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Abstract

How to correctly interpret interaction effects has been largely discussed in scientific litera-

ture. Nevertheless, misinterpretations are still frequently observed, and neuroscience is not

exempt from this trend. We reviewed 645 papers published from 2019 to 2020 and found

that, in the 93.2% of studies reporting a statistically significant interaction effect (N = 221),

post-hoc pairwise comparisons were the designated method adopted to interpret its results.

Given the widespread use of this approach, we aim to: (1) highlight its limitations and how it

can lead to misinterpretations of the interaction effect; (2) discuss more effective and power-

ful ways to correctly interpret interaction effects, including both explorative and model selec-

tion procedures. The paper provides practical examples and freely accessible online

materials to reproduce all analyses.

Introduction

Methodological and statistical misinterpretations of the interaction effect are no news to many

fields of science [1–10]. Since the 1970s, scientists and statisticians advised about the compli-

cated nature of the interaction effect in order to both warn about possible inaccuracies in its

interpretation and indicate best practices [7, 11]. Nevertheless, incorrect uses are still observed

in literature and neuroscience is not exempt from this trend [12–14].

To get an overview of the practices currently most adopted to investigate interaction effects,

the neuroscientific field served as a case study for the purposes of this paper, although the con-

siderations here reported extend to all scientific fields. We reviewed all the articles pertaining

to behavioral, cognitive, cellular, and molecular neuroscience published between 2019 and

2020 in two of the most prestigious journals in neuroscience, namely Neuron (N = 398) and

Nature Neuroscience (N = 247) (Table 1). When a statistically significant interaction effect was

reported (N = 221), we checked the strategy that was adopted to interpret its results (Fig 1). In

93.2% (N = 206) of cases, some form of pairwise comparison was involved; while only in 6.8%

of cases (N = 15), the interaction effect was interpreted based on a descriptive interpretation of

the means (i.e., without having to resort to a further inferential statistic—like a t-test—but sim-

ply describing the results using summary statistics—like mean and standard deviation or stan-

dard error). Amongst pairwise-comparisons, in a striking majority of cases (98.06%, N = 204),

post-hoc contrasts between all factor levels were used, while, in a small minority of cases
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(1.94%, N = 4), the number of comparisons was a-priori defined based on the experimental

hypothesis. Detailed information on all reviewed papers is available online (see the “open

materials” section). Based on these results, it appears that post-hoc pairwise comparisons are

the designated method to interpret interaction effects, at least in the neuroscientific literature.

This result calls for the need to further highlight the methodological and statistical drawbacks

and implications of this approach, and provide clear and simple guidelines for the correct

interpretation of the interaction effect, in line with previous evidence [1, 2, 4, 7–10, 12, 13].

In the neuroscientific literature, full factorial experimental designs (i.e., a design with two

or more independent variables in which all the main and interaction effects are estimated) are

often used aiming to obtain a statistically significant interaction effect. Groups and conditions

Table 1. Number of studies reviewed reporting different approaches to the interpretation of interaction effects.

Neuron Nature Neuroscience

Interaction effect Pairwise comparisons Post-hoc 154 48

A priori 2 2

Descriptive interpretation of means 9 6

No interaction effect 233 191

Tot 398 247

Note: Studies including only fMRI analysis were not included because of the fundamentally different principles and implications of the use of multiple comparison

corrections that apply to that case (e.g., familywise error correction for clusters).

https://doi.org/10.1371/journal.pone.0271668.t001

Fig 1. Reviewed prevalence of approaches to the interpretation of interaction effects. The blue plot on the left

represents the percentage of approaches used to follow up a statistically significant interaction (N = 221), namely

pairwise comparison (N = 206) or descriptive interpretation of the means (N = 15). The green plot on the right further

specifies the type of pairwise comparison adopted, namely post-hoc comparisons between all factor levels (N = 204) or

a-priori-defined comparisons (N = 4).

https://doi.org/10.1371/journal.pone.0271668.g001
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are carefully chosen to uncover precise expectations about their neurophysiological or behav-

ioral expressions [2, 12]. Let’s consider the following example: a researcher aims to test differ-

ences in arousal to the presentation of fearful and neutral stimuli between a group of

participants with a selective lesion to the amygdala and a healthy control group. Based on pre-

vious evidence, a lesion of the amygdala can be expected to be associated lower level of arousal

when presented with fearful (vs neutral) stimuli, as compared to a healthy control group [15–

19]. This research hypothesis typically translated to a 2 (group: lesion/control) x 2 (stimulus:

fearful/neutral) factorial experimental design.

