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Abstract
Ureaplasma species (spp.) are commonly regarded as low-
virulence colonizers of the genitourinary tract. Intrauterine 
Ureaplasma infection, however, has been associated with 
chorioamnionitis and preterm birth. The overall impact of a 
neonatal Ureaplasma colonization is yet to be understood. 
High pathogen prevalence and frequent neurological mor-
bidities particularly in immature preterm infants call for an 
assessment of the significance of Ureaplasma spp. in neona-
tal neuroinflammation. This narrative review summarizes 
clinical data, animal studies, and in vitro results to elucidate 
potential Ureaplasma-associated neurological morbidities 
as well as underlying mechanisms. Increasing evidence indi-
cates an involvement of Ureaplasma spp. in invasive central 
nervous system infections, suggesting a meticulous ability 
of Ureaplasma spp. to interfere with immune defense mech-
anisms. Ultimately, Ureaplasma spp. should be considered as 
relevant pathogens in neonatal neuroinflammation.

© 2020 The Author(s)
Published by S. Karger AG, Basel

Introduction

Ureaplasma species (spp.) are some of the smallest 
self-replicating organisms [1]. Their cultivation can be 
challenging, and molecular techniques helped improving 
diagnostic sensitivity and detection rate only recently [2, 
3]. The 2 human spp. Ureaplasma urealyticum (serovar 2, 
4, 5, 7–13) and Ureaplasma parvum (serovar 1, 3, 6, 14) 
are common colonizers of the adult urogenital tract and 
often considered of low virulence [1]. In neonates, how-
ever, Ureaplasma spp. appear to be clinically relevant 
pathogens with often underestimated impacts on mor-
bidity and mortality [3].

As many as 80% of pregnant women can be considered 
colonized with Ureaplasma spp. in their lower urogenital 
tract, and vertical transmission during pregnancy occurs 
frequently [4, 5]. Ureaplasma spp. were detected in up to 
23% of the umbilical cord blood samples taken from in-
fants born prematurely between 23 and 32 weeks of gesta-
tion [6–8]. Prenatal amniotic infection with Ureaplasma 
spp. has been associated with chorioamnionitis and can 
contribute to preterm birth [6, 9, 10]. Pre-, peri-, or post-
natal transmissions may result in neonatal Ureaplasma 
infection. This can become apparent either as an acute 
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invasive infection such as pneumonia and sepsis or may 
present as long-term inflammation and contribute to 
chronic morbidities like bronchopulmonary dysplasia 
[11–14].

Furthermore, Ureaplasma spp. are increasingly con-
sidered relevant in neonatal neuroinflammation. The lat-
ter may accompany systemic inflammation, for example 
in the event of Ureaplasma-induced chorioamnionitis 
[3], but may also be caused by direct Ureaplasma invasion 
of the central nervous system (CNS): Ureaplasma spp. 
were detected within the cerebrospinal fluid (CSF) in up 
to 19% of the preterm infants ≤1,500 g [8]. This review 
gathers clinical data as well as evidence from animal and 
in vitro studies to elucidate the neuroinflammatory po-
tential of Ureaplasma spp.

Ureaplasma-Driven Neonatal Neuroinflammation:  
In vivo Data

Within the past 45 years, 35 cases of meningitis caused 
by Ureaplasma spp. or the related pathogen Mycoplasma 
hominis were described in neonates, indicating that Urea-
plasma spp. are causal pathogens in neonatal CNS infection 
[15–17]. The most immature preterm infants appear to be 
at highest risk; however, term neonates can also be affected, 
and even a first description of Ureaplasma meningitis in an 
immunocompetent adult patient has recently been pub-
lished [16, 18]. Typical clinical symptoms in neonatal Urea-
plasma meningitis include sepsis-like conditions, apnea, 
and seizures, as well as development of internal hydroceph-
alus, often followed by long-term neurodevelopmental im-
pairment [16]. Chronic courses were described, such as the 
unique case of an 8-month history of chronic Ureaplasma 
meningitis in a former preterm infant [17].

