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Abstract

Aerosol-cloud interactions are the most uncertain component of the anthropogenic radia-
tive forcing. A substantial part of this uncertainty comes from the limitations of currently
used spaceborne CCN proxies that (i) are column integrated and do not guarantee ver-
tical co-location of aerosols and clouds, (ii) have retrieval issues over land, and (iii) do
not account for aerosol hygroscopicity. A possible solution to overcome these limitations
is to use height-resolved measurements of the spaceborne lidar aboard the CALIPSO
(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. This thesis
presents a novel CCN retrieval algorithm based on Optical Modelling of CALIPSO Aerosol
Microphysics (OMCAM) that is designed particularly for CALIPSO lidar measurements,
along with its validation with airborne and surface in-situ measurements.

OMCAM uses a set of normalized size distributions from the CALIPSO aerosol model
and modifies them to reproduce the CALIPSO measured aerosol extinction coefficient. It
then uses the modified size distribution and aerosol type-specific CCN parameterizations
to estimate the number concentration of CCN (nCCN) at different supersaturations. The
algorithm accounts for aerosol hygroscopicity by using the kappa parametrization. Sen-
sitivity studies suggest that the uncertainty associated with the output nCCN may range
between a factor of 2 and 3. OMCAM-estimated aerosol number concentrations (ANCs)
and nCCN are validated using temporally and spatially co-located in-situ measurements.
In the first part of validation, the airborne observations collected during the Atmospheric
Tomography (ATom) mission are used. It is found that the OMCAM estimates of ANCs
are in good agreement with the in-situ measurements with a correlation coefficient of
0.82, an RMSE of 247.2 cm−3, and a bias of 44.4 cm−3. The agreement holds for all
aerosol types, except for marine aerosols, in which the OMCAM estimates are about an
order of magnitude smaller than the in-situ measurements. An update of the marine
model in OMCAM improve the agreement significantly. In the second part of validation,
the OMCAM-estimated ANC and nCCN are compared to measurements from seven sur-
face in-situ stations covering a variety of aerosol environments. The OMCAM-estimated
monthly nCCN are found to be in reasonable agreement with the in-situ measurements
with a 39 % normalized mean bias and 71 % normalized mean error. Combining the
validation studies, the algorithm outputs are found to be consistent with the co-located
in-situ measurements at different altitude ranges over both land and ocean. Such an
agreement has not yet been achieved for spaceborne-derived CCN concentrations and
demonstrates the potential of using CALIPSO lidar measurements for inferring global
3D climatologies of CCN concentrations related to different aerosol types.
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Kurzzusammenfassung
Die Wechselwirkungen zwischen Aerosolen und Wolken sind die unsicherste Komponente des an-
thropogenen Strahlungsantriebs. Ein wesentlicher Teil dieser Ungewissheit ergibt sich aus den
Einschränkungen der derzeit verwendeten weltraumgestützten CCN-Proxies, die (i) säuleninte-
griert sind und keine vertikale Überlappung von Aerosolen und Wolken garantieren, (ii) Prob-
leme bei der Bestimmung über Land haben, und (iii) die Hygroskopizität von Aerosolen nicht
berücksichtigen. Eine mögliche Lösung zur Überwindung dieser Einschränkungen ist die Ver-
wendung höhenaufgelöster Messungen des satellitengestützten Lidars an Bord des CALIPSO-
Satelliten (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation). In dieser Arbeit
wird ein neuartiger CCN-Retrieval-Algorithmus vorgestellt, der auf der Optischen Modellierung
der CALIPSO-Aerosol-Mikrophysik (OMCAM) basiert und speziell für CALIPSO-Lidarmessun-
gen entwickelt wurde, sowie seine Validierung mit in-situ-Messungen vom Flugzeug und am Bo-
den.

OMCAM verwendet normalisierte Größenverteilungen aus dem CALIPSO-Aerosolmodell und
skaliert sie, um den von CALIPSO gemessenen Aerosolextinktionskoeffizienten zu reproduzieren.
Anschließend werden die modifizierte Größenverteilung und aerosoltypenspezifische CCN-Para-
metrisierungen verwendet, um die Anzahlkonzentration von CCN (nCCN) bei verschiedenen Über-
sättigungen abzuschätzen. Der Algorithmus berücksichtigt die Aerosolhygroskopizität durch Ver-
wendung der Kappa-Parametrisierung. Sensitivitätsstudien deuten darauf hin, dass die mit nCCN
verbundene Unsicherheit bei einem Faktor zwei bis drei liegt. Die von OMCAM geschätzten
Aerosolzahlkonzentrationen (ANCs) und nCCN werden anhand von zeitlich und räumlich gle-
ichzeitig durchgeführten in-situ-Messungen validiert. Im ersten Teil der Validierung werden die
während der Atmospheric Tomography (ATom)-Mission gesammelten Flugzeugbeobachtungen
verwendet. Die OMCAM-Schätzungen der ANCs stimmen mit einem Korrelationskoeffizienten
von 0,82, einem RMSE von 247,2 cm−3 und einer Abweichung von 44,4 cm−3 gut mit den in-
situ-Messungen überein. Die Übereinstimmung gilt für alle Aerosolarten, mit Ausnahme der
marinen Aerosole, bei denen die OMCAM-Schätzungen etwa eine Größenordnung unter den in-
situ-Messungen liegen. Eine Aktualisierung des marinen Modells in OMCAM verbessert die
Übereinstimmung erheblich. Im zweiten Teil der Validierung werden die von OMCAM geschätzten
ANC- und nCCN-Werte mit Messungen an sieben in-situ-Stationen am Boden verglichen, die eine
Vielzahl von Aerosolumgebungen abdecken. Die von OMCAM geschätzten monatlichen Werte
für nCCN stimmen mit den in-situ-Messungen mit einer durchschnittlichen Abweichung von 39 %
und einem durchschnittlichen Fehler von 71 % überein. Die Kombination der Validierungsstu-
dien zeigt, dass die Ergebnisse des OMCAM-Algorithmus mit den in-situ-Messungen in ver-
schiedenen Höhenbereichen sowohl über Land als auch dem Meer übereinstimmen. Eine solche
Übereinstimmung wurde bisher für aus Satellitenbeobachtungen abgeleiteten CCN-Konzentratio-
nen noch nicht erreicht und zeigt das Potenzial der Verwendung von CALIPSO-Lidarmessungen
für die Bestimmung globaler 3D-Klimatologien von CCN-Konzentrationen bezüglich verschiedener
Aerosolarten.
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Chapter 1

Introduction

1.1 Background: Aerosols in the climate system

Aerosols are microscopic suspensions of solid, liquid, or mixed particles that can be gener-
ated from anthropogenic activities such as the burning of fossil fuels and biomass, or from
natural sources like volcanic eruptions, deserts, forests, and the ocean. While the immedi-
ate effects of airborne aerosols relevant to human beings are seen in terms of reduced air
quality leading to respiratory illness and reduced atmospheric visibility, over the long term,
they play a major role in modulating our climate by interacting with the Earth’s radiation
balance.

Aerosol interactions with Earth’s radiation budget are complex and involve multiple
pathways. A schematic of some major pathways is shown in Figure 1.1. In clear sky con-
ditions, aerosols directly scatter the incoming solar radiation, thereby blocking a fraction
of energy that would otherwise have reached the surface, resulting in a cooling effect. An-
thropogenic aerosols such as black carbon can also absorb and trap the radiation, warming
the atmosphere and the surface, thus offsetting the cooling effect. This warming can lead
to a more stable atmosphere and, thus, lead to reduced surface moisture fluxes, limiting
the formation of surface-forced clouds. This effect of absorbing aerosols on cloud cover
and ultimately the interaction of clouds and radiation is also called the semi-direct ef-
fect. These direct and semi-direct effects of aerosols on radiation are collectively termed
aerosol-radiation interactions (ARI). Aerosols are also needed in cloud formation. This is
because a subset of them have the ability to act as cloud condensation nuclei (CCN) and
ice nucleating particles (INP), which are necessary to initialize the formation and glacia-
tion of clouds, respectively, under most atmospheric conditions. Thus, any change in the
aerosol concentration may also change the cloud properties, thereby modifying how clouds
interact with radiation. For a constant cloud liquid water content, an increase in the num-
ber of aerosols may increase the number of CCN, resulting in more, but smaller, cloud
droplets. This may enhance the cloud reflectance, resulting in a cooling effect, also called
the cloud-albedo effect or Twomey effect (Twomey, 1974). Moreover, such smaller droplets
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2 Chapter 1: Introduction

Figure 1.1: Schematic representation of various pathways associated with aerosol-cloud-radiation
interactions. Yellow arrows represent the incident and reflected solar radiation. Arrow thickness
indicates intensity and is exaggerated for better visualization. Circles within clouds indicate cloud
droplets. ERF refers to the effective radiative forcing, IRF means the instantaneous radiative
forcing, and T is the atmospheric temperature.

will require a longer time to grow large enough to fall as precipitation. This increases the
cloud lifetime (Albrecht, 1989) and may also increase cloud cover, thereby imposing an
additional cooling effect. Such indirect interactions of aerosols and radiation via clouds are
called aerosol-cloud interaction (ACI).

The beginning of industrialization in the late 1700s marked the starting point of an
increase in man-made emissions of greenhouse gasses and particulate pollutants into the
atmosphere. Compare to the pre-industrial era, the concentration and composition of
aerosols in our atmosphere have changed significantly and are still changing with the growth
in urbanization and industrialization to sustain the increasing world population. Thus, it
is of utmost importance to understand and quantify these aerosol impacts on the Earth's
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radiation balance to accurately predict our future climate and devise appropriate mitigation
policies.

1.1.1 Aerosol-induced effective radiative forcing

Radiative forcing is a measure of the change induced in the Earth’s energy balance because
of a change in an external climate driver or a forcing agent, for instance, aerosols or green-
house gases. As there is an approximately linear relationship between the radiative forcing
and the surface temperature, it has been used extensively in the field of climate research
to quantify the contributions of different forcing agents to the global warming (Boucher
et al., 2013; Forster et al., 2021). It is not only used as a standard tool by the Intergov-
ernmental Panel on Climate Change (IPCC) to create plans for policymakers but also to
constrain climate models and to quantify the uncertainty in future predictions. Starting
from the fifth Assessment Report (AR5) of IPCC (Boucher et al., 2013), the traditional
radiative forcing concept was replaced with a more accurate quantity called the effective
radiative forcing (ERF). ERF due to a forcing agent is defined as the sum of the instanta-
neous radiative forcing (IRF; previously called radiative forcing) induced by the agent and
the forcing due to rapid adjustments (or responses). Surface temperature response to such
adjustments usually occur within a few weeks because of subsequent changes in cloud prop-
erties or other climate components that alter the radiation budget (Boucher et al., 2013).
Likewise, the aerosol-induced ERF is defined as the sum of ERF due to aerosol-radiation
interactions (ERFARI) and aerosol-cloud interactions (ERFACI), where each one has two
components – the instantaneous forcing and the adjustments. Thus, ERFARI includes the
instantaneous forcing due to direct aerosol interaction with radiation (IRFARI) and the
subsequent adjustments in the cloud cover because of modifications in the atmospheric
profile or stability (semi-direct effect). Similarly, ERFACI includes the instantaneous effect
of changing aerosols (that may serve as CCN or INP) on the cloud albedo (IRFACI) as well
as the subsequent adjustments in the cloud liquid water path (LWP) and lifetime.

1.1.2 Significance of aerosol-cloud interactions

As per the latest IPCC report (Forster et al., 2021, AR6), the ERFARI estimated from com-
bined modelling and observational-based evidence is found to be −0.3 ± 0.3 W/m2 with a
medium level of confidence. Similarly, the ERFACI is estimated to be −1 ± 0.7 W/m2, also
with a medium level of scientific understanding, leading to a net aerosol-induced ERF of
−1.3 [−2.0 to −0.6] W/m2. The estimates of aerosol-induced ERF and its components along
with their uncertainties are shown in Figure 1.2. Compared to the previous assessments
(AR4 and AR5), the overall estimates of ERF is now more certain with the level of scientific
understanding improved from low to medium level. It is now certain that aerosols have a
net cooling effect on climate, with ACI being the dominant contributor. Even so, the net
magnitude of aerosol-induced cooling is still uncertain because of inadequate understanding
of the forcing pathways and of observational limitations. The uncertainty associated with
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Figure 1.2: Net effective radiative forcing (ERF) and its components from aerosol-cloud interac-
tions and aerosol-radiation interactions from the fourth, fifth and sixth IPCC Assessment Reports
(AR). L and M stand for a low and medium level of confidence, respectively. Error bars represent
the forcing uncertainty.

ACI has not improved much over the past two decades and is still the largest among all the
forcing agents (Forster et al., 2021). This can be attributed to many factors. For instance,
the forcing estimates for ACI only consider liquid clouds, as the role of (anthropogenic)
aerosols on ice-containing clouds is still not clear. Moreover, the adjustments associated
with ACI are highly uncertain, with only little observational-based evidence (Chen et al.,
2014; Christensen et al., 2016, 2017). Thus, it is of utmost importance to improve our
present understanding of the pathways involved in the interactions between aerosols and
clouds, and their contributions to the ERF to better constrain climate models and reduce
the uncertainties in future climate projections. A comprehensive overview of the existing
observation-based aerosol-cloud interaction studies, their limitation, and possible alterna-
tives for improved quantification of ERFACI are discussed in the following sections.

1.2 Observation-based ACI studies

The roots of aerosol and cloud studies can be traced back to the late 19th century when
laboratory experiments showed that the supersaturation of several hundred per cent needed
for homogeneous condensation of water vapour to form droplets reduces to less than 2 %
in the presence of aerosols (Coulier, 1875; Aitken, 1923). Such aerosols with the ability to
initiate heterogeneous cloud nucleation in the atmosphere were termed cloud condensation
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nuclei and were deemed necessary for cloud formation in the lower troposphere. There-
after, several studies were performed involving controlled laboratory experiments, in-situ
measurement campaigns, and remote-sensing observations to understand and quantify the
impact of aerosols on cloud properties.

1.2.1 In-situ studies

In the late 20th century, the impact of an increase in the number of aerosol particles that
may serve as CCN on clouds was first hypothesized to lead to more number of small
cloud droplets at a constant cloud water content, leading to an increase in the overall
scattering surface area and therefore the cloud albedo (Twomey, 1974, 1977), also called
the Twomey effect. The hypothesis was based on the results from local in-situ aircraft
measurements that showed a decrease in droplet size when clouds were exposed to smoke
from forest fires (Warner and Twomey, 1967; Eagan et al., 1974). Thereafter, several studies
involving in-situ aircraft measurements provided ample evidence of the existence of such
instantaneous aerosol-cloud microphysical interactions, for instance, the increase in cloud
droplet number and decrease in their size for cumulus (Andreae et al., 2004; Lu et al., 2008)
and stratocumulus clouds (Twohy et al., 2005; Lu et al., 2007; Hegg et al., 2012) with an
increase in aerosol concentration.

The second hypothesis on the after-effects (rapid adjustments) of the instantaneous
Twomey effect implies an increase in cloud extent and lifetime as a response to an increase
in the number of cloud droplets and suppressed precipitation (Albrecht, 1989). Precipita-
tion reduces the lifetime and the water content of a cloud. Thus, any suppression or delay
of the onset of precipitation by aerosols would also increase the LWP and cloud cover.
Compared to the Twomey effect, however, the relationship between aerosol concentration
and cloud extent or water content is complex. Some studies have found a positive relation-
ship between them (Nakajima et al., 2001; Kaufman and Koren, 2006), while some report
a negative relation (Coakley and Walsh, 2002; Twohy et al., 2005). This is perhaps because
the impact of aerosols on cloud cover and LWP is also perturbed by external meteorological
factors like cloud entrainment, humidity, and updraft velocity (Lu et al., 2007; Chen et al.,
2012). Such complexities and dependence of ACI on the type of cloud, aerosol, and am-
bient meteorology are responsible for the diverse relationships between aerosols and cloud
microphysical properties.

1.2.2 Spaceborne studies

Instantaneous effect

Satellite measurements provide global and long-term measurements of aerosols and clouds
that not only enable global quantification of ACI but also its regional and regime-wise
changes (Jiang et al., 2018). Satellite-based studies have also found ample evidence of
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the instantaneous Twomey effect. Initially, cloud images from the Advanced Very High
Resolution Radiometer (AVHRR) aboard National Oceanic and Atmospheric Administra-
tion (NOAA) satellite were used to study the effects of ship emissions on cloud properties
(Coakley et al., 1987; Durkee et al., 2000; Coakley and Walsh, 2002). These studies found
an increase in cloud droplet number concentrations (CDNC) and a decrease in their size for
the smoke-affected cloudy pixels. Few studies also identify similar changes in cloud proper-
ties over land (with expected higher concentrations of anthropogenic aerosols) compared to
over ocean (Han et al., 1998a,b). Thereafter, studies incorporated aerosol parameters like
aerosol optical depth (AOD), Angstrom exponent (AE), and aerosol index (AI; defined as
the product of AOD and AE) as derived from spaceborne sensors like the Moderate Res-
olution Imaging Spectroradiometer (MODIS) and Polarization and Directionality of the
Earth’s Reflectances (POLDER) in satellite-based ACI studies. Evidence of the Twomey
effect such as a positive correlation between AOD and cloud optical depth or CDNC and
a negative correlation between AOD and cloud effective radius was identified (Wetzel and
Stowe, 1999; Nakajima et al., 2001). A similar correlation of cloud properties with AI
instead of AOD further support the importance of the Twomey effect (Bréon et al., 2002;
Quaas et al., 2004).

Followed by such spaceborne evidence, several studies have used satellite-derived aerosol
and cloud information to quantify the forcing due to the indirect aerosol effect. One of the
main challenges in estimating the IRFACI is to properly quantify the anthropogenic com-
ponent of present-day aerosol emissions. Some studies assume fine-mode aerosol properties
represent the anthropogenic aerosols, while some use the difference between present-day
and pre-industrial (from global model simulations) aerosol properties. Quaas et al. (2006)
used the relationship between MODIS-derived fine-mode AOD and CDNC to quantify the
sensitivity of cloud properties to changes in aerosol concentration. They further used this
approach to constrain the global model simulations and found the IRFACI to be within −0.5
and −0.3 W/m2 depending on the type of global model considered. Quaas et al. (2008)
combined the AOD-CDNC regression derived from MODIS and the short-wave albedo mea-
surements from the Clouds and the Earth’s Radiant Energy System (CERES) sensor and
found the overall forcing due to the Twomey effect to be similar to the findings of Quaas
et al. (2006) with a value of −0.2 ± 0.1 W/m2. A similar methodology was also used by
Bellouin et al. (2013), where they used fine-mode AOD from reanalysis data and found the
IRFACI to be −0.6 ± 0.4 W/m2, more negative than previous estimates. However, these
IRFACI estimates were still lower in magnitude compared to those from global models
(Boucher et al., 2013). One of the main reasons behind this disagreement was attributed to
the use of AOD, which was argued to be a poor representative of CCN close to cloud-base
(Penner et al., 2011; Shinozuka et al., 2015; Stier, 2016). Gryspeerdt et al. (2017) show that
using AOD–CDNC relationship leads to an underestimation of IRFACI by 30 % and suggest
the use of AI instead of AOD. However, they found a similar net negative IRFACI value of
−0.4 [−0.2 to −1.0] W/m2. Christensen et al. (2016) using AI as a CCN proxy also report
similar forcing estimates. Recent studies have, however, derived a more negative indirect
forcing. Compare to the previous studies which use aerosol optical properties as CCN
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proxies, Hasekamp et al. (2019) use POLDER-derived column-integrated aerosol number
concentrations and estimate a more negative IRFACI of −1.14 [−1.72 to −0.84] W/m2.
Similar negative values were also reported in McCoy et al. (2017) and McCoy et al. (2020).
Summing up all the satellite-based evidences, it is now highly likely that human-generated
aerosols result in an increase in CDNC and therefore have a cooling effect on the climate via
the cloud-albedo effect with an average IRFACI value of −0.7 ± 0.5 W/m2 with a medium
level of confidence (Forster et al., 2021).