Statistically speaking, in a factorial experimental design, interaction effects can be observed

if the impact of one factor changes based on the levels of another factor [1]. If the variables

meet the assumptions for parametric analyses, the statistical evaluation of a factorial design

can be achieved via an analysis of variance (Anova), which separates the portion of effect that

can be specifically attributed to each factor (main effect) from that representing their interde-

pendence (interaction effect).

A frequent mistake when using this approach, is the tendency to read interaction effects

even where there are none [12]. For example, a difference between fearful and neutral stimuli

in the control group and the absence of such difference in the lesion group tends to be inter-

preted as evidence for a difference between the two groups [12]. Critically, this kind of conclu-

sion is often reported even in absence of a statistically significant interaction or a direct

comparison between the effect sizes of the contrasts between the two groups [12]. This errone-

ous interpretation can be found both in null hypothesis significance testing (NHST) and

Bayesian perspective [13]. Indeed, even within this framework, a higher probability associated

with the alternative hypothesis in one group (BF10 > 1) but not in another (BF10 < 1) is often

erroneously interpreted as evidence of a difference between the two groups [13].

A more classical debate, however, concerns the mistakes characterizing the interpretation

of a correctly reported statistically significant (typically intended as p < 0.05) interaction effect

[1, 2, 4, 7–10]. Although the limitations of commonly used procedures, such as post-hoc con-

trasts, have been extensively recognized and discussed in the literature [1, 2, 4, 7–10], many

neuroscientific studies still fail to take these indications into account. We argue that the reason

behind this incorrect approach to interaction effect is twofold. First, the interaction effect rep-

resents a global difference between factors, which hardly fits into the typical neuroscientific

experimental logic, characterized by direct comparisons of experimental groups or conditions,

or subtractive methods. Thus, rather than taking a more global perspective, it is classically

used to test very specific differences—i.e., hypotheses—between groups or conditions. Second,

previous literature addressing how to interpret the interaction effect tended to adopt technical

terminologies and methods that may not be easily accessible without a strong statistical back-

ground. Crucially, practical examples and guidelines on how to correctly perform and inter-

pret interactions with currently available statistical tools are missing.

Our review indicates, at least in the neuroscientific field, a tendency to an oversimplification

of the interaction effect based on the comparison between all factorial sub-groups/sub-condi-

tions on a two-by-two basis (i.e., pairwise comparisons). While this approach may seem easier

than looking at the big picture arising from the interaction effect, it poses a series of methodo-

logical and statistical pitfalls that actually complicate or mislead the interpretation of the results

[2, 20, 21].

Given the widespread use of post-hoc pairwise comparisons, the present paper aims to: (1)

highlight the limitations of this approach and how it can lead to misinterpretations of the

interaction effect; (2) show how and why a more informative explorative interpretation of

interaction effects can be conveyed by a descriptive and visual inspection of the model esti-

mated marginal means and errors; and (3) highlight that, when an interaction effect is
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designed to uncover a specific hypothesis, model selection procedures (such as Bayesian infor-

mative hypotheses) can be a more appropriate tool to provide a sensible answer to the initial

research question. All examples and analyses reported in the paper can be reproduced using

the data, code, and step-by-step guidelines available online (see the “open materials” section).

The use and misuse of post-hoc pairwise comparisons

Post-hoc pairwise comparisons consist of contrasting, on a two-by-two basis, all the levels con-

tained within the factors involved in a statistically significant interaction. Considering the 2

(group: lesion/controls) x 2 (stimuli: fearful/neutral) design of our example, the interaction

effect can be followed up by a series of pairwise comparisons between lesion-neutral vs lesion-

fearful, control-neutral vs control-fearful, and so on (up to 6 comparisons). For each compari-

son, in the NHST approach, the probability associated with the data given a true null hypothe-

sis (p-value) is obtained, and the interpretation proceeds based on this evidence.

This approach presents several drawbacks that will be described in the following

paragraphs.

A global effect cannot be reduced to pairwise contrasts

Probably, the major drawback of pairwise comparisons is that they represent an oversimplifi-

cation of the interaction effect. By separately looking at the difference between pairs of sub-

groups/sub-conditions, they fail to represent the effect as a whole. Interaction effects should be

intended as evidence of a global reciprocal influence among the factors, which can hardly be

described by independently contrasting two levels at a time. As mentioned before, the sole evi-

dence that the two groups present comparable arousal levels for neutral stimuli but not for

fearful ones is not sufficient to represent an interaction effect [12]. Similarly, evidence that the

lesioned group shows no difference in arousal to fearful vs neutral stimuli, while the control

group does, is not sufficient either. To provide a complete interpretation, it is essential to

observe how values are modulated by all levels of the factors simultaneously.