Other typical neurological morbidities of prematurity 
are intraventricular hemorrhage (IVH) and periventricu-
lar leukomalacia (PVL). Since inflammation may rele-
vantly contribute to both conditions, a potential causal 
relationship between Ureaplasma exposure and develop-
ment of IVH or PVL in preterm infants has been dis-
cussed [1, 3, 16, 19–21]. Only few and often small clinical 
studies have addressed this subject so far (Table 1). Two 
elaborate and comparatively large studies reported a 
higher risk for development of preterm IVH upon Urea-
plasma exposure [8, 22] (Table 1). Other studies, how-
ever, did not confirm such a correlation [6, 7, 23–28] (Ta-
ble 1). Similarly, a significant association between prena-
tal and postnatal Ureaplasma infection and PVL has not 
been verified so far [6–8, 22, 23, 25, 26] (Table 1). A study 

addressing long-term neurodevelopmental outcome in 
preterm infants, however, found intrauterine Ureaplas-
ma infection to be associated with cerebral palsy and psy-
chomotor delay at the age of 24 months [26].

The presence of Ureaplasma spp. within the CSF is not 
necessarily accompanied by local inflammation. Single 
studies reported on Ureaplasma detection within the CSF 
without an elevation of typical biomarkers of inflamma-
tion, such as interleukins (ILs) or tumor necrosis factor-α 
[8, 29]. Clinically symptomatic Ureaplasma meningitis, 
however, is usually accompanied by characteristic CSF 
findings including pleocytosis, elevated protein, and, typ-
ically, decreased glucose levels [16, 17].

Ureaplasma-Driven Neonatal Neuroinflammation: 
Animal Studies

Animal models addressing Ureaplasma-driven neuro-
inflammation are scarce. In a mouse model, prenatal 
Urea plasma infection provoked abnormal neuronal de-
velopment with retarded myelination and microglia acti-
vation [30]. MRI data suggested disturbed brain growth 
and maturation upon intra-amniotic Ureaplasma infec-
tion in rhesus macaques [31]. Of note, the same primate 
model found no association between intra-amniotic 
Urea plasma exposure and intracerebral elevation of pro-
inflammatory cytokines, including IL-1β and tumor ne-
crosis factor-α [32]. In sheep, chronic intrauterine Urea-
plasma exposure resulted in cerebral injury, comprising 
decreased astrocyte numbers and increased oligodendro-
cytes [33]. Interestingly, however, this was accompanied 
by protective preconditioning effects against secondary 
inflammatory hits [33].

All 3 available animal models described CNS inflam-
mation subsequent to prenatal Ureaplasma infection. 
However, despite the ability of Ureaplasma spp. to cross 
the blood-brain barrier (BBB), no Ureaplasma growth 
was detected in the ovine CSF, and Ureaplasma mRNA 
was found in only 1 of the 10 primate brains [32, 33]. To 
date, there are no animal models representing invasive 
CNS infection caused by Ureaplasma spp.

Ureaplasma-Driven Neonatal Neuroinflammation:  
In vitro Data

Available in vitro data on Ureaplasma-driven neuroin-
flammation derive from our own cell culture model of 
Ureaplasma meningitis, using human brain microvascu-
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lar endothelial cells (HBMEC), main components of the 
BBB. Ureaplasma spp. did not evoke classic inflamma-
tory responses in HBMEC [34, 35]. Some pro-inflamma-
tory mediators were even suppressed upon pathogen ex-
posure, namely, monocyte chemoattractant protein 
(MCP)-3 and granulocyte colony-stimulating factor (G-
CSF), as well as important agents in inflammatory cell 
death, including caspases 1 and 4 [34–36].

