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Abstract—The fifth generation (5G) mobile networks are a
game changer for the 4th industrial revolution (Industry 4.0).
The difficulty of developing vertical applications for mobile
networks is however still challenging. This paper proposes a new
paradigm solution to significantly facilitate deploying network
applications (NetApp) closer to the end user and improving the
user experience, facilitated by 5G. This new paradigm leverages
flexible service onboarding and composition end to end, and
computation offloading to a Multi-access Edge Computing (MEC)
platform to meet the demanding requirements of the NetApps.
A functional prototype is developed and empirical comparison
is conducted to validate and evaluate the performance of a
corrosion detection NetApp using artificial intelligence (AI) in
three different scenarios where the application is hosted. The
prototype runs this NetApp over an Unmanned Aerial Vehicle
(UAV) connected to a 5G network testbed, and the results offer
insights into this performance improvement and elaborates how
opting for this NetApp solution can help the industry. In this
case, the use of this NetApp can achieve a 55.47% reduction in
computation time and improve corrosion identification processing
time by 25.5%.

Index Terms—Edge Computational Offloading, NetApp, 5G
Network, UAV, Corrosion Detection

I. INTRODUCTION

Industry 4.0 offers a comprehensive, intertwined and re-
silient approach to manufacturing by relying on the intercon-
nectivity of the Internet of Things (IoT), access to real-time
data, and cyber-physical systems. The industry 4.0 increases
quick and low-cost productivity. In Industry 4.0, the manu-
facturing systems communicate, analyse and utilise gathered
information to guide intelligent actions. It also includes avant-
garde technologies such as additive manufacturing, robotics,
artificial intelligence and augmented reality among others [1].

The Fifth Generation (5G) mobile networking is a key
enabler to meet the networking requirements in Industry 4.0.
5G technologies will trigger great opportunities for many
vertical industries including manufacturing, public safety and
many more by offering novel business and innovation models.
However, the knowledge gap between the vertical industries,
the telecommunication experts and the developers may be
a hindrance to the adoption of 5G solutions. The Network
Application (NetApp) is a main enabler for the adoption of 5G
solutions as it hides the complexity of the 5G infrastructure
for the developers and reduces the development time of the
services and thus, optimise the usage of 5G resources [2].

NetApp is a group of networked Virtual Network Functions
(VNFs) developed by vertical developers for a specific use

case which is deployable over 5G and beyond networks
infrastructure including edge located within a Radio Access
Network (RAN), core network and so on. Low end-to-end
latency and real-time reaction are vital for NetApps, espe-
cially in AI-based critical missions. These VNFs are usually
deployed by vertical business services which try to leverage
computationally expensive resources to the edge or the core of
the network. Besides, NetApps, as cloud-based applications,
can be deployed on demand and include User Plan Functions
(UPF), AMF (Access and Mobility Functions), SFM (Session
Management Functions), etc.

AI-IoT applications such as object detection generate large
amounts of data and consumes a lot of energy, memory and
computational resources. Many of these applications require
intensive computation and low latency. Although IoT devices
are becoming more powerful, the battery, CPU and memory
are still inadequate for large applications. Edge Computation
Offloading is one of the solutions in which the computation
is performed at the edge of network. It reduces latency and
energy consumption and improves the performance of IoT
applications [3]. Edge computing is beneficial when com-
pared to local and cloud computing. When compared to local
computing, edge computing can overcome the restrictions
of computation capacity on end devices. It can also reduce
latency caused by computational offloading to the remote
cloud [3].

Many European projects has been conducted by European
Commission to show the benefits of edge computational of-
floading. As a case in point, loud aimed at Proactive manage-
ment of Cloud Resources Management at the edge for efficient
real-time processing of Big Data [4]. In another European
project [5], a scientifically sound and industrially validated
model was developed for doing general-purpose computation
on edge networks to reduce latency. In addition, in [6] a
novel data offloading decision-making framework is proposed,
where users have the option to partially offload their data to a
complex Multi-access Edge Computing (MEC) environment,
consisting of both ground and UAV-mounted MEC servers.
The problem is treated under the perspective of risk-aware
user behaviour. In our study, the result of a NetApp (corrosion
detection) has been analysed to show the effectiveness of
offloading solution. In another study [7], a frame work for
multi-UAV-assisted two-stage MEC system is proposed and
evaluated in which UAVs provide the computing and relaying
services to the mobile devices. Due to the limited computing



