

UWS Academic Portal

Cost optimization in cloud environment based on task deadline

Ahmad, Saima Gulzar; Iqbal, Tassawar; Munir, Ehsan Ullah; Ramzan, Naeem

Published in:
Journal of Cloud Computing

DOI:
10.1186/s13677-022-00370-x

Published: 17/01/2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Ahmad, S. G., Iqbal, T., Munir, E. U., & Ramzan, N. (2023). Cost optimization in cloud environment based on
task deadline. Journal of Cloud Computing, 12(1), [9]. https://doi.org/10.1186/s13677-022-00370-x

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 22 Feb 2023

https://doi.org/10.1186/s13677-022-00370-x
https://uws.pure.elsevier.com/en/publications/45d8db8a-00b9-4c42-ad77-711f6f4c5790
https://doi.org/10.1186/s13677-022-00370-x

Ahmad et al. Journal of Cloud Computing (2023) 12:9
https://doi.org/10.1186/s13677-022-00370-x

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

Cost optimization in cloud environment
based on task deadline
Saima Gulzar Ahmad1, Tassawar Iqbal1, Ehsan Ullah Munir1 and Naeem Ramzan2*

Abstract

The popularity of cloud and fog services has raised the number of users exponentially. Main advantage of Cloud/fog
infrastructure and services are crucial specially for commercial users from diverse areas. The variety of service requests
with different deadlines makes the task of a service broker challenging. The fog and cloud users always lookfor a
suitable compromise between cost and quality of service in terms of response time therefore, the cost optimization
is vital for the cloud/fog service providers to capture the market. In this paper an algorithm, Cost Optimization in the
cloud/fog environment based on Task Deadline (COTD) is proposed that optimizes cost without compromising the
response time. In this algorithm the task deadline is considered as a constraint and an appropriate data center for
task processing is selected. The proposed algorithm is suitable for runtime decision making due to its low complexity.
The proposed algorithm is evluated using a well-known simulation tool Cloud Analyst. Our comprehensive testbed
simulations show that COTD outperforms the existing schemes, Service Proximity Based Routing and Performance-
Optimized Routing. The proposed algorithm successfully minimizes the cost by 35% on average while maintaining
the response time.

Keywords Fog, Cloud, Data centers, Service broker, Response time, Cost

Introduction
Nowadays, cloud computing [1] plays the role of back-
bone in industry, and education systems [2] and its
popularity causes exponential growth in cloud data and
network traffic [3]. The exponential increase in the data
and network traffic cause challenges in cloud computing
[4] for instance, overloading of data centers and delays in
task processing eventhough some tasks are time critical.
Thus, only an efficient system is desirable to handle such
tasks without delays. Later, to overcome the challenges of
existing cloud architecture [5], fog computing was pro-
posed by CISCO [6]. It is a replica of the cloud with lim-
ited resources available locally near the network edge as
presented in Fig. 1. The significance of the fog layer is to

reduce the network traffic and minimize the load of cloud
data centers and network latency [7]. This infrastructure
helps to process the crucial and time-sensitive tasks, and
to enhance the quality of service (QoS) [8] and quality
of experience (QoE) [9]. Although, the idea of a fog layer
enhances the QoS, minimizes the cloud data center’s load
and network latency. Despite this enhancement, the fog
layer has relatively fewer resources and an efficient as well
as cost-saving resource allocation is required for the best
utilization of available resources and to minimize the cost.

In a normal tiered fog-cloud environment, user
requests are forwarded to suitable computing devices
[10] based on some pre-defined criteria. These user
requests can be classified based on the type of services
and task deadline. In case of task deadlines, tasks are
further divided into two main classes: 1) short deadlines
tasks and 2) long deadlines tasks. Short deadline tasks are
time-sensitive and need special resources for completion
within a time, whereas long deadline tasks can be delayed
to some extent. To meet the task deadlines with the best

*Correspondence:
Naeem Ramzan
Naeem.Ramzan@uws.ac.uk
1 COMSATS University Islamabad, Wah Cantt, Pakistan
2 University of The West of Scotland, Scotland, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00370-x&domain=pdf

Page 2 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

services, a lot of service broker techniques have been
proposed to minimize the response time [10]. However,
most of these strategies forward the task to the nearby
data centers and neglect the cost factor.

Cloud cost optimization has been the top priority of
the most organizations over the last few years, evident
from Flexera’s report 20211 as shown in Fig. 2. The users
of cloud and fog always need the best services, at the low-
est cost. In this regard, many techniques are proposed to
cut down the response time and execution time however,
the cost factor is equally crucial. Since, the service cost
is a major factor to provide QoS, especially for commer-
cial customers therefore, compromising the response
time for long deadline requests is desirable as compared
to the compromise in the cost factor. In addition, the
high service cost can adversely affect the Service Level
Agreements and the service quality, which can eventually
reduce the market value of service providers. Therefore,
the main focus of this research work is to optimize the
cost without compromising the increased response time.

The major contributions of this research are:

• Comprehensive literature review of the existing
techniques for cloud resource allocation for service
requests.

• A cost optimization service broker strategy is pro-
posed that maintains the response time.

• Extensive simulations using Cloud Analyst are per-
formed by setting up a variety of scenarios to validate
the proposed work.

The rest of the paper is organized as follows: related
work describes the related work, the problem is formu-
lated in problem and formulation and proposed work
presents the proposed algorithm. The simulation setup
and results are discussed in results and analysis. Eventu-
ally, the paper is concluded in conclusion.

Related work
In the relevant literature, number of service bro-
ker policies are available for cloud and fog comput-
ing environments, however, most of these algorithms
mainly minimize total Response Time(RT) and focus
on efficient use of resources. For instance, many of the
designed service brokering techniques reflect the cost
as a performance factor many consider the RT and
some of them focus on the execution time. The cost and
the response time are inversely related. Likewise, the
techniques that aim to reduce the RT time, increase the
total cost, and the request execution time. Some rele-
vant approaches are discussed in this section.

Fig. 1 Cloud/Fog Computing Architecture

1 https:// www. flexe ra. com/ blog/ cloud/ cloud- compu ting- trends- 2022- state-
of- the- cloud- report/

https://www.flexera.com/blog/cloud/cloud-computing-trends-2022-state-of-the-cloud-report/
https://www.flexera.com/blog/cloud/cloud-computing-trends-2022-state-of-the-cloud-report/

Page 3 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

Wickremasinghe et al. [11] introduce a unique tool,
Cloud Analyst along with a new technique to simulate a
wide range of extensive applications of the cloud. More
importantly, this study will generate valuable insight into
the planning of cloud infrastructure facilities. In the cloud
architecture load balancing techniques and service bro-
ker algorithms in data centers enhance the performance
of the application and cost to the proprietors. This tool
provides a wide range of options and a graphical, view
and control to the research community to simulate their
work with a variety of scenarios. In this research work,
the same tool is used to validate the proposed technique.