Several pro-apoptotic agents, such as caspases 3, 7, and 
9, were upregulated in HBMEC upon Ureaplasma expo-
sure, and, ultimately, the rate of cell death increased in 
cells with pathogen contact [36]. Moreover, Ureaplasma 
spp. were shown to influence receptors and mediators 

constituting BBB permeability. Atypical chemokine re-
ceptor (ACKR) 3 was elevated in Ureaplasma-exposed 
HBMEC [37]. Similarly, Ureaplasma spp. increased C-X-
C chemokine receptor (CXCR) 4 and vascular endothe-
lial growth factor (VEGF) expression in HBMEC [34, 35]. 
ACKR3, CXCR4, and VEGF enhancements have all been 
associated with BBB leakage [38–42]. A negative impact 
of Ureaplasma spp. on endothelial barrier function was 
confirmed by continuous monitoring of cell adhesion 
properties [36].

In HBMEC primed with bacterial LPS, Ureaplasma 
spp. modulated several LPS-induced immune reactions. 
LPS-evoked pro-inflammatory cytokine and chemokine 

Table 1. Clinical studies addressing neonatal Ureaplasma exposure and potentially associated neurological morbidities

Study (year) Study type Infants 
total, n

GA, 
weeks

Patients 
Ureaplasma 
POS, n

Sample Methods Clinical characteristics 
(Ureaplasma NEG vs. Ureaplasma 
POS) (significance)

Kirchner et al. [28]
(2007)

Single center, 
retrospective cohort

48 24–32 12 Amniotic fluid Culture IVH °III–IV: 3.4 vs. 12.5 (ns)

Goldenberg et al. [6]
(2008)

Single center, 
retrospective cohort

351 23–32 61 Cord blood Culture IVH °III–IV: 6.6 vs. 8.8 (ns)
PVL: 2.3 vs. 3.8 (ns)

Viscardi et al. [8]
(2008)

Single center, 
prospective cohort

313 <33 74 Blood PCR IVH all: 42 vs. 54 (p = 0.092)
IVH °III–IV: 12 vs. 24 (p = 0.039)
PVL: 7 vs. 9 (ns)

CSF PCR IVH all: 49 vs. 44 (ns)
IVH °III–IV: 16 vs. 6 (ns)
PVL: 7 vs. 3 (ns)

Berger et al. [26]
(2009)

Single center, 
prospective cohort

114 23–33 32 Amniotic fluid
Amniotic membranes

Culture IVH: 22.4 vs. 25 (ns)
PVL: 1.5 vs. 12.5 (ns)
Abnormal 2YNDO: 9.7 vs. 37.9 
(p = 0.003)

Fonseca et al. [27]
(2011)

Single center, 
prospective cohort

95 ≤32 12 Blood PCR IVH °III–IV: 15.7 vs. 16.7 (ns)

Kasper et al. [22]
(2011)

Single center, 
prospective cohort

257 <34 85 Amniotic fluid
Placenta
Amniotic membranes

PCR
Culture

IVH: 8.9 vs. 18.5 (p = 0.032)
IVH °III–IV: 0.0 vs. 4.9 (p = 
0.013)
PVL: 5.1 vs. 7.4 (ns)

Rodriguez-Trujillo et al. 
[23] (2016)

Single center, 
prospective cohort

190 >24 37 Amniotic fluid Culture IVH °III–IV: 9 vs. 8 (ns)
PVL: 0 vs. 0% (ns)

Cobo et al. [24]
(2017)

Single center, 
prospective cohort

228 22–36 22 Amniotic fluid Culture IVH °III–IV: 3 vs. 4 (ns)

Glaser et al. [7]
(2019)

Single center, 
prospective cohort

103 <30 40 Cord blood
Nasopharyngeal swabs

PCR
Culture

IVH °III–IV: 27 vs. 28 (ns)
PVL: 18 vs. 14 (ns)

Takakura et al. [25]
(2019)

Single center, 
retrospective cohort

38 22–33 5 Amniotic fluid Culture IVH °III–IV: 8 vs. 0 (ns)
PVL: 8 vs. 0 (ns)

