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ABSTRACT 19 

Mechanical forces (ECM stiffness, vascular shear stress, muscle stretching) reaching the 20 

plasma membrane (PM) determine cell behavior. Caveolae are PM invaginated nanodomains 21 

with specific lipid and protein composition. Highly abundant in mechanically challenged tissues 22 

(muscle, lungs, vessels, adipose tissue), they protect cells from mechanical stress damage. 23 

Caveolae flatten upon increased PM tension, enabling both force sensing and accommodation, 24 

critical for cell mechanoprotection and homeostasis. Thus, caveolae are highly plastic, ranging 25 

in complexity from flattened membranes to vacuolar invaginations surrounded by caveolae—26 

rosettes—which also contribute to mechanoprotection. Caveolar components crosstalk with 27 

mechanotransduction pathways and recent studies show that they translocate from the PM to 28 

the nucleus to convey stress information. Furthermore, caveolae components can regulate 29 

membrane traffic from/to the PM to adapt to environmental mechanical forces. The 30 

interdependence between lipids and caveolae starts to be understood, and the relevance of 31 

caveolae-dependent membrane trafficking linked to mechanoadaption to different 32 

physiopathological processes is emerging. 33 

  34 
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Introduction 35 

Living organisms are subjected to external and internal forces such as gravity and tension 36 

from osmotic pressure. In complex organisms, cells are exposed to additional mechanical stimuli 37 

(e.g., vascular shear forces, extracellular matrix rigidity, lung and muscle stretching, volume 38 

expansion in adipocytes). Integration of these cues with biochemical signaling pathways is 39 

pivotal to cell and tissue homeostasis, development or cell proliferation control, and specific 40 

devices have evolved to sense and adapt to mechanical force [1].  41 

Many signal transduction pathways are sensitive to mechanical forces reaching the PM 42 

[2]. The PM itself acts as a scaffold platform that organizes signaling [3]. Thus, lipid composition 43 

and concentration and physical architecture of the PM are important parameters controlling 44 

signal outputs [3]. In addition to foster appropriate environments for signaling molecules, the 45 

PM must ensure cell integrity in the face of external stress [4]. 46 

Caveolae are small PM invaginations (50-80 nm in diameter), often covering a substantial 47 

fraction of the total PM surface (up to 50 % in muscle cells [5]). Four features make caveolae 48 

unique. First, they are highly abundant in cells whose PM experiences changes in tension. 49 

Second, they are enriched in cholesterol and sphingolipids, creating a distinct nanodomain. 50 

Third, they are intimately linked to the actin cytoskeleton [4,6]. Fourth, they are highly plastic in 51 

terms of shape and organizational properties. They flatten out upon high cell tension, and cluster 52 

into rosettes (groups of caveolae around a common invagination/neck) under low tension [4,7] 53 

(Figure 1).  54 

Here, we summarize recent findings on mechanisms underlying caveolae-dependent 55 

mechanotransduction and membrane trafficking, and lipid-caveolae interplay, as well as their 56 

physiological relevance. Recent in-depth reviews on related topics in the field are available [4,8-57 

12]. 58 

Caveolar core components 59 

Two major curvature-generating families stabilize the shape of caveolae in mammalian 60 

cells: caveolins and cavins (Figure 1). Three paralogs of the integral membrane protein caveolin, 61 

CAV1-3, exist. CAV1 is expressed in most tissues, except in skeletal muscle; CAV2 follows a 62 

similar pattern; and CAV3 is exclusive to muscle cells [13]. Genetic deletion of CAV1 and CAV3 63 

prevents caveolae formation in their respective tissues [13]. As for cavins [14], CAVIN1/PTRF (Pol 64 

1 transcription release factor) is essential for caveolae formation and is expressed in all tissues 65 

[15,16], while CAVIN2/SDPR (serum-deprivation response protein), CAVIN3/SRBC (sdr-related 66 
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gene product that binds to c-kinase) and CAVIN4/MURC (muscle-restricted coiled–coil protein) 67 

play a regulatory role [14]. In addition to these core components, the neck of caveolae is 68 

enriched in two important molecules. A curvature generating molecule of the F-BAR family, 69 

named PACSIN (also known as syndapin), and EH domain-containing protein 2 (EHD2), an ATPase 70 

related to dynamin [17]. PACSIN2 and PACSIN3 are required for caveolae biogenesis/stability, 71 

and caveolae density is reduced in their absence [18,19]. EHD2, which localizes to the caveola 72 

neck, prevents caveolae budding, reducing caveolar motility and internalization [20,21]. 73 