Adjustments

Satellite-based studies have also analyzed the relationship between aerosol load and cloud
water content and/or cloud fraction. Lebsock et al. (2008) studied the impact of aerosol
load (using AI) on precipitating and non-precipitating liquid clouds over oceans. They
report contrasting results for those two scenarios: a decrease in LWP with an increase in
aerosols for non-raining clouds and an increase in LWP with aerosol load for transitional
or precipitating clouds. Ship emissions have also been used to characterise anthropogenic
aerosols and analyze their impact on LWP and cloud cover. Christensen and Stephens
(2011) investigated the impact of ship emissions on open and closed marine stratocumulus
cloud systems. They found a significant increase in LWP (39 %) for open cloud systems
(broken clouds) and a frail decrease in LWP (−6 %) for overcast or closed cloud systems.
In contrast, Goren and Rosenfeld (2014) reported an increase in LWP and cloud fraction
of both open and closed marine-stratocumulus cloud systems influenced by ship emissions,
with the latter being more significant. Aerosols originating from volcanic eruptions are also
used to study cloud adjustments. For instance, Yuan et al. (2011) reported an increase
in cloud height, cloud fraction, and albedo of cumulus clouds with an increase in AI from
Kilauea volcanic eruptions. A similar increase in cloud albedo and LWP is also documented
in Ebmeier et al. (2014), who used AOD to quantify the volcanic emissions. The increase
in LWP is perhaps due to the suppressed coalescence process, which prevents the cloud
droplets to grow large enough to precipitate, thereby promoting the buildup of cloud water
content. While Toll et al. (2017, 2019) report a non-significant or negative change in LWP.
The decrease in LWP may be explained as a result of enhanced dry air entrainment and
evaporation caused by increased aerosol concentrations.

On a global scale, most studies on aerosol-induced adjustments in cloud cover and
LWP have found a negative forcing associated with cloud fraction adjustments. Chen et al.
(2014) analyzed the relationship between AI and cloud fraction and estimated a forcing
of −0.5 ± 0.5 W/m2. Christensen et al. (2017) using AI and Gryspeerdt et al. (2016)
using AOD as CCN proxy found a similar negative forcing. Results are, however, different
for LWP adjustments. Gryspeerdt et al. (2019) and Toll et al. (2019) found a positive
radiative forcing associated with LWP with values between +0.15 and +0.3 W/m2, thereby
offsetting the cooling from aerosol indirect effect. Nevertheless, as only a limited number
of studies are available, the radiative forcing due to aerosol-induced cloud adjustments is
highly uncertain. Other than that, there are also many limitations associated with the
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currently used spaceborne CCN proxies in ACI studies that limit a proper quantification
of the cloud-mediated aerosol radiative forcing as discussed in the next section.

1.3 Spaceborne CCN proxies and their limitations

Only a fraction of aerosols that can act as CCN can interact directly with cloud properties.
As CCN concentrations are not measured directly by spaceborne sensors, most satellite-
based studies rely on aerosol optical properties. In some studies, ACI is explored indirectly
by analysing the change in the properties of clouds that are influenced by emissions from
volcanoes and ships (Christensen et al., 2022). However, such indirect studies can only be
used to infer a qualitative or process-level understanding of ACI and a proper CCN proxy
measurement is required to quantify the cloud-mediated aerosol effects on Earth’s radiative
budget.

Traditionally, satellite-derived AOD is used in ACI studies (Quaas et al., 2006, 2008;
Bellouin et al., 2013). However, it is now well established that AOD is not an appropriate
CCN proxy (Penner et al., 2011; Stier, 2016; Bellouin et al., 2020; Quaas et al., 2020).
This is because it neither account for aerosol microphysical properties nor for the position
of aerosols within the atmospheric column. For instance, an atmospheric column with a
small number of coarse-mode particles may have the same optical depth as one with a large
number of fine-mode aerosols. This is problematic as the latter is more probable to include
more CCN-active particles than the former. Therefore, AOD was replaced by AI, which
weighs more on smaller aerosol particles, in many spaceborne ACI studies (Christensen
et al., 2016, 2017; Gryspeerdt et al., 2017). However, Sayer et al. (2013) found the AI
retrieved over land to be non-reliable. This limits the consideration of aerosols originating
over land, which accommodates most of the anthropogenic sources in ACI studies. Another
major drawback of using these aerosol optical parameters measured from passive sensors
is that they are column-integrated and do not guarantee the vertical co-location of the
aerosols and clouds that are studied (Costantino and Bréon, 2013; Shinozuka et al., 2015).
Figure 1.3 depicts four simple possible scenarios of different arrangements of aerosols and
clouds as derived from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) version-4 Vertical Feature Mask product. In situations like Scenario 1, clouds
and aerosols lie more or less in the same height range and there are no additional aerosol or
cloud layers present at other height levels. The usage of column-integrated properties may
be valid in such a situation as aerosols are likely to interact with the clouds. However, in
other situations where aerosol and cloud layers are either not linked (Scenario 2) or present
at multiple layers (Scenarios 3 and 4), the necessary assumption of vertical co-location for
using column-integrated parameters is not fulfilled. Moreover, retrieval-related issues for
passive sensors like aerosol swelling in humid conditions in the proximity of clouds (Várnai
and Marshak, 2015; Quaas et al., 2020) and cloud contamination of aerosols resulting from
3D scattering effects on the edges of clouds (Várnai and Marshak, 2015; Christensen et al.,
2017) have been identified to further complicate the use of AOD or AI for ACI studies.
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Figure 1.3: CALIPSO level 2 version 4.2 Vertical Feature Mask product for four selected over-
passes over different regions of Africa in February 2007. The red rectangles highlight four scenarios
with different arrangements of aerosols (orange) and clouds (pink) that illustrate the importance
of information on the vertical distribution of those layers when column-integrated parameters are
used for ACI studies.

Satellite-derived aerosol optical properties are also used to derive aerosol microphysical
properties. The PSML003 Ocean data product retrieved from MODIS (Remer et al., 2005,
Appendix B) provides the column-integrated number concentration of aerosols with a radius
> 30 nm. The retrieval algorithm first considers the MODIS measured spectral radiance as
a reference. It then matches the observed radiance with that estimated from a combination
of nine pre-set model aerosol types defined through a set size distribution and a refractive
index. However, the data has not been validated yet and has not been used in spaceborne
ACI studies. Column-integrated aerosol number concentrations are also available from
multi-angle multi-wavelength polarimetric measurements from POLDER (Hasekamp et al.,
2011; Stap et al., 2015). The data set was used in Lacagnina et al. (2017) and Hasekamp
et al. (2019) to quantify the direct and indirect aerosol radiative forcing, respectively. While
the derived microphysical properties may be a better CCN proxy compared to the optical
ones, they are still column integrated and might not represent the aerosols present close to
the cloud base that interact with clouds. Moreover, the POLDER retrievals face quality
issues over land (Hasekamp et al., 2019; Quaas et al., 2020). One possible way to overcome
the limitations associated with currently used column-integrated CCN proxies derived from
passive sensors is to switch to active height-resolved measurements derived from spaceborne
lidar that are not affected by changes in surface properties. Costantino and Bréon (2013)
already showed that height-resolved measurements from spaceborne lidar are invaluable for
assessing the co-location of aerosol and cloud layers in spaceborne ACI studies.
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1.4 CCN concentrations from lidars

Lidar is an active sensor that provides range-resolved measurements. The derived aerosol
optical properties include extinction coefficient, backscatter coefficient, and particle de-
polarization ratio. The retrieved backscatter and extinction coefficients can be further
separated into contributions from dust and non-dust (continental and marine) using the
particle depolarization ratio (Tesche et al., 2009). Shinozuka et al. (2015) use in-situ mea-
surements to report a linear relationship between aerosol extinction coefficient and number
concentration of CCN (nCCN) on a log-log scale. This implies that the aerosol extinction
coefficient profiles measured by lidar can be used to derive height-resolved nCCN. However,
the simple parametrization did not differentiate between aerosol types that can be mea-
sured by polarization lidars. Using the full potential of lidars in measuring type-specific
aerosol properties and considering the different aerosol signatures that are most commonly
found in the atmosphere, Mamouri and Ansmann (2015, 2016) formulated a CCN retrieval
algorithm specifically designed for ground-based lidar, namely the Polarization Lidar Pho-
tometer Networking (POLIPHON) technique. POLIPHON uses the ability of polarization
lidar to derive aerosol type-specific extinction coefficients and estimates the corresponding
nCCN using two steps. It first converts the extinction coefficient (α) to an aerosol number
concentration within a predefined radius limit as

nj,dry = C · αx, (1.1)

where nj,dry is the aerosol number concentration with a dry radius > j nm, C and x are the
regression constants called conversion factor (with unit cm−3Mm) and extinction exponent
(unit less), respectively. The values of j, C, and x depend on the aerosol type. For continen-
tal and marine aerosols, j is 50 nm and it is 100 nm for desert dust aerosols. Mamouri and
Ansmann (2016) estimated the values of C and x from a regression analysis of long-term
AERONET measurements for different aerosol environments that correspond to different
aerosol types. The second step then involves estimating nCCN using nj,dry through simple
size-based CCN parametrizations provided in the literature. These parameterizations con-
clude that continental and marine particles with a dry radius > 50 nm (Quinn et al., 2008;
Rose et al., 2010; Deng et al., 2011) and dust aerosols with a dry radius > 100 nm (Koehler
et al., 2009; Kumar et al., 2011) are most favourable to act as CCN at a supersaturation
of 0.15–0.2 %. Thus, the nj,dry in equation (1.1) represents nCCN at a supersaturation of
0.15–0.2 %. Furthermore, Mamouri and Ansmann (2016) provide enhancement factors (fss)
to compute nCCN at higher supersaturation as

nCCN = fss · nj,dry, (1.2)

where fss = 1.0, 1.35, and 1.7 for supersaturation 0.15–0.2 %, 0.25 %, and 0.40 %, respec-
tively. The enhancement factors for 0.25 % and 0.4 % supersaturation are estimated from
the ratios n40,dry/n50,dry and n30,dry/n50,dry, respectively, as n40,dry and n30,dry form the
most favourable CCN reservoir at the respective supersaturation (Mamouri and Ansmann,
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2016). The uncertainty in the POLIPHON algorithm comes from the extinction to num-
ber concentration conversion (equation 1.1) and the CCN parametrization (equation 1.2).
Mamouri and Ansmann (2016) estimated the uncertainty to be between a factor of 2 and
3. Most of the uncertainty (factor of 1.5–2.0) comes from the conversion of extinction-to-
number concentration. Factors like varying chemical (hygroscopicity) and microphysical
(size distribution) properties of aerosol types with location and aerosol age are the main
contributors to the errors. Additional uncertainties may arise from a pure size-based CCN
parametrization scheme. Not all aerosols over a certain size (> j nm) may be CCN active
at a certain supersaturation. This results in an intrinsic overestimation of nCCN at all su-
persaturations. This level of uncertainty (factor of 2–3) is also reported in Shinozuka et al.
(2015) for remote sensing of nCCN.

Haarig et al. (2019) applied the POLIPHON algorithm to ground-based lidar mea-
surements and found the derived nCCN to be in reasonable agreement with concurrent
airborne in-situ measurements. Even though the algorithm is developed for ground-based
lidars, it has also been applied to spaceborne Cloud-Aerosol Lidar with Orthogonal Polar-
ization (CALIOP) aboard CALIPSO (Marinou et al., 2019; Georgoulias et al., 2020) and
compared to airborne in-situ measurements. Georgoulias et al. (2020) found a very good
agreement between the CALIOP-derived aerosol number concentrations and in-situ mea-
surements over sea surface close to Thessaloniki, Greece. However, the algorithm resulted
in an overestimation for retrievals over land. Moreover, the extinction to number concen-
tration conversion in POLIPHON is not resolved with respect to ambient relative humidity
(RH) and is only valid for situations with RH between 40 and 80 %. Assumption of uniform
aerosol extinction coefficient over such a wide RH window may introduce additional errors
in the presence of hygroscopic aerosols. Further, the conversion factors used in equation
(1.1) vary with geographical location for dust and smoke aerosols (Ansmann et al., 2019,
2021b) which may result in additional errors when applied to satellite measurements that
provide global aerosol measurements. However, such situations can be controlled and fil-
tered for ground-based lidar retrievals and, thus, POLIPHON shows a great promise for
measuring height-resolved cloud-relevant aerosol concentrations operationally at ground-
based stations (Haarig et al., 2019). Having said that, there is still a need for a better
CCN-retrieval algorithm for spaceborne lidar that is consistent globally and accounts for
varying RH conditions.

1.5 Objective: CCN from spaceborne lidar

The primary objective of this dissertation is to formulate a CCN retrieval algorithm specif-
ically designed for the spaceborne CALIPSO lidar that is (i) uniform with respect to ge-
ographical location, (ii) self-consistent with CALIPSO’s retrieval algorithm, and (iii) ac-
counts for aerosol hygroscopicity. Further goals include the validation of the output of the
novel algorithm with co-located in-situ measurements (Schmale et al., 2017; Wofsy et al.,
2018) at different height levels over both land and ocean surfaces and the comparison to
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the outputs from the existing lidar-based POLIPHON algorithm. Such comparisons will
determine the algorithm’s efficacy in retrieving height-resolved long-term global CCN con-
centrations from CALIPSO measurements.

To construct an aerosol retrieval algorithm that is consistent across all regions, a global
aerosol model is generally used, for instance, in the MODIS retrieval algorithm (Remer
et al., 2005). The CALIPSO-retrieval features an aerosol model that provides size distri-
butions and refractive indices of the considered aerosol types. The model was designed
by combining multidecadal measurements from AERONET and in-situ campaigns (Omar
et al., 2009). This aerosol model can be used to retrieve aerosol size distributions from
CALIPSO measurements, which makes the subsequent CCN retrieval self-consistent within
the CALIPSO analysis chain. This methodology is similar to the MODIS retrieval of aerosol
number concentration (Remer et al., 2005, Appendix B) but is aimed to achieve a height-
resolved retrieval of nCCN much needed to study the interaction of vertically co-located
aerosols and clouds. The final retrieved size distributions can then be used in the aerosol
size- and type-based CCN parametrizations by Mamouri and Ansmann (2016) to estimate
nCCN at multiple supersaturations (equation 1.2). To consider the aerosol hygroscopicity,
the kappa-parametrization (Petters and Kreidenweis, 2007) can be implemented with glob-
ally averaged kappa values for different aerosol types (Andreae and Rosenfeld, 2008). The
correction can be applied either to the initial size distributions or to the CALIPSO-derived
ambient aerosol extinction coefficients. A similar hygroscopicity correction methodology
was also used in Altaratz et al. (2013) to correct MODIS-derived AOD to quantify the
effect of humidity growth in enhancing AOD. Implementing such parametrization would
make the CCN-retrieval reliable in high RH conditions like in the proximity of clouds, which
is crucial for studying ACI.

To access the reliability of the retrieved CCN concentrations, it is necessary to compare
them with spatially and temporally co-located in-situ measurements. Although the collec-
tion of in-situ data has its complications, they are often more controlled, manageable, and
quantifiable relative to remote-sensing observations that may involve complicated inversion
algorithms. Thus, remote-sensing products are generally compared with in-situ observa-
tions to check for consistency. For the proposed retrieval algorithm, both the inferred
aerosol number concentrations or nj,dry (that form the input to the CCN-parametrizations)
and CCN concentrations or nCCN (output of the CCN-parametrizations) need to be val-
idated. For validating nj,dry, height-resolved in-situ aircraft measurements taken during
the Atmospheric Tomography (ATom) mission over the Pacific and the Atlantic oceans
between the years 2016 and 2018 (Wofsy et al., 2018) are used. As most of the in-situ data
were collected over oceans, the comparison would evaluate the performance of the proposed
algorithm in estimating nj,dry over oceans. For validating the CALIPSO-derived nCCN, the
surface in-situ measurements from Schmale et al. (2017) are used, which include long-term
nCCN measurements at multiple in-situ stations covering a variety of aerosol environments
over land. The comparison will also demonstrate the ability of the proposed algorithm
in capturing the temporal variations of nCCN at different locations over land. Combining
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the results from both comparisons will yield useful insights into the applicability of the
proposed algorithm for different aerosol environments and surface types.

In this dissertation, a novel CCN retrieval algorithm specifically designed for applica-
tion to measurements from the spaceborne lidar CALIOP aboard the CALIPSO satellite is
presented. The algorithm description and the validation of the retrieval results with inde-
pendent in-situ measurements have been published in three papers. Choudhury and Tesche
(2022a) (Paper 1) present a comprehensive description of the overall retrieval algorithm
with an error estimate based on sensitivity studies. It also includes a theoretical com-
parison with the previously existing lidar-based POLIPHON technique for CCN retrieval.
Furthermore, a preliminary validation study is shown where the CALIPSO retrievals are
compared with the airborne in-situ measurements taken during the ACEMED campaign
(Tsekeri et al., 2017). Choudhury et al. (2022) (Paper 2) compare the CALIPSO-derived
aerosol number concentrations with the in-situ measurements taken during the airborne
ATom campaign (Wofsy et al., 2018). A limitation of the algorithm in the case of fine-
mode marine aerosols is identified and thus a modification to the marine model used in the
algorithm is suggested. Choudhury and Tesche (2022b) (Paper 3) compare the monthly
nCCN time-series derived from Schmale et al. (2017) at seven selected ground-based in-situ
stations with that estimated from CALIPSO. The ability of the algorithm in reproducing
the monthly variations observed by in-situ measurements is assessed and the steps that
should be considered when building a global 3D climatology of nCCN from CALIPSO mea-
surements are suggested. The findings are collectively summarized in Chapter 5 and future
goals are discussed in the final chapter. The dissertation provides ample evidence to sup-
port the use of spaceborne lidar in constructing a global height-resolved CCN climatology,
that will be extremely useful in studying ACI and validating as well as constraining the
regional and global model simulations.





Chapter 2

Estimating cloud condensation
nuclei concentrations from
CALIPSO lidar measurements*

Short summary

A novel methodology to estimate CCN concentrations from CALIPSO lidar is presented.
The algorithm utilises the normalised size distributions from the CALIPSO aerosol model
and adjusts them to reproduce the CALIPSO measured extinction coefficient. The final
adjusted size distributions are then used in the CCN parameterizations to estimate CCN
concentrations at different supersaturations. Kappa parametrization is used to account for
the hygroscopicity of continental and marine aerosols. The sensitivity of the derived CCN
concentrations to variations in the initial size distributions is also examined. An initial
application to a case with coincident airborne in-situ measurements for independent vali-
dation shows promising results and illustrates the potential of CALIPSO for constructing
a global height-resolved CCN climatology.

