent values previously used in the provisioning process,
as explained in the previous phase.

After calculating these values, the provisioner sends the encrypted provisioning data in
a Provisioning Data PDU, which includes the following �elds:

• PDU Type (1-octet size), being the Provisioning Data PDU type 0x07.

• Encrypted Provisioning Data (25-octet size), which contains the provisioning data,
including the network key, the network key index, �ags, the IV Index and the assigned
unicast address of the primary element, all encrypted using the AES-CCM algorithm
with the Session Key and Session Nonce calculated.

• Provisioning Data MIC (8-octet size), used by the unprovisioned device to authentic-
ate and check the integrity of the Provisioning Data.

The Provisioning Data PDU is divided into two segments. When the unprovisioned
device receives both segments, it acknowledges the message. After that, the unprovisioned
device sends a Provisioning Complete PDU, which shall also be acknowledged by the provi-
sioner to indicate that the provisioning data has been successfully received and processed.
The Provisioning Complete PDU has only a 1-octet size �eld, the PDU Type, which is 0x08.

Link Establishment Procedure: Link Close

Finally, when the entire provisioning procedure is �nished, the session opened using the
Link Establishment Procedure is closed using a Link Close message. However, this message
is not only used for successful provisioning, and can be sent to indicate that the provisioning

53

2.4. Conclusions

transaction timed out or that the process failed. The link can be closed at any time after the
link establishment sending this packet.

A Link Close message is also encapsulated in a transaction, and its Generic Provisioning
PDU contains two di�erent parameters. The �rst byte indicates the type, containing the
GPCF (0b11, corresponding with the Provisioning Bearer Control) in the two less signi�cant
bits, and the Bearer Operation Code (0b000010, related with the Link Close) in the six more
signi�cant bits. The second byte refers to the reason why the process has been closed,
and it refer to: a successful provisioning, a timed out provisioning transaction and a failed
provisioning.

In contrast to Link Open message, the Link Close message is not acknowledged, so it is
sent at least three times to ensure a correct reception.

2.4 Conclusions

This chapter covered the background to this Doctoral Thesis. The �rst section presented
the new trends of IoT and Industry 4.0, as well as the relationship between them. These
trends are changing the requirements of communication networks, so these requirements
have been emphasised. Thus, the main challenge for wireless communication networks is
to ful�l the requirements of these trends: zero failure, total coverage and sustainability.

After that, the chapter provided an in-depth description of the communication stand-
ards we have worked with: BLE and Bluetooth mesh. BLE was the proposal of Bluetooth
for low consumption networks. However, despite the good performance of BLE in small
and medium scale networks, the requirements of Industry 4.0 demanded di�erent network
topologies. Therefore, in order to adapt to these requirements, the Bluetooth mesh spe-
ci�cation was released. This speci�cation provided BLE with the mesh topology, so widely
demanded in these types of applications

54

CHAPTER 3

Preliminary Evaluation: BLE
Topologies for Industry 4.0

This chapter presents a preliminary study conducted with di�erent BLE topologies, with
the aim of determining whether they are suitable for the new challenges of Industry 4.0.
To this end, di�erent experiments were carried out to evaluate the two ways of sending
information speci�ed by the BLE standard: establishing a point-to-point connection or
performing broadcast transmissions. With the launch of the CSR (Cambridge Silicon Ra-
dio, now Qualcomm Technologies International since acquired by Qualcomm) proprietary
mesh BLE topology, the CSRmesh, a new evaluation was carried out that allowed us to de-
termine the strengths and weaknesses of this proposal, verifying whether it ful�lled all the
requirements imposed by the new trends in IoT and IIoT.

This chapter �rst evaluates the topologies included in the BLE speci�cation and then
the evaluation of the CSRmesh proposal is presented.

3.1 BLE Standard Topologies Evaluation

This section presents the experiments carried out with the BLE standard topologies: point-
to-point connection and broadcast transmissions. This will give us a more complete picture
of how the BLE standard works, and enable us to choose the best option according to the
case of use. Waspmote devices (see Section A.1.1) were used to conduct the evaluation in
this section.

3.1.1 Coverage Range of Waspmote Devices

One of the �rst questions to be answered when talking about wireless network devices
is their range. Therefore, this section begins with a short evaluation of the range of the
devices used. The maximum distance at which two devices can transmit data is given by
the Transmission (TX) power and the sensitivity of the antenna, so this section has been

55

3.1. BLE Standard Topologies Evaluation

divided into two parts. The �rst part presents the evaluation carried out for two Waspmote
devices, while the second evaluation was carried out using a Waspmote device and a mobile
device, taking advantage of the excellent compatibility of BLE with this type of device.

3.1.1.1 Maximum Distance between Two Waspmote Devices

Two Waspmote devices were used to carry out this evaluation with three transmission
power settings: minimum (-23 dBm), medium (-10 dBm) and maximum (+3 dBm). Each ex-
periment was conducted 5 times. In each experiment, the distance between the two devices
was measured for di�erent Received Signal Strength Indicator (RSSI) ranges in line of sight,
that is, with no obstacles between them. Table 3.1 shows the average of the measures of
the di�erent TX powers according to the di�erent RSSI intervals.

Table 3.1: Maximum distances (in metres) for di�erent RSSI between two Waspmote
devices.

RSSI Minimum TX power Medium TX power Maximum TX power
Up to -40 dBm 0.1 0.2 1.5
Up to -60 dBm 4 7 32
Up to -80 dBm 23 33 175
Up to -100 dBm 40 110 350

To provide a context for the results obtained, the BLE speci�cation recommends estab-
lishing a connection with an RSSI signal greater than -60 dBm, although up to -80 dBm
may be acceptable. The results show that the increase in the transmission power implies
an increase in the range of the devices. However, it is necessary to �nd a balance between
the necessary distance and the established TX power, since the greater the TX power, the
greater is the battery consumption. Furthermore, if our network consists of several BLE
devices, using too much power will increase the possibility of collisions and interference
between packets, reducing the performance of the network.

3.1.1.2 Maximum Distance between a Waspmote Device and a Mobile Device

One of the most outstanding features of BLE is the possibility of transmitting data to mobile
devices such as smartphones or tablets, which have become everyday devices for a large
part of the population. However, these devices use di�erent antennas to the Waspmote
devices, with greater sensitivity. For this reason, it was proposed to repeat the previous
evaluation, but varying the receiver device. On this occasion the receiving device was an
HTC Nexus 9 Tablet [49]. Table 3.2 shows the results obtained in this experiment.

This experiment was carried out following the same steps as in the previous case: each
test was carried out �ve times, with the �nal result being the average of the results obtained.
Similarly, a distinction was established between the RSSI of the received packets, with up
to -80 dBm being the acceptable range for establishing a connection and transmitting data.

56

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

Table 3.2: Maximum distances (in metres) for di�erent RSSI between a Waspmote device
and a mobile device.

RSSI Minimum TX power Medium TX power Maximum TX power
Up to -40 dBm 0 0.1 1
Up to -60 dBm 0.6 1 6.5
Up to -80 dBm 2.5 4 19
Up to -100 dBm 23 82 215

The results show, in all cases, a shorter distance than in the previous case, where two
Waspmote devices were used. This is due to the di�erence between the antennas, as the one
used by the Waspmote devices has greater sensitivity than the one used in mobile devices,
which results in a greater range when sending and receiving data.

3.1.2 Packet Received in Broadcast Transmissions

As explained above, BLE provides the possibility of deploying two types of networks, de-
pending on whether or not a connection is established between the devices. In the case
of deploying a connectionless network, the devices known as broadcasters send broadcast
messages that will be received by devices known as observers. This type of network has
no restrictions on the number of devices, although it does not provide the mechanisms in
the speci�cation to send messages in a secure and/or acknowledged way (which can be
implemented over the BLE protocol).

This experiment was conducted to evaluate the PRR of these connectionless transmis-
sions. In this type of network, a number of parameters determine its performance, namely:

• Advertising Interval: time between two consecutive advertising or broadcast packets.

• Scan Interval: time between the start of two consecutive Scan Windows.

• Scan Window: time the device scans the network for packets that are being broad-
casted.

In order to carry out this experiment, these parameters were set close to the extremes,
to appreciate their behaviour in these cases. In addition, di�erent experiments were carried
out varying the number of advertising devices, thus verifying the in�uence of this number
on the results obtained.

Each of the experiments was carried out three times (showing the average of the three
executions). The duration of each execution was 3000 seconds (50 minutes), except for the
tests where the Advertising Interval was 20 ms, which had a duration of 300 seconds (5
minutes). This was because the packets received with eight broadcast devices in a longer
time were not easy to handle.

The results obtained for each of the experiments in this section are shown below. In all
these experiments, one node was in scanning mode, while the rest, whose number varied

57

3.1. BLE Standard Topologies Evaluation

between 1, 2, 4 and 8, were in advertising mode. Figure 3.1 shows the percentage of packets
received for an Advertising Interval of 20 ms; Figure 3.2 presents the results obtained for an
Advertising Interval of 1 s; in Figure 3.3 the percentage obtained for an Advertising Interval
of 5 s can be seen; and �nally, Figure 3.4 shows the percentage for the case in which the
Advertising Interval was 10 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

I=25
W=25

I=37.5
W=25

I=50
W=25

I=1000
W=1000

I=1500
W=1000

I=2000
W=1000

I=5000
W=5000

I=7500
W=5000

I=10000
W=5000

I=10000
W=10000

P
R

R

Scan Interval (I) and Scan Window (W) in milliseconds

Number of advertisers
 1 2 4 8

Figure 3.1: PRR for an observer receiving packets from a broadcaster transmitting with an
Advertising Interval of 20 ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

I=25
W=25

I=37.5
W=25

I=50
W=25

I=1000
W=1000

I=1500
W=1000

I=2000
W=1000

I=5000
W=5000

I=7500
W=5000

I=10000
W=5000

I=10000
W=10000

P
R

R

Scan Interval (I) and Scan Window (W) in milliseconds

Number of advertisers
 1 2 4 8

Figure 3.2: PRR for an observer receiving packets from a broadcaster transmitting with an
Advertising Interval of 1 s.

Based on the results obtained, the following conclusions can be drawn:

1. When the Advertising Interval of 20 ms was used (see Figure 3.1), the scanner was
able to capture a great number of advertising packets, as the number of packets sent
was huge. However, the PRR obtained was low. In addition, a decrease in the PRR can
be appreciated when the number of advertising devices increases, reaching around
40% for eight advertisers, although the Window and Scan Intervals were the same
(better results). This corresponds to what is described in the BLE speci�cation about
the Advertising Interval:

58

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

 0

 0.2

 0.4

 0.6

 0.8

 1

I=25
W=25

I=37.5
W=25

I=50
W=25

I=1000
W=1000

I=1500
W=1000

I=2000
W=1000

I=5000
W=5000

I=7500
W=5000

I=10000
W=5000

I=10000
W=10000

P
R

R

Scan Interval (I) and Scan Window (W) in milliseconds

Number of advertisers
 1 2 4 8

Figure 3.3: PRR for an observer receiving packets from a broadcaster transmitting with an
Advertising Interval of 5 s.

 0

 0.2

 0.4

 0.6

 0.8

 1

I=25
W=25

I=37.5
W=25

I=50
W=25

I=1000
W=1000

I=1500
W=1000

I=2000
W=1000

I=5000
W=5000

I=7500
W=5000

I=10000
W=5000

I=10000
W=10000

P
R

R

Scan Interval (I) and Scan Window (W) in milliseconds

Number of advertisers
 1 2 4 8

Figure 3.4: PRR for an observer receiving packets from a broadcaster transmitting with an
Advertising Interval of 10 s.

• The Advertising Interval for data transmissions should be at least 100 ms. The
results support this, since a greater frequency of sending reduces the percentage
of packets received by the scanner.

• The Advertising Interval for devices in connectable mode must be less than or
equal to 20 ms. This allows the connection to be established more quickly, and
the packet loss is unimportant, since all these packets are identical and do not
contain user information or data.

2. The pseudo-random delay introduced by the BLE standard between each of the con-
secutive advertisement events must be taken into account. This delay has a duration
ranging from 0 to 10 ms, and stands out in two cases in particular:

• When the Advertising Interval was 20 ms, (see Figure 3.1), since the delay could
be as long as half of the set interval.

59

3.1. BLE Standard Topologies Evaluation

• When the Advertising Interval was 10 s (Figure 3.4), since, if the Scan Window
does not coincide with the Scan Interval, this delay can a�ect the number of
packets received by the scanner, increasing or reducing the percentage of pack-
ets received by the scanner. Without this delay, extreme results where all or
no packets were received in the scan window could be obtained. However, al-
though slow, this delay varies the time of sending a packet, which means that,
in the long term, the percentage of packets received by the scanner is directly
proportional to the relation Scan Window - Scan Interval. In order to verify
this, longer-term experiments were carried out for those cases where the res-
ults obtained stand out from the rest. The duration of each of these experiments
was 20000 seconds (more than 5.5 hours) and the results obtained are shown in
Figure 3.5, comparing them with the results previously obtained. The results
show that when the duration of the experiments was increased, the percentage
of received packets was around 50%, coinciding with the relation Scan Window
- Scan Interval.

3. When the shortest Scan Interval and Scan Window parameters were used (between
2.5 and 5 ms, corresponding to the �rst three columns of Figure 3.1, Figure 3.2, Fig-
ure 3.3 and Figure 3.4), the ability to receive the packets sent by the advertisers de-
creased, obtaining a low percentage regarding the total. The explanation for this situ-
ation can be found in how the advertisers sent their packets. By default, the packets
are sent using the three existing advertising channels (37, 38 and 39), sending the
same packet through the di�erent channels in time intervals shorter than 10 ms. The
scanners switch between the di�erent advertising channels at each Scan Interval.
When the Scan Interval is wide enough to receive the packet sent on the channel be-
ing listened at that time, the packet is received. However, if the Scan Interval does not
cover this minimum duration, the percentage of received packets can drop drastically,
as shown in the results obtained.

 0

 0.2

 0.4

 0.6

 0.8

 1

I=2000 W=1000
2 Advertisers

I=10000 W=5000
1 Advertiser

I=10000 W=5000
2 Advertisers

I=10000 W=5000
4 Advertisers

I=10000 W=5000
8 Advertisers

P
R

R

Scan Interval (I) and Scan Window (W) in milliseconds

Duration of the experiment
 3000 s 20000 s

Figure 3.5: Comparison of experiments according to their duration.

60

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

3.1.3 Path Through a BLE Broadcast Network

A preliminary study was carried out to determine whether the broadcast network topology
was suitable for new Industry 4.0 challenge. For this study, Waspmote devices with a BLE
radio module were used to deploy our BLE network.

A 10-BLE-device broadcast network was deployed in our institute, the Albacete Re-
search Institute of Informatics (I3A) [50]. BLE devices used the broadcasting capability for
data transmissions. The static BLE devices transmitted packets as broadcasters, and an
user equipped with a mobile device (which is a observer) received these packets in di�er-
ent points while moving through the building (from P1 to P16 in Figure 3.6, Figure 3.7 and
Figure 3.8). The user was equipped with the HTC Nexus 9 tablet [49], for which an ap-
plication was developed using the Apache Cordova framework [51] (see Section A.2.2) that
allowed the number of packets received from each device to be measured, as well as its RSSI.
The PRR and the RSSI of each packet were measured in di�erent points of the user’s walk,
which showed us whether the deployed network worked correctly. This experiment was
carried out for three di�erent con�gurations for Waspmote devices, varying the TX power
and the Advertising Interval: (1) minimum TX power and 1-second Advertising Interval
(Figure 3.6), (2) medium TX power and 1-second Advertising Interval (Figure 3.7) and (3)
minimum TX power and 0.5-second Advertising Interval (Figure 3.8).

Figure 3.6, Figure 3.7 and Figure 3.8 show the situation of the static BLE broadcasters
(D1, ..., D10) and Testing Points (P1, ..., P16). The �gures also show in which points the
greatest RSSI corresponds to packets from the nearest device (in green) and in which ones
the higher RSSI received packets do not come from the nearest device, or the observer has
not received any packet from this nearest static device (in yellow).

Figure 3.6 shows the results obtained for the experiment carried out using a minimum
TX power and an Advertising Interval of 1 second. As the results show, only in 11 of the 16
(68.75%) testing points did the greatest RSSI correspond to packets from the nearest device.
In the remaining points, the packets with the greatest RSSI corresponded to other devices:

• P4: the RSSI for the D8 device (-78 dBm) was greater than that for the D3 device (-83
dBm). However, the number of packets received from D3 was higher (3 against 1).

• P5: the RSSI of device D5 (-85 dBm) was greater than that of device D4 (-88 dBm). In
addition, the number of packets received from D5 was also higher (2 against 1).

• P6: the RSSI of device D7 (-79 dBm) was greater than that obtained for devices D4
(-84 dBm) and D5 (-93 dBm), which should theoretically have been higher due to the
absence of obstacles.

• P7: the RSSI obtained from device D5 (-87 dBm) was not the greatest, although more
packets were received (3 compared to 1) than from the rest of the devices (D4 and
D6).

61

3.1. BLE Standard Topologies Evaluation

• P12: at this point the proximity of the D3 device to the user stood out, from which,
despite the existence of an obstacle between the user and this device, the greatest
number of messages were received (3). The highest RSSI corresponded to device D10
(-80 dBm).

Planta primera
0 5

D1 D2

D3

D4 D5

D6

D7
D8

D9
D10

P1 P2 P3 P5

P4

P6
P7

P16

P15

P14 P12P13

P11

P10
P8

P9

Lab1 Lab2

Lab3
Lab4 Lab5

D1, .., D10P1, .. , P16 Testing Points BLE broadcasters
Testing points where the highest RSSI received corresponds to the nearest broadcaster
Testing points where the highest RSSI received does not correspond to the nearest broadcaster

Figure 3.6: Results obtained in preliminary test to check the performance in a BLE IoT
installation with minimum TX power and 1-second Advertising Interval.

Figure 3.7 shows the results obtained using a medium TX power and an Advertising
Interval of 1 second, to determine the possible impact of the transmission power of the
devices. As can be observed, again, only 11 of the 16 testing points obtained the expected
result (68.75%), while in the rest the highest RSSI corresponded to other devices:

• P6: the RSSI for devices D3 (-69 dBm), D6 (-77 dBm) and D8 (-81 dBm) was greater
than that for devices D4 (-73 dBm) and D5 (-85 dBm), and there was no signi�cant
di�erence in the number of packets received from each of them.

• P7: the greatest RSSI was for devices D4 (-64 dBm) and D6 (-69 dBm), although the
closest device in line of sight was D5 (-78 dBm). In addition, the number of packets
from each device was similar.

• P9: the RSSI of the nearest device (D7) obtained at this point (-70 dBm) was lower
than that of devices D4 (-66 dBm) and D5 (-70 dBm), with the number of received
packets being similar for all of them.

• P10: although the closest devices with line of sight to this point were D7 (-85 dBm)
and D8 (-81 dBm), being located in the centre of a large number of devices meant that
a better RSSI was received from devices D1 (-74 dBm), D2 (-77 dBm), D3 (-76 dBm),
D4 (-75 dBm), D5 (-74 dBm) and D6 (-78 dBm).

• P12: the RSSI of the D9 device was very high (-59 dBm) and, even that of the D3
device was acceptable (-76 dBm), despite being on the other side of a sheet of glass.

62

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

However, regarding D8 (-82 dBm) a high RSSI was not received, with that of devices
such as D1 (-72 dBm), D2 (-73 dBm) or D4 (-74 dBm) being greater.

Planta primera
0 5

D1 D2

D3

D4 D5

D6

D7
D8

D9
D10

P1 P2 P3 P5

P4

P6
P7

P16

P15

P14 P12P13

P11

P10
P8

P9

Lab1 Lab2

Lab3
Lab4 Lab5

D1, .., D10P1, .. , P16 Testing Points BLE broadcasters
Testing points where the highest RSSI received corresponds to the nearest broadcaster
Testing points where the highest RSSI received does not correspond to the nearest broadcaster

Figure 3.7: Results obtained in preliminary test to check the performance in a BLE IoT
installation with medium TX power and 1-second Advertising Interval.

Figure 3.8 shows the results of the experiment carried out with a minimum transmission
power and an Advertising Interval of 0.5 seconds, in order to determine the impact of the
Advertising Interval of the broadcasters. As shown, on this occasion again only 11 of the 16
(68.75%) testing points were as expected, while, in the rest, the greatest RSSI corresponded
to other devices:

• P5: the RSSI corresponding to device D5 (-72 dBm) was slightly greater than that of
D4 (-76 dBm), which was the closest device.

• P6: this point was located between devices D4 and D5, from which an RSSI of -88
dBm and -76 dBm respectively were obtained, with D4 being below the RSSI of D7
(-87 dBm).

• P8: in this case, for the D5 device a slightly greater RSSI (-75 dBm) than that of D6 (-76
dBm) was obtained, but the number of packets from D6 (6) was signi�cantly higher
than that from D5 (2).

• P12: this point was between devices D8 (-78 dBm) and D9 (-96 dBm), but despite the
proximity of both, there were devices with a greater RSSI: D7 (-88 dBm), D10 (-86
dBm), and even D3 (-87 dBm), with an obstacle (glass) between them.

• P13: the closest device to this point was D9, but its RSSI was lower (-81 dBm) than
that of other devices, such as D1 (-76 dBm) or D10 (-77 dBm).

As the results of this section shows, only in 68.75% of the testing points did the greatest
RSSI correspond to packets from the nearest device. These results leads us to conclude that

63

3.1. BLE Standard Topologies Evaluation

this topology does not ful�l the requirements of the Industry 4.0 identi�ed above: there
were several dead zones where without network coverage.

Planta primera
0 5

D1 D2

D3

D4 D5

D6

D7
D8

D9
D10

P1 P2 P3 P5

P4

P6
P7

P16

P15

P14 P12P13

P11

P10
P8

P9

Lab1 Lab2

Lab3
Lab4 Lab5

D1, .., D10P1, .. , P16 Testing Points BLE broadcasters
Testing points where the highest RSSI received corresponds to the nearest broadcaster
Testing points where the highest RSSI received does not correspond to the nearest broadcaster

Figure 3.8: Results obtained in preliminary test to check the performance in a BLE IoT
installation with minimum TX power and 0,5-second Advertising Interval.

3.1.4 Time Required to Establish a Point-to-Point Connection

BLE also provides another way of transmitting data, by establishing a point-to-point con-
nection. Although these connections became more �exible in later versions, BLE 4.0 al-
lowed only one master device in the network, which could connect to a certain number
of slave devices. The maximum number of slaves was determined by the hardware of the
master device, and was usually up to eight devices. The master device is responsible for
reading and writing information to the slaves.

However, despite providing greater security, this type of transmission requires previous
establishment. In static networks, this establishment is done only once, so the time required
by this establishment is not critical. However, in networks with mobile devices, if these
devices have to establish a new connection every time they leave the coverage range of a
device, the time required can be crucial, preventing the information exchange. Therefore,
this experiment was conducted to measure the time required to establish a connection.

The experiment presented in this section measured the time required to establish a con-
nection between a master and eight slave devices (maximum number for the used devices).
In addition to the time spent establishing the connection itself, the time needed for the
device playing the role of master to detect the other slave devices was also taken into ac-
count. In other words, this discovery time was the time needed for the scanner device
(which played the role of the master) to receive at least one advertising packet from the ad-
vertising devices (which played the role of slaves). This discovery process can be performed
in three di�erent ways, which are detailed below:

64

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

1. De�ning the network scan time. This time has been set to 1 second, during which
the initiator device scanned the network to discover devices with which to establish
a connection. This time is the minimum supported by the Waspmote Application
Programming Interface (API), and was enough to �nd eight advertisers sending their
advertising packets with the minimum possible Advertising Interval, 20 ms.

2. Establishing the number of devices to be detected. In this case, the number of devices
the initiator should detect before stopping the scanning process was de�ned. This
number was set to eight, as it was the maximum number of simultaneous slaves that
a single master could support.

3. Discovering the devices sequentially, one after the other. On this occasion the initi-
ator discovered and connected to a single advertiser. Once the connection was estab-
lished, the process of discovery and connection was repeated for another advertiser
device, until the limit of eight simultaneous slaves was reached. Although in the two
previous cases an individual check on each advertiser device was recommended be-
fore connecting to it (to check that it continued to broadcast), in this case the check
could be removed, since the time between the discovery of a device and its connection
was minimal.

Regarding the important parameters in this experiment, the Advertising Interval re-
commended by the standard (20 ms) was set to facilitate the initiator device detecting the
advertising devices. In addition, a Scan Interval and a Scan Window of one second were set
on the initiator device (due to the excellent results obtained in the previous test). Finally,
the parameters corresponding to the connection were set to the default values assigned by
the Waspmote API. These values were as follows: the Minimum Connection Interval was
set at 70 ms, the Maximum Connection Interval was set at 90 ms, the Timeout was set at
1 second and the Slave Latency was set at 0 packets.

Figure 3.9 shows the results obtained in the experiments for each of the scanning meth-
ods. The results shown are the average values obtained after �ve executions, all of them
being similar. The results show that the shortest total time was obtained when the discov-
ery of devices was done individually and without checking the device again (which did not
make sense, as it had just been discovered). By de�ning a time or number of devices in
advance, the discovery time was visibly shorter. However, in these cases it is highly recom-
mended to check the individual device before sending the connection request. This is due
to the long time between the reception of an advertisement packet from a particular device
and the establishment of a connection with that device (even more in real use cases), and it
is possible that the device is no longer available (especially in mobile networks), producing
errors in the connection attempts.

Consequently, in real cases where the devices to be connected are unknown and can
quickly move and disappear from the coverage range, it is recommended to connect to
them using multiple individual connections, exchange the necessary data and close the
connection to allow a new one to be established with another device.

65

3.2. CSRmesh Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

For a defined
time (1 s)

For a defined number
of devices (8)

Multiple individual
searchs (check)

Multiple individual
search (no check)

T
im

e
(s

)

Scan process used by the device

Steps
Discovery

Individual check
Conn. establishment

Figure 3.9: Comparison of the time required to establish a connection according to the scan
method selected for the advertiser discovery.

3.2 CSRmesh Evaluation

This section �rst presents the operation of CSRmesh [15], the mesh topology proposed by
CSR before this topology was included in the Bluetooth speci�cation. Second, it presents
the evaluation of the CSR devices used in CSRmesh, and �nally, the evaluation of the per-
formance of CSRmesh itself. In this way, the study cases were:

• Study of PRR in CSR devices. One of the fundamental requirements for communica-
tions networks in Industry 4.0 is zero fails, so this ratio has a great impact. Therefore,
knowing the PRR of these devices in optimal conditions was considered necessary.

• Study of CSR device coverage, which permitted us to deploy a network in a real
environment in an e�ective way.

• Evaluation of the CSRmesh network in a real environment.

3.2.1 CSRmesh

As mentioned above, mesh topology was not included in the BLE speci�cation until 2017,
which was seven years after the launch of the �rst BLE speci�cation. However, some initi-
atives appeared implementing this topology for BLE, with CSRmesh being one of the �rst
to be released. We focused on CSRmesh because of its early release, as well as for using
devices with BLE 4.1 (the latest version at that moment), which enabled the combination
of di�erent BLE roles.

The CSRmesh mesh topology proposal is built over the BLE protocol, and uses three
BLE roles simultaneously:

• Broadcaster. Data packets are transmitted using the broadcaster role. These packets
are encrypted to provide security for the data transported, but do not fully respect

66

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

the BLE standard. The sending of each packet is repeated three times per advertising
channel to ensure its reception.

• Observer. This role enables devices to receive packets from other devices at any time,
even during idle periods when sending packets. If received packets ful�l the require-
ments described below, they are relayed in broadcast again, thus increasing the cov-
erage range of the network (although the network tra�c also increases).

• Advertiser. This role enables other devices to establish a point-to-point connection.
CSRmesh is a proprietary protocol, so introducing a new BLE device in the mesh
network requires them to establish a point-to-point connection with one of the CSR
devices, which acts as a bridge to the network. The CSR nodes relay the packets
received from the connected point-to-point devices to the rest of the nodes in the
network, which is composed only of CSR devices and the devices connected to them.

The CSRmesh designed by CSR is a �ood mesh protocol. Nevertheless, the main problem
of this routing protocol is the high number of relays [52]. In order to reduce these relays,
CSRmesh de�nes two parameters:

• TTL: One byte �eld which indicates the maximum number of times the packet can
be relayed, in other words, the maximum number of hops among devices. When a
device receives and relays a packet, the TTL is decremented, discarding the packet if
it is 0.

• Packet ID: Each packet contains an identi�er, which will be the same as long as it
remains on the network. This identi�er enables devices to discard packets that they
have previously received, checking only this �eld.

3.2.2 PRR in CSR Devices

As already described, packets are sent and relayed three times per advertising channel in
the CSRmesh to ensure they are received by the destination device. When a device receives
a packet, it relays it three times unless it is the destination device. When the same packet
is received more than once by the same device, it is discarded and no action is taken. We
conducted a study to verify whether this approach is su�cient to provide the performance
required by new applications.

A simple mesh network was deployed for this experiment. This network consisted of
a single broadcaster and a single observer, both being CSR1010 devices (see Section A.1.2).
The broadcaster sent packets to the observer. The study was conducted by evaluating the
PRR based on the number of repetitions of each packet. A new packet was sent every
5 seconds during 3000 seconds. When repetitions were established at the broadcaster, a
new packet and its repetitions were sent every 5 seconds. This experiment focused on
evaluating the PRR of the devices, so they were placed in optimal conditions to send and
receive data: in a direct line of sight and at a distance of 50 cm, minimising packet loss due
to distance or obstacles.

67

3.2. CSRmesh Evaluation

Table 3.3 shows the PRR for packets sent once, twice or three times. The results re�ect
an improvement when the number of transmitted packets was increased. A PRR of 83.76%
was obtained when packets were sent only once; the PRR obtained increased to 97.21%
when packets were sent twice and it rose to 100% when the number of repeated packets
was three. The need to send each message three times is due to two factors: (1) the fact that
the radio is not only used to send packets, but that these are also relayed, being unable to
receive packets at that particular instant of time; and (2) observers scan the three advertising
channels sequentially, so that broadcaster and observer need to match on the same channel
for the correct packet transmission.