Caveolae biogenesis is a multi-step process that may require additional core components in 74 

specific cell types [9]. Another F-BAR domain protein, FBP17, is enriched in caveolar rosettes 75 

(see next chapter)[22].  76 

While this is the basic caveolae configuration in mammalian cells, invertebrates lack cavin 77 

genes, despite having caveolin orthologs [14]. Strikingly, caveolae-like invaginations were 78 

recently described in C. elegans. These invaginations were reduced upon insulin receptor 79 

depletion, which also led to a significant reduction in caveolin levels [23]. It will be interesting to 80 

test whether depletion of caveolin alone produces the same phenotype [23]. Similarly, the 81 

ascidian Ciona expresses a caveolin ortholog that forms caveolae-like invaginations [24], 82 

consistent with the ability of CAV1 to form invaginations per se in heterologous systems devoid 83 

of caveolae [25]. Interestingly, CAV1 forms scaffolds of varied sizes smaller than caveolae at the 84 

PM in mammalian cells [26], whose functional role remains unclear. Similarly, the exact role of 85 

non-caveolar CAV1 scaffolds in cellular organelles is not fully understood [10,27]. 86 

 87 

Caveolar plasticity, mechanoprotection and mechanotransduction 88 

Electron microscopy images of mammalian tissues show that caveolae frequently form 89 

clusters, named rosettes, which in some cases represent the majority of caveolae [5] (Figure 1). 90 

Ex vivo, these structures are formed by reducing tension in the cell, such as cell detachment [28-91 

31]. While rosette formation is dependent on the F-BAR family member FBP17 [22], EHD 92 

proteins increase the number of caveolae per rosette [32]. Almost a decade ago, a seminal study 93 

demonstrated that caveolar shape and organization can change as a function of membrane 94 

tension [7]. When tension is increased caveolae flatten out, to be reformed when lower tension 95 

is restored (Figure 1) [7,33]. Interestingly, uncontrolled actin polymerization also induces 96 

caveolae flattening [34]. The flattening of caveolae is important to buffer the increase in tension 97 

at the PM upon osmotic swelling or mechanical stretching, protecting cells from PM rupture [7], 98 

and conferring cells and tissues resistance to physical activity in several settings, as detailed in 99 
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Table 1 [5,7,22,35-38]. Of note, caveolae in rosettes disassemble faster than caveolae outside 100 

rosettes in response to osmotic swelling [5,22]; thus, rosettes have intrinsic buffering capacity, 101 

distinct from single caveolae [22]. Additional local cues likely contribute to regulate caveolae 102 

flattening, because flattened caveolae can be observed in close proximity to curved caveolae 103 

[6]. Global actin polymerization induced by a constitutively active mDia1 mutant induces 104 

caveolae flattening [34], but it is unclear whether the local, physiological activation of this actin 105 

polymerizing factor or other actin fibers regulator, such as filamin A [34], can locally regulate 106 

caveolae flattening.  Recent studies suggest that caveolae flattening not only buffer PM tension 107 

changes, but also functions as a mechanotransduction signal (Figure 1). 108 

Signaling to the nucleus 109 

Recent studies show that upon caveolae flattening, some of its components are released, 110 

resulting in signaling events. When tension is increased by osmotic swelling or mechanical 111 

stretching, EHD2 is released from caveolae concomitant to caveolae flattening [39] (Figure 1). 112 

