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Abstract 

Aragonite (CaCO3, space group Pmcn) is an important mineral for both geological and biological reasons, 

being one of the phases that recycles carbon in deep Earth conditions and the product of biomineralization of 

several terrestrial and marine organisms, respectively. Because of its ubiquity, aragonite has been the subject 

of several investigations to understand its elastic behaviour and stability at different P-T conditions, but the 

results reported in literature are still very scattered. Aiming at providing further details on this topic, in the 

present work we determined the structural and elastic properties of aragonite at absolute zero (0 K) within the 

Density Functional Theory framework, using a posteriori correction to include the weak long-range 

interactions. The equation of state parameters for this mineral phase, calculated between 0 GPa – 25 GPa, were 

K0 = 80.2(7) GPa, K’ = 4.37(10) and V0 = 223.00(6) Å3, in good agreement with the bulk modulus calculated 

from the elastic moduli (KR = 78.49 GPa). The results were compared to previous experimental and theoretical 

data, finding them in line with some specific studies, and show that some structural features (e.g., the carbonate 

ion aplanarity) could be related to the mechanism of phase transition to the post-aragonite phase at high 

pressure. The present work highlights the importance of including van der Waals interactions in the physical 

treatment of the structural and elastic properties of aragonite, and further extends the knowledge of the 

behaviour of this mineral as a function of pressure. 

 

Introduction 

Aragonite CaCO3 has drawn a lot of attention since the born of modern crystallography, as its structure has 

been determined by X-ray diffraction (XRD) first by Bragg (1924), then subsequent refinements followed (De 

Villiers, 1971; Santillán and Williams, 2004; Caspi et al., 2005; Antao and Hassan, 2009; Palaich et al., 2016). 

According to the cited studies, this mineral belongs to the orthorhombic class 2/m 2/m 2/m, space group Pmcn 

(sometimes also reported as Pnma, according to the crystal settings employed by the researchers), with four 

unit formulas in the crystallographic cell (Z = 4) and, at ambient conditions (1 atm, 298 K), a unit cell volume 

of about 227 Å3 (De Villiers, 1971). According to De Villiers (1971), the cell parameters of aragonite are a = 

4.9614(3) Å, b = 7.9671(4) Å and c = 5.7404(4) Å, which were confirmed by the recent results of Antao and 

Hassan (2009). An interesting feature of this mineral, related to its symmetry, is the slight non-planarity (also 

called aplanarity) of the CO3
2– group and the two independent C–O distances. A structural model of 

orthorhombic aragonite is shown in Figure 1. 

In addition to the crystallographic determinations, several efforts have been directed to investigate the elastic 

behaviour of aragonite at high pressure because of the importance of this mineral in both geological, biological 

and materials science fields. In fact, the calcium carbonate polymorphs aragonite (Pmcn) and calcite (R3̅c) are 

the two most common forms of this compound that can be found on the surface of Earth, produced by both 
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biological and geological/physical processes (Palaich et al., 2016). While it is known that aragonite is a 

metastable polymorph at ambient conditions (Salje and Viswanathan, 1976), conversely it is the preferred 

structure synthesized by different organisms such as molluscs and corals (Farfan et al., 2021), and that 

participate in the formation of ocean floor deposits with other important minerals, for example, giving origin 

to clay-rich marls and carbonate ooze (Plank and Langmuir, 1998). Because of its high-pressure stability, 

aragonite is then the predominant form of calcium carbonate that contributes to deep-Earth recycling at 

subduction zones (Dasgupta and Hirschmann, 2010). To better understand the effects of high pressure and high 

temperature on the phase stability of this mineral, several experimental and theoretical researches focused their 

attention on both the hydrostatic compression behaviour (Martinez et al., 1996; Santillán and Williams, 2004; 

Ono et al., 2005; Oganov et al., 2006; Ono et al., 2007; Li et al., 2015; Wang et al., 2015; Palaich et al., 2016) 

and the uniaxial and biaxial elasticity (Voigt, 1910; Vizgirda and Ahrens, 1982; Pavese et al., 1992; Fisler et 

al., 2000; Liu et al., 2005; Huang et al., 2017). 

 

 

 

Figure 1. Aragonite structure as seen from (a) the [001] and (b) the [010] directions. The blue lines represent 

the unit cell of the mineral. (c) Polyhedral model of the 9-fold coordination of the Ca2+ ion with six carbonate 

groups, three O1 and six O2 oxygen atoms. Colour code for atoms: blue – Ca; red – O; black – C. 

 

However, after a review on the subject, we noted that the results reported in literature were obtained with 

different methods and accuracies, related to specific experimental/theoretical approaches, 
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instrumental/computational setups, and sample purity. For example, the bulk modulus K0 and its pressure 

derivative K’ are scattered, with values in the ranges 64 – 88 GPa and 2.3 – 5.3, respectively. The same applies 

to the elastic moduli, i.e., the components of the fourth-rank tensor physically/mathematically describing the 

stress-strain relationship (Nye, 1957), whose values show very high differences (as high as +1300%) between 

those of Voigt (1910) from ultrasonic scattering and the elastic moduli measured from Brillouin scattering by 

Liu and collaborators (2005). 

In addition, from the theoretical perspective, no data were obtained so far including a proper treatment for 

long-range interactions. Albeit both aragonite and calcite are known to be an ionic solids, it was recently shown 

that long-range (dispersive) interactions play a key role in determining the structural, elastic and dielectric 

properties of calcite (Ulian et al., 2021a; Ulian et al., 2021b; Ulian and Valdrè, 2022b). We expect that 

dispersive forces will be then important for the description of the different mineralogical, physical, and 

chemical properties of aragonite as well, particularly its elastic behaviour.  

For all the reasons cited above, in the present paper we investigated the structural and elastic behaviour of 

aragonite using first-principle simulations at the Density Functional Theory (DFT) level, including a proper 

treatment of long-range interactions. We calculated both the equation of state of the mineral under hydrostatic 

regime from 0 GPa up to 25 GPa, to analyse the effects of pressure on the structural features of the mineral, 

and the elastic moduli at zero pressure. A small expansion regime was included to better describe the 

compressional behaviour of aragonite. The considered pressure range encompasses a metastability region, as 

the phase transition from calcite to aragonite occurs at about 0.3 GPa at ambient temperature (Johannes and 

Puhan, 1971), and is below the experimentally observed phase transition from aragonite to post-aragonite, 

occurring at about 30 – 40 GPa (Ono et al., 2005; Ono et al., 2007). All the results were compared and discussed 

to data reported in literature. 