Tyagi et al. [12] used the throttled load balancing bro-
kering technique along with an optimized RT service
brokering policy to reduce the cost and RT. Tries dif-
ferent load balancing techniques available in the cloud
analyst to find the optimal solution that delivers the best
results. The results presented after the simulation dem-
onstrate that the RT and data center processing time is
optimum but the cost increases. Ramasubbareddy et al.
[13] examined different load balancing techniques avail-
able in cloud analyst simulation tools and performed
many test case scenarios. The simulation results of all
the available algorithms in a cloud analyst show that
throttled load balancing technique minimizes the total
RT and data center processing time while in terms of
cost all algorithms show the same result.

Naha et al. [14] try to reduce the cost and minimize the
data center processing time and overall RT. He proposed
three different service brokering methods and a load bal-
ancing technique. The simulation of all three algorithms

shows better results as compared to the previously avail-
able algorithm Service Proximity Service Broker. While
comparing the results of these algorithms with each
other shows that from the three proposed algorithms
Load Aware over Cost Algorithm shows maximum per-
formance in the context of cost, data center processing
time, and overall RT. Ahmad Manasrah et al. [15] Pro-
posed and improved service brokering policy, the main
working principle of the designed technique is a differ-
ential evolution method to decrease the cost, overall RT
and processing time. The main idea is to process the dif-
ferent tasks on different machines by finding an optimum
solution from the best conceivable solution. The results
of the proposed technique compared with the algorithms
available in cloud analysts show that the algorithm per-
forms better at a data center processing time and in over-
all RT but the cost factor increases.

Kulkarni et al. [16] Designed a cost-aware service bro-
kering technique to save costs in the Geo-distributed data-
center in the cloud and fog atmosphere. In the proposed
solution the electricity factor is used to minimize the cost
and the algorithm works on the principle to find out the
data center has the lowest electricity cost instead of the
closely located data center and process maximum requests
on that data center. The results presented after the simula-
tion demonstrate the proposed algorithm shows the best
results and saves cost. Jain et al. [17] Proposed a service
brokering technique based on fuzzy rules along with a ser-
vice broker algorithm to increase the overall performance of
cloud services. The performance of the proposed solution
can be measured in expressions of energy consumed the

Fig. 2 Flexera’s state of the cloud report 2021

Page 4 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

quantity of energy consumed on the communication and
data processing of tasks is measured and calculated in joule
and tasks or processed at the data center which consumed
less amount of energy selected by the algorithm. The results
of the proposed technique show that the proposed tech-
nique has drawn better performance while comparing with
existing algorithms. Rekha et al. [18] propose an approach
called dynamic cost-load aware service brokering algorithm
to reduce the overall RT, execution time, and the cost of
Virtual machines by using a heuristic-based approach. In
the proposed algorithm VMs are sorted region-wise and
arranged in the increasing order of processing speed and
select the VM from the list with the highest processing
speed. The simulation and test scenarios show that the algo-
rithm performance variables in different scenarios in some
scenarios result in significant cost and processing time while
in some scenarios results are not better.

Patel et al. [19] proposed a technique for balancing load
inside the data center that works on VM to host ratio and
freely available resources. The proposed algorithm selects
the nearest region and picks up the data centers and finds
the percentage of free resources and active host to VM
ratio and based on these parameters, executes the task on
the best available resource. The test results conducted on
the cloud analyst simulation tool show better results and
minimize the RT and datacenter processing time as com-
pared to cloud analyst available algorithms. Al-Tarawneh
et al. [20] Proposed an algorithm, Adaptive User-Oriented
Fuzzy-Based Service Broker to minimize the cost and
increase the performance depending on the user prefer-
ences. The designed algorithm decides based on perfor-
mance or a preference-aware environment and executes
the task as per requirement. The simulation results con-
ducted on cloud analysts show improvement in response
time by user base and data center processing time but the
cost factor remains the same. Benlalia at al [21]. proposed
the technique for the optimization of cost and RT. The ser-
vice broker algorithm works based on cost and efficiency
for the selection of the best available resource to minimize
the overall cost and RT. The main idea was to maintain the
list of Efficiency Cost data centers and the threshold value
of each data center and process the request on these crite-
ria. Nayak et al. [22] Proposed a brokering technique based
on the deadline, The proposed algorithm is the exten-
sion of the backfilling technique. The proposed technique
focuses on the weak points of the backfilling algorithm
and improves the scheduling process by maximizing the
acceptance ratio of tasks and by minimizing the rejection
ratio of the task. Simulation results show better results.

Jyoti et al. [23] work on another solution that works
on the dynamic provisioning of resources and is based
on service brokering and load balancing. An agent called
Local User Agent (LUA) predicts the activities of the users

in the environment and based on these activity tasks and
allocates them to the VM based on priority. Global User
Agent (GUA) is used to provide services to the user bases
and schedule the tasks. The result of this technique shows
that the proposed technique performs better as com-
pared with other techniques in terms of ET, WT, and
makespan. Junaid et al. [24] Proposed a hybrid model for
balancing the load in cloud computing. The proposed
solution performs the classification of the files present in
the cloud and classification is performed with the help of
a support vector machine (SVM) and the resultant data
is forwarded into an algorithm named Ant Colony Opti-
mization (ACO) works on a metaheuristic technique for
better results. Results after the simulation show that the
algorithm performs better in scalability and robustness.

Ghasemi et al. [25] Presented a machine learning base
technique that works on machine learning aimed to
divide the load of host machines. In the proposed tech-
nique from permissible action, an action was selected by
a learning agent and executed in the environment. The
simulation result of the proposed algorithm enhanced
the inter HM load balancing in the context of proces-
sor, memory, and BW, and it concluded that the pro-
posed technique can be more active and perform better
in load balancing. Junaid et al. [26] Proposed an algo-
rithm for load balancing named Data Files Type Format-
ting (DFTF) that works on an enhanced version of Cat
Swarm Optimization (CSO) besides with SVM. In the
proposed technique cloud data is classified from various
sources and the classified data are sent to the uvpgraded
load balancing algorithm that quickly distributes the load
on VMs. The results after the simulation of the proposed
technique show improved performance from the other
baseline algorithms in terms of throughput, response
time, and migration time. Table 1 presents the summary
of previously proposed techniques.