Brief mechanical stretching leads to EHD2-dependent transcriptional repression of caveolar 113 

genes, providing an autoregulatory mechanism by which caveolae mechanosensing controls 114 

their own biogenesis [39,40].  115 

Cavin family members are also released from flattening caveolae [7,41]. Interestingly, 116 

other cell stress sources such as ultraviolet light exposure can also trigger cavin release from 117 

caveolae [42]. UV-induced stress also results in caveolae disassembly, albeit with slower kinetics 118 

than osmotic swelling-induced caveolae flattening [22,42]. UV treatment releases CAVIN3 from 119 

caveolae, which relocates to cytosol and nucleus, where it interacts with and inhibits 120 

phosphatase PP1 favoring apoptosis [42]. Interestingly, CAVIN1 PM/cytosol ratio is sensitive 121 

to regulation by FGF13, a factor involved in susceptibility to cardiac arrhythmias [43]. Similarly, 122 

nuclear CAVIN1 is stimulated by insulin in adipocytes [44], indicating that multiple factors 123 

control the non-caveolar pools of cavins. 124 

Gene expression regulated by IL6/STAT3 pathway is repressed by osmotic swelling in a 125 

CAV3-dependent manner [45]. Interestingly, CAV3 mutations found in muscular dystrophy 126 

patients lose both this repressive activity and PM tension buffering capacity [45]. Taken 127 

together, these studies suggest that mechanical forces are transduced to caveolae and its 128 

components respond to these forces. Therefore, caveolae are PM structures capable of 129 

transducing PM tension changes into downstream consequences. However, how caveolar 130 

components change their curvature generating properties upon tension increase remains to be 131 

determined (see box 1).  132 
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BOX 1 133 

Disassembly of caveolae by mechanical stress  134 

A fraction of caveolae can quickly disassemble in response to tension increase [7], as soon 135 

as 2 minutes after osmotic swelling [22]. All caveolar core components have an intrinsic 136 

membrane bending property [14,17,25,46], which is disabled upon caveolae flattening. While 137 

EHD2 and cavins are released from caveolae simultaneously with flattening, CAV1 remains 138 

bound to the PM unable to induce curvature—despite displaying membrane bending capacity 139 

when expressed in CAVIN1-null cells in the absence of PM tension [25] (Figure 1). These 140 

observations suggest that tension increase induces changes in lipids and/or proteins of 141 

flattening caveolae that prevent membrane bending by caveolar components. Studies 142 

conducted on curvature-generating BAR proteins suggest that their curvature activity is 143 

modulated through different mechanisms. FBP17 is an F-BAR family member that generates 144 

membrane curvature in cells and in vitro. FBP17 is recruited to caveolae in rosettes and upon 145 

increased tension, which flattens caveolar rosettes, its membrane bending activity is severely 146 

inhibited [22,47]. Two non-mutually exclusive mechanisms of inhibition have been proposed. 1) 147 

A triple phosphorylation on the F-BAR domain prevents oligomerization and membrane bending 148 

activity [22]; and 2) its intrinsic sensitivity to osmotic variations inhibits its membrane bending 149 

activity [47]. Molecular simulations have shown that tension at the PM could be critical to 150 

determine the oligomerization capacity of BAR protein [48]. Thus, oligomerization capacity 151 

regulation may be critical to bypass curvature in caveolae. Phosphorylation on Cav1 and 152 

PACSIN2, has been shown to regulate oligomerization and membrane binding, respectively, but 153 

these modifications have been related to endocytosis so far [49,50]. In addition, caveolae 154 

flattening is an ATP-independent process [7], suggesting that other mechanisms, independent 155 

on phosphorylation, bypass the intrinsic curvature generating activity of caveolar components 156 

when tension is increased. Biophysical and biochemical studies in combination with super-157 

resolution imaging on PM lipids will likely provide additional cues to understand the mechanism 158 

by which caveolar components are adapted to tension. 159 

 160 

Crosstalk between caveolae and mechanotransduction pathways 161 

The literature supports that caveolae interplay with mechanotransduction pathways and 162 

the actin cytoskeleton (reviewed in [4]). Recent evidence reinforces this notion by showing 163 
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additional ties with pathways that regulate the actin cytoskeleton, specifically stress fibers, or 164 

that are highly dependent on tension generated by the actomyosin system. 165 

A major pathway regulated by mechanical cues is the Hippo pathway, which regulates 166 

tissue architecture and organ size [51]. Increased tension inhibits Hippo signaling pathway 167 

leading to nuclear translocation of YAP and TAZ [51]. YAP/TAZ are the archetypal transcriptional 168 

regulators sensitive to mechanical cues, and regulate the expression of gene subsets driving cell 169 

proliferation, migration, survival and differentiation [51]. Interestingly, the actin cytoskeleton 170 

dysregulation observed in MEFs deficient for CAV1 was responsible for reduced YAP/TAZ activity 171 