 

Computational Methods 

The simulations here presented were performed using the CRYSTAL17 ab initio code, which implements the 

Kohn–Sham self-consistent field (SCF) method (Dovesi et al., 2018). Throughout the present work, we 

employed the generalized-gradient approximation (GGA) exchange-correlation functional developed by 

Perdew-Burke-Ernzerhof, known as PBE (Perdew et al., 1996), and the hybrid functional B3LYP that, among 

the three-parameter exchange functional of Becke (1993) and the correlation term of Lee, Yang and Parr 

(1988), includes 20% of exact Hartree-Fock (HF) exchange. It is well-known that GGA functionals already 

provide adequate descriptions of the structural features of solid materials, but they are outperformed by hybrid 

functionals such as B3LYP for electronic (e.g., band structure), elastic and vibrational properties. 

In CRYSTAL17, the construction of the multielectronic wave function is carried out using a linear combination 

of Gaussian-type functions (GTF), within the so-called linear combination of atomic orbitals (LCAO) 

approach. Calcium, carbon and oxygen were described in terms of 8-6511(21), 6-311(11) and 8-411(11) basis 
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sets, respectively, which were previously optimized by Valenzano and co-workers (2006). The chosen basis 

sets are well balanced, and was adopted for the investigation of both aragonite (Ungureanu et al., 2010; Carteret 

et al., 2013) and calcite (Ulian et al., 2021a; Ulian et al., 2021b; Ulian and Valdrè, 2022b), providing accurate 

results with sustainable computational costs.  

The total energy was calculated on a pruned grid with 75 radial points and a maximum number of 974 angular 

points in regions relevant for chemical bonding, subdivided in five shells with different angular grids (Dovesi 

et al., 2018). The numerical accuracy for the calculation of the Coulomb and exchange integrals was set to 8 

(ITOL1 to ITOL4) and 16 (ITOL5) (Dovesi et al., 2018). The Hamiltonian matrix was diagonalized on a 6×6×6 

grid according to the Monkhorst-Pack (1976) scheme, which leads to 64 k points in the reciprocal space. 

A well-known limitation of both GGA and hybrid Density Functional Theory functionals is the improper 

treatment of long-range interactions, which severely affects structural, vibrational, mechanical and other 

properties. The most common approach to overcome this issue is the a posteriori inclusion of an additional 

energy term to the DFT energy, which, in the present work, takes the form of the DFT-D2 and DFT-D3 

formulations by Grimme and collaborators (Grimme, 2006; Grimme et al., 2010). The DFT-D2 contribution 

is described in the following formula: 
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The sums are over the atoms N in the unit cell, with rij,g the internuclear distance between atom i in cell g = 0 

(reference cell) and atom j in cell g, and C6ij the 6th-order dispersion coefficients for atom pairs ij. The long-

range energy is damped by the function fdump,6(rij,g), to ensure that weak van der Waals interactions do not 

contribute to other ionic and covalent bonds, which exert their effects at short distances. The damping function 

is expresses as: 
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with s6 a scaling parameter that varies according to the adopted functional (e.g., for PBE it is 0.75), RvdW the 

sum of van der Waals radii of atoms i and j and d the steepness of the damping, which was set to 20 in the 

present work, in agreement with the standard parametrization of the DFT-D2 approach (Grimme, 2006). The 

C6ij parameters are calculated as a geometrical mean: 

6 6 6ij i jC C C=  

where C6i and C6j are tabulated for each atom and kept fixed during the simulation (Grimme, 2006). In the case 

of the B3LYP functional, the re-parametrization of Civalleri and collaborators (2008) of the terms in the 

equation reported above was employed, leading to the method named B3LYP-D*.  

Within the DFT-D3 approach, the van der Waals contribution is given by (Grimme et al., 2010): 
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where the Cnij (n = 6, 8) parameters are dependent on the geometry of the system, and not fixed as in the DFT-

D2 scheme, hence the DFT-D3 correction is less empirical. The damping function here adopted is the one 

proposed by Becke and Johnson (Becke and Johnson, 2005; Johnson and Becke, 2005; Johnson and Becke, 

2006): 
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with 
0 8 6ij ij ijR C C= and ( )0 1 0 2ij ijf R R = + , s6 = 1, s8, whereas α1 and α2 are adjustable parameters. For a 

detailed explanation of the DFT-Dn (n = 2, 3) corrections, the reader can refer to the works of Grimme and 

collaborators (Grimme, 2006; Grimme et al., 2010). In general, it is expected that the results from the DFT-

D3 approach, which is less empirical than the DFT-D2 correction, would be in better agreement with the 

experimental ones. 

The geometry optimization procedure of the structures consists in a simultaneous optimization of both the 

lattice constants with a numerical gradient method and the atomic internal coordinates using an analytical 

gradient approach. The Hessian matrix is upgraded with the Broyden–Fletcher–Goldfarb–Shanno algorithm 

(Broyden, 1970b; Broyden, 1970a; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). The tolerances for the 

maximum allowed gradient and the maximum atomic displacement for considering the geometry as converged 

have been set to 1∙10-5 hartree bohr–1 and 4∙10-5 bohr, respectively. This setup was adopted to find the 

equilibrium geometry at 0 GPa and the compressed/expanded states simulated to calculate the equation of state 

of the mineral, as also presented in previous works (Ulian et al., 2021a; Ulian et al., 2021b). 