Table 3.3: PRR (%) in data transmission between a single broadcaster and a single observer,
according to the number of packet repetitions.

Transmissions of each data packet PRR (%)

1 83.76

2 97.21

3 100.00

As this basic experiment shows, the CSRmesh operating mode based on repeating the
packets 3 times ensures the reception of all packets. However, it also increases network
tra�c, power consumption and packet collisions in a saturated wireless frequency band.
This could cause a scalability problem when the number of devices in the network becomes
higher.

A new experiment was carried out to study these problems in a real network. For this
new experiment, a network was deployed using a greater number of devices, completely
covering our research institute, the I3A. However, before the deployment of the network, a
coverage study was needed.

3.2.3 Coverage Study for CSR1010 Devices

The previous step to deploying a network of wireless sensors is to conduct a coverage study.
This allows us to determine the lowest number of devices required to cover a given area at
the lowest cost. For this reason, we conducted this coverage study on the �rst �oor of our
I3A institute (48 metres long and 15 metres wide).

An important consideration when calculating the range of a device is its antenna. The
CSR1010 devices are equipped with an inverted-F antenna. The radiation pattern of this
antenna is circular in the XZ plane. Therefore, we can distinguish two di�erent areas de-
pending on the location of the device: the range of coverage is favourable in the XZ-plane
(see Figure 3.10) and unfavourable in the other planes.

68

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

Figure 3.10: X, Y and Z plans in a CSR1010 device.

In open areas with direct line of sight, the coverage range of the CSR1010 devices is
approximately 30 metres. However, this range is shorter in indoor environments with
obstacles, so a study was required to evaluate this range in our laboratory.

In this experiment, two devices were used: a broadcaster and an observer, placed at a dis-
tance of 4 metres with construction elements between them (see Table 3.4). This study was
carried out for this particular building, so it should be repeated in other buildings to ensure
the minimum number of devices needed to cover their respective area. In our experimental
scenarios, 80 RSSI samples were taken in coexistence with other wireless technologies (Wi-
Fi and ZigBee).

For each scenario, two experiments were carried out, based on the device position: fa-
vourable and unfavourable. Table 3.4 shows the results obtained.

Table 3.4: Average RSSI obtained in di�erent scenarios.

Scenario Description Average RSSI - Favourable
Antenna Position (dBm)

Average RSSI - Unfavourable
Antenna Position (dBm)

Direct Line of Sight −67 −57
Dividing panels −65 −63

Doors −68 −73
Columns −80 −83

Walls −60 −62
Walls + storage racks −79 −95

Glass −65 −70

This previous analysis allowed us to study how the di�erent construction elements af-
fect the range of coverage. Thus, we deployed the CSRmesh network avoiding problematic
elements, such as columns, walls and storage racks.

The �rst network deployed had 10 devices. This network covered the entire coverage
area, so we gradually reduced the number of devices to achieve the minimum necessary to

69

3.2. CSRmesh Evaluation

cover the entire building. We therefore concluded that the minimum number of devices for
the deployed mesh network to cover the entire desired area was three.

3.2.4 CSRmesh Evaluation

Once the behaviour of a single CSR device was studied, the objective was to know how a
CSRmesh network really works. To do this, the following steps were taken:

• The number of CSR devices needed to cover the �rst �oor of our research institute
was three, according to the previous coverage study.

• In order to guarantee the most realistic possible testing environment, we emulated
an industrial environment where it was necessary to measure di�erent parameters
processed by a BLE server. For this purpose, two Waspmote devices equipped with
sensors were added to the CSRmesh, using CSR devices as a bridge (following the CSR
topology). These Waspmote devices sent the sensor data packet every �ve seconds.
In addition, a BLE server that received, processed and stored BLE packets was also
included using the remaining CSR device. Node.js (see Section A.2.3) was used for
developing this BLE server. Figure 3.11 shows the �nal device setup.

• Moreover, to determine the impact of packet repetition in a real mesh network, the
CSR devices were con�gured with two di�erent settings: transmitting each packet
once (saving mode), and transmitting each packet three times (default mode).

• Finally, for each proposed con�guration, the PRR was measured, as well as the num-
ber of packets per second received on each CSR device, to evaluate the network tra�c.

Planta primera
0 5

W2

W1

CSR1

CSR3CSR2

Lab1 Lab2

Lab3
Lab4 Lab5

CSR devices Waspmote devices
Master-slave connection Mesh transmission (Broadcast)

BLE Server

Figure 3.11: Network deployed using 2 sensor devices and CSRmesh topology.

Table 3.5 and Table 3.6 show the network tra�c (sent and received packets, respect-
ively, by di�erent devices). As a result of the mesh network topology, which uses broadcast
mode, and the proprietary code of the CSR devices, a typical tra�c matrix is not available.
Table 3.5 shows the number of packets sent by the Waspmote devices (W1 and W2), as well

70

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

as the number of these packets received by the BLE server, for two di�erent network con�g-
urations. We can observe that the number of packet repetitions is especially signi�cant for
W2 packets, which had to be relayed by three di�erent devices (CSR3, CSR2 and CSR1) and
�nally received by the BLE server. In contrast, for W1 packets, which were relayed from
CSR2 to CSR1, there were no signi�cant di�erences when changing the con�guration.

Table 3.5: Packets sent by sensor nodes and received by BLE server, for each CSR devices
con�guration.

Sensor
Nodes

CSR Devices Transmit
Each Packet Once

CSR Devices Transmit
Each Packet Three Times

Sent Packets Packets Received
by Server Sent Packets Packets Received

by Server

W1 555 (to CSR2) 554 577 (to CSR2) 575
W2 551 (to CSR3) 367 577 (to CSR3) 542

Table 3.6 shows the number of packets received by the di�erent CSR devices and by
the BLE server. Important information was obtained from these results. Firstly, as expec-
ted, the number of received packets increased when the number of repetitions was higher.
In other words, network tra�c became higher when CSR devices sent each packet three
times. Secondly, the CSR1 device �ltered a signi�cant number of packets, as only 42% of
the packets in the �rst con�guration and 31% of the packets in the second con�guration
were non-repeated packets. For this reason, this connection was maintained in the follow-
ing evaluations. Thirdly, there was an increase in the number of packets received by the
CSR3 device, which was greater than the increase in the number of packets received by
the CSR2. This was the opposite of what was expected, as the CSR2 device was placed in
the centre of the mesh network, so it should have received packets from all other nodes
in the mesh. This behaviour was inappropriate and could result in problems in large-scale
networks.

Table 3.6: Packets received by CSR devices and BLE server in CSRmesh evaluation, for each
CSR device con�guration.

Con�guration
Packets Received by

CSR1 CSR2 CSR3 Server

CSR devices transmit
each packet once 2186 4957 3778 921

CSR devices transmit
each packet three times 3629 5542 6003 1117

The PRR of each sensor node (the source nodes) can be observed in Table 3.7. In the
�rst con�guration, CSR devices relayed each packet once (saving mode), while in the second
con�guration CSR devices relayed each packet three times (default mode). These packets

71

3.2. CSRmesh Evaluation

contained di�erent data (among which there could be critical data), so preventing their
loss is crucial. The �rst conclusion we can draw is relatively expected: the results show a
lower packet loss when CSR devices repeat each packet three times instead of once (with
a PRR of 99.82% and 66.61% on average, respectively). The second conclusion is related
to the placement of the device: the results of Waspmote 1 were much better than those
of Waspmote 2 as the second was farther away from the BLE server (see placement in
Figure 3.11), so its packets need to be relayed by more devices (increasing their number of
network hops).

Table 3.7: PRR for 2 sensor devices using the CSRmesh proposal, for di�erent CSR device
con�gurations.

Con�guration
Packet Reception Rate (%)

Waspmote 1 Waspmote 2

CSR devices transmit
each packet once 99.82 66.61

CSR devices transmit
each packet three times 99.65 93.93

As already stated, an important parameter of this type of network is the number of
packets being moved by the devices at any given time (network tra�c). Consequently, the
number of packets received on the CSR devices was measured. These packets could be
repeated (either a repeat from the same device or a relay from another device), so the CSR
devices should �lter them out and remove the duplicates. In reference to this, Table 3.8
shows the number of packets per second received by each CSR device, for two possible
con�gurations: CSR devices relayed each packet once (saving mode) or three times (default
mode).

Table 3.8: Packets per second received by CSR devices in a CSRmesh network with 2 sensor
devices and a BLE server.

Con�guration
Packets Received per Second

CSR1 CSR2 CSR3 Average

CSR devices transmit
each packet one 0.62 1.41 1.08 1.04

CSR devices transmit
each packet three times 1.16 1.76 1.91 1.61

Table 3.8 shows the cost required to achieve that higher PRR (see Table 3.7): each CSR
device received on average 0.57 more packets per second when the packets were repeated
three times. Although this may not seem much, it could make the situation intolerable if
the number of devices in the network were increased (in this case, the number of sensor
devices was only two, being the total number of devices in the network six).

72

Chapter 3. Preliminary Evaluation: BLE Topologies for Industry 4.0

3.3 Conclusions

This chapter has presented the evaluation of the topologies proposed by the BLE speci�c-
ation: broadcast and point-to-point, as well as the CSRmesh, a proprietary topology pro-
posed as an improvement to the available topologies.

The �rst section of this chapter focuses on the topologies presented in the BLE speci�c-
ation:

• Firstly, this part presents a study of the range of coverage of the devices used in the
remaining experiments.

• Secondly, it shows the evaluation of the PRR in broadcast topology, according to
di�erent parameters. This evaluation has demonstrated the importance of a correct
con�guration of the parameters for the correct reception of the packets. However,
the options that provide a greater PRR require a longer scanning time, and therefore
a greater battery consumption.

• Thirdly, an evaluation of the broadcast topology in a real environment is presented,
focusing especially on testing communication with mobile devices (in this case, a
tablet with the developed application). Although this device received information
from all the network devices in the path of the user, it was not possible to correctly
establish which was the nearest device at each moment.

• Finally, the section moves on to the point-to-point topology. Focusing again on the
mobile devices, the experiments carried out re�ect the time required to establish a
connection. Although this time is relatively short, it requires a previous discovery
phase, which varies according to the number of devices in the environment. Further-
more, a new connection must be established each time the user leaves the coverage
area of a device.

The results obtained reveal that, while the topologies provided by the BLE speci�cation
allow data transmission in static and small-scale networks, in larger-scale networks and,
especially with mobile devices, they are unable to meet the requirements of new trends,
such as the latest IoT and IIoT applications.

Once the current topologies speci�ed in the Bluetooth standard were ruled out for their
use in Industry 4.0 because they do not meet its requirements, a new BLE network topology
was needed: the mesh topology. As mentioned above, before this topology was included
by the Bluetooth speci�cation, there were already some initiatives to create a BLE mesh
network.

One of the �rst initiatives to emerge was CSRmesh, a proprietary CSR topology, now
Qualcomm Technologies International. The second section of this chapter therefore evalu-
ates CSR devices and CSRmesh topology:

• First, the CSRmesh topology is presented, explaining how it works.

73

3.3. Conclusions

• Secondly, a study of the PRR of the CSR1010 devices is presented, as they use BLE 4.1,
with higher performance than the devices previously used.

• Thirdly, a coverage study of the CSR1010 devices is provided, which allowed to un-
derstand these devices before the �nal deployment of the CSRmesh network.

• Finally, the evaluation of the CSRmesh topology carried out in a real environment
with hardware platforms is presented. As seen in this experiment, the PRR of the
CSRmesh proposal is acceptable, although, for this, the packets require being trans-
mitted three times. Moreover, CSRmesh is a proprietary protocol built over BLE, and
scalability problems arise when di�erent BLE devices are included in the network,
since they need a CSR device that works as a slave to bridge them with the rest of
the network. Therefore, this limits the maximum number of non-CSR devices in the
network to the number of CSR devices in the network.In addition, if a wider range of
coverage is required, more CSR devices must be included.

To solve these scalability problems, we proposed a new mesh network approach, also
prior to the release of the Bluetooth mesh speci�cation, which we called collaborative mesh.
Our collaborative mesh is presented in detail in the next chapter, and enables any BLE device
able to use the observer and broadcaster roles to participate in the network without the need
of bridging devices. The next chapter also includes the experiments that were carried out
to evaluate the PRR and network tra�c of our proposal.

74

CHAPTER 4

Our Proposal for BLE Mesh

As concluded in Chapter 3, one of the limitations of the CSRmesh is its scalability, particu-
larly when adding new sensor nodes; for a non-CSR node to take part in the mesh network
requires the use of a CSR device as a bridge. However, scalability is an important require-
ment for Industry 4.0 networks, regardless of their devices. Moreover, heterogeneity is
another important aspect of these networks, and our aim is to enable the connection of
di�erent types of devices, from di�erent manufacturers, in the same network.

After studying the CSRmesh and understanding its de�ciencies, we decided to develop
a new proposal for a BLE mesh network. Our proposal eliminates the restriction of estab-
lishing master-slave connections when new non-CSR devices are included in the network.
This allows all BLE devices to broadcast and relay the mesh packets.

This chapter presents our mesh topology proposal for BLE, called Collaborative Mesh, as
well as its evaluation using di�erent con�gurations. The GreenISF scenario is then detailed,
in which di�erent devices were included in our network, evaluating its performance.

4.1 Collaborative Mesh Proposals

Our collaborative mesh proposal de�nes a new packet format, encapsulating the new �elds
in the Advertising Data �eld of the BLE advertising packets (see Figure 2.2.3.2). In addition,
the packet format of our collaborative mesh is compatible with CSR devices, so they can also
be included in the network. CSR devices use BLE 4.1, which gives them greater �exibility
in terms of operating modes. BLE 4.0 devices need to switch between broadcaster and
observer modes, and can only transmit or receive data at a given time, so they can be used
as sensory devices if a more e�cient backbone of devices is available. However, BLE 4.1
devices can use observer and broadcaster modes simultaneously, without the need to switch
between them, using the idle periods of the broadcaster mode to scan the network (observer
mode). This di�erence is shown in Figure 4.1. Therefore, our collaborative mesh network
takes advantage of the di�erent versions, being able to include these BLE 4.1 devices in our

75

4.1. Collaborative Mesh Proposals

network as a backbone, due to their better performance, without misusing the rest of the
BLE 4.0 devices.

Adv Idle Adv Idle Adv Idle Adv Idle Adv Idle Adv Idle Scan

Advertising Time

Advertising Interval

Observer ModeBroadcaster Mode

Scanning TimeAdvertising Interval

(a) Advertising and Scanning processes in BLE 4.0

Adv Scan Adv Scan Adv Scan Adv Scan Adv Scan Adv Scan Adv Scan …

Advertising Time

Advertising Interval

Broadcaster and Observer Mode

Advertising IntervalAdvertising Interval

(b) Advertising and Scanning processes in BLE 4.1

Figure 4.1: Di�erences between Advertising and Scanning processes in BLE version 4.0 and
4.1.

As stated, we proposed our own packet format because CSR uses its proprietary mesh
protocol, which is not accessible to users. However, our packet format was designed fol-
lowing the BLE standard, which makes it compatible with any BLE device, including CSR
devices. Thus, any two devices can communicate using the mesh when both are in its cov-
erage area. To do this, the devices only have to transmit the advertising packets following
the de�ned format, in broadcaster mode. Figure 4.2 shows the de�ned format, encapsulated
in the Advertising Data �eld of the BLE advertising packet (see Figure 2.2.3.2), while the
di�erent �elds are described below.

• 8-bit preamble used in the receiver for frequency synchronization, symbol timing
estimation, and Automatic Gain Control training tasks. The preamble must be 0xAA
in advertising packets.

• 32-bit access address, which shall be 0x8E89BED6 for advertising packets.

• PDU, a variable size (12-37 bytes) payload, which includes:

– A 16-bit header where PDU type is speci�ed. The PDU type used in broadcast
data transmissions is non-connectable undirected advertising.

– 6-octet advertising address, which contains the BLE address. Our proposal uses
random addresses.

– Advertising Data, a variable size (from 4 to 31 bytes) �eld, which contains the in-
formation itself (data collected from sensors or device information, for example).
This �eld contains:

∗ 1-octet Advertising Data Packet Length, following the BLE standard.

76

Chapter 4. Our Proposal for BLE Mesh

∗ Data header, which contains two di�erent �elds: a 1-octet Type to indic-
ate the PDU service (the value for mesh packets is 0x16, corresponding to
Service Data, and a 2-octet UUID. To ensure the compatibility with CSR
devices, the UUID for mesh packets shall be the CSR UUID.

∗ 1-octet destination device ID, used to identify the mesh devices in a shorter
way.

∗ Data Fields, which are divide in two sections, a 1-octet ID to indicate the
data type and its length, and the data itself.

∗ Packet ID, which allows devices to avoid the uncontrolled packet relay. To
this end, this �eld includes the 2-octet source device ID and a 1-octet packet
counter, guaranteeing the uniqueness of the packet.

∗ 1-octet TTL to limit the packet lifespan.

• 3-octet CRC, which shall be calculated over the PDU.

Access

Address

Preamble BLE Header

Advertising

Address
Advertising Data CRC

Length

Data Header Data Packet ID TTL

(…)
Data

UUID

Type Destination ID

Field 1 Field 2 Counter

Data

ID
Data

Source ID

BLE standard packet

Proposed mesh packet

Figure 4.2: Proposed mesh packet format.

In our collaborative mesh network, a device only requires the ID of the receiving device
to transmit information. This ID can be programmed in the device’s memory or be assigned
dynamically by a BLE controller.

Moreover, the proposed packet format provides two possible con�gurations for sensor
devices, since communication with a mesh device is possible without it being a full mesh
device:

• Individual Mesh, where sensor devices only transmit their data packets, but do not
relay the packets of other devices. This option brings less tra�c to the network.

77

4.2. Evaluation of our New Mesh Proposals

• Collaborative Mesh, where sensor devices transmit their data packets and they also re-
lay packets received from other devices. This option increases the network coverage,
but also the network tra�c.

Our collaborative mesh proposal has several improvements over the CSRmesh evaluated
in Chapter 3:

• To know the source and destination device of each packet.

• To increase the data �eld length in each packet.

• To introduce new devices working as mesh devices, both to transmit their own data
packets and to relay the packets received, without using a CSR device as a bridge. This
is particularly important when the devices included in the mesh network are mobile
or wearable devices from the users: smartphones, smartwatches, tablets or smart-
bands, for example. While the CSRmesh requires a new device to establish a master-
slave connection that will be lost when the user leaves the coverage range of the
bridge device, our collaborative mesh allows the devices to transmit the data packets
to the mesh in general, with these being relayed by any other device, emphasising
the concept of mesh and total coverage.

• It does not matter how many bridge devices are available when adding a new device to
the mesh, since no bridge devices are required. Our mesh approach provides greater
scalability, sustainability and cost savings by reducing the number of devices in the
network without compromising performance.

4.2 Evaluation of our New Mesh Proposals

After describing our proposals for a BLE mesh network, this section presents a study of
their performance using real hardware platforms. This study exploits the scalability of
our proposals to include di�erent devices. Therefore, the experiments were carried out
using eleven devices: eight Waspmotes (see Section A.1.1) using BLE 4.0 and three CSR
devices (see Section A.1.2) using BLE 4.1. The Waspmote IDE (see Section A.2.1) was used
to implement our mesh proposals in Waspmote devices. These experiments were conducted
for the two con�gurations de�ned above: Individual Mesh and Collaborative Mesh.

To evaluate the performance of our proposal, the points listed below were followed:

• Three CSR devices were positioned to provide coverage for our entire laboratory.

• As in the experiments presented in Chapter 3, an industrial environment was emu-
lated, where di�erent parameters were measured by the sensor nodes. A BLE server
developed using Node.js (see Section A.2.3) was included in the network via a master-
slave connection to exploit the BLE 4.1 radio of the CSR devices. Eight Waspmote
sensor devices were also included in this scenario. These devices collected data, send-

78

Chapter 4. Our Proposal for BLE Mesh

ing them in packets through the network every 5 seconds. The complete scenario is
shown in Figure 4.3.

• The experiments were carried out for the two de�ned con�gurations: Individual Mesh
and Collaborative Mesh. For each evaluation, the PRR of each device and the network
tra�c in CSR devices (in packets per second) were measured.

• For each mesh con�guration, experiments were carried out varying the load on the
network. Thus, two di�erent con�gurations were established. On the one hand, when
a Low Network Load was selected, Waspmote devices sent each packet only once,
which reduced the network tra�c but increased the probability of the packets being
lost. On the other hand, when a High Network Load was selected, Waspmote devices
sent each packet three times, increasing network tra�c but decreasing the probability
of packet losses.

Planta primera
0 5

W6

W8

CSR1 CSR3CSR2

Lab1 Lab2

Lab3
Lab4 Lab5

CSR devices Waspmote devices
Master-slave connection Mesh transmissions (Broadcast)

BLE Server

W1
W3

W7

W5W4W2

Figure 4.3: Network deployed using 8 Waspmote (sensor devices) and 3 CSR devices.

The following sub-sections detail the results obtained for each of the con�gurations, in
order to determine which is the best option.

4.2.1 Individual Mesh Evaluation

This section presents the evaluation of the Individual Mesh con�guration of the Waspmote
devices. In this con�guration the Waspmote devices transmit and receive their data packets
using our packet format for mesh networks. When a packet is received by a device, it is
processed if it is the destination device, otherwise the packet is discarded.

The most notable improvement in our proposal for the CSRmesh is its scalability. Thus,
our mesh network was deployed using 3 CSR devices, eight Waspmote devices and a BLE
driver. This increases the sustainability of the network while reducing its cost by removing
the need for bridge devices. It also maintains the coverage range of the network, since the
number of devices that relay the received packets is the same (in this case, the CSR devices).

79

4.2. Evaluation of our New Mesh Proposals

By default, CSR devices relay each packet three times. This number can be reduced,
although it increases the probability of packet losses. To evaluate the impact of this para-
meter, our proposal was evaluated using both con�gurations: the default mode, where CSR
devices relay the packets three times, and the saving mode, where CSR devices relay the
packets only once.

4.2.1.1 CSR Devices Relay each Packet Three Times: Default Mode

In this scenario, the CSR devices were set to default mode, sending each message three
times. The Wapsmote devices were con�gured with the settings described above: Low
Network Load (each packet was transmitted only once by Waspmote devices) and High
Network Load (each packet was transmitted three times by Waspmote devices).

Table 4.1 and Table 4.2 show the packets received and sent, respectively, by the di�er-
ent devices in the experiments carried out. Speci�cally, Table 4.1 shows the total number of
packets received by the CSR devices (in charge of relaying the packets) and the BLE server
(network sink). As previously described, CSR devices processed the received packets, relay-
ing them the �rst time they were received (packets received more than once are discarded).
However, the CSR API is not completely open, and the number of packets relayed cannot be
accessed. The results show an increase in the total number of packets received in the High
Network Load con�guration (see Table 4.2), since the packets initially sent by each of the
Waspmote nodes were repeated three times. In this experiment the node with the highest
network tra�c was the CSR2 node given its position (see Figure 4.3).

Table 4.1: Number of packets received by CSR devices and BLE server for each Waspmote
device con�guration in Individual Mesh with CSR devices in default mode.

Number of Packets Transmitted
by Waspmote Devices

Packets Received by

CSR1 CSR2 CSR3 Server

1 (Low Network Load) 15587 26306 21618 4761
3 (High Network Load) 23950 43306 32070 6132

Table 4.2 shows the number of original packets, excluding repetitions (note that in High
Network Load con�guration, Waspmote devices send each packet three times), sent by
Waspmote devices and received by the BLE server for each network load con�guration.
In this case, Waspmote devices sent broadcast packets to all the devices in their coverage
range, it being impossible to know which device received and relayed them. Despite this, all
Waspmote devices sent a similar number of packets during the duration of the experiment,
obtaining a larger number of packets received by the BLE server in the High Network Load
con�guration.

Figure 4.4 shows how, even using the Low Network Load con�guration, the average PRR
(98.11%) was higher than the average PRR obtained previously for the CSRmesh (around
97%) using the recommended con�guration. Moreover, the network deployed to carry out

80

Chapter 4. Our Proposal for BLE Mesh

this experiment had eight Waspmote devices (sensor nodes), compared to the two Wasp-
mote devices that the CSRmesh allowed us to deploy given the need to use bridge devices.

Table 4.2: Number of packets sent by each sensor node and received by BLE server, for each
Waspmote device con�guration in Individual Mesh with CSR devices in default mode.

Sensor
Nodes

Low Network Load High Network Load

Sent Packets Packets Received
by BLE Server Sent Packets Packets Received

by BLE Server

W1 644 633 781 780
W2 582 571 811 810
W3 594 576 745 744
W4 588 579 748 746
W5 607 598 763 760
W6 635 623 768 764
W7 627 613 747 747
W8 576 568 782 781

In addition, Figure 4.4 shows the PRR for the High Network Load con�guration. As
can be appreciated, if the Waspmote devices sent each packet 3 times, the PRR went up to
99.79% on average.

 0

 0.2

 0.4

 0.6

 0.8

 1

W1 W2 W3 W4 W5 W6 W7 W8

P
R

R

Waspmote devices

Network Load
Low High

Figure 4.4: PRR in our mesh proposal for 8 sensor devices with Individual Mesh con�gura-
tion and 3 CSR devices with default con�guration.

Naturally, another important parameter to be taken into account is the network tra�c,
especially in this type of mesh networks. Table 4.3 shows the packets received per second by
the CSR devices, which are in charge of relaying the packets. As can be appreciated, even
using the High Network Load con�guration, the number of packets received per second
by the CSR devices was, on average, 8.34. The experiments carried out in the CSRmesh
obtained an average of 1.61 packets received per second by each CSR device in default

81

4.2. Evaluation of our New Mesh Proposals

mode, but the number of sensor nodes was only 2. Moreover, when the Low Network Load
con�guration was used, the number of packets received per second by the CSR devices
dropped to 6.56 on average, reducing the network tra�c.

Table 4.3: Packets per second received by CSR devices in default mode. Waspmote devices
were con�gured as Individual Mesh.

Number of Packets Transmitted
by Waspmote Devices

Packets Received per Second

CSR1 CSR2 CSR3 Average

1 (Low Network Load) 4.83 8.16 6.70 6.56
3 (High Network Load) 6.03 10.91 8.08 8.34

This study demonstrated the advantages of our mesh proposal with respect to CSRmesh
topology: our proposal increased the scalability of the network by removing the require-
ment to use bridge devices, which also signi�cantly reduces costs. In addition, it increased
the PRR of the network, maintaining the network tra�c.

Finally, it is possible to further reduce network tra�c by reducing the number of packet
repetitions relayed by CSR devices (by using saving mode). Although this measure can
reduce the PRR of the network, an evaluation of this con�guration in a real environment
is of great interest. Therefore, the following section shows the evaluation of the Individual
Mesh con�guration for Waspmote devices combined with the saving mode of CSR devices.

4.2.1.2 CSR Devices Relay each Packet Once: Saving Mode

In this scenario, CSR devices were con�gured in saving mode, relaying each received packet
only once. Experiments were carried out with Waspmote devices using the two con�gura-
tions of our mesh proposal: Low Network Load, where packets are sent only once by Wasp-
mote devices, and High Network Load, where each packet is sent three times by Waspmote
devices.

Table 4.4 and Table 4.5 contain the results obtained regarding network tra�c. In par-
ticular, Table 4.4 shows the number of packets received by the CSR devices, as well as the
number of packets received by the BLE server, excluding repetitions. The CSR2 device
received the highest number of packets in both con�gurations, due to the location of the
nodes (see Figure 4.3). The increase in the number of packets received by CSR devices when
the High Network Load con�guration was used, outstanding, in comparison to the Low Net-
work Load con�guration (198% more, on average), although the number of packets received
by the BLE server only increased by 12.4%.

Table 4.5 shows the number of packets sent by each Wapsmote device. Although the
route taken by the packets cannot be known due to the use of broadcast transmissions,
the number of packets received by the BLE server (sink node) is shown. In this case, the
number of packets received by the BLE server is increased when the High Network Load
con�guration is used, as discussed below.

82

Chapter 4. Our Proposal for BLE Mesh

Table 4.4: Number of packets received by CSR devices and BLE server for each Waspmote
device con�guration in Individual Mesh with CSR devices in saving mode.

Number of Packets Transmitted
by Waspmote Devices

Packets Received by

CSR1 CSR2 CSR3 Server

1 (Low Network Load) 7172 11481 9197 4814
3 (High Network Load) 15628 20480 18395 5410

Table 4.5: Number of packets sent by each sensor node and received by BLE server, for each
Waspmote device con�guration in Individual Mesh with CSR devices in saving mode.

Sensor
Nodes

Low Network Load High Network Load

Sent Packets Packets Received
by BLE Server Sent Packets Packets Received

by BLE Server

W1 677 642 669 668
W2 668 624 695 695
W3 646 610 681 678
W4 632 590 670 669
W5 637 538 684 679
W6 660 611 682 675
W7 672 587 681 681
W8 654 612 669 665

Figure 4.5 shows the PRR obtained in these experiments for the di�erent Waspmote
devices. The average PRR obtained for our mesh proposal is greater than the average PRR
obtained for the CSRmesh with the saving mode con�guration. Our Individual Mesh pro-
posal with LowNetwork Load achieved, on average, 91.75% PRR, while, using aHighNetwork
Load, the PRR rose to 99.61%. These results reveal a signi�cant improvement in the PRR
obtained compared to that obtained when using the CSRmesh, where the PRR was 83.27%.
Thus, the PRR obtained by our proposal when using a High Network Load is noteworthy,
approaching the requirements of Industry 4.0.

Table 4.6 shows the network tra�c, measured in packets per second received on the
CSR devices. Using the saving mode in the CSRmesh the results showed an average of
1.04 packets per second received by each CSR device in a network with two sensor nodes.
Using our proposal, the results were 2.71 packets per second received by each CSR device
on average, in a network with eight sensor nodes con�gured with a Low Network Load,
providing network scalability. In addition, the High Network Load con�guration allows
us to maximise the network PRR, although the network tra�c rose to an average of 5.19
packets received per second by each CSR device in a network with eight sensor nodes.