[52]. In contrast, CAV1 depletion in osteosarcoma cells and in vivo stimulates YAP/TAZ 172 

translocation [53], and increase the expression of YAP/TAZ target genes in mesothelial cells [54]. 173 

Interestingly, YAP itself can regulate the expression of caveolar components, and cells without 174 

YAP/TAZ have reduced caveolar density [53], further supporting that caveolae and the Hippo 175 

pathway regulate each other (Figure 2).  176 

The epithelium is highly sensitive to tension, and the actin cytoskeleton is vital to control 177 

this tension [55]. A recent study has shown that CAV1 is important to downregulate tension in 178 

epithelial sheets, as CAV1 regulates the activity of actin polymerization factor FMNL2, a formin 179 

family member. CAV1 deficiency favors recruitment of FNML2 to cell-cell junctions, increasing 180 

tension on the cell monolayer [55]. Similarly, the F-BAR protein FBP17, which localizes to 181 

caveolar rosettes, inhibits formin mDia1. Increases in tension induce c-Abl kinase-mediated 182 

phosphorylation of FBP17, abolishing FBP17-dependent inhibition of mDia1 and upregulating 183 

stress fibers [22] (Figure 2). Interestingly, non-caveolar Cav1-mediated mDia1 regulation has 184 

also been recently observed in the context of cilia stability [56]. Collectively, these studies 185 

suggest that caveolar components regulate formins in the context of mechanotransduction 186 

pathways.  187 

The actin cytoskeleton is regulated by multiple pathways, including ephrin (Eph) receptor 188 

tyrosine kinases, which play a major role in cell-cell communication [57]. Supporting the role of 189 

CAV1 in modulating signaling, recent studies have shown that CAV1 is downstream of Eph 190 

receptors. EPHB4 regulates CAV1 tyrosine 14 phosphorylation, cell stiffness, and mechanical 191 

stability of endothelial cells, determining heart vasculature integrity [58]. EPHB4-CAV1 axis is 192 

also important for arteriovenous fistulae maturation [59]. Similarly, CAV1 is also linked to EPHB2 193 

kinase [60], which regulates CAV1 stability and caveolae density [61].  194 

CAV1 promotes stress fibers-driven biomechanical remodeling of the extracellular matrix 195 

(ECM) via RhoA [62,63] and YAP [52]. Interestingly, CAV1 also regulates the amount of ECM 196 
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components [64] by driving exosome biogenesis and cargo sorting for ECM deposition [65]. 197 

Thus, CAV1 is a central regulatory hub for ECM remodeling, by both mechanical and chemical 198 

means; whether both mechanisms are coupled remains to be determined. 199 

Collectively, these and other studies showing the association of caveolae with stress fibers 200 

(reviewed in [4]) strongly suggest that the crosstalk between caveolae and actin cytoskeleton-201 

regulating networks contribute to balance the cell tensional status.  202 

 203 

Functional interplay between caveolae and lipid biology  204 

Caveolae as lipid organizing centers 205 

The literature strongly suggests an active interplay between caveolae and the lipids within 206 

(recently reviewed [8]). There are two properties shared by all caveolar core protein 207 

components: they all have membrane bending capacity [14,17,66] and they all bind lipids. CAV1 208 

binds cholesterol [67] while cavins, PACSIN and FBP17 bind preferentially phosphatidylinositol 209 

4,5-bisphosphate (PIP2) [14,66,68], and EHD2 binds PIP2- and phosphatidyl-serine (PtdSer)-210 

containing liposomes [17,68]. These properties allow for retaining certain specific lipid species 211 

within a mechanosensitive PM nano-domain [69,70]. Indeed, trafficking, distribution and 212 

abundance of certain lipids is altered in CAV1-depleted cells [70,71]. Similarly, CAV1-dependent 213 

PIP2 localization regulates signaling important for epithelial monolayer tensional status [55], and 214 