Second-order elastic moduli were calculated according to the scheme proposed by Perger and co-workers 

(2009), which is implemented in the CRYSTAL code. Very briefly, the elastic moduli are the components of 

the 4th-rank stiffness tensor C, which are defined as:  

ij ijkl klC =  

where σij and εkl are the components of the stress and pure strain second-rank tensors, respectively, and the 

indeces i, j, k, l (= x, y, z) represents the Cartesian directions. A simpler notation is that proposed by Voigt, 

which replaces the  3 × 3 × 3 × 3 tensor with a 6 × 6 matrix whose elements are identified by the indices v,u = 

1, …, 6, with 1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz and 6 = xy (Nye, 1957). This leads to the following expression: 

v vu uC =  

The elements Cvu are also defined as the second derivative of the lattice energy with respect to the applied 

strain: 
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where 0 indicates the stiffness is calculated at the equilibrium geometry. Aragonite is an orthorhombic mineral, 

which presents 9 independent elastic moduli and the stiffness matrix in Voigt notation is then: 
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where the small dots indicate elastic moduli having a value of zero. Six lattice deformations were needed to 

calculate the elastic moduli, namely 
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which represent the uniaxial strains, and 
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that are the biaxial (shear) stains. The factor δ controls the amount of applied strain, and in the present work it 

varied in the range ±0.015, with a step of 0.005, for a total of 7 configurations for each lattice strain. Single-

crystal elastic properties, namely Young’s modulus (E), linear compressibility (β), shear modulus (μ) and 

Poisson’s ratio (υ) were calculated from the elastic moduli using the QUANTAS code (Ulian and Valdrè, 

2022a), with well-known directional relations (Nye, 1957; Marmier et al., 2010; Gaillac et al., 2016; Ulian et 

al., 2018; Ulian and Valdrè, 2018b). Voigt and Reuss equations were employed to calculate the average elastic 

properties considering the system as a polycrystalline aggregate as explained by Nye (1957). 

Graphical representations have been carried out with the molecular graphics program VESTA (Momma and 

Izumi, 2008). 

 

Results and discussion 

1. Crystal geometry 

The results of the structural optimization in equilibrium conditions (absolute zero temperature and zero 

pressure), obtained from B3LYP-D*, B3LYP-D* and PBE-D2 approaches, compared to literature available 
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experimental ones, are reported in Table 1. The theoretical simulations produced data in very good agreement 

with previous experimental determinations of the crystal structure of aragonite (De Villiers, 1971; Caspi et al., 

2005; Antao and Hassan, 2009). It is worth noting that experimental data were collected at room temperature 

(ca. 300 K), whereas no thermal contributions to the crystal structure (lattice vectors and atomic positions) was 

included in the present simulations. 

Table 1. Equilibrium structure at 0 GPa of aragonite CaCO3, with V the unit cell volume (Å3), a, b and c the lattice 

parameters (Å), atomic distances (Å) and angles (°), aplanarity of the carbonate group (Å) and atomic fractional 

coordinates. Previous theoretical and experimental data are reported for a direct comparison. 

 Theoretical  Experimental 
 B3LYP-D*1 B3LYP-D31 PBE-D21 B3LYP2  XRD3 XRD4 XRD5 

V (Å3) 229.535 222.987 228.968 235.666  226.906 227.011 227.081 

a (Å) 5.0177 4.9544 5.0253 5.0080  4.9614 4.96062 4.96183 

b (Å) 7.9005 7.8836 7.9358 8.0290  7.9671 7.97006 7.96914 

c (Å) 5.7901 5.7091 5.7414 5.8610  5.7404 5.74181 5.74285 

C–O1 1.2750 1.2756 1.2863 1.2789  1.279 1.281 1.2805 

C–O2 1.2896 1.2865 1.2996 1.2891  1.284 1.284 1.2931 

mean C–O 1.2847 1.2829 1.2952 1.2857  1.282 1.283 1.289 

Ca–O1 (×1) 2.4266 2.4054 2.4122 2.4324  2.419 2.403 2.4127 

Ca–O1 (×2) 2.6953 2.6488 2.6929 -  2.653 2.6521 2.6570 

Ca–O2 (×2) 2.4550 2.4342 2.4394 -  2.445 2.473 2.4438 

Ca–O2 (×2) 2.5184 2.4973 2.5231 -  2.520 2.494 2.5197 

Ca–O2 (×2) 2.5491 2.5278 2.5576 -  2.550 2.558 2.5457 

mean Ca–O 2.5402 2.5135 2.5376 -  2.528 2.5286 2.5272 

O1–C–O2 120.44 120.36 120.42 -  120.19 119.2 120.15 

O2–C–O2 118.98 119.12 118.97 -  119.55 120.8 119.38 

mean O–C–O 119.95 119.95 119.94 -  119.98 119.73 119.89 

aplanarity 0.0274 0.0297 0.0326 -  0.0193 0.0291 0.0420 

Ca (4c)         

x/a 1/4 1/4 1/4 1/4  1/4 1/4 1/4 

y/b 0.41376 0.41508 0.41425 0.41553  0.4150 0.4150 0.4150 

z/c 0.76364 0.76164 0.76318 0.75970  0.7597 0.7577 0.7599 

C (4c)         

x/a 1/4 1/4 1/4 1/4  1/4 1/4 1/4 

y/b 0.76542 0.76448 0.76562 0.76222  0.7622 0.7616 0.7619 

z/c –0.08445 -0.08618 –0.08308 –0.08144  –0.0862 –0.0808 –0.0824 

O1 (4c)         

x/a 1/4 1/4 1/4 1/4  1/4 1/4 1/4 

y/b 0.92664 0.92606 0.92746 0.92138  0.9225 0.9220 0.9224 

z/c –0.09443 -0.09807 –0.09549 –0.09008  –0.0962 –0.0944 –0.0945 

O2 (8d)         

x/a 0.47143 0.47388 0.47279 0.47219  0.4736 0.4750 0.4750 

y/b 0.68257 0.62182 0.68248 0.68118  0.6810 0.6824 0.6801 

z/c –0.08648 -0.08795 –0.08532 –0.08435  –0.0862 –0.0905 –0.0873 

Notes: Wyckoff sites are reported in parentheses after each atom. 