In this experiment, our mesh network proposal achieved a greater PRR than the CSR-
mesh. Moreover, although the network tra�c was increased, this is a logical consequence
considering the higher number of sensor nodes, which were able to take part in the mesh

83

4.2. Evaluation of our New Mesh Proposals

 0

 0.2

 0.4

 0.6

 0.8

 1

W1 W2 W3 W4 W5 W6 W7 W8

P
R

R

Waspmote devices

Network Load
Low High

Figure 4.5: PRR in our mesh proposal for 8 sensor devices with Individual Mesh con�gura-
tion and 3 CSR devices with saving con�guration.

Table 4.6: Packets per second received by CSR devices in saving mode. Waspmote devices
con�gured as Individual Mesh con�guration

Number of Packets Transmitted
by Waspmote Devices

Packets Received per Second

CSR1 CSR2 CSR3 Average

1 (Low Network Load) 2.10 3.36 2.69 2.71
3 (High Network Load) 4.47 5.86 5.26 5.19

network thanks to the higher scalability of our proposal. However, the PRR for this con�g-
uration was lower than that obtained in the previous experiments where the CSR devices
were in default mode.

With these experiments the Individual Mesh con�guration of our proposal was evalu-
ated. However, our proposal has another con�guration, the Collaborative Mesh, where all
the devices in the network (including the sensor nodes) collaborate to extend the mesh net-
work, relaying the received packets. This con�guration is evaluated in the next subsection.

4.2.2 Collaborative Mesh Evaluation

This section presents the experiments carried out using the second con�guration of our
proposal: the Collaborative Mesh. In this con�guration, all devices collaborate to create a
mesh network. This provides higher scalability, allowing a mesh network to be deployed
using any BLE device, even if all of them are sensor nodes. In addition, this con�guration
increases the coverage range of the network, since the number of devices that relay the
received packets is greater, while maintaining the cost (it does not require the use of dedic-
ated devices). This feature is particularly important when including mobile devices, which
can freely move across the network.

84

Chapter 4. Our Proposal for BLE Mesh

It is important to note that this con�guration of our proposal cannot be implemented
in the CSRmesh for two reasons: �rst, the requirement that the new mesh devices must use
a CSR device as a bridge; and second, this requirement limits the role of the new devices to
that of master.

As in the previous section, two di�erent con�gurations were used for the CSR devices
also in this case: the default mode and the saving mode.

4.2.2.1 CSR Devices Relay each Packet Three Times: Default Mode

For this experiment, the CSR devices were set to default mode. In this mode, received
packets were relayed three times. Furthermore, the two con�gurations for the Waspmote
devices were used: Low Network Load, where the packets were transmitted (or relayed,
if the packet was received) only once, and High Network Load, where the packets were
transmitted (and relayed for a received packet) three times.

Table 4.7 shows the number of packets received by the CSR devices, which were the core
of the deployed mesh network. The number of received packets was higher compared to the
Individual Mesh, since in the Collaborative Mesh all devices relay the packets. In both cases,
for the Low Network Load con�guration and for the High Network Load con�guration, the
CSR2 device received the greatest number of packets, due to its placement (see Figure 4.3),
as it did in the Individual Mesh.

Table 4.7: Number of packets received by CSR devices and BLE server for each Waspmote
device con�guration in Collaborative Mesh with CSR devices in default mode.

Number of Packets Transmitted
by Waspmote Devices

Packets Received by

CSR1 CSR2 CSR3 Server

1 (Low Network Load) 36917 49824 34377 6326
3 (High Network Load) 51316 77035 63009 5411

Table 4.8 shows the number of packets sent by Waspmote nodes and the number of
these packets received by the sink device: the BLE server. The number of relayed packets
has also been included, owing to sensor nodes also relaying packets in this Collaborative
Mesh, as explained.

Figure 4.6 shows the PRR obtained for each Waspmote device using the two con�gur-
ations: Low Network Load and High Network Load. The PRR per Waspmote device was,
on average, 97.94% for the Low Network Load and 99.89% for the High Network Load. The
PRR obtained in this experiment was greater than that of the CSRmesh, despite the greater
number of sensor devices (eight devices used in our proposal compared to the two deployed
in the CSRmesh experiment).

Comparing this con�guration with the Individual Mesh con�guration, whose PRRs were
98.11% and 99.79% for the Low Network Load and the High Network Load, respectively, no

85

4.2. Evaluation of our New Mesh Proposals

Table 4.8: Number of packets sent and relayed by each sensor node and received by BLE
server, for each Waspmote device con�guration in Collaborative Mesh with CSR devices in
default mode.

Sensor Nodes

Low Network Load High Network Load

Sent Packets

Packets
Received
by BLE
Server

Relayed
Packets Sent Packets

Packets
Received
by BLE
Server

Relayed
Packets

W1 817 800 2928 709 709 4334
W2 787 756 2889 690 689 2143
W3 816 807 3076 688 687 1332
W4 814 795 3101 705 705 939
W5 787 772 3128 626 625 3211
W6 811 798 3148 655 652 4054
W7 838 825 3181 678 678 4354
W8 789 773 2882 666 666 4090

 0

 0.2

 0.4

 0.6

 0.8

 1

W1 W2 W3 W4 W5 W6 W7 W8

P
R

R

Waspmote devices

Network Load
Low High

Figure 4.6: PRR in Collaborative Mesh for 8 sensor devices and 3 CSR devices in default
mode.

signi�cant di�erence is appreciated. However, the main di�erence is that the Collaborative
Mesh con�guration enables the network coverage range to be increased, due to the collab-
oration of all the devices to relay the packets.

Table 4.9 shows the network tra�c in packets per second received by the CSR pack-
ets. As discussed, the CSR devices received, on average, 1.61 packets per second using the
CSRmesh with the default con�guration with two sensor nodes. In the current experiment,
the number of received packets was greater (8.44 for the Low Network Load and 11.76 for
the High Network Load), but also the number of sensor devices generating packets, being
eight in this case.

86

Chapter 4. Our Proposal for BLE Mesh

Table 4.9: Packet per second received by CSR devices when they relay each packet 3 times
(default mode). Waspmote devices con�gured as Collaborative Mesh.

Number of Packets Transmitted and
Relayed by Waspmote Devices

Packets Received per Second

CSR1 CSR2 CSR3 Average

1 (Low Network Load) 7.72 10.42 7.19 8.44
3 (High Network Load) 9.46 14.21 11.62 11.76

This con�guration maintains the advantages of our proposal: the PRR is close to the
ideal, while increasing the scalability of the network compared to the CSRmesh. In addition,
the Collaborative Mesh con�guration increases the total coverage range of the network with
respect to the Individual Mesh con�guration, although it also slightly increases the network
tra�c.

The following subsection details the evaluation of this con�guration in a real environ-
ment, using the saving mode for CSR devices.

4.2.2.2 CSR Devices Relay each Packet Once: Saving Mode

In this scenario, the CSR devices were con�gured in saving mode, relaying each packet
received only once. For the Waspmote devices, the two con�gurations already described
were used: Low Network Load and High Network Load.

Table 4.10 shows the number of packets received by the CSR devices, which are the
backbone of our mesh, as well as the BLE server. For Low Network Load con�guration, the
results show a reduction in the number of packets received compared to using the default
mode of CSR devices. This is because, in this scenario, the packets were forwarded by
the CSR devices only once, with no repetitions. For the high network load, the number of
packets received by the CSR devices was greatly increased, although the number of packets
sent and relayed by the sensor nodes did not increase (see Table 4.11). This is due to the
con�guration used, since in the previous scenario CSR devices relayed each received packet
three times. These numbers are even greater than in the Collaborative Mesh con�guration
with the CSR devices in default mode (see Table 4.7).

Table 4.10: Number of packets received by CSR devices and BLE server for each Waspmote
device con�guration in Collaborative Mesh with CSR devices in saving mode.

Number of Packets Transmitted
by Waspmote Devices

Packets Received by

CSR1 CSR2 CSR3 Server

1 (Low Network Load) 10384 14700 12589 4617
3 (High Network Load) 95138 116130 100465 5218

Table 4.10 shows the number of packets (excluding repetitions) sent by sensor nodes
(Waspmote devices), the number of packets from each sensor node received by BLE server

87

4.2. Evaluation of our New Mesh Proposals

and also the number of packets relayed by each sensor node. The largest number of packets
received by the BLE server was obtained for the High Network Load con�guration.

Table 4.11: Number of packets sent by each sensor node and received by BLE server, for each
Waspmote device con�guration in Collaborative Mesh and CSR devices in saving mode.

Sensor Nodes

Low Network Load High Network Load

Sent Packets

Packets
Received
by BLE
Server

Retransmitted
Packets Sent Pakcets

Packets
Received
by BLE
Server

Relayed
Packets

W1 695 591 3006 652 652 2081
W2 680 537 2997 638 638 2058
W3 690 650 3089 660 660 2161
W4 666 592 2976 660 659 2176
W5 690 547 3046 641 641 2115
W6 680 529 2979 643 643 2121
W7 683 652 3037 670 669 2199
W8 643 519 2921 656 656 2069

Figure 4.7 shows the PRR for both Waspmote con�gurations. As shown, the PRR for
Low Network Load was around 85% on average, too low for our zero fails objective. It was
the lowest of all con�gurations for our mesh proposal, and similar to the PRR obtained
for two sensor devices by CSRmesh topology, using the saving mode con�guration in CSR
devices. However, the PRR for High Network Load is 99.97%, the greatest of all con�gura-
tions, including the CSRmesh.

 0

 0.2

 0.4

 0.6

 0.8

 1

W1 W2 W3 W4 W5 W6 W7 W8

P
R

R

Waspmote devices

Network Load
Low High

Figure 4.7: PRR in Collaborative Mesh for 8 sensor devices and 3 CSR devices in saving
mode.

Table 4.12 shows the network tra�c in packets received per second. For the Low Net-
work Load con�guration, the tra�c network was remarkably low for eight sensor devices.

88

Chapter 4. Our Proposal for BLE Mesh

However, its PRR was also too low to ful�l the requirements of a real network. For High
Network Load, the tra�c network was very high although it was compensated for by an
excellent PRR.

Table 4.12: Packets per second received by CSR devices in saving mode. Waspmote devices
con�gured as Collaborative Mesh.

Number of Packets Transmitted and
Retransmitted by Waspmote Devices

Packets Received per Second

CSR1 CSR2 CSR3 Average

1 (Low Network Load) 2.83 4.01 3.43 3.42

3 (High Network Load) 25.31 30.90 26.73 27.65

The experiments carried out in this scenario have shown that the con�guration of Low
Network Load for Waspmote devices with CSR devices in saving mode is not a viable option
for the Industry 4.0 due to its zero fails requirement. However, the High Network Load con-
�guration achieved an outstanding PRR, although it also involved higher network tra�c.
As always in wireless networks, we need to consider the importance and priority of these
parameters. For our objective, the most important parameters are: to achieve a PRR as close
as possible to the ideal and to provide a total network coverage, maintaining the level of
tra�c at levels comparable to other proposals such as the CSRmesh.

4.3 GreenISF

Green I3A Smart Factory (GreenISF) was a scenario de�ned in a real environment that
emulates a smart factory, and in which di�erent experiments were carried out for testing
human-machine collaboration. This scenario is presented in detail in [53], and included a
heterogeneous network that uses LoRaWAN and BLE technologies. The GreenISF scenario
was deployed at the I3A [50], a building with an approximate area of 710 square metres.
This building consists of di�erent sectors that were classi�ed as separate areas. Our proto-
type consisted of a representative sector with all varieties of existing nodes coexisting and
cooperating with humans. This sector is highlighted in Figure 4.8, where a plan view of the
entire building is provided according to the deployment carried out for BLE and LoRaWAN
technologies. Di�erent research groups are currently working in this building with di�er-
ent wireless technologies (such as Wi-Fi, ZigBee or Sigfox), being an appropriate area to
determine the degree of adequacy of the network to improve social sustainability in smart
factories. In addition, the sector in which our prototype is deployed to test the latency
and reliability of the network contains equipment and machines that help us to make the
system performance more di�cult and, therefore, more robust for adverse environmental
conditions in real factory scenarios.

The LoRaWAN network gathered information from the environment, being conceived
as the context information network that surrounded the workers and monitored the rel-

89

4.3. GreenISF

LoRaWAN node

LoRaWAN Gateway

BLE Mesh node

BLE Machine node

OperaBLE (operator)

OperaBLE (supervisor)

MACHINE

CONTEXT

INFORMATION

NETWORK

SUPERVISOR

COLLABORATIVE

BLE MESH

OperaBLE

OPERATOR

OperaBLE

FOG

COMPUTING

CLOUD

COMPUTINGMACHINE

Figure 4.8: GreenIS Factory scenario for human-machine interaction.

evant environmental parameters. Data collected from sensors deployed in GreenISF were
sent to a local server and eventually to ThingSpeak[54], a global IoT data analysis platform.
For the development of this local server node.js (see Section A.2.3) was used.

Our collaborative BLE mesh presented in Section 4.1 was statically deployed in the
GreenISF scenario and connected to the local server. New smart devices were introduced
into this network, allowing users to interact with it in an intuitive and simple way, as well
as to improve their safety. All collaborative BLE mesh devices are listed in Table 4.13 and
detailed below.

Table 4.13: BLE devices in our collaborative BLE mesh network.

BLE device Role in the network

Machine nodes To monitor machines
To warn supervisors of possible errors

Mesh nodes To increase the network coverage range
Industrial equipment To improve worker safety

Mobile devices To facilitate the interaction of the supervisors
with the information from the factory

OperaBLE
To check vital signs of operators

To facilitate the interaction with the environment
To improve the learning curve of operators

Industrial regulatory clothing, such as safety helmets or sound-isolating headphones,
was improved by including them in the deployed BLE mesh network. Our network enabled
the system to know the relative location of the operators in the di�erent areas and thus

90

Chapter 4. Our Proposal for BLE Mesh

(a) Smart protection helmet. (b) Smart protection headsets.

Figure 4.9: Smart regulatory industrial equipment.

verify the appropriate equipment that each operator should wear according to the manu-
facturing processes. In particular, the safety helmets and headphones were equipped with
a LightBlue Bean device (detailed in Section A.1.3) connected to a pressure sensor (see Fig-
ure 4.9) that allowed the system to know whether the user was wearing it, informing the
other devices of the mesh. In addition, the intelligent helmet incorporated an accelerometer,
being able to detect impacts and immediately send an alert message to nearby supervisors.

Another of the devices included in the BLE network were mobile devices such as tablets
or smartphones. In order to allow supervisors to stay informed about all the activities in
the entire area of the factory, a native Android application was developed using Android
Studio (see Section A.2.4). This application communicated directly through the BLE mesh
network to receive the relevant activity reports, the working conditions of the operators,
information on the nodes installed on the machines and context information from the local
server.

The application developed displayed the machine nodes on the building plane, permit-
ting the supervisor to request information from all of them. To do this, the supervisor could
either select the node on the tablet, or use the OperaBLE device detailed below to double
tap near one of these nodes to display its information. In the �rst case, the application
sent a request to the server, which then requested the most updated information from the
device, relaying the information received to the application. In the case of using the Oper-
aBLE device, the nearest machine node that received the request from OperaBLE sent its
information to both the mobile device and the server. Regardless of the mode selected, all
information is transmitted through the collaborative BLE mesh. Figure 4.10 shows a tab-
let running the developed application, as well as a screenshot of this application with the
information of an operator.

Finally, the last device included in the collaborative BLE mesh was our wearable pro-
totype, OperaBLE, which is de�ned in depth in [55]. The �rst prototype of OperaBLE was
designed using 3D-printing techniques, and modelled with the shape shown in Figure 4.11.

91

4.3. GreenISF

(a) Tablet running the developed application. (b) Application developed for the supervisor.

Figure 4.10: Android application developed.

OperaBLE has di�erent sensors and actuators that provide the workers with safety and
comfort as well as allowing the workshop areas to be monitored by the supervisors. Several
devices were used to develop our wearable prototype of OperaBLE for industrial operators.
Regarding the materials used, the controller board was LightBlue Bean (see Section A.1.3),
being suitable for the purpose of our prototype due to the integration of the BLE module
in the board.

Figure 4.11: OperaBLE device.

In addition to the smart equipment, OperaBLE is a set of devices focused on the most
important entity in Industry 4.0, people. For this purpose, two roles were created within the
organisation, with two modes of use of the OperaBLE device: supervisors and operators.
The supervisors can use the tap movement to request information from nearby machines
in an extremely simple way, receiving the information requested in their application. Fig-
ure 4.12 shows a supervisor using the tap movement to request a report. The operators,
meanwhile, can take advantage of the movement characterisation of OperaBLE to monitor
their movements and work safely, or activate certain orders through speci�c movements,
without the need for technological skills. This is because OperaBLE has no buttons and
requires no previous knowledge in terms of digitisation. Finally, in both cases, OperaBLE

92

Chapter 4. Our Proposal for BLE Mesh

(a) Tap movement detail. (b) Supervisor requesting reports.

Figure 4.12: Supervisor equipped with OperaBLE requesting a report.

provides the approximate location, as well as measuring the pulse and sending warnings
through the emergency movement or automatically in case of detecting a problem. These
warnings are sent to the server and to all mobile devices if necessary.

Thus, thanks to the combination of di�erent technologies and di�erent devices, Green-
ISF allows a detailed report of labour activity in the factory to be stored, as well as context
information, which is available for consultation at any time.

4.4 GreenISF Evaluation

The preceding sections presented and evaluated our proposal for BLE mesh with di�erent
con�gurations depending on the role of the devices in the network. Two operating modes
were proposed for our network: Individual Mesh (only the core devices of the network
relayed the received packets) and Collaborative Mesh (all the devices relayed the received
packets). For each of these modes, two di�erent con�gurations were evaluated, varying the
number of times each packet was sent. The previous section presented our GreenISF pro-
ject, where di�erent mobile devices were included in our BLE mesh. This section presents
an evaluation focused on these new experiments and these new features, allowing us to see
the performance of our proposal in a real application.

For the experiments carried out in this section, a Collaborative Mesh con�guration was
selected, with mesh and sensor nodes relaying each received packet only once. This con-
�guration was selected, �rstly, because our mesh network had to provide a total coverage
in a real environment, and, secondly, because the combination of these con�gurations gave
us a lower network tra�c compared to other collaborative con�gurations, which is an im-
portant point in our sustainability objective.

93

4.4. GreenISF Evaluation

The use of these new devices, as well as the functionality added to our network was
proposed to facilitate the work of users and prevent occupational risks, among others. For
this reason, the communications performance of these new devices is of great importance
being evaluated in this section. The new communications that appeared with our GreenISF
project included: the requests made by the superiors using a mobile device, after which the
corresponding responses from the server had to be received. In addition, in the packet �ows
related to the movements collected by the OperaBLE wearable appear taps and movement
characterisation.

4.4.1 Supervisor Request through a Mobile Device

The �rst new feature evaluated was the request for data. As already mentioned, a smart-
phone application was developed to facilitate the work of the supervisor. Although all the
data collected by the sensors were updated in real time using our BLE mesh network, certain
information was sent on demand, either because it was transmitted using another network
(the context information was transmitted by the LoRa network), or because this informa-
tion needed to be pre-processed (such as the movements of users). However, possible errors
were noti�ed without the need for a previous request.

This evaluation was divided into three sets of 50 requests each. In the �rst set, only data
from the operator were requested. In the second set, only context information was reques-
ted. Finally, the third set presents alternative requests for operator and context information.
For each set, the percentage of requests received by the server successfully, the percentage
of responses received by the smartphone successfully, and the time interval from request
to response are presented.

For operator data requests (see Table 4.14), all requests were received and processed in
the server (50/50 successful requests), although some response packets were not received
(48/50 successful responses). Figure 4.13 shows the histogram of the time elapsed between
a request and its corresponding response, for each successful received response.

Table 4.14: Summary of experimental results obtained for operator information requests
from supervisor.

Successful
request

Successful
response

Average
time (s)

100% 92% 0.347

Results for context information requests (see Table 4.15) were similar: the server re-
ceived and processed all request packets (50/50 successful requests), but not all response
packets were received in the mobile device (47/50 successful responses). Figure 4.14 shows
the request-response time interval.

Finally, for operator data and context information requested alternatively, the results
were close to the previous results (see Table 4.16): all request packets were received and

94

Chapter 4. Our Proposal for BLE Mesh

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 r

eq
ue

st
s

Time (s)

Figure 4.13: Histogram of time lap from sending request to receiving response obtained for
operator information requests from supervisor

Table 4.15: Summary of experimental results obtained for context information requests
from supervisor.

Successful
request

Successful
response

Average
time (s)

100% 88% 0.318

processed by the server (50/50 successful requests), and only one response packet was lost
(49/50 successful responses). The request-response interval times are represented in Fig-
ure 4.15.

Table 4.16: Summary of experimental results obtained for context and operator information
request from supervisor.

Successful
request

Successful
response

Average
time (s)

100% 96% 0.359

These experiments demonstrated that most of the packet losses were produced in the
response packets sent by the server to the mobile device, which contrasts with the perfect
results obtained for transmissions from the mobile device to the server. This situation was
due to the way in which the relays were managed. The BLE server implemented a bu�er
that stored the received packets for relaying when possible. However, the mobile device
relayed the packets as soon as they were received, to avoid as much as possible the use
of the resources of the device. This resulted in the scanning time of the mobile device not
being completely delimited, causing losses of packets in certain situations.

Regarding the user experience, we �nd two factors: on the one hand, the time elapsed
between the supervisor selecting a target to obtain its information (which triggered a re-
quest) and the reception of the response; and on the other hand, the probability of this
response having been received. Our experiments revealed, on average, a response time of

95

4.4. GreenISF Evaluation

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 r

eq
ue

st
s

Time (s)

Figure 4.14: Histogram of time lap from sending request to receiving response obtained for
context information requests from supervisor.

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 r

eq
ue

st
s

Time (s)

Figure 4.15: Histogram of time lap from sending request to receiving response obtained for
context and operator information request from supervisor.

0.341 seconds and a probability of receiving the transmissions of 92%. This provided a good
user experience for the supervisors in the developed application. In addition, the success
rate in receiving the packets could be improved by resending the request when the response
is not received in the stipulated time.

4.4.2 Supervisor Requests using OperaBLE Taps

Sensor nodes included in machines were programmed to send their performance data every
15 minutes, although this time interval could be modi�ed. In case an error was detected or
an uncommon value was measured, this information was sent immediately. Additionally,
the supervisor could request the information from machine nodes near him or her, using
the tap movement. When this movement was detected by the OperaBLE device, and the
supervisor was close enough to a machine node, the OperaBLE device sent a request to the

96

Chapter 4. Our Proposal for BLE Mesh

corresponding sensor node. The sensor node updated its data and sent a new and updated
packet to supervisor mobile device and to server through the BLE mesh network.

For this evaluation, 50 requests were sent to two di�erent machine nodes, alternat-
ively, using the tap movement and verifying the correct data reception in the mobile device.
Table 4.17 contains the percentage of requests received by machine nodes and the percent-
age of the corresponding response packets received by the mobile device. Results prove
how all request packets were received by sensor nodes (50/50 successful requests), although
some data packets from sensor nodes were lost when they were sent to the supervisor mo-
bile device (48/50 successful data packet receiving). Table 4.17 also shows the average time
elapsed between a tap movement detection and a data packet from sensor node was re-
ceived. In addition, Figure 4.16 show the time for each request-response.

Table 4.17: Summary of experimental results obtained for information for machine nodes
request from supervisor using tap movement.

Detected in
machine node

Received
in mobile device

Average
time (s)

100% 96% 1.407

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
um

be
r

of
 ta

ps

Time (s)

Figure 4.16: Histogram of time lap from sending tap packet (from OperaBLE) to receiving
response (in mobile device) obtained for machine node information request from supervisor.

As in previous experiments, the number of responses received by the mobile device
was lower than the number of requests received by sensor nodes from OperaBLE. In this
case, the sensor nodes used BLE 4.0, and its high percentage of packets received was due
to the source device: OperaBLE. This device was developed using LightBlue Bean, because
of its small size and low power consumption. However, the broadcaster role was recently
included in its �rmware, with it not being possible to send a single advertisement packet.
For this reason, packets were sent more than once, increasing the receiving probability in
sensor nodes.

In addition, the time elapsed from the end of the tapping movement until the informa-
tion packet was received on the mobile device is a good way to evaluate the user experience.

97

4.4. GreenISF Evaluation

In this experiment, the time was 1.407 seconds on average. However, this type of interac-
tion was di�erent from others, since it was done with the environment itself, in a simple
and very user-friendly way.

4.4.3 Movements Transmission by the Mesh Network

The last evaluation of our mesh network performance was the transmissions of movement
data packets. The data collected by the accelerometers integrated in the OperaBLE device
when a movement was executed were sent to the server for its processing and character-
isation. The size of data collected for a movement was usually greater than the PDU size
(for this �eld type, the length is 12 bytes). For this reason, fragmentation of movement
data in the source device and reassembling it in the server was necessary. However, this
methodology could produce movement data losses if one of its packets were lost in the
transmission.

Table 4.18 shows the results of the evaluation for the transmission of 50 movement data.
These movements produced a total of 481 data packets. Although the packet loss rate was
only 0.42%, it involved the loss of two complete movements (4%), since full movement data
was required for processing.

Table 4.18: Results for evaluation 50 movement data transmissions

Total Packets Total movements Average time
per packet (s)Sent Received Sent Received

481 479 50 48 0.290

The data fragmentation caused the size of the movement data, which was determined
by the duration of the movement, to be directly proportional to the time needed to transmit
them. Figure 4.17 shows the time required for transmitting di�erent data size movements,
according to the number of packets needed to send them. This experiment was carried out
using two OperaBLE devices simultaneously, and the results demonstrated that there was
no signi�cant variation in the required time. This is because the bottleneck of our mesh
network was in the source devices, not in the intermediate devices.

The Operable device collected samples of movements every 100 milliseconds. Each
sample had a size of 6 bytes. As already mentioned, the size of the available data �eld was 12
bytes, so each packet could contain up to 2 samples, which were transported to the server.
Therefore, the transmission time depended on the duration of the movement. For example,
a movement of 2 seconds required the transmission of 10 packets. These movements were
used to ensure that the operators worked correctly and safely.

98

Chapter 4. Our Proposal for BLE Mesh

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
(s

)

Number of packets

Figure 4.17: Time required for transmitting movements according to their number of pack-
ets (data size)

4.5 Conclusions

In this chapter, a new BLE mesh topology was proposed, with di�erent con�guration modes,
which was evaluated for di�erent use cases in an emulated Industry 4.0 environment. Our
topology allowed us to obtain the following bene�ts:

• To increase the PRR, improving the network performance. The experiments carried
out demonstrated that our proposal obtained a greater PRR for sensor devices. Even
in networks with a greater number of sensor devices, several con�gurations of our
proposal maintained this rate close to the zero fails required in Industry 4.0.

• To increase the coverage area of the network. All devices relayed the packets received
from the mesh, ensuring the total coverage of the network, which is another Industry
4.0 requirement.

• To increase the scalability of the network. Any device with a BLE chip was allowed
to be part of the mesh without master-slave connection.

• To improve the user experience. The topology of our mesh network allowed common
user devices (smartphones, tablets or wearables) to communicate with the rest of the
devices in the network.

Moreover, the results obtained for di�erent network con�gurations proved that each
con�guration worked better in a particular use case:

• The Collaborative Mesh con�guration permits an area to be completely covered using
the minimum number of devices.

99

4.5. Conclusions

• The Individual Mesh con�guration permits an area to be completely covered where
the number of network devices is greater than that required to do so (the mesh net-
work is dense).

Both con�gurations could be combined to create a hybrid network, in which some
devices use a con�guration while the rest use the other.

Regarding the number of packets per second, we can �exibly select the best con�gur-
ation for our network topology, according to the particular use case: the Individual Mesh
con�guration is appropriate for small spaces with a large number of sensor devices, while
the Collaborative Mesh con�guration works properly for large areas as it increases the net-
work coverage with a low cost. To combine both con�gurations in the same network is
also possible. However, this is not possible in the CSR topology, since it has a �xed con�g-
uration, and also requires a bridge device for each new device in the network.

The second part of this chapter introduces the GreenISF, a Smart Factory scenario where
our network prototype was deployed. In this scenario, di�erent roles were de�ned for
testing human-machine collaboration, including operators, supervisors, machines, static
nodes and smart devices. Of these, the most outstanding is the OperaBLE device, our smart
band prototype.

Our collaborative BLE mesh network was evaluated with these new devices to ful�l
Industry 4.0 requirements: zero fails, total coverage and sustainability. The experiments
demonstrated how this proposal improves the current standard BLE topologies and other
mesh initiatives for this use case.

100

CHAPTER 5

Providing Interoperability in
Bluetooth mesh

This chapter presents our implementation and evaluation of Bluetooth mesh stack and pro-
visioning procedure for BLE devices which were not designed to be used in Bluetooth mesh
networks, including BLE 4.0 devices, the lowest supported version. Our implementation
permits all compatible BLE devices to be provisioned and to be part of a Bluetooth mesh
network as any other node in the network, without using other devices as a bridge (Proxy
protocol).

After carrying out our implementation and verifying its correct operation, we proposed
a di�erent approach to improve the provisioning procedure, mainly when using devices not
initially designed for Bluetooth mesh, taking into account their limitations and operation
modes. With the implementation completed, our work was focused on the performance
evaluation. In order to evaluate our implementation, di�erent experiments were carried
out using BLE 4.0 devices according to provisioning time, provisioning robustness, end-to-
end delay and PRR with encouraging results, which are of great interest in IoT and IIoT.

This chapter �rst presents our implementation in depth. It then introduces the Light-
weight Provisioning, our proposal for improving the provisioning procedure. Finally, the
experimental results are described.