While the presence of a statistically significant interaction effect accounts for all these

changes at once, contrasting pairs of levels ignores (one at a time) one crucial comparison con-

ceived as a control condition for the initial hypothesis (e.g., if we focus on comparing the con-

trol and lesion group in the fearful condition, we are ignoring the possibility of a difference

between groups also in a neutral control condition) [2], thus disregarding the interaction as a

global effect.

Correcting for multiple comparisons can lead to false positives and false

negatives

The second drawback of pairwise contrasts concerns the need for multiple comparison correc-

tions. When performing several comparisons (i.e., between all possible pairs of groups or con-

ditions), the probability to find that one of these is statistically significant just by chance (i.e.,

false positives, Type I error) increases drastically and needs to be controlled with a more strin-

gent threshold for statistical significance (α-level). Amongst other limitations, the debated

mathematical adjustments of the α-level proposed in the literature (e.g., Bonferroni, Tukey,

etc.) [22–25] inevitably result in increasing other sources of error, like the chance of false nega-

tives (Type II error). Moreover, Type III (i.e., correctly rejecting the null hypothesis for the

wrong reason) and Type IV errors (i.e., incorrect interpretation of a correctly rejected hypoth-

esis) are around the corner [2, 26–28].

In our review, several types of corrections for multiple comparisons were reported (Fig 2).

More specifically, 70 studies used Bonferroni’s correction, 53 studies used Tukey’s correction,
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52 studies used Šidák’s correction, 2 studies used LSD corrections, and 1 study used permuta-

tions [22, 23, 25, 29]. 17 of these papers reported a combination of these or Dunnett, LSD,

Mann-Whitney, Newman-Keuls, Scheffè, and Benjamini–Hochberg’s corrections. 7 studies

used an arbitrary threshold of α = 0.001 or α = 0.01 was used. 36 studies used no correction for

multiple comparisons. In all cases, no clear justification for the use of one, multiple, or no type

of multiple comparisons correction was provided. Of note, almost all pairwise comparisons

reported (98.06%, N = 204) were based on post-hoc comparisons, i.e. all possible pairs of sub-

levels were contrasted against each other. In only 4 studies (1.94%) the number of comparisons

performed was defined a-priori, based on the experimental hypothesis, although sometimes

erroneously referred to as planned contrasts [30].

Absence of evidence is not evidence of absence

A further problem with post-hoc pairwise comparisons is that, even if we do find a statistically

significant difference in the experimental group but not in the control group, we cannot con-

clude that there is no effect in the latter [13, 20, 31, 32]. Nevertheless, the initial hypothesis is

often based on this implicit assumption. Following the NHST approach, a p> 0.05 does not

allow us to conclude that there is no difference between the two conditions. The absence of evi-

dence for a difference between conditions is not evidence of the absence of difference between

Fig 2. Reviewed prevalence of approaches to the correction for multiple comparisons. This word-cloud plot

represents the frequency of the reported approaches to multiple comparison correction. Font size is scaled by a factor

proportional to its frequency so that the bigger, the more frequent. Bonferroni (N = 70), Tukey (N = 53), and Šidák’s

(N = 52) corrections were the most adopted. 36 studies reported no correction for multiple comparisons. In all cases,

no clear justification for the use of one, multiple, or no type of multiple comparisons correction was provided.

https://doi.org/10.1371/journal.pone.0271668.g002
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conditions. When such a crucial piece of information for our hypothesis—e.g., the absence of

effect in the control group—is taken for granted only because p> 0.05, the resulting conclu-

sion is necessarily flawed from a statistical point of view [13, 20, 31–33].

Redundant statistical tests

Another limitation of the use of pairwise comparisons is their redundancy. The presence of a

statistically significant interaction among factors is already tested within the Anova model.

The use of additional statistical tests (i.e., evaluation of a p-value for each pair of contrasts) is

redundant, as the interaction effect alone (when significant) is sufficient to indicate that there

is a different trend among the levels of each—or some of the—factors [1, 7].

Once a statistically significant interaction among factors is established, the next step is to

move from testing (i.e., binary interpretation of the presence/absence of the effect) to estima-

tion (i.e. obtaining an accurate valuation of the parameters and their uncertainty) without

unnecessary additional statistical tests [34–37].

