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Circulating recombinant forms (CRFs) are important components of the HIV-1 pandemic.
Those derived from recombination between subtype B and subsubtype F1, with 18
reported, most of them of South American origin, are among the most diverse. In
this study, we identified a HIV-1 BF1 recombinant cluster that is expanding in Spain,
transmitted mainly via heterosexual contact, which, analyzed in near full-length genomes
in four viruses, exhibited a coincident BF1 mosaic structure, with 12 breakpoints,
that fully coincided with that of two viruses (10BR_MG003 and 10BR_MG005) from
Brazil, previously classified as CRF72_BF1. The three remaining Brazilian viruses
(10BR_MG002, 10BR_MG004, and 10BR_MG008) previously identified as CRF72_BF1
exhibited mosaic structures highly similar, but not identical, to that of the Spanish
viruses and to 10BR_MG003 and 10BR_MG005, with discrepant subtypes in two
short genome segments, located in pol and gp120env. Based on these results, we
propose that the five viruses from Brazil previously identified as CRF72_BF1 actually
belong to two closely related CRFs, one comprising 10BR_MG002, 10BR_MG004, and
10BR_MG008, which keep their CRF72_BF1 designation, and the other, designated
CRF122_BF1, comprising 10BR_MG003, 10BR_MG005, and the viruses of the
identified Spanish cluster. Three other BF1 recombinant genomes, two from Brazil
and one from Italy, previously identified as unique recombinant forms, were classified
as CRF72_BF1. CRF122_BF1, but not CRF72_BF1, was associated with protease
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L89M substitution, which was reported to contribute to antiretroviral drug resistance.
Phylodynamic analyses estimate the emergence of CRF122_BF1 in Brazil around
1987. Given their close phylogenetic relationship and similar structures, the grouping
of CRF72_BF1 and CRF122_BF1 in a CRF family is proposed.

Keywords: HIV-1, circulating recombinant forms, molecular epidemiology, phylogeny, phylodynamics

INTRODUCTION

HIV-1 is characterized by high genetic diversity and rapid
evolution, derived from elevated mutation and recombination
rates. Through these mechanisms, the HIV-1 group M, the
causative agent of the AIDS pandemic, has evolved into
numerous circulating genetic forms, known as subtypes, of which
10 have been identified (A–D, F–H, J–L), subsubtypes (A1–A6,
F1, and F2), and circulating recombinant forms (CRFs), 118
of which are currently listed in the Los Alamos HIV Sequence
Database (Los Alamos National Laboratory, 2021). In addition,
geographic variants and clusters, some representing substantial
proportions of viruses in certain areas, have been identified
through phylogenetic analyses within subtypes, subsubtypes, and
CRFs (Thomson and Nájera, 2005; Delgado et al., 2015, 2019).
Genetic characterization of HIV-1 variants is of public health
relevance, as it allows tracking their geographic spread and
estimating their population growth and the efficacy of preventive
interventions (Paraskevis et al., 2016; Rife et al., 2017; Vasylyeva
et al., 2020). It has also biological and clinical relevance, as
different biological properties have been associated with some
HIV-1 variants (Kiwanuka et al., 2008; Pérez-Álvarez et al., 2014;
Kouri et al., 2015; Venner et al., 2016; Cid-Silva et al., 2018;
Song et al., 2019).

The number of CRFs is increasing incessantly, due to both
the continuous generation of recombinant forms where diverse
HIV-1 variants meet in the same population (Nájera et al., 2002),
some of which become circulating through introduction into
transmission networks, and the identification of old previously
undocumented CRFs. The proportion of CRFs in the HIV-1
pandemic has increased over time, representing around 17%
of infections in 2010–2015 (Hemelaar et al., 2020). Among
CRFs, those derived from subtype B and subsubtype F1 are
among the most numerous, 18 of which have been reported in
the literature, most of them originated in South America. The
most widely circulating CRF from South America is CRF12_BF,
which circulates at high prevalences in Argentina and Uruguay,
where unique recombinant forms (URFs) related to CRF12_BF
are frequently found (Thomson et al., 2000, 2002; Carr et al.,
2001). Four other CRF_BFs (numbers 17, 38, 44, and 89)
related to CRF12_BF, as evidenced by shared breakpoints and
phylogenetic clustering, were subsequently identified in different
South American countries (Ruchansky et al., 2009; Delgado et al.,
2010, 2021; Aulicino et al., 2012). Due to their common ancestry
and similar structures, these five CRFs and related URFs have
been proposed to constitute a “family” of recombinant viruses
(Thomson and Nájera, 2005; Zhang et al., 2010; Delgado et al.,
2021). By contrast, Brazilian CRF_BFs (De Sá Filho et al., 2006;
Guimarães et al., 2008; Sanabani et al., 2010; Pessôa et al., 2014a,b,
2016; Reis et al., 2017, 2019) and CRF66_BF (the latter found