∗Published as: Choudhury, G. and Tesche, M.: Estimating cloud condensation nuclei concentrations
from CALIPSO lidar measurements, Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-
639-2022, 2022.
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2.1 Introduction

Aerosol particles act as cloud condensation nuclei (CCN) and ice-nucleating particles (INPs)
and provide a surface for the condensation of atmospheric water vapour to form cloud
droplets. The physical and chemical properties of such particles affect not only the cloud
micro- and macro-physical properties, but also cloud development, lifetime, and the as-
sociated precipitation (Rosenfeld et al., 2014; Fan et al., 2016; Choudhury et al., 2019).
The rapid adjustments in clouds resulting from aerosol–cloud interactions (ACIs) are not
well understood and still remain the largest source of spread in global climate projections
(Forster et al., 2021). This challenge has motivated the scientific community to study ACIs
by using data from in situ and satellite measurements as well as by means of modelling and
simulations.

Satellites provide long-term global coverage that enables ACI studies with constrained
meteorology and cloud regimes (Oreopoulos et al., 2017; Douglas and L’Ecuyer, 2019; Jia
et al., 2021). Satellite-based ACI studies relate cloud parameters (cloud reflectivity or
albedo, cloud optical depth, cloud fraction, cloud drop effective radius, liquid water path),
aerosol properties (aerosol optical depth (AOD), Ångström exponent (AE), aerosol index
(AI)), and the precipitation pattern to understand the underlying mechanisms (Quaas et al.,
2008, 2020; Gryspeerdt and Stier, 2012; McCoy et al., 2017; Kant et al., 2019; Liu et al.,
2020; Choudhury et al., 2020). The use of AOD and (to a lesser extent) AI as CCN proxies
results in a significant underestimation of the radiative forcing due to ACIs (Gryspeerdt
et al., 2017; Hasekamp et al., 2019). Shinozuka et al. (2015) suggest that the satellite-
derived AOD or AI, being a column-integrated product, may not be the appropriate proxies
for cloud-relevant CCN particles that usually lie close to the cloud base. Moreover, Stier
(2016) found a low correlation (< 0.5) between the ECHAM-HAM model-simulated AOD
and CCN concentration near the cloud base and suggested the use of vertically resolved
measurements from spaceborne lidar for ACI studies. The findings of Dusek et al. (2006)
show that the ability of aerosols to act as CCN is predominantly dependent on their size
rather than composition. This facilitates the use of satellite-derived aerosol number concen-
trations as accurate CCN proxies for ACI studies (Gryspeerdt et al., 2017; Hasekamp et al.,
2019). The PSML003 Ocean data included in the MODIS (Moderate Resolution Imaging
Spectroradiometer) ocean product give the aerosol number concentration with a radius
greater than or equal to 30 nm or n30 (Remer et al., 2005, Appendix B). This product is
formed by matching the spectral radiance measured by MODIS to the radiance estimated
from a combination of the microphysical properties (size distributions and refractive in-
dices) of nine aerosol types. However, the column-integrated n30 is proportional to the
AOD and may not represent the atmospheric CCN particles located close to the cloud base
altitudes (Shinozuka et al., 2015).

Lidar measurements provide height-resolved aerosol optical properties which are crucial
to study vertically co-located aerosols and clouds (Costantino and Bréon, 2013). Mamouri
and Ansmann (2015) for the first time presented the Polarization Lidar Photometer Net-
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working (POLIPHON) technique to estimate INP concentrations from lidar-derived ex-
tinction coefficient for desert dust aerosols. The algorithm first converts the extinction
coefficient to aerosol number concentration with radius > 250 nm (n250) by using conver-
sion factors derived from the Aerosol Robotic Network (AERONET) correlation study. The
INP concentration is then calculated from n250 using the parameterizations from DeMott
et al. (2010, 2015). Mamouri and Ansmann (2016) further extend the methodology for
estimating CCN concentrations at different supersaturation from lidar-derived extinction
coefficient for dust, continental and marine aerosols, and more recently for aged and fresh
smoke aerosols (Ansmann et al., 2021b). The POLIPHON technique to estimate CCN and
INP concentrations is not only limited to ground-based lidars but can also be applied to
the spaceborne lidar CALIOP (Cloud–Aerosol Lidar with Orthogonal Polarization) aboard
the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) polar-
orbiting satellite (Marinou et al., 2019; Georgoulias et al., 2020). Georgoulias et al. (2020)
for the first time estimated CCN concentrations from CALIPSO measurements by using
the POLIPHON technique and found good agreement with the coincident airborne in situ
measurements taken during the ACEMED-EUFAR (evaluation of CALIPSO’s aerosol clas-
sification scheme over the eastern Mediterranean) campaign (Tsekeri et al., 2017). This
illustrates the potential of spaceborne lidar measurements to construct global 3D CCN and
INP data sets.

The CALIPSO aerosol model includes a set of normalized volume size distributions
(NVSDs) and refractive indices of six aerosol subtypes (Omar et al., 2009). Similar to
the MODIS PSML003 Ocean algorithm, these microphysical properties along with the
CALIPSO-measured aerosol optical properties can be used to derive the cloud-relevant
aerosol number concentrations. In the present work, we utilize the CALIPSO aerosol model
to calculate the extinction coefficient by using Mie scattering for spherical particles (con-
tinental and marine aerosols) and a combination of a T-matrix method and an improved
geometric optics method for non-spherical particles (dust aerosols). We then modify the
NVSD by preserving its shape (mode radii and standard deviation remain constant) until
a closure is achieved between the extinction coefficient inferred from CALIPSO measure-
ments and derived through light-scattering calculations. We finally use the modified size
distribution to compute the aerosol number concentration favourable to act as CCN by
using the CCN parameterizations that correspond to different aerosol types (Mamouri and
Ansmann, 2016). Further, we carry out sensitivity tests by varying the initial NVSD to
quantify the uncertainty associated with the retrieval algorithm. We compare our results
with the existing CCN retrieval algorithm POLIPHON for different aerosol subtypes. More-
over, we present a case study where we apply our algorithm to a CALIPSO overpass over
Thessaloniki and compare it with the in situ observations taken during the ACEMED-
EUFAR campaign (Tsekeri et al., 2017). The approach for retrieving cloud-relevant aerosol
microphysical properties has not yet been implemented for spaceborne lidar measurements.
This study, therefore, presents a new methodology for obtaining height-resolved aerosol
number concentrations from CALIPSO measurements within the CALIPSO framework,
i.e. without relying on externally inferred conversion factors.
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The paper is structured as follows. The data, optical modelling package used in this
work, and a brief overview of the POLIPHON technique for retrieving CCN concentrations
from lidars are described in Section 2.2.2. Section 2.2.3 describes our CCN retrieval algo-
rithm for spaceborne lidar. The sensitivity analysis and comparison studies are presented
in Section 2.2.4. We conclude the paper with a summary in Section 2.2.5.

2.2 Data and retrievals

2.2.1 CALIPSO

CALIPSO is a sun-synchronous polar-orbiting satellite launched on 28 April 2006, as a part
of the afternoon or A-Train constellation (Winker et al., 2009). CALIOP is a polarization-
sensitive lidar onboard CALIPSO that measures profiles of aerosol and cloud properties
from an elevation of 30 km above mean sea level to the surface. The CALIPSO algorithm
classifies the measured signal into aerosols, clouds, clear air, and surface and assigns a
subtype to the detected aerosol signals (Omar et al., 2009). CALIPSO has a set of lidar
ratios associated with each aerosol subtype. These lidar ratios are used in the CALIPSO
retrieval algorithm to estimate the aerosol extinction and backscatter coefficient. In this
work, we use the CALIPSO version 4.20 level 2 aerosol profile product with a uniform
horizontal resolution of 5 km. Because of CALIPSO’s data averaging scheme, the vertical
resolution of aerosol profile data varies with altitude. It is 60 m for altitudes between 20
and -0.5 km and 180 m above 20 km. We use the profiles of aerosol extinction coefficient,
backscatter coefficient, and particle depolarization ratio measured at 532 nm and the aerosol
subtype information in the CCN retrieval algorithm. We also use the relative humidity
profiles included in the CALIPSO data product, obtained by the Global Modelling and
Assimilation Office Data Assimilation System (Molod et al., 2015).

The CALIPSO version 2 aerosol types include dust, smoke, clean continental, polluted
continental, clean marine, and polluted dust. The microphysical properties of these six
aerosol subtypes constitute the CALIPSO aerosol model (CAMel). The lidar ratios used
in the retrieval of extinction coefficient for each aerosol type were modelled using these
microphysical properties. Of the six aerosol subtypes, the properties of smoke, polluted
continental, and polluted dust were obtained directly from a cluster analysis of long-term
cloud-screened AERONET measurements (Omar et al., 2005). The dust model was derived
from Kalashnikova and Sokolik (2002), and the clean marine model was derived from the dry
measurements taken during the Shoreline Environment Aerosol Study (SEAS) campaign
(Masonis et al., 2003; Clarke et al., 2003). The clean continental model was formed by
adjusting the properties of the background continental aerosol cluster from Omar et al.
(2005) to measurements of Anderson et al. (2000). The aerosol model has evolved with
time. In version 4, a new aerosol subtype, namely the dusty marine (dust and marine), was
introduced. Further, the polluted continental and smoke subtypes were renamed to polluted
continental/smoke and elevated smoke, respectively (Kim et al., 2018). The lidar ratios were
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also modified, leading to an increase in mean AOD by 52 % (40 %) for nighttime (daytime)
retrievals, making it more comparable with MODIS-derived AOD. In our algorithm, we
use the microphysical properties of five aerosol subtypes, namely marine, dust, polluted
continental/smoke, clean continental, and elevated smoke. Note that the lidar ratios used
in version 4 of the CALIPSO retrieval have been adjusted from earlier versions based on the
findings from atmospheric measurements (Kim et al., 2018) and do not necessarily connect
to the CALIPSO aerosol model. Since the changes in lidar ratio from version 2 to version
4 are minor (≤ 1 %) for all aerosol types except for clean continental (51 %), we believe
the aerosol model can still be used in our algorithm. However, for the case of the clean
continental aerosol subtype, further study is required to estimate the effect of change in
lidar ratio on its microphysical properties. Having said that, we do not exclude it from our
analysis for the completeness of our algorithm, leaving a scope of future validation study
to examine its applicability in estimating the CCN concentrations from CALIPSO.

2.2.2 MOPSMAP

The modelled optical properties of ensembles of aerosol particles (MOPSMAP) package pro-
vides the aerosol optical properties of arbitrary, randomly oriented spherical or spheroidal
particle ensembles for size parameters ranging up to 1000 and a refractive index range of [0.1,
3.0] and [0, 2.2] for real and imaginary parts, respectively (Gasteiger and Wiegner, 2018).
It includes a data set of pre-calculated aerosol optical properties and a Fortran program,
which estimates the properties of user-defined aerosol ensembles. The optical properties
of spherical particles are modelled using Mie scattering. While for spheroids, based on
the aerosol size parameter, MOPSMAP uses a combination of the T-matrix method and
improved geometric optics method (IGOM). MOPSMAP has been used to simulate the
optical properties of different aerosol types such as mineral (silica and alumina) and ash
aerosols (Jiang et al., 2021) and Martian dust aerosols (Chen-Chen et al., 2021). We ap-
ply the MOPSMAP package to model the aerosol extinction coefficient of different aerosol
subtypes with the bimodal log-normal volume size distributions and refractive indices from
CAMel. The details of the MOPSMAP input parameters are discussed in the methodology
section.

2.2.3 POLIPHON

The POLIPHON technique enables the retrieval of aerosol number concentration by com-
bining the ability of polarization lidar to measure aerosol-type-specific optical properties
with long-term AERONET measurements of aerosol microphysical properties and AOD
(Shinozuka et al., 2015; Mamouri and Ansmann, 2015, 2016). It converts the lidar-derived
extinction coefficient (α in km−1) to number concentration of aerosols with a dry radius
greater than 100 nm (n100,dry) for dust aerosols and greater than 50 nm (n50,dry) for marine
and continental aerosols as
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Table 2.1: POLIPHON conversion factors (C) and extinction exponents (x) for different aerosol
subtypes.

Type C x Source
Dust 8.855 0.7525 (Ansmann et al., 2019)

Continental 25.3 0.94 (Mamouri and Ansmann, 2016)
Marine 7.2 0.85 (Mamouri and Ansmann, 2016)
Smoke 17 0.79 (Ansmann et al., 2021b)

nj,dry = C · αx(z), (2.1)

where nj,dry represents the total aerosol concentration with a dry radius greater than
j nm, C is the conversion factor (cm−3Mm), and x is the aerosol extinction exponent. The
value of j is 50 nm for continental and marine aerosols and 100 nm for dust aerosols. The
constants C and x are calculated from the regression analysis of AERONET measurements,
and their values used in this work are listed in Table 2.1.

The CCN concentration at a certain supersaturation is estimated from the aerosol
number concentration as

nCCN = fss · nj,dry, (2.2)

where fss = 1.0, 1.35, and 1.7 for supersaturations of 0.15 %, 0.25 %, and 0.40 %, respectively.
In this study, we use the conversion factors and extinction exponents for continental and
marine aerosols from Mamouri and Ansmann (2016). For dust aerosols, we use the globally
averaged values as suggested by Ansmann et al. (2019) for application to satellite data. For
smoke aerosols, we use the aged smoke conversion factor and extinction exponent values
from Ansmann et al. (2021b).

2.3 Methodology

This section describes the algorithm used in the present work to derive CCN concentrations
from the CALIPSO profiles of extinction coefficient, backscatter coefficient, depolarization
ratio, and aerosol subtype information. We begin with the scaling procedure of the normal-
ized size distributions from CAMel to obtain the actual aerosol size distribution. After that,
we explain the hygroscopicity correction followed by the CCN parameterization adopted
in our algorithm. Finally, we discuss the application of the CCN retrieval algorithm to
CALIPSO level 2 aerosol profile data.

2.3.1 Aerosol size distribution

The remote sensing of aerosol number concentration requires an initial assumption of aerosol
microphysical properties (size distribution and refractive index). For instance, the MODIS



2.3. Methodology 21

algorithm over the ocean uses a combination of nine predefined aerosol size distributions
and refractive indices and selects the one for which the difference in the measured and
modelled radiance is minimum (Remer et al., 2005, Appendix B). In our study, we use the
aerosol microphysical properties from CAMel and adopt a two-step algorithm to derive the
aerosol size distribution: (i) select the appropriate initial normalized volume size distribu-
tion and refractive index, and (ii) scale the size distribution as per the CALIPSO-measured
extinction coefficient. In contrast to MODIS, the aerosol type in CALIPSO is set prior
to the computation of the extinction coefficient. This eases the selection of initial aerosol
microphysics, which can now be done directly from CAMel as per the aerosol subtype
information included in the CALIPSO retrieval.

The next step is to scale the NVSD as per the CALIPSO-measured extinction. The
extinction coefficient (α) for a certain incident wavelength can be described as

α =
∫ rmax

rmin

Kα(m, r)
V (r) · dV (r)

d ln r
· d ln r, (2.3)

where r is the particle radius; V (r) is the volume of the particle with radius r; Kα is the
extinction cross-section which is a function of the complex refractive index (m) and r; and
dV (r)/d ln r is the log-normal volume size distribution, which for a bimodal case can be
given by

dV (r)
d ln r

= Vt ·
2∑

i=1

νi√
2π ln σi

exp (−(ln r − ln µi)2

2 ln σi
2 ). (2.4)

Here, νi, σi, and µi are the volume fractions, geometric standard deviations, and geometric
mean radii of the ith mode, respectively. Vt is the total volume of the size distribution. The
above size distribution is normalized when Vt = 1. Substituting Eq. (2.4) in Eq. (2.3), we
get

α = Vt ·
∫ rmax

rmin

Kα(m, r)
V (r) ·

2∑
i=1

νi√
2π ln σi

exp (−(ln r − ln µi)2

2 ln σi
2 ) · d ln r. (2.5)

Thus, the extinction coefficient is a function of the size distribution parameters (Vt, νi,
σi, and µi) and the extinction cross section (Kα). Out of these parameters, under ideal
conditions, only Vt is an extensive property, while the rest are intensive and independent
of aerosol amount or concentration (Omar et al., 2005). Eq. (2.5) can be simplified to

α = Vt · αn, (2.6)

where αn is the normalized extinction coefficient corresponding to the NVSD. If we consider
α as the CALIPSO-measured extinction, Vt would be the scaling factor for the NVSD to
compute the actual aerosol size distribution. From Eq. (2.6), we can compute Vt if the
value of αn is known.

We estimate αn for each aerosol subtype by using the NVSDs and refractive indices from
CAMel as input to the MOPSMAP optical modelling package. In the MOPSMAP input,
we consider dust as spheroids and use the axis ratio distribution from Dubovik et al. (2006)
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Figure 2.1: Flowchart of the OMCAM algorithm illustrating important steps involved in retriev-
ing CCN concentrations from CALIPSO level 2 aerosol profile data. The upper part describes the
pre-processing to infer information on the extinction coefficient, aerosol subtype, and the relative
humidity. These parameters form the input to the CCN retrieval part which is outlined in the
lower part. The chart also refers to the used equations and the sections in which specific parts are
discussed.

(also used in the AERONET inversion). Other aerosol subtypes are considered spheres.
We then compute Vt from the ratio of α and αn (Eq. 2.6). On multiplying Vt with the
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NVSD, we get the final scaled aerosol size distribution. Since the algorithm principally
relies on the optical modelling of CALIPSO aerosol microphysics, we hereafter refer to it
as OMCAM.

2.3.2 Aerosol hygroscopicity

The hygroscopic aerosol particles in the atmosphere can uptake water and grow in moist
conditions. The hygroscopic growth needs to be accounted for before deriving the CCN
concentrations. We consider continental (clean continental, polluted continental/smoke
and elevated smoke) and marine aerosols as hygroscopic. We assume dust aerosols to be
hydrophobic in accordance with previous studies (Mamouri and Ansmann, 2016; Ansmann
et al., 2019). The hygroscopicity correction can be applied either to the ambient extinction
coefficient measured by CALIPSO or to the initial NVSD in the retrieval algorithm. We
consider the latter approach and modify the initial NVSD before modelling the extinction
coefficient. There is an inbuilt functionality in the MOPSMAP package to account for the
hygroscopicity using the kappa parameterization scheme (Petters and Kreidenweis, 2007;
Zieger et al., 2013) as

rwet(RH)
rdry

=
(

1 + κ · RH
100 − RH

) 1
3

, (2.7)

where RH is the relative humidity, and κ is the hygroscopic growth parameter. The rmin,
rmax, and µ of the log-normal size distribution (Eq. 2.5) are multiplied with this ratio
whereas the standard deviation (σ) remains unchanged. The refractive index of the hygro-
scopic aerosol is also modified following the volume-weighting rule (Gasteiger and Wiegner,
2018). The κ value is set to be 0.3 for continental and 0.7 for marine aerosols. The values
are global averages and are suggested by Andreae and Rosenfeld (2008).

2.3.3 CCN parameterizations

We use the parameterizations listed in Mamouri and Ansmann (2016) to estimate CCN
concentrations from the dry aerosol number concentration. The final scaled aerosol volume
size distribution obtained from the scaling procedure is first converted to number size
distribution. The number size distribution is integrated starting at 50 or 100 nm to compute
n50,dry or n100,dry depending on the aerosol type. Finally, substituting the values in Eq.
(2.2) results in the required CCN concentration at different supersaturations.