Observed vs estimated marginal means

Although reporting observed (raw) means and errors (e.g., standard deviation, standard error)

is always desirable, these are not appropriate for interpreting interaction effects emerging from

a statistical model that accounts and corrects for the variability associated with all factors con-

sidered. As such, observed means and errors cannot represent the statistical interaction result-

ing from the Anova [1, 2, 7, 38].

Classically, the type of Anova traditionally used (the standard in most GUI-based statistical

software is type III sum of squares) assumes that the total variance of the model is given by the

variance of each individual factor (main effect) plus the variance represented by the interde-

pendence between the factors (interaction effect) [21, 39, 40]. To disentangle the main effects

from interactions, each effect is evaluated after removing all the others. Thus, each effect is esti-

mated based on the residual variance that can be specifically ascribed to it, cutting away the

variance attributed to other main or interaction effects. Model estimated marginal means and

errors, on the other hand, represent the estimation of each effect “cleansed” of the variability

due to other factors included in the statistical model [1, 2, 7, 21, 38]. In contrast, observed

(raw) means and errors contain the interaction effect as well as the main effect of each individ-

ual factor [1, 2, 7, 38].

More specifically, while the observed and estimated means may coincide if the factorial

design is balanced (i.e., an equal number of subjects or observations per condition), when the

design is unbalanced or when a covariate or a third factor have a significant impact on the

dependent variable, also the estimated means drastically change as compared to the observed

ones [41]. Critically, the observed and model-estimated errors are always different. This is a

crucial piece of information for the inferential conclusions of a post-hoc analysis because the

result of a t-test is based on a comparison of the errors and, thus, how these are calculated

plays a big role in the final result [42].

Based on these considerations, it should become evident how using independently calcu-

lated t-tests to follow up a statistically significant interaction is inherently wrong. Nevertheless,

this remains a common incorrect practice. If pairwise comparisons are necessary, they should

always be based on estimated marginal means and errors, as they represent the parameters net

of the other effects controlled within the initial Anova model.

Unfortunately, the terminology around this issue is usually vague in research reports, mak-

ing it hard to evaluate whether actual post-hoc comparisons (i.e., based on model estimated

marginal means) or separate t-test/Anova comparisons (i.e., independently tested on observed
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means) were performed. Pairwise comparisons are generally referred to as “post-hoc” whether

they are based (estimated) or not based (observed) on the original statistical model, simply

because they are used to follow-up a previously obtained (i.e., “post”) statistically significant

interaction effect. But this terminology is misleading.

In our review, 19 studies reported using pairwise comparisons via t-tests, but there was no

sufficient information to determine whether these were computed on observed or estimated

marginal means and errors. Although disregarded in most papers, this information is crucial

to understand whether the variability and the error terms reported in the interaction effect and

the follow-up comparisons stem from the same statistical model [1, 2, 7, 21, 38].

A more appropriate way: Describe interaction effects via estimated

marginal means and confidence intervals

As previously stated, a statistically significant interaction should be intended as a global effect, indic-

ative of the presence of different trends among all the sub-group/sub-conditions involved, in which

each factor is evaluated net of the influence of all other factors (i.e., Anova with type III sum of

squares). Looking at a polished estimation of the interaction effect is especially important when con-

trol groups/conditions or covariates are present, as it takes out the amount of variability that is not

attributed to the group/condition of interest. For example, one may not be simply interested in

whether patients respond differently than controls, but in whether such difference can be specifically

attributed to the fearful stimulus, net of all other factors. Of note, although the present paper focuses

on interaction effects, the same logic applies to a correct interpretation of main effects.

Many authors converge on the idea that the most effective way to represent and interpret

interaction effects goes through a simple descriptive interpretation of the means and errors

estimated based on the Anova model [1, 2, 7, 36, 43–45]. Notably, in our review, only 6.8%

(N = 15) of studies adopted a descriptive interpretation of the interaction effect, although it

was not possible to clarify whether such interpretation was based on observed means or esti-

mated marginal means and errors.

A way to provide an effective descriptive interpretation of the interaction effect based on

meand and means and 95% confidence intervals (CIs) is illustrated in Fig 3. The characteristics

Fig 3. Two ways to represent and interpret an interaction effect arising from a 2 (group: lesion/control) x 2

(stimuli: fearful/neutral) design. (A) Barplot with observed means (± standard error) as classically used to represent

post-hoc pairwise comparisons between all sublevels involved in an interaction effect (���� = p<0.001, ns = p>0.05).