1 – present work; 2 – simulations results of Carteret and co-workers (2013); 3 – X-ray diffraction results reported by 

De Villiers (1971); 4 – X-ray diffraction results reported by Antao and Hassan  (2009); 5 – High-resolution 

synchrotron powder diffraction measurements of Caspi et al. (2005) 

 

In details, the unit cell volume calculated with both the B3LYP-D* and PBE-D2 approaches is within about 

1% of deviation with respect to the XRD refinements. This overall effect is due to an interplay of increased a 
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(about +1.2%) and c (+0.9%) lattice parameters and a shrinking of the b-axis length (between –0.4% and –

0.8%), whose extents depend on the adopted DFT functional. The a-axis value seems related to the C–O2 bond 

distance, which is systematically larger in our simulations (+0.4% and +1.2% at B3LYP-D* and PBE-D2 

levels, respectively) than in the X-ray diffraction experiments. The use of the less empirical treatment of the 

van der Waals interactions (i.e., the DFT-D3 approach) resulted in a unit cell volume that is smaller than the 

experimental ones by about 1.7%, with all the lattice vectors shorter than those from the XRD refinements. In 

general, these observations are in line with the analysis of the effects of the inclusion of long-range interactions, 

where the same functionals and corrections were adopted to investigate calcite (Ulian et al., 2021a). However, 

it should be noted that a smaller unit cell is what should be expected in static DFT simulations, which do not 

include any temperature effect (e.g., thermal expansion), because XRD measurements are typically performed 

at T > 0 K. The reason behind this small discrepancy probably resides in the long-range interactions, as the 

sole B3LYP produced a unit cell with increased volume of about +4% (Carteret et al., 2013), the B3LYP-D* 

and PBE-D2 approaches partially amend it, and the B3LYP-D3 combination produced the expected results. 

The aplanarity of the carbonate ion, i.e., the distance between the C atom from the plane described by the three 

oxygen atoms from our simulations is within the values measured by XRD crystallographic data (0.0193 Å – 

0.0420 Å). 

Considering the previous structure determination obtained with the CRYSTAL code by Carteret and co-

workers (2013), the unit cell calculated at the B3LYP level without including the effects of van der Waals 

interactions (see Table 1) is larger than ours obtained with the B3LYP-D* and B3LYP-D3 approach by about 

+2.5% and 5.4%, respectively, and deviating by about +4% from the XRD data. The difference in the 

computational settings between the present work and the one of Carteret et al. (2013) resides only on the 

presence of the DFT-Dn correction, further confirming that van der Waals interactions are important also for 

ionic minerals/materials as aragonite and calcite (Ulian et al., 2021a). Furthermore, our structural results are 

also in better agreement with the experiments than those reported by Huang et al. (2017), who obtained a = 

5.002 Å, b = 8.014 Å and c = 5.792 Å by employing pseudopotentials plane-wave basis sets and the PBE 

functional (with no correction for van der Waals interactions). 

 

2. Equation of state 

To calculate the equation of state of aragonite, a set of larger (expansion) and smaller (compression) unit cells 

were geometrically optimized at fixed volume. This is a well-known approach for simulating how the unit cell 

volume varies with hydrostatic pressure [see for instance (Ottonello et al., 2010; Ungureanu et al., 2010; Ulian 

and Valdrè, 2017; Ulian and Valdrè, 2018a)]. Thirteen unit cell volumes between 85% and 106% of the 

equilibrium unit cell volume, Veq, were modelled according to the EOS routine implemented in CRYSTAL 

(Erba et al., 2014). The equation of state was then calculated from the E(V) data, i.e., energy versus volume 

curves, employing the volume-integrated 3rd-order Birch-Murnaghan (BM3) formulation (Birch, 1947), as 

proposed by Hebbache and Zemzemi (2004): 
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In this equation, the fitting parameters are E0, K0, K’ V0, which represent the unit cell energy, the bulk modulus 

and its pressure first derivative, and the unit cell volume V0, respectively. The term X = (V0/V)–1/3 was 

introduced to ease the readability of the formula, and the subscript zero in the different parameters means that 

the values are related to a zero-pressure (0 GPa) condition. The structural data of aragonite at different 

compression states are reported in Tables 2, 3 and 4 for the simulations performed with B3LYP-D*, B3LYP-

D3 and PBE-D2, respectively.  

Table 2. Unit cell volume, lattice parameters, mean bond lengths and angles and CO3
2– aplanarity as a function of 

pressure, as obtained from DFT/B3LYP-D* simulations. 

P (GPa) V (Å3) a (Å) b (Å) c (Å) <C–O> (Å) <Ca–O> (Å) <O–C–O> (°) aplanarity (Å) 

24.4 186.076 4.7897 7.4681 5.2020 1.2698 2.3718 119.94 0.0316 

20.3 190.752 4.8248 7.4777 5.2872 1.2718 2.3910 119.94 0.0316 

15.2 197.473 4.8619 7.5430 5.3847 1.2746 2.4177 119.94 0.0309 

13.2 200.508 4.8793 7.5702 5.4283 1.2758 2.4275 119.94 0.0306 

11.2 203.839 4.8972 7.6021 5.4753 1.2770 2.4428 119.94 0.0302 

9.2 207.386 4.9157 7.6402 5.5219 1.2783 2.4566 119.95 0.0298 

7.2 211.312 4.9346 7.6868 5.5709 1.2796 2.4717 119.95 0.0293 

5.2 215.719 4.9553 7.7381 5.6258 1.2809 2.4885 119.95 0.0288 

3.1 220.709 4.9775 7.7985 5.6859 1.2825 2.5073 119.95 0.0283 

1.1 226.392 5.0036 7.8636 5.7538 1.2839 2.5286 119.95 0.0277 

0.1 229.535 5.0177 7.9005 5.7901 1.2847 2.5402 119.95 0.0274 

-1.0 232.979 5.0325 7.9407 5.8301 1.2856 2.5527 119.49 0.0271 

-2.0 236.772 5.0495 7.9834 5.8735 1.2865 2.5679 119.53 0.0269 

-3.1 240.983 5.0682 8.0315 5.9202 1.2873 2.5849 119.56 0.0266 

 

Table 3. Unit cell volume, lattice parameters, mean bond lengths and angles and CO3
2– aplanarity as a function of 

pressure, as obtained from DFT/B3LYP-D3 simulations. 