Maswood et al. [27] proposed three-layer fog-cloud com-
puting, optimization model to minimize the bandwidth
and cost with better load balancing in terms of bandwidth
and CPU processing capacity. The proposed technique
works on the priority model and both are inversely propor-
tional to each other if the cost is the priority factor band-
width increase and if the bandwidth is a priority factory
cost increase however simulation results show that the pro-
posed algorithm minimizes cost and bandwidth.

According to the discussed literature in Table 1, most
of the approaches consider response time and cost with-
out considering the deadline factor. In the discussed stud-
ies, the priority model and closest data center models are
mostly used. We in this research work, consider deadline
based model to reduce the cost and maintain RT which sets
novelity of the this work It is assumed that the cost con-
sidered in this work includes both, the resquest processing

Page 5 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

cost and data transfer cost. The data centers and user bases
are fully connected. The proposed algorithm is suitable
where the request deadlines are most crucial factor, how-
ever some other factors such as load balancing, energy con-
sumption and bandwidth is not considered.

There is lot of latest advancement in the relavent area
along with the huge amount of data generation [31].
Reseachers are focusing the intelligent and machine learn-
ing algorithms in almost every area including termal man-
agement of data centers [32], off-loading and resource
management [33], virtual manchine migration for fault
tolerance and numerous other purposes [34]. However,
the proposed work is a heuristic with the limiatation of
perdctive behavior and handling big data is out of scope.

Problem formulation
The proposed work aims to process the user’s requests
on the most appropriate data center to minimize the cost
and maintain response time. In the proposed work, cost
optimization is formulated as under. Assume, R is the set
of six geographically separated Regions that is given by,
R = {r1, r2, …r6} and each region contains n number of Data
Centers (DC), DC = {dc1, dc2, …dcn} that is distributed geo-
graphically into 6 regions. Along with DC, each region has
m number of User Bases (UB), UB = {ub1, ub2, …ubm}. Each
user base in a region has a set of users that generate numer-
ous Requests, RT = {req1, req2, …reqk}. All the abbriviations
used in problem formulation are listed in Table 2.

Table 1 Summary of relevant techniques

Reference Technique Performance Metrics Simulation Tool Main differences from
proposed algorithm

Tyagi et al. [12] Throttled load balancing RT & Cost Cloud Analyst Deadlines of the requests are not
considered

Ramasubbareddy et al. [13] Load balancing RT & Cost Cloud Analyst Deadlines of the requests are not
considered

Naha et al. [14] Load Aware Over Cost Algo-
rithm

RT Processing time Cost Cloud Analyst Unable to allocate resources
dynamically

Manasrah et al. [15] Differential Evolution Cost & overall RT Cloud Analyst High time complexity

Kulkarni et al. [16] Cost Aware Service Broker Electricity cost Cloud Analyst QoS is not maintained in terms
of RT

Jain et al. [17] Fuzzy rules algorithm Energy consumption Cloud Analyst RT and Processing time are not
optimized

Rekha et al. [18] Heuristic-based approach RT and VM cost Cloud Analyst Outperfromed in selected
scenarios

Patel et al. [19] VM to host Ratio RT Cloud Analyst Algorithm only applicable within
datacenters

Tarawneh et al. [20] Adaptive User-Oriented Fuzzy-
Based

Cost and RT Cloud Analyst Deadlines of the requests are not
considered

Benlalia et al. [21] Proximity-based routing Cost and RT Cloud Analyst No simualtions / implementation
results

Chandan et al. [22] Deadline Based Task acceptance ratio MATLAB Ignore the switching cost of VM

Junaid et al. [24] Data File type formatting using
Ant Colony

RT Migration time, Energy
consumption

Cloudsim Ignore cost optimization only
categorize and process four types
of data.

Ghasemi et al. [25] Machine Learning base VM
replacement

Processor Memory Bandwidth Cloudsim Deadlines of the requests are not
considered and deep Learning
can be used to enhance results

Junaid et al. [26] Data File type formatting using
Cat Swarm Optimization

RT Migration time Energy
consumption

Cloudsim Deadlines of the requests are not
considered

Maswood et al. [27] Weighted Factors for Priority
routing

Load Balancing Cost and
Bandwidth

AMPL/CPLEX Dependence on weighted factors
and response time not optimized.

Punit Gupta et al. [28] ANN and Nature inspired
algorithm

execution cost, average start
time, and finish time

CloudSim High time complexity, Not suit-
able for dynamic/runtime deci-
sion making

Abbas Najafizadeh et al. [29] Ant colony algorithm execution time, service execu-
tion cost, deadline, and access
level

MATLAB High time complexity, Not suit-
able for dynamic/runtime deci-
sion making

Bezdan et al. [30] Swam intelligent based
approach

Resource utilization, quality of
service and makespan

CloudSim High time complexity, Not suit-
able for dynamic/runtime deci-
sion making

Page 6 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

Each request generated from a UB is forwarded to the
service broker and its policy determines the destination
DC, in response service broker returns the destination
DC. Performance (P) is given by the set of performance
metrics of broker policy ,P = {RT, PT, Cost}. In the set P,
RT is the Response Time, PT is the Processing Time of the
task and cost is dependent on four different factors that
include Virtual machine (VM) cost, storage, memory, and
data transfer cost. Response time is expressed as the total
time when a user generates a request and receives its reply
from DC. The RT of a request is defined by using Eq. (1).

Where DT is the total Data transfer Time of the request.
DT is given by using Eq. (2)

The above equation relates the data or size of the
request, with the Bandwidth (BW) of the network or
communication link and the Latency of the network.

Numerous requests are generated by different user
bases and forwarded to the different data centers in the
region based on the service broker policies. DCs pro-
cess these requests accordingly. Policies are designed to
deliver the best results to meet the Service Level Agree-
ment (SLA) and maintain QoS.

Whenever a new request is received, the response time
of the available DCs is determined by using Eq. (1). From
the list of available DCs the minimum and maximum RT
of the request is identified and the threshold value (Th) is
calculated by using Eq. (3).

Where minRT and maxRT are the estimated response
time of the available data centers in all the regions to

(1)RT = {DT + PT }

(2)DT =
{

D/(BW + Latency)
}

(3)Th = (minRT+maxRT)/2

calculate the threshold. The threshold value is compared
with the deadline of requests that classify the requests
based on the priorities as shown below.