5.1 Preliminaries

From when BLE (see Section 2.2) was introduced for the �rst time (version 4.0 [6]) until
the last Bluetooth speci�cation (version 5.2 [12]), it has continued with the same network
topologies: point-to-point (1:1) and broadcast communications (1:m). Its performance in
terms of throughput, range, power consumption and payload capacity has been improved
in each speci�cation to meet the new challenges arising. For example, the broadcast to-
pology was initially designed to send advertisements enabling a point-to-point connection

101

5.2. Bluetooth mesh Implementation

and it was later used to send beacons. Now, broadcast transmissions enable di�erent data
to be sent to several devices simultaneously. Meanwhile, the point-to-point topology has
increased the number of devices connected simultaneously to the same central node, and
the combination of central/peripheral roles has become more �exible, enabling a peripheral
device to be the central device of another node.

Although these topologies may be suitable for a multitude of applications, they are
not su�cient to ful�l all the requirements of the latest trends, such as smart buildings,
smart factories and smart cities. These cases require high reliability, total coverage and
sustainability, both in terms of energy consumption and the number of devices used.

In order to meet these new requirements, �rst academia and companies, and later the
Bluetooth SIG itself, proposed a new network topology for BLE: the mesh, included in the
Bluetooth mesh speci�cation [17] (see Section 2.3). Compared to the previous broadcast
topology, Bluetooth mesh not only provides a longer range, but also improves the data ca-
pacity due to its extremely compact packet format [20], as well as security capabilities at
di�erent levels. Bluetooth mesh enables the easy connection of a large number of devices
for home and industrial automation, building management and many other IoT applica-
tions.

Di�erent devices especially created to use Bluetooth mesh have already been launched
on the market, as well as the corresponding implementations of the Bluetooth mesh stack
developed by several companies (such as Nordic Semiconductor [23] or Silicon Labs [24]).
Other open source proposals for these devices have been developed by communities (such
as Zephyr [25] or BlueZ [26], the o�cial Linux Bluetooth protocol Stack), with the number
of products quali�ed by Bluetooth SIG being more than 700 [27], including the implement-
ations of the Bluetooth mesh stack.

Despite the arrival of these new devices and implementations, key questions remain
unanswered: What about the 20000 Bluetooth SIG quali�ed BLE devices [56] that were not
designed for Bluetooth mesh topology? Can they be upgraded and used in a heterogeneous
mesh with new devices or do their limitations make this unfeasible? Bluetooth SIG has
a�rmed that all BLE devices can take part in the mesh network, but there is no work to
prove this claim. Furthermore, if they can be upgraded, are they really usable in the new
mesh networks or do they not ful�l all the requirements of the current applications? Will
interoperability be possible?

5.2 Bluetooth mesh Implementation

This section presents our Bluetooth mesh implementation in detail, distinguishing between
the devices used: Bluetooth non-mesh and Bluetooth mesh devices. Waspmote devices
(see Section A.1.1) were selected as non-mesh devices, since they use BLE 4.0. The Wasp-
mote IDE (see Section A.2.1) was used to implement the Bluetooth mesh in these devices.
EFR32BG13 devices (see Section A.1.4) with Simplicity Studio IDE (see Section A.2.5) and

102

Chapter 5. Providing Interoperability in Bluetooth mesh

nRF52840 (see Section A.1.5) with Zephyr (see Section A.2.6) were used as mesh devices,
being the Bluetooth mesh protocol stack already implemented in the software used. Finally,
the nRF sni�er (see Section A.1.6) was used to verify that the data was transmitted correctly.

Most of our implementation was developed as a library in C code for Bluetooth non-
mesh devices. Our Bluetooth mesh library uses some functions de�ned in BLE library from
Libelium to communicate with the BLE112 radiochip of the Waspmote devices, although
direct communications were also included in our implementation, through the sending of
binary commands by the UART interface. Moreover, open-source software modules relative
to security functions were included and adapted. Both the implemented library and the
other software modules are in the BLE Host part. Figure 5.1 illustrates the relations between
our Bluetooth mesh library and the rest of the modules.

In addition, we also programmed the Bluetooth mesh devices to perform the functions
required for the experiments. This was much simpler thanks to the available Bluetooth
mesh stacks. All tasks performed are described below.

Bluetooth

Mesh Library

AES

CMAC

BLE LibraryuECC

CCM

BLE112

Radio Chip

BLE Controller

BLE Host

Figure 5.1: Relations between Bluetooth mesh library implemented (in the centre), the soft-
ware modules needed (light) and the hardware BLE Radio Chip (dark).

5.2.1 Open-Source Software Modules Included

Software modules were included for our implementation, adapting them to work correctly
with the rest of the modules, as well as with our library. Most of these modules are related
to security, being the implementation of well-known algorithms:

• BLE library from Libelium [57] to manage the BLE chip. This library permits di�erent
BLE con�gurations to be established as well as to be switched between di�erent BLE
roles.

• uECC implemented by K. Mackay [58], which provides di�erent functions to generate
the private-public key pair and to obtain the ECDH shared secret.

• AES implemented by B. Gladman [59], which enables data to be encrypted using the
AES algorithm.

103

5.2. Bluetooth mesh Implementation

• CMAC implemented by J. Song and J. Lee [47], to encrypt data using the AES-CMAC
algorithm. This library uses functions from the AES library for the AES-based part.

• CCM [48] library from [23], which enables data to be encrypted, decrypted and au-
thenticated using the AES-CCM algorithm. This library uses functions de�ned in the
AES library for the AES-based part.

5.2.2 Our Implementation of Bluetoothmesh Library for Bluetooth
non-mesh Devices

We deployed the Bluetooth mesh as a library in C code for previous BLE devices preceding
the release of Bluetooth mesh such as Waspmote, developing this library in C code. The BLE
Controller was implemented in the BLE112 chip, and includes the two lower layers of the
BLE 4.0 standard (Link and Physical Layers, de�ned in Section 2.2). The BLE Host part runs
on the Waspmote microcontroller device, being implemented in a C library that includes
the rest of the layers of the BLE standard. Following this model, our implementation was in
the BLE Host, communicating with the BLE Controller through the use of binary commands
through the UART interface. The main functions developed are shown below, starting with
those related to the provisioning procedure.

• Mesh Initialisation initialises the BLE module and related parameters, such as TX
power, or advertising/scanning parameters. It also initialises necessary parameters
for Bluetooth mesh: the ECDH curve and device UUID; calculates the random number
for the provisioning procedure; and calculates the public-private key pair.

• Beaconing prepares the advertising packets and starts the beaconing stage necessary
for the provisioning procedure, using the device parameters.

• Provisioning allows the device to be provisioned. It starts waiting for the Link Open,
and goes through the di�erent steps of the provisioning procedure. After receiving
a complete transaction, it is processed, triggering the corresponding actions. These
actions include sending or waiting for the reception of an ACK or a new transaction
from the provisioner device. This function uses the ones de�ned below.

• Provisioning Mesh Events Scanning switches the BLE chip to scanner role, checking
the received BLE messages until the reception of a provisioning message. It waits for
this message until a con�gurable timeout up to 5 minutes.

• Transaction Sending prepares the transaction to be sent, fragmenting it into several
segments if necessary, and switches the role of the BLE chip to advertiser for sending.
This function waits for the reception of the ACK if necessary, repeating the sending
if the ACK is not received in 1.5 seconds.

• Encryption and Privacy Keys extraction extracts the Encryption and Privacy Keys re-
ceived in the Provisioning Procedure, particularly in the Provisioning Data PDU.

104

Chapter 5. Providing Interoperability in Bluetooth mesh

Regarding the Bluetooth mesh layers, we implemented two main functions for each
layer, called depending on whether a packet is received or sent:

• Network Layer Input processes a received Bluetooth mesh Network PDU, deobfus-
cating, decrypting and authenticating it. Moreover, the function checks whether the
PDU is already in the message cache, discarding it in that case.

• Transport Layer Input receives the Transport PDU from the Network Layer Input
function, reassembling multiple PDUs if necessary. It also decrypts and authenticates
the PDU using the application Key.

• Access Layer Input receives the Access PDU from the Transport Layer Input func-
tion, checking whether the incoming application data has been received correctly
and sending it to the appropriate application.

• Access Layer Output receives the application data and encapsulated it in an Access
PDU, sending it to the Transport Layer Output function.

• Transport Layer Output receives the Access PDU from Access Layer Output function,
encrypting and encapsulating it in a Transport PDU, which is fragmented if necessary.
Each of these PDUs is sent to the Network Layer Output function.

• Network Layer Output encrypts and obfuscates a Transport PDU, encapsulating it in
a Network PDU, which is sent using advertising packets.

5.2.3 Implementation using Available Bluetooth mesh Stacks

For the EFR32 and nRf52840 devices from Silicon Labs and Nordic Semiconductor respect-
ively, available Bluetooth mesh stacks were used.

For the EFR32 devices, the IDE provided (Simplicity Studio) was used to develop the
programs that permitted us to conduct the experiments. To this end, the necessary calls
to its API were used, developing programs to send and receive Bluetooth mesh messages,
following the demo examples included in the API. For provisioner device implementation,
there was no demo code, so calls to the Silicon Labs API were used following the available
documentation. However, using their API, the number of con�gurable parameters was
greatly reduced.

For the nRF52840 devices, Nordic Semiconductor provides the possibility of using its
own Bluetooth mesh protocol stack called nRF5 Software Development Kit (SDK) for mesh.
However, it does not provide access to the radio peripheral, leaving most of the functional-
ity only exposed as system calls that can be interpreted as a virtual HCI. For that reason, we
chose the open source Real Time Operating System (RTOS) Zephyr, which provides full ac-
cess at all layers of implementation. In addition, Zephyr supports multiple boards, making
our code easily exportable to any of them.

105

5.3. Lightweight Provisioning

5.3 Lightweight Provisioning

After our development, and focusing on the provisioning procedure, we noticed a margin
of improvement that could allow us to make this process lighter.

Packet exchanges in the provisioning procedure are acknowledged to ensure their cor-
rect reception by the other device. In most of these cases, the communication is restarted
from the device that sends the ACK packet. Therefore, our proposal is based on removing
the sending of these ACK packets, maintaining only those that are completely indispens-
able and using the next packets as con�rmation of the reception of the previous ones. For
this reason, our proposal is called Lightweight Provisioning.

Our proposal not only removes the time for sending and receiving ACKs, but also the
time spent waiting for ACK packets. One of the main problems is that in some steps of
the standard procedure, the ACK is sent from the same device that starts sending the next
transaction. This causes the device sending the ACK to be unable to know whether this ACK
has been received and whether it can send the next transaction. To deal with this problem,
some implementations such as Silicon Labs wait a prudential amount of time before starting
the next transaction (3 seconds in particular). In other Bluetooth mesh stacks, such as that
implemented in Zephyr, the following transaction is started just after the ACK, resending
the ACK when necessary. Therefore, the improvement achieved by this proposal varies
depending on the implementation, but, in any event, it involves an optimisation of the
current procedure by eliminating the sending, receiving and principally the waiting times
of the ACK.

The Lightweight Provisioning requires only the sending of 15 packets to complete the
provisioning, compared to the 25 used by the standard procedure included in the Bluetooth
mesh speci�cation. The ACK packets removed without modifying the behaviour of the
Provisioning protocol are: (1) Provisioning Invite ACK; (2) Provisioning Capabilities ACK;
(3) & (4) both Provisioning Public Key ACKs; (5) & (6) both Provisioning Con�rmation
ACKs; (7) & (8) both Provisioning Random ACKs; and (9) Provisioning Data ACK. This
provisioning procedure proposal is illustrated in Figure 5.2.

In this way, our Lightweight Provisioning permits the total number of packets to be
reduced without compromising the robustness of the provisioning procedure. In order to
provide an easier understanding of how our proposal maintains the robustness of the stand-
ard procedure, the Exchanging Public Keys stage is analysed step-by-step as example.

The �rst transaction is the Provisioning Start, sent from the provisioner to the unprovi-
sioned device. The Provisioning Start ACK cannot be removed, because without this ACK
the provisioner is unable to know whether the Provisioning Start transaction was correctly
received, nor when to send the next transaction (Provisioning Public Key).

Following the standard procedure, after receiving the Provisioning Public Key transac-
tion from the provisioner, the unprovisioned device sends the respective ACK and then the

106

Chapter 5. Providing Interoperability in Bluetooth mesh

Provisioner Unprovisioned
Device

 Provisioning Invite

 Provisioning Capabilities

 Provisioning Start

 Provisioning Start ACK

 Provisioning Public Key

 Provisioning Public Key

Calculate
ECDH

Calculate
ECDH

 Provisioning Confirmation

 Provisioning Confirmation

 Provisioning Random

 Provisioning Random

Check
Confirmation

Check
Confirmation

 Provisioning Data

 Provisioning Complete

Device
Provisioned

Distribution of
provisioning Data

Authentication
(No OOB)

& Confirmation

Exchanging
Public Keys
(No OOB)

Invitation &
Capabilites

 Provisioning Complete ACK

Figure 5.2: Lightweight Provisioning procedure proposal.

next Provisioning Public Key transaction. However, Lightweight Provisioning removes that
ACK, using the following transaction (also from the unprovisioned device) as a con�rma-
tion of the reception of the previous transaction. Thus, when the unprovisioned device
receives the Provisioning Public Key transaction, it responds by sending its Provisioning
Public Key transaction. When this transaction is received by the provisioner device, the
reception of its previous Provisioning Public Key transaction is con�rmed. If no response
is received within a de�ned timeout, the provisioner resends its transaction. Therefore, our

107

5.4. Experimental Results

proposal avoids the sending and receiving of most ACK packets, since this situation applies
to most ACK sendings.

5.4 Experimental Results

This section begins by brie�y describing the con�guration and conditions established for
the experiments. The experiments are then detailed and their results are analysed. These
experiments con�rmed the feasibility of a heterogeneous Bluetooth mesh network, the in-
teroperability of devices from di�erent manufacturers and with di�erent BLE versions. The
experiments also measured the performance of the Bluetooth non-mesh devices included in
the mesh network, verifying whether this type of device is able to take part in a Bluetooth
mesh network properly.

All the experiments were conducted in our research institute, the I3A, while di�erent
research groups were working. Research at that time included 802.11 and BLE networks,
so other wireless systems were operating in the same frequency band (2.4 GHz). This was
intended to create a test bed as close as possible to a real environment, with possible Radio
Frequency (RF) interferences.

As stated in Section 2.3, Bluetooth mesh uses mainly broadcast packets, which are sent
and received using the broadcaster and observer roles, respectively. The combination of
these roles is more restrictive in the BLE 4.0 speci�cation than in later speci�cations, with
its performance being also more limited. For this reason, the experiments were carried out
using devices from di�erent vendors and equipped with di�erent BLE versions: EFR32 [60]
devices from Silicon Labs, with BLE 5.0 and its Bluetooth mesh stack; nRF52840 [61] from
Nordic Semiconductor, with BLE 5.0 and Zephyr RTOS; and Waspmote [62] devices from
Libelium, with the BLE 4.0 version.

We implemented the provisioning procedure and Bluetooth mesh protocol stacks over
the Link Layer of the BLE 4.0 speci�cation of Waspmote devices. These devices were used
in the following experiments to evaluate whether the version of the devices a�ects their
behaviour in a mesh network. Taking into account the mesh operating mode, one of the
main di�erences between the BLE radio chips used in these experiments lie in their cap-
abilities to carry out more than one role simultaneously: while BLE 5.0 devices are able to
perform the broadcaster and observer roles simultaneously, BLE 4.0 devices require some
time to change their roles. Another important di�erence is the time required to switch the
BLE radio mode between transmitter and receiver, which is considerably reduced in the
latest BLE versions. These di�erences result in a greater packet loss on devices using early
BLE versions compared to later versions, with this loss being greater, the shorter the packet
transmission interval.

The experiments in this section evaluated the performance of our implementation for
the BLE 4.0 device, measuring: (a) the provisioning time and provisioning robustness; (b)
the end-to-end delay; and (c) the packet reception rate.

108

Chapter 5. Providing Interoperability in Bluetooth mesh

5.4.1 Experiment 1: Provisioning Time and Robustness

The provisioning procedure detailed in Section 2.3.4 permits a BLE device to take part in a
mesh network. This important process is performed only once in each node, and provides
a secure network key delivery from the provisioner. The provisioning procedure is a se-
quential process: when there is more than one unprovisioned device, they are provisioned
separately, so we focused on provisioning a single device.

In this experiment, we measured the time used to perform each stage in the provisioning
procedure when a Bluetooth non-mesh device (Waspmote) is provisioned by a provisioner
designed for Bluetooth mesh (EFR32 and nRF52840), using di�erent Bluetooth mesh stack
implementations and di�erent settings.

Moreover, we also evaluated our improvement proposal, the Lightweight Provisioning
presented in Section 5.3, and then we conducted a comparison between both alternatives.
Therefore, identifying which steps take more time provides us with deeper knowledge on
how this process works and what could be improved.

Finally, the robustness of the standard provisioning procedure and the proposed Light-
weight Provisioning are evaluated in a di�erent scenario, in order to ensure the robustness
of this procedure is not compromised by our proposal.

In all the following cases, the unprovisioned Waspmote device was con�gured in the
same way: when it needs to send a message, it changes its role to broadcaster, sending
the message using the three advertising channels for 60 ms, with an advertising interval
of 60 ms. After the message sending, the device changes its role to observer, scanning the
network for 1.5 seconds, with a scan interval of 1.5 seconds and a scan window of 100%.
If no response is received, the unprovisioned device repeats the advertising and scanning
steps up to a total of three times. In case of no response after these three attempts, the
provisioning procedure is cancelled by the unprovisioned device, sending a provisioning
failed PDU. For ACK packets, the unprovisioned device waits until 1.5 seconds. If no ACK
is received, the unprovisioned device continues with the next transaction assuming that
the ACK is lost, resending the previous transaction later if necessary.

Another common case is when a PDU is longer than the segment size. In this situation
the PDU is fragmented into di�erent segments, which are sent consecutively. For example,
in the Public Key exchange, both the provisioner and unprovisioned device need to send
three packets. These are sent once per advertising channel, consecutively, as shown in
Figure 5.3.

In this scenario, the BLE 5.0 device con�gured as a provisioner was located at a distance
of one metre in the sight line from the Waspmote device (BLE 4.0), to reduce the number
of packet losses due to environmental or obstacle interference, as Figure 5.4 shows. For the
same reason, the transmission power was adjusted to the maximum value, equivalent to
+3dBm for Waspmote devices, to +10dBm for EFR32 devices and to +8dBm for nRF52840
devices. Both the provisioner and the unprovisioned device were connected to the com-

109

5.4. Experimental Results

Seg. 1

C
h
.

3
7

C
h
.

3
8

C
h
.

3
9

C
h
.

3
7

C
h
.

3
8

C
h
.

3
9

C
h
.

3
7

C
h
.

3
8

C
h
.

3
9

C
h
.

3
7

C
h
.

3
8

C
h
.

3
9

C
h
.

3
7

C
h
.

3
8

C
h
.

3
9

C
h
.

3
7

C
h
.

3
8

C
h
.

3
9

Seg. 2 Seg. 3 Seg. 1 Seg. 3Seg. 2Scanning for PDU ACK Scanning for PDU ACK

PDU 1 PDU 1

Figure 5.3: Device behaviour when sending and repeating a PDU fragmented into three
segments, each sent in a di�erent message.

puter through a USB cable, enabling the use of the computer clock as a common clock, in
order to measure the time of the di�erent events. Additionally, we used the nRF Sni�er con-
nected to the computer, displaying all packets in Wireshark, to verify a correct provisioning
procedure in each case, as well as the validity of the times collected by devices.

PC and BLE

Sniffer

1 metre Unprovisioned

Device (BLE 4.0)
Provisioner

(BLE 5.0)

Figure 5.4: Table-top testbed for provisioning procedure evaluation.

In each evaluation, the time required to complete each individual provisioning proced-
ure stage was measured; these stages are de�ned in Section 2.3.4. A time was de�ned for
each of these stages: Invitation & Capabilities ()��), Exchanging Public Key ()%), Calculate
the ECDH Shared Secret ()����), Authentication & Con�rmation ()��) and Distribution of
Provisioning Data ()%�). These stages and their corresponding times are shown in Table 5.1.
Although the calculation of the ECDH Shared Secret is usually included in the Public Key
exchange, we found it useful to separate it because it is a local execution that can become
very computationally expensive if the processor is not optimised for this task, as in the case
of the Waspmote devices.

Table 5.1: De�ned Times for each Provisioning Protocol Stage.

Provisioning Protocol Stage De�ned Time
Invitation & Capabilities)��
Exchanging Public Key)%

Calculate the ECDH Shared Secret)����
Authentication & Con�rmation)��

Distribution of Provisioning Data)%�

110

Chapter 5. Providing Interoperability in Bluetooth mesh

5.4.1.1 Provisioning Time using EFR32

We used the Silicon Labs SDK for Bluetooth mesh to develop the necessary code to use the
EFR32 Blue Gecko device as a provisioner device. The SDK from Silicon Labs allowed us
to con�gure only certain parameters, such as TX power, with the provisioning procedure
being an API call that cannot be modi�ed or con�gured. The behaviour of the provisioning
procedure is the following: the network is scanned constantly with a scan window of 100%;
when transmitting, each message is sent only once per advertising channel. When a trans-
action is fragmented into more than one segment, packets encapsulating these segments are
sent with a 25 ms interval between packets (advertising interval). If no response is received,
the message is sent again each 3 seconds (retransmission interval). When the provisioner
sends an ACK and also the next transaction, the ACK is sent periodically for 3 seconds
before starting the next transaction, to ensure its correct reception. Experimentally, we
veri�ed that the provisioner sent an ACK for each complete provisioning transaction, ex-
cept for the Provisioning Complete transaction, which could provide a better understanding
of the results.

The time measured for each provisioning procedure stage, as well as the average time,
is shown in Figure 5.5, divided into the main steps. Each step is explained as follows:

)�� was 2.382 seconds on average. The time achieved by Test 1 and Test 6 is particularly
remarkable in this stage, as it was signi�cantly reduced. In the Invitation & Capabilities
stage, the provisioner sent the Provisioning Invite transaction and the Provisioning Capab-
ilities ACK, both of which were received by the unprovisioned device on the �rst attempt
in Test 1 and Test 6. If the Provisioning Invite transaction was not received, the provisioner
sent the transaction again after a timeout of 3 seconds, with the consequent delay, as can
be noticed in Tests 3, 5, 7, 8, 9 and 10. Regarding the delay produced by the loss of the
Capabilities ACK, it is more variable, since it is resent several times to ensure its reception.
As mentioned above, when using the API provided by Silicon Labs, ACKs followed by a
transaction from the same device (from provisioner to unprovisioned device in this case)
are constantly resent until the following transaction is sent.

)% was, with an average time of 7.480 seconds, the longest step by far. The Provisioning
Start transaction was sent by the provisioner after the Provisioning Capabilities ACK: To
ensure reception of both messages, the provisioner left 3.2 seconds between the �rst ACK
and the Provisioning Start transaction. The Public Key transaction from the provisioner
was fragmented into three segments, with the time needed for its reception being highly
variable. The Public Key segments from the unprovisioned device were received easily by
the provisioner, but the unprovisioned device could need more than one ACK repetition,
increasing the total time.

)���� was a �xed time because the algorithm was executed locally, taking 4.666 seconds
in all tests. Waspmote devices are not equipped with optimised processors for the com-
putation of security functions and algorithms. This makes this step di�cult to optimise,
although it is only executed once to include the device in the mesh network.

111

5.4. Experimental Results

)�� includes some locally executed algorithms: the con�rmation key calculation (sym-
metric encryption algorithm which takes 4-5 ms); obtaining the device con�rmation value
(2-3 ms); checking the provisioner con�rmation value (2-3 ms). Regarding BLE transmis-
sions, the transactions in this phase were one-segment transactions, and the behaviour can
be summarised as follows: transactions from provisioner to unprovisioned device, which
depended on the capability of our device to receive the packets, making the times oscillate
between 100 to 5000 ms in the worst case, where repeating several lost packets (including
ACKs) was necessary; and transactions from the unprovisioned device to the provisioner,
which took a maximum of 180 ms due to the performance of the newest BLE version.

)%� also includes algorithms executed locally, taking around 18 ms: calculating Session
Key, Session Nonce and Device Key calculation; as well as decrypting and authenticating
the provisioning data. Concerning BLE transmissions, the time needed to receive the two
segments of the Provisioning Data depended on the number of repetitions the provisioner
had to make. In the evaluation, this varied between 190 (received in the �rst sending) and
3150 ms (received when the segments were repeated). When the Provisioning Complete
was sent, the unprovisioned device waited for the ACK, but the Silicon Labs implementation
did not take this sending into account. This caused a delay of 3000 ms (the timeout speci�ed
in our implementation).

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5
 Test 6
 Test 7
 Test 8
 Test 9
 Test 10

Average

 0 5 10 15 20 25 30

TIC TPK TECDH TAC TPD

Time (s)

Figure 5.5: Time for each standard provisioning stage using EFR32 provisioner.

5.4.1.2 Provisioning Time using nRF52840

Due to the di�culties to modify the parameters and the con�guration in the implementation
of Silicon Labs, we also used the nRF52840 device as provisioner. The nRF52840 devices
are compatible with Zephyr, which is fully open source and allowed us to evaluate our
implementation of the provisioning procedure with a di�erent provisioner.

The nRF52840 devices using Zephyr RTOS were con�gured as follows: the network was
scanned constantly using a scan window of 100%; each message was sent once per advert-

112

Chapter 5. Providing Interoperability in Bluetooth mesh

ising channel using an advertising interval of 125 ms between di�erent packets (in case of
a multi-segment transaction). In case of no response, two di�erent retransmission intervals
were used for this evaluation: 1500 (see Figure 5.6) and 200 ms (Figure 5.7). After sending
an ACK, the provisioner sends the following transaction immediately after, retransmitting
the ACK if necessary.

)�� averaged 0.962 and 0.503 seconds for retransmission intervals of 1500 and 200 ms
respectively. The results show how in cases where all transmissions were correctly received
on the �rst attempt, the time obtained was similar (Tests 1, 3, 5, 6, 7 and 8 for 1500 ms
retransmission interval and Tests 1, 2, 3, 4, 5, 6, 7 and 9 for 200 ms retransmission interval).
The time obtained in cases where an ACK was lost is also similar (Tests 2 and 10 for 1500
ms retransmission interval and Test 8 for 200 ms). In contrast, when a data packet was lost,
the required time was greater when the retransmission interval was increased (Tests 4 and
9 for 1500 ms and Test 10 for 200 ms retransmission interval).

)% averaged 2.348 seconds using a 1500 ms retransmission interval and 2.256 seconds
using a 200 ms retransmission interval. Again, there is no di�erence in this step when us-
ing di�erent retransmission intervals. One of the main di�culties in this step is sending
the public key, which is fragmented into three segments. When these segments were suc-
cessfully received on the �rst attempt, similar times were obtained (Tests 1, 3, 4, 6, 7 and
9 for 1500 ms retransmission interval and Tests 7 and 8 and 10 for 200 ms retransmission
interval). However, when these packets were lost (Test 2 and 8 for 1500 ms retransmission
interval and Tests 3, 6 and 9 for 200 ms retransmission interval), the time increased more
for the greater retransmission interval. Finally, if more retransmissions were needed, or
whether the ACK needed to be resent after the following transaction was sent, the times
obtained were very similar (Tests 5 and 10 and Tests 1 and 5 for 1500 and 200 ms retrans-
mission interval, respectively).

As in the previous experiment, security algorithms were executed locally in)���� , so
in all tests the time measured was the same (4.666 seconds).

)�� were on average 2.469 seconds and 1.172 seconds for 1500 and 200 ms retransmission
interval, respectively. As stated above, this step includes some locally executed algorithms
which took 11 ms to execute. Regarding BLE transmissions, all transactions in this step
were one-segment transactions, and the time measured when all packets were received
with no losses was similar (Tests 1, 3, 4 and 7 and Tests 1, 3, 4 and 6 for 1500 and 200
ms retransmission interval, respectively). When data packets were lost, both times were
increased, impacting the 1500 ms retranmission interval (Tests 5 and 6) more than the 200
ms retransmission interval (Test 2, 7 and 9). This trend continued if a greater number of
data packets or some ACKs were lost, with a greater impact on the 1500 ms retransmission
interval (Tests 2, 8, 9 and 10) than on the 200 ms retransmission interval (Tests 5, 8 and 10).

)%� were on average 1.011 and 1.139 seconds for 1500 and 200 ms retransmission inter-
vals, respectively. This step also includes algorithms executed locally, which took around
18 ms. Relative to BLE transmissions, the time measured was similar when all packets were

113

5.4. Experimental Results

received correctly on the �rst attempt, including the fragmented transaction (Tests 1, 2, 3,
4, 6, 7, 8 and 9 for 1500 ms retransmission interval and Tests 4, 8 and 10 for 200 ms re-
transmission interval). The impact of some data packet losses was greater for the 1500 ms
retransmission interval (Test 10) than for the 200 ms retransmission interval (Tests 1, 2, 3
and 7), which was increased when several retransmissions were necessary (Test 5 for 1500
ms interval and Tests 5, 6 and 9 for 200 ms interval.

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5
 Test 6
 Test 7
 Test 8
 Test 9
 Test 10

Average

 0 5 10 15 20 25 30

TIC TPK TECDH TAC TPD

Time (s)

Figure 5.6: Time for each standard provisioning stage for nRF52840 provisioner using
Zephyr (1500 ms retransmission interval).

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5
 Test 6
 Test 7
 Test 8
 Test 9
 Test 10

Average

 0 5 10 15 20 25 30

TIC TPK TECDH TAC TPD

Time (s)

Figure 5.7: Time for each standard provisioning stage for nRF52840 provisioner using
Zephyr (200 ms retransmission interval).