CAVIN1 has been shown to regulate the amount of lipids in prostate cancer stroma [72]. The 215 

effect of caveolar components in lipid biology is not restricted to the localization of lipids, as the 216 

amount of peroxidated lipids is also increased in cells silenced for CAV1 [73], indicating the 217 

complex nature of the interplay between lipids and caveolae. 218 

Accordingly, certain lipids are enriched in caveolae. Cholesterol, sphingolipids, 219 

sphingomyelin and gangliosides are enriched in caveolae as compared with the surrounding PM 220 

[74]. In addition, PtdSer and PIP2 localize to caveolae [75,76]. Changes in the availability of these 221 

lipids have profound effects in caveolae organization, shape and dynamics. PtdSer is important 222 

to regulate caveolae stability and formation, while phosphatidylinositol 4-phosphate (PI4P) and 223 

PIP2 increases caveolae confinement [77]. Cholesterol is essential for caveolae formation [6] and 224 

addition of extra cholesterol favors endocytosis [78] and caveolae shape changes, decreasing 225 

neck width and bulb diameter [21]. Recent computational analysis based on coarse-grain 226 

simulations has advanced our understanding of how CAV1 determines membrane curvature 227 

through its interaction with lipids, especially cholesterol and sphingomyelin [79,80]. Upon 228 
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binding the inner membrane leaflet, CAV1 induces membrane curvature and cholesterol 229 

clustering in both leaflets, suggesting that these processes could be functionally linked through 230 

both direct and indirect interactions [79,80]. This interplay may suggest a self-assembly 231 

molecular mechanism as proposed elsewhere [81], as it seems to be CAV1 concentration-232 

dependent. Sphingomyelin clustering also seems to occur in a curvature-dependent manner, 233 

following CAV1 induced-membrane bending [79]. Therefore, the ability of CAV1 to induce liquid-234 

ordered domains leading to lipid clustering may constitute a key property of caveolae and CAV1 235 

scaffolds with functional consequences [10]. 236 

 237 

Caveolae as mechanosensing devices linking membrane trafficking to 238 

mechanoadaptation: physiopathological implications 239 

Caveolae trafficking, its impact on lipid homeostasis, and their relevance to different 240 

physiological processes, such as adipose tissue homeostasis, endothelial permeability and 241 

vascular biology, is emerging (Figure 2). Upon cell/tissue mechanical challenge, membrane 242 

traffics from/to the PM regulated by caveolae components to adapt to such environmental 243 

forces (Figure 1 and 2), including PM tension reduction upon cell detachment [28,29,31,34], 244 

substrate stiffness [22,52], cell stretching [22,52,54], shear stress [82] (Lolo and Del Pozo, 245 

unpublished observations) or lipid storage [83]. This mechanoadaptive caveolae-mediated 246 

membrane trafficking occurs in the absence of cargo in most cases, consistent with the concept 247 

that cargoes reported to internalize via caveolae can also use the CLIC/GEEC pathway [12,13,29]. 248 

Therefore, with few exceptions such as endothelial transport, caveolae-membrane trafficking 249 

could serve primarily to buffer changes in PM tension, rather than endocytosis, as was 250 

consensued in round‐table discussions at the first EMBO Workshop on Caveolae held in Le 251 

Pouliguen in May 2019 (http://meetings.embo.org/event/19-caveolae)[12].  252 

Caveolae are essential for the expansion of the main lipid reservoir in mammals, the 253 

adipose tissue, highlighting the importance of the caveolae-lipid interplay. Genetic depletion of 254 

caveolae upon deletion of either CAV1 or CAVIN1 leads to lipodystrophy in mice, and several 255 

mutations in CAV1 and CAVIN1 have been identified in human patients with lipodystrophy [13]. 256 

As a consequence, metabolism is severely disrupted in caveolae-deficient animal models [13]. 257 

Interestingly, genetic ablation of EHD2 leads to increased adipocyte lipid droplet size in mice 258 

[83]. Increased adipocyte size and lipid droplet area was suggested to derive from increased 259 

fatty acid uptake via caveolae [83]. Using EM tomography, Matthaeus et al., showed that at least 260 

a fraction of caveolae are detached from the PM in adipose tissue in the absence of EHD2, which 261 

http://meetings.embo.org/event/19-caveolae
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stabilizes caveolae ex vivo [21]. Although in the presence of EHD2 this pool of detached CAV1-262 

positive vesicles may be residual [84] or highly dynamic and therefore difficult to image [85], 263 

trafficking of caveolae in adipocytes is likely physiologically relevant [83].  264 