Where, dlinereqk of Req. is the deadline of any request. The
high priority requests are then forwarded to the DC that
provides a minimum response time to complete the request
at the earliest, however low priority requests are compro-
mised at RT and processed at DCs with minimum cost.

Proposed work
The primary goal of the proposed technique is to reduce
the cost while maintaining the RT for the user requests
based on their deadline and forwarding it to the most
appropriate data centers. In this regard, the proposed
COTD technique maintains a list of all available data cent-
ers in the regions around the globe. When new requests
arrive at the proposed COTD technique, it decides the
DB based on the deadline. The requests with a greater
deadline are forwarded to those data centers that incur a
low cost, whereas the requests with a earlier deadline are
forwarded to the closest data centers to meet the request
deadline. The proposed technique also verifies the valid-
ity of the received requests. The COTD technique con-
sists of three phases. In the first phase, the threshold value
is determined by using the response time in the second
phase, the deadline of the task is compared with the mini-
mum response time of the available data centers, and in
the last phase, the deadline of the task is compared with
the calculated threshold. Eventually, the requests are for-
warded to a suitable data center based on the deadline.
Thes second and third phases are dicision maker phases
where user request is compared as shown in Fig. 3.

Threshold calculation
When a new request is generated, it enquires about the
service broker policy for the destination data center. The
service broker retrieves the region of the request genera-
tion and the deadline of each request and gets the list of
all available data centers. The proposed strategy reiterates
the list of obtainable data centers and estimates a current
minimum and maximum RT and based on that thresh-
old is calculated using Eq. 3. In the threshold calculation,
minRT is the last recorded minimum response time while
maxRT is the last recorded maximum response time. The
calculated threshold value is the calculated period used
to calculate the importance of the request. Task deadline,
then compared with the calculated threshold value to
check the criticality of the request. If the deadline of the
request is less than the calculated value it means that the

(4)

∀Req dlinereq < TH High Priority Req.

∀Req dlinereq > TH Low Priority Req.

Table 2 List of abbreviations

Abbreviations Definition

D Data

RT Response Time

PT Processing Time of task

DT Data Transfer Time

Th Threshold value

BW Bandwidth

UB User Base

DC Data Center

QoS Quality of Service

QoE Quality of Experience

Dlinereqk Deadline of all requests

Min RT Minimum Response Time

Max RT Maximum Response Time

Page 7 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

request has a short deadline and needs to be processed on
top priority and COTD forwards the request to the near-
est and fastest data center so that the request is processed
in minimum response time and maintains the QoS. If
the deadline to request is greater than the calculated

threshold value it means the request has a low priority and
may have some delays, so COTD forwards the request to
the data center having minimum cost in the region to save
the maximum cost. The threshold calculation phase is the
main phase of the proposed methodology.

Fig. 3 Block diagram of the proposed technique CTOD

Page 8 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

The variable dclist in the algorithm 1 is the list of all
available and active data centers distributed globally. This
variable is used to get the list of all available data centers.
Instructions 2 and 3 in the algorithm 1 signify minimum
and maximum response times from the list of available
data centers. Variable minRT gets the minimum current
response time while maxRT variable gets the maximum
response time. Variable thValue in the algorithm 1 is
used to store and return the calculated threshold value.
The threshold value is calculated by taking the mean of
minRT and maxRT. Later, this thValue is used in the algo-
rithm 2 to decide a data center to process the request.

Request acceptance based on deadline
In the second phase, when a request is received by the
internet cloudlet, the internet cloudlet queries the des-
tination data center from the service broker policy.
COTD retrieves the deadline of the request and list of
available data centers and iterates with the list of avail-
able data centers to get the current response time (RT)
of all data centers from the list of available data cent-
ers, COTD picks up the minimum current response
time and then compare this value with the deadline of
received requests by using eq. (4). The purpose of this
comparison is to ensure that the request could be pro-
cessed or not within the given deadline. If the deadline
of the request is less than the minimum response time
it means that the request cannot be processed within
the given deadline and the request is rejected for a new
deadline. If the deadline of the request is greater than
the minimum response time, the request is accepted
and moved to the next phase. This process will save the
resources and do not forward any request that cannot
be processed in a given deadline. Because if a request
that cannot be processed in a given deadline, and it is
forward to the destination data center, it may consume
resources and hence results are not useful.

Data Centre selection
The main phase of the proposed methodology is data
centre selection, in this phase whenever a new request
arrives, COTD retrieves the region of the request
and the deadline of each request. Later, COTD com-
pares the deadline of each request with the calculated

threshold value by using eq.(5). Afterwards,, COTD
decides the destination data center. If the deadline of
the received request is less than the pre-calculated
threshold value, the task is considered to be a high pri-
ority, which means the request must be completed at
a given deadline and processed in the data center that
provides the best services. If the deadline of the request
is greater than the pre-calculated threshold value, the
task is considered to be of a low priority and can bear
some delays and be processed in a data center having
minimum cost.

Finally, after comparison of the threshold value with
the request deadline, service broker decides the best
possible data center to service the request. If the dead-
line is less than the threshold value from the list of
available data centers COTD returns the ID of the near-
est data center that provides the minimum response
time and identifies it by using the region of the request.
If the deadline of the request is greater than the thresh-
old value, then from a list of available data centers
COTD returns the ID of the data center that has a min-
imum overall cost.

The pseudocode of the proposed algorithm COTD is
presented as Algorithm 2. The algorithm is consists of
two stepts. In the fist step, the threshold value for all
incoming requests is calculated using the current cal-
culated response time values. In the second step, based
on the pre-calculated threshold value, requests are for-
warded to the most appropriate data center.

In the algorithm 2, instruction 2 is used to get the
deadline of the request, the deadline of the request is
some period specified in the request, which means
that the request must be processed and received the
response within that specified time. The variable reqReg
used to get the region of the request used, if the request
has a small deadline. Instructions 4 and 5 are used to
get the list of all available data centers and sort them
in order of minimum to maximum response time and
cost. The sixth instruction in the algorithm 2, retrieves
the pre-calculated threshold value, calculated using
algorithm 1, this threshold value is a period calculated
using the current minimum and maximum response
time.

Page 9 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

Page 10 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

Instructions 7 to 11 are conditional statements; they
are used to prevent the system resources. This condi-
tional statement checks whether the request can be pro-
cessed or not by the mentioned deadline and ensures
that only those requests should be forwarded to the data
center that can be processed within the specified time. If
the request fulfills the above condition, then the deadline
of the request is compared with the calculated thresh-
old value in instruction 13. The instruction 13 portrays
the main idea of the algorithm, that compares the dead-
line of the request with the calculated threshold value in
the algorithm 1, and if the deadline is less than the cal-
culated threshold value, the request is forwarded to the
data center having a minimum response time or the data
center nearest to request region, and if the deadline of
request is greater than the calculated threshold value, the
request forwarded to the data center having minimum
cost. Finally, the instruction 18 returns the selected data
center ID based on the aforementioned criteria.