2.3.4 Application of OMCAM to CALIPSO retrieval

Figure 2.1 outlines the OMCAM retrieval algorithm for estimating CCN concentrations
from CALIPSO measurements. In order to apply the OMCAM algorithm to CALIPSO
level 2 version 4.20 data, we first start by pre-processing the data set. To begin with, we
apply all the quality filters listed in Tackett et al. (2018, Table 1). The CALIPSO aerosol
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typing algorithm consists of dust mixtures (dusty marine and polluted dust). In such a
case, we separate the dust and non-dust extinction coefficients by using the methodology
given in Tesche et al. (2009). This is a rather simple and accepted dust separation technique
also used by Mamouri and Ansmann (2015, 2016) for lidar-based CCN retrieval. It uses
the particle depolarization ratio (δp) to separate the particle backscatter coefficient (βp)
into dust (βd) and non-dust (βnd) contributions. βd can be calculated as

βd = βp
(δp − δ2)(1 + δ1)
(δ1 − δ2)(1 + δp) , (2.8)

where the values of δ1 and δ2 are 0.31 and 0.05, respectively. The aerosol mixture is
assumed to be pure dust (non-dust) when δp > 0.31 (< 0.05). When 0.05 ≤ δp ≤ 0.31,
we first estimate βd from Eq. (2.8) and then calculate βnd by subtracting βd from βp.
We compute the dust and non-dust extinction coefficient by multiplying the backscatter
coefficient by the respective lidar ratio. The lidar ratios of dust, polluted continental and
clean marine aerosol subtypes are taken from Kim et al. (2018) and are equal to 44, 70,
and 23, respectively. The extinction coefficient of polluted dust is separated into polluted
continental/smoke and dust, while that of dusty marine is separated into dust and marine
contributions. Finally, the extinction coefficient, relative humidity, and aerosol subtype
information is passed to the CCN retrieval algorithm.

In the CCN retrieval part, we first select the normalized size distribution and refractive
index as per the aerosol subtype and modify them as per the RH value so as to account for
the hygroscopicity of aerosols. In the next step, we model the extinction coefficient using
the MOPSMAP package and calculate Vt from Eq. (2.6). Multiplying Vt by the initial
dry normalized size distribution gives the final dry aerosol size distribution which is used
in the CCN parameterizations (Eq. 2.2) to estimate the CCN concentrations at different
supersaturation values. This methodology is applied to every bin of the CALIPSO profile.
In the case of dust mixtures, the separated dust and non-dust extinction coefficients are
passed through the CCN retrieval algorithm individually, and the results are finally added
to compute the net CCN concentration for that bin. It is worthwhile to note that this algo-
rithm can in principle be used to derive INP concentration from CALIPSO measurements.
This can be done by first estimating n250 from the modified size distribution (Section 2.3.1)
and then using the INP parameterizations (DeMott et al., 2010, 2015) to estimate INP
concentrations. However, in the present study, we limit our focus to retrieving the CCN
concentrations.

2.4 Results

2.4.1 Sensitivity analysis

The performance of OMCAM in retrieving CCN concentrations primarily relies on the
initial NVSD given in CAMel. The aerosol size distributions may change depending on the
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Figure 2.2: Sensitivity of nj,dry (j = 100 for dust and 50 for other aerosol subtypes) to the size
distribution parameters: volume fine fraction (a), mean radius fine (b), mean radius coarse (c),
standard deviation fine (d), and standard deviation coarse (e). The x axis represents perturbations
in the size distribution parameters in percentage of their original values taken from the CALIPSO
aerosol model. The y axis represents the corresponding percentage change in nj,dry relative to
that estimated from the unperturbed size distribution.

age and composition of aerosols (region and type dependent) and the ambient meteorology.
As most of the size distributions used in CAMel are derived from cluster analysis of the long-
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Figure 2.3: Normalized bimodal log-normal volume size distributions for marine (a), dust (b),
polluted continental (c), clean continental (d), and elevated smoke (e) aerosol subtypes adopted
from the CALIPSO aerosol model. The shaded region represents the input space along with the
maximum and minimum limits of size distributions selected for the sensitivity analysis

term AERONET measurements (see Section 2.2.1), they incorporate the errors associated
with the AERONET inversion algorithm. Dubovik et al. (2000) found that the relative error
in the AERONET-retrieved volume size distribution for dust, biomass burning, and water-



2.4. Results 27

soluble aerosols can go beyond 50 % for both small (r < 0.1 µm) and large (r > 7 µm)
particles. In order to account for such errors and natural variability, we analysed the
sensitivity of CCN concentrations to the initial normalized size distributions considered in
our retrieval algorithm.

For each aerosol subtype, the initial NVSD can be perturbed by changing the size dis-
tribution parameters such as the volume fractions (νf & νc), geometric standard deviations
(σf & σc), and mean radii (µf & µc) of fine and coarse modes. Since the sum of the vol-
ume fractions is unity, this leads to five independent size distribution parameters. We first
study the individual effects of varying these parameters on the output nj,dry (j = 100 for
dust and 50 for other aerosol subtypes) as they are the main input to the CCN parame-
terizations. Figure 2.2 depicts the effect of varying these size distribution parameters by
± 50 % on the nj,dry relative to that of unperturbed size distributions from CAMel for a
preset α = 0.1 km−1 and RH = 0 for different aerosol subtypes. The results show fine mode
as the primary contributor to the output aerosol number concentration. A certain change
in the volume size distribution in the fine mode will have a larger impact on the number
concentration compared to the coarse mode as a much larger number of small particles
is needed to produce the same change in volume. Out of the five parameters, µf has the
maximum effect (≈ 800 %) on the output number concentration, followed by σf (≈ 150 %).
This is because both µf and σf modify the distribution of volume across different radii in
the fine-mode. Decreasing (increasing) µf shifts the fine mode towards a smaller (larger)
radius thereby resulting in a comparatively larger (smaller) number of particles for a con-
stant fine mode volume. However, for dust, the effect is opposite when µf is decreased.
This is because the minimum cut-off radius for dust is set to be 100 nm and the fine mode
moves out of this limit when µf is reduced leading to a decrease in the output number
concentration. Increasing (decreasing) σf leads to an increase (decrease) in the fraction
of smaller particles within the fine mode. This results in an increase (decrease) in the
output number concentration for all aerosol subtypes except dust. The output number
concentration is comparatively less sensitive to coarse-mode parameters (µc & σc), as they
contribute primarily to the optical properties of the aerosol volume rather than the number
concentration. When we change the value of α, the aerosol number concentration scales as
per the ratio between α and αn, resulting in no change in the relative n100,dry and n50,dry.

The size distributions formed by varying the size distribution parameters separately
may not be sufficient enough to capture the natural variability. Thus to imitate the natural
variability in a better way, we further consider combinations of the variations in all the
parameters. We do not expect extreme shifts in the size distribution parameters as well. For
instance, reducing µf by 50 % results in abnormal size distributions with 30 %-50 % of the
fine mode moving out of the AERONET size limits (0.05 ≤ r ≤ 15 µm). Therefore, in order
to exclude the non-physical size distributions, we limit the variations in the parameters in
terms of the actual volume size distributions. To implement these constraints, we first vary
the size distribution parameters linearly with a uniform spacing of 0.01 and then consider all
possible combinations of the variations. The NVSDs generated from all the combinations
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form the input NVSD set for the sensitivity analysis. We further fix the maximum limits
of bimodal NVSD to ± 50 % of the amplitude of each of its modes and do not consider the
NVSDs that fall outside this domain in the sensitivity studies. The resulting input NVSD
space for each aerosol type is shown by the shaded region of Figure 2.3. The maximum
and minimum values of all the size distribution parameters considered in the sensitivity
analysis are given in Table 2.2.

Table 2.2: Bimodal log-normal volume size distribution parameters along with their limits con-
sidered in the sensitivity analysis. Abbreviations: VF - volume fraction, MR - mean radius, GSD
- geometric standard deviation, CAM - CALIPSO aerosol microphysics.

Aerosol
subtype

Size distribution parameters
VF fine MR fine MR coarse GSD fine GSD coarse

CAM min max CAM min max CAM min max CAM min max CAM min max

Clean
marine

0.025 0.001 0.035 0.150 0.101 0.227 1.216 0.815 1.824 1.600 1.376 2.56 1.60 1.376 1.76

Dust 0.223 0.114 0.332 0.116 0.083 0.164 2.833 1.615 4.249 1.481 1.304 2.192 1.908 1.545 3.625

Polluted
cont.

0.531 0.235 0.703 0.158 0.109 0.227 3.547 1.88 5.321 1.526 1.327 2.319 2.065 1.631 4.13

Clean
cont.

0.050 0.001 0.069 0.206 0.136 0.310 2.633 1.501 3.950 1.61 1.385 2.592 1.899 1.538 3.589

Elevated
smoke

0.329 0.168 0.49 0.144 0.098 0.211 3.726 1.938 5.589 1.562 1.359 2.437 2.143 1.671 4.285

As we have kept a constant spacing for varying the size distribution parameters, the
number of NVSDs in the input space directly depends on the volume of particles present
in each mode. While it is minimum for the clean marine subtype because of its almost
non-existent fine mode (which reduces the range of variation), it is maximum for polluted
continental and elevated smoke subtypes. The output ensembles of number concentrations
for an extinction coefficient of 0.1 km−1 and relative humidity of 0 % are shown in the violin
plots of Figure 2.4. The percentiles of the output nj,dry set are given in Table 2.3. The
number concentration of the output ensemble is primarily dependent on the fine mode of
the input size distributions. The variations in the output ensemble relative to the output
from unperturbed NVSD from CAMel is minimum (about a factor of 1) for dust mainly
because we only consider particles with a radius > 0.1 µm. For clean marine, the spread is
about a factor of 2 (95th percentile; 200 %). However, for polluted continental and elevated
smoke, the output ensemble is bimodal. For the first mode, the values can go up to a
factor of 1.5 for polluted continental and around 1 for elevated smoke. The second mode
is relatively small and is related to the size distributions whose fine-mode mean radii are
shifted to low values (extreme left in Figure 2.2). For this mode, the values can go up to a
factor of 3 for polluted continental and 2.5 for elevated smoke. The largest spread in the
output ensemble is found for clean continental (95th percentile; factor of 2.7). This might
be because the bimodality of the NVSD is not well defined for the clean continental aerosol
subtype, thereby increasing the input space of variation. Neglecting the long tail of the
distribution, we can assume the uncertainty due to the initial NVSD to be about a factor
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Figure 2.4: Violin plots for the output ensemble of nj,dry (j = 100 for dust and 50 for other
aerosol subtypes) relative to that of unperturbed NVSD from the CALIPSO aerosol model. The
filled shape shows the probability density of the data (smoothed by non-parametric kernel density
estimator) along the y axis, symmetric on either side, representing a violin-like shape. The box
limits represent the first and third quartiles, the white circle inside the box is the median, and
the ends of the grey line passing through the centre of the box represent the adjacent values (data
excluding outliers). Abbreviations: CM - clean marine, PC - polluted continental, CC - clean
continental, and ES - elevated smoke.

Table 2.3: Percentiles of output nj,dry ensembles estimated from the sensitivity analysis relative
to that of the unperturbed case.

Aerosol
subtype

Percentiles of output nj,dry ensembles
relative to unperturbed (%)

5th 25th 75th 95th

Clean marine 0.044 35.8 119.25 194.05
Dust -41.30 -28.54 -0.68 34

Polluted continental -56.26 -20.77 88.15 259.38
Clean continental -49.02 7.56 130.04 275
Elevated smoke -52.23 -14.16 71.68 183.55

of 2.

We have also estimated the effect of change in RH on the output ensemble of n100,dry and
n50,dry (not shown). Increasing RH decreases the spread of the output ensemble slightly,
with a significant decrease for RH > 90 % except for dust which is assumed to be hydropho-
bic. At RH = 99 %, the bi-modality of polluted continental and elevated smoke subtypes
disappears. The variations in the relative number concentrations decrease to less than a
factor of 2 for all subtypes. This might be a result of the decrease in the absolute number
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concentration, as the particle size increases with RH, and fewer particles are needed to
produce the same extinction. At a constant RH value, when α is modified, the output en-
semble of aerosol number concentrations scales as per the ratio between α and αn resulting
in no change in the relative n100,dry and n50,dry (not shown). To summarize, if we neglect
the contributions of extreme shifts in the size distribution (i.e., the long tails in the violin
plots) and consider the effect of RH, we can assume that the overall uncertainty in the
retrieval algorithm due to the initial NVSD is likely to range between a factor of 1.5 and
2.5.

Uncertainties in the OMCAM algorithm can also arise from the uncertainty in the
CALIPSO measurements, the CCN parameterization, and the hygroscopicity parameter-
ization. The CALIPSO-retrieved extinction coefficient can have an uncertainty of up to
30 % (Omar et al., 2009; Kim et al., 2018). The ability of aerosol to act as CCN depends
on the composition, size, and atmospheric supersaturation value. In situations with com-
plex aerosol mixtures and variable updraught velocity, the simple CCN parameterization
developed by Mamouri and Ansmann (2016) may fail. The κ values used to account for
the hygroscopicity are global averages and may vary regionally depending on the aerosol
source, composition and age. Moreover, the hydrophobic approximation for dust may not
work for cases in which dust is coated or mixed with soluble aerosols (Mamouri and Ans-
mann, 2016). In such a case, dust aerosols with a dry radius > 50 nm can also act as CCN
(Mamouri and Ansmann, 2016). Furthermore, aerosol misclassification in the CALIPSO
aerosol-typing scheme (Ansmann et al., 2021a) may introduce errors in the OMCAM algo-
rithm. Accounting for the mentioned possibilities, we assume that the overall uncertainty
in our retrieval algorithm is likely to range between a factor of 2 and 3. It is comparable
to the uncertainty in POLIPHON retrieval. However, OMCAM incorporates additional
uncertainties due to the hygroscopicity correction. Studies have found that the conversion
factors used in the POLIPHON technique for dust and smoke aerosols vary with the source
region and the age of aerosols (Ansmann et al., 2019, 2021b). Such factors further increase
the uncertainties associated with the retrieval algorithm when applied to satellite or global
data sets.

2.4.2 Comparison with POLIPHON

In this section, we present a theoretical comparison of the CCN concentrations estimated
using the OMCAM and POLIPHON methods (Mamouri and Ansmann, 2016). Both algo-
rithms’ primary input is the aerosol-type-specific extinction coefficient. Hence, we consider
a range of extinction coefficients and compute the corresponding theoretical CCN concen-
trations with both algorithms. To estimate CCN concentrations with POLIPHON, we use
the extinction-to-CCN conversions given in Eq. (2.1). The ratio between the CCN concen-
trations estimated using POLIPHON (CCNPOLI) and OMCAM (CCNOMCAM) algorithms
for varying extinction coefficients at a supersaturation of 0.15 % and zero relative humidity
is shown in Figure 2.5. The continental aerosols in POLIPHON represent a mixture of
urban haze, biomass burning, road dust, and biological particles (Mamouri and Ansmann,
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Figure 2.5: Ratio of CCNss=0.15 estimated from POLIPHON and OMCAM algorithms for vary-
ing extinction coefficient for marine, dust, continental, and smoke aerosol subtypes.

2016). Thus we compare it with the polluted continental aerosol subtype of CALIPSO. For
continental aerosols, CCNPOLI and CCNOMCAM are comparable, with the former always
being larger than the latter. For smoke aerosols, both the algorithms yield similar values
for α > 0.05 km−1. For α < 0.05 km−1, the POLIPHON values can be up to 2 times larger
than those of OMCAM. The CCN concentrations estimated from both the algorithms yield
similar results for dust as well, with comparable values for α > 0.1 km−1 and increasing
disparity for decreasing α below 0.05 km−1. In the derivation of the conversion factors and
extinction exponents in the POLIPHON method by regression analysis, the sample size for
AOD < 0.05 is either zero for dust (Ansmann et al., 2019) or limited for smoke aerosols
(Ansmann et al., 2021b). It might be a reason behind the difference between the CCNPOLI

and CCNOMCAM for smoke and dust aerosols for α < 0.05 km−1. However, for the case of
marine aerosols, the values estimated using POLIPHON are significantly larger than those
of OMCAM (up to 6 times). This may be due to the different approaches followed and
sample sizes considered to derive the size distributions used in the two algorithms. The
POLIPHON conversion factor for marine aerosol is estimated from 7.5 years of measure-
ments between 2007 and 2015 at the Barbados AERONET site (Mamouri and Ansmann,
2016). In contrast, the marine model used in OMCAM is derived from in-situ measure-
ments of sea-salt size distributions produced from breaking waves, taken during the SEAS
experiment at Bellows Air Force Station, Oahu, Hawaii between 21 and 30 April 2000 (Ma-
sonis et al., 2003; Clarke et al., 2003). Studies found that the AERONET size distributions
can be significantly different from the in-situ measurements – especially under high-relative-
humidity conditions (Chauvigné et al., 2016; Schafer et al., 2019). Further studies involving
type-specific comparisons of both the aerosol number concentrations and the CCN concen-
trations with in-situ measurements are required to test the reliability of both algorithms
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(Mamali et al., 2018). When it comes to ease of application, the POLIPHON method with
its simple extinction-to-CCN conversion is more straightforward while the OMCAM algo-
rithm – at the present stage – is more complex and computationally expensive. Despite
the complexities, OMCAM incorporates a hygroscopicity correction methodology which is
essential for a CALIPSO-based CCN retrieval (Georgoulias et al., 2020). Furthermore, the
computation time in the OMCAM algorithm can be drastically reduced by either (i) param-
eterizing the output CCN concentrations in terms of the type-specific extinction coefficient
and RH values or (ii) creating a look-up table of CCN concentrations at different extinction
coefficients and RH values for different aerosol subtypes. However, such developments are
not within the scope of the present work which focuses on the theoretical description of the
OMCAM algorithm.

2.4.3 Case study

In this section, we compare the profiles of aerosol number concentrations derived using
the OMCAM and POLIPHON algorithms with the in-situ observations taken during the
ACEMED-EUFAR campaign (evaluation of CALIPSO’s aerosol classification scheme over
the eastern Mediterranean). Specifically, we use the n50,dry concentrations estimated from
the in-situ measurements taken on 9 September 2011 at 00:05-01:50 UTC over land and sea
surface around Thessaloniki given in Tsekeri et al. (2017, Table 3, 5) (hereafter referred to
as T17). The airborne in-situ measurements coincide in space and time with the CALIPSO
nighttime overpass at 00:40 UTC over Thessaloniki. Georgoulias et al. (2020) (hereafter
written as G20) applied the POLIPHON method to the overlapping CALIPSO measure-
ments and estimated the CCN concentrations at a supersaturation of 0.15 % (n100,dry for
dust and n50,dry for continental and marine aerosols) for comparison with the in-situ mea-
surements from T17. We apply the OMCAM algorithm to the same CALIPSO overpass
and compute the n50,dry concentrations. The results are discussed in the following.

The profiles of CALIPSO-measured extinction coefficient, aerosol subtype, and the
n50,dry concentration calculated from the OMCAM algorithm for the CALIPSO overpass
over Thessaloniki on 9 September 2011, are shown in Figure 2.6. Over the land areas (lati-
tude from 40.6◦–41.2◦N), the CALIPSO aerosol typing algorithm identifies the presence of
elevated smoke and polluted continental aerosols (Figure 2.6b). However, for retrieving the
extinction coefficient for polluted continental aerosol layer, the lidar ratio was modified and,
thus, is not considered in our present comparison (not shown). The presence of smoke over
the land region was also identified by T17. The CALIPSO-measured extinction coefficient
over land is highly variable in space, ranging from 0.07 km−1 to as high as ≈ 3 km−1 in the
proximity of cloud. The OMCAM-estimated n50,dry correspondingly varies from 617 cm−3

to 40000 cm−3. Over the sea region (latitude from 40◦–40.6◦N), T17 detected the presence
of elevated smoke plumes. This was not detected by the aerosol typing algorithm of ear-
lier version 3 CALIPSO data used in T17. However, with the modifications of version 4
used in this work, CALIPSO successfully detects elevated smoke, marine, and dust aerosols
with elevated smoke being the dominant one. The overall extinction coefficient along with
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its variability over the sea area is lower compared to land, with the values ranging from
0.026 km−1 to 0.36 km−1. The corresponding OMCAM-estimated n50,dry concentrations
vary from 33 cm−3 to 5000 cm−3.