(B) Model estimated marginal means and 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0271668.g003
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and advantages of using CIs for this purpose are illustrated in Box 1. The example in Fig 3 rep-

resents data from 100 simulated cases representing a 2 (group: lesion/control) x 2 (stimuli:

fearful/neutral) between-subjects two-way Anova. The results show the presence of a statisti-

cally significant main effect of stimulus type (F(1, 196) = 140.82, p< 0.001), group (F(1, 196) =

81.125, p< 0.001), and group by stimulus interaction (F(1, 196) = 19.48, p< 0.001). Fig 3A

shows observed means and standard errors as typically represented with a barplot, reporting

above the result of Bonferroni-corrected pairwise t-tests on observed means, calculated to

Box 1. Confidence Intervals

Confidence intervals indicate the precision of an estimate [68, 69] and are based on spe-

cific assumptions about the statistical model (e.g., normally distributed values in the

population). They provide (1) a point estimate, that is the value that most likely repre-

sents the population parameter based on N hypothetical replications of the sample data,

and (2) an interval which represents the precision of such estimate, i.e. how likely it is

that it contains an error (the narrower, the better) [36, 43, 44]. The values within the

confidence intervals can be interpreted as a range of plausible values in the population,

while the values outside the interval as a range of implausible values in the population

[43, 70]. Hence, this information can be used to describe the overall trend emerging

from the ineraction effect and the strength of the difference between the sub-groups/

sub-conditions based on how much the intervals overlap.

One of the main advantages of confidence intervals is that they encourage a more accu-

rate interpretation of results in terms of quantity (“how strong is the difference across

conditions?”) and direction of the observed pattern (“in what way they differ?") [35, 55,

71, 72].

Moreover, they provide information on a measurement scale that makes sense for the

research question as are reported in the same measurement unit of the variable of inter-

est (i.e., seconds, number of responses, voltage, etc.) [36, 43–45]. Differences can be

quantified in terms of number of responses, milliseconds, or voltage, thus allowing the

attribution of a practical meaning to the variations observed across groups or conditions

[36, 43–45]. Whether such difference (or lack of) is “big enough”, depends on the nature

of the variables and the research question at stake. For instance, a 2 sec difference

between two groups in a simple reaction time task (i.e., press the button when any stimu-

lus appears) is intuitively more meaningful than if the same difference is observed in a

complex choice reaction time task (e.g., press the button when you achieve the result of

this equation).

It is important to note that a comparison of CIs based on the extent of their overlap is

correct only if means are independent, which should typically be the case for between-

subjects designs [44]. If there is little (< 25% of the full CI length) or no overlap, there is

reasonable evidence of a difference between the two population means [44]. In the case

of repeated measures, the CIs of the paired differences can be calculated. In this paper,

all the examples are based on between-subjects designs assuming independence between

the means [44, 52].
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follow up the statistically significant interaction effect. In contrast, Fig 3B shows model esti-

mated marginal means and 95% confidence intervals.

Comparing the two plots in Fig 3, it becomes immediately clear how the same data can give

rise to distinct interpretations based on how they are reported. The results presented in Fig 3A

lead to the conclusion that the two groups present significantly different arousal levels when it

comes to fearful stimuli (p<0.001) but not for neutral stimuli (ns, p>0.05) [12]. However,

when looking at Fig 3B, such a conclusion drastically changes. Although both groups show

higher arousal to fearful than neutral stimuli and this effect is stronger in the control group

than in the lesioned group, there are critical group differences that could call for a different

interpretation of the results. Namely, the control group presents higher levels of arousal rela-

tive to the lesioned group, regardless of the type of stimulus. This result suggests that the differ-

ent psychophysiological patterns observed may not be specifically attributed to a difference in

processing fearful stimuli, but rather ascribed to a more general reduced arousal level charac-

terizing lesioned patients. Of note, the data reported in Table 2 show how, in this example,

although the observed and estimated marginal means coincide, their standard error does not

(see the previous paragraph “observed vs estimated marginal means” for the implications of

such difference).

In a second example (Fig 4), we used a new dataset representing the same model and added

a third factor (e.g., working memory ability) that has a significant impact on the dependent

variable but no role in the interaction effect. In other words, the Anova model presents a statis-

tically significant main effect of stimulus type (F(1, 192) = 5.25, p = 0.02), group (F(1, 192) = 8.57,

p = 0.003), working memory (F(1, 192) = 68.3, p< 0.0001), and group by stimulus interaction

(F(1, 196) = 4.02, p = 0.04) but no interaction of the working memory with any other factor

(ps>.86). In such a scenario, despite affecting the overall model (main effect), the working

memory would typically be ignored in the investigation of the group by stimulus interaction.