Results and discussion
This section presents results and discussion, baseline
algorithms considered for comparison, and simulation
tools selected for the experimentation.

Performance evaluation
This section presents the evaluation and comparison of
the proposed COTD algorithm with the baseline algo-
rithms available in Cloud analyst in terms of cost and
response time. Following are the baseline algorithms that
are used for the performance evaluation of COTD.

Service Proximity Based Routing: Service Proxim-
ity Based Routing (SPBR) broker algorithm is named as
Closest Datacenter in the simulation tool. Service broker
maintains a list of all data centers index by their region,
whenever a new request is received, this policy queries to
the service broker for destination data center, then clos-
est data center broker pickups the closest data center in
terms of latency from the maintained list and return the
ID of the selected data center. SPBR uses simple tech-
niques and forwards the requests to the closest data
center and only considers the cost.

Performance Optimized Routing: Performance-Opti-
mized Routing (POR) service broker in simulator cloud
analyst named at an Optimized Response Time is an
extension of SPBR service broker that maintains a list of
all available data centers index by their region, whenever
a new request arrives, an optimized response time bro-
ker iterate with the list to estimate the current response
time. If the current response time is better than the clos-
est response time, then it is selected, otherwise ID of

the the closest data center is returned. Since, POR tech-
nique is the extension of the SPBR technique, POR tech-
nique is also a simple technique and focuses on response
time only and forward the request to achieve minimum
response time.

It is worth noting that the proposed algorithm con-
siders total cost along with the response time. The total
cost is comprised of VM, storage, and data transfer cost.
Cost is defined as an expense to process a request; this
cost is the sum of the cost to VM, data transfer, and stor-
age. While response time is defined as the total time a
user generates a request and receives a reply or it can be
defined as the sum of request processing time and data
transfer time.

Simulation setup
For simulation and execution of the proposed algorithm,
Corei5 laptop machine with 16 GB of RAM and Cloud
Analyst [10] simulator is used. Cloud Analyst is the
extension of CloudSim [35] and built on top of Cloud-
Sim. Cloud Analyst is designed for the simulation of a
large-scale cloud application in a geographically distrib-
uted environment. The simulator is do the analysis of
the proposed work in different scenarios by varying dif-
ferent parameters, contrary to the simuations the real
world scenarios are expensive and time comsuing to get
the results. Changind the different parameters are quite
easy and fast to get an overall performance analysis of
an algorithm. In the simulator, numerous requests from
the user bases to create internet traffic were generated.
Stimulator provides a GUI environment for the setup of
a stimulating environment with a wide range of functions
in the user base and data center setting. The stimulation
duration is set at 60 minutes. Figure 4 shows the preview
of cloud Analyst. Userbases lie in these regions pro-
duced the requests having a maximum deadline. A brief
description of each designed scenario is presented in fol-
lowing subsections.

Test scenarios
For evaluation purpose, the proposed technique is
applied to three different scenarios and run multiple
times to get accurate results. For this purpose, we run the
proposed algorithm multiple times and take the average
results. In the simulation, due to limitation of the request
deadline, three regions (region0, region1, and region2)
are selected on a priority basis and considered that all the
userbases lie in that region produce the request having a
minimum deadline and user bases in the remaining three
regions (region3, region4 and region5) are considered to
be low priority.

Page 11 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

Scenario 1: 2 User Base 1 datacenter in each region
The simulated world is geographically divided into six
regions, in the scenario 1, we distributed the user bases
and data centers around the globe in the 6 regions. In
the first scenario, we placed a single data center and
2 User Bases in each region, all the user bases have the
same configuration and all the data centers have the same
hardware configuration but have a different cost configu-
ration. The purpose of this scenario is to draw a real-life
example, just like a real-world scenario where we have

more user bases as compared to the number of data cent-
ers. Figure 5 describes the design and configuration of
the scenario 1.

Scenario 2: 1 User Base and 2 datacenter in each region
In the second scenario, the two data centers and a single
user base in each region is considered where all the user
bases have the same configuration and all the data centers
have the same hardware configuration but have a differ-
ent cost configuration. The scenario 2, is opposite of the

Fig. 4 Main view of Cloud Analyst

Fig. 5 Design of scenario 1 (2UB and 1 DC in each Region)

Page 12 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

scenario 1. The purpose of this scenario is to determine, if
new data centers are added to decrease the load, then how
the proposed technique performs and what is the impact
on response time and cost of increasing the number of
data. In the second scenario, the data centers are more
than the number of user bases. Figure 6 shows design and
configuration of the scenario 2. From the figures, it can be
concluded that there are large number of data centers to

compute the tasks, whereas a little data for computation is
available, thus data centers are not overburdened.

Scenario 3: 4 User Base and 1 DC in each region
In a third scenario, the single data center and multi-
ple User bases in each region are considered. All the
user bases have the same hardware configuration and
similarly, all the data centers have the same hardware

Fig. 6 Design of scenario 2 (1 UB 2 DC in each Region)

Fig. 7 Design of scenario 3 (4 UB 1 DC in each Region)

Page 13 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

configuration but have a different cost configura-
tion. In the third scenario, the total number of data
centers and placement of data centers in the regions
remain the same just like scenario 1. In the case of
users, bases are doubled the total number of user bases
and fix 4 user bases in each region’s total of 24 user
bases. The purpose of third scenario is to expand the
already designed scenario 1, just like a real-world sce-
nario with an increasing number of user bases as com-
pared to the number of data centers. The purpose of
this technique is to view the behavior of the proposed
technique, how our proposed algorithm and baseline
algorithms behave if the load is increased and, what is
the impact on cost and response time if load increases.
Figure 7 shows scenario 3.

Simulation parameters
In the simulations, the data centers of each region hav-
ing different cost configurations i.e., Cost per VM, cost
per memory, cost per storage, and cost per data transfer.
The purpose to set the different cost is to portray a real
scenario because in different regions of the world cost
ratio may vary (electric city cost, labor cost, infrastruc-
ture cost). Table 3 shows the default parameters of the
simulation.