Studies with maternal Ureaplasma therapy or without direct comparison between exposed and nonexposed infants were not included. CSF, cerebrospinal 
fluid; GA, gestational age; IVH, intraventricular hemorrhage; NEG, negative; ns, not significant; POS, positive; PVL, periventricular leukomalacia; 2YNDO, 
neurodevelopmental outcome after 2 years.
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responses for C-X-C chemokine ligand 5, MCP-1, MCP-
3, IL-1α, IL-8, G-CSF, and vascular cell adhesion mole-
cule 1 were mitigated upon Ureaplasma exposure [34, 
35]. Vice versa, Ureaplasma spp. and LPS showed addi-
tive effects regarding mediators increasing BBB permea-
bility, resulting in an intensified elevation of VEGF, inter-
cellular adhesion molecule 1, ACKR3, and CXCR4 [34, 
35, 37].

Discussion

The neonatal CNS is regarded as an immune-privi-
leged site. Its immune privilege, however, can be under-
mined once inflammation has been established [43]. In 
this context, data from clinical and animal studies as well 
as in vitro results suggest certain key aspects in Ureaplas-
ma-driven neuroinflammation. Ureaplasma exposure 
distinctly mediates pathways in the CNS that may (i) im-
pair BBB integrity, (ii) mitigate pro-inflammatory im-
mune responses, and (iii) bear an immunomodulatory 
capacity (Fig. 1).

By employing different mediators and receptors re-
sponsible for endothelial barrier function [38–42], Urea-
plasma spp. appear to increase BBB permeability [34, 35, 
37] (Fig. 1). Ureaplasma-driven apoptosis of HBMEC, as 
integral components of the BBB, may further compro-
mise BBB integrity [36] (Fig. 1). A similar ability to induce 
apoptosis in HBMEC has been described for other neu-
roinvasive pathogens [44, 45]. BBB breakdown is a key 
finding in several neuroinflammatory morbidities. It may 
facilitate pathogen entry into the CNS as well as inflam-
matory cell influx and thus promote neuroinflammation 
[46] (Fig.  1). Ureaplasma-driven BBB impairment may 
therefore represent an important mechanism allowing 
invasive CNS infection both with Ureaplasma spp. and 
other pathogens (Fig. 1).

Even if present within the CNS, Ureaplasma spp. do 
not necessarily evoke classic cytokine and chemokine re-
sponses in vivo [29]. In vitro findings similarly indicate 
absent or even suppressed pro-inflammation [34–36]. In 
case of infections, cytokines, chemokines, and cell death 
usually interact to achieve pathogen eradication [47, 48]. 
Absent local inflammatory responses in Ureaplasma-
driven neuroinflammation may thus impede bacterial 
elimination, reduce the ability to resolve infections, and 
promote sustained inflammation [34–36] (Fig. 1). Inter-
estingly, this phenomenon may be limited to Ureaplas-
ma-induced CNS infection. In other (non-immune-priv-
ileged) compartments, such as lung, chorioamnion, or 

blood, Ureaplasma spp. were shown to evoke marked 
pro-inflammatory immune responses [49–55].

Ureaplasma-driven immunomodulation may be an-
other aspect facilitating secondary infections. In vitro 
findings of mitigated pro-inflammatory responses in co-
stimulated HBMEC may indicate reduced immune re-
sponses in the event of coinfection in vivo [34, 35]. Clini-
cal and animal studies revealed mitigated LPS-induced 
inflammation in Ureaplasma-colonized fetal sheep and a 
higher sepsis incidence in Ureaplasma-exposed preterm 
infants, respectively [7, 56]. A potentiated enhancement 
of mediators allowing BBB passage, as seen in co-stimu-
lated cells, may contrarily aggravate barrier impairment 
and facilitate invasive CNS infections in vivo [34, 35, 37]. 
As polymicrobial colonization is common in preterm in-
fants, Ureaplasma-driven immunomodulation in the 
event of coinfection may be of particular clinical rele-
vance.