5G

5G Scenario

Video
Video Proxy Corrosion

 Detection 

VNF VNFNetApp

WIFI SCENARIOOnboard Scenario

Edge

gNB

Core

Induce
Orchestration

Platform

5G MEC

Corrosion
 Detection 

VNF VNFNetApp

Industry Premises

WIFI AP 

Antenna

WIFI

Video

Video

Video Proxy

Fig. 1. Schematic diagram of three experimental scenarios: Onboard execution of AI, WIFI-based and 5G-based NetAPP deployment.

resources, each UAV executes a part of the offloaded tasks and
in the second stage, each UAV relays the portions of the tasks
to the terrestrial base station which has enough computing
resources enough to handle all the tasks. In our study, the UAV
is just transmitting the video and all the computation of the
corrosion detection application are offloaded on the edge. In
[8], an overview of RIS-assisted MEC systems was provided
and four use cases were evaluated for reducing processing
latency and improving energy efficiency. This technique can
be adopted to further reduce latency in our study as future
work. In another study [9], the authors showed how UAVs
can be used for crowd surveillance based on face recognition
using the Local Binary Pattern Histogram (LBPH) method in
OpenCV library. To evaluate the offloading of video data pro-
cessing to a MEC node was compared to the local processing
of video data onboard UAVs. The reported processing time is
slow for our use case.

All these projects shed light on the importance of edge
computational off-loading.

In this article, a novel NetApp architecture is designed
and developed in the context of 5G-INDUCE project [10],
which detects corroded areas on critical infrastructures at the
edge of the network using Unmanned Aerial Vehicles (UAVs)
and meeting the strict networking requirements in order to
improve work safety, environmental protection at low cost.
In other words, the aim of this article is to demonstrate
the fact that by deploying the NetApp outside the local
device, the performance of the application will be considerably
improved, achieving a faster processing time than performing
the processing on the device itself due to making better use of
resources by using corrosion detection as a use case to evaluate
the prototype.

The remainder of the paper is organised as follows. Sec-

tion II introduces the NetApps and its architecture based on
UAVs. The corresponding experimental results are presented
in Section III. Section IV concludes the paper.

II. UAV-BASED NETAPP DESIGN

In order to demonstrate the concept, an automatic UAV-
based NetApp is designed and prototyped for monitoring early
corrosion detection on critical infrastructures such as pipes and
tanks to warn the experts to take immediate action.

Corrosion is a gradual destruction of structural material
properties due to interactions with the environment that results
in damage and failure of global infrastructures in the long run.
According to World Corrosion Organization, the financial loss
associated with damages to global infrastructure is 2.5 trillion
USD. It is delineated as one of the key defects and a hazardous
phenomenon which has a significant impact on the economy
and safety. Hence, monitoring and early corrosion detection
on critical infrastructures are of myriad importance to reduce
the cost and maintain the safety of human lives [11].

This Unmanned Aerial System (UAS) for corrosion detec-
tion is composed of three main entities: a drone, a controller
and a tablet. This study which is presented in fig 1, compares
three different scenarios to accomplish the task of corrosion
detection from a UAV. The first scenario only considers the
execution of the AI embedded on the tablet, therefore there is
no wireless connection to rely on at this point. In the second
and third scenarios, the tablet is connected to a WIFI network
and a 5G network respectively. In both scenarios, the same
NetApp is used for the corrosion detection.

In the first scenario, the tablet executes the pipelines in-
volved in corrosion detection. Once the video is received from
the drone, each frame is decoded and pre-processed to be
converted into a suitable format for the AI algorithm. The
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video is transmitted from the UAV to the controller through
wireless connection named “OcuSync”. Although the camera
records at 4k resolution, the streamed video has the resolu-
tion of 1280x720. OcuSync protocol has a communication
latency of 28ms. However, this manuscript only considers
the communication latency from the tablet to the edge of
the network and the evaluation compares the execution on
the tablet versus the execution on the edge. Afterwards, the
algorithm is executed on a GPU [12] in order to provide the
detection results (bounding box of the corrosion presented in
the image). Finally, the bounding boxes are overlaid on the
streaming video being monitored by the pilot.