P (GPa) V (Å3) a (Å) b (Å) c (Å) <C–O> (Å) <Ca–O> (Å) <O–C–O> (°) aplanarity (Å) 

24.9 183.326 4.7411 7.5353 5.1315 1.2685 2.3587 119.93 0.0333 

20.6 187.733 4.7711 7.5537 5.2092 1.2705 2.3764 119.93 0.0332 

15.4 194.010 4.8104 7.5914 5.3127 1.2732 2.4015 119.93 0.0328 

13.3 196.876 4.8265 7.6145 5.3571 1.2744 2.4128 119.93 0.0327 

11.2 199.921 4.8426 7.6425 5.4019 1.2756 2.4248 119.94 0.0324 

9.2 203.248 4.8601 7.6725 5.4506 1.2768 2.4378 119.94 0.0320 

7.1 206.844 4.8786 7.7081 5.5005 1.2780 2.4518 119.94 0.0316 

5.1 210.820 4.8977 7.7517 5.5530 1.2793 2.4672 119.94 0.0310 

3.1 215.251 4.9184 7.8004 5.6105 1.2807 2.4842 119.94 0.0305 

1.0 220.256 4.9415 7.8542 5.6750 1.2821 2.5032 119.95 0.0300 

0.0 222.987 4.9544 7.8836 5.7091 1.2829 2.5135 119.95 0.0297 

-1.0 225.925 4.9681 7.9150 5.7455 1.2837 2.5293 119.56 0.0294 

-2.0 229.111 4.9822 7.9490 5.7851 1.2844 2.5419 119.58 0.0291 

-3.1 232.563 4.9981 7.9866 5.8260 1.2852 2.5558 119.60 0.0288 

 

The BM3 fitted parameters were K0 = 69.10(7) GPa, K’ = 4.73(1) and V0 = 229.174(6) Å3 by considering the 

PBE-D2 results, K0 = 71.7(8) GPa, K’ = 4.18(11) and V0 = 229.77(8) Å3 with B3LYP-D* and K0 = 80.2(7) 
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GPa, K’ = 4.37(10) and V0 = 223.00(6) Å3 at B3LYP-D3 level. Generally, GGA functionals such as PBE are 

affected by underbinding, namely bond distances are typically larger and the bulk moduli lower than those 

experimentally measured. However, this effect is reduced by correcting the PBE total energy with the D2 

scheme (i.e., cancellation of errors), providing structural and elastic data that are more in line with experimental 

samples. For example, Huang et al. (2017) performed theoretical simulations at the DFT/PBE level of theory 

without the inclusion of van der Waals interactions and reported third-order Birch-Murnaghan parameters K0 

= 66.09 GPa, K’ = 4.64 and V0 = 232.5 Å3. These values are in line with ours but show a larger unit cell volume 

at zero pressure. It is interesting noting that our results obtained with two Hamiltonians are very close to each 

other, but with a slightly different value of the K’ term. In fact, the simulations carried out with the hybrid DFT 

functional and the DFT-D2 scheme led to a first derivative of the bulk modulus K’ ≈ 4, conversely K’ > 4 by 

using the PBE-D2 and B3LYP-D3 approaches. Generally, when the first derivative of the bulk modulus is 

close to 4, the elastic behaviour under hydrostatic compression is described as a second-order Birch-

Murnaghan, whereas K’ ≠ 4 suggests that the BM3 formulation is better suited for the description of the 

pressure evolution of a solid phase. However, the results from the different approaches fall within the 

experimental findings, with very small differences between each other. The bulk modulus values are also 

expected being in general larger than the experimental ones, because they are referred to aragonite at absolute 

zero (0 K).  

Table 4. Unit cell volume, lattice parameters, mean bond lengths and angles and CO3
2– aplanarity as a function of 

pressure, as obtained from DFT/PBE-D2 simulations. 

P (GPa) V (Å3) a (Å) b (Å) c (Å) <C–O> (Å) <Ca–O> (Å) <O–C–O> (°) aplanarity (Å) 

23.4 187.317 4.8074 7.5241 5.1785 1.2809 2.3769 119.92 0.0367 

19.6 191.507 4.8364 7.5310 5.2579 1.2828 2.3936 119.92 0.0373 

16.4 195.511 4.8625 7.5572 5.3204 1.2845 2.4098 119.92 0.0372 

13.5 199.540 4.8862 7.5925 5.3786 1.2862 2.4257 119.92 0.0369 

11.0 203.619 4.9084 7.6336 5.4344 1.2877 2.4415 119.92 0.0365 

8.6 207.744 4.9296 7.6789 5.4881 1.2891 2.4576 119.92 0.0359 

6.5 211.930 4.9500 7.7280 5.5401 1.2905 2.4737 119.93 0.0353 

4.7 216.162 4.9694 7.7802 5.5909 1.2918 2.4898 119.93 0.0346 

2.9 220.450 4.9882 7.8338 5.6415 1.2930 2.5059 119.93 0.0339 

1.4 224.791 5.0069 7.8870 5.6925 1.2942 2.5221 119.93 0.0332 

0.1 228.968 5.0253 7.9358 5.7414 1.2952 2.5376 119.94 0.0326 

-1.3 233.633 5.0441 7.9937 5.7943 1.2963 2.5547 119.94 0.0320 

-2.4 238.135 5.0619 8.0492 5.8446 1.2973 2.5711 119.94 0.0314 

-3.5 242.689 5.0793 8.1056 5.8948 1.2982 2.5875 119.94 0.0309 

Compared to experimental findings (see Table 5), our BM3 equation of state parameters are in good agreement 

with all the results obtained with the same formulation (Ono et al., 2005; Li et al., 2015) and with a second-

order Birch-Murnaghan equation of state, as proposed by Martinez et al. (1996). As expected, because no 

temperature effects were included in the simulations, the bulk moduli are generally higher than the 

experimental ones, in the order PBE-D2 < B3LYP-D* < B3LYP-D3. A much higher bulk modulus (K0 = 88 

GPa) was obtained by Santillán and Williams (2004), because of a large differential stress induced in the 

sample chamber as the pressure increased. According to previous discussions and comments (Ono et al., 2005; 
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Palaich et al., 2016), this effect could be explained by the freezing of the methanol-ethanol mixture used as 

pressure-transmitting medium above 10 GPa, which led to a non-hydrostatic behaviour during the experiments 

and to a significant strain-broadening of the XRD diffraction peaks. Our simulations at 0 K, since they 

represent the higher bound of the bulk modulus of aragonite, seems supporting this discussion. 