However, as clearly evident in Fig 4 and Table 3, not only the errors but also the means change

based on whether we are looking at the observed or the model estimated ones. As a conse-

quence, the interpretation of the results may also drastically change.

Both examples provided in this section can be replicated in R [46, 47] and Jamovi [48] fol-

lowing the code and step-by-step guidelines available online (see the “open materials” section).

Post-hoc pairwise comparisons lead to higher false positive risk

than estimation based on confidence intervals

To support the method here proposed, we compared the false positive risk (i.e., the risk to

reject the null hypothesis when it is true) [49, 50] emerging from the pairwise comparisons

based on post-hoc t-tests performed on the observed means versus the overlap between 95%

CIs of the estimated marginal means [51].

To this purpose, we performed 5000 simulations of 2x2, 2x3, and 3x3 between-subjects

Anova models. The null hypothesis was posed as true by looking at differences between

Table 2. Observed vs estimated means and standard errors.

group stimulus observed mean SE estimated marginal mean SE

control neutral 0.624 0.010 0.624 0.008

lesion neutral 0.589 0.007 0.589 0.008

control fearful 0.755 0.008 0.755 0.008

lesion fearful 0.651 0.005 0.651 0.008

The data refer to the example reported in Fig 3

https://doi.org/10.1371/journal.pone.0271668.t002
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observations that have comparable true means, and a standard deviation of 1. The power was

modulated by considering a variable number of subjects per group (N = 5, 10, 20, 30, 50, or

100) and a variable average difference between the group means (average mean difference = 0,

0.1, 0.25, or 0.5). For each simulation, when the model resulted in a statistically significant

interaction between the two factors (~5% of times), we counted the number of times in which

(a) Bonferroni-corrected pairwise comparisons based on observed means and errors were sta-

tistically significant (p<0.05) and (b) 95% confidence intervals of the estimated marginal

means overlapped for less than 25% of the full CI length. Of note, the overlap treshold for CIs

was based on previous literature [44, 51, 52] to find a criterion comparable with a p<0.05. The

false positive risk was then calculated as the relative frequency (number of instances over the

total number of comparisons) of cases meeting this criterion.

The results (Fig 5) show that for all Anova models (2x2, 2x3, and 3x3), number of subjects

per group (N = 5, 10, 20, 30, 50, or 100), and average difference between means (0, 0.1, 0.25, or

0.5), post-hoc pairwise comparisons systematically presented a higher false positive risk, thus

indicating that the use of post-hoc pairwise comparisons based on observed means and errors

increases the probability that the observed result occurred by chance only, as compared to an

interpretation based on estimated marginal means and CI [49, 50].

Fig 4. Two ways to represent and interpret an interaction effect arising from a three-way Anova having as

independent variables: Group (lesion/control), stimulus (fearful/neutral) and working memory ability. The plot

represents the statistically significant group by stimulus interaction. The working memory did not significantly interact

with any variable. (A) Barplot with observed means (± standard error) as classically used to represent post-hoc pairwise

comparisons between all sublevels involved in an interaction effect (���� = p<0.001, ns = p>0.05). (B) Model

estimated marginal means and 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0271668.g004

Table 3. Observed vs estimated means and standard errors.

group stimulus observed mean SE estimated marginal mean SE

control neutral 1.346 0.128 1.281 0.100

lesion neutral 0.539 0.132 0.981 0.120

control fearful 3.034 0.131 2.274 0.167

lesion fearful 0.746 0.140 1.086 0.111

The data refer to the example reported in Fig 4

https://doi.org/10.1371/journal.pone.0271668.t003
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The simulation can be replicated in R [46, 47] following the code available online (see the

“open materials” section).

Testing specific hypotheses

The approaches described above are considered explorative and can be useful when no specific

hypotheses are present. However, factorial experimental designs are often implemented to test

very precise predictions. For instance, in our example, the 2x2 factorial design is set to reveal

an interaction effect between the group (lesion/control) and the stimulus type (fearful/neutral)

to support the expectation that patients with a lesion to the amygdala will show lower arousal

when presented with a fearful, as compared to a neutral, stimulus, relative to the control

group; but also that the two groups shall be comparable when facing a neutral stimulus. Such

specific research hypotheses are not best answered based on the sole presence of main or inter-

action effects as offered by multivariate Anova. A direct contrast between competing hypothe-

ses via model selection procedures can be much more informative [31, 53, 54].