In the WIFI-based and 5G-based NetApp solutions, the
proposed UAV-based corrosion monitoring system comprises
two VNFs: a video proxy and a corrosion detection system.
The video proxy VNF receives the video sent by the tablet
and forwards it to the corrosion detection VNF. The corrosion
detection VNF executes the same AI algorithm in the onboard
solution although it is deployed on the edge over high-spec
hardware.

The algorithm chosen to detect the corroded areas is
YOLOv3 [13]. YOLOv3 is a very good choice when real-time
detection is needed without losing too much accuracy which
is the requirement of this study. YOLOv3 has achieved 55.3%
of accuracy using COCO dataset [14]. Nevertheless, YOLOv3
is retrained and evaluated with a corrosion dataset defined in
subsection III-A.

Figure 2 illustrates the pipeline needed to provide the
detection results. This AI pipeline is executed in all three
experimental scenarios in this study. In the pre-processing
stage, each frame is decoded and prepared as an input for
the algorithm execution. This preparation includes resizing of
frames from 1280×720 to 416×416 pixels. The second stage
is the execution of the YOLOv3 algorithm. YOLOv3 receives
the frame and it is executed over the Machine Learning
Platform (TensorFlow in this use case) with GPU compatibility
(NVIDIA in NetApp scenario and Snapdragon in the onboard
scenario). Finally, the output of the CNN is post-processed
to produce the results containing three values: produces the
output in three components: the bounding boxes which shows
the location of corrode areas, the class of the bounding box
and the probability score for that prediction.

In the WIFI scenario, once the video is received from the
drone, the tablet is merely in charge of transmitting each frame
to the NetApp where the AI is deployed without processing

any information using WIFI technology. This scenario is
suitable for use cases where WIFI connection is accessible.
The main advantage over the onboard scenario, is that the
NetApp runs on a device external from the local device where
the video is collected. This makes the execution time faster
than when the whole process is performed on the same device.
The WIFI technology used is “WIFI 6” at 5 GHz.

The third alternative considered is the use of a 5G network
to study how it improves the NetApp usage at the edge of the
network with respect to the onboard scenario. This is the third
scenario studied where the NetApp, as mentioned previously,
has been installed in the network edge specifically in the
5G MEC (Multi-access Edge Computing). This 5G capability
allows the services to be executed close to the users to have a
quick response and interaction without affecting the operation
of the NetApp. Having an acceptable delay in the transmission
of the video from the tablet to where the NetApp is deployed
would provide real-time results for corrosion detection. In
figure 1, the every deployment of the NetApp is illustrated.

To deploy 5G network for this use case the OpenAirInter-
face software [15] was used to generate both the core and the
RAN of a mobile network and to which the tablet has been
connected for video transmission through a programmable
SIM card.

III. RESULTS

This section shows the results obtained by comparing
the three experimental scenarios for corrosion detection. It
demonstrates the advantages and disadvantages of porting the
computation from the user equipment (UE) to the edge of the
network. It also presents the possible bottlenecks to tackle in
future work in order to improve the system.

A. Experimental environment

Figure 1 shows the different scenarios studied for perfor-
mance comparison. For the first scenario (Onboard), the video
received from the drone is processed and the AI detects the
corrosion on the device itself. In the second scenario (WIFI-
based), the video is first transmitted to a computer where two
docker containers are deployed before being processed. The
video is transmitted from the UAV to the controller through
wireless connection named OcuSync. Although the camera
records at 4k resolution, the streamed video has the resolution
of 1280x720. The UDP protocol has been chosen for video
transmission in order to have a faster transmission. The first
container is an Nginx server which converts the video received
using the UDP protocol and forwards it to the second container
using the RTMP protocol. This conversion is needed in order
to allow multiple clients to connect and receive the video
in a one-to-may communication style. The second container
hosts the AI and responsible for detecting the corroded area in
the video. The third scenario (5G-based) behaves in a similar
manner as the WIFI-based scenario.