More details can be graphically evinced from Figure 2, which reports the evolution of the unit cell volume and 

lattice parameters as a function of pressure. It can be noted that our theoretical results are in very good 

agreement with most of the experimental data (Martinez et al., 1996; Palaich et al., 2016; Litasov et al., 2017), 

with a small systematic overestimation of the a lattice parameter. As discussed for aragonite at equilibrium 

conditions, this is probably due to missing long-range interactions along the a-axis direction, which are better 

described with the combination of the DFT-D3 correction and the B3LYP functional. In general, the trend is 

not linear in the explored pressure range for each lattice vector, especially for the b-axis that shows an almost 

parabolic behaviour. Such peculiar trend was observed by Palaich and co-workers (2016), and it was explained 

as a stiffening of the b-axis of aragonite above about 15 GPa, being the dependence of the lattice parameter 

with pressure flatten above this pressure threshold. Because of the loss of hydrostatic/elastic regime, the data 

of Santillán and Williams (2004) show high discrepancy above 15 GPa. 

Table 5. Comparison between the P-V equation of state parameters of aragonite obtained in different studies. 

K0 (GPa) K’ V0 (Å3) Method Formulation Reference 

64.81(3.48) 4* 227.5(8) MA BM2 Martinez et al. (1996) 

88(3) 4* 226.7(3) DAC BM2 Santillán and Williams (2004) 

67.1(6.3) 4.7(8) 227.2(1.0) DAC BM3 Ono et al. (2005) 

73.1(2.2) 4* - DAC BM2 Ono et al. (2005) 

65.24(24) 4.95(12) 226.72(1) DAC BM3 Li et al. (2015) 

66.5(7) 5.0(1) 226.932(5)* DAC BM3 Palaich et al. (2016) 

65.7(8) 5.1(1) 227.11(3)* MA VR Litasov et al. (2017) 

67.0(8) 4.74(12) 227.11(3)* MA BM3 Litasov et al. (2017) 

66.09 4.64 232.5 DFT/PBE BM3 Huang et al. (2017) 

69.10(7) 4.73(1) 229.174(6) DFT/PBE-D2 BM3 Present work 

71.7(8) 4.18(11) 229.77(8) DFT/B3LYP-D* BM3 Present work 

80.2(7) 4.37(10) 223.00(6) DFT/B3LYP-D3 BM3 Present work 

Notes: values with an asterisk (*) were kept fixed during the fitting procedure. MA = multianvil, DAC = diamond-

anvil cell. Formulations are 2nd-order Birch-Murnaghan (BM2), 3rd-order Birch-Murnaghan (BM3) and Vinet-

Rydberg (VR). 

Regarding the internal geometry (see Figure 3), we found that the different Ca – O and C – O bond lengths 

show a continuous decrease by increasing pressure. In particular, the Ca – O bonds show the highest decrease 

in distance at the maximum investigated pressure (mean Ca – O length ≈ 6.3%, ≈ 6.5% and 6.2% with PBE-

D2, B3LYP-D* and B3LYP-D3, respectively), whereas the C – O bonds shortened by about 1.1% (Figures 3a, 

b). This is in good agreement with both the experimental observation of Antao and Hassan (2009) and the 

theoretical simulations of Li and collaborators (2015), who also assessed the rigid behaviour of the carbonate 

ion. In addition, there is an anisotropic variation of the specific Ca – O distances, with the Ca – O1 bonds on 

the ab plane showing less shrinking (≈6.3% at PBE-D2 and about 6.5% with B3LYP-D*) than the Ca – O2 

bonds on the same crystallographic plane (about 6.8% and 7.1% with PBE-D2 and B3LYP-D*, respectively). 

At B3LYP-D3 level the two bonds show a similar shrinking of about 6.3%. 
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However, the present simulation results seem not to confirm the experimental observation of Palaich and 

collaborators (2016). According to the cited research, at ambient pressure, the carbonate groups have their 

oxygen atoms positioned to form equilateral triangles, with both bond angles equal to 120°, whereas they 

become isosceles triangles by increasing pressure. At ca. 29 GPa, the authors noted a difference between the 

O1 – C – O2 and O2 – C – O2 angles of about 10°. Albeit we did not reach this pressure condition, the 

difference within the same bond angle is about 0.5° between 0 GPa and 25 GPa, with a divergence of 2–3° 

between the two bond angles at the maximum investigated pressure (Figure 3c). In addition, due to symmetry 

reasons, in our simulations the triangles described by the oxygens of CO3
2– groups are always isosceles. 

   

  

Figure 2. Aragonite (a) unit-cell volume, (b) a-axis, (c) b-axis and (d) c-axis as a function of pressure, as obtained from 

Density Functional Theory simulations at the PBE-D2, B3LYP-D* and B3LYP-D3 levels. Results from previous 

experimental findings are reported for a direct comparison.  

 

Finally, it is interesting to note that the aplanarity of the carbonate ion group increases as a function of pressure 

(Figure 3d), with an almost linear trend up to about 15 GPa for the B3LYP functional with both DFT-Dn 

corrections for long-range interactions. Instead, a maximum value was found for the PBE-D2 functional at 

about 20 GPa, then aplanarity starts decreasing by further compressing the mineral. Conversely, at the B3LYP 

level it was observed a flattening in the aplanarity to about 0.0316 Å and 0.0333 Å with DFT-D2 and DFT-D3 

schemes, respectively. This incipient discontinuity could be a sign of initial crystal-structural changes related 
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to the aragonite to post-aragonite phase transition. However, to fully support this statement it would be required 

the theoretical analysis of the post-aragonite structure (space group Pmmn), which is beyond the scope of this 

work. 

  

  

Figure 3. (a) Ca – O and (b) C – O bond distances, (c) O – C – O bond angles and (d) aplanarity of the carbonate group 

in aragonite as a function of pressure. Open and filled symbols are related to PBE-D2 and B3LYP-D* results, respectively, 

whereas the B3LYP-D3 values are shown with coloured symbols with black edges. 

 

3. Elastic moduli 

Table 6 reports the elastic moduli of aragonite calculated with the proposed PBE-D2, B3LYP-D* and B3LYP-

D3 approaches at 0 K and 0 GPa. The mineral is mechanically stable in these conditions, according to the Born 

criteria depicted by Mouhat and Coudert (2014): 
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Typically, the Reuss bulk modulus KR obtained from the elastic moduli of a crystal should be close to the K0 

parameter obtained from the equation of state. Our simulations respect this condition, as the difference between 

the two values are below 0.1%. 