Results and analysis
In this Section, the above-described scenarios are imple-
mented and run on a cloud Analyst simulator. After con-
ducting multiple tests on a simulator average results are
computed and presented in Table 4. The computed results

show that, in all the scenarios the proposed COTD tech-
nique achieves the best results and saves the maximum
cost as compared tobaseline techniques. In the scenario
1, the total cost of baseline and the proposed technique is
compared and achieved 43% decrease in total cost. In sce-
nario 2, a 22 % decrease in total cost is achieved. In case
of 3rd scenario, 46% decrease in total cost is achieved.
Finally, an average in decrease of cost is recorded 35%. It
proves the proposed policy saves maximum cost as com-
pared to the two baseline techniques. It is also observed
from the results that an increase in data centers causes a
huge increase in cost. On the other hand, when the pro-
posed technique is compared with baseline techniques in
terms of response time, the results listed in Table 4 shows
that in the proposed technique response time increase
is nominal that is because of proposed technique selects
the datacenter having minimum cost, instead of closest
datacenter and network delays may added in the response
time. The percentage values on average, are less than a 1%
increase in overall response time. According to the com-
puted results, the proposed technique saves maximum
costs and also maintains response time.

The results presented in Table 4 show a compara-
tive analysis of baseline technique in selectedscenar-
ios. Although response time of proposed technique is
almost the same however a significant decrease in the
cost is noted, because of the designed scenarios, where
the user base, and data center configuration (num-
ber of requests, peak hours, and hardware) are the
same and set on default. Since the proposed technique
focuses to minimize the cost hence only cost configu-
ration is changed and rest of the settings kept same.
Thus COTD saves the maximum cost and maintain
response time in the heterogeneous cost configuration
environment.

According to the computed results of scenario 1, 2 and
3, the proposed technique saves maximum cost and per-
forms the execution of all the tasks on a minimum pos-
sible cost. The cost breakup generated by simulating it,
shows that in all scenarios proposed technique selects the
data centers having minimum VM cost so that maximum
cost can be saved.

The comparative response time results of the proposed
technique and two baseline techniques in the scenarios
discussed above are presented in Fig. 8.

Table 3 Default parameters for simulation

Default parameters for simulation

Number of Regions 6

Data Size Per Request 100

Request per user per hour 60

Average Peak Users 1000

Average off-peak Users 100

Physical HW unit 2

Load Balancing Policy Throttled

Table 4 Results of the proposed algorithm

Scenario Closest Datacenter Optimize Response Time COTD

Cost RT COST RT Cost RT

Scenario 1 11.20 50.09 13.20 50.17 6.93 50.27
Scenario 2 17.24 50.09 22.43 50.06 15.48 50.15
Scenario 3 12.11 50.07 15.88 50.11 7.57 50.20

Page 14 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

Figure 8 shows that in proposed technique response
time is better as compared to the other two algorithms.
This increase is not significant, because COTD selects
data centers having minimum cost instead of closest data
center and addition of network delays.

Figure 9, shows the results of cost for the three designed
scenarios with 2 baseline and the proposed algorithm. It
is obvious from the graph that the proposed technique
minimizes the maximum cost with a very small increase
in response time.

The purpose of the following graphs presented in
Figs. 10 and 11 is to show the performance of the

proposed algorithm by varying UB and DC and impact
on cost. In Fig.10, the results of cost with increasing the
number of DC are presented. The cost of COTD is com-
paratively less as compared to the other two baseline
algorithms even DC is increased.

Figure 10 shows, that with 6 data centers the total cost
is 7.35, if the DC becomes 12 then the total cost is 13.88.
Consequently, by increasing the number of data centers
in a simulator, there is a very significant increase in total
cost. This shows that with the increase in the number
of data centers to facilitate maximum requests instead
of utilizing the available resources on their full capacity,

Fig. 8 Response Time comparison of three scenarios

Fig. 9 Cost comparison of three scenarios

Page 15 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

cost factor is also disturbed and a major increase in over-
all cost is recorded.

The comparative results of increasing User Bases and
its impact on cost are shown in Fig.11. According to the
results, if there are 12 UB, the total cost is 8.17, and if UB
is doubled in number then the total cost is 9.83. It is con-
cluded that if the number of UBs increases there is very
little impact on the total cost.

The proposed algorithm is also analyzed to verify it’s
scalibilty. The performance of COTD is compared with
the other algorithms with increasing user requests. In
these simualtions, the data centers and user bases are
fixed to 24, however the user requests are increased from
2K to 10K. The computed results are presented in Fig. 12

which shows that COTD outperformed by providing
reduced cost to 22% on average. According to the results,
the performance is significant in terms of cost because
the proposed algorithm classifies the user requests based
on the deadlines and capabilities of aviable DCs. How-
ever, the high priority requests with short deadlines are
only processed at high costs in order to provide the mini-
mum response time. On the other hand, those request
which can be delayed are processed at minimum cost
that eventually reduces the overall cost.

Figure 13 presents the comparison of the number of
deadline violations of COTD and baseline algorithms.
The comparison shows that there is a significant dif-
ference in the number of violations of the proposed

Fig. 10 Impact of COTD on cost in varying DC

Fig. 11 Impact of COTD on cost in varying UB

Page 16 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

algorithmand SPBR and POR methods. The proposed
algorithm perfroms better as the deadline violations of
user requests are less as compared to other algorithms.

Conclusion
The deadline-based service broker technique is proposed
for the optimal cost that maintains response time in a
cloud fog environment. The proposed technique exploits
an algorithm consists of three steps including: 1) Thresh-
old calculation for the selection of data centers, 2) Com-
parison of the deadline with minimum response time to
ensure the availability of resources, and 3) Selection of the
datacenter while comparing the deadline with a calculated

threshold value. The proposed technique is implemented
on three different scenarios and achieved the comparative
results. According to the results, the proposed technique
achieved over 34% average cost decrease than baseline
techniques. In the case of response time, the proposed
technique achieved almost similar results in comparison
to the baseline algorithms where approximately 35% of
the total average cost is saved with less than 1% increase
in response time. In this reseach work mainly the cost is
optimized while mainataining the response time of the
requests. In future work, more complex scenarios will
be considers and besides simualtions experiments in real
world environments will be carried out.

Fig. 12 Impact of COTD on cost increasing user requests

Fig. 13 Comparison of deadline violations with increasing requests

Page 17 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

Acknowledgements
The authors would like to thank the anonymous reviewers for their insightful
comments and suggestions on improving this paper.

Availability of supporting data
The datasets used during the current study are available on reasonable
request.