For the experiments, a Samsung Galaxy Tab S7+ 5G
Android tablet with a Qualcomm Snapdragon 865 processor
and 8GB RAM was used. In the WIFI-based scenario, the



GPU was a GeForce GTX TITAN X 12GB. For the 5G-based
scenario, all the experiments were executed on a computer
with an Intel Xeon(R) CPU E5-2630 v4 @2.20 GHz x 10
with 32 GB RAM running UBUNTU 18.04. A GTX TITAN
X GPU with 12GB RAM was used to run the AI-based model.
The Core used for the 5G network is the OAI-5GCN developed
by OpenAirInterface. The version used is 1.4.0. Regarding the
RAN, it is deployed on the same computer as the Core, Nginx
and AI containers. For this study, a Universal Software Radio
Peripheral (USRP) X310 was chosen. For the antenna, one
of the Bluespot brand covering 5G n78-band was chosen. The
drone used for the video transmission was a DJI Mini 2 which
streams the video at 1280 × 720. In addition, to make a fair
comparison, the bandwidth and bitrate were considered the
same (7.5-8.1 Mbps) for both the 5G and WIFI networks. The
video streamed from the tablet has a resolution of 1280×720
pixels and 24 fps. Moreover, in both scenarios, the access point
used by the tablet to transmit the video was at the distance of
one meter. The two scenarios were similarly deployed to be
comparable.

Dataset: In order to train the convolutional neural network
(YOLOv3 in this use case), a UAV-based data collection were
performed by PPC (https://www.dei.gr/) from 5 to 10 meters
of altitude. The data were collected at PPC critical infrastruc-
ture considering complex background, different scales, angles,
orientations, sizes and altitudes. 2K live videos of pipes and
tanks with corroded areas were collected and still images were
extracted from the collected videos for further processing.
Totally, 2000 images were extracted and manually annotated
to create the training dataset.

B. Quantitative Results

As in the WIFI-based and 5G-based scenarios, a wireless
connection is involved from the Android tablet to the AI VNF.
Several metrics were measured such as lost packets, delay and
jitter during transmission as these may affect the detection
performance. The existing delay in the video transmission has
to be taken into account in these scenarios as it can affect
the speed of obtaining the results of the AI-based corrosion
detector in this case study.

During the experiments, three key points in the infrastruc-
ture are used to collect the Packets Capture (PCAP). These are
the tablet and both containers that hosted the Nginx and AI.
Then, the packets’ timestamps at the source (round trip) were
obtained in order to calculate the delay during transmission.
Also, packet loss and the jitter values are obtained from those
files.

In the case of the onboard-based scenario, the only time
taken in the experiments it is the time for the AI model to
provide the detection results once the video is received from
the drone. For the WIFI-based and 5G-based scenarios, we
had to calculate the time it takes for the transmitted video to
reach the Nginx, then the time it takes for the Nginx to convert
the video from UDP to RTMP and then, the time it takes for
the AI to detect the corroded areas.

Fig. 3. Video processing time in 3 scenarios

Figure 3 displays the different times taken to detect the
corroded areas on the video. For WIFI-based and 5G-based
scenarios, the total processing time comprises the transmission
time, the video conversion time and the inference time. For
the onboard solution, where the AI is executed locally, the
corrosion detection time is only measured.

As can be seen in the Figure 3, the time it takes for
Nginx to convert the video varies in 5G-based and WIFI-based
scenarios. This is because during the conversion, Nginx waits
for a minimum number of packets to be able to transmit the
video again. This is due to the fact that there is more delay in
the 5G network than in the WIFI network, and Nginx has to
wait longer to be able to transmit the video.

Therefore, a decrease in the delay between the transmitter
and the receiver will make the conversion time smaller and
consequently, the corrosion can be detected in a shorter time.
This fact can be seen in the scenario where WIFI technology
is being used, as we have a shorter delay and thereby the
total time is shorter. Based on this experiment, the Nginx
VNF is identified as the bottleneck of the NetApp solutions.
By contrast, the onboard scenario bottleneck relies on the
execution of the AI model. As assumed in the previous
section, this process is computationally expensive and thus,
the tablet cannot operate an inference time of more than 2
fps. In contrast, due to the abundant computational resources
available, the NetApps solution achieves an inference time of
37 ms.