Planned constrasts

Although poorly used, planned comparisons provide a limited but valid approach to compare

simple ordering of means that could represent competing hypotheses [30]. The first character-

istic of planned comparisons is that they are based on the idea that only orthogonal compari-

sons need to be planned in advance, based on the researcher’s expectations. If a hypothesis

exists, comparing all sub-groups/sub-conditions with each other—as done with post-hoc pair-

wise comparisons–is unnecessary as only comparisons reflecting the actual experimental

hypothesis should be tested. This approach better controls for Type I and Type II errors. The

second characteristic is that planned comparisons can be performed between one sub-group/

sub-condition and all others, thus not limiting the interpretation to a contrast between two lev-

els (like in pairwise comparisons).

Nevertheless, orthogonal planned comparisons still present most of the limitations

described above for pairwise comparisons, namely failing to take into account the interaction

as a global effect, the need to correct for multiple comparisons, and the use of redundant statis-

tical tests. Moreover, only simple relations between a single parameter against all the others

can be included in each hypothesis. For instance, we could compare the hypothesis that the

lesion-neutral condition presents lower arousal than all other conditions (i.e., lesion-fearful,

control-neutral, control-fearful) or that the lesion-fearful condition presents lower arousal

than all other conditions (i.e., lesion- neutral, control-neutral, control-fearful), but this would

not be very informative in respect to the initial research hypothesis [20, 31, 32, 53, 55–60].

Bayesian informative hypotheses

Bayesian informative hypotheses offer an effective alternative to overcome the limitations of

pairwise comparisons and planned contrast to directly compare specific research hypotheses

within a Bayesian inferential framework (Box 2) [32, 53, 54, 61].

Fig 5. Results of 5000 simulations of two-ways Anova with different number of levels (2x2, 2x3, and 3x3), number

of subjects per group (N = 5, 10, 20, 30, 50, or 100), and average difference between means (0, 0.1, 0.25, or 0.5).

The null hypothesis was posed as true by looking at differences between observations which have comparable true

means, and a standard deviation of 1. The false positive risk represents the relative frequency (%) of either (in orange)

Bonferroni-corrected pairwise comparisons based on observed means and errors were statistically significant (p<0.05)

or (in green) 95% confidence intervals of the estimated marginal means overlapping for less than 25% of the full CI

length.

https://doi.org/10.1371/journal.pone.0271668.g005
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Informative hypotheses are defined as hypotheses formulated to reflect research expecta-

tions in terms of inequality constraints amongst parameters [31, 53, 61]. These constitute a

more powerful tool than planned comparisons, as a partial ordering of means (i.e., including

only some levels) or specific mathematical relationships between parameters (e.g., differences,

products) can be used to represent experimental hypotheses [53]. For example, if a smaller dif-

ference in arousal is expected between neutral and fearful stimuli in the lesioned group, as

compared to the control group (i.e., an interaction effect as previously intended), this hypothe-

sis can be represented as follows:

H1 ¼ ðmlesion� fearful � mlesion� neutralÞ < ðmcontrols� fearful � mcontrols� neutralÞ

Crucially, other hypotheses may also be relevant to the researcher, such as controlling for the

possibility that the fearful stimuli elicit a higher arousal regardless of group:

H2 ¼ ðmlesion� fearful; mcontrols� fearfulÞ > ðmlesion� neutral; mcontrols� neutralÞ

or that lesioned participants present systematically lower arousal than controls but modulated

by the type of stimulus:

H3 ¼ mlesion� neutral < mlesion� fearful < mcontrols� neutral < mcontrols� fearful

or that lesioned participants present systematically lower arousal than controls regardless the

type of stimulus:

H4 ¼ mlesion� neutral < mlesion� fearful < mcontrols� neutral < mcontrols� fearful

The contrast between models can also include an unconstrained hypothesis (Hu), which is a

hypothesis representing all possible sets of relationships between the parameters without con-

straints (Hu = μlesion-neutral, μlesion-fearful, μcontrols- neutral, μcontrols-fearful). The formulation of a

model representing the null hypothesis is not mandatory and, as for any other model, should

only be included if meaningful from a scientific point of view [31, 53].