Lipid composition is a major determinant for caveolae-mediated transcytosis in vivo. 265 

MFSD2A, a lipid transporter involved in omega-3 fatty acid docosahexaenoic acid (DHA) 266 

trafficking in the central nervous system, specifically inhibits caveolae formation/stability and 267 

transcytosis, contributing to blood brain barrier integrity in capillary endothelial cells (EC) 268 

[86,87]. Consequently, mice lacking MFSD2A exhibit increased CAV1-positive vesicles and 269 

transcytosis, a process that depends of caveolae [88,89]. This leads to reduced barrier function, 270 

i.e. increased endothelial leakiness due to transcytosis [86,87]. The precise mechanisms by 271 

which DHA species lead to reduced caveolae density remains to be determined [90-92]. It is 272 

currently unclear why, in order to control caveolar density, these cells regulate a specific lipid 273 

species as opposed to transcriptional regulation of caveolar components. Interestingly, in 274 

comparison to capillary ECs, caveolae are abundant in brain arteriolar ECs, where they are 275 

important to mediate neurovascular coupling [93] (Figure 2). Collectively, these studies show 276 

that brain vasculature function is actively regulated by caveolae. 277 

Significant differences in caveolae density are also found across different aortic regions, a 278 

feature that seems to be relevant in the context of atherosclerosis. ECs lining so-called 279 

atheroprone sites (such as iliac bifurcations) predominantly exhibit intracellular caveolae-like 280 

vesicles, whereas those in athero-resistant sites (like the descending aorta), present a relatively 281 

high numbers of surface caveolae [82]. Caveolae deficiency seem to attenuate plaque formation 282 

in genetic models of hypercholesterolemia by limiting low density lipoprotein (LDL) transcytosis 283 

and endothelial inflammation, through mechanisms independent from nitric oxide production 284 

[82]. CAV1/caveolae deficiency-derived protection from atherogenesis is abolished upon 285 

disrupting autophagy, which is in fact upregulated in CAV1-null cells and may dampen 286 

endothelial inflammation and LDL transcytosis [94,95]. Interestingly, activin-like kinase 1, Alk1, 287 

a TGFbeta1 receptor, supports LDL transcytosis under atherogenic conditions [96] and Alk1 is 288 

localized to caveolae [97]. It is currently unclear whether and how these phenotypes are linked 289 

to the sensing of flow shear forces by caveolae [35]. 290 

 291 

Concluding remarks 292 
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Caveolae constitute nanodomains with specific characteristics that are different from the 293 

rest of the PM. Apart from embodying a system to buffer increase in membrane tension [7], 294 

caveolae provide platforms for the regulation of cell signaling and metabolism, either by 295 

controlling the activity of proteins or lipid localization [10,69,71]. However, it is still unclear how 296 

these two major functions are coupled, i.e. how caveolar curvature changes affect signaling 297 

locally. Here, two non-mutually exclusive possible scenarios emerge: i) mechanosensitive 298 

signaling molecules in caveolae respond to caveolae-dependent curvature changes, which in 299 

turn modulate their signaling capacity, and ii) lipid/protein re-distribution upon 300 

flattening/reformation changes the signaling output. The technology to measure protein activity 301 

and lipid distribution on caveolae, either curved or flattened, will provide important information 302 

about the implications of caveolae plasticity for signaling regulation. 303 

The release of specific caveolar components upon flattening is another way by which 304 

caveolae mechanosensitive functions can be coupled to signaling [39,42,45]. The extent of this 305 

type of distant signaling is beginning to be elucidated, as the biological meaning of many of the 306 

novel caveolar components binding partners outside caveolae remains unknown [42].  307 