mainly in Paraguay and Paraguayans living in Spain) (Bacqué
et al., 2021) are unrelated to CRF12_BF. Similarly to the viruses of
the CRF12_BF family, close relations have been reported between
some Brazilian CRF_BFs: CRF28_BF and CRF29_BF (De Sá Filho
et al., 2006) and CRF70_BF and CRF71_BF (Pessôa et al., 2014a).

In this study, we report the spread of a BF1 cluster in Spain
whose viruses exhibit a mosaic structure identical to two Brazilian
viruses previously identified as CRF72_BF1 (Pessôa et al., 2014b,
2016), which would represent a new CRF, with the three other
viruses classified as CRF72_BF1 showing highly similar, but
not identical, structures. We propose that viruses previously
identified as CRF72_BF1 actually belong to two closely related
CRFs that constitute a CRF family.

MATERIALS AND METHODS

Samples
Plasma and whole blood samples from HIV-1-infected
individuals were collected in Spain for antiretroviral drug
resistance tests and for a molecular epidemiological study. The
study was approved by the Committee of Research Ethics of
Instituto de Salud Carlos III, Majadahonda, Madrid, Spain. It did
not require written informed consent by the study participants,
as it used samples and data collected as part of routine clinical
practice, and patients’ data were anonymized without retaining
data allowing individual identification.

PCR Amplification and Sequencing
An ∼1.4-kb pol fragment in protease–reverse transcriptase (Pr–
RT) was amplified from plasma-extracted RNA or from whole
blood-extracted DNA by (RT-)PCR followed by nested PCR,
as described previously (Delgado et al., 2015), and sequenced
with the Sanger method using a capillary automated sequencer.
Near full-length genome (NFLG) sequences were obtained for
selected samples by RT-PCR/nested PCR amplification from
plasma RNA in five overlapping segments and sequenced by
the Sanger method, as described (Delgado et al., 2002; Sierra
et al., 2005; Cañada et al., 2021). Newly derived sequences are
deposited in GenBank under accessions OL982311–OL982317
and OL982320–OL982323.

Phylogenetic Sequence Analyses
Sequences were aligned with MAFFT v7 (Katoh and Standley,
2013). Initial phylogenetic trees with all Pr–RT sequences
obtained by us were constructed via approximate maximum
likelihood with FastTree v2.1.10 (Price et al., 2010), using
the general time-reversible evolutionary model with CAT
approximation to account for among-site rate heterogeneity, with
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assessment of node support with Shimodaira–Hasegawa (SH)-
like local support values (Guindon et al., 2010). Subsequent
maximum likelihood (ML) trees with sequences of interest were
constructed with W-IQ-Tree (Trifinopoulos et al., 2016), using
the best-fit substitution model selected by the ModelFinder
program (Kalyaanamoorthy et al., 2017), with assessment of node
support with the ultrafast bootstrap approximation approach
(Hoang et al., 2018). Trees were visualized with MEGA v7.0
(Kumar et al., 2016).