5.4.1.3 Lightweight Provisioning Time

The Lightweight Provisioning proposed in Section 5.3 was included in Zephyr RTOS and
in our library in C for its evaluation. For this experiment an nRF52840 device was used as a

114

Chapter 5. Providing Interoperability in Bluetooth mesh

provisioner and a Waspmote as an unprovisioned device, with the same con�guration used
before. Waspmote device scanned the network using a scan interval of 1.5 seconds and a
scan window of 100%; when sending a message, it was sent once per advertising channel
using an advertising interval of 60 ms between di�erent packets. The retransmission in-
terval was 1.5 seconds. The nRF52840 device constantly scanned the network with a scan
window of 100%; each message was sent once per advertising channel with an advertising
interval of 125 ms between di�erent packets. If necessary, a message was repeated using
two di�erent retransmission intervals: 1500 and 200 ms. The results obtained for each of
these retransmission intervals are shown in Figure 5.8 and in Figure 5.9, respectively.

The Lightweight Provisioning proposal not only removes the time needed to send and
receive ACK packets, it also avoids the problematic situation of when the same device has
to send the ACK of the current transaction and start the next one. This would result in
greater time savings in protocol stacks such as Silicon Labs, which wait for a time interval
before starting the next transaction. However, as this implementation is closed-source, it
was impossible to modify it. For the protocol stacks that choose to continue with the next
transaction after sending the ACK as a Zephyr, the Lightweight Provisioning avoids a great
part of the retransmitted packets, since the next transaction always starts at the same time
on both devices.

)�� averaged 0.298 and 0.175 seconds when 1500 and 200 ms retransmission intervals
where used, respectively. All messages were received correctly on the �rst attempt, needing
one more retransmission only in Test 1 when using the 1500 ms retransmission interval and
in Test 2 when using the 200 ms interval.

)% averaged 1.866 and 0.649 seconds for 1500 and 200 ms retransmission interval, re-
spectively. When the 1500 ms retransmission interval was used, only one retransmission
was needed in Tests 2, 3, 7, 8, 9 and 10, while in the other tests all messages were received
at the �rst attempt. For the 200 ms retransmission interval, a message was retransmitted
only in Test 6 and 7, being successfully received on the �rst attempt in all other tests.

)���� remains the same as in the previous experiments because it is executed locally.
However, by reducing the time of the other steps, this step has become by far the most
time-consuming, with 58% of the total time for the 1500 ms retransmission interval and
77.7% for the 200 ms retransmission interval.

)�� averaged 1.141 seconds for 1500 ms retransmission interval and 0.349 seconds for
200 ms interval. In most tests, the messages were received on the �rst attempt, requiring
an extra retransmission in Tests 2, 4, 6, 9 and 10 when a 1500 ms retransmission interval
was used and in Tests 6 and 8 for the 200 ms interval.

)%� were on average 0.074 and 0.166 seconds for 1500 and 200 ms retransmission in-
tervals, respectively. The shorter time measured for the 1500 ms interval was because in
all the tests conducted the messages were received correctly on the �rst attempt, while a

115

5.4. Experimental Results

message had to be retransmitted in Tests 5, 7 and 9 when the 200 ms retransmission interval
was used.

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5
 Test 6
 Test 7
 Test 8
 Test 9
 Test 10

Average

 0 5 10 15 20 25 30

TIC TPK TECDH TAC TPD

Time (s)

Figure 5.8: Time for each Lightweight Provisioning stage for nRF52840 provisioner (1500
ms retransmission interval).

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5
 Test 6
 Test 7
 Test 8
 Test 9
 Test 10

Average

 0 5 10 15 20 25 30

TIC TPK TECDH TAC TPD

Time (s)

Figure 5.9: Time for each Lightweight Provisioning stage for nRF52840 provisioner (200 ms
retransmission interval).

5.4.1.4 Provisioning Time Comparison

This subsection provides a comparative between the standard provisioning procedure and
the proposed Lightweight Provisioning. The average of the results obtained in each case
are shown in Figure 5.10.

Rhe results show, on one hand, the in�uence of the retransmission interval in the Zephyr
implementation: the time to receive all the packets was shorter when using a lower inter-
val, due to the higher delay to obtain the packet if it is not received at the �rst attempt. On

116

Chapter 5. Providing Interoperability in Bluetooth mesh

 SL (3 s)

Zephyr (1.5 s)

Zephyr (0.2 s)

 LP (1.5 s)

 LP (0.2 s)

 0 5 10 15 20 25 30

TIC TPK TECDH TAC TPD

Time (s)

Figure 5.10: Average time of each provisioning stage for every evaluated con�guration.
SL: standard Provisioning of Silicon Labs SDK in EFR32 provisioner; Zephyr: nRF52840
provisioner using standard Provisioning in Zephyr RTOS; LP: the Lightweight Provisioning
proposal. The number in brackets indicates the retransmission interval in seconds.

the other hand, there was a di�erence between Silicon Labs and Zephyr implementations,
with this di�erence being due to the con�guration used. In addition to the retransmission
interval and the delay to send a new transaction after sending an ACK, the advertising
interval between di�erent packets is particularly remarkable. This interval is involved in
sending transactions with several segments (Exchanging Public Keys and Distribution of
Provisioning Data steps, the two with the highest increase), and is 20 ms in the Silicon Labs
implementation, while the zephyr implementation uses a 125 ms interval. A 20 ms interval
between packets is not enough for a Bluetooth non-mesh device to receive a packet, process
it (requires decryption and authentication) and be able to receive another one. This causes
the device to require a higher number of retransmissions, which, added to the higher re-
transmission interval, signi�cantly increases the time needed to complete the provisioning
procedure.

Regarding our Lightweight Provisioning proposal, great improvements were achieved
when compared to the standard implementations. Our proposal improved by 29.77% and
38.31% compared to Zephyr using the same con�guration, for 1500 and 200 ms retrans-
mission intervals, respectively. Compared to Silicon Labs, there was an improvement of
up to 74.12%, although the con�guration used is di�erent. Focusing only on the results
obtained for our implementation, the time spent on security-related calculations is partic-
ularly remarkable. These calculations represent 58.35% and 78.18% of the total time for a
transmission interval of 1500 and 200 ms, respectively. Although this operation cannot be
optimised on the devices used, the time required for its execution will decrease dramatically
when the devices running it have a specially designed coprocessor.

The results obtained in this experiment provide us with in-depth knowledge of the pro-
visioning procedure. Although this procedure was conducted solely to include a new device

117

5.4. Experimental Results

in a mesh network, it is necessary to reduce the execution time as much as possible. The
Bluetooth mesh stack implementation from Silicon Labs provides a generic solution for
most BLE devices, which increases the delays in most steps. However, this implementation
is not open source, and its optimisation for speci�c devices was not possible. The open
source implementation of Zephyr allowed us to evaluate another Bluetooth mesh protocol
stack with di�erent con�gurations, as well as to implement our proposal for the provision-
ing process: Lightweight Provisioning. After carrying out the experiments, a signi�cant
improvement in the time required to complete this procedure was demonstrated, due to
the elimination of the time needed to send and receive certain ACKs, as well as by avoiding
errors that delayed the reception of the right packets.

5.4.1.5 Robustness of Provisioning Procedures in a Real Environment

According to Bluetooth mesh speci�cation [17], a provisioner is typically a smart phone or
other mobile computing device, which allows users to provision an unprovisioned device
directly, within its coverage range. Despite this, and the fact that this procedure is only
performed once, a robust provisioning procedure is required in real environments in order
to be completed in the shortest possible time and in the minimum number of attempts.
This experiment was carried out as a demonstration of the robustness of our Lightweight
Provisioning.

For this purpose, the unprovisioned device was located 20 metres away from the pro-
visioner device in our research laboratory, as showed in Figure 5.11. The standard provi-
sioning procedure implementation of Zephyr and our Lightweight Provisioning proposal
were evaluated, using the same con�guration than in the previous experiments. The un-
provisioned device scanned the network using a scan window of 100% in a scan interval of
1.5 seconds; each transaction was sent once per advertising channel using an advertising
interval of 60 ms between di�erent packets. If necessary, a transaction was repeated using
a retransmission interval of 200 ms. The nRF52840 device con�gured as provisioner con-
stantly scanned the network with a scan window of 100%. Each transaction was sent once
per advertising channel using an advertising interval of 125 ms between di�erent packets.
The retransmission interval used was 200 ms.

Figure 5.12 shows the results obtained using the standard provisioning procedure of the
Bluetooth mesh speci�cation. These results are discussed below:

)�� averaged 0.970 seconds, 92.92% greater than the time obtained for the same setting
with the devices located at a distance of 1 metre. The result obtained in Test 1, with 2.36
seconds, stands out signi�cantly. In this case, the Provisioning Capabilities transaction re-
quired to be sent several times to be received by the provisioner. In Tests 6, 7 and 9, the time
of this stage also exceeds 1 second, due to the resending of the Provisioning Capabilities
transaction since the Provisioning Capabilities ACK was not received.

)% was on average 2.740 seconds, which is 21.47% more than the result obtained for
the experiment carried out with the same settings at a distance of 1 metre. In this case,

118

Chapter 5. Providing Interoperability in Bluetooth mesh

Provisioner

(BLE 5.0)
Unprovisioned Device

(BLE 4.0) & PC

Lab1

Lab2

Lab5Lab4Lab3

Figure 5.11: Network setup for provisioning procedure robustness evaluation.

the results were closer, since the Provisioning Public Key transaction is divided into three
segments, being one of the most challenging to receive on the �rst attempt, regardless of
the distance. The longest time was obtained in Test 10, although it is even shorter than the
worst result obtained with devices located 1 metre away.

)���� averaged 4.661 seconds. As mentioned above, this stage is executed locally on
the device with the data received in the previous transactions, so its execution time is not
a�ected.

)�� was on average 2.652 seconds. This is 126.24% greater than the result obtained
when the provisioner and unprovisioned devices were located 1 metre away. Tests 1, 3, 4,
8 and 9 are particularly notable, since in all of them the Provisioning Random transaction
from provisioner device was required to be resent several times, due to the loss of the
corresponding ACK, as well as Test 10, where the Provisioning Con�rmation transaction
from provisioner device was resent multiple times, due to the loss of its ACK.

)%� averaged 1.861 seconds. This represents an increase of 63.41% compared to the result
obtained in the experiment with the devices located 1 metre away. The results obtained in
Tests 6, 8 and 9 are remarkable, as in all of them multiple resendings of the Provisioning
Data transaction were required, which is divided into two segments.

The results show how the time required to complete each stage of the standard provi-
sioning procedure increased in all stages (except for the ECDH Calculation stage, which
remains unchanged), compared to the results obtained when the devices were located 1
metre away. However, this increase was not uniform across all stages. The greatest in-
creases corresponded to the stages where the transactions were not divided into segments,
since these transactions were correctly received in the �rst attempts when they were in a
more friendly environment. For stages with transactions divided into segments, the execu-

119

5.4. Experimental Results

tion time was increased slightly. This is because these transactions had to be resent also in
the scenario where the devices were located 1 metre away, due to the limitations of BLE 4.0
devices.

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5
 Test 6
 Test 7
 Test 8
 Test 9
 Test 10

Average

 0 5 10 15 20 25 30

TIC TPK TECDH TAC TPD

Time (s)

Figure 5.12: Time for each standard provisioning stage for nRF52840 provisioner located 20
metres from the unprovisioned device.

Regarding the Lightweight Provisioning, Figure 5.13 shows the results obtained for our
proposal when the unprovisioned device is located 20 metres from the provisioner.

)�� averaged 0.433 seconds, 147.31% greater than the result obtained using the same
con�guration with the devices located 1 metre away. Test 8 is particularly notable, since the
Provisioning Capabilities transaction required multiple resendings in order to be correctly
received.

)% was on average 1.012 seconds,which is 55.98% more than the result obtained using
the same con�guration when the devices were located 1 metre away. The longest time was
obtained in Test 8, where several resendings of the Provisioning Public Key transaction
from the provisioner were necessary to receive its three segments.

)���� averaged 4.614 seconds, a time similar to that obtained in the other experiments.
As in the results obtained with this con�guration when the devices were located at a dis-
tance of 1 metre, this stage represents most of the time, 56.45% of the total time of the
procedure, and depends especially on the hardware of the device.

)�� was on average 1.013, which is 190.17% more than the time obtained for the exper-
iment with the devices located 1 metre away. The result obtained in Test 7 is particularly
noteworthy, since it was necessary to resend the two Provisioning Con�rmation transac-
tions, both the one sent by the provisioner and the one sent by the unprovisioned device.

)%� averaged 1.101 seconds, 563.49% longer than the time obtained when the devices
were located 1 metre away. The greatest time by far was obtained in Test 7. In this case,

120

Chapter 5. Providing Interoperability in Bluetooth mesh

the reception of the two segments of the Provisioning Data transaction required several
resendings, receiving in many of them the segment previously received.

The results of this experiment also show an increase in the time of all the stages com-
pared to the results obtained when the devices were located 1 metre away when using the
Lightweight Provisioning. Similarly, the time increase was greater for the stages where all
transactions have a single segment (except Test 7). This is due to the di�culties of BLE 4.0
devices receiving multiple-segment transactions, even if they are 1 metre away.

 Test 1
 Test 2
 Test 3
 Test 4
 Test 5
 Test 6
 Test 7
 Test 8
 Test 9
 Test 10

Average

 0 5 10 15 20 25 30

TIC TPK TECDH TAC TPD

Time (s)

Figure 5.13: Time for each Lightweight Provisioning stage for nRF52840 provisioner located
20 metres from the unprovisioned device.

The experiment described in this section shows a 36.56% reduction in the time required
to provision an unprovisioned device when using our Lightweight Provisioning proposal
instead of the standard provisioning procedure. Moreover, this experiment also con�rms
that our proposal maintains the robustness required to operate at a certain distance in real
environments where other wireless networks may co-exist.

5.4.2 Experiment 2. End-to-End Mesh Delay

Once the provisioning is completed, the mesh behaviour is based on a controlled �ooding.
In this type of multi-hop networks, the latency of a message from a source node to a des-
tination node is increased by each relay node. This point is especially critical in Bluetooth
mesh, where mesh messages are encrypted and obfuscated to guarantee network security.
These processes, however, increase the processing time of each node. Can the security al-
gorithms be executed without increasing the latency to send critical messages? To answer
this question, this experiment aimed to evaluate the latency that a device equipped with
the lowest BLE version could add to the mesh network, measuring the end-to-end delay in
a two-hop network.

121

5.4. Experimental Results

For this experiment, a mesh network was deployed in our research institute, the I3A,
with three devices: two EFR32 devices equipped with BLE 5.0 and a Waspmote device with
BLE 4.0 (see Figure 5.14). The EFR32 devices were used as source and destination nodes,
being placed at a distance of 40 metres, while the Waspmote device was con�gured to relay
the received messages, being placed in the middle, at a distance of 20 metres from source and
destination nodes. All the nodes were connected to a computer through a Virtual COM Port,
using USB (for Waspmote devices) and Ethernet (EFR32 devices) interfaces. This connection
enabled the computer clock to be used as a common clock between devices for collecting
time data. Moreover, the nRF Sni�er and Wireshark were used in the same computer to
monitor the Bluetooth mesh network tra�c in order to detect any disturbance. All the
nodes were con�gured at the minimum transmission power (-23 dBm for Waspmote devices
and 0 dBm for EFR32 devices) and were not in a sight line, to limit their coverage and force
the messages to cross through the relay node, as shown in Figure 5.14.

Destination Node

(BLE 5.0)

Relay Node

(BLE 4.0) & PC

Source Node

(BLE 5.0)

T1

T3

T2

Lab1

Lab2

Lab5Lab4Lab3

Figure 5.14: Network setup for end-to-end delay evaluation.

Once the mesh network was established and provisioned, 200 packets were sent from
the source node to the destination node, with a new packet being sent each 5 seconds using
the three available advertising channels (37, 38 and 39). Each packet was repeated three
times per advertising channel to ensure its correct reception. The time between repetitions
of the same packet was 50 ms. For example, a packet %0 was sent in a time)0 using the
three advertising channels; after 50 ms ()50), %0 was resent again through the three advert-
ising channels; after another 50 ms ()100), %0 was again resent using the three advertising
channels. A new packet %1 was sent for the �rst time 5 seconds after the �rst sending of %0
()5000).

The following instants of time were measured: when each packet was sent by source
node, when it was received and sent by relay node, and when it was received in the des-

122

Chapter 5. Providing Interoperability in Bluetooth mesh

tination node. Figure 5.15 shows these results, where horizontal bolder lines represent the
median, black boxes represent the 25Cℎ and 75Cℎ percentiles, and extreme values are en-
closed by two black bars. Additionally, statistical outliers are represented by black dots.
The di�erent times measured are presented in Table 5.2 and detailed below:

•)1 includes the transmission time and the propagation time, for each packet, from the
source node to the relay node. This is the time from the �rst bit of the �rst packet
repetition leaving the source node until the last bit of the packet is received in the
relay node.

•)2 is the processing time for each packet in an intermediate node. This time includes
all processes of the Network PDU processing �ow, where we should emphasise the
deobfuscation, decryption of the packet and the subsequent encryption and obfusca-
tion.

•)3 includes the transmission time and the propagation time for each packet from the
relay node to the destination node.

•)) is the total time, the time taken for each packet to be transmitted across the mesh
network from source node to destination node (the end-to-end delay) in a two-hop
mesh network, through a BLE 4.0 relay node.

Table 5.2: De�nition of Times.

Time De�nition
)1)CBA +)?BA
)CBA Transmission time: source node −→ relay node
)?BA Propagation time: source node −→ relay node
)2 Processing time in an intermediate node.
)3)CA3 +)?A3
)CA3 Transmission time: relay node −→ destination node
)?A3 Propagation time: relay node −→ destination node
)))1 +)2 +)3

)1 and)3 are related to the packet delivery time. While)1 was 39 ms on average, the
mean value for)3 was only 12 ms. This di�erence is due to the receiver e�ciency. While
the receiver device in)1 was the Waspmote node equipped with BLE 4.0, the destination
node in)3 used BLE 5.0. The improvements in higher BLE versions mean devices are more
reliable when receiving data. This provides correct reception when the relay node sends
the �rst packet, with no need to repeat it in most cases. This successful packet reception on
the �rst attempt allows the packet delivery time between the relay node and the destination
node to be minimised.

)2 corresponds to the processing time in the relay node, the Waspmote equipped with
a BLE 4.0 radiochip using our implementation. As expected, this is the most regular time,
being 9 ms on average and varying between 8 and 10 ms in exceptional cases.

123

5.4. Experimental Results

Finally,)) illustrates the total time, with a mean value of 60 ms. According to R. Miller,
a response time of 100 ms is perceived as instantaneous [63], so the results obtained in the
network delay make our Bluetooth mesh valid for use, for example, in Industry 4.0. The
higher part of the total time is)1, due to the time needed by BLE 4.0 device to correctly
receive the mesh packets. Although, this part is probably one of the most di�cult to op-
timise because of BLE 4.0 limitations, some options could improve the current behaviour.
For example, synchronising the clocks of the devices in the network setup, along with es-
tablishing certain sending policies, would enable devices to manage scanning/advertising
roles, thus being in the proper role exactly when required.

 0

 50

 100

 150

 200

 250

T1 T2 T3 TT

D
el

ay
 (

m
s)

Time

Figure 5.15: Time per di�erent phase when transmitting 200 packets (ms).

Although these possible proposals may reduce the delay obtained, it should be noted
that the results obtained were for an experimental two-hop network. Certainly, the number
of network hops is directly proportional to the end-to-end network delay. Thus, in end-to-
end transmissions in large-scale networks, the delay produced may be too high to provide
a real-time user experience, despite the data being correctly transmitted through the net-
work. However, this is a problem common to multi-hop networks, even in Bluetooth mesh
networks using the latest BLE versions. This is widely discussed in [64], where Nordic
devices especially designed for use in Bluetooth mesh are used. In this article, the authors
achieve an end-to-end delay of approximately 23.2 ms in a two-hop Bluetooth mesh net-
work. They also prove that this delay does not depend only on the number of hops, but
also on the number of neighbours relaying the packets (the higher the number, the lower
the delay), and also on network interference (the more interference, the higher the delay).

This experiment has shown that our implementation enables any BLE device with broad-
cast capabilities to be part of a Bluetooth mesh, even in networks that require real-time
transmissions. However, the delay introduced by the devices using the initial BLE ver-
sions in large-scale networks may prevent users from having a correct experience when
the packets need to be transmitted between two nodes located at a great number of hops.

124

Chapter 5. Providing Interoperability in Bluetooth mesh

5.4.3 Experiment 3. Packet Reception Rate (PRR)

The previous experiments proved how our implementation allowed a Waspmote node using
BLE 4.0 to be provisioned and take part in the mesh network, without excessively increas-
ing the network latency. However, the Waspmote devices do not support more than one
role simultaneously (like most BLE 4.0 devices), and their performance is lower compared
to higher BLE versions. This means they cannot process an incoming packet if the mi-
crocontroller is performing another action (such as processing the previous packet). Con-
sequently, the number of lost packets is greater than in devices with higher versions and
with more computational power. For example, EFR32 devices use BLE 5.0 and event-driven
programming, more adapted to this use case. To guarantee the best performance in all BLE
versions, the Bluetooth mesh standard proposes repeating each packet a certain number of
times (usually three) to enable its reception by all devices, although this increases battery
consumption.

This experiment aimed to evaluate the performance of devices with the lowest BLE
version, using di�erent con�gurations. To this end, a BLE device con�gured as a source
node was placed at a distance of 50 cm from a Waspmote device and an EFR32 device,
minimising the packet loss due to obstacles. Additionally, the three devices were connected
to a computer through their USB ports, allowing the experiment to be tracked. The BLE
sni�er was also connected to this computer, permitting veri�cation of the correct sending
of every packet. Figure 5.16 illustrates the network setup for this experiment.

PC and BLE

Sniffer

0.5 metres

Receiver

(BLE 4.0)

Receiver

(BLE 5.0)

0.5 metres

Sender

(BLE 5.0)

Figure 5.16: Table-top testbed for packet reception rate evaluation.

After provisioning, relay devices received and relayed the mesh packets, testing di�er-
ent con�gurations. In each con�guration, a total of 200 packets were sent and, if a packet
was sent more than once, the time between each repetition was 25 ms. Each individual
packet was sent through the three advertising channels. Thus, sending a single packet
entailed sending it three times, once for each advertising channel, while three repetitions
meant a total of nine sendings, three for each channel. In the cases with more than one send-
ing, a complete sending was performed by the three advertising channels before repeating
the sending. The chosen con�gurations evaluated the PRR using two di�erent parameters:
(1) the number of repetitions of each packet, varying between 1, 2 and 3; and (2) the interval

125

5.5. Conclusions

 0

 0.2

 0.4

 0.6

 0.8

 1

2000 1000 500 300 200 100

P
R

R

Interval between two different packets (ms)

Repetitions
3 2 1

Figure 5.17: Packet Reception Rate varying the number of repetitions and the interval
between di�erent packets.

between two consecutive di�erent packets, which was con�gured to 2000, 1000, 500, 300,
200 and 100 ms. The PRR of the BLE 5.0 device obtained for all con�gurations was 100%,
while the PRR of the BLE 4.0 device for each con�guration is represented in Figure 5.17.

As expected, the PRR was lower when the number of repetitions of each packet was
lower. Taking as a reference the three repetitions (the best case), to repeat each packet twice
reduced the PRR by only 2.25% on average, while to repeat each packet only once meant
a reduction of 11.75%, on average, in the PRR. However, this higher variation is related to
the interval between two di�erent consecutive packets. Focusing on this parameter, we can
appreciate, graphically, the minimum interval necessary to allow the Waspmote device to
receive, process and relay the mesh packets. As previously explained, this device does not
support scanning and broadcasting simultaneously, and a new packet cannot be received
while the microcontroller is performing another task. This delays the reception of a new
packet for the time used in the previous packet. This experiment demonstrates this e�ect,
placing the minimum interval between two consecutive packets for suitable performance
at 200 ms.

5.5 Conclusions

This chapter presents a double contribution. Firstly, the implementation and evaluation of
the Bluetooth mesh speci�cation in devices using BLE 4.0, including the provisioning pro-
tocol. Secondly, a proposal to improve the standard provisioning procedure, called Light-
weight Provisioning.

Our implementation allows Bluetooth non-mesh devices to be provisioned and to be
part of a Bluetooth mesh network, without the use of an additional device as a bridge (proxy
feature). According to Bluetooth SIG, Bluetooth mesh is compatible with all BLE devices
from BLE 4.0 [21] that support broadcaster and observer roles. To verify this, we imple-

126

Chapter 5. Providing Interoperability in Bluetooth mesh

mented the provisioning protocol and the di�erent layers of the Bluetooth mesh protocol
stack.

Di�erent experiments were conducted to evaluate the implementation developed, veri-
fying its correct operation in small and medium-scale networks. Although the performance
is lower than that of BLE 5.0 devices due to the version’s limitations, BLE 4.0 devices can
be updated and used in new Bluetooth mesh networks. This will enable a large number of
current devices to be used (saving money) in a network topology much demanded by IoT
and Industry 4.0.

The Lightweight Provisioning, our proposal to simplify the Provisioning procedure, en-
ables a device to be part of the Bluetooth mesh network with a lower exchange of messages,
reducing the time needed to perform the provisioning procedure by 36.56%. Moreover, the
Lightweight Provisioning maintains the level of reliability and security of the standard pro-
visioning procedure, adapting it to devices that are not optimised for a rapid exchange of
packets.

127

CHAPTER 6

Optimisation of the Friendship
Mechanism

This chapter presents the study of di�erent proposals considered as an alternative to the
current friendship mechanism. The alternatives studied are: (1) improving the Bearer
Layer, (2) improving time synchronization and (3) improving advertising channel utilisa-
tion. However, after conducting di�erent analyses and experiments, the limitations of these
approaches meant their �nal implementation was unfeasible. For that reason, this chapter
also presents our proposal for friendship with Burst Transmissions and Listen Before Trans-
mit (BTLBT) technique as an optimisation to the standard friendship mechanism.

This chapter �rstly analyses the di�erent proposals for the optimisation of the friend-
ship mechanism, as well as the reasons for their unfeasibility. Then, our BTLBT proposal
for friendship is described in detail and evaluated in hardware platforms. Finally, the con-
sumption study conducted is presented.

6.1 Preliminaries

Since its �rst release, BLE has provided users with point-to-point (1:1) and broadcast (1:m)
communications. These topologies enable the deployment of small IoT networks, but do not
ful�l the requirements demanded by the latest IoT trends, such as smart buildings, smart
factories (where the term IIoT has acquired great importance) and smart cities. These new
concepts require total coverage, high reliability and sustainability. In this context, mesh
topology for BLE appeared, �rstly as a proprietary or academic solution, and �nally in the
Bluetooth mesh speci�cation [17].

Although Bluetooth mesh provides a solution that ful�ls the requirements of the latest
IoT trends, the mesh nodes must constantly scan the medium in order to relay the messages
received. This implies a great energy consumption that battery-powered nodes cannot deal
with. For these cases, Bluetooth mesh provides the friendship relationship, described in

129

6.2. Initial Improvement Proposals

detail in Section 2.3.1.1. In this mechanism, FNs constantly scan the medium and store
messages destined to LPNs, enabling these LPNs to be in sleep mode most of their lifetime.
LPNs wake up periodically, requesting to the corresponding FN, which sends the messages
stored for them.

The role of the FN in Bluetooth mesh is necessary to avoid exhausting batteries. How-
ever, it cannot currently be adjusted to the needs of speci�c applications [65]. This may be
due to the fact that this is the �rst version of the Bluetooth mesh speci�cation, and, given
the novelty of the speci�cation, the friendship mechanism is insu�ciently optimised. The
current standard friendship mechanism is based on a stop and wait protocol and, although
it is simple to implement, has highly ine�cient channel utilisation.

6.2 Initial Improvement Proposals

In our aim to optimise transmissions between LPNs and FNs, three di�erent approaches
were studied: (1) improving the Bearer Layer, through the use of the advertising extensions
proposed in the Bluetooth 5.0 speci�cation [66]; (2) improving time synchronization, which
would enable LPNs to receive messages at precisely de�ned time intervals; (3) improving
advertising channel utilisation, which would prevent every request and message from being
sent through all three advertising channels.

This section presents the above proposals and the reason leading us to think another
approach would be better.

6.2.1 Improving the Bearer Layer

In [67], the author proposes to enhance the bandwidth and the power consumption of
Bluetooth mesh by improving the Bearer Layer, either as a proprietary solution or as a
future modi�cation in the speci�cation. Introducing an improvement in this layer would
mean obtaining better results in the upper layers without modifying them, thanks to the
abstraction of the bearers.

One possibility to reach this improvement could be to use the Advertising Extensions,
features de�ned in the Bluetooth 5.0 speci�cation [66] and later. These Advertising Exten-
sions enable devices:

• To use packets of up to 255 bytes, instead of the current 37 byte size limitation.

• To chain advertisements, being able to transmit up to a total of 1650 bytes in a row.

• To use the 37 data channels to send advertisements. In Bluetooth 5.0, these channels
are also known as secondary advertising channels. This allows a greater number of
channels to be available, in order to avoid collisions. This also reduces the advertising
interval between packets (from 20 ms to 7.5 ms).

130

Chapter 6. Optimisation of the Friendship Mechanism

This approach could improve the performance of the Bluetooth mesh by using all pos-
sible upgrades of the lower layers of Bluetooth 5.X speci�cations. However, compatibility
with previous versions (4.0, 4.1 and 4.2) would be lost. For example, advertising packets
sent over data channels (or secondary advertisement channels) use a di�erent preamble to
avoid confusion, so they are discarded by BLE 4.X devices. This goes against the current
Bluetooth mesh standard, which emphasises compatibility between all versions. Further-
more, it also goes against our heterogeneous network philosophy, and thus we decided to
discard this option.

6.2.2 Improving Time Synchronization

Another encouraging approach is the synchronization of FNs and LPNs. The maximum
consumption of a LPN is given by the sending and especially the reception of messages,
where the scanning time required to receive a message is fundamental: the greater this
time, the greater is the power consumption in this type of nodes. If LPNs and FNs were
synchronised accurately enough, LPN requests could be suppressed and the receive win-
dows reduced to the minimum.