The packet lost during transmission in both scenarios were
almost 0%. The percentage of packets lost in the WIFI-based
scenario is 0.012%, while the 5G-based scenario is around
0.01%. With these values, packet loss is not an issue to affect
the AI-based detection process.

The last metric measured to study video transmission quality
is jitter. This parameter is defined as the variation in delay of
the different packets arriving at the destination. A high jitter
value may cause problems when processing the video in the
AI model. Hence, it is necessary to study it in communications
involving video or audio, especially if they are in real-time.



TABLE I
RESULTS OF THE WIRELESS TRANSMISSION FOR BOTH 5G AND WIFI.

WIFI 5G
Jitter 15.4 ms 16.3 ms

Packet loss 0.012% 0.01%
Delay 20 ms 48 ms

In both scenarios (WIFI and 5G) the jitter values are 15.4
and 16.3 milliseconds respectively. These small values are
an indication of good quality transmission. Table I shows a
summary of the metrics obtained for the wireless (WIFI and
5G) transmission. The obtained results clearly emphasize of
the fact that by embedding the AI-based model on edge, we
get faster execution time.

Although the CNN-based corrosion detection model perfor-
mance is not the main focus of this research work, it achieved
a total accuracy of 66.13% with the collected dataset.Due to
the training dataset being collected from critical infrastructures
at PPC premises and being very challenging, the accuracy
obtained is a good starting point. This will be further modified
and enhanced to achieve better accuracy planned as our future
work. For the onboard scenario, the model size is a total
of 224 MB. In contrast, the same model deployed in the
NetApp scenario is less optimised and has a size of 248
MB. This is due to the fact that Android requires an special

Fig. 4. Corrosion detection on pipes.

Fig. 5. Corroded areas on critical infrastructure.

conversion of the model to Snapdragon GPU which optimises
the weight of the model. In terms of inference time, the
onboard solution takes 594 ms (1.68 fps) per frame when
executing the algorithm. However, the NetApp solution only
takes 37ms (27 fps).

According to the results, both NetApp scenarios provide
faster results than the onboard solution by 25.51% (5G) and
55.47% (WIFI) respectively. Furthermore, the probabilities of
detected areas has also been improved. While the onboard
solution misses 22 frames per second, the NetApp solution is
able to perform detection on every frame received and thereby
enhancing the chance of corroded area to be detected in the
NetApp scenarios. T

C. Qualitative Results
In this section, the detection results of corroded areas have

been shown visually. To achieve these results, separate unseen
testing videos were taken in real scenarios at PPC industrial
sites. Fig. 4 shows detections of corroded areas on pipe. Fig.
5 presents a scenario with a more complex, and cluttered
environment.

IV. CONCLUSION

This research work provides an empirical demonstration
of an edge computational offloading system for corrosion
inspection by using distributed Virtual Network Functions.
The presented NetApp will benefit vertical businesses to
inspect their critical infrastructures for corrosion with high
performance by leveraging edge computing capabilities. The
implemented prototype and experiments have demonstrated
the benefits of computational offloading from the UE (User
Equipment) to MEC by taking advantage of the computational
resources available whilst improving the performance of the
application. Significant performance improvement has been
achieved in the empirical study. When executing the NetApp
on edge, the proposed solution can achieve a 55.47% reduction
in computation time and and improve corrosion identification
processing time by 25.5%. The proposed prototype can also
be widely used in plethora of applications such as military,
surveillance, search and rescue (SAR) operations, precision
agriculture, and infrastructure inspection. In future work, the
accuracy of AI-based corrosion detection model will be en-
hanced. In addition, in order to make a much more complete
study, the energy consumed in the 3 scenarios will be studied.
Reducing the bottleneck in the streaming of the video will also
be further explored in two ways. First, by increasing the bitrate
performance when converting the video from UDP to RTMP.
Finally, OpenAirInterface is currently still under development,
therefore, delay-related results with this technology are not
optimal. As time goes on, the delay will be reduced.
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