Figure 2.6: Plot of extinction coefficient (a), aerosol subtype mask (b), and the OMCAM esti-
mated n50,dry concentrations (c) for a CALIPSO overpass over the Thessaloniki region of north-
ern Greece on 9 September 2011. The white lines mark the land (40.85◦ − 40.95◦N) and sea
(40◦ − 40.6◦N) regions for which the in-situ observations at different altitudes are provided by
Tsekeri et al. (2017). The grey color represents invalid values (NAN). Abbreviations: CM - clean
marine, PC - polluted continental, CC - clean continental, PD - polluted dust, ES - elevated
smoke, and DM - dusty marine.

T17 estimated the n50,dry at different altitudes over the land region corresponding to
two 5 km cloud-free segments of CALIPSO retrieval with latitudes between 40.85◦N and
40.95◦N. The average n50,dry concentration estimated for the selected CALIPSO segments
over land using OMCAM and POLIPHON (taken from G20) is plotted along with the in-situ
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measurements from T17 in Figure 2.7a, and the values are listed in Table 2.4. On average,
when no hygroscopicity correction is applied, the OMCAM and POLIPHON overestimate
the n50,dry concentration by 355 % and 370 %, respectively. A similar result from OMCAM
and POLIPHON is expected given that elevated smoke was the dominant aerosol type over
the land with extinction coefficient > 0.1 km−1, for which both the algorithms yield a sim-
ilar result (Figure 2.5). Upon accounting for the hygroscopic growth, the overestimation
decreases to 167 % (130 % for POLIPHON). Note that the RH-corrected POLIPHON val-
ues in G20 are produced by using the in-situ dry to ambient extinction coefficient ratios
(DARs) measured at different RH values during the aircraft measurements (Tsekeri et al.,
2017). In contrast to the overestimation over the land, both the algorithms underesti-
mate the n50,dry concentrations over the sea (Figure 2.7b). When we do not account for
the hygroscopic growth, both the OMCAM and POLIPHON algorithms underestimate the
n50,dry concentration by 22 % and 38 %, respectively. When the RH growth is corrected, the
underestimation further increases to 40 % and 52 %, respectively. Similar to land regions,
both the algorithms yield comparable results over the sea as the dominant aerosol type is
elevated smoke in both scenarios.

Figure 2.7: The n50,dry concentrations estimated from CALIPSO satellite data using OMCAM
(solid line), POLIPHON (black dots) incorporated from Georgoulias et al. (2020) and in-situ
aircraft observations (red dots) adopted from Tsekeri et al. (2017) over the land (a) and sea (b)
surface close to the Thessaloniki region. The dotted line and unfilled black circles represent the
n50,dry estimated from OMCAM and POLIPHON, respectively, when hygroscopicity correction is
not considered.

The n50,dry values estimated over the land and sea region from the OMCAM and
POLIPHON algorithms are comparable to each other. The RH-corrected POLIPHON
values (using in-situ DAR measurements) are in good agreement with those of OMCAM
which uses kappa parameterization with globally averaged kappa values. Both the OM-
CAM and POLIPHON algorithms were able to capture the pattern of altitudinal variations
in n50,dry as observed by the in-situ measurements. However, the magnitudes of n50,dry are
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Table 2.4: The n50,dry concentrations (in cm−3) from in-situ measurements (Tsekeri et al.,
2017) and CALIPSO measurements by using OMCAM and POLIPHON (Georgoulias et al., 2020)
algorithms at different altitudes over land and sea regions around Thessaloniki, Greece. The values
inside the brackets refers to zero-humidity case (no hygroscopicity correction applied).

Region Altitude In-situ OMCAM
(RH = 0)

POLIPHON
(RH = 0)

CALIPSO - in-situ (%)

OMCAM (RH = 0) POLIPHON (RH = 0)

Land
2.1 727 1590 (1957) 1504 (1816) 119 (169) 107 (150)
2.7 1318 3171 (5296) 2851 (4505) 141 (302) 116 (242)
3.2 779 2160 (5401) 2086 (6370) 177 (593) 168 (718)

Sea

1.3 1427 826 (926) 508 (609) -42 (-35) -64 (-57)
2.1 1834 1476 (1796) 1405 (1683) -20 (-2) -23 (-8)
2.7 1601 1065 (1504) 912 (1264) -29 (0) -39 (-16)
3.2 2814 841 (1357) 459 (794) -70 (-52) -84 (-72)

overestimated by both the algorithms over the land by a factor of 1.5, whereas over the
sea region, the underestimation by both the algorithms is about a factor of 0.5. One of
the intrinsic limitations of this comparison results from the vast difference in measuring
timescales of CALIPSO and the research aircraft. While for CALIPSO it is as small as 15
seconds, it is around 2 hours for the aircraft. From Figure 2.6c, we can clearly see that the
extinction coefficient along with the n50,dry concentrations is highly variable over the land
region (ranging from 617 cm−3 to 40000 cm−3) compared to rather homogeneous concentra-
tions over the sea. This might be the reason for the large discrepancy between in-situ and
CALIPSO retrievals over the land region. Moreover, only two cloud-free CALIPSO 5 km
profiles are considered for the comparison over land, which further increases the chances of
disparity. Given the limited sample space, this comparison should not be considered to be
validation but rather a demonstration of the capability for retrieving CCN concentrations
from spaceborne lidar measurements. A detailed study comparing the CALIPSO-retrieved
aerosol number and CCN concentrations with ground-based and aircraft in-situ measure-
ments is required to evaluate the reliability of OMCAM and POLIPHON algorithms in
estimating the CCN concentrations.

2.5 Summary and conclusions

We present the OMCAM algorithm to derive the height-resolved cloud-relevant CCN con-
centrations from CALIPSO measurements. The algorithm uses the normalized size dis-
tributions and refractive indices from CALIPSO aerosol models (Omar et al., 2009) as
an input to MOPSMAP to calculate the extinction coefficient. The size distributions are
then scaled to reproduce the CALIPSO-measured extinction coefficient. To account for
the hygroscopicity, we use κ parameterization (Petters and Kreidenweis, 2007) and modify
the size distribution and the refractive index before the scaling step. We then estimate the
required aerosol number concentration by integrating the final scaled size distributions over
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the size ranges relevant for different aerosol types. Utilizing the aerosol-type-specific CCN
parameterizations from Mamouri and Ansmann (2016), we convert the aerosol number
concentrations to cloud-relevant CCN concentrations for different supersaturation.

The OMCAM algorithm relies on the potentiality of the CALIPSO aerosol models to
accurately describe the microphysical properties of the aerosol subtypes defined within the
CALIPSO retrieval algorithm. We performed sensitivity tests by varying the normalized
size distributions by up to ± 50 % of the amplitude of each mode and found that the
uncertainty in the final aerosol number concentration ranges between a factor of 2 and 3.

We compared the CCN concentrations obtained from OMCAM with those of the POLI-
PHON method – the existing method for lidar-based CCN retrieval. For extinction coef-
ficient > 0.05 km−1, we found a good agreement for continental, dust, and smoke aerosols.
However, as the extinction coefficients becomes smaller than 0.05 km−1, the difference in-
creases, with the POLIPHON values going as high as twice the OMCAM values. For marine
aerosols, the CCN concentration derived using the POLIPHON method is always higher
(4-6 times) than that of OMCAM.

For an initial evaluation of the OMCAM algorithm, we compared the thus obtained
n50,dry with in-situ measurements taken over the land and sea region around Thessaloniki
during the ACEMED campaign (Tsekeri et al., 2017). For the retrievals over sea, we found
that CALIPSO underestimating the n50,dry by about 40 %. Over the land areas; however,
CALIPSO overestimates n50,dry by about 167 %. The large discrepancies may be a result
of the combination of highly variable n50,dry over the land region and the instantaneous
measurement by CALIPSO in contrast to the in-situ measurement, which was performed
in a time period of 2 hours. All values remained within a factor of 2 which is in agreement
with the estimated uncertainty. Moreover, the n50,dry retrieved from CALIPSO using the
OMCAM algorithm was comparable to that of POLIPHON (Georgoulias et al., 2020).

Our future goals include a comprehensive evaluation of the CALIPSO-derived aerosol
number and CCN concentrations with ground-based and airborne in-situ measurements.
We use the airborne Atmospheric Tomography Mission measurements of aerosol number
concentration profiles from altitudes of 0.2 km to 12 km between the years 2016 and 2018
(Williamson et al., 2019) to access the quality of the respective parameter derived from
CALIPSO. Furthermore, we also compare the CALIPSO products with the long-term sur-
face measurements of CCN and aerosol size distributions from 11 atmospheric observatories
around the globe between 2006 and 2016 (Schmale et al., 2017). The comparison study will
enable us to test the applicability of OMCAM and POLIPHON algorithms in the context
of estimating the aerosol number and CCN concentrations from spaceborne lidar measure-
ments. Ultimately, we plan to apply the best-performing algorithm to more than 15 years of
CALIPSO data to construct a global height-resolved CCN climatology. The data set when
coupled with other satellite-based global cloud-related data or state-of-the-art numerical
models will help in improving our current understanding of the aerosol-cloud interactions.
Also, it will be interesting to compare the CALIPSO-derived CCN concentrations with
emerging aerosol remote sensing techniques available for other satellites. For instance,
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Rosenfeld et al. (2016) formulated an algorithm for estimating CCN concentrations from
the measurements of the Visible/Infrared Imager Radiometer Suite (VIIRS) instrument
aboard the Suomi National Polar-orbiting Partnership (NPP) satellite by treating clouds
as CCN chambers for convective clouds and later on extended the algorithm for marine
stratocumulus clouds (Efraim et al., 2020).

The ability of CALIPSO not only to measure vertically resolved aerosol optical prop-
erties but also to detect the responsible aerosol type has facilitated the retrieval of global
3D type-specific aerosol properties. We have described a novel methodology to retrieve
cloud-relevant CCN concentrations from CALIPSO measurements illustrating the poten-
tial of CALIPSO to produce 3D global CCN climatology for ACI studies and climate model
evaluations, opening new gates for further validation of the algorithm against ground-based
and airborne in-situ measurements.





Chapter 3

Evaluation of aerosol number
concentrations from CALIPSO
with ATom airborne in situ
measurements*

Short summary

The aerosol number concentrations derived from CALIPSO using the OMCAM algorithm
are compared with the airborne in-situ measurements collected during the ATom campaigns
between 2016 and 2018 over the Atlantic and Pacific oceans. HYSPLIT trajectories are
used to match both the measurements in space and time. Based on the comparison results,
a modification to the marine model used in OMCAM is suggested. With the revised treat-
ment of marine aerosols, the aerosol number concentrations estimated using OMCAM over
different size ranges are found to be in reasonable agreement with the in-situ measurements
irrespective of the height levels considered. Such concurrence between the satellite-derived
aerosol number concentrations and independent in-situ measurements emboldens the use
of CALIPSO in studying aerosol-cloud interactions.

∗Published as: Choudhury, G., Ansmann, A., and Tesche, M.: Evaluation of aerosol number concen-
trations from CALIPSO with ATom airborne in situ measurements, Atmos. Chem. Phys., 22, 7143–7161,
https://doi.org/10.5194/acp-22-7143-2022, 2022.
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3.1 Introduction

Aerosol particles are needed to form clouds under the majority of atmospheric conditions.
They can act as cloud condensation nuclei (CCN) initiating liquid droplet nucleation in
warm clouds, and as ice-nucleating particles (INPs), initiating heterogeneous ice nucleation
in mixed-phase and cold clouds. Changes in the concentration of such particles influence
the cloud extent, development, lifetime, and microphysical and radiative properties (Fan
et al., 2016; Choudhury et al., 2019). Inadequate understanding of such complex aerosol-
cloud interactions (ACIs) and the corresponding rapid adjustments in radiative forcing are
the key reasons behind the uncertainty in our future climate projections (Forster et al.,
2021).

The CCN and INP concentrations are the fundamental aerosol parameters needed to
study the ACIs. A comprehensive representation of the same in the weather and climate
models is necessary to obtain a realistic simulation of the impact of aerosols on cloud micro-
physics and the corresponding adjustments. By comparing the simulations from a total of
16 general circulation models and global chemistry transport models with the in situ mea-
surements from nine ground-based stations, Fanourgakis et al. (2019) found that the models
underestimate the aerosol number and CCN concentrations. Similar underestimation is also
reported by Genz et al. (2020). Compared to CCN which may vary from anywhere between
102 and 105 cm−3, INPs are sparse in nature, with about one in a million particles capable
of forming ice crystals in the atmosphere (Nenes et al., 2014). By combining the GLOMAP
(Global Model of Aerosol Processes)-mode global aerosol microphysics model (Mann et al.,
2010) and field experiments of K-feldspar and marine organic aerosols, Vergara-Temprado
et al. (2017) compared the INP concentrations with in situ measurements at marine loca-
tions and found the annual mean modelled INP values to be 1.5 orders of magnitude larger
than the observations. Also, depending on the INP parametrization and temperature of
measurement, the modelled INP concentrations can be as much as 4-6 orders of magnitude
larger than the observations (Vergara-Temprado et al., 2017). Thus, a better global mea-
surement of cloud-relevant aerosol microphysical properties is needed for constraining our
weather and climate models. While the surface in situ measurements of such parameters
are carried out continuously with a high temporal resolution, they are limited to certain
point locations. One way to overcome this limitation is to switch to satellite observations,
which provide global, continuous, and long-term monitoring of the atmosphere.

Satellite retrievals used in ACI studies include aerosol optical parameters like the aerosol
backscatter coefficient, aerosol extinction coefficient, and aerosol optical depth (column inte-
grated aerosol extinction coefficient). Compare to the column integrated products obtained
from passive sensors, active sensors like lidars provide height resolved optical parameters
which are necessary for studying vertically collocated aerosols and clouds (Costantino and
Bréon, 2013). Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a space-
borne lidar aboard the Cloud-Aerosol Lidar and Infra-Red Pathfinder Satellite Observation
(CALIPSO) satellite, which provides profiles of aerosol optical parameters like the backscat-
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ter coefficient, extinction coefficient, and particle depolarization ratio. Recent studies have
shown that these optical parameters can be used to derive cloud-relevant aerosol microphys-
ical parameters. Mamouri and Ansmann (2016) present the first CCN and INP retrieval
algorithm for measurements with ground-based lidars. The algorithm includes the follow-
ing two main steps: (1) the conversion of the lidar-derived extinction coefficient to aerosol
number concentration (ANC) with dry radii > 50 nm (n50,dry) and > 250 nm (n250,dry) and
(2) the subsequent use of the ANC estimates to compute CCN (at different supersatura-
tions) and INP (at different temperatures) concentrations based on aerosol-type-specific
parameterizations. The parameterizations for estimating CCN concentrations for different
aerosol types are given in Mamouri and Ansmann (2016) and those for INP are available,
for example, in DeMott et al. (2010, 2015) and Ullrich et al. (2017). Though the method-
ology for retrieving CCN and INP concentrations was developed for ground-based lidars, it
has also been applied to measurements with the spaceborne lidar CALIOP (Marinou et al.,
2019; Georgoulias et al., 2020). This highlights the potential of CALIOP for estimating
global 3D CCN and INP concentrations for climatological datasets. More recently, Choud-
hury and Tesche (2022a) presented a CCN/INP retrieval algorithm developed specifically
for CALIOP measurements. It uses the aerosol-type-specific normalized size distributions
from the CALIPSO aerosol model (Omar et al., 2009) and scales them as per the extinc-
tion coefficient measured by CALIOP. The final size distribution is integrated to obtain the
ANC required in the CCN and INP parameterizations. Of key importance is the accurate
retrieval of ANC from satellites – the primary component of CCN and INP parameteri-
zations. However, a thorough validation of the same is missing except for selected case
studies (Marinou et al., 2019; Georgoulias et al., 2020).

The Atmospheric Tomography Mission (ATom; Wofsy et al., 2018) comprises a series
of continuous flight measurements over different parts of the Pacific and Atlantic oceans
from 2016 to 2018 measuring aerosol properties including the ANC. This dataset provides
a unique opportunity to validate the available ANC retrieval algorithms for the spaceborne
lidar CALIOP. In this study, we validate the ANC retrieval algorithms presently available
for CALIOP measurements with the airborne in situ measurements from the ATom cam-
paigns. Moreover, we suggest a revision to the ANC retrieval algorithm given by Choudhury
et al. (2022). This paper is organized as follows. The description of the datasets, ANC
retrieval algorithms for CALIOP, and the comparison methodology are given in Sect. 3.2.
The results are presented in Sect. 3.3 and discussed in Sect. 3.4. The main findings are
summarized in Sect. 3.5.
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Table 3.1: Details of the ATom parameters used in the comparison study. Note: STP is standard
temperature and pressure.

Instrument Parameter name Description

Laser aerosol spectrometer
(LAS)

Nacc LAS
Number concentration of dry aerosols for

ammonium sulfate optical equivalent radius
(R) = 0.05 to 0.44 µm at STP

Ncoarse LAS
Number concentration of dry aerosols

for 0.44 ≤ R ≤2 µm at STP

Nucleation-mode aerosol size
spectrometer (NMASS), ultra-

high sensitivity aerosol size
spectrometer (UHSAS), LAS

calc ext 532 AMP
Total calculated particle extinction at 532
nm wavelength assuming dry ammonium
sulfate for 0.00135 ≤ R ≤ 2.4 µm at STP

3.2 Data, retrievals, and methods

3.2.1 ATom

The ATom comprised four series of flights by the NASA DC-8 research aircraft over the
Pacific and Atlantic oceans covering latitudes between 82◦N and 86◦S. The flight patterns
included regular descents and ascents between altitudes of 200 m and 12 km. A total of
four ATom campaigns were conducted between August and September 2016 (ATom1), Jan-
uary and February 2017 (ATom2), September and October 2017 (ATom3), and April and
May 2018 (ATom4). The instruments employed for measuring the dry aerosol particle
size distribution between a radius of 1.35 nm and 2.4 µm are a Laser Aerosol Spectrometer
(LAS), a Nucleation-mode Aerosol Size Spectrometer (NMASS), and an Ultra-high Sensi-
tivity Aerosol Size Spectrometer (UHSAS). The operating principles of these instruments
and their inferred data products are described comprehensively in Brock et al. (2019). In
the present study, we use version 1.5 of the ”ATom: Merged Atmospheric Chemistry, Trace
Gases, and Aerosols dataset” (Wofsy et al., 2018), with a very high temporal resolution
of 10 s. The parameters used in our comparison study are given in Table 3.1. To com-
pute n50,dry, we add the LAS measured number concentration in the accumulation mode
(0.05<R<0.4425 µm) and coarse mode (0.4425≤R< approx. 2 µm). During ATom2, a leak
was found in the sheath flow of the LAS, leading to lower detection efficiency. Simulta-
neous measurements from other instruments were used to correct the LAS measurements
(Brock et al., 2019). The extinction coefficient is calculated from the dry size distributions
by using Mie theory (Bohren and Huffman, 2008) assuming that particles are composed of
homogenous non-absorbing spheres of ammonium sulfate with a refractive index of 1.52.
Note that this extinction coefficient is reported for particles with a dry radius R ≤ 2.4 µm.
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Coarse particles with a dry radius R > 2.4 µm may contribute significantly to the extinction
coefficient within the marine boundary layer and dust-dominated air masses (Brock et al.,
2019). The extinction coefficient in such scenarios is likely to be underestimated. All ATom
parameters are given at standard temperature and pressure.