Mosaic structures were analyzed by bootscanning (Salminen
et al., 1995) with SimPlot v1.3.5 (Lole et al., 1999). In these
analyses, trees were constructed using the neighbor-joining
method with the Kimura two-parameter model and a window
width of 250 nucleotides. The subtype affiliations of recombinant
segments identified with SimPlot, whose breakpoints were
more precisely located in the midpoint of transitions between
BF1 subtype-discriminating nucleotides (here defined as those
differing between the 75% consensus sequences of subtype B and
the Brazilian F1 strain), were further phylogenetically analyzed
via ML and Bayesian inference. These analyses were performed
with IQ-Tree; PhyML (Guindon et al., 2010), using the best-
fit evolutionary model selected by the SMS program (Lefort
et al., 2017) and node support assessment with the approximate
likelihood ratio test, SH–like procedure; and MrBayes v3.2
(Ronquist et al., 2012), using the GTR + G + I substitution
model, with two simultaneous independent runs and eight
chains 2–5 million generations long, ensuring that both runs
reached convergence, as determined by an average standard
deviation of split frequencies <0.01, discarding the first 50%
of the trees in the posterior distribution as burn-in. For these
analyses, we used a reconstructed BF1 ancestral sequence as
outgroup, considering the phylogenetic relationship between B
and F subtypes (Zhu et al., 1998), obtained with IQ-Tree. The
use of a reconstructed ancestral sequence as outgroup is similar
to the approach used in other studies (Travers et al., 2004;
Thomson and Fernández-García, 2011; Seager et al., 2014) to
prevent the long-branch attraction artifact (Bergsten, 2005) that
could be caused by an outgroup whose distance to the ingroup
is relatively long compared with the within-ingroup distances.
This artifact can result in collapse or a substantial decrease in
node support of the clades of the ingroup, particularly in short
genome segments.

Phylogenetic trees and alignments used for their construction
have been deposited in TreeBase, with accession URL http://purl.
org/phylo/treebase/phylows/study/TB2:S29595.

Antiretroviral Drug Resistance
Determination
Antiretroviral (ARV) drug resistance was analyzed with the
HIVdb program of the Stanford University’s HIV Drug
Resistance Database (Rhee et al., 2003; Shafer, 2006).

Temporal and Geographic Estimations of
Clade Ancestors
The time and the most probable location of the most recent
common ancestor (MRCA) of the newly defined CRF were

estimated using Pr–RT sequences with the Bayesian Markov
chain Monte Carlo (MCMC) coalescent method implemented in
BEAST v1.10.4 (Suchard et al., 2018). Before the BEAST analysis,
the existence of temporal signal in the dataset was assessed with
TempEst v1.5.3 (Rambaut et al., 2016). The BEAST analysis was
performed using the SRD06 codon-based evolutionary model
(where the third codon position is in a partition different from the
first and second positions) (Shapiro et al., 2006). We also specified
an uncorrelated lognormal relaxed clock and a Bayesian SkyGrid
coalescent tree prior (Gill et al., 2013). The MCMCs were run for
20 million generations. The runs were performed in duplicate,
and the posterior tree files were combined with LogCombiner
v1.10.4. Proper mixing of the chains was assessed with Tracer
v1.6, ensuring that effective sample size values of all parameters
were >200. The posterior distribution of trees was summarized
in a maximum clade credibility (MCC) tree with TreeAnnotator
v1.10.4, after discarding 10% of the MCMC chain as burn-
in. MCC trees were visualized with FigTree v1.4.2 (Rambaut).1

Parameter uncertainty was summarized in 95% highest posterior
density (HPD) intervals.

RESULTS

Identification of a HIV-1 Cluster of F1
Subsubtype in Protease–Reverse
Transcriptase Propagating in Spain
In a molecular epidemiological study in Spain, based on Pr–
RT sequences, we detected frequent grouping in clusters, several
of which were of F1 subsubtype in Pr–RT (Thomson et al.,
2012; Delgado et al., 2015, 2019; Gil et al., 2022). One of
them, designated F1_2, which is the focus of the present study,
comprised 14 individuals, 13 of them from the region of Galicia,
northwest Spain (Table 1). Years of HIV-1 diagnoses were
between 2007 and 2019, and transmission was predominantly
heterosexual (n = 8), but there were three men who have sex
with men (two others had non-specified sexual transmission,
and no data on transmission route were available for another
individual) (Table 1). Most individuals were Spanish, but three
were Brazilian, one was Swiss, and one was Ukrainian. To
determine whether other sequences from databases belonged to
this cluster, we performed BLAST searches in the HIV Sequence
Database (Los Alamos National Laboratory, 2021), incorporating
the most similar sequences in the phylogenetic analyses. This
allowed identifying three additional sequences that belonged to
the F1_2 cluster, from Brazil, Portugal, and Germany (Figure 1).
All but two of the viruses collected in Spain and the virus from
Germany branched in a subcluster. Viruses from the F1_2 cluster
were most closely related to viruses of the Brazilian F1 strain and
to Brazilian CRF_BFs with Pr–RT derived from it.