Some inflammatory mediators appear to exert addi-
tional neuroprotective and neuroregenerative effects. In 
animal models, MCP-1 increased brain ischemia toler-
ance and G-CSF proved beneficial in neonatal hypox-
emia-ischemia [57, 58]. Ureaplasma-induced attenuation 
of these mediators in vitro may therefore indicate im-
paired brain resilience and increased CNS vulnerability 
to secondary injurious events in vivo. Altogether, this 
may not only aggravate the sequelae of Ureaplasma CNS 
infection, but may also facilitate other neurological mor-
bidities of prematurity (Fig. 1).

Only few clinical studies address the potential associa-
tion between Ureaplasma exposure and development of 
IVH and PVL. Results are contradictory, and several 
studies are limited by small numbers (Table 1). Moreover, 
a certain selection bias has to be presumed, since invasive 
diagnostic measures are primarily applied to sicker pa-
tients. Most authors furthermore did not distinguish be-
tween Ureaplasma urealyticum and Ureaplasma parvum, 
although no difference in outcome was found in the 1 
study comparing both spp. [8]. IVH and PVL are both 
commonly associated with severe long-term sequelae and 
are therefore of considerable clinical relevance. Scarce 
data call for large clinical studies to elucidate the role of 
Ureaplasma spp. in these morbidities.

Apart from a direct impact of local Ureaplasma CNS 
infection, brain injury may also be generated by Ureaplas-
ma-driven systemic inflammation initiated elsewhere 
(Fig. 1). Animal models demonstrated brain-derived in-
flammatory responses upon peripheral cytokine expo-
sure and profound neurodegeneration caused by system-
ic inflammation [59, 60]. Increased levels of pro-inflam-
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Fig. 1. Presumed cascades and pathomechanisms in Ureaplasma-
driven neuroinflammation. a In vitro results indicate that Urea-
plasma spp. may increase BBB permeability via employment of 
ACKR3, CXCR4, and VEGF. Apoptosis of HBMEC may addition-
ally impair barrier function. Mitigation of the inflammatory me-
diators MCP-3 and G-CSF as well as downregulation of inflamma-
tory caspases may hamper pathogen elimination. All factors may 
ultimately facilitate influx of inflammatory cells, Ureaplasma spp., 
and other pathogens into the CNS. b Animal data confirm Urea-
plasma-associated neuronal impairment and cerebral injury. c Ul-

timate consequence may be acute and chronic neuroinflamma-
tion, as seen in clinical studies. d Ureaplasma-driven systemic in-
flammation may contribute to CNS affection. Illustrations: https://
smart.servier.com/. spp., species; BBB, blood-brain barrier; ACKR, 
atypical chemokine receptor; CXCR, C-X-C chemokine receptor; 
VEGF, vascular endothelial growth factor; HBMEC, human brain 
microvascular endothelial cells; MCP, monocyte chemoattractant 
protein; G-CSF, granulocyte colony-stimulating factor; CNS, cen-
tral nervous system.
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matory cytokines were furthermore able to evoke BBB 
leakage in vitro [61]. In preterm infants, development of 
IVH or white matter disease have been associated with 
chorioamnionitis or elevated amniotic fluid ILs [19–21]. 
Elevated amniotic fluid IL levels in chronic Ureaplasma 
infected sheep, distinct pro-inflammatory responses in 
human monocytes, and the association between Urea-
plasma spp. and chorioamnionitis may therefore indicate 
additional indirect pathways of Ureaplasma-driven neu-
roinflammation [6, 8–10, 52–55, 62, 63]. Pre-, peri-, or 
postnatal Ureaplasma exposure may activate fetal and 
neonatal inflammatory cascades, leading to systemic in-
flammation. This may, ultimately, cause CNS inflamma-
tion and brain injury in the affected infant even without 
the presence of Ureaplasma spp. within the CNS (Fig. 1). 
This hypothesis is underlined by an ovine model of 
chronic intrauterine Ureaplasma infection, where cere-
bral inflammatory responses were registered, but not ac-
companied by cultural detection of Ureaplasma spp. in 
CSF [33]. In fact, studies found IVH development in pre-
term infants associated with in utero Ureaplasma expo-
sure [22] as well as with Ureaplasma detection in serum, 
but not in CSF [8].