With regard to synchronization in wireless sensor networks, a �ooding architecture us-
ing implicit time synchronization is proposed in [68]. In this proposal, however, the devices
periodically scan the network to receive and relay messages, keeping synchronised. Al-
though this approach could be studied for RNs, which might bene�t from this architecture,
it is not suitable for LPNs since these only wake up to send data or request their messages
from the FN.

Another alternative is to use synchronization algorithms between the FN and the LPN,
such as the Lightweight Time Synchronization (LTS) algorithm. This algorithm has already
been used in sensor networks [69] and BLE [70]. The LTS algorithm requires the exchange
of three packets between two nodes, permitting them to estimate the di�erence between
the two clocks and adjust them precisely (down to the micro-second level). The drawback
of this algorithm is the requirement to resynchronize the devices from time to time in order
to maintain their synchronization, depending on the accuracy of the clocks. For example,
Nordic nRF52840 DK devices (see Section A.1.5) used in our experiments have the following
clock sources [71]:

• 64 MHz on-chip oscillator.

• 64 MHz crystal oscillator, using external 32 MHz crystal.

• 32.768 kHz RC oscillator, with two modes of operation, normal mode (500 parts per
million (ppm) and 0.7`�) and ultra-low power mode (2000 ppm and 0.3`�), enabling
the user to trade power consumption against accuracy of the clock.

• 32.768 kHz crystal oscillator, using external 32.768 kHz crystal.

• 32.768 kHz oscillator synthesised from 64 MHz oscillator

131

6.2. Initial Improvement Proposals

Since we are focusing on the friendship mechanism, using high frequency sources is
undesirable due to their higher consumption. As for the use of the included low frequency
source, its accuracy is too low (500 ppm) to be e�ciently used for synchronization tasks.
The best option to maintain low power consumption with good accuracy is to use a low
frequency external crystal that provides us with high accuracy maintaining a low power
consumption. An example of the type of crystal oscillator that could be used is the Epson
TG-3541CE [72]. This oscillator o�ers high accuracy (3.4 ppm) over a wide temperature
range. Using these crystal oscillators, in the worst case scenario, the two node clocks drift
with 6.8 ppm. The minimum synchronization interval to maintain the clock synchroniza-
tion of two nodes with an error smaller than 1 ms is therefore around 150 seconds. Despite
the high accuracy and low power consumption of the oscillator, it is not possible to use
synchronization to reduce the power consumption of the current friendship mechanism,
which enables the LPN to remain in sleep mode for up to 96 hours due to its asynchronous
requests.

6.2.3 Improving Advertising Channel Utilisation

Another possible improvement approach is the optimisation of the use of the advertising
channels, in order to avoid medium congestion. As explained in Section 2.3.1, Bluetooth
mesh uses the three advertising channels to send broadcast messages. In Bluetooth mesh,
each message is usually sent at least once by each of the advertising channels. Furthermore,
sending critical messages more than once per channel is recommended. Is it possible to
achieve a more optimised use of the medium without a�ecting performance?

Focusing on the friendship mechanism, would it possible for LPNs and FNs to commu-
nicate using a single channel? In that case, the power consumed sending three messages
could be reduced, as well as avoiding an excessive use of the channels. For this purpose,
we conducted three experiments that measured the impact on performance of the use of
the channels. In all three experiments, we used 1 FN and 4 LPNs, which wake up simultan-
eously to request messages.

For all three experiments, identical parameters were established: a 60-second Poll-
Timeout, a 255-ms ReceiveWindow and a 100-ms ReceiveDelay. In each experiment, the
FN had 160 messages stored in each Friend Queue, which were sent after the correspond-
ing requests from the LPNs. In the �rst experiment (see Table 6.1), the FN and the LPNs
sent all messages through the three advertising channels. In the second experiment (see
Table 6.2), the FN and the LPNs sent the messages through advertising channel 37. In the
third experiment (see Table 6.3), each LPN used a di�erent channel to communicate with
the FN.

As the results show, of the 160 messages sent by the FN, an average of 100% of packets
were correctly received when using the three channels compared to 93.44% when using a
single channel and 75.78% when each LPN uses a di�erent single channel. Using a single
channel produces less medium saturation, as well as less consumption per request sent.

132

Chapter 6. Our improvement proposal: BTLBT

Table 6.1: Results for 1 FN and 4 LPNs using the three advertising channels.

Node LPN1 LPN2 LPN3 LPN4
Advertising channel All All All All
Received messages 160 160 160 160

Lost messages 0 0 0 0
Sent Polls 175 173 175 176
Lost Polls 5 3 5 6

Terminated friendship 0 0 0 0

Table 6.2: Results for 1 FN and 4 LPNs using the same single advertising channel.

Node LPN1 LPN2 LPN3 LPN4
Advertising channel 37 37 37 37
Received messages 147 157 160 134

Lost messages 16 17 16 42
Sent Polls 239 243 249 222
Lost Polls 80 73 77 78

Terminated friendship 0 2 1 1

However, the PRR decreases, and, therefore, the number of requests increases. The main
reason for packet loss is that the radio is only capable of scanning a single channel at any
given time, so it switches between di�erent advertising channels when scanning the me-
dium (as explained in Section 2.2.3.2. Due to the scanning and advertising intervals, it is
possible to receive the messages sent through the three advertising channels, but not when
they are only sent using one of them.

Finally, each lost request means that the LPN will scan the network during the inter-
val set by the ReceiveWindow parameter, increasing consumption more than the reduction
achieved in sending the request through a single channel. The loss of several of these re-
quests means the termination of the friendship, which causes the FN to discard the packets
still stored in the Friend Queue, which are permanently removed. Given the poor results
obtained, we decided to omit this approach, focusing on another proposal to improve the
current friendship mechanism.

6.3 Our Improvement Proposal: Bursts Transmissions
and Listen Before Transmit (BTLBT)

In the experiments described in Section 6.2, a maximum ReceiveWindow (255 ms) was es-
tablished. However, after receiving a message, LPNs stop scanning the medium. The av-
erage time from the beginning of the ReceiveWindow to the reception of the message was
92.27 ms for 1 LPN requesting to the FN, increasing to 147.06 ms for 4 LPNs simultaneously.
These results show that an optimisation in the medium access could considerably reduce
the time of the ReceiveWindow, with the consequent reduction of consumption in the LPN.

133

Table 6.3: Results for 1 FN and 4 LPNs using a di�erent single advertising channel.

Node LPN1 LPN2 LPN3 LPN4
Advertising channel 38 39 37 38
Received messages 127 76 154 128

Lost messages 10 12 14 13
Sent Polls 251 220 238 265
Lost Polls 111 126 74 123

Terminated friendship 2 7 0 3

To optimise medium access, the use of burst transmissions is proposed, where a single
LPN request initiates the sending of a burst of messages from the FN. This enables the
time of the ReceiveWindow to be optimised, enabling a greater number of messages to be
received in less time and avoiding the sending of a request for each message.

In our proposal, after receiving a message from the FN, the LPN resets the ReceiveWin-
dow time, waiting for a new message. This continues until the maximum number of mes-
sages per burst or an update packet is received. Moreover, maintaining the �exibility of the
ReceiveWindow interval allows the FN to perform other functions if needed, such as relay-
ing a received Bluetooth mesh message. This proposal not only allows LPNs to avoid the
sending of multiple requests, but also improves the time it takes to receive the messages,
enabling them to reduce the total scanning time, and, therefore, to reduce consumption.
Figure 6.1a shows an example of Bluetooth mesh friendship standard transmissions while
Figure 6.1b illustrates an example of our proposal of Bluetooth mesh friendship burst trans-
missions.

FN

LPN
RD RW RD RW RD RW

Request Request Request

Data Data Update

(a) Bluetooth mesh standard friendship.

FN

LPN
RD RW RW RW

Data Data Update

Request

Packet reception Device ScanningPacket transmission in
channels 37, 38, 39

RD - ReceiveDelay RW - ReceiveWindow

(b) Burst transmission friendship.
Figure 6.1: Examples of transmissions using Bluetooth mesh standard friendship and burst
transmission friendship.

134

Chapter 6. Our improvement proposal: BTLBT

As already explained at the beginning of this chapter, the number of LPNs simultan-
eously requesting a�ects the performance of the FN, which takes longer to respond to re-
quests, increasing the size of the ReceiveWindow and the power consumption in LPNs. This
also applies to burst transmissions, increasing the scanning time. Therefore, our proposal
involves another improvement in this aspect: Listen Before Transmit (LBT), which works
is a similar way to Carrier Sense Multiple Access (CSMA). Due to the combination of these
two techniques, we decided to denominate our proposal Burst Transmissions and Listen
Before Transmit.

Before requesting, an LPN listens to the shared medium to determine whether the FN is
transmitting to another LPN. The listening time is randomly decided and ranges from 1 to
2 times the size of the ReceiveWindow. If the listening LPN detects an FN transmission, it
waits in sleep mode for a randomly selected period of time known as backo� period. If the
listening time ends without detecting a transmission, the LPN sends its request. Figure 6.2
shows the state machine of an LPN in our proposal, which can be compared to the state
machine of a standard LPN in Figure 2.11.

FRIENDSHIP

ESTABLISHED

WAIT
RECEIVE

DELAY

WAIT
UPDATE

 timer expires
(poll or backoff)

timer expires
(ReceiveDelay)

response received
(update)

 no response received
in Receive_Window
(request_attempts++)

response received
(messages_received < burst)

messages_received++

LISTEN
TO THE
MEDIUM

MEDIUM
IDLE

FN transmitting to
another LPN

No transmission
from FN detected

 request message
(send friend poll)

response received
 (messages_received == messages_in_burst)

INIT

 max request_attempts
with no response

Establish
 Friendship

Figure 6.2: Bluetooth mesh BTLBT friendship state machine.

135

6.4. Experimental Results

As in the Bluetooth mesh speci�cation, poll packets sent by LPNs requesting messages
from the FN act as ACKs for previously received transmissions. In our proposal, the entire
burst is acknowledged, needing to be repeated if any packet is lost. This ful�ls the require-
ment of LPN receiving all messages in order, as stated in the Bluetooth mesh speci�cation.

6.4 Experimental Results

This section describe the experiments carried out to evaluate the implementation of the
proposal detailed in the previous one (Section 6.3), as well as the results obtained. The pro-
posal was implemented for the Zephyr RTOS (see Section A.2.6), and the experiments were
conducted using PCA10056 Development Kit (DK) boards with nRF52840 chipset (see Sec-
tion A.1.5). These experiments are divided into: (1) performance of Bluetooth mesh stand-
ard friendship; (2) performance of Bluetooth mesh friendship using burst transmissions; (3)
performance of Bluetooth mesh friendship using our BTLBT proposal. Finally, the results
obtained by the Bluetooth mesh standard friendship mechanism and those obtained by our
proposed BTLBT for Bluetooth mesh friendship are compared.

The operation of the LPN is based on very low consumption. As explained in Sec-
tion 2.3.1.1, LPNs spend most of their lifetime in sleep mode, being most of their consump-
tion caused by sent messages (including requests) and especially by received messages, due
to the time of the ReceiveWindow. For this reason, the way in which LPNs request and
receive the stored messages from the FN requires improvement. However, this improve-
ment would be worthless if messages were lost, since, in this case, messages need to be
resent, invalidating the results achieved. Therefore, a reduction in consumption is as im-
portant as improving (or at least maintaining) the performance of the current Bluetooth
mesh friendship.

This section describes the experiments carried out regarding the performance obtained
by three di�erent approaches, as well as the results obtained. These approaches are:

1. Bluetooth mesh standard friendship mechanism.

2. Bluetooth mesh friendship using burst transmissions.

3. Bluetooth mesh friendship using BTLBT.

Two di�erent network topologies were used for these experiments: 1 FN in a friendship
relationship with 1 LPN (Figure 6.3a) and 1 FN in a friendship relationship with 4 LPNs
(Figure 6.3b). At the time of starting all the experiments, the FN had already established the
friendship with all the LPNs, and had 160 messages in each of its Friend Queues. Once the
LPNs wake up to the �rst request, they continue to request messages until they receive the
last one (update packet).

136

Chapter 6. Our improvement proposal: BTLBT

FN
(0x0001)

LPN
(0x0002) Friendship

(a) Network friendship topology with 1 LPN.

FN
(0x0001)

LPN1
(0x0002)

 Friendship

LPN2
(0x0003)

 Friendship

LPN3
(0x0004)

 Friendship

LPN4
(0x0005)

 Friendship

(b) Network friendship topology with 4 LPNs.

Figure 6.3: Network friendship topologies used in our experiments.

6.4.1 Performance of the Bluetooth mesh Standard Friendship
Mechanism

This section begins with the evaluation of the current performance of the Bluetooth mesh
standard friendship. Two experiments were conducted, where 1 FN was in charge of 1 and
4 LPNs (see Figure 6.3a and Figure 6.3b respectively). For the experiment with 4 LPNs, LPNs
woke up simultaneously to request messages. In both experiments, the FN stored 160 data
messages for each LPN. The LPNs were placed one metre away from the FN, and were con-
�gured with a ReceiveDelay of 100 ms and a ReceiveWindow of 255 ms, which terminated
when the message was received. When an LPN woke up, it consecutively requested mes-
sages (using poll packets) until it received the update message indicating no more stored
messages were available. All nodes were con�gured to send each message only once per
advertising channel. The advertising interval was 20 ms, although the Zephyr implement-
ation used requires 60 ms between the sending of one packet and the following one. The
scan interval was 30 ms, with a scan window of 30 ms (100%). Table 6.4 shows the results
of these experiments. The results obtained from the experiment carried out with 4 LPNs
are shown as an average per LPN.

137

6.4. Experimental Results

Table 6.4: Results for 1 and 4 LPNs that requested messages simultaneously to the FN using
the Bluetooth mesh standard friendship mechanism.

Simultaneous devices 1 LPN 4 LPNs
(Avg. per LPN)

Polls sent by each LPN 165 164.25
Messages received (+ update) 160 (+1) 160 (+1)

Total time (s) 30.725 39.797
Average time per message (s) 0.192 0.249
Average Receive window (ms) 92.27 147.06

The results in Table 6.4 show that LPNs received the 160 data messages stored in the FN
in all cases, as well as the �nal update packet. However, additional poll packets had to be
sent due to the packet losses between the LPNs and the FN. These losses did not occur from
the FN to the LPNs, where all messages were received at the �rst attempt. Moreover, the
results show how increasing the number of LPNs causes a degradation in network perform-
ance, since the FN needed to share its capacity among all of them. When 4 LPNs performed
simultaneous requests, the total time to complete the transaction (and therefore the time
per individual message) was increased by 29.53% compared to the 1 LPN scenario. In addi-
tion, not only was the time needed per packet increased, but also the power consumption,
since the ReceiveWindow used in the scenario with 4 LPNs was, on average, 147.06 ms,
59.38% higher than the 1 LPN scenario.

6.4.2 Performance of Bluetooth mesh Friendship using Burst
Transmissions

This subsection presents the results of the experiments conducted using our proposal for
burst transmissions de�ned in Section 6.3. These experiments were carried out by varying
the number of LPNs (1 LPN and 4 LPNs with 1 FN) in both cases, as well as the number of
messages per burst (with bursts of 4, 8, 16 and 32 messages), to determine the in�uence of
both parameters on performance.

In order to compare the results obtained in these experiments with those obtained using
the standard friendship mechanism, the same parameters were maintained. For this reason,
160 messages per LPN were stored in the Friend Queues of the FN. LPNs were con�gured
with a ReceiveDelay of 100 ms, which in this case was used only at the beginning of each
burst, enabling the FN to prepare the necessary messages. The ReceiveWindow was 255 ms,
being reset after the reception of each message, regardless of the time remaining for com-
pletion. This situation was repeated until one of the following three situations occurred,
as explained in the de�nition of our proposal (Section 6.3): (1) completion of the burst;
(2) reception of an update packet; (3) completion of the current ReceiveWindow when no
message was received.

138

Chapter 6. Our improvement proposal: BTLBT

Regarding the parameters of the lower layers (Physical and Link layers), which are part
of the BLE (see Section 2.2.3.1 and Section 2.2.3.2), we used the same parameters as in the
previous experiment. Thus, all the nodes sent the packets through the three advertising
channels, using an advertising interval of 20 ms (although the time between di�erent mes-
sages increased to 60 ms due to the implementation of Zephyr). The scanning interval was
30 ms, with a scanning window of 30 ms (100%). To minimise the impact of the 60 ms
between messages due to the implementation of Zephyr, the LPNs were switched to sleep
mode for 25 ms after a message was received. This allowed the LPNs to save power and
switch back to scanning mode before the message was sent. Without this limitation, all
messages in the burst could be received in a shorter time, and the LPNs would not need to
stop scanning until the end of the burst.

The results of these experiments are presented in Table 6.5 and Table 6.6. Table 6.5
shows the results obtained for 1 LPN, while Table 6.6 shows the results obtained for 4 LPNs.
This grouping according to the number of LPNs in the tests allows us to verify whether the
performance is a�ected by the coexistence of several LPNs requesting simultaneously.

Table 6.5: Results for 1 LPN that send polls to the FN using di�erent burst sizes.

Simultaneous devices 1 LPN
Messages per burst 4 8 16 32

Polls sent by each LPN 41 21 11 6
Messages received (+ update) 160 (+1) 160 (+1) 160 (+1) 160 (+1)

Total time (s) 16.457 13.456 11.775 10.870
Average time per message (s) 0.103 0.084 0.074 0.068
Average Receive window (ms) 48.06 43.86 40.37 39.41

Table 6.6: Results for 4 LPNs that send polls simultaneously to the FN using di�erent burst
sizes.

Simultaneous devices 4 LPNs (Avg. per LPN)
Messages per burst 4 8 16 32

Polls sent by each LPN 41 21 11 6
Messages received (+ update) 160 (+1) 160 (+1) 160 (+1) 160 (+1)

Total time (s) 39.521 39.524 39.639 39.560
Average time per message (s) 0.247 0.247 0.248 0.247
Average Receive window (ms) 194.18 205.98 213.08 215.75

The results re�ect the variation in the number of polls sent by each LPN. This number
is, in all cases, lower than the poll packets required by the standard friendship mechanism,
and decreases when the size of the burst is increased, since a single request causes the send-
ing of the entire burst. In contrast to the previous experiment, all polls were successfully
received at the FN, and no resending was necessary. Similarly to the results obtained with
the standard friendship mechanism, all messages (160 data messages and one additional

139

6.4. Experimental Results

update packet) were successfully received with no packet loss, regardless of the number of
LPNs or the burst size used.

The results show how the time required to complete the reception of 160 messages (as
well as the average time per message) in the experiment with 1 LPN is reduced when us-
ing burst transmissions, compared to the Bluetooth mesh standard friendship mechanism.
The larger the burst size, the greater is the reduction achieved. The time decreased from
30.725 seconds when using the Bluetooth mesh standard friendship to 16.457 seconds when
using 4-message burst transmissions (46.44% reduction); to 13.456 seconds when using 8-
message burst transmissions (56.20% reduction); to 11.775 seconds when using 16-message
burst transmissions (61.67% reduction); and to 10.870 seconds when using 32-message burst
transmissions (64.62%). As explained above, the time reduction achieved by increasing the
number of packets in the burst is the result of two factors: (1) there is a lower number of
ReceiveDelays, only one per burst; and (2) the largest ReceiveWindow is, in most cases,
that corresponding to the reception of the �rst message of the burst, due to the preparation
required by the FN.

In the experiments conducted with 1 LPN, we can notice not only a reduction in the time
required to complete the transmission of all messages but also a reduction in the average
time of the ReceiveWindows used. The reduction achieved falls from 92.27 ms with the
standard method to 48.06 ms when using 4-message burst transmissions (47.92% reduction);
to 43.86 ms when using 8-message burst transmissions (52.47% reduction); to 40.37 ms when
using 16-message burst transmissions (56.25% reduction); and to 39.41 ms when using 32-
message burst transmissions (57.29%). This reduction is the most important improvement
achieved, since it enables LPNs to reduce scanning time, and thus, the average consumption.
To this consumption reduction, we should add that obtained by reducing the number of
requests required.

This situation contrasts with the results obtained with 4 LPNs requesting to the FN
simultaneously. In this case too, there was no packet loss (neither the poll packets sent by
the LPNs nor the data messages sent by the FN). However, the time required to complete the
transmission of all the messages remained practically the same: if the time obtained using
the standard friendship mechanism was 39.797 seconds, the time obtained for the burst
transmissions ranged from 39.521 to 39.639 seconds. There was an increase in the average
time of the ReceiveWindows used, which increased from 147.06 ms to 194.18 - 215.75 ms,
depending on the size of the burst used.

Compared to the scenario with 1 LPN using burst transmissions, the results show an
exceptional increase, which rises as the size of the bursts grows. The total time required
to complete the reception of 160 messages with 4 LPNs simultaneously, compared to the
1 LPN scenario, increased by 140.14% for 4-message bursts, 193.73% for 8-message bursts,
236.63% for 16-message bursts and 263.94% for 32-message bursts. This trend remained
in the average ReceiveWindow when we compare the scenarios with 1 and 4 LPNs: the
ReceiveWindows when 4 LPNs simultaneously requested messages increased, on average,

140

Chapter 6. Our improvement proposal: BTLBT

by 304.06% for 4-message bursts, 369.65% for 8-message bursts, 427.80% for 16-message
bursts, and 447.51% for 32-message bursts.

This situation is caused by the congestion of the FN: after sending a message, the receiv-
ing LPN has the highest priority to receive also the next message, unless the ReceiveWin-
dow of another LPN is close to ending. This increases the delay in receiving messages in
the rest of the LPNs.

This problem, generated by the coexistence of several simultaneous LPNs, encouraged
us to consider another possible improvement: the use of the BTLBT proposal, de�ned in
Section 6.3, and whose results are presented in the following subsection.

6.4.3 Performance of Bluetooth mesh Friendship with BTLBT

The results of the experiments conducted for the burst transmissions for 1 and 4 LPNs,
with di�erent burst sizes, were previously presented. As explained, this type of transmis-
sion works especially well with 1 LPN, signi�cantly reducing the time and consumption of
the friendship mechanism proposed by the Bluetooth mesh speci�cation. However, when
the number of simultaneous LPNs increases, the performance of our proposal decreases,
obtaining a similar total time with longer ReceiveWindows. For this reason, the LBT tech-
nique was implemented, as mentioned in Section 6.3.

As explained, using the LBT technique, LPNs listen to the medium before sending their
poll packets. If the FN is sending a burst of messages, the LPNs wait in sleep mode be-
fore listening to the medium again. To avoid, as far as possible, two LPNs sending their
requests simultaneously, these waiting times are randomly generated. In this experiment,
the LPNs listened to the medium for a randomly generated time between 1 and 2 times the
ReceiveWindow (255-510 ms). If a burst from the FN was detected during this time, the LPN
went into sleep mode for a time between 5 and 10 seconds, which was also random. If the
scan time expired without having detected a burst in progress, the LPN sent its poll packet.

This experiment was conducted using 4 LPNs waking up simultaneously. The selected
burst size was 16 messages, an intermediate size from those previously presented, which
gave us a great reduction in the ReceiveWindow with a lower saturation of the FN than
the larger bursts. The rest of the con�guration parameters used in this experiment were
the same as those used in the previous experiments. The FN generated and stored 160
messages per LPN in the Friend Queues. The ReceiveDelay was set to 100 ms, while the
ReceiveWindow was set to 255 ms, being reset when a new burst message was received.
This reset occurred until: (1) the burst ended; (2) an update packet was received; (3) the
current ReceiveWindow expired before any messages were received.

Regarding the BLE lower layers, all messages were sent once per advertising channel.
The advertising interval used was 20 ms. Again, there was a 60 ms delay between the
sending of di�erent messages, which was minimised by the LPN switching to sleep mode

141

6.4. Experimental Results

for 25 ms after receiving a message. The scanning interval used was 30 ms, with a scanning
window of 30 ms (100%).

The results of this experiment are shown in Table 6.7. These results show a reduction in
the number of requests in our BTLBT friendship proposal compared to the standard friend-
ship mechanism. In this case, 16-message burst transmissions were selected, and therefore
only 11 requests were necessary to receive the 160 messages (and the update packet). All
poll packets were received correctly by the FN, so resending them was unnecessary. The
results were similar for the data messages: all messages were received on the �rst attempt.

Table 6.7: Results for 4 LPNs requesting to the FN simultaneously, using our proposal
BTLBT.

Device LPN1 LPN2 LPN3 LPN4 Average
Polls sent by each LPN 11 11 11 11 11

Messages received (+ update) 160 (+1) 160 (+1) 160 (+1) 160 (+1) 160(+1)
Total time (s) 11.009 11.028 11.031 10.995 11.016

Average time per message (s) 0.069 0.069 0.069 0.069 0.069
Average Receive window (ms) 39.20 39.24 39.35 39.14 39.16

Time listening before transmit (s) 0.334 1.163 0.673 0.626 0.699
Avg. time listening per msg. (ms) 2.09 7.27 4.21 3.91 4.37

One of the most signi�cant aspects is the total time required to receive all the messages.
This time was reduced to 11.016 seconds on average when using the BTLBT friendship
proposal. This means a reduction of 72.32% compared to the standard friendship mechanism
and 72.21% compared to the friendship with burst transmissions proposal with 4 LPNs. This
reduction was translated into the required average time per message.

However, the most important achievement lies in the reduction of the ReceiveWindow,
since it is the e�ective scanning time of the devices and, therefore, one of the periods of
greatest energy consumption. The average Receive Windows per message was 39.16 ms.
This represents a reduction of 73.37% compared to using the standard friendship mechanism
and 81.62% compared to friendship with burst transmissions when 4 LPNs were requesting
to the same FN.

The only drawback of this proposal is that it requires a previous scanning time to check
whether the FN was available before requesting messages. This time varied from one LPN
to another, due to its randomness as well as the di�erent number of attempts required to
start receiving messages. The times obtained were 0.334 seconds for LPN1, 1.163 seconds
for LPN2, 0.673 seconds for LPN3 and 0.699 seconds for LPN4. Thus, the average time
was 4.37 ms per message received, which is an a�ordable cost considering the reduction
achieved in the Receive Window.

142

Chapter 6. Our improvement proposal: BTLBT

6.4.4 Comparison

Following the description of our results, this section concludes with a comparison between
the standard friendship mechanism and our BTLBT friendship proposal, in order to provide
a summary of the improvements obtained by our proposal. Table 6.8 presents the results
obtained, on average, for 1 FN and 4 LPNs simultaneously requesting, using the standard
friendship mechanism (second column) and using our BTLBT friendship proposal (third
column).

Table 6.8: Average results for 4 LPNs requesting to the FN simultaneously using the
Bluetooth mesh standard friendship mechanism and our proposal BTLBT.

Friendship Proposal Standard BTLBT
Simultaneous devices 4 LPNs 4 LPNs

Polls sent by each LPN 164.25 11
Messages received (+ update) 160 (+1) 160 (+1)

Total time (s) 39.797 11.016
Average time per message (s) 0.249 0.069
Average Receive window (ms) 147.06 39.16
Time listen to the medium (s) 0 0.699

The results obtained reveal a drastic reduction in the time required to complete each
transaction, from 39.797 seconds to 11.016 seconds, which represents a reduction of 72.32%.
This time reduction stems from the following improvements:

1. Sending a lower number of poll packs, since sending a poll pack for each message
stored by the FN is no longer necessary. The number of poll packets sent decreased
from an average of 164.25 to only 11 (93.30% less).

2. This lower number of poll packets is also related to a lower number of ReceiveDelay,
which are only used once per burst.

3. Reduction of the ReceiveWindow required per message. This falls from 147.06 ms to
only 39.16 ms (73.37% less). Moreover, reducing this parameter does not only save
time, but since the LPN is in scanning mode during this parameter, this reduction
generates a lower power consumption.

These improvements were obtained by combining burst transmissions and the LBT
technique. Burst transmissions enable the time needed when 1 LPN requests messages
from the FN to be reduced. Meanwhile, the LBT technique enables the FN to focus on
1 LPN, despite other LPNs. This increases the time that LPN spend in sleep mode, which is
essential for their own features.

Finally, the only drawback of our proposal is that it requires the use of a listening time.
For this case (with a transmission of 160 messages for each LPN, with 4 LPNs competing
for the FN simultaneously), this listening time was 0.699 seconds per LPN on average. This

143

6.5. Estimated Consumption

accounts for an additional time of 4.37 ms per message received, which is worthwhile taking
into account the reduction achieved in the ReceiveWindow.

6.5 Estimated Consumption

This section presents the study conducted on the estimated consumption for LPNs, using
both the standard friendship mechanism and our BTLBT friendship proposal. For this study,
we drew on [73], where the authors model the current consumption of a battery-operated
Bluetooth mesh LPN. This consumption is shown in Table 6.9, according to the main states
in which an LPN can be found. These states are detailed below.

1. Sleeping, where the LPN keeps active the parts which are indispensable to its proper
functioning, such as the clock.

2. Sending, which may correspond either to a poll packet to request messages from
the FN, or to a data message sent to another node. This includes the time and con-
sumption required to perform all the tasks to send a message through the three ad-
vertising channels: node wake up; 1BC message transmission; 1BC channel change; 2=3

message transmission; 2=3 channel change; 3A3 message transmission; radio o�; post-
processing; and cool down.

3. Receiving a message from the FN, for which it is necessary to put the LPN in scan
mode. This includes: wake up pre-scan, scan, radio o�, post-processing and cool
down. In this case, neither the total time nor the average consumption could be
obtained, since these depend on the length of the ReceiveWindow, which varies de-
pending on the con�guration. Therefore, the consumption related to ReceiveWindow
in Table 6.9 refers to the current consumption, instead of the average consumption.

Table 6.9: Estimated consumption for each state of the LPN, drawing on [73].

State [T] Time (ms) [I] Average
Consumption (mA)

Sleeping - 0.015
Sending 18.63 1.075

Receiving ReceiveWindow 15.91

28.19 (other actions) 0.157

Data messages are sent from the LPNs to other nodes in the same way in our proposal
as in the standard friendship mechanism. Therefore, these sendings were not taken into
account in this estimation, since their consumption is the same.