Analyses of Near Full-Length Genome
Sequences
In order to determine whether the F1_2 cluster was of uniform
subtype or recombinant, we obtained NFLG sequences from

1http://tree.bio.ed.ac.uk/software/figtree/
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TABLE 1 | Epidemiological data of patients and GenBank accessions of sequences.

Sample ID City of sample
collection

Region of sample
collection

Country of
origin

Year of HIV
diagnosis

Year of sample
collection

Gender* Transmission
route*

PR–RT GenBank
accession

NFLG GenBank
accession

X2592 Vigo Galicia Spain 2008 2008 F HT GU326146 –

X2632 Ferrol Galicia Spain 2009 2009 M MSM GU326158 KC113006
JX140660

X2657 Vigo Galicia Spain 2009 2009 F HT GU326163 –

GA076319 Vigo Galicia Ukraine 2010 2010 F HT OL982311 –

GA099170 Vigo Galicia Switzerland 2011 2011 F HT – OL982312

GA330265 Vigo Galicia Brazil 2007 2007 Trans Sexual OL982313 –

GA486085 Ferrol Galicia Spain 2018 2018 F n.a. – OL982314

GA501952 Vigo Galicia Spain 2014 2014 F HT OL982315 –

GA513250 Vigo Galicia Spain 2012 2012 M Sexual OL982316 –

GA522821 Lugo Galicia Brazil 2019 2019 M MSM OL982317 –

GA817166 Vigo Galicia Spain 2008 2016 F HT OL982320 –

GA874035 Vigo Galicia Spain 2012 2012 M HT – OL982321

GA903064 Vigo Galicia Spain 2012 2012 F HT OL982322 –

NA584314 Pamplona Navarre Brazil 2017 2017 M MSM OL982323 –

*n.a., datum not available; Trans, transgender; HT, heterosexual; MSM, man who has sex with men; sexual, unspecified sexual transmission.

three individuals from two cities through amplification from
plasma RNA. A fourth NFLG sequence had been obtained
previously from the virus culture supernatant (Sanchez et al.,
2014). Preliminary analyses of the NFLG with Recombination
Identification Program2 indicated that the genomes were BF1
recombinant. To determine whether they belonged to a known
CRF, we constructed a phylogenetic tree in which genomes of
all CRF_BFs were included. The tree showed that viruses of the
F1_2 cluster grouped in a strongly supported clade with viruses
classified as CRF72_BF1, with two of them, 10BR_MG003 and
10BR_MG005, being the most closely related to the viruses of the
F1_2 cluster, and the other three, 10BR_MG002, 10BR_MG004,
and 10BR_MG008, branching in a sister clade (Figure 2).

Bootscan analyses of NFLG sequences showed that the viruses
of the F1_2 cluster were BF1 recombinant, exhibiting mosaic
structures fully coincident with those of 10BR_MG003 and
10BR_MG005, and slightly different from the three other viruses
classified as CRF72_BF1 (Figure 3 and Supplementary Figure 1).
The differences between these three viruses were observed in
a short pol segment, around the protease–reverse transcriptase
junction, where grouping with subtype references was discrepant,
and in the 5′ segment of gp120, where the location of a BF1
breakpoint differed. The mosaic structures determined with
bootscanning were confirmed by ML and Bayesian phylogenetic
analyses of partial genome segments, which confirmed the
coincidence of the mosaic structures of the four F1_2 viruses
and the Brazilian 10BR_MG003 and 10BR_MG005 viruses
and the subtype discrepancy in two genome segments (HXB2
positions 2429–2618 and 6432–6519) of these viruses with
10BR_MG002, 10BR_MG004, and 10BR_MG008 (Figure 4).
These analyses, therefore, allowed determining that viruses of
the identified Spanish BF1 cluster, together with the Brazilian
viruses 10BR_MG003 and 10BR_MG005, previously classified
as CRF72_BF1, belong to a CRF, which was designated

2https://www.hiv.lanl.gov/content/sequence/RIP/RIP.html

CRF122_BF1, which is closely related to, but different from,
the three other viruses previously classified as CRF72_BF1,
10BR_MG002, 10BR_MG004, and 10BR_MG008, whose original
CRF designation is maintained. The mosaic structures of both
CRFs, as inferred from bootscan analyses, ML and Bayesian
phylogenetic trees of partial sequences, and examination of
intersubtype transitions of subtype-discriminating nucleotides,
are shown in Figure 5.