Table 3.2: POLIPHON conversion factors and extinction exponents for different aerosol types
to be used in Eq. (3.1) for estimating the aerosol number concentrations from the extinction
coefficient. The value of the extinction exponent (x) for n250,dry is 1 for all the aerosol types.

Type n50,dry (n100,dry for dust) n250,dry Source
Conversion factor

(Mm cm−3)
Extinction

exponent (x)
Conversion factor

(Mm cm−3)

Dust 8.855 0.7525 0.1475 Ansmann et al. (2019)
Continental 25.3 0.94 0.1 Mamouri and Ansmann (2016)

Marine 7.2 0.85 0.06 Mamouri and Ansmann (2016)
Smoke 17 0.79 0.35 Ansmann et al. (2021b)

3.2.2 CALIOP

CALIOP is a dual-wavelength, three-channel polarization-sensitive lidar aboard the polar-
orbiting CALIPSO (Winker et al., 2009) satellite that was launched on April 28, 2006, as
a part of the A-Train constellation. CALIOP provides global height-resolved coverage of
the occurrence and properties of aerosol and cloud layers. For inferring aerosol backscat-
ter and extinction coefficients, the CALIPSO retrieval requires a priori information on the
prevailing aerosol type. The aerosol types defined in the CALIPSO v4 retrieval algorithm
include marine, desert dust, polluted continental/smoke, clean continental, elevated smoke,
polluted dust, and dusty marine. A respective aerosol type is selected by considering the es-
timated 532 nm particle depolarization ratio, the 532 nm integrated attenuated backscatter
coefficient, the aerosol layer height (top and bottom), and the underlying surface type (Kim
et al., 2018). For each detected aerosol type, the retrieval uses a pre-set type-specific lidar
ratio that has been estimated from a combination of long-term Aerosol Robotic Network
(AERONET; Holben et al., 1998) measurements and field campaigns with a subsequent
adjustment based on independent measurements with ground-based lidars (Omar et al.,
2005, 2009; Kim et al., 2018). The thus obtained profiles of the backscatter and extinction
coefficient of aerosols and clouds are provided in the corresponding level 2 profile prod-
ucts. In the present study, we use the CALIPSO level 2 v4.20 aerosol profile product
(NASA/LARC/SD/ASDC, 2018). The parameters used to derive aerosol number concen-
trations from CALIPSO measurements are the 532 nm aerosol extinction coefficient, the
532 nm aerosol backscatter coefficient, the 532 nm aerosol depolarization ratio, and the
aerosol subtype mask. Quality control flags are used to select the most reliable data. To
account for the hygroscopicity of aerosols, we use relative humidity (RH) profiles attained
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from the Global Modelling and Assimilation Office (GMAO) Data Assimilation System
(Molod et al., 2015) included in the CALIPSO profile product. All parameters have a
uniform horizontal resolution of 5 km and a vertical resolution of 60 m for tropospheric
aerosols.

3.2.3 Aerosol number concentration from CALIOP

In this section, we discuss the two algorithms for estimating ANC from CALIOP mea-
surements used in this study. In the analysis, we select only high-quality CALIOP data
that fulfil the criteria given in Tackett et al. (2018) by utilizing the (i) cloud aerosol dis-
crimination score (≤ −20), the (ii) extinction quality check flag (= 0, 1, 16, and 18), and
the (iii) extinction uncertainty value ( ̸= 99.9). Also, for retrievals corresponding to the
mixed aerosol types of polluted dust and dusty marine, we first separate the dust and non-
dust contributions by using the particle depolarization ratio to separate the contributions
of dust and non-dust aerosols to the particle backscatter coefficient (Tesche et al., 2009).
The backscatter coefficient is then multiplied by the lidar ratio to yield the dust and non-
dust extinction coefficients. We use the updated lidar ratios from Kim et al. (2018). The
dust separation technique is also incorporated in many studies concerning the lidar-based
retrieval of aerosol microphysical properties (Mamouri and Ansmann, 2015, 2016; Georgou-
lias et al., 2020; Choudhury et al., 2022). However, it does not consider the RH dependency
of depolarization ratio which may result in additional errors especially in marine environ-
ments. The information on aerosol-type-specific extinction coefficient, aerosol type, and
relative humidity are used to compute the ANC.

POLIPHON

The Polarization Lidar Photometer Networking (POLIPHON; Mamouri and Ansmann,
2015, 2016) method combines lidar-derived, type-specific aerosol optical properties with
concurrent long-term AERONET measurements of aerosol optical depth (AOD) and re-
trieved column size distributions (Dubovik et al., 2000, 2006) to estimate the ANC. A
regression analysis of the AERONET-derived column extinction coefficients and number
concentrations (integral of the aerosol size distribution) yields the conversion equation to
derive ANC from lidar-derived extinction coefficients. The regression analysis was based
on AERONET observations at sites with pure marine or pure mineral dust conditions and
observations in environments dominated by urban haze or wildfire smoke. The complex
analysis resulted in aerosol-type-specific conversion equations of the form

nj,dry = C · αx, (3.1)

where nj,dry is the aerosol number concentration with the dry radius > j nm, α is the
extinction coefficient, C is the conversion factor, and x is the extinction exponent. In
this study, we use the regression parameters for marine and continental aerosols given in
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Mamouri and Ansmann (2016). The one for desert dust is taken from Ansmann et al. (2019)
and represents a global average. For smoke aerosols, we use the averaged value for aged
smoke given in Ansmann et al. (2021b) as most of the ATom measurements were performed
over oceans away from smoke sources. The values of the regression constants along with
their sources are listed in Table 3.2. Typical RH of 80 % and 60 % were assumed while
calculating the conversion factors for marine and continental (including smoke) aerosol
types. Note that for dust aerosols, POLIPHON provides the ANC for the dry radius
R > 100 nm (n100,dry), and we obtain n50,dry from the ATom measurements.

Table 3.3: Bimodal lognormal size distribution parameters and refractive indices (real part (mr)
and imaginary part (mi)) of the aerosol subtypes at a wavelength of 532 nm used in OMCAM
conversion factors to calculate ANC algorithm. The AERONET-based marine model is adopted
from Sayer et al. (2012)

Aerosol subtype Dust Polluted continental Clean continental Elevated smoke Marine Marine (AERONET)
µi fine 0.116 0.158 0.206 0.144 0.150 0.1137

µi coarse 2.833 3.547 2.633 3.726 1.216 1.8756
σi fine 1.481 1.526 1.61 1.562 1.6 1.6487

σi coarse 1.908 2.065 1.899 2.143 1.60 2.0544
νi fine 0.223 0.531 0.050 0.329 0.025 0.14

νi coarse 0.777 0.469 0.950 0.671 0.975 0.86
mr fine 1.414 1.404 1.380 1.517 1.400 1.5478
mi fine 0.0036 0.0063 0.0001 0.0234 0.0050 0.0053

mr coarse 1.414 1.404 1.455 1.517 1.400 1.4108
mi coarse 0.0036 0.0063 0.0034 0.0234 0.0005 0

OMCAM

The Optical Modelling of CALIPSO Aerosol Microphysics (OMCAM; Choudhury et al.,
2022)) algorithm utilizes the normalized size distributions and refractive indices from the
CALIPSO aerosol model (Omar et al., 2009) to derive those aerosol size distributions that
lead to the best reproduction of the inferred aerosol extinction coefficient when used as
input for light-scattering calculations with the MOPSMAP (Modelled Optical Properties of
Ensembles Of Aerosol Particles) optical modelling package (Gasteiger and Wiegner, 2018).
In the modelling of the extinction coefficient, we consider marine, continental, and smoke
aerosols as spheres and apply the Mie scattering theory. Mineral dust is considered to be
spheroidal and is treated with a combination of the T matrix method and the improved
geometric optics method. The normalized size distribution from the CALIPSO aerosol
model is scaled to reproduce the CALIOP-derived extinction coefficient (Choudhury et al.,
2022) as follows:

dV (r)
d ln r

= α

αn
·

2∑
i=1

νi√
2π ln σi

exp (−(ln r − ln µi)2

2 ln σi
2 ). (3.2)
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where αn is the extinction coefficient estimated from the normalized size distribution and
refractive index using MOPSMAP and α is the CALIOP-derived extinction coefficient.
σi, νi, and µi are the standard deviation, volume fraction, and mean radius of the ith

mode of the normalized size distribution, respectively, and their values for different aerosol
subtypes are given in Table 3.3. Since the refractive index, σi, νi, and µi of the aerosol
size distributions are intensive parameters, i.e. independent of the extinction coefficient or
aerosol concentration, the volume size distribution and hence the ANC can be expressed
linearly in terms of the extinction coefficient as follows:

nj,dry = Co · α (3.3)

where Co = 1
αn

∫ rmax
j dN is a conversion factor whose value depends on the aerosol type and

the lower limit j of integrating the particle size distribution. The values of Co for different
aerosol types are given in Table 3.4. Since the algorithm primarily relies on the assumption
of fixed initial normalized size distributions for every aerosol subtype, Choudhury et al.
(2022) analysed the sensitivity of the output nj,dry to variations in these size distributions.
By varying the magnitude of the fine and coarse modes of the size distributions by ± 50 %,
they found the resulting nj,dry to remain within a factor of 2. Such an uncertainty is
expected for a spaceborne retrieval of aerosol microphysical properties and is also similar
to that of POLIPHON (Mamouri and Ansmann, 2016).

Table 3.4: OMCAM conversion factors to calculate ANC from Eq. (3.3).

Type Conversion factors (Mm cm−3)
n50,dry (n100,dry) n250,dry

Dust 42.9728 (11.0847) 0.0865
Clean continental 3.598 0.1995

Polluted continental 24.931 0.2601
Smoke 21.9948 0.1446
Marine 2.3988 0.2084

Modified marine 21.2077 0.1688

Choudhury et al. (2022) show a large discrepancy in their comparison of theoretically
possible ANC for marine aerosols, as estimated by POLIPHON and OMCAM. This can
be attributed to the difference in the temporal extent and geographical location of the
measurements and different instruments employed in measuring of the marine size distri-
butions used in the two algorithms. The regression constants for marine aerosols used in
POLIPHON are estimated from 7.5 years of AERONET measurements from 2007 to 2015
at Barbados (Mamouri and Ansmann, 2016). However, the marine model used in OMCAM
(Omar et al., 2009; Choudhury et al., 2022) was obtained from in situ measurements of
sea-salt size distributions during the SEAS experiment from 21 to 30 April 2000 (Masonis
et al., 2003; Clarke et al., 2003). AERONET provides long-term continuous measurements
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of aerosol optical and microphysical properties at different locations around the globe. Sayer
et al. (2012) presented a maritime aerosol model for use in satellite retrievals based on the
aerosol microphysical properties at 11 AERONET island stations. In this work, we also
utilize the microphysical properties recommended by Sayer et al. (2012) in the OMCAM
algorithm to examine its potential for deriving the ANC from CALIOP measurements (pre-
sented in Section 3.2.1). The size distribution parameters along with the complex refractive
indices are listed in Table 3.3. Please note that the parameters in Sayer et al. (2012) are
given for ambient conditions and were converted to dry conditions assuming a uniform RH
of 70 % before using them in the OMCAM algorithm. The size distribution was modified
to dry conditions by using kappa parametrization (Petters and Kreidenweis, 2007) and the
refractive index was modified as per the volume-weighting rule.

Figure 3.1: Hygroscopic growth factor for different values of relative humidity for different aerosol
types estimated from the microphysical properties of CALIPSO aerosol models, with marine (blue),
polluted continental (orange), clean continental (green), and elevated smoke (brown). The growth
factor estimated using a new AERONET-based marine model (sky blue) from Sayer et al. (2012)
is also shown. The hygroscopic growth factor at a certain relative humidity is defined as the
ambient-to-dry extinction coefficient ratio.

Hygroscopicity correction

To compare the CALIOP-derived ambient extinction coefficients with the results of the
dry measurements conducted during ATom, we need to correct the former for the effect of
hygroscopic growth. Furthermore, the extinction coefficient to ANC conversion discussed in
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Section 3.2.3 holds only for dry conditions. The POLIPHON method assumes a constant
RH of 80 % for marine and 60 % for continental aerosols and may result in errors for
higher RH conditions. MOPSMAP includes an in-built functionality to address hygroscopic
growth based on the kappa parametrization (Petters and Kreidenweis, 2007) in the RH
range from 0 % to 99 %. We use the normalized aerosol size distributions and refractive
indices of different aerosol types from CALIPSO aerosol model to calculate the extinction
coefficient for different values of relative humidity. Figure 3.1 shows the variation in the
hygroscopic growth factor, i.e. the ratio between the ambient and dry extinction coefficient,
with relative humidity for continental (polluted continental, clean continental, and elevated
smoke) and marine CALIPSO aerosol types with kappa values of 0.3 and 0.7, respectively.
The kappa values are global averages and are suggested by Andreae and Rosenfeld (2008)
for use in satellite retrievals. Nevertheless, studies have found that the kappa values may
vary with the aerosol composition and age (Pringle et al., 2010; Cheung et al., 2020).
Thus, considering a fixed kappa value for a particular aerosol type defined in CALIPSO
may incur additional uncertainties in the ANC retrieval. Moreover, the RH values included
in the CALIPSO level 2 data product are estimated from global model simulations which
may incorporate additional uncertainties. Having said that, we still use the parametrization
with globally averaged kappa values, which were found to provide reasonable results in the
case study presented in Choudhury and Tesche (2022a) and the example cases presented
later in Section 3.3.1. Mineral dust is considered to be hydrophobic in our analysis. For
every CALIOP data bin, the extinction coefficient is corrected based on the aerosol type and
relative humidity value by dividing it with the hygroscopic growth factor that corresponds
to the ambient relative humidity. Note that this methodology is different from the one
used in Choudhury and Tesche (2022a), where the hygroscopicity correction is applied to
the particle size distribution before the computation of the ANC. In the present study, the
application of the hygroscopicity correction to the extinction coefficient is necessary so that
the dry extinction coefficient from the CALIOP measurements can be compared directly
with the ATom dataset. The hygroscopicity-corrected extinction coefficient is then used to
compute the CALIOP-based ANC using the OMCAM and POLIPHON algorithms. Note
that in the case of POLIPHON, we only apply the hygroscopicity correction when RH is
greater than 80 % and 60 % for marine and continental aerosols, respectively, and modify
the corresponding ambient extinction coefficient to RH values of 80 % and 60 %. This is
because the extinction to ANC conversion equations (Eq. 3.1) was formulated assuming
such RH values which are representative of typical marine and continental environments.

3.2.4 Data matching and comparison

The ATom data consist of continuous airborne in situ measurements from altitudes of 200 m
to 12 km. The measurement tracks for the first ATom campaign are shown in Figure 3.2.
For a comparison between the ANC derived from CALIOP observations and airborne in
situ measurements conducted during ATom, we need to find those cases for which the two
datasets are closest in time and space. In our first attempt at finding intercepts between
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Figure 3.2: Flight tracks during the ATom1 campaign (red lines) carried out from August to
September 2016 covering altitudes from 200 m to 12 km over the Pacific and Atlantic oceans.

the tracks from CALIPSO and ATom, we did not consider the aircraft flight level and
matched only the 2D latitude and longitude coordinates. As a result, we found that most
of the intercepts were found at altitudes above 5 km within the free troposphere. At such
altitudes, CALIOP rarely detects aerosol structures except for elevated layers from long-
range transport. Hence, we limit the ATom data in the present study to altitudes below 5 km
before finding intercepts with the CALIPSO ground track. This slices results in a collection
of discontinuous measurements either during ascent or descent or both (v shaped). Such
segments have a latitudinal extent of about 1 to 2°, which facilitates the incorporation of
the HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model) air-parcel
trajectory model (Draxler and Rolph, 2010) for finding the intercepts.

Major parts of the ATom measurements were conducted over the Pacific and Atlantic
oceans. Compared to the area over land, the aerosol composition over the oceans is rather
homogenous, and we can expect a good correlation between ground-based and satellite mea-
surements (Kovacs, 2006; Liu et al., 2008; Tesche et al., 2013). Therefore, we include the
CALIPSO tracks that are within 500 km from an ATom measurement in our comparison.
Also, for smaller distances, the airborne measurements should be appropriately connected
to the nearby CALIPSO overpass. We use HYSPLIT air parcel trajectories to first deter-
mine the section of the CALIPSO overpass that is most appropriate for the comparison
with the ATom measurements and, second, to estimate the correct temporal difference
between the measurements. This approach is also used in Tesche et al. (2013, 2014) for
validating CALIPSO measurements against ground-based lidar and in situ measurements.
For running HYSPLIT, we use Global Data Assimilation System (GDAS) meteorological
files with a spatial and temporal resolution of 1 degree and 3 hours, respectively. The
overall track selection methodology is illustrated in Figure 3.3 for an ATom1 flight seg-
ment on 8 May 2016. Since the flight measurements are three-dimensional, each of the
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HYSPLIT initialization coordinates has a unique combination of latitude, longitude, and
altitude. To reduce the complexity of the analysis, we limit the initial trajectory starting
points by selecting one out of every 20 points in the segment of the aircraft track. Figure
3.3a shows the forward and backward trajectories starting and ending at different altitudes
of the ATom track segment, respectively, and the segment of CALIPSO measurements that
is most suitable for the comparison. The vertical displacement of the air parcels along the
trajectories is shown in Figure 3.3b. For most of the found intercepts, the vertical displace-
ment of the air parcels along the trajectories is negligible and, hence, not considered in our
comparison study. As seen in Figure 3.3a, the trajectories intercept the CALIPSO track
at different times. In such situations, we compute the net time difference by averaging the
time differences at different height levels. For the example shown in Figure 3.3a, the air
parcels take 9 h (between 1 and 3 km) to 13 h (below 1 km) to reach the CALIPSO track,
which leads us to apply an average time delay of 11 h. Including the pre-existing time
delay of approx. 9 h between the two observations, the average effective time difference
for this case is 2 hours. The average distance between the two tracks as calculated using
the Haversine formula is found to be 457 km. Following this approach, we identified a total
of 53 intercepts for which the measurements of CALIOP and ATom are considered as ap-
propriate for comparison. A detailed overview of these cases is given in Table 3.A1, along
with the aerosol-type-specific extinction coefficient contribution and the average distance
and time delay between the observations. The average distance between the tracks is less
than 500 km for all the intercepts. The time delay between the measurements varies from 0
to 20 h, with 11 cases exceeding 10 h. Marine aerosols are found to be the dominant aerosol
type in 44 cases (83 %), followed by polluted continental (four cases), elevated smoke (three
cases), and dust (two cases). Such conditions are not unexpected, as most of the obser-
vations are over oceans. Note that there were many further intercepts, where factors like
signal attenuation due to the presence of clouds, low signal-to-noise ratio due to low aerosol
concentrations, or an absence of aerosols lead to CALIOP data that were not suitable for
comparison with the ATom measurements. Most of these intercepts were found close to
the poles and the Equator.