 

Table 6. Elastic moduli Cij (GPa), bulk modulus (K, GPa), axial compressibility (βx, TPa–1), Young’s modulus (E, GPa), 

shear modulus (μ, GPa) and Poisson’s ratio (υ) of aragonite, obtained from both theoretical and experimental means. 

  Theoretical  Experimental 
 B3LYP-D3 B3LYP-D*1 PBE-D21 SM2 RIM13 PBE4  BS5 US6 

C11 195.31 168.35 178.10 155.3 164.4 162.57  171.1 159.6 

C22 121.11 106.50 104.58 104.2 112.0 107.81  110.1 87.0 

C33 114.34 106.33 104.31 89.9 59.2 96.48  98.4 85.0 

C44 46.96 41.31 39.74 36.7 40.5 41.91  39.3 41.3 

C55 27.95 19.60 24.33 12.4 33.9 36.44  24.2 25.6 

C66 43.54 38.29 37.92 23.3 49.0 19.59  40.2 42.7 

C12 71.34 65.68 63.11 55.9 65.3 53.65  60.3 36.6 

C13 32.99 27.32 28.85 54.7 39.0 26.42  27.8 2.0 

C23 52.96 44.35 44.76 48.0 48.2 42.77  41.9 15.9 

KV 83.04 72.88 73.38 74.1 80.3 67.6  71.1 49.0 

KR 78.49 69.37 69.16 69.6 76.5 64.3  66.7 44.7 

KVRH 80.76 71.12 71.27 71.8 78.4 66.0  68.9 46.8 

βa 2.6 3.0 2.7 2.1 2.1 3.5  3.0 4.3 

βb 3.9 4.8 5.1 5.2 1.6 4.6  4.6 7.8 

βc 6.2 6.6 6.7 7.1 14.2 7.4  7.3 10.2 

EV 107.94 92.94 95.21 72.7 88.5 91.7  95.4 95.0 

ER 98.60 82.03 86.53 61.7 81.3 81.6  87.6 86.3 

EVRH 103.27 87.50 90.88 67.2 84.9 86.7  91.5 90.7 

μV 42.05 36.09 37.08 27.2 33.6 36.0  37.4 40.4 

μR 38.20 31.48 33.50 22.8 30.7 31.7  34.2 36.6 

μVRH 40.13 33.79 35.29 25.0 32.2 33.8  35.8 38.5 

υV 0.283 0.287 0.284 0.336 0.316 0.274  0.276 0.176 

υR 0.291 0.303 0.291 0.352 0.323 0.289  0.281 0.178 

υVRH 0.287 0.295 0.287 0.344 0.320 0.281  0.279 0.177 

Notes: subscripts V, R and VRH indicate the Voigt, Reuss and Hill averaging schemes, respectively. 

1 – present work 

2 – shell model (SM) simulation results of Fisler et al. (2000) 

3 – simulations carried out using rigid ion model (RIM) by Pavese and co-workers (1992) 

4 – ab initio simulations of Huang and collaborators (2017) 

5 – Brillouin spectroscopy (BS) results of Liu et al. (2005) 

6 – ultrasonic scattering (US) measurements (Voigt, 1910) 

 

The calculated elasticity of the mineral is in general good agreement with the Brillouin scattering 

measurements at ambient conditions (1 atm, 298 K) made by Liu and co-workers (2005), with mean absolute 

deviations of about 16.3% for B3LYP-D3, 6.5% for B3LYP-D* and 4.2% for PBE-D2. Part of this variation 

is related to the use of localized basis sets, as discussed by the authors in previous literature (Ulian and Valdrè, 

2018b; Ulian et al., 2021b). The slightly better agreement of PBE is due to a cancellation of errors effect, i.e., 

the pure GGA functional typically underestimates the bulk modulus of materials, which cancels out part of the 
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overestimation of the elastic moduli introduced by the GTO basis sets. However, as previously mentioned 

when discussing the crystal-chemistry and the equation of state, a higher and positive difference between the 

theoretical and experimental elastic moduli is expected. In fact, both the PBE-D2 and the B3LYP-D* method 

provided a mix of underestimated and overestimated Cij terms. From this perspective, the results from the 

GTO/B3LYP-D3 approach are more representative of the behaviour of aragonite at 0 K and without any 

thermal and zero-point effects, because the elastic moduli are systematically larger than the experimental ones.  

We observe the trend in the longitudinal elastic moduli (i.e., Cii, with i = 1, 2, 3) C11 > C22 > C33, in agreement 

with both experimental (Liu et al., 2005) and theoretical findings (Pavese et al., 1992; Fisler et al., 2000; Huang 

et al., 2017). It is interesting to note that our simulations provided C22 ≈ C33 with PBE-D2 and B3LYP-D* DFT 

Hamiltonians, a result that is in line with the ultrasonic measurements of Voigt (1910). However, the present 

results confirm previous theoretical and experimental evidences of the larger values of the off-diagonal elastic 

moduli (C12, C13, and C23) compared to the very old values reported by Voigt (1910). An improvement with 

respect to previous simulations is the calculated value of the C13 elastic moduli (27.32 GPa and 28.85 GPa at 

B3LYP-D* and PBE-D2 levels, respectively), which is in very good agreement with the experimental value 

of Liu and co-workers (2005). 

The linear axial compressibilities, βx, with x = a, b and c, were calculated for an orthorhombic crystal as 

explained by Nye (1957) using the formula: 

 
( )0

11 12 13a

d a a
s s s

dP
 = = + +  

( )0

12 22 23b

d b b
s s s

dP
 = = + +  

( )0

13 23 33c

d c c
s s s

dP
 = = + +  

where sij are the elements of the compliance tensor S = C–1, expressed in Voigt’s notation. For an orthorhombic 

mineral the volume compressibility β = K–1 is linked to the axial compressibilities according to the following 

expression: 

 
a b c   = + +  

Our DFT axial compressibility values are reported in Table 6, and they are in very good agreement with the 

experimental data of Liu et al. (2005), and provide an improvement with respect to classical potential models 

(Pavese et al., 1992; Fisler et al., 2000) and standard first-principle GGA approaches (Huang et al., 2017). 