Three additional BF1 recombinant NFLGs, originally
identified as unique recombinant forms, two from Brazil,
99UFRJ-2 (Thomson et al., 2004) and BREPM1029 (Sa-
Filho et al., 2007), and one from Italy, IT_BF_PRIN_454
(Bruselles et al., 2009), in their published analyses, exhibited
mosaic structures similar to CRF72_BF1 and CRF122_BF1.
To determine whether they belonged to one of these CRFs, we
constructed a phylogenetic tree with NFLG sequences including
the three mentioned genomes, which showed that all of them
grouped with CRF72_BF1 viruses (Supplementary Figure 2).
Bootscan analyses showed mosaic structures of 99UFRJ-2 and
IT_BF_PRIN_454 coincident with that of CRF72_BF1; however,
the bootscan plot of BREPM1029 failed to show clustering
with the subtype B references in the protease–RT junction
(HXB2 positions 2429–2618) (Supplementary Figure 3).
Examination of subtype-discriminating nucleotides suggested
that the 2429–2618 segment was of subtype B, as in CRF72_BF1,
in 99UFRJ-2 and IT_BF_PRIN_454, which was confirmed
by phylogenetic analyses of this fragment (Supplementary
Figure 4a). However, in BREPM1029, the subtype B fragment in
the protease–RT junction appeared to be slightly shorter, located
between HXB2 positions 2479 and 2618, which was confirmed
by phylogenetic trees (Supplementary Figure 4b). Phylogenetic
analyses also showed that in all three genomes the 6432–6519
segment in gp120 was of subtype B, as in CRF72_BF1 and
unlike CRF122_BF1 (Supplementary Figure 4c). These results
allowed to confidently classify 99UFRJ-2 and IT_BF_PRIN_454
as CRF72_BF1 viruses. As to BREPM1029, given its strong
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FIGURE 1 | Maximum likelihood phylogenetic tree of Pr–RT sequences of the F1_2 cluster. Names of sequences obtained by us, all collected in Spain, are in blue.
Only ultrafast bootstrap values ≥ 80% are shown. In database sequences, the country of sample collection is indicated before the virus name with the two-letter ISO
country code: BE, Belgium; BR, Brazil, DE, Germany; ES, Spain; FI, Finland; PT, Portugal; PY, Paraguay. The scale indicates substitutions/site. *10BR_MG003 and
10BR_MG005 were originally identified as CRF72_BF1 (Pessôa et al., 2014b, 2016), but analyses described in this study have reclassified them as CRF122_BF1.

phylogenetic clustering with CRF72_BF1 references and its
minimal difference in mosaic structure with CRF72_BF1, with a
breakpoint displaced only around 50 nt relative to this CRF, it
seems reasonable to also classify it as CRF72_BF1, although we
cannot definitively discern whether its breakpoint displacement
is due to a different recombination event or to mutations
occurring near the CRF72_BF1 breakpoint.

Differences in Amino Acid Residues
We analyzed amino acid residues in viral proteins differing
between CRF72_BF1 and CRF122_BF1 viruses and conserved
within each CRF. We found 10 such amino acid residues

(Table 2). One of them is in position 89 of protease, where
CRF72_BF1 has leucine, which is the subtype B consensus,
while CRF122_BF1 has methionine, which is the F1 subsubtype
consensus. Protease L89M substitution has been reported to
contribute, together with other protease mutations, to resistance
to some protease inhibitor drugs (Calazans et al., 2005; Marcelin
et al., 2008; Wensing et al., 2019).