The atmospheric parameters included in the ATom data are at standard temperature
(273.15 k) and pressure (1013.25 hPa) and need to be converted to ambient conditions.
The temporal resolution of ATom data used in this work is 10 s, and the corresponding
altitudinal resolution varies between 0 and 110 m, depending on the speed of the aircraft.
However, the vertical resolution of CALIOP data is 60 m in the troposphere. Also, there
can be more than one measurement for a certain altitude range in an ATom segment as it
can include both ascending and descending measurements. To compare the two datasets,
we thus regrid them to a uniform vertical resolution of 240 m (four CALIOP height bins)
between 0 and 5 km altitude by averaging both datasets within these height bins. This
approach also compensates for the potential vertical displacement of air parcels along the
trajectory between the locations of the measurements of CALIOP and the ATom aircraft.
However, a limitation to this methodology is the velocity shear at different height levels. It
is worthwhile to note that the main motive of this study is to validate the ANC as retrieved
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Figure 3.3: (a) CALIPSO overpasses (dark blue lines) close to the ATom measurements on 6
August 2016 with HYSPLIT backward (lines with filled circles) and forward (lines with filled
triangles) trajectories starting and ending at different points along the ATom track. The colour
bar represents the altitude of the ATom coordinates used to compute the HYSPLIT trajectories.
The CALIPSO track selected for comparison is highlighted as a bold blue line in the CALIPSO
overpass at 13:04 UTC on 6 August 2016. (b) Vertical displacement of the air parcels along the
individual HYSPLIT trajectories. Each track is associated with a number to identify its vertical
displacement and time difference.

from CALIOP data rather than the extinction coefficient. Even after considering all the
complex screening constraints aimed at identifying the best match between CALIOP and
ATom measurements by compensating the temporal and spatial differences between them,
disagreement may still arise because of different (i) measuring instruments with dissimilar
sensitivities used in ATom and CALIPSO, (ii) measurement techniques, and (iii) spatial
and temporal resolutions of the datasets (Tesche et al., 2014). The extinction coefficient
from ATom is obtained by applying the Mie theory to the dry aerosol size distributions for
radius <2.4 µm. This may be inaccurate for coarse-mode non-spherical aerosol particles.
The CALIPSO retrievals, on the other hand, have to go through a complex feature detec-
tion algorithm to identify aerosol layers and may fail to detect optically thin layers with
an inadequate signal to noise ratio. While the airborne in situ data from ATom are point
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measurements, the along-swath width of the CALIPSO level 2 data bin is 5 km. Moreover,
the HYSPLIT trajectories used to find the intercepts use model outputs and may have asso-
ciated errors. Even so, it is necessary to perform a closure study utilizing these concurrent
measurements for validating the recently developed lidar-based ANC retrieval algorithms.
In order to somewhat compensate for such unquantifiable effects in the comparison of ANC,
we only use those data bins for which the difference between the dry extinction coefficient
from CALIOP is within ± 50 % of that in the ATom data. This additional filter further
increases the probability that we are comparing the ANC within the same air parcel.

3.3 Results

3.3.1 Example cases

We start the presentation of results in Figure 3.4 with four comparison examples that
present the profiles of the extinction coefficient and ANC as derived from ATom and
CALIOP measurements. The first three cases represent different prevailing aerosol types,
while the fourth shows a combination of all four types. The majority of the cases includes
airborne measurements during both ascent and descent, and hence, there can be two ATom
measurements at one level. All CALIPSO overpasses except for the marine-dominated case
shown in the examples occurred during nighttime.

The first example case for the CALIPSO and ATom measurement on 15 Feb 2017 is
shown in Figures 3.4a & 3.4e. The case is dominated by the presence of marine aerosols
with 85 % of the CALIPSO bins below 1 km having RH>80 %. Close to the surface (be-
low 300 m), the RH exceeded 99 %, due to which a finite dry extinction coefficient could
not be retrieved. However, for altitudes higher than 300 m, we found a reasonable agree-
ment between the humidity-corrected extinction coefficient from CALIOP and the ATom
measurements (Figure 3.4a). This illustrates the ability of the kappa parametrization to ac-
count for aerosol hygroscopicity for highly humid marine environments. The n50,dry profiles
derived from CALIOP data using the POLIPHON technique is on par with that measured
during ATom. However, the OMCAM estimates are relatively noisy, perhaps because of
highly variable RH, and are lower than the ATom measurements for most altitudes. This is
also evident in other marine-dominated cases, for example, the near-surface measurements
in Figure 4h. However, in the case of n250,dry, both the OMCAM and POLIPHON esti-
mates for marine-dominated CALIPSO retrievals are in much better agreement with the
ATom data.

The second example of the intercept on 17 August 2016 is dominated by a mixture of
marine and smoke aerosols at altitudes below 1.5 km and only smoke at higher altitudes.
Figure 3.4b shows that the extinction coefficients from CALIOP and ATom are on par
below 2 km altitude. At higher altitudes, where elevated smoke is the dominant aerosol
type, CALIOP gives much higher extinction coefficients than those found from the ATom
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Figure 3.4: Profiles of the aerosol extinction coefficient at 532 nm (a–d), the aerosol number
concentration (ANC) with a dry radius > 50 nm (right-hand side of panels e–h) and a with dry
radius > 250 nm (left-hand side of panels e–h) retrieved from ATom and CALIPSO measurements
for four selected cases (each in one row). The dashed and solid black lines in panels a-d de-
note the CALIPSO-derived ambient and RH-corrected extinction coefficients, respectively. The
dashed coloured lines in (a)–(d) refers to RH corrected extinction coefficients of individual aerosol
types. The solid and dashed lines in panels (e)–(h) refer to the ANC derived using OMCAM and
POLIPHON techniques, respectively. The serial number of the cases in Table 3.A1 is also given
in the lower left corner of the plots.

measurements. A plausible reason behind the larger values is perhaps the temporal (11
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h) and spatial (205 km) difference between the observations. The properties of an elevated
smoke layer may change drastically with the travelled distance and age of the air parcel.
Though the CALIOP-derived n50,dry and n250,dry profiles using POLIPHON and OMCAM
accurately capture the altitudinal variation revealed in the ATom measurements, they are
far more variable with altitude and differ from the in situ measurements at altitudes between
2 km and 4 km.

In the third example of 1 October 2017, the aerosol types detected by the CALIPSO
retrieval are polluted continental and mineral dust, with the former dominating. The
CALIOP extinction coefficient and n50,dry are in good agreement with the ATom measure-
ments. However, the n250,dry (Figure 3.4g) as estimated from CALIOP using both the
OMCAM and POLIPHON algorithms, is 2 to 5 times larger than in the ATom measure-
ments. On analysing the geographical locations of the measurements, we found that both of
them are over land regions (southern California) and encompass a mixture of urban, rural,
and forest continental environments. The aerosol properties can be highly variable over
different land regions, which perhaps is the reason behind the disagreement of the n250,dry

values.

The fourth example for the intercept on 29 April 2018 is comprised of a mixture of all
four aerosol types with marine aerosols dominating from the surface to 1 km, followed by
continental and smoke aerosols until 3 km, and further accompanied by mineral dust over
3 km (Figure 3.4d). The ATom-derived extinction coefficient (for ascending and descending
flight-track segments) varies by as much as 1.5 orders of magnitude at heights above 2 km.
This highlights the impact of the spatial heterogeneity that may occur over short distances
or time periods. The CALIOP-derived humidity-corrected extinction coefficient resembles
the in situ measurements during ascent (with larger values than during descent) between 1
and 4 km altitude. Above and below that layer, the CALIOP extinction coefficient exceeds
that derived from the in situ measurements. Regarding n50,dry, the POLIPHON estimate
overlaps with the ATom measurements up to an altitude of 4 km, above which it fails to
replicate the increase in aerosol concentration. The OMCAM-derived profile in Figure 3.4h
shows a similar agreement but underestimates n50,dry at altitudes below 1 km where marine
aerosols are dominant. The n250,dry, as estimated from POLIPHON and OMCAM, are both
in reasonable agreement with the ATom measurements.

Overall, the example cases in Figure 3.4 present a remarkable resemblance to the aerosol
properties derived from CALIOP observations with the ATom measurements at most height
levels. The examples that feature the dominance of marine aerosols in the lowermost 2 km
illustrate the importance of applying a hygroscopicity correction and indicate that this can
be realized to a reasonable degree with the kappa parametrization, even when using static
kappa values. In the next section, we present a statistical comparison of the extinction
coefficient and ANC for all the identified intercepts.
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3.3.2 General findings

Figure 3.5 presents a comparison of the aerosol extinction coefficient as derived from ATom
and CALIOP measurements for all the identified intercepts and with the data regridded
to a unified altitude profile with 240 m bin width. The correlation of the datasets gives a
Spearman’s correlation coefficient (R) value of 0.715, a root mean square error (RMSE) of
0.017 km−1, and a bias of -0.007 km−1 (Figure 3.5a). For the aerosol-type-specific compari-
son, individual height bins were separated based on the dominant aerosol type, i.e. the one
which shows the largest extinction coefficient. In terms of correlation coefficient, best agree-
ment is found for polluted continental aerosols (R = 0.805), followed by marine (R = 0.744),
mineral dust (R = 0.583), and smoke (R = 0.4). A similar level of agreement is also seen
in terms of the RMSE and bias values given in Figure 3.5b-e. Moreover, both datasets
are in better agreement at altitudes below 2 km irrespective of the dominant aerosol type.
Such a result is expected as elevated aerosols above the boundary layer can be easily trans-
ported to larger distances compared to those located near the surface which counteracts
the comparison approach followed in this study.

Figure 3.5: Comparison of the dry aerosol extinction coefficient from CALIOP observations
and ATom measurements between the surface and 5 km altitude, with the data regridded to a
profile with 240 m bin width and colours referring to the altitude of the measurement (a). The
bins where marine (b), mineral dust (c), polluted continental (d), and elevated smoke (e) aerosols
are dominant are shown separately. Spearman’s correlation coefficient (R), bias, the root mean
squared error (RMSE), and the sample space (N) are given in the legend. The solid lines represent
the identity line and the dotted lines on either side of it represent 1 order of magnitude from the
identity line.
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As seen from the general comparison and case studies, the aerosol extinction coefficient
inferred from ATom measurement is in very good agreement with the CALIPSO retrieval
with the exception of a few cases where they can be significantly different. Scenarios
that may lead to large differences in the datasets are already discussed in Section 3.3.2
and include the differences in the instrument sensitivities, measurement techniques, spatial
and temporal resolutions, and assumptions underlying the intercept identification. In such
situations, comparing the corresponding ANC may lead to misleading conclusions. Thus,
while comparing the ANC, we only use those altitude bins for which the CALIOP-derived
dry extinction coefficient is within ± 50 % of that estimated from ATom measurement. Note
that the present study is not focused on the evaluation of CALIPSO products, for which
several studies have already been performed (Mamouri et al., 2009; Pappalardo et al., 2010;
Omar et al., 2013; Tesche et al., 2013, 2014; Kacenelenbogen et al., 2014; Rogers et al., 2014;
Papagiannopoulos et al., 2016). By introducing the additional constraint of a set difference
in the extinction coefficient, we aim to further increase the likelihood of comparing the
same air parcels.

The comparison of n50,dry, as measured during ATom and estimated from CALIOP mea-
surements using OMCAM and POLIPHON for the altitude bins that pass the extinction
coefficient filter, is shown in Figure 3.6. It is found that the POLIPHON estimates of n50,dry

are in better agreement with the ATom measurements with a correlation coefficient of 0.829,
RMSE value of 234 cm−3, and bias value of −96.627 cm−3. In terms of absolute magnitude,
OMCAM-estimated n50,dry are up to an order of magnitude less than that of ATom, espe-
cially for aerosol concentrations below 100 cm−3. A closer look at the aerosol-type-specific
comparison shows that the lower values seen in OMCAM are primarily from the marine-
dominated cases for which POLIPHON estimates of n50,dry are generally in better agreement
with the in situ measurements. For dust-dominated cases, both the algorithms perform
similarly, with POLIPHON being slightly better in terms of R, bias, and RMSE values.
However, the POLIPHON-derived values for dust aerosols are n100,dry instead of n50,dry and
thus should, in principle, underestimate the n50,dry. POLIPHON underestimates the n50,dry

for approx. 37 % retrievals. Given the limited sample space (19 bins) at the current stage,
it is hard to comment on the performance of POLIPHON for dust-dominated cases. For
the cases where polluted continental aerosols are dominant, the n50,dry, as estimated from
both algorithms, are in good agreement with the ATom in situ measurements. Statistically
speaking, OMCAM (R = 0.609, RMSE = 275.93, and bias = 26.548) has better agreement
with the ATom data than POLIPHON (R = 0.457, RMSE = 335.81, and bias = −125.757).
A similar result is also found for cases dominated by elevated smoke for which both the
POLIPHON (R = 0.658, bias = −171.491, and RMSE = 308.46) and OMCAM (R = 0.791,
bias = 105.47, and RMSE = 213.33) estimates of n50,dry are in very good agreement with the
ATom measurements. Interestingly, after applying the extinction coefficient constraint for
comparing both the datasets, the CALIOP-estimated n50,dry values are in good agreement
with the ATom measurements, even at higher altitudes.

Figure 3.7 depicts the comparison of n250,dry, as derived from ATom and CALIOP
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Figure 3.6: Comparison of n50,dry (in cm−3) retrieved from ATom and CALIPSO measurements
using OMCAM (a-e) and POLIPHON (f-j) for 240 m altitude bins between 0 and 5 km for all the
identified intersections. The bins where marine (b & g), dust (c & h), polluted continental (d
& i), and elevated smoke (e & j) aerosols are dominant are separately shown. The Spearman’s
correlation coefficient (R), bias, root mean squared error (RMSE), and the sample space (N) are
given in the legend.

measurements for the altitude bins that pass the extinction coefficient constraint. From
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Figure 3.7: Same as Figure 3.6 but for n250,dry.

the figure, we find that both the OMCAM- and POLIPHON-derived n250,dry are in good
agreement with the in situ measurements in terms of the correlation coefficient, RMSE,
and bias magnitude. Furthermore, the type-specific comparison shows that, for marine-
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dominated cases, both the algorithms yield similar results and show a similar level of
agreement with the ATom estimates. For dust-dominated cases, POLIPHON-estimated
(R = 0.525, bias = 2.939, and RMSE = 4.22) n250,dry values are in marginally better agree-
ment with the ATom data than OMCAM (R = 0.468, bias = 3.439, and RMSE = 4.61).
For polluted continental and elevated smoke dominant cases, the n250,dry estimated from
the OMCAM and POLIPHON algorithms show similar agreement with the corresponding
ATom measurements.

Revised OMCAM algorithm

Figures 3.6b revealed that CALIOP-derived n50,dry from the OMCAM algorithm for marine-
dominated cases resulted in smaller values compared to that from POLIPHON and in situ
measurements. In this section, we estimate ANC from CALIOP using a revised OMCAM
algorithm in which a marine model derived from 11 AERONET island stations (Sayer et al.,
2012) is used to characterize the marine aerosols. This new marine model is used to correct
the CALIOP measurements for hygroscopicity by estimating the growth factors at different
RH values (Figure 3.1). Also, the conversion factors for n50,dry and n250,dry are recalculated
(Table 3.4) using the updated marine model following the methodology discussed in Section
3.2.3. It is interesting to note that the conversion factor estimated from the new marine
model for n250,dry only increased by 5 %, compared to 520 % for n50,dry. For comparing the
CALIOP and ATom measurements for all of the identified intersections, we only use those
240 m data bins that pass the extinction coefficient constraint (CALIOP RH-corrected
extinction coefficient within ± 50 % of the ATom measurement). Figure 3.8 depicts the
comparison of n50,dry and n250,dry, as derived from ATom and inferred from CALIOP data,
using the revised OMCAM algorithm. The figure shows that both the OMCAM estimates
of n50,dry and n250,dry are in very good agreement with the in situ measurements when
resorting to the marine model of Sayer et al. (2012) with the n50,dry comparison giving
a correlation coefficient of 0.791, RMSE of 135.42 cm−3, and bias of −21.68 cm−3. The
estimates of ANC from the updated OMCAM algorithm for the marine aerosol type is now
on par with that from POLIPHON.

3.4 Discussion

In general, when the RH-corrected extinction coefficient from CALIOP is used, both the
OMCAM and POLIPHON algorithms yield values of n50,dry and n250,dry that are com-
parable to in situ measurements for all aerosol types, except for marine-dominated cases.
For marine-dominated retrievals, even though the n250,dry estimated from OMCAM and
POLIPHON algorithms were in good agreement with the in situ measurements, OMCAM
estimates of n50,dry were up to an order of magnitude smaller. This is perhaps the result
of the limited in situ sea salt size distribution measurements that form the marine aerosol
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Figure 3.8: The n50,dry (a) and n250,dry (b) derived from ATom and CALIOP using the updated
OMCAM algorithm for marine-dominated altitude bins.

model used in the OMCAM algorithm (Omar et al., 2009; Choudhury et al., 2022). Never-
theless, using the AERONET-based marine model of Sayer et al. (2012) in OMCAM results
in an overall better agreement for both the n50,dry and n250,dry values with the independent
airborne in situ measurements during ATom.

For dust-dominated retrievals, we find a moderate correlation between CALIOP-derived
results and the in situ measurements. For both the n50,dry and n250,dry, POLIPHON gives
a marginally better agreement with the in situ data. Still, the POLIPHON conversion
factors for mineral dust relate to n100,dry and not to n50,dry. For some cases, the ANC
estimated from both the algorithms are significantly different from the in situ measure-
ments. Also, both the algorithms result in lower n250,dry values compared to the in situ



3.5. Summary 61

data for most cases, which is contrary to the results from Haarig et al. (2019), who report
an excellent agreement between ground-based lidar and airborne in situ measurements
taken during the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction
Experiment (SALTRACE) campaign at Barbados. On further investigating the locations
of dust-dominated intersections, we found that the underestimation is independent of the
geographic location and is evident for retrievals over both the Atlantic and Pacific oceans.
The aerosol type identified by CALIPSO for dust-dominated cases is mostly dusty marine
(dust + marine) and not pure dust. Under such situations where the dust particles are far
away from their source regions, their microphysical properties may change because of either
ageing or chemical or cloud processing (Kim and Park, 2012; Ansmann et al., 2019; Goel
et al., 2020). Also, three-quarters of the CALIPSO retrieval for dust-dominated cases are
daytime retrievals. This might add to the differences observed between the observations.

For retrievals dominated by polluted continental and smoke, we find a medium–high
correlation between ATom measurements and CALIOP-inferred estimates of n50,dry using
both algorithms with OMCAM performing slightly better than POLIPHON. For some
height bins, the CALIOP estimates vary by more than a factor of 2 (especially for n250,dry)
from the in situ measurements. Such a variation may either occur because of the spatial
and temporal heterogeneity of aerosols or due to a change in the microphysical properties
of the aerosols as a result of chemical or cloud processing. Also, similar to dust aerosols, the
conversion factors for smoke and continental aerosols may change with age and geographical
location (Ansmann et al., 2021b).

Overall, the n50,dry and n250,dry values estimated from the OMCAM algorithm with
the updated marine model and the POLIPHON algorithm are overall in good agreement
with the ATom in situ measurements. Such concurrence between the satellite estimates
of height-resolved ANC (that are most relevant for cloud processes) and the coincident
in situ measurements for various aerosol environments has not been achieved yet. This
study along with previous concurrent results (Haarig et al., 2019; Marinou et al., 2019;
Georgoulias et al., 2020; Choudhury et al., 2022), complements the use of ground-based
and spaceborne lidar remote sensing techniques for retrieving height-resolved cloud-relevant
aerosol microphysical properties.