The consumption of LPNs is mainly determined by the PollTimeout. As explained in
Section 2.3.1.1, the PollTimeout is the maximum time between the sending of two poll

1The value is shown in current consumption, as the average consumption depends on the time of the
ReceiveWindow, which is variable.

144

Chapter 6. Our improvement proposal: BTLBT

packets from the LPN. Each poll packet received by the FN triggers it to send a message
stored for the corresponding LPN (or of an update packet in case there are no more messages
in the Friend Queue). The Bluetooth mesh speci�cation de�nes this time as a maximum of
96 hours, with friendship termination if exceeded. In other words, the LPN is required to
send at least one poll packet and receive a message from the FN every 96 hours.

However, after sending the �rst poll packet, the Bluetooth mesh speci�cation recom-
mends making successive requests until the reception of the update packet. Thus, if more
than one message is stored in the Friend Queue, they will be requested one after another,
so the average PollTimeout will decrease with each additional packet stored. In any event,
the time in sleep mode ()B;44?), can be calculated as shown in Equation 6.1:

)B;44? = %>;;)8<4>DC −)02C (6.1)

where)B;44? is considered all PollTimeout, except)02C , which includes all other actions
performed, such as sending or receiving messages. Although in [73] the sending of data
messages from LPNs is also included in this time, in our case it was not taken into account
since it is done in the same way in both our proposal and the standard, as already stated.
Thus,)02C can be de�ned as shown in Equation 6.2:

)02C = ('4@D4BCB ·)B4=38=6) + ("4BB064B ·)A4248E8=6) (6.2)

where Requests is the number of poll packets sent to the FN and Messages is the number
of data messages stored in the Friend Queue, which are sent to the LPN after the corres-
ponding request (and the additional update packet). In the standard friendship mechanism,
the number of requests matches the number of messages. However, in our proposal, a re-
quest initiates a message burst, reducing the number of Requests as shown in Equation 6.3:

'4@D4BC =
"4BB064B

�DABC B8I4
(6.3)

Finally, �0E4A064 can be obtained, for the lifetime of an LPN, including all its states, as
shown in Equation 6.4:

�0E4A064 =
1

%>;;)8<4>DC

(
�0E6_B;44?8=6 + �0E6_B4=38=6 + �0E6_A4248E8=6

)
(6.4)

where �0E6_B;44?8=6, �0E6_B4=38=6 and �0E6_A4248E8=6, are calculated as shown in Equation 6.5,
Equation 6.6 and Equation 6.7, respectively.

�0E6_B;44?8=6 =)B;44?8=6 · �B;44?8=6 (6.5)

145

6.5. Estimated Consumption

�0E6_B4=38=6 = '4@D4BCB ·)B4=38=6 · �B4=38=6 (6.6)

�0E6_A4248E8=6 = "4BB064B ·)A4248E8=6 · �A4248E8=6 (6.7)

Using the results obtained previously for the di�erent approaches (see Table 6.4 for the
standard friendship mechanism, Table 6.5 for burst transmissions with 1 LPN and Table 6.7
for 4 LPNs using BTLBT), consumption was obtained for some of the di�erent con�gura-
tions based on Equation 6.4. Figure 6.4 shows the current consumption per LPN for four
di�erent con�gurations: Bluetooth mesh standard friendship mechanism for 1 and 4 LPNs
(BM 1LPN and BM 4LPN, respectively) and the BTLBT proposal using a 16-packet burst for
1 and 4 LPNs (BTLBT 1LPN and BTLBT 4LPN). The results show the consumption for each
LPN in receiving from 0 to 160 data messages (plus the corresponding update packet) in a
maximum PollTimeout, which is 96 hours, as mentioned above.

 15

 15.2

 15.4

 15.6

 15.8

 16

 0 16 32 48 64 80 96 112 128 144 160

C
ur

re
nt

 c
on

su
m

pt
io

n
(µ

A
)

Messages received by each LPN in each Max PollTimeout

BM 4LPN
BM 1 LPN

 BTLBT 4 LPN
BTLBT 1LPN

Figure 6.4: Consumption comparison between di�erent approaches and number of simul-
taneous LPNs.

Figure 6.4 shows the improvement achieved by our proposal, regardless of the number
of LPNs, even reducing the consumption of the standard proposal with a lower number
of LPNs. This di�erence is increased signi�cantly when the number of messages for the
LPN grows. Thus, our proposal of BTLBT achieves, for the reception of 160 messages in
the maximum timeout, a reduction of 2.2% in consumption for 1 LPN, reaching 3.1% for 4
simultaneous LPNs.

Using the consumption data obtained, it is possible to theoretically calculate the lifetime
of a LPN using the di�erent con�gurations, according to Equation 6.8:

);8 5 4C8<4 =
�10CC4A~

�0E4A064
(6.8)

146

Chapter 6. Our improvement proposal: BTLBT

To calculate the life time, in addition to the consumption data obtained, a coin cell
CR2032 [74], with a capacity of 232 mAh, was used. The con�gurations of the LPNs used
were the same as in the previous case: Bluetooth mesh standard friendship mechanism for
1 and 4 LPNs (BM 1LPN and BM 4LPN, respectively) and the BTLBT technique using a
16-packet burst for 1 and 4 LPNs (BTLBT 1LPN and BTLBT 4LPN). Figure 6.5 presents the
results obtained for a number of messages between 0 and 1000 for each maximum Poll-
Timeout (96 hours).

 15

 16

 17

 18

 19

 20

 21

 22

 0 200 400 600 800 1000

Li
fe

tim
e

(m
on

th
s)

Messages received by each LPN in each Max PollTimeout

BM 4LPN
BM 1 LPN

 BTLBT 4 LPN
BTLBT 1LPN

Figure 6.5: Lifetime comparison between di�erent approaches and number of simultaneous
LPNs.

In this case, our BTLBT proposal again improves on the standard friendship mechanism.
The most extreme case in the �gure is the reception of 1000 messages over the maximum
PollTimeout. As this maximum is de�ned in 96 hours, it would imply the reception of a
message every almost 6 minutes on average. In this most extreme case, our BTLBT proposal
achieves a lifetime increase of more than two months for 1 LPN (a 12.9% improvement),
while the lifetime increment for 4 LPNs is more than 2.5 months (representing a 17.2%
improvement).

6.6 Conclusions

This chapter has focused on the friendship mechanism, the method proposed by Bluetooth
mesh for low-power devices that require a battery to operate. Given the operating mode
of the Bluetooth mesh network, the nodes of the network are required to spend most of
their lifetime in the scanning mode, in order to receive and relay the received messages.
In this context, Bluetooth mesh provides the friendship relationship, where FNs can store
messages destined to the LPNs. The transmission of the messages from the FN to the LPN
is on request.

This chapter includes the study of di�erent proposals to improve this standard friend-
ship mechanism, which were �nally discarded for di�erent reasons. These proposals were:

147

6.6. Conclusions

improving the Bearer Layer, improving time synchronization and improving advertising
channel utilisation.

Moreover, the most important contribution of this chapter lies in a new proposal for the
friendship mechanism: Burst Transmissions and Listen Before Transmit. Although burst
transmissions achieved a better performance when the FN was responsible for a single
LPN, this decreased when the number of LPNs was increased. The inclusion of the LBT
technique solved this problem, enabling our proposal to reduce the power consumption re-
gardless of the number of LPNs. Although this technique does not guarantee that two LPNs
will perform simultaneous requests, the selected listening times enabled LPNs to avoid this
situation in all the experiments.

The experiments carried out showed that our BTLBT proposal maintains the 100% PRR
obtained by the standard proposal, reducing not only the time needed for the transmissions,
but also the number of requests and the scanning time of the ReceiveWindow (this reduction
reached 73.15% per received message). This was re�ected in a decrease in consumption
per LPN, which became more remarkable when the number of messages destined to LPNs
was increased. This consumption reduction reached 3.1% with 160 messages per LPN in a
96-hour period (which is the maximum de�ned by the speci�cation for the PollTimeout).
Estimations for a greater number of messages revealed a 17.2% increase in the lifetime of
the LPN for the reception of 1000 messages in this maximum PollTimeout when using our
proposal, compared to the calculations obtained for the standard friendship mechanism.

148

CHAPTER 7

Conclusions and Future Work

This chapter concludes this thesis by summarising the conclusions drawn from the work
conducted. Subsequently, the possible tasks that could be developed in future work are
presented. Finally, this chapter presents the author’s biography, listing the projects in which
he has participated and the publications produced during the completion of this Doctoral
Thesis.

7.1 Conclusions

I would like to start this section with the conclusions on a personal level. The completion
of this Doctoral Thesis has permitted me to grow and mature on a personal level. Since I
started my Doctoral Thesis, I have had the opportunity and the luck to work with excellent
people, from whom I have been able to learn in all aspects. It has also served me enormously
to broaden my mind, and prepare me for future challenges, whatever they may be.

As discussed in Chapter 1, the rise of IoT, and especially one of its areas, manufacturing,
and the subsequent emergence of the Industry 4.0 trend, has caused the requirements for
wireless sensor networks to become more challenging than ever. In industrial environments
where the user is a critical part, communications networks must be completely reliable (zero
fails), provide total coverage and be sustainable. Therefore, we started working with BLE
technology, a promising technology launched relatively recently, with low consumption
and which allowed users to become part of networks (where the human-in-the-loop model
stands out) in a simple and intuitive way through mobile devices. These mobile devices
include not only smartphones and tablets, but also wearables.

In light of this, one of the main conclusions of this Doctoral Thesis is that the develop-
ment and optimisation of low-consumption wireless communication networks has become
a necessity in the new applications of IoT and Industry 4.0. This conclusion led to the
de�nition of the main objective of this work, which corresponds to the design of a hetero-

149

7.1. Conclusions

geneous BLE network that allows the inclusion of any device, while sustainably meeting
the requirements of the new applications.

To achieve this objective, the �rst goal de�ned for this dissertation was to review the
state of the art of wireless networks in general, emphasising BLE technology and its net-
work topologies, as well as new applications of IoT and Industry 4.0 and their requirements.
This study is included in Chapter 2. Once familiarised with the standard and the require-
ments to be ful�lled, the next natural step was to perform a preliminary assessment of the
technology at that time. This evaluation is detailed in Chapter 3.

In view of the conclusions obtained from the study and evaluation of the standard, our
third goal emerged, the design and implementation of a network topology di�erent from
those de�ned by the speci�cation that would allow the already mentioned requirements to
be met. In addition, our proposal had to allow the inclusion of devices other than tradi-
tional sensor nodes, such as smartphones and wearables, as established in our fourth goal.
Our proposal for a BLE mesh network, which we called Collaborative Mesh, is detailed
in Chapter 4. This chapter also contains the evaluation of our proposal, where di�erent
con�gurations were assessed, obtaining a PRR of up to 100% for static sensor nodes and
between 88% and 96% for mobile devices, as well as total coverage.

At that point in this Doctoral Thesis the Bluetooth mesh speci�cation was released,
which provided BLE with the mesh topology. Drawing on this, our �fth goal was de�ned,
the in-depth study of the Bluetooth mesh speci�cation, as well as the provisioning proced-
ure that allows a new device to become part of the network. Both are detailed in Section 2.3.

With the release of the Bluetooth mesh suite of speci�cations, continuing to improve
our proposal became pointless, as our aim is to be compliant with the BLE standard. How-
ever, despite the Bluetooth SIG having claimed that this speci�cation is compatible with
any BLE version, current devices and implementations use the latest BLE versions (5.0 and
later). Therefore, our next goal was to develop an implementation of the Bluetooth mesh
speci�cation that could be used in most devices, including our BLE 4.0 devices. This im-
plementation is described in detail in Chapter 5. This chapter also includes the evaluation
of our implementation, which obtained a PRR of up to 100% with an end-to-end delay of
about 23.2 ms in a two-hop network.

Our next goal was to optimise the provisioning procedure, which was designed without
taking into account the devices of the earlier BLE versions. Therefore we proposed our
Lightweight Provisioning procedure, which reduces the number of messages exchanged
between the provisioner device and the unprovisioned device, while maintaining its ro-
bustness and security. Our proposal reduced the time needed to complete the procedure by
up to 38.31%. This proposal and its evaluation are detailed in Section 5.3 and Section 5.4.

Finally, focusing on the Bluetooth mesh speci�cation and leaving the device versions
aside, our last goal was to optimise the friendship mechanism, provided by Bluetooth mesh
to reduce the consumption of battery-powered devices. To this end, we studied di�erent

150

Chapter 7. Conclusions and Future Work

alternatives, �nally implementing our proposal of Burst Transmissions and Listen Before
Transmit. This proposal is presented in detail in Chapter 6. The evaluation carried out
shows that our proposal increased the lifetime of the devices up to 17.2%, which grew ac-
cording to the number of packets sent, while maintaining a 100% PRR.

7.2 Future Work

The Bluetooth mesh suite of speci�cations was designed keeping in mind the new scenarios
of IoT and Industry 4.0. However, it still requires some optimisations, especially in the
operating mode of network devices. These devices scan the network constantly to avoid
packet loss, with the consequent energy consumption. One of the future works related to
this technology is to reduce the scanning time of network devices. To this end, it is proposed
to study synchronisation techniques that allow devices to switch to a sleep mode at certain
times. With the same objective, it is proposed to study Software De�ned Networking (SDN)
technology to dynamically con�gure networks, improving their e�ciency.

This Doctoral Thesis focused particularly on BLE technology and its Bluetooth mesh
topology. However, in real industrial environments, the coexistence of di�erent devices
and standards is indispensable to fully satisfy all requirements, including the coverage of
extremely wide areas or real-time transmissions. Therefore, one of the main future tasks
is to increase the number of devices in our network, as well as the protocols used. The
work done in the GreenISF scenario presented in this Doctoral Thesis already includes the
coexistence of BLE technology with LoRaWAN, but other standards would bring di�erent
bene�ts.

Another component closely related to this work is the Cloud technology. Our network
deployment included a BLE server that received and sent information, as well as storing it
and taking small decisions, such as sending a warning in the event of detecting any anomaly.
This server was implemented using node.js, so deploying it in a cloud environment would
not require much e�ort. However, it is also necessary to add the intelligence required in a
real network.

When the network deployed in the laboratory has di�erent standards and devices, a de-
ployment in a real industrial environment would be of great interest. Since communication
networks are a fundamental part of the digitalisation of industry, their performance must
be evaluated �rst in this type of environment.

7.3 Author’s Biography

Diego Hortelano Haro received his B.Sc. and M.Sc. degrees in computer science and en-
gineering from the University of Castilla-La Mancha, Spain, in 2013 and 2015 respectively,
where he is currently pursuing the Ph.D. degree in advanced computing technologies. In
February 2015, he joined the Laboratory of High-Performance Networks and Architectures,

151

7.3. Author’s Biography

in the Albacete Research Institute of Informatics, as a Research Assistant. In October 2015,
he obtained a pre-doctoral grant from the UCLM co-�nanced by European funds for his
Doctoral Thesis. During the realisation of his Doctoral Thesis, he has participated in di�er-
ent research projects and from his research di�erent publications have been derived. His
main research �elds are Internet of Things, wireless sensor networks, and wireless com-
munication protocols, especially focused on Bluetooth Low Energy technology.

7.3.1 Projects

During the realisation of this Doctoral Thesis, the author has participated in di�erent re-
search projects:

• Project title: Tecnologías y Aplicaciones innovadoras para centros de datos y com-
putadoras de altas prestaciones (RTI2018-098156-B-C52). Financing Entity: MINECO.
From January 2019 to December 2021. Main Researchers: José Duato Marín (UPV)
and F. José Quiles Flor (UCLM).

• Project tile: Code is Loading (2018-1-TR-01-KA201-058963). Financing Entity: Euro-
pean Commission. From November 2018 to October 2020. Main Researcher: Teresa
Olivares Montes.

• Project title: Wearable Methodology, a new Methodology based on the Use of Innov-
ative Technologies for Education (2016-1-ES-01-KA201-025397). Financing Entity:
European Commission. From October 2016 to September 2018. Main Researcher:
Teresa Olivares Montes.

• Project title: Técnicas para la mejora de las prestaciones, consumo de energía y gestión
de recursos de los servidores. Optimización de la codi�cación y distribución de los
contenidos Multimedia (TIN2015-76972-C5-2-R). Financing Entity: MINECO / FEDER.
From January 2016 to December 2018. Main Researchers: José Duato Marín (UPV)
and Pedro Cuenca Castillo (UCLM).

• Project title: Ecosense, Sistema Inteligente para la gestión de la energía en edi�cios
basado en redes inalámbricas de sensores y actuadores” (POII-2014-010-P). Finan-
cing Entity: Junta de Comunidades de Castilla-La Mancha. From September 2014 to
September 2017. Main Researcher: Teresa Olivares Montes.

7.3.2 List of Publications

During the completion of this Doctoral Thesis, the following publications were presented

7.3.2.1 Publications generated from this dissertation

The studies and results included in this dissertation were presented in the following pub-
lications:

152

Chapter 7. Conclusions and Future Work

Publications in international journals

• D. Hortelano, T. Olivares and M.C. Ruiz, "Minimising the Energy Consumption of the
Friendship Mechanism in Bluetooth mesh", Computer Networks, under review. Impact
Factor (JCR 2019): 3.111. Position 14/53 (Q2).

• D. Hortelano, T. Olivares and M.C. Ruiz, "Providing interoperability in Bluetooth
mesh with an improved Provisioning protocol", Wireless Networks, pp. 1-23, 2020.
Impact Factor (JCR 2019): 2.659. Position 72/156 (Q2).

• C. Garrido-Hidalgo, D. Hortelano, L. Roda-Sánchez, T. Olivares, M.C. Ruiz and V.
López, "IoT Heterogeneous Mesh network Deployment for Human-in-the-Loop Chal-
lenges towards a Social and Sustainable Industry 4.0", IEEE Access, vol 6, pp. 28417-
28437, 2018. Impact Factor (JCR 2018): 4.098. Position 23/155 (Q1).

• D. Hortelano, T. Olivares, M.C. Ruiz, C. Garrido-Hidalgo and V. López, "From Sensor
Networks to Internet of Things. Bluetooth Low Energy, a Standard for This Evolu-
tion" Sensors, vol 17(2), 372, pp. 1–31, 2017. Impact Factor (JCR 2017): 2.475. Position
16/61 (Q2).

Publications in international conferences

• D. Hortelano, "Collaborative Bluetooth Smart Mesh for improving Communications
in Industry 4.0", in Doctoral Colloquium of the 15th ACM Conference on Embedded
Networked Sensor Systems, (SenSys 2017), Delft, The Netherlands, 2017.

• D. Hortelano, T. Olivares, V. Lopez and M.C. Ruiz "Improving the BLE Mesh Trans-
missions with user collaboration in Smart Spaces Management", in Proceedings of the
15th ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN’2016), ISBN: 978-1-5090-0802-5, Vienna, Austria, 2016. CORE A*. Conference
Rating Class 1.

Publications in national conferences

• D. Hortelano, L. Roda-Sánchez, C. Garrido-Hidalgo, T. Olivares and M.C. Ruiz, "Malla
Bluetooth Low Energy para la nueva Industria 4.0", in Actas Jornadas SARTECO 2017
(JS’17), ISBN: 978-84-697-4835-0, Málaga, España, 2017.

• D. Hortelano, T. Olivares, M.C. Ruiz and C. Garrido-Hidalgo, "Redes en malla BLE
para comunicaciones inteligentes y colaborativas", in Actas Jornadas SARTECO 2016
(JS’16), ISBN: 978-84-9012-626-4, Salamanca, España, 2016.

• D. Hortelano, T. Olivares, M.C. Ruiz and V. López-Camacho, "Estudio del estándar
Bluetooth Low Energy para redes híbridas en IoT", in Actas Jornadas SARTECO 2015
(JS’15), ISBN: 978-84-16017-52-2, Córdoba, España, 2015.

153

7.3. Author’s Biography

7.3.2.2 Additional publications elaborated during this dissertation

Additionally, during the realisation of this Doctoral Thesis, other publications were presen-
ted:

Publications in international journals

• L. Roda-Sánchez, C. Garrido-Hidalgo, D. Hortelano, T. Olivares and M.C. Ruiz, "Op-
eraBLE: an IoT Wearable to Improve Smart Worker Care Services in Industry 4.0",
Journal of Sensors, vol 2018, pp. 1–12, 2018. Impact Factor (JCR 2018): 2.024. Position
30/61 (Q2).

Publications in international conferences

• M. Carmen Ruiz, C. Garrido-Hidalgo, D. P. Gruska, T. Olivares, D. Hortelano and
L. Roda-Sanchez, "Modeling and Evaluation of a Power-Aware Algorithm for IoT
Bluetooth Low Energy Devices", in 2019 IEEE International Conference on Smart Inter-
net of Things (SmartIoT), Beijing, China, 2019.

• C. Garrido-Hidalgo, D. Hortelano, L. Roda-Sánchez, T. Olivares and M.C. Ruiz "Ex-
perimental Evaluation of Low-Power Communication Protocols for an Industrial IoT
Testbed", in Proceedings of the International Conference on Industrial Internet of Things
and Smart Manufacturing, IoTsm 2018 ISBN: 978-1-912532-06-3. London, United King-
dom, 2018.

• C. Garrido-Hidalgo, T. Olivares, V. Lopez-Camacho, M.C. Ruiz, D. Hortelano and V.
Brea, "SustainaBLE: a Power-Aware Algorithm for Greener Industrial IoT Networks",
in Proceedings of the 16th International Conference on Ad Hoc Networks and Wireless,
ISBN: 978-3-319-67909-9, Messina, Italy, 2017. CORE B.

Publications in national conferences

• T. Olivares, V. López Camacho, E. de La Guía, C. Garrido-Hidalgo, L. Roda-Sanchez
and D. Hortelano "Estudio de la percepción y conocimientos en Lenguajes de Pro-
gramación de alumnos y profesores en el marco del proyecto Erasmus+ Code is Load-
ing", in Actas de las XXVI Jornadas sobre Enseñanza Universitaria de la Informática, vol
5, pp 345–348, 2020.

• C. Garrido-Hidalgo, D. Hortelano, L. Roda-Sánchez, T. Olivares and M.C. Ruiz, "Eval-
uando el Consumo de Redes BLE/LoRaWAN para IoT", in Actas Jornadas SARTECO
2017 (JS’17), ISBN: 978-84-697-4835-0, Málaga, España, 2017.

• L. Roda-Sánchez, C. Garrido-Hidalgo, D. Hortelano, T. Olivares and M.C. Ruiz, "Pulsera
Inteligente para la Caracterización de Movimientos Orientada a IoT", in Actas Jor-
nadas SARTECO 2017 (JS’17), ISBN: 978-84-697-4835-0, Málaga, España, 2017.

154

Chapter 7. Conclusions and Future Work

• C. Garrido-Hidalgo, T. Olivares, M.C. Ruiz and D. Hortelano, "Implementación Real
de un Sistema de Gestión E�ciente de WSAN basado en una Arquitectura BLE para
IoT", in Actas Jornadas SARTECO 2016 (JS’16), ISBN: 978-84-9012-626-4 Salamanca,
España, 2016.

155

APPENDIX A

Hardware and Software

This appendix presents the most important hardware platforms used in this thesis, as well
as the software related to them.

A.1 Hardware Platforms

This section describes the hardware platforms used for the implementation and experi-
ments carried out throughout this Doctoral Thesis.

A.1.1 Waspmote

Waspmote [62] from Libelium (see Figure A.1) is an open source platform, which o�ers
high modularity with a multitude of radio technologies and sensor con�gurations. Wasp-
mote is based on Arduino, probably the most popular open-source platform for teaching
and creating cheap home projects. However, Waspmote was especially designed for creat-
ing wireless sensor networks and is intended to be deployed in a real scenario. Some real
projects where Waspmote devices are used can be found in [75].

Figure A.1: Waspmote device from Libelium [62].

157

A.1. Hardware Platforms

The Waspmote PRO (v1.2) devices are equipped with the ATmega1281 microcontrol-
ler (14.7456 MHz), SRAM memory (8 KB), EEPROM (4 KB) and FLASH (128 KB). The BLE
radio module used by Waspmote devices is the BLE112 chipset from BlueGiga (now Sil-
icon Laboratories [76]), and it has the following speci�cations: RX sensibility of -103 dBm;
con�gurable TX Power interval between -23 dBm and +3 dBm; antenna of 5 dBi; and a
maximum range of 100 m.

A.1.2 CSR1010

CSR1010 devices [77] from Cambridge Silicon Radio (CSR), now Qualcomm Technologies
International (see Figure A.2), have a BLE 4.1 radio with direct single-ended 50 W an-
tenna connection, which allows them to transmit BLE data in any direction, at a distance
between 20 and 30 m depending on existing obstacles; a 16-bit microprocessor with 64
Kbytes RAM and 64 Kbytes ROM; 1 µA integrated key scanning hardware; PWMs and
quadrature decoders; peripheral I2C and SPI (debug); analog IOs and UART interface; up to
32 re-assignable programmable digital IOs; up to 4.4V direct supply connection for Li-poly
batteries.

Figure A.2: CSR1010 device from Qualcomm Techonolgies International [77].

A.1.3 LightBlue Bean

The LightBlue Bean from Punch Through [78] (see Figure A.3) was suitable for the object-
ive of our OperaBLE prototype because of the integration of BLE module into the board
because of the communication technology used to transmit information. The BLE 4.0 mod-
ule included in this board is called LBM313 [79].

Figure A.3: LightBlut Bean device from Punch Through [78].

158

Appendix A. Hardware and Software

LightBlue Bean devices include I2C and SPI interfaces and several I/O pins. This board
is additionally composed of RGB LED, temperature sensor, a BMA250 [80] three-axis accel-
erometer, and a breadboard for connecting other devices. All these parts are managed by
an Arduino-compatible microcontroller with a working frequency of 8 MHz.

A.1.4 EFR32BG13

The EFR32BG13 devices from Silicon Labs [81] (see Figure A.4) include a 40 MHz ARM
Cortex-M4 with a FPU microcontroller, 512 kB of �ash and 64 kB of RAM. This chip has a
RX sensibility of -103.3 dBM at 125 kbit/s. The EFR32BG13 chip is available in a BRD4104A
radio board, which connects an on-board printed Inverted-F antenna to the 2.4 GHz RF
input/output of the EFR32BG13, optimised for +10dBm output power, although the software
can be con�gured between 0 and +10 dBm. The BRD4104A radio board is equipped with an
8 Mbit Macronix MX25R SPI �ash, connected directly to the EFR32BG13. This radio board
is plugged into the Wireless Starter Kit Mainboard PCB4001 Rev A03, which o�ers an entire
set to develop and evaluate the EFR32BG13.

Figure A.4: EFR32BG13 device from Silicon Labs [81].

A.1.5 nRF52840

The nRF52840 DK is a single board development kit for applications on nRF52840 system
on chip [61] (SoC) from Nordic Semiconductor (see Figure A.5). This SoC supports multiple
communication protocols, including Bluetooth mesh, on which we focused our work. The
nRF52840 SoC includes a 64 MHz ARM Cortex-M4 with FPU, 1 MB of �ash and 256 kB
of RAM. To speed up security functions, it incorporates a 128-bit AES/ECB/CCM/AAR co-
processor. It includes a Bluetooth 5, IEEE 802.15.4, 2.4 GHz transceiver as well as a rich
set of security features. Related to Bluetooth, the chip has a sensitivity of -95 dBm and
-103 dBm for 1 Mbps and 125 kbps modes, respectively, and a con�gurable TX power from
-20 to +8 dBm.

159

A.2. Software

The PCA10056 Development Kit includes an nRF52840 chipset [82]. This module sup-
ports Bluetooth 5 and Bluetooth mesh, as well as other wireless communication protocols.
It uses a 32-bit ARM Cortex M4 processor at 64MHz with FPU. It supports di�erent data
rates and radio transmission power for Bluetooth transmissions.

Figure A.5: nRF52840 DK from Nordic Semiconductor [61].

A.1.6 nRF Sni�er

The nRF Bluetooth Smart Sni�er [83] (see Figure A.6) is a tool for debugging BLE applica-
tions, sni�ng or picking up every BLE packet between a selected device and the device it
is communicating with. This tool is especially useful when developing a BLE application,
because it allows us to know exactly what happens over the air between devices. The nRF
Sni�er has an ARM Cortex-M0 processor; �ash memory (128 kB); and RAM (16 kB). The
BLE chip is the nRF51822, with a sensitivity of -93 dBm and a TX Power from -20 to +4
dBm.

Figure A.6: nRF Bluetooth Smart Sni�er from Adafruit [83].

nRF Sni�er has a USB interface to connect it to a computer. Used in conjunction with
Nordic Semiconductor software, it is possible to pass all captured packets to Wireshark to
separate their �elds.

A.2 Software

In order to provide a deeper understanding of the platforms used, these sections present
the software used related to them.

160

Appendix A. Hardware and Software

A.2.1 Waspmote IDE

The Waspmote IDE [84] was used to program Waspmote devices. This IDE allows us to
easily develop, compile and upload the programs to Waspmote boards via USB. Waspmote
IDE is based on Arduino IDE, allowing the developed code to be fully compatible for both
platforms with minor adjustments (the pin-out and the I/O scheme). After installation of
Virtual COM Port (VCP) drivers from FTDI [85], the USB device can be accessed in the same
way as through a standard COM port. This allows programs to be uploaded and debugged,
while their serial output can be monitored.

Waspmote IDE includes the Waspmote API, with a multitude of open-source C librar-
ies [57] for the management of the di�erent sensors and radio modules, such as BLE library.
The lower layers (Physical and Link layers) of the BLE 4.0 standard are implemented in the
BLE chip (BLE controller), being necessary to �ash it to modify its �rmware. Since the ne-
cessary means are not available, our implementations were carried out entirely on the host
part (Waspmote), using AT commands to communicate with the controller.

A.2.2 Apache Cordova

Apache Cordova [51] is an open-source mobile development framework. It allows de-
velopers to use standard web technologies such as HTML5, CSS3, and JavaScript to develop
applications for the main mobile platforms: Android, iOS and Windows Phone. These ap-
plications are executed within wrappers targeted to each platform, and relied on standards-
compliant API bindings to access each device’s capabilities such as sensors, data, network
status, etc. The application developed for the BLE preliminary evaluation (see Chapter 3)
was developed using Apache Cordova.