Antiretroviral Drug Resistance Mutations
Primary ARV drug resistance mutations were detected in two
CRF122_BF1 viruses, both from Brazil, one (10BR_MG003,
collected in 2010) with L90M protease inhibitor (PI) resistance

Frontiers in Microbiology | www.frontiersin.org 5 May 2022 | Volume 13 | Article 863084

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-863084 May 27, 2022 Time: 10:26 # 6

Cañada-García et al. Identification of CRF122_BF1

FIGURE 2 | Maximum likelihood tree of NFLG sequences of viruses of the F1_2 cluster. References of published CRF_BFs and of HIV-1 subtypes are also included
in the analysis. Names of sequences obtained by us are in blue. In reference sequences, the subtype or CRF is indicated before the virus name. Only ultrafast
bootstrap values ≥ 90% are shown. The scale indicates substitutions/site. *10BR_MG003 and 10BR_MG005 were originally identified as CRF72_BF1 (Pessôa et al.,
2014b, 2016), but analyses described in this study have reclassified them as CRF122_BF1.

mutation and the other (BR05SP503, collected in 2005)
with D30N PI resistance mutation and M41L, D67N,
M184V, and T215Y mutations of resistance to nucleoside
RT inhibitors.

Temporal and Geographic Estimation of
CRF122_BF1 Origin
To estimate the time and place of origin of CRF122_BF1,
Pr–RT sequences were analyzed with the Bayesian coalescent
method implemented in BEAST 1.10.4. Prior to this analysis,
we performed TempEst analyses to determine whether there
was an adequate temporal signal in the dataset. We found that
the temporal signal, assessed by the correlation between root-
to-tip distance and time, increased by masking the positions of
codons with drug resistance mutations in any of the sequences
(r2 = 0.5265; Supplementary Figure 5). Therefore, the BEAST
analysis was performed with a sequence alignment where these
codons had been removed. In this analysis, the substitution

rate was estimated at 1.829 × 10−3 subs/site/year (95% HPD,
1.118 × 10−3–2.542 × 10−3 subs/site/year) and the time of
the MRCA of CRF122_BF1 was estimated around 1987 (95%
HPD, 1976–1998), with its most probable location being Brazil
(location PP = 0.89) (Figure 6). The introduction of CRF122_BF1
in Spain (according to the MRCA of the Spanish cluster) was
estimated in the Galician city of Vigo (location PP = 0.992)
around 2002 (95% HPD, 1998–2005).

DISCUSSION

The results presented here indicate that the five Brazilian viruses
previously classified as CRF72_BF1 actually belong to two closely
related CRFs, one of which is circulating in Spain. Consequently,
the CRF comprising two Brazilian viruses previously classified as
CRF72_BF1 and the four Spanish viruses with coincident mosaic
structures is given a new designation, CRF122_BF1, while the
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FIGURE 3 | Bootscan analyses of NFLG sequences of viruses of the F1_2 cluster compared to those of viruses previously classified as CRF72_BF1. Bootscan plots
of all four F1_2 viruses are shown, together with those of 10BR_MG003 and 10BR_MG002. The bootscan plot of 10BR_MG005 is almost identical to that of
10BR_MG003, and those of 10BR_MG004 and 10BR_MG008 are almost identical to that of 10BR_MG002, and are shown in Supplementary Figure 1. The
horizontal axis represents the position in the HXB2 genome of the midpoint of a 250-nt window moving in 20-nt increments, and the vertical axis represents
bootstrap values supporting clustering with subtype reference sequences. The vertical dashed lines indicate BF1 breakpoints differing between the CRF72_BF1
viruses 10BR_MG002, 10BR_MG004, and 10BR_MG008, on the one hand, and viruses of the F1_2 cluster and 10BR_MG003 and 10BR_MG005 (newly identified
as CRF122_BF1), on the other. The bar on the top indicates the segments that were further analyzed with ML and Bayesian trees (Figure 4). Two genome segments
that appear to group with different subtypes in 10BR_MG002, 10BR_MG004, and 10BR_MG008 relative to 10BR_MG003, 10BR_MG005, and the F1_2 viruses are
signaled with arrows above the bootscan plot of 10BR_MG002 and were also analyzed via ML and Bayesian inference (Figure 4).

three other Brazilian viruses previously classified as CRF72_BF1
keep their original designation. Three other BF1 viruses analyzed
in NFLGs originally classified as URFs, two from Brazil and one
from Italy, were also classified on the basis of phylogenetic and
bootscan analyses as CRF72_BF1. The close relationship between
CRF122_BF1 and CRF72_BF1 is one more example of closely
related CRFs, with precedents in South America. Other examples

are CRF12_BF, CRF17_BF, and CRF89_BF (and more distantly
related, CRF38_BF and CRF44_BF) (Delgado et al., 2021); CRF28
and CRF29_BF (De Sá Filho et al., 2006); and CRF70_BF and
CRF71_BF (Pessôa et al., 2014a).