The wave velocities were calculated for single-crystal aragonite according to the Christoffel’s equation, as 

reported by Musgrave (1970): 

 2
0ijkl j l ikC V   − =  
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where Cijkl are the elastic moduli, η is the propagation direction, ρ is the mineral density, V is the wave velocity 

and δik is the Kronecker’s delta function. The primary (P-wave, longitudinal, VP) and secondary (S-wave, 

transverse, VS) acoustic wave velocities of aragonite were calculated using the MTEX software (Mainprice et 

al., 2011), and the results are graphically reported in Figure 4.  
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Figure 4. Analysis of the seismic wave velocities (Lambert equal-area upper hemisphere projections), showing (from 

upper left to lower right panels) the longitudinal wave velocity VP (km/s), the anisotropy of secondary waves (%), the fast 

and slow secondary wave velocities, VS1 and VS2, respectively (km/s), both with polarization directions, the VP/VS1 and 

VP/VS2 velocity ratios. Under each projection, the corresponding anisotropy value is reported (see text for details). The 

black and white marks in each panel show the maximum and minimum values for each property, respectively. The results 

are related to the stiffness tensor calculated (a) at the B3LYP-D3 and (b) at the PBE-D2 levels of theory.  

The percentage anisotropy (A%) of seismic velocities is defined in the present work as A = 200(Vmax – 

Vmin)/(Vmax + Vmin), with Vmax and Vmin the maximum and minimum acoustic velocity found by exploring a 

hemisphere of all possible propagation directions. It is worth remembering that in anisotropic crystals, such as 

aragonite, there are two orthogonally polarized secondary waves, a fast one (VS1) and a slow one (VS2), for each 

propagation direction. As a consequence, the percentage anisotropy can be calculated for each direction VS1 

and VS2. The bidimensional projections reported in Figure 4 show that VP waves travel faster along the [100] 

crystallographic direction and slower in the [001] direction, with an anisotropy of 29.3% for PBE-D2, 28.3% 

for B3LYP-D* and 28.8% for B3LYP-D3 simulations. As expected, the Neumann’s principle, which states 

that any physical property of a crystal must be invariant with respect to its symmetry elements, is respected. 

The percentage of S-wave anisotropy, also known as shear wave splitting, is about 30% for the PBE-D2 and 

B3LYP-D3 approaches, whereas it was larger (37%) at the B3LYP-D* level. These seismic wave anisotropies 

are in line with the previous theoretical observations of Huang and co-workers (2017), who obtained for the 

longitudinal waves A(VP) = 26% and for the transverse seismic waves A(VS) = 38%, calculated at 0 GPa.  

The anisotropy of VP/VS1 ratio is almost the same between the PBE-D2 (42.7%) and the B3LYP-D* (42.5%) 

levels of theory, but the VP/VS2 ratio is about 10% different between the two approaches (52.3% with PBE-D2 

and 62.6% with B3LYP-D*). This is obviously due to the values of the primary and secondary acoustic wave 

velocities obtained from the two simulations, which were calculated from slightly different stiffness tensors. 

By using the B3LYP-D3 approach, the ratios are close to the PBE-D2 ones. 

Finally, no significant differences in the directions of maximum and minimum seismic velocities (black and 

white markers in Figure 4, respectively) were observed when the DFT Hamiltonian is changed. To our 

knowledge, this is the first time that a direct analysis of the effects of two density functionals and different 

DFT-Dn schemes was performed on the elasticity of aragonite and on its seismic wave propagation. 

 

Conclusions 

In the present work, we provided a first-principle simulation to obtain a detailed analysis of the elastic 

properties of aragonite (CaCO3, space group Pmcn), an important mineral polymorph in both geological and 

biological fields. We employed two well-known Density Functional Theory Hamiltonians, namely PBE and 

B3LYP, which were corrected with the DFT-D2 and DFT-D3 schemes to properly treat long-range 

interactions. Compared to previous simulations with the same approach (Gaussian-type orbitals basis sets and 

the hybrid B3LYP functional), the weak van der Waals interactions gave an important contribution to both the 

crystallographic and elastic properties of the mineral, in agreement with recent simulations carried out on 
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calcite, the low-pressure polymorph of calcium carbonate. The structural results suggest that the less empirical 

DFT-D3 approach should be preferred to treat this high-pressure phase, as it provides results that are more in 

line with the expected physical behaviour of aragonite, also compared to experimental data. 

A new set of data at absolute zero (0 K) in both hydrostatic compression/expansion regimes was obtained from 

theoretical simulations up to about 25 GPa, which is below the known phase transition of aragonite to the post-

aragonite phase. The energy versus unit cell volume results were fitted to a volume-integrated third-order 

Birch-Murnaghan equation of state, whose parameters are in line with recent experimental findings. From the 

analysis of the variation of the lattice parameters and internal geometry (bond lengths and angles, and CO3
2– 

aplanarity) as a function of pressure, a possible suggestion of the beginning of a phase transition was observed 

by the stiffening of the b-axis values above about 15 GPa and by the decreasing of the aplanarity of the 

carbonate ion groups. To fully support this observation, further simulations at higher pressures on the post-

aragonite structure are needed to investigate this issue at atomic level, obtaining the enthalpy variation at 0 K. 

However, for a complete thermodynamic assessment of this phase transition, temperature effects must be 

included, e.g., using quasi-harmonic approximation or ab initio molecular dynamics simulations. The 

calculation of the lattice dynamics is a very demanding task from the computational side and a careful 

evaluation of the convergence on the thermodynamic results on the supercell size (at least a 2×2×2 supercell 

with 160 atoms should be considered) must be performed to obtain accurate data. This kind of analysis would 

also allow a better comparison between the experimental results at ambient conditions (1 atm, 298 K) and the 

theoretical simulations. We are currently working on this topic, which will be the subject of a future work. 

In addition, we provided the second-order elastic moduli of orthorhombic aragonite at 0 GPa, whose values 

are in good agreement with previous theoretical and experimental ones. A set of mechanical properties was 

further derived from the stiffness matrix, which could be useful for material science applications. We also 

calculated the acoustic wave velocities of the mineral, which are very important from the geophysical 

perspective because they can be used to get information on the structure of the lower mantle of Earth. 
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