A.2.3 Node.js

Node.js [86] is an asynchronous event-driven JavaScript runtime designed to build scal-
able network applications. Node.js is also open-source, and it allows the development of
back-end applications in a simple and scalable way. Being open-source, node.js has a large
community of programmers, who have developed multiple libraries, such as noble [87] (for
central node) and bleno [88] (for peripherals), used for the development of our BLE server.

A.2.4 Android Studio

In order to develop our Android application for GreenISF (see Chapter 4), we used An-
droid studio [89], the o�cial integrated development environment for Google’s Android
operating system, designed speci�cally for Android development.Android Studio provides
a uni�ed environment to build apps for Android phones, tablets, Android Wear, Android
TV, and Android Auto.

161

A.2. Software

A.2.5 Simplicity Studio

Simplicity Studio IDE [90] allows developers to upload and debug the code in EFR32 devices
easily through Ethernet or USB interfaces. Simplicity Studio is a suite of tools that in-
cludes an IDE based on Eclipse, as well as software examples and documentation about the
Bluetooth mesh API developed by Silicon Labs. However, the SDK for EFR32 is proprietary,
and most of the code is in binary and cannot be modi�ed to change the behaviour of the
standard.

A.2.6 Zephyr

The Zephyr project [25] is an open-source real-time operating system (RTOS) which sup-
ports multiple boards, such as the nRF52840 Development Kit (or PCA10056). This project
is continuously updated by the community and already implements most of the Bluetooth
mesh functionality. Being completely open source, Zephyr allowed us to develop Bluetooth
mesh applications, as well as to fully access all the layers of the protocol to develop our pro-
posal. To carry out the experiments, Zephyr version 2.2.0 was used.

162

Bibliography

[1] E. Borgia, “The Internet of Things vision: Key features, applications and open issues,”
Computer Communications, vol. 54, pp. 1–31, 2014.

[2] P. Scully, “Top 10 IoT applications in 2020,” https://iot-analytics.com/top-10-iot-
applications-in-2020/, 2020, accessed on Oct. 16, 2020.

[3] Federal Ministry for economic a�airs and energy of Germany, “Plattform Indus-
trie 4.0,” https://www.plattform-i40.de/PI40/Navigation/EN.html, accessed on Oct. 15,
2020.

[4] IoT Now Magazine, “The industrial internet: Towards the 4th industrial revolution,”
https://www.iot-now.com/2016/10/20/53811-the-industrial-internet-towards-the-
4th-industrial-revolution, accessed on Oct. 15, 2020.

[5] M. Collotta and G. Pau, “Bluetooth for Internet of Things: A fuzzy approach to improve
power management in smart homes,” Computers & Electrical Engineering, vol. 44, pp.
137–152, 2015.

[6] Bluetooth SIG, Bluetooth Core Speci�cation v4.0. Bluetooth SIG, 2010, Available online:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=456433, ac-
cessed on Oct. 11, 2020.

[7] K. Townsend, Getting started with Bluetooth Low Energy. O’Reilly, 2014.

[8] Array of Things, University of Chicago, “Array of Things,” https://arrayofthings.
github.io, 2020, accessed on Nov. 4, 2020.

[9] W. Bronzi, R. Frank, G. Castignani, and T. Engel, “Bluetooth low energy performance
and robustness analysis for inter-vehicular communications,” AdHoc Networks, vol. 37,
pp. 76–86, 2016, special Issue on Advances in Vehicular Networks.

[10] W. Narzt, S. Mayerhofer, O. Weichselbaum, S. Haselböck, and N. Hö�er, “Be-in/be-out
with bluetooth low energy: Implicit ticketing for public transportation systems,” in
2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015, pp.
1551–1556.

163

https://iot-analytics.com/top-10-iot-applications-in-2020/
https://iot-analytics.com/top-10-iot-applications-in-2020/
https://www.plattform-i40.de/PI40/Navigation/EN.html
https://www.iot-now.com/2016/10/20/53811-the-industrial-internet-towards-the-4th-industrial-revolution
https://www.iot-now.com/2016/10/20/53811-the-industrial-internet-towards-the-4th-industrial-revolution
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=456433
https://arrayofthings.github.io
https://arrayofthings.github.io

Bibliography

[11] H. D. J. Jeong, W. Lee, J. Lim, and W. Hyun, “Utilizing a bluetooth remote lock system
for a smartphone,” Pervasive and Mobile Computing, vol. 24, pp. 150–165, 2015, special
Issue on Secure Ubiquitous Computing.

[12] Bluetooth SIG, Bluetooth Core Speci�cation v5.2. Bluetooth SIG, 2019, Available online:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726, ac-
cessed on Nov. 5, 2020.

[13] H. Kim, J. Lee, and J. W. Jang, “Blemesh: A wireless mesh network protocol for
bluetooth low energy devices,” in 2015 3rd International Conference on Future Internet
of Things and Cloud, 2015, pp. 558–563.

[14] G. Patti, L. Leonardi, and L. Lo Bello, “A bluetooth low energy real-time protocol for
industrial wireless mesh networks,” in IECON 2016 - 42nd Annual Conference of the
IEEE Industrial Electronics Society, 2016, pp. 4627–4632.

[15] Qualcomm Technologies International, “CSRmesh Development Kit,” https:
//developer.qualcomm.com/hardware/csr101x/csrmesh-development-kit, 2020,
accessed on Nov. 04, 2020.

[16] T. Snekvik, “nRF OpenMesh,” https://github.com/NordicSemiconductor/nRF51-ble-
bcast-mesh, 2017, accessed on Nov. 04, 2020.

[17] Bluetooth SIG, Mesh Pro�le Speci�cation: 1.0.1. Bluetooth SIG, 2019, Available online:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092, ac-
cessed on Sep. 12, 2020.

[18] Bluetooth SIG, Mesh Model Speci�cation: 1.0.1. Bluetooth SIG, 2019, Available online:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457091, ac-
cessed on Sep. 12, 2020.

[19] Bluetooth SIG, Mesh Device Properties 1.2. Bluetooth SIG, 2019, Available online:
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=480005, ac-
cessed on Sep. 12, 2020.

[20] S. Slupik, “Bluetooth Mesh Networking: The Packet,” https://www.bluetooth.com/
blog/bluetooth-mesh-networking-the-packet/, accessed on Oct. 15, 2020.

[21] P. Svensson, “Bluetooth mesh networking FAQs,” https://www.bluetooth.com/
bluetooth-technology/topology-options/le-mesh/mesh-faq, accessed on Oct. 15, 2020.

[22] T. Øvrebekk, “Bluetooth Mesh for Industrial IoT. Nordic Semiconductor Blog,” https:
//blog.nordicsemi.com/getconnected/bluetooth-mesh-for-industrial-iot, accessed on
Oct. 15, 2020.

[23] Nordic Semiconductor, “nRF5-SDK-for-Mesh,” https://github.com/
NordicSemiconductor/nRF5-SDK-for-Mesh, 2020, accessed on Sep. 23, 2020.

164

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://developer.qualcomm.com/hardware/csr101x/csrmesh-development-kit
https://developer.qualcomm.com/hardware/csr101x/csrmesh-development-kit
https://github.com/NordicSemiconductor/nRF51-ble-bcast-mesh
https://github.com/NordicSemiconductor/nRF51-ble-bcast-mesh
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457092
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457091
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=480005
https://www.bluetooth.com/blog/bluetooth-mesh-networking-the-packet/
https://www.bluetooth.com/blog/bluetooth-mesh-networking-the-packet/
https://www.bluetooth.com/bluetooth-technology/topology-options/le-mesh/mesh-faq
https://www.bluetooth.com/bluetooth-technology/topology-options/le-mesh/mesh-faq
https://blog.nordicsemi.com/getconnected/bluetooth-mesh-for-industrial-iot
https://blog.nordicsemi.com/getconnected/bluetooth-mesh-for-industrial-iot
https://github.com/NordicSemiconductor/nRF5-SDK-for-Mesh
https://github.com/NordicSemiconductor/nRF5-SDK-for-Mesh

Bibliography

[24] Silicon Laboratories, “Bluetooth Mesh Networking Learning Center,” https://
www.silabs.com/products/wireless/learning-center/bluetooth/bluetooth-mesh, 2020,
accessed on Sep. 23, 2020.

[25] Linux Foundation, “Zephyr Project,” https://www.zephyrproject.org/, 2020, accessed
on Sep. 22, 2020.

[26] BlueZ Project, “BlueZ, O�cial Linux Bluetooth protocol stack,” http://www.bluez.org/,
2020, accessed on Sep. 23, 2020.

[27] Bluetooth SIG, “Quali�ed Mesh Products,” https://www.bluetooth.com/learn-about-
bluetooth/bluetooth-technology/topology-options/le-mesh/mesh-quali�ed/, 2020,
accessed on Sep. 23, 2020.

[28] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen., “An industrial perspective on wire-
less sensor networks — a survey of requirements, protocols, and challenges,” IEEE
Communications Surveys Tutorials, vol. 16, no. 3, pp. 1391–1412, 2014.

[29] A. Varghese and D. Tandur, “Wireless requirements and challenges in industry 4.0,”
in 2014 International Conference on Contemporary Computing and Informatics (IC3I),
2014, pp. 634–638.

[30] Y. Khan, “5 Essential Components of an IoT Ecosystem,” https://learn.g2.com/iot-
ecosystem, accessed on Oct. 23, 2020.

[31] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, investments, and chal-
lenges for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431–440, 2015.

[32] Consortium II, “Consortium II. Fact Sheet,” http://www.iiconsortium.org/docs/IIC_
FACT_SHEET.pdf, accessed on Oct. 16, 2020.

[33] Y. Lu, “Industry 4.0: A survey on technologies, applications and open research issues,”
Journal of Industrial Information Integration, vol. 6, pp. 1–10, 2017.

[34] T. Stock and G. Seliger, “Opportunities of sustainable manufacturing in industry 4.0,”
Procedia CIRP, vol. 40, pp. 536–541, 2016, 13th Global Conference on Sustainable Man-
ufacturing – Decoupling Growth from Resource Use.

[35] D. Küpper, “Embracing Industry 4.0 and Rediscovering Growth,” https://www.bcg.
com/en-es/capabilities/operations/embracing-industry-4.0-rediscovering-growth,
accessed on Oct. 16, 2020.

[36] Belden Inc, “The Smart Factory of the Future. Part 1.” http://www.belden.com/blog/
industrialethernet/The-Smart-Factory-of-the-Future-Part-1.cfm, accessed on Oct. 17,
2020.

[37] Belden Inc, “The Smart Factory of the Future. Part 2.” http://www.belden.com/blog/
industrialethernet/The-Smart-Factory-of-the-Future-Part-2.cfm, accessed on Oct. 17,
2020.

165

https://www.silabs.com/products/wireless/learning-center/bluetooth/bluetooth-mesh
https://www.silabs.com/products/wireless/learning-center/bluetooth/bluetooth-mesh
https://www.zephyrproject.org/
http://www.bluez.org/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/topology-options/le-mesh/mesh-qualified/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/topology-options/le-mesh/mesh-qualified/
https://learn.g2.com/iot-ecosystem
https://learn.g2.com/iot-ecosystem
http://www.iiconsortium.org/docs/IIC_FACT_SHEET.pdf
http://www.iiconsortium.org/docs/IIC_FACT_SHEET.pdf
https://www.bcg.com/en-es/capabilities/operations/embracing-industry-4.0-rediscovering-growth
https://www.bcg.com/en-es/capabilities/operations/embracing-industry-4.0-rediscovering-growth
http://www.belden.com/blog/industrialethernet/The-Smart-Factory-of-the-Future-Part-1.cfm
http://www.belden.com/blog/industrialethernet/The-Smart-Factory-of-the-Future-Part-1.cfm
http://www.belden.com/blog/industrialethernet/The-Smart-Factory-of-the-Future-Part-2.cfm
http://www.belden.com/blog/industrialethernet/The-Smart-Factory-of-the-Future-Part-2.cfm

Bibliography

[38] P. A. Laplante and S. Murugesan, “IT for a Greener Planet,” IT Professional, vol. 13,
no. 01, pp. 16–18, 2011.

[39] E. Kern, M. Dick, S. Naumann, A. Guldner, and T. Johann, “Green software and green
software engineering - de�nitions, measurements, and quality aspects,” in First Inter-
national Conference on Information and Communication for Sustainability, 2013.

[40] D. Sontag, “Industrial IoT vs. Industry 4.0 vs. . . . Industry 5.0?” https://medium.com/
the-industry-4-0-blog/industrial-iot-vs-industry-4-0-vs-industry-5-0-a5f9541da036,
accessed on Oct. 17, 2020.

[41] R. Heydon, Bluetooth Low Energy: The Developer’s Handbook, ser. Pearson Always
Learning. Prentice Hall, 2012.

[42] Nordic Semiconductor, “Basic Bluetooth Mesh concepts,” https://infocenter.
nordicsemi.com/topic/com.nordic.infocenter.meshsdk.v3.2.0/md_doc_introduction_
basic_concepts.html, 2019, accessed on Sep. 19, 2020.

[43] J. Marcel, “Reliable, Scalable, Secure Connections for Industrial IoT Envir-
onments,” https://www.bluetooth.com/blog/reliable-scalable-secureconnections-for-
industrialiot-environments/, 2019, accessed on Sep. 19, 2020.

[44] ETSI, “3GPP TS 27.010 V15.0.0,” Technical Speci�cation, 2018.

[45] Federal Information Processing Standards Publication, “Digital Signature Standard
(DSS),” https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf, 2013.

[46] National Institute of Standards and Technology (NITS), “Advanced Encryption Stand-
ard (AES),” http://csrc.nist.gov/publications/�ps/�ps197/�ps-197.pdf, 2001, accessed
on Sep. 17, 2020.

[47] R. Poovendran and J. Lee, “The AES-CMAC Algorithm,” https://tools.ietf.org/html/
rfc4493, 2006, accessed on Sep. 17, 2020.

[48] D. Whiting, R. Housley, and N. Ferguson, “Advanced Encryption Standard (AES),”
https://tools.ietf.org/html/rfc3610, 2003, accessed on Sep. 17, 2020.

[49] HTC Corporation, “Nexus 9,” https://www.htc.com/mea-en/tablets/nexus-9/, accessed
on Oct. 6, 2020.

[50] Instituto de Investigación en Informática de Albacete - Universidad de Castilla-La
Mancha, “Albacete Research Institute of Informatics,” https://www.i3a.uclm.es/i3a_t/
en, accessed on Oct. 23, 2020.

[51] The Apache Software Foundation, “Apache Cordova,” https://cordova.apache.org/,
2020, accessed on Oct. 26, 2020.

[52] M. Jacobsson, C. Guo, and I. Niemegeers, “An experimental investigation of optim-
ized �ooding protocols using a wireless sensor network testbed,” Computer Networks,
vol. 55, no. 13, pp. 2899–2913, 2011.

166

https://medium.com/the-industry-4-0-blog/industrial-iot-vs-industry-4-0-vs-industry-5-0-a5f9541da036
https://medium.com/the-industry-4-0-blog/industrial-iot-vs-industry-4-0-vs-industry-5-0-a5f9541da036
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.meshsdk.v3.2.0/md_doc_introduction_basic_concepts.html
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.meshsdk.v3.2.0/md_doc_introduction_basic_concepts.html
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.meshsdk.v3.2.0/md_doc_introduction_basic_concepts.html
https://www.bluetooth.com/blog/reliable-scalable-secureconnections-for-industrialiot-environments/
https://www.bluetooth.com/blog/reliable-scalable-secureconnections-for-industrialiot-environments/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://tools.ietf.org/html/rfc4493
https://tools.ietf.org/html/rfc4493
https://tools.ietf.org/html/rfc3610
https://www.htc.com/mea-en/tablets/nexus-9/
https://www.i3a.uclm.es/i3a_t/en
https://www.i3a.uclm.es/i3a_t/en
https://cordova.apache.org/

Bibliography

[53] C. Garrido-Hidalgo, D. Hortelano, L. Roda-Sanchez, T. Olivares, M. C. Ruiz, and
V. Lopez, “Iot heterogeneous mesh network deployment for human-in-the-loop chal-
lenges towards a social and sustainable industry 4.0,” IEEE Access, vol. 6, pp. 28 417–
28 437, 2018.

[54] MathWorks, “ThingSpeak IoT Analytics,” https://thingspeak.com, 2020, accessed on
Oct. 1, 2020.

[55] L. Roda-Sanchez, C. Garrido-Hidalgo, D. Hortelano, T. Olivares, and M. Ruiz, “Oper-
able: An iot-based wearable to improve e�ciency and smart worker care services in
industry 4.0,” Journal of Sensors, vol. 2018, 2018.

[56] Bluetooth SIG, “Quali�ed Bluetooth Products,” https://launchstudio.bluetooth.com/
Listings/Search, 2020, accessed on Sep. 23, 2020.

[57] Libelium Comunicaciones Distribuidas S.L., “Waspmote API Repository,” https://
github.com/Libelium/waspmoteapi, 2019, accessed on Sep. 22, 2020.

[58] K. MacKay, “ECDH and ECDSA for 8-bit, 32-bit, and 64-bit processors,” https://github.
com/kmackay/micro-ecc, 2017, accessed on Sep. 23, 2020.

[59] B. Gladman, “AES code,” https://github.com/BrianGladman/aes, 2019.

[60] Silicon Laboratories, “Bluetooth Kit for EFR32,” https://www.silabs.com/products/
development-tools/wireless/bluetooth/blue-gecko-bluetooth-low-energy-soc-
starter-kit, 2019, accessed on Sep. 22, 2020.

[61] Nordic Semiconductor, “nRF52840 Product Speci�cation v1.1,” https://infocenter.
nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf, 2019, accessed on Sep. 22, 2020.

[62] Libelium Comunicaciones Distribuidas S.L., “Waspmote Technical Guide,” http://
www.libelium.com/downloads/documentation/waspmote_technical_guide.pdf, 2019,
accessed on Sep. 22, 2020.

[63] R. B. Miller, “Response time in man-computer conversational transactions,” in Proceed-
ings of the December 9-11, 1968, Fall Joint Computer Conference, Part I, ser. AFIPS ’68
(Fall, part I). New York, NY, USA: Association for Computing Machinery, 1968, p.
267–277.

[64] M. Baert, J. Rossey, A. Shahid, and J. Hoebeke, “The bluetooth mesh standard: An
overview and experimental evaluation,” Sensors (Basel, Switzerland), vol. 18, 2018.

[65] Y. Murillo, A. Chiumento, B. Reynders, and S. Pollin, “SDN on BLE: Controlling Re-
source Constrained Mesh Networks,” CoRR, vol. abs/1902.02233, pp. 1–7, 05 2019.

[66] Bluetooth SIG, Bluetooth Core Speci�cation v5.0. Bluetooth SIG, 2016, Avail-
able online: https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_
id=421043, accessed on Sep. 21, 2020.

167

https://thingspeak.com
https://launchstudio.bluetooth.com/Listings/Search
https://launchstudio.bluetooth.com/Listings/Search
https://github.com/Libelium/waspmoteapi
https://github.com/Libelium/waspmoteapi
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://github.com/BrianGladman/aes
https://www.silabs.com/products/development-tools/wireless/bluetooth/blue-gecko-bluetooth-low-energy-soc-starter-kit
https://www.silabs.com/products/development-tools/wireless/bluetooth/blue-gecko-bluetooth-low-energy-soc-starter-kit
https://www.silabs.com/products/development-tools/wireless/bluetooth/blue-gecko-bluetooth-low-energy-soc-starter-kit
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
http://www.libelium.com/downloads/documentation/waspmote_technical_guide.pdf
http://www.libelium.com/downloads/documentation/waspmote_technical_guide.pdf
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=421043
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=421043

Bibliography

[67] E. Midttun, “Things your should know about Bluetooh mesh,” https:
//devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/things-you-should-
know-about-bluetooth-mesh, August, 7 2017, accessed on Sep. 21, 2020).

[68] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “E�cient network �ooding and
time synchronization with glossy,” in Proceedings of the 10th ACM/IEEE International
Conference on Information Processing in Sensor Networks, 2011, pp. 73–84.

[69] J. van Greunen and J. Rabaey, “Lightweight time synchronization for sensor networks,”
in Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks
and Applications, ser. WSNA ’03. New York, NY, USA: Association for Computing
Machinery, 2003, p. 11–19.

[70] K. Geissdoerfer and G. von Hünefeld, “Pulse Arrival Time estimation in a synchronised
Body Sensor Network Project in Advanced Network Technologies,” Master’s thesis,
TU Berlin, 2016.

[71] Nordic Semiconductor, “nRF52840 Product Speci�cation - Clock Control,” https:
//infocenter.nordicsemi.com/topic/ps_nrf52840/clock.html?cp=4_0_0_4_3, 2019, ac-
cessed on Sep. 22, 2020.

[72] Epson Timing Devices, “High-Accuracy 32.768 kHzDTCXO,” https://www5.
epsondevice.com/en/information/technical_info/pdf/pb_tg3541ce.pdf, 2019, ac-
cessed on Sep. 22, 2020.

[73] S. M. Darroudi, R. Caldera-Sánchez, and C. Gomez, “Bluetooth Mesh Energy Con-
sumption: A Model,” Sensors, vol. 19, no. 5, 2019.

[74] Energizer, “Energizer: CR2032 Lithium Coin Technical Datasheet,” http://data.
energizer.com/PDFs/cr2032.pdf, 2014, accessed on Sep. 22, 2020.

[75] Libelium Comunicaciones Distribuidas S.L., “Success Stories,” https://www.libelium.
com/success-stories/, 2020, accessed on Sep. 22, 2020.

[76] Silicon Laboratories, “Silicon Laboratories Web Page,” https://www.silabs.com/, 2020,
accessed on Sep. 22, 2020.

[77] Qualcomm Technologies International, Ltd., “CSR1010 Datasheet,” https://www.
qualcomm.com/media/documents/�les/csr1010-data-sheet.pdf, 2015, accessed on
Oct. 26, 2020.

[78] Punch Through, “Bean,” https://punchthrough.com/bean/, 2020, accessed on Oct. 26,
2020.

[79] Punch Through, “LightBlue LMB313,” http://www.punchthroughdesign.com/
products/lbm313-module/, 2020, accessed on Oct. 26, 2020.

168

https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/things-you-should-know-about-bluetooth-mesh
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/things-you-should-know-about-bluetooth-mesh
https://devzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/things-you-should-know-about-bluetooth-mesh
https://infocenter.nordicsemi.com/topic/ps_nrf52840/clock.html?cp=4_0_0_4_3
https://infocenter.nordicsemi.com/topic/ps_nrf52840/clock.html?cp=4_0_0_4_3
https://www5.epsondevice.com/en/information/technical_info/pdf/pb_tg3541ce.pdf
https://www5.epsondevice.com/en/information/technical_info/pdf/pb_tg3541ce.pdf
http://data.energizer.com/PDFs/cr2032.pdf
http://data.energizer.com/PDFs/cr2032.pdf
https://www.libelium.com/success-stories/
https://www.libelium.com/success-stories/
https://www.silabs.com/
https://www.qualcomm.com/media/documents/files/csr1010-data-sheet.pdf
https://www.qualcomm.com/media/documents/files/csr1010-data-sheet.pdf
https://punchthrough.com/bean/
http://www.punchthroughdesign.com/products/lbm313-module/
http://www.punchthroughdesign.com/products/lbm313-module/

Bibliography

[80] Bosch Sensortec, “Digital Triaxial Acceleration Sensor,” http://www1.
futureelectronics.com/doc/BOSCH/BMA250-0273141121.pdf, 2011, accessed on
Oct. 2020.

[81] Silicon Labs, “EFR32BG13 Blue Gecko Bluetooth Low Energy SoC Family Data Sheet,”
https://www.silabs.com/documents/public/data-sheets/efr32bg13-datasheet.pdf,
2020, accessed on Oct. 2020.

[82] Nordic Semiconductor, “Bluetooth Low Energy, Bluetooth mesh, NFC, Thread and Zig-
bee development kit for the nRF52840 SoC,” https://www.nordicsemi.com/Software-
and-Tools/Development-Kits/nRF52840-DK, 2018, accessed on Sep. 22, 2020.

[83] Adafruit, “Bluefruit LE Friend - Bluetooth Low Energy (BLE 4.0) - nRF51822 v3.0,”
https://www.adafruit.com/product/2267, 2017, accessed on Sep. 22, 2020.

[84] Libelium Comunicaciones Distribuidas S.L., “Waspmote IDE - v06,” https://
development.libelium.com/waspmote-ide-v06/, 2020, accessed on Oct., 2020.

[85] Future Technology Devices International Ltd, “Virtual COM Port Drivers,” https:
//www.ftdichip.com/Drivers/VCP.htm, 2016, accessed on Sep. 22, 2020.

[86] OpenJS Foundation, “Node.js,” https://nodejs.org, 2020, accessed on Oct. 26, 2020).

[87] S. Mistry, “A Node.js BLE (Bluetooth Low Energy) central module,” https://github.com/
noble/noble, 2015, accessed on Oct. 26, 2020.

[88] S. Mistry, “A Node.js module for implementing BLE (Bluetooth Low Energy) peripher-
als,” https://github.com/noble/bleno, 2015, accessed on Oct. 26, 2020.

[89] Google LLC, “Android Studio,” https://developer.android.com/studio, 2020, accessed
on Oct. 26, 2020.

[90] Silicon Laboratories, “Simplicity Studio 4,” https://www.silabs.com/products/
development-tools/software/simplicity-studio, 2020, accessed on Sep. 22, 2020.

169

http://www1.futureelectronics.com/doc/BOSCH/BMA250-0273141121.pdf
http://www1.futureelectronics.com/doc/BOSCH/BMA250-0273141121.pdf
https://www.silabs.com/documents/public/data-sheets/efr32bg13-datasheet.pdf
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK
https://www.adafruit.com/product/2267
https://development.libelium.com/waspmote-ide-v06/
https://development.libelium.com/waspmote-ide-v06/
https://www.ftdichip.com/Drivers/VCP.htm
https://www.ftdichip.com/Drivers/VCP.htm
https://nodejs.org
https://github.com/noble/noble
https://github.com/noble/noble
https://github.com/noble/bleno
https://developer.android.com/studio
https://www.silabs.com/products/development-tools/software/simplicity-studio
https://www.silabs.com/products/development-tools/software/simplicity-studio

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation and Justification
	1.2 Objectives
	1.3 Methodology and Work Plan
	1.4 Dissertation Outline

	2 Background
	2.1 IoT and Industry 4.0
	2.2 Bluetooth Low Energy
	2.2.1 Definition and Objectives
	2.2.2 Technical Information
	2.2.3 Protocol Stack

	2.3 Bluetooth mesh
	2.3.1 Overview of Mesh Operation
	2.3.2 Layered Architecture
	2.3.3 Bluetooth mesh Security
	2.3.4 Provisioning Procedure

	2.4 Conclusions

	3 Preliminary Evaluation: BLE Topologies for Industry 4.0
	3.1 BLE Standard Topologies Evaluation
	3.1.1 Coverage Range of Waspmote Devices
	3.1.2 Packet Received in Broadcast Transmissions
	3.1.3 Path Through a BLE Broadcast Network
	3.1.4 Time Required to Establish a Point-to-Point Connection

	3.2 CSRmesh Evaluation
	3.2.1 CSRmesh
	3.2.2 PRR in CSR Devices
	3.2.3 Coverage Study for CSR1010 Devices
	3.2.4 CSRmesh Evaluation

	3.3 Conclusions

	4 Our Proposal for BLE Mesh
	4.1 Collaborative Mesh Proposals
	4.2 Evaluation of our New Mesh Proposals
	4.2.1 Individual Mesh Evaluation
	4.2.2 Collaborative Mesh Evaluation

	4.3 GreenISF
	4.4 GreenISF Evaluation
	4.4.1 Supervisor Request through a Mobile Device
	4.4.2 Supervisor Requests using OperaBLE Taps
	4.4.3 Movements Transmission by the Mesh Network

	4.5 Conclusions

	5 Providing Interoperability in Bluetooth mesh
	5.1 Preliminaries
	5.2 Bluetooth mesh Implementation
	5.2.1 Open-Source Software Modules Included
	5.2.2 Our Implementation of Bluetooth mesh Library for Bluetooth non-mesh Devices
	5.2.3 Implementation using Available Bluetooth mesh Stacks

	5.3 Lightweight Provisioning
	5.4 Experimental Results
	5.4.1 Experiment 1: Provisioning Time and Robustness
	5.4.2 Experiment 2. End-to-End Mesh Delay
	5.4.3 Experiment 3. Packet Reception Rate (PRR)

	5.5 Conclusions

	6 Optimisation of the Friendship Mechanism
	6.1 Preliminaries
	6.2 Initial Improvement Proposals
	6.2.1 Improving the Bearer Layer
	6.2.2 Improving Time Synchronization
	6.2.3 Improving Advertising Channel Utilisation

	6.3 Our Improvement Proposal: Bursts Transmissions and Listen Before Transmit (BTLBT)
	6.4 Experimental Results
	6.4.1 Performance of the Bluetooth mesh Standard Friendship Mechanism
	6.4.2 Performance of Bluetooth mesh Friendship using Burst Transmissions
	6.4.3 Performance of Bluetooth mesh Friendship with BTLBT
	6.4.4 Comparison

	6.5 Estimated Consumption
	6.6 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work
	7.3 Author's Biography
	7.3.1 Projects
	7.3.2 List of Publications

	A Hardware and Software
	A.1 Hardware Platforms
	A.1.1 Waspmote
	A.1.2 CSR1010
	A.1.3 LightBlue Bean
	A.1.4 EFR32BG13
	A.1.5 nRF52840
	A.1.6 nRF Sniffer

	A.2 Software
	A.2.1 Waspmote IDE
	A.2.2 Apache Cordova
	A.2.3 Node.js
	A.2.4 Android Studio
	A.2.5 Simplicity Studio
	A.2.6 Zephyr

	Bibliography