Authors’ contributions
The main manuscript text is written by Saima Gulzar, figures are developed
by Ehsan Ullah Munir and Naeem Ramzan worked on the results section.
Tassawar Iqbal performed simulations again and included few more results.
All authors reviewed and improved the writeup of the manuscript. All authors
read and approved the final manuscript.

Funding
This research was partially supported by the SAFE_RH project under Grant No.
ERASMUS+ CBHE - 619483-EPP-1-2020-1-UK-EPPKA2-CBHE.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
All authors guarantee that research findings have not been previously pub-
lished and this work is not submitted any whereelse.

Competing interests
The authors declare that they have no competing interests.

Received: 23 April 2022 Accepted: 12 November 2022

References
 1. Donnell NMC, Howley E, Duggan J (2020) Dynamic virtual machine

consolidation using a multi-agent system to optimise energy efficiency
in cloud computing. Futur Genre Comput Syst 108:288–301. https://
doi. org/ 10. 1016/j. future. 2020. 02. 036

 2. Chen S, Huang S, Luo Q, Zhou J (2020) A profit maximization scheme
in cloud computing with deadline constraints. IEEE Access 8:118924–
118939. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30037 99

 3. Chen S, You Z, Ruan X (2020) Privacy and energy co-aware data
aggregation computation offloading for fog-assisted IoT networks.
IEEE Access 8:72424–72434. https:// doi. org/ 10. 1109/ ACCESS. 2020.
29877 49

 4. Choudhari T, Moh M, Mo TS (2018) Prioritized task scheduling in fog
computing. Proc. ACMSE 2018 Conf 2018. https:// doi. org/ 10. 1145/
31906 45. 31906 99

 5. “Cloud Computing Architecture.” [Online]. Available: http:// www. euroc
loud. org. uk/ wp- conte nt/ uploa ds/ 2018/ 03/ Cloud- Compu ting-1. jpg

 6. Alharbi HA, Elgorashi TEH, Elmirghani JMH (2020) Energy efficient
virtual machine placement over cloud-fog network architecture. IEEE
Access 8:94697–94718. https:// doi. org/ 10. 1109/ ACCESS. 2020. 29953 93

 7. Yousefpour A, Ishigaki G, Jue JP (2017) Fog Computing: Towards Mini-
mizing Delay in the Internet of Things. Proc. - 2017 IEEE 1st Int. Conf.
Edge Comput. EDGE 2017:17–24. https:// doi. org/ 10. 1109/ IEEE. EDGE.
2017. 12

 8. Scarlet O, Nardelli M, Schulte S, Dustdar S (2017) Towards QoS-Aware Fog
Service Placement. Proc. - 2017 IEEE 1st Int. Conf. Fog Edge Comput. ICFEC
2017:89–96. https:// doi. org/ 10. 1109/ ICFEC. 2017. 12

 9. Iotti N, Picone M, Crane S, Ferrari G (2017) Improving quality of experi-
ence in future wireless access networks through fog computing. IEEE
Internet Comput 21(2):26–33. https:// doi. org/ 10. 1109/ MIC. 2017. 38

 10. Khan MA (2020) Optimized hybrid service brokering for multi-cloud
architectures. J Supercomput 76(1):666–687. https:// doi. org/ 10. 1007/
s11227- 019- 03048-5

 11. Wickremasinghe B, Calheiros RN, Buyya R (2010) CloudAnalyst: a cloud-
sim-based visual modeller for analysing cloud computing environments
and applications. Proc - Int Conf Adv Inf Netw Apple AINA:446–452.
https:// doi. org/ 10. 1109/ AINA. 2010. 32

 12. Tyagi V, Kumar T (2015) ORT broker policy: reduce cost and response
time using throttled load balancing algorithm. Procedia Comput. Sci.
48:217–221. https:// doi. org/ 10. 1016/j. procs. 2015. 04. 173

 13. Ramasubbareddy S, Adityasaisrinivas T, Govinda K, Manivannan SS, Swe-
tha E (2019) Analysis of load balancing algorithms using cloud analyst. Int
J Recent Technol Eng 7(6):684–687

 14. Naha RK, Othman M (2016) Cost-aware service brokering and perfor-
mance sentient load balancing algorithms in the cloud. J Netw Comput
Appl 75:47–57. https:// doi. org/ 10. 1016/j. junkie. 2016. 08. 018

 15. Manasrah AM, Aldomi A, Gupta BB (2019) An optimized service broker
routing policy based on differential evolution algorithm in fog/cloud
environment. Cluster Comput. 22:1639–1653. https:// doi. org/ 10. 1007/
s10586- 017- 1559-z

 16. Kulkami AK, Annappa B (2017) Cost aware service broker algorithm for
load balancing Geo-distributed data centers in the cloud. 2017 IEEE Int.
Conf. Signal Process. Informatics, Commun Energy Syst SPICES. https://
doi. org/ 10. 1109/ SPICES. 2017. 80913 37

 17. Jain R, Sharma N, Sharma T (2018) Enhancement in performance of the
service broker algorithm using fuzzy rules. Proc. 2nd Int. Conf. Invent.
Syst. Control. ICISC 2018:922–925. https:// doi. org/ 10. 1109/ ICISC. 2018.
83989 34

 18. Rekha PM, Dakshayini M (2018) Dynamic cost-load aware service broker
load balancing in virtualization environment. Procedia Comput. Sci.
132:744–751. https:// doi. org/ 10. 1016/j. procs. 2018. 05. 086

 19. Patel R, Patel S (2019) Efficient service broker policy for intra data center
load balancing, vol 107. Springer, Singapore

 20. Al-Tarawneh M, Al-Mousa A (2019) Adaptive user-oriented fuzzy-based
service broker for cloud services. J. King Saud Univ. - Comput. Inf. Sci.
https:// doi. org/ 10. 1016/j. jksuci. 2019. 11. 004

 21. Benlalia Z, Beanie-Hssane A, Abouelmehdi K, Ezati A (2019) A new service
broker algorithm optimizing the cost and response time for cloud
computing. Procedia Comput Sci 151(2018):992–997. https:// doi. org/ 10.
1016/j. procs. 2019. 04. 139

 22. Nayak SC, Parida S, Tripathy C, Pattnaik PK (2018) An enhanced dead-
line constraint based task scheduling mechanism for cloud environ-
ments. J. King Saud Univ. - Comput. Inf. Sci. https:// doi. org/ 10. 1016/j.
jksuci. 2018. 10. 009