Of note, animal data demonstrated not only injurious 
but also protective effects of systemic fetal Ureaplasma 
exposure, preventing brain injury upon a second inflam-
matory hit [33]. This “preconditioning” could be ex-
plained by a phenomenon similar to a condition called 
“endotoxin tolerance,” describing a transiently refractory 
immune state following inflammation [64]. Assuming 
such Ureaplasma-driven endotoxin tolerance, systemic 
Ureaplasma infection may therefore prevent local CNS 
inflammation to some extent: systemic inflammation ini-
tiated by Ureaplasma spp. might cause a subsequent re-
fractory immune state. Even in case of inflammation-in-
duced BBB impairment, allowing influx of Ureaplasma 
and inflammatory cells into the CNS, local interactions 
between Ureaplasma spp. and preexposed immune cells 
would be mitigated. In fact, this phenomenon might ex-
plain cases of Ureaplasma presence within the CNS with-
out relevant inflammatory responses [8, 29]. Dual effects 
exerted by Ureaplasma spp. may furthermore contribute 
to discrepant clinical data regarding an association with, 
for example, IVH and PVL (Table 1). Pathogen virulence, 
host immune response, and contributing risk factors such 
as polymicrobial interaction and the duration of infection 
might be critical determinants shaping Ureaplasma ef-
fects [3].

Increasing evidence for Ureaplasma-driven neonatal 
neuroinflammation raises the consecutive question of 

potential therapeutic approaches. Treatment standards of 
neonatal Ureaplasma infection in general are poorly de-
fined, and therapy of Ureaplasma-driven CNS inflamma-
tion in particular is hampered by poor CNS penetration 
of well-established antibiotics like macrolides and 
clindamycin. Chloramphenicol as well as tetracyclines 
and quinolones have successfully been used for treatment 
of Ureaplasma meningitis in neonates, although contra-
indications and side effects have to be considered [16, 17]. 
In general, however, a postnatal therapy cannot fully in-
tercept inflammatory processes deriving from intrauter-
ine Ureaplasma exposure and might therefore not suffi-
ciently prevent associated neonatal morbidities. In fact,  
a significantly increased rate of IVH was described in  
Ureaplasma-colonized preterm infants despite neonatal 
macrolide therapy [65]. Questions remaining to be deter-
mined therefore include the appropriate timing of anti-
microbial therapy, the choice of antibiotics, duration and 
dosage of treatment, and the differentiation between col-
onization and infection [3]. Furthermore, antibiotic re-
sistances as well as potential adverse effects have to be 
taken into account. Maternal erythromycin therapy, for 
example, has been associated with higher rates of infantile 
cerebral palsy, indicating potential long-term risks of 
treatment during pregnancy [66].

Conclusion

In vivo and in vitro data indicate a neuroinflammatory 
capacity of Ureaplasma spp. By employing a variety of 
mechanisms, Ureaplasma spp. appear to weaken different 
host immune defense strategies. Ureaplasma-driven BBB 
breakdown may facilitate CNS invasion, and attenuated 
immune reactions may impede pathogen eradication and 
allow chronic infections. Immunomodulation may ag-
gravate these effects in the event of coinfections. Brain 
injury may furthermore derive from neonatal systemic 
Ureaplasma infection and sustained systemic inflamma-
tory response.

Against the background of high prevalence of Urea-
plasma spp. particularly in very immature preterm in-
fants and persistently high rates of CNS morbidity in this 
cohort, the complex interplay of mechanisms exerted or 
induced by Ureaplasma spp. ought to attract notice to a 
considerable clinical relevance of Ureaplasma-driven 
neuroinflammation in neonates. Its full impact is likely to 
still be underestimated.
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