Last, but not least, how changes in caveolae morphology and motility/trafficking occur in 308 

vivo and what stimuli control them remain to be determined. Generation of knock-in animal 309 

models with labeled caveolar components, or caveolae unable to fulfill some of its key 310 

properties –move around, cluster or flatten-out- will undoubtedly provide convincing evidence 311 

of the physiological roles of specific caveolae intrinsic properties. 312 

  313 
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Table 1 314 

Mechanoprotective role of caveolae in different biological systems 315 

Ex vivo 316 

Cell type Type of stress Targeted protein and effect in PM Ref. 317 

Endothelial Hypo-osmotic shock CAV1, no caveolae [7] 318 
   319 
Muscle fibers hypo-osmotic shock Cavin1, no caveolae [5] 320 

NIH 3T3 Mechanical stretching EHD1, 2, 4, less caveolae clusters [32] 321 
NIH 3T3 Mechanical stretching CAV1, loss of caveolae [32] 322 
 323 
Fibroblasts Hypo-osmotic shock FBP17, reduction of rosettes [22] 324 

 Mechanical stretching#  325 

Melanocytes Hypo-osmotic shock  CAV1, reduction in caveolae [38] 326 

 327 

In vivo 328 

Model/tissue Type of stress Protein depleted and effect in PM Ref. 329 

Mice/Endothelium Increased cardiac CAV1, no caveolae [35] 330 

 output 331 

Zebrafish/Muscle Forced swimming Cavin1a, no caveolae [5] 332 

Zebrafish/Notochord Continuous muscle Cavin1b, no caveolae [37] 333 

  contraction 334 

Zebrafish/Notochord Forced swimming Cavin1b, severely reduced caveolae [36] 335 

Zebrafish/Notochord none* CAV1/CAV3, severely reduced caveolae [36] 336 

# Mechanical stretching was performed for 24h. 337 
*No stress was applied to CAV1/CAV3 KO zebrafish but lessions in the notochord were 338 
observed under normal growth conditions. 339 

 340 
 341 
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342 

Figure 1. Different stages in which caveolae can be found and the specific functional 343 

consequences of each stage. Conditions that increase PM tension induce flattening of caveolae 344 

(left) which releases some of its components (cavins and EHD2) that reach the nucleus 345 

[14,39,42]. Low tension conditions favor the formation of rosettes [4,31]. Certain conditions, 346 

such as loss of cell adhesion [28] favor the trafficking of caveolae, which also depends on the 347 

actin cytoskeleton and microtubules [34]. The trafficking abilities of caveolae and their 348 

components linked to their mechanosensing properties specialize these devices for 349 

mechanoadaptation and mechanoprotection.  350 

 351 
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Figure 2. The main biological and physiological functions of caveolae are depicted. 352 

(a) PM tension increase induces caveolae flattening, which buffers PM tension increase [7]. (b) 353 

Caveolae flattening contributes to the role of caveolae as mechanoprotective devices in several 354 

cells and tissues (muscle, notochord and endothelial cells [5,35-37,45]. (c) In the capillary 355 

endothelium of the central nervous system, caveolae downregulation contributes to blood-brain 356 

barrier function, which requires the downregulation of transcytosis aided by caveolae [87]. (d) 357 

In contrast, caveolae are abundant in arteriolar endothelial cells, where are important for 358 

neurovascular coupling [93]. (e) A crosstalk exists between caveolae and the Hippo pathway 359 

[53,54]. (f) Caveolae biology is intimately linked to the actin cytoskeleton [4]. (g) Multiple 360 

signaling pathways are regulated by caveolar components. (h) The physical and functional links 361 

between caveolae and lipids play a major role in caveolae and lipid biology [8], (i) which is 362 

exemplified by the lipodystrophic phenotype observed in caveolae-deficient mice and humans, 363 

which present small lipid droplets [13]. (j) The central image corresponds to an electron 364 

microscopy image of human fibroblast PM containing caveolae (straight arrow) and ruthenium 365 

red-labeled vesicles that have the diameter of caveolae (arrowhead). Fibers consistent with the 366 

width of actin fibers are marked with a curved arrow. It is important to note that ex vivo and in 367 

vivo, vesicles apparently detached from the PM are frequently observed (labeled with an 368 

arrowhead). These vesicles are caveolae that frequently are part of a cluster or rosette that 369 

maintains the connection with the PM [22,84] but can also correspond to independent vesicles 370 

[83]. Scale bar 100 nm. 371 

  372 
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