Bayesian informative hypotheses allow us to compare and contrast such a set of predefined

hypotheses via a model selection procedure in which each hypothesis (or model) represents a

Box 2. Bayesian inference

The most commonly adopted Bayesian approach to inference is to compare the posterior

probability of the alternative hypothesis (H1, difference between groups or conditions)

with the posterior probability of the null hypothesis (H0, absence of difference between

groups or conditions) via a Bayes Factor (i.e., BF10) [73–75]. As compared to null

hypothesis significance testing (NHST), this approach has the merit to shift the focus

onto the hypothesis we aim to test (H1) and overcome dualistic reasoning by quantifying

and comparing the evidence reflected in the data for the two hypotheses. Nevertheless,

the actual experimental hypothesis is not necessarily well represented by a classically

defined alternative hypothesis, in which the difference between two groups or conditions

is simply expected to be higher or lower than zero. Further problems are represented by

the search for (often inadequate) rules of interpretations of the Bayes Factor values—

which fall back to dualistic inference—and the absence of proper use of prior distribu-

tions [32, 76].
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possible explanation of the phenomenon. For each hypothesis, the posterior model probability

(PMP) is calculated via the Bayes theorem and expressed with a value between 0 and 1. This

value can be interpreted as the relative amount of support for each hypothesis given the data

and the set of competing hypotheses included (the sum of all posterior model probabilities

adds up to 1). The model with the highest PMP reflects the best hypothesis, i.e. the hypothesis

with the highest relative probability [31, 53, 54, 62, 63]. To further support model selection, the

PMPs can also be compared via Bayes Factor to (a) that of the other hypotheses tested, (b) to

its complement hypothesis (i.e., a model that contains any set of restrictions between the

parameters except the one represented by the hypothesis tested), or (c) to the unconstrained

hypothesis (Hu) [31, 53, 63].

When testing these hypotheses on the data from the previous example, the results showed

that the second model (H2) is associated with the highest relative posterior model probability

(Fig 6). This indicates that the hypothesis that fearful stimuli elicit higher arousal regardless of

the group is more likely than that of a selective difference between groups over fearful stimuli.

Of note, H2 basically describes the main effect of stimulus that, although statistically significant

in the Anova model, was disregarded based on the presence of the interaction effect. By com-

paring the probability associated with alternative explanations, it is possible to observe how

that hypothesis is the most likely, given the data.

A full description of this approach is beyond the purposes of this paper; for an exhaustive

overview of this approach and tutorials, see Béland et al., 2012; Hoijtink, 2012; Hoijtink et al.,

2019a. The example here provided can be replicated in R [46, 47] and Jasp [64] following the

code and step-by-step guidelines available online (see the “open materials” section).

Conclusion

In the age of the replication crisis, it is crucial to acknowledge that the data analysis tools avail-

able today offer many ways to easily overcome bad practices of the past, even if commonly

adopted, and embrace a more accurate interpretation of results.

We suggest that, when a factorial experimental design is used, how to explore a resulting

interaction effect deserves careful consideration. Despite being the most diffuse approach

(Table 1), post-hoc pairwise comparisons present several shortcomings, like failure to

acknowledge the interaction as a global effect, the need for multiple comparisons correction,

the impossibility to test the absence of difference, and the use of a redundant statistical evalua-

tion. This calls for clear advice on the need to identify more appropriate strategies to correctly

interpret interaction effects. A general overview of the strengths and weaknesses of the

approaches reviewed in the present paper is provided in Table 4, along with practical indica-

tions of the research scenarios in which their use is appropriate or to be avoided.

In general, when no specific research expectations are present, in line with previous litera-

ture [1, 2, 4, 7–10], post-hoc pairwise comparisons can be effectively replaced with the descrip-

tive and visual inspection of the model estimated marginal means and 95% confidence

intervals [45, 52, 65–67]. Confidence intervals offer an immediate visual representation of the

results based on a measurement scale that makes sense for the research question. As such, they

can be used for the interpretation of the interaction effect without the need for further and

redundant statistical tests. Crucially, this approach shifts the focus on how the values of experi-

mental factors are modulated by all levels of the factors, not just some (or pairs) of them. This

is, by definition, what the interaction effect actually is: a complex net of relationships between

all the factors and their sublevels. Nevertheless, factorial designs and interaction effects are nei-

ther the best nor the only statistical approach available. When a specific research hypothesis is

present, planned contrasts offer a viable, although limited, solution to represent and contrast
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some forms of research expectations. Crucially, model selection procedures such as Bayesian

informative hypotheses [31, 53, 54], can more powerfully test precise research hypotheses by

enabling the definition of all relevant hypotheses in terms of inequality constraints among

parameters and the comparison of their associated probability within a Bayesian inferential

framework [31, 53, 61].

Open materials

All examples and analysis reported in the present paper can be reproduced using the data,

code, and step-by-step guidelines available at https://osf.io/ya9mp/.

Fig 6. Posterior model probabilities of the three models (H1, H2, and H3) were estimated via Bayesian informative

hypotheses.

https://doi.org/10.1371/journal.pone.0271668.g006
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