Failure to realize that the five viruses previously identified as
CRF72_BF1 represent two different CRFs may derive from the
short segments in which both CRFs differ in subtypes. These
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FIGURE 4 | Phylogenetic trees of interbreakpoint genome segments of F1_2 viruses. Breakpoints were defined according to the bootscan analyses and to
midpoints of transitions between subtype-discriminating nucleotides, here defined as those where the 75% consensus of subtype B and of the Brazilian variant of
subsubtype F1 differ. HXB2 positions delimiting the analyzed segments and their numbers as indicated in Figure 3 are indicated on top of the trees. Sequence
names of F1_2 viruses are in blue. Names of subtype reference sequences are preceded by the corresponding subtype name. Sequences of viruses previously
classified as CRF72_BF1 were also included, with those reclassified in the present study as CRF122_BF1 (10BR_MG003 and 10BR_MG005) labeled with the new
CRF designation. The trees are rooted with a reconstructed BF1 ancestor. Node supports for B and F1 clades are indicated, in this order, as ultrafast bootstrap
value/aLRT SH–like support/posterior probability, which were obtained with IQ-Tree, PhyML, and MrBayes programs, respectively. For the other nodes, only ultrafast
bootstrap values ≥ 80% are indicated. Trees #14 and #15 (segments 2429–2618 and 6432–6519, respectively) correspond to the segments indicated with arrows
in Figure 3, where F1_2 viruses and 10BR_MG003 and 10BR_MG005, on the one hand, and 10BR_MG002, 10BR_MG004, and 10BR_MG008, on the other,
appeared to differ in subtype affiliations in the bootscan analyses. The scales indicate substitutions/site.

differences may be missed if bootscan analyses are performed
using window widths much greater than the length of the
recombinant fragment. We have also noticed that jpHMM
(Schultz et al., 2009), used in a previous study to analyze
CRF72_BF1 genomes (Pessôa et al., 2016), often fails to detect
short recombinant segments (Delgado et al., 2021).

Given the close relationship and partial coincidence in mosaic
structures of CRF72_BF1 and CRF122_BF1, we propose that
they are members of a CRF family, similar to the CRF family
of BF1 recombinant viruses from South America comprising
CRFs numbers 12, 17, 38, 44, and 89 (Delgado et al., 2021).
The grouping of some closely related HIV-1 recombinants
derived from a common recombinant ancestor in families was
proposed by Thomson and Nájera (2005) and Zhang et al.
(2010). The proposed families of CRFs with close phylogenetic
relations, shared parental strains, and partially coincident
breakpoints are indicated in the phylogenetic tree shown in
Supplementary Figure 6.

It is interesting to note that, in the Pr–RT tree, viruses from
the Spanish CRF122_BF1 (“F1_2”) cluster fail to group with
the Brazilian CRF122_BF1 viruses. A similar phenomenon is
observed with CRF66, CRF70, and CRF71_BF1 references, that
fail to group in distinct clades with other references of the

same CRF. This may be due to the relatively short length and
high sequence conservation of this segment, together with the
fact that 35 references from the Brazilian F1 strain or from
CRF_BFs derived from it are included in the tree. This shows that
exclusive phylogenetic analysis of Pr–RT may not be sufficient to
phylogenetically classify an F1 sequence of the Brazilian strain as
belonging or not to a given CRF_BF.

The estimated origin of CRF122_BF1 around 1987 is
consistent with the estimated origin of the Brazilian F1 strain
(around 1977) (Bello et al., 2007) and similar to those of other
South American CRF_BFs (CRF12, CRF28/29, CRF38, CRF89,
and CRF90) reported in the literature (Bello et al., 2010; Ristic
et al., 2011; Reis et al., 2017; Delgado et al., 2021) but younger
than some other estimates for CRF12_BF in the 1970s (Dilernia
et al., 2011; Delgado et al., 2021) and older than the estimates for
CRF99_BF, around 1993 (Reis et al., 2017).