 23. Jyoti A, Shrimali M (2020) Dynamic provisioning of resources based on
load balancing and service broker policy in cloud computing. Cluster
Comput 23(1):377–395. https:// doi. org/ 10. 1007/ s10586- 019- 02928-y

 24. Junaid M, Sohail A, Ahmed A, Baz A, Khan IA, Alhakami H (2020) A hybrid
model for load balancing in cloud using file type formatting. IEEE Access
8:118135–118155. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30038 25

 25. Ghasemi A, Trophy Haghighat A (2020) A multi-objective load balancing
algorithm for virtual machine placement in cloud data centers based
on machine learning. Computing 102(9):2049–2072. https:// doi. org/ 10.
1007/ s00607- 020- 00813-w

 26. Junaid M et al (2020) Modeling an optimized approach for load balancing
in cloud. IEEE Access 8:173208–173226. https:// doi. org/ 10. 1109/ access.
2020. 30241 13

 27. Shahriar Maswood MM, Rahman MR, Alharbi AG, Medhi D (2020) A Novel
Strategy to Achieve Bandwidth Cost Reduction and Load Balancing in
a Cooperative Three-Layer Fog-Cloud Computing Environment. IEEE
Access 8:113737–113750. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30032 63

 28. Gupta P, Kaikini RR, Saini DK, Rahman S (2022) Cost-aware resource opti-
mization for efficient cloud application in smart cities. Journal of Sensors
2022:1–12. https:// doi. org/ 10. 1155/ 2022/ 44068 09

 29. Najafizadeh A, Salajegheh A, Rahmani AM, Sahafi A (2022) Multi-objective
task scheduling in cloud-fog computing using goal programming
approach. J Clus Comput 25:141–165

 30. Bezdan T, Zivkovic M, Bacanin N, Strumberger I, Tuba E, Tuba M (2021)
Multi-objective task scheduling in cloud computing environment by
hybridized bat algorithm. In: Book: Intelligentand fuzzy techniques: smart
and innovative solutions

 31. Sandhu AK (2021) Big data with cloud computing: discussions and chal-
lenges. Big Data Analytics 5(1):32–40

https://doi.org/10.1016/j.future.2020.02.036
https://doi.org/10.1016/j.future.2020.02.036
https://doi.org/10.1109/ACCESS.2020.3003799
https://doi.org/10.1109/ACCESS.2020.2987749
https://doi.org/10.1109/ACCESS.2020.2987749
https://doi.org/10.1145/3190645.3190699
https://doi.org/10.1145/3190645.3190699
http://www.eurocloud.org.uk/wp-content/uploads/2018/03/Cloud-Computing-1.jpg
http://www.eurocloud.org.uk/wp-content/uploads/2018/03/Cloud-Computing-1.jpg
https://doi.org/10.1109/ACCESS.2020.2995393
https://doi.org/10.1109/IEEE.EDGE.2017.12
https://doi.org/10.1109/IEEE.EDGE.2017.12
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/MIC.2017.38
https://doi.org/10.1007/s11227-019-03048-5
https://doi.org/10.1007/s11227-019-03048-5
https://doi.org/10.1109/AINA.2010.32
https://doi.org/10.1016/j.procs.2015.04.173
https://doi.org/10.1016/j.junkie.2016.08.018
https://doi.org/10.1007/s10586-017-1559-z
https://doi.org/10.1007/s10586-017-1559-z
https://doi.org/10.1109/SPICES.2017.8091337
https://doi.org/10.1109/SPICES.2017.8091337
https://doi.org/10.1109/ICISC.2018.8398934
https://doi.org/10.1109/ICISC.2018.8398934
https://doi.org/10.1016/j.procs.2018.05.086
https://doi.org/10.1016/j.jksuci.2019.11.004
https://doi.org/10.1016/j.procs.2019.04.139
https://doi.org/10.1016/j.procs.2019.04.139
https://doi.org/10.1016/j.jksuci.2018.10.009
https://doi.org/10.1016/j.jksuci.2018.10.009
https://doi.org/10.1007/s10586-019-02928-y
https://doi.org/10.1109/ACCESS.2020.3003825
https://doi.org/10.1007/s00607-020-00813-w
https://doi.org/10.1007/s00607-020-00813-w
https://doi.org/10.1109/access.2020.3024113
https://doi.org/10.1109/access.2020.3024113
https://doi.org/10.1109/ACCESS.2020.3003263
https://doi.org/10.1155/2022/4406809

Page 18 of 18Ahmad et al. Journal of Cloud Computing (2023) 12:9

 32. Liu H, Aljbri AS, Song J, Jiang J, Hua C (2021) Research advances on
AI-powered thermal management for data centers. Tsinghua Sci Technol
27(2):303–314

 33. Nath S, Jingxian W (2020) Deep reinforcement learning for dynamic
computation offloading and resource allocation in cache-assisted
mobile edge computing systems. Intelligent and Converged Networks
1(2):181–198

 34. Zhang W, Chen X, Jiang J (2020) A multi-objective optimization method
of initial virtual machine fault-tolerant placement for star topological data
centers of cloud systems. Tsinghua Sci Technol 26(1):95–111

 35. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011) Cloud-
Sim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Softw - Pract
Exp 41(1):23–50

 36. “Fog-Computing-diagram.” [Online]. Available: https:// www. itprc. com/
wp- conte nt/ uploa ds/ 2018/ 09/ Fog- Compu ting- diagr am. jpg

 37. Ben Alla H, Ben Alla S, Touhafi A, Ezzati A (2018) Deadline and Energy
Aware Task Scheduling in Cloud Computing. 4th Int. Conf Cloud Comput
Technol Apple Cloudtech 2018:1–8. https:// doi. org/ 10. 1109/ Cloud Tech.
2018. 87133 38

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.itprc.com/wp-content/uploads/2018/09/Fog-Computing-diagram.jpg
https://www.itprc.com/wp-content/uploads/2018/09/Fog-Computing-diagram.jpg
https://doi.org/10.1109/CloudTech.2018.8713338
https://doi.org/10.1109/CloudTech.2018.8713338

	Cost optimization in cloud environment based on task deadline
	Abstract
	Introduction
	Related work
	Problem formulation
	Proposed work
	Threshold calculation
	Request acceptance based on deadline
	Data Centre selection

	Results and discussion
	Performance evaluation
	Simulation setup
	Test scenarios
	Scenario 1: 2 User Base 1 datacenter in each region
	Scenario 2: 1 User Base and 2 datacenter in each region
	Scenario 3: 4 User Base and 1 DC in each region
	Simulation parameters

	Results and analysis

	Conclusion
	Acknowledgements
	References