The correct classification of HIV-1 genetic forms is important,
since even relatively minor genetic differences in viral genomes
may result in important biological differences. Examples in
HIV-1 are frequent CXCR4 coreceptor usage in CRF14_BG,
which is associated with only four amino acid residues in
the Env V3 loop (Pérez-Álvarez et al., 2014), all or most of
which are absent in viruses of the closely related CRF73_BG
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FIGURE 5 | Mosaic structures of CRF72_BF1 and CRF122_BF1. Breakpoint positions are numbered as in the HXB2 genome. Vertical dashed lines indicate the BF1
breakpoint positions in the 5′ segment of gp120env differing between CRF122_BF1 and CRF72_BF1. The drawing was made using the Recombinant HIV-1 Drawing
Tool (https://www.hiv.lanl.gov/content/sequence/DRAW_CRF/recom_mapper.html).

TABLE 2 | Differences in amino acid residues between CRF72_BF1 and CRF122_BF1*.

p17gag PR RT IN Vif Tat Rev Vpu gp120env

61 61 89 399 84 151 68 22 80 69

B HXB2 L Q L E I A S L D D

CRF72_BF 10BR_MG002 I Q L E L V S L D D

10BR_MG004 I Q L E L A S L D D

10BR_MG008 I Q L D L A S L D D

99UFRJ-2 I/M Q L E L A P L D D

BREPM1029 L N L E L A S L D D

IT_PRIN_454 I Q L E L A S L D D

CRF122_BF1 10BR_MG003 L N M D I T D I N N

10BR_MG005 L N M D I T D I N N

X2632_4 L N M D L T D I N N

GA099170 L N M D I T D I N N

GA486085 L/I N M D I/M T D I N D

GA874035 L N M D I T D I N N

*Only amino acid residues conserved in at least five of six CRF72_BF1 viruses and in both Brazilian and at least three of four Spanish CRF122_BF1 viruses are
included in the table.

(Fernández-García et al., 2016), which has a very similar mosaic
structure, and differences in pathogenic potential or therapeutic
response associated with clusters within HIV-1 CRF01_AE
(Song et al., 2019) and F1 subsubtype (Cid-Silva et al., 2018).
Here, we show that CRF122_BF1, but not CRF72_BF1, has
the protease L89M substitution, that has been reported to
contribute, together with other protease mutations, to resistance
to tipranavir/ritonavir (Marcelin et al., 2008) and, within an

F1 subsubtype background, to other protease inhibitor drugs
(Calazans et al., 2005).

CRF122_BF1 represents one more example of a CRF of South
American ancestry first identified in Western Europe. Others
are CRF42_BF (Struck et al., 2015), CRF47_BF (Fernández-
García et al., 2010), CRF60_BC (Simonetti et al., 2014),
CRF66_BF (Bacqué et al., 2021), and CRF89_BF (Delgado
et al., 2021). This may derive from the increasing migratory
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FIGURE 6 | Maximum clade credibility tree of CRF122_BF Pr–RT sequences. Branch colors indicate, for terminal branches, the place of sample collection and, for
internal branches, the most probable location of the subtending node, according to the legend on the upper left. Nodes supported by PP ≥ 0.95 and PP 0.9–0.949
are indicated with filled and unfilled circles, respectively. The most probable locations at the root of the tree and at the node of the Spanish cluster are indicated,
together with the PPs supporting each location (LPPs) and the year estimated for the MRCAs (mean value, with 95% HPD interval in parentheses). The scale under
the tree represents calendar years.

flows from South America to Europe and from the relatively
low number of HIV-1 sequences available in some South
American countries (Bacqué et al., 2021). Therefore,
HIV-1 molecular epidemiological studies in Europe may
contribute to a better knowledge of the HIV-1 epidemics
in South America.

In summary, we show that viruses of a BF1 recombinant
cluster of Brazilian ancestry circulating in Spain exhibit a mosaic
structure that is fully coincident with that of two Brazilian
viruses previously classified as CRF72_BF1 and is highly similar,
but not identical, to that of three other Brazilian viruses also
classified as CRF72_BF1. Therefore, we propose a new CRF
designation, CRF122_BF1, for the viruses of the Spanish cluster
and the two Brazilian viruses with coincident structures, which
together with CRF72_BF1 would constitute a CRF family. The
accurate genetic characterization of HIV-1 variants is important
to determine their associated biological features and to track their
epidemic spread.
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