3.5 Summary

We present a validation study of the spaceborne lidar-derived aerosol number concentration
using the OMCAM and POLIPHON algorithms with the airborne in situ measurements
conducted during the ATom campaigns over the Atlantic and Pacific oceans. To identify
the comparison cases, we located intercepts between the CALIPSO flight tracks and the
ATom aircraft tracks with the help of HYSPLIT trajectories. Out of all intercepts, 53
were found to be suitable for comparison. On comparing the dry extinction coefficients, we
found an overall good agreement between the CALIOP data and the in situ measurements
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with a correlation coefficient of 0.715. Disagreement was found mostly for retrievals above
3 km altitude. Such differences are most likely due to the spatial heterogeneity of aerosol
properties rather than a retrieval error. Therefore, to compare the ANC, we filtered the
datasets to select only those retrievals for which the CALIOP extinction coefficient is within
± 50 % of the one obtained from the in situ measurements. This constraint further increases
the likelihood of comparing the same air parcel, which is crucial for parameters such as ANC
that can easily vary by many orders of magnitude in space and time.

We found that the POLIPHON and OMCAM estimates of n50,dry are in overall good
agreement with the in situ measurements, with an overall correlation coefficient of 0.829
and 0.823, respectively. The agreement is seen for all the dominating aerosol type with the
exception of marine aerosols, for which the POLIPHON estimates give a better agreement
than the OMCAM. Revising OMCAM with the marine model of Sayer et al. (2012) led to
results similar to the ones from POLIPHON and an overall better agreement with the in
situ measurements. In the case of n250,dry, it is found that both the OMCAM (R = 0.463)
and POLIPHON (R = 0.47) are in reasonable agreement with the in situ measurements.
The updated OMCAM algorithm for marine aerosols resulted in no significant change in
the n250,dry concentrations.

Given the importance of knowledge regarding the global 3D distribution of the concen-
tration of cloud-relevant aerosol particles, both the POLIPHON and the OMCAM (with
the revised treatment of marine aerosols) algorithms emerge as an effective way of esti-
mating the aerosol number concentrations over different size ranges from spaceborne lidar
measurements. Future work includes a direct comparison of the type-specific extinction-
to-number-concentration conversion factors from in situ measurements, for instance from
Brock et al. (2021), with POLIPHON. The aerosol size distributions used in OMCAM can
also be compared with in situ measurements (e.g. Clarke and Kapustin, 2002, 2010; Quinn
et al., 2017; Brock et al., 2021) so as to better quantify the uncertainty associated with the
output aerosol number concentrations for different aerosol subtypes. Furthermore, we also
plan to test the potential of CALIOP measurements in deriving global CCN concentrations
by validating them with long-term surface in situ measurements, for example from Schmale
et al. (2017). The best-performing algorithm will be used to derive global CCN climatology
from CALIPSO. This dataset will be beneficial for evaluating models and other satellite
products, region-, and regime-wise detailed ACI studies and better constraining aerosol
radiative forcing estimates in climate models.
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3.6 Appendix

Table 3.A1: Details of ATom and CALIPSO data for the identified intersections. ∆t is the
effective time difference between the tracks after incorporating HYSPLIT trajectories. The dif-
ference in distance (∆s) and ∆t between the measurements are averaged values. Note: D–dust;
M–marine; C–polluted continental; S–elevated smoke.

S.
No.

ATom CALIPSO Extinction coefficient
contribution (%) ∆s

(km)
∆t
(h)Date Time Latitude Date Time Latitude D M C S

1 29/07/16 1655-1719 17.27, 19.43 29/07/16 2126 (D) 17.05, 20.99 39 44 17 0 257 16.5
2 01/08/16 2322-2347 64.35, 65.89 01/08/16 2210 (D) 63.22, 64.96 0 0 100 0 237 3.5
3 04/08/16 0025-0043 30.01, 31.39 03/08/16 1227 (N) 29.52, 31.48 0 100 0 0 126 7
4 06/08/16 1757-1808 18.96, 19.72 06/08/16 2355 (D) 18.54, 20.37 76 24 0 0 83 7
5 06/08/16 1902-1915 17, 17.48 06/08/16 1302 (N) 16.01, 17.98 1 96 3 0 359 14
6 06/08/16 1955-2018 14.03, 15 06/08/16 1303 (N) 13.54, 15.46 0 100 0 0 241 2
7 06/08/16 2154-2216 2.76, 4.80 06/08/16 1306 (N) 3.02, 5.17 0 100 0 0 457 2
8 06/08/16 2302-2314 -0.01, 0.004 06/08/16 1307 (N) -0.17, 0.13 0 100 0 0 31 10
9 06/08/16 2337-0001 -0.09, 0.001 06/08/16 1307 (N) -0.26, 0.49 10 90 0 0 446 20
10 08/08/16 1934-1943 -15.02, -14.31 08/08/16 1259 (N) -15.17, -14.02 0 100 0 0 44 7
11 08/08/16 2019-2055 -22.47, -19.34 08/08/16 1300 (N) -22.97, -18.81 0 100 0 0 143 7.5
12 13/08/16 0431-0456 -65.24, -64.98 13/08/16 0834 (N) -64.19, -61.04 14 86 0 0 331 2
13 15/08/16 1114-1140 -50.79, -49.54 15/08/16 1833 (D) -51.76, -49.23 7 93 0 0 113 9
14 15/08/16 1210-1238 -47.46, -45.96 15/08/16 0459 (N) -48.76, -46.52 13 87 0 0 336 0.5
15 17/08/16 0855-0919 -3.03, -0.95 17/08/16 0255 (N) -4.86, -0.02 1 14 3 81 205 11
16 17/08/16 0956-1017 3.48, 5.22 17/08/16 0255 (N) -0.28, 2.36 2 3 0 95 408 7
17 22/08/16 1748-1819 45.54, 46.13 22/08/16 1906 (D) 45.23, 47.57 18 0 61 0 125 1
18 22/08/16 1831-1851 44.88, 45.07 22/08/16 1906 (D) 44.61, 46.99 10 0 78 0 330 6
19 26/01/17 2148-2212 0.91, 2.01 26/01/17 2140 (D) 0.04, 1.96 19 47 34 0 147 5
20 26/01/17 2249-2311 6, 8 26/01/17 2142 (D) 6.02, 7.98 34 66 0 0 77 0
21 26/01/17 2356-0019 13.51, 15.48 27/01/17 0958 (N) 13.04, 14.96 0 100 0 0 144 5
22 01/02/17 2113-2142 55.03, 56.08 01/02/17 1322 (N) 55.11, 56.97 0 74 26 0 84 9
23 03/02/17 1953-2003 16, 16.5 04/02/17 0013 (D) 16.45, 17.16 14 86 0 0 197 10
24 03/02/17 2220-2245 4.31, 5.75 03/02/17 1324 (N) 3.81, 6.18 0 100 0 0 157 4
25 06/02/17 0241-0305 -56.05, -54.60 06/02/17 1412 (N) -56.06, -53.63 0 100 0 0 327 18
26 10/02/17 1854-1901 -43.77, -43.50 10/02/17 1344 (N) -44.99, -44.03 0 75 0 25 113 1
27 10/02/17 2323-2349 -64.71, -64.13 11/02/17 0937 (N) -65.26, -64.21 0 18 0 82 103 5
28 11/02/17 0312-0331 -59.74, -58.72 11/02/17 0617 (N) 60.18, -58.38 2 98 0 0 75 0
29 13/02/17 1238-1301 -46.76, -45.43 13/02/17 1756 (D) -50.99, -47.04 44 56 0 0 346 10.5
30 13/02/17 1733-1753 -20.3, -18.87 14/02/17 0319 (N) -20.95, -19.04 5 93 0 2 443 2.5
31 13/02/17 1930-2001 -9.11, -7.75 13/02/17 1450 (D) -9.47, -6.52 39 54 6 0 122 10
32 15/02/17 1713-1729 38.76, 39.2 15/02/17 1451 (D) 40.01, 44.98 6 94 0 0 462 10
33 19/02/17 1848-1914 74.2, 76.09 19/02/17 1934 (D) 75.54, 77.59 7 93 0 0 178 5.5
34 01/10/17 1606-1617 34.59, 35.23 01/10/17 0958 (N) 33.81, 35.18 14 0 86 0 74 7
35 06/10/17 2002-2014 16.35, 16.69 07/10/17 0031 (D) 16.22, 16.65 24 61 15 0 60 3
36 06/10/17 2157-2218 10.7, 12.28 06/10/17 1341 (N) 10.12, 12.36 0 100 0 0 141 11
37 07/10/17 0121-0132 -4.44, -3.48 06/10/17 1345 (N) -3.46, -2.52 0 100 0 0 230 1
38 14/10/17 1246-1311 -60.1, -58.69 14/10/17 1824 (D) -58.97, -57.04 14 86 0 0 302 2.5
39 17/10/17 1547-1607 -25.72, -24.23 17/10/17 1546 (D) -26.95, -24.01 22 78 0 0 112 0
40 20/10/17 1428-1448 28.04, 29.79 20/10/17 0355 (N) 26.51, 28.96 0 100 0 0 210 16
41 20/10/17 1527-1546 34.3, 36 20/10/17 0353 (N) 33.84, 36.77 0 100 0 0 140 14.5
42 23/10/17 1847-1859 44.8, 45.32 24/10/17 0642 (N) 44.03, 48.97 5 58 36 0 290 5
43 24/04/18 1905-1929 3.53, 4.97 24/04/18 2200 (D) 2.04, 5.98 15 75 10 0 425 9
44 29/04/18 2124-2152 42.48, 44.8 29/04/18 1302 (N) 41.01, 44.95 13 32 27 28 231 16.5
45 01/05/18 2119-2138 10.71, 12.14 01/05/18 1258 (N) 10.01, 12.96 0 85 0 15 188 0.5
46 01/05/18 2221-2245 4.39, 6.19 01/05/18 1300 (N) 3.04, 6.98 0 88 0 12 385 6
47 01/05/18 2328-0011 -2.02,-0.19 02/05/18 0123 (D) -1.96, -0.22 0 100 0 0 71 2
48 06/05/18 2021-2033 -43.59, -43.42 06/05/18 1332 (N) -45.96, -43.01 12 88 0 0 202 9
49 07/05/18 0254-0318 -64.72, -64.27 07/05/18 0746 (N) -65.18, -63.02 0 100 0 0 99 2
50 12/05/18 1536-1603 -37.22, -35.4 12/05/18 1640 (D) -37.97, -35.41 29 71 0 0 177 0
51 12/05/18 1932-1956 -16.84, -15 13/05/18 0337 (N) -16.98, -14.52 28 72 0 0 107 11
52 14/05/18 1649-1712 20.87, 22.63 14/05/18 1505 (D) 22.02, 23.99 5 95 0 0 325 10
53 14/05/18 1932-1952 38.06, 38.95 14/05/18 1510 (D) 38.52, 39.49 52 26 22 0 95 14.5





Chapter 4

Assessment of CALIOP-derived
CCN concentrations by in situ
surface measurements*

Short summary

The aerosol and CCN number concentrations derived from spaceborne lidar are compared
with long-term in-situ measurements collected at seven surface stations covering a variety of
aerosol environments. Because the in-situ data includes simultaneous retrievals of aerosol
and CCN number concentrations, the CCN parametrizations that convert the former to
the latter are also assessed. The result shows the reliability of the CCN parametrizations
as well as the ability of the OMCAM algorithm to estimate both aerosol and CCN number
concentrations from space. Based on the findings, necessary measures that should be
considered for retrieving height- and type-resolved global CCN concentrations are discussed.
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4.1 Introduction

Aerosol particles form an important component of Earth’s radiative budget by either in-
teracting directly with short- and longwave radiation, or indirectly by acting as cloud
condensation nuclei (CCN), which affect cloud properties. Under most atmospheric condi-
tions, aerosols are required for water vapor to condense into cloud droplets. Thus, changes
in aerosol concentration may alter the number of cloud droplets formed within a cloud
(Twomey, 1974) and adjust the cloud’s extent and lifetime (Albrecht, 1989). These aerosol-
cloud interactions (ACIs) are the major contributor to the total aerosol effective radiative
forcing and still remain the most uncertain component of anthropogenic radiative forcing
(Forster et al., 2021).

The impact of changes in aerosol concentration on cloud droplets is non-linear. It
depends not only on the aerosol’s physical (size and shape) and chemical properties (hygro-
scopicity) but also on ambient meteorological parameters such as water vapor content and
atmospheric stability (Fan et al., 2016; Seinfeld et al., 2016; Choudhury et al., 2019). The
aerosol concentration may vary regionally by several orders of magnitude (10 to 105 cm−3)
depending on the type, strength, and proximity of sources and sinks. Today, in situ aerosol
observatories provide continuous and temporally highly resolved long-term measurements
of cloud-relevant aerosol properties such as aerosol-sized distribution and chemical compo-
sition and CCN concentrations at different supersaturations (ss). However, they are limited
to selected geographical locations. In contrast, satellite instruments can provide global ob-
servations of aerosols and clouds and, thus, are used extensively for studying ACIs with
constrained meteorology and selected cloud regimes (Oreopoulos et al., 2017; Douglas and
L’Ecuyer, 2019; Bellouin et al., 2020).

The fundamental aerosol information needed to study ACIs for liquid clouds is the
number of available CCN close to the cloud base as only those will interact with the cloud
droplets. Satellite retrievals, however, give aerosol optical properties, which are used either
directly as proxies for the number concentration of CCN (nCCN) or to derive information
on the cloud-relevant aerosol fraction. Most satellite-based ACI studies use aerosol optical
depth (AOD; Feingold et al., 2001; Quaas et al., 2008, 2009) or an aerosol index (AI;
Nakajima et al., 2001; Bréon et al., 2002; Lohmann and Lesins, 2002; Gryspeerdt et al.,
2017) as CCN proxies. The AOD may not be an accurate proxy for CCN as it does not
include any information about the size of the observed aerosol particles. For instance, a
large number of small particles can result in the same AOD as a small number of large
particles. Furthermore, hydrophobic particles that are less efficient CCN compared to
hygroscopic particles may contribute significantly to the AOD. Conversely, the AI, as the
product of the AOD, and the Ångström exponent form a slightly better qualitative CCN
proxy than the AOD as it is weighted more towards fine aerosols (Stier, 2016; Quaas et al.,
2020). To better quantify the radiative forcing associated with ACI, Hasekamp et al.
(2019) used polarimetric observations over oceans to infer column-integrated, aerosol-sized
distributions. They further used the aerosol number concentration with a wet radius > 150
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nm as the CCN proxy and found the forcing estimates to be almost 50 % higher than
those where the AOD or AI were used. One of the intrinsic limitations of using any of the
three CCN proxies is that they are all column-integrated parameters, i.e., they may not
necessarily represent aerosols close to the cloud base, which are the ones relevant for ACI
(Costantino and Bréon, 2010, 2013). Moreover, the AI and polarimetric retrievals are not
reliable over land (Sayer et al., 2013; Quaas et al., 2020), where most of the anthropogenic
aerosols are generated and the concentrations are the highest. A way to overcome the
shortcomings associated with CCN products inferred from observations with passive sensors
is to shift towards height-resolved aerosol and cloud observations using spaceborne lidar,
which is available over both land and ocean (Quaas et al., 2020).

Shinozuka et al. (2015) used in situ measurements to report a linear relation between
nCCN and the aerosol extinction coefficient on a log–log scale. Following their work,
Mamouri and Ansmann (2016) present the first CCN retrieval algorithm for ground-based
lidar, where specific aerosol-type extinction-to-number-concentration conversion factors are
used to infer the number concentration of particles larger than a set radius. This particle
concentration is subsequently used in CCN parametrizations to estimate nCCN at multi-
ple supersaturations. The application to spaceborne Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) observations was found to give aerosol number concentrations that
were in reasonable agreement with in situ measurements (Marinou et al., 2019; Georgoulias
et al., 2020; Choudhury et al., 2022). In a recent study, Choudhury and Tesche (2022a)
presented a CCN retrieval algorithm that had been developed specifically for CALIOP ap-
plication. The algorithm used normalized size distributions in the CALIOP aerosol model
(Omar et al., 2009) and scaled them to reproduce the CALIOP-derived extinction coef-
ficient. These inferred aerosol-type specific-size distributions were integrated to obtain
aerosol number concentrations that were found to be in reasonable agreement with air-
borne in situ measurements (Choudhury et al., 2022). However, a direct comparison of
CALIOP-derived CCN concentrations with in situ CCN measurements is still missing in
the validation of both algorithms.

Schmale et al. (2017) presented multi-year continuous co-located in situ measurements
of nCCN and aerosol size distributions at 11 ground stations that covered a variety of
environments with varying aerosol signatures. Here, we compare the nCCN estimated from
spaceborne CALIOP data using the aforementioned methodologies with the ground-based
in situ measurements of Schmale et al. (2017). The concurrent in situ measurements of nCCN

and aerosol-sized distribution were furthermore used to assess the applicability of CCN
parameterizations related to different aerosol types and size ranges. Based on our results,
we also suggest necessary measures for compiling a global CCN climatology. The article
is structured as follows. We describe the datasets, retrieval algorithms, and comparison
methodology in Section 4.2. The comparison between the in situ and satellite derived
nCCN is given in Section 4.3. The findings and possible steps forward are summarized in
the final section.
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Figure 4.1: Location of the in situ sites used in this study. The large inset gives a closer
look of Europe. The small insets present daytime (blue) and nighttime (black) ground tracks of
CALIOP that fall within a 3◦ × 3◦ latitude–longitude grid box centered at Melpitz and Barrow,
respectively, for a randomly selected month. The world map in the background is taken from
http://www.shadedrelief.com/natural3/pages/textures.html (accessed on 7 July 2022).

4.2 Data and methods

4.2.1 In situ observations

The in situ observations used in this study were obtained from Schmale et al. (2017). The
dataset consists of simultaneous measurements of aerosol-sized distributions and nCCN at
multiple supersaturations for 11 ground-based stations. The data have a temporal resolu-
tion of one hour and include a total of 98,677 h and 157,880 h of nCCN and size distribution
measurements, respectively. Of the 11 stations, we used measurements from 7 stations:
Barrow, Cabauw, Finokalia, Melpitz, Vavihill, Puy de Dôme, and Seoul. Station selection
was based on the availability, location, and proximity of the CALIOP overpasses relative
to the station location. Other factors, such as very low aerosol concentrations (Mace Head)
and presence of clouds (Jungfraujoch) close to the surface, hindered CALIOP retrievals;
thus, such stations were not considered in our comparison. Among the selected stations,
Puy de Dôme is a high-altitude station that represents the continental background and
free-tropospheric air masses. Barrow and Finokalia are coastal stations covering Arctic and
Mediterranean conditions. Cabauw, Melpitz, and Vavihill represent continental background
conditions, while Seoul characterizes the polluted urban environment. The geographical lo-
cation of these stations is shown in Figure 4.1. Details about the altitude, environment,
and temporal coverage of each site are listed in Table 4.1. A comprehensive description of
the instruments, inlet system, sampling procedure, and quality control measures used in

http://www.shadedrelief.com/natural3/pages/textures.html
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the data collection at each station is given in Schmale et al. (2017).

Table 4.1: Details of the in situ stations considered in this study.

Station Environment Location Elevation Temporal Coverage
Cabauw, The Netherlands near coast, continental background 51◦58’N, 4◦56’E −1 1 January 2012–31 December 2014

Melpitz, Germany continental background 51◦32’N, 12◦56’E 86 m 1 January 2012–31 December 2014
Vavihill, Sweden rural background 56◦01’N, 13◦09’E 172 m 20 December 2012–11 November 2014

Seoul, South Korea urban, monsoon-influenced 37◦34’N 126◦58’E 38 m 1 January 2006–31 December 2010
Puy de Dôme, France mountain, continental background 45◦46’N, 02◦57’E 1465 m 1 January 2014–1 January 2015

Barrow, USA Arctic maritime 71◦19’N, 156◦37’W 11 m 20 July 2007–25 June 2008
Finokalia, Greece coastal background, Mediterranean 35◦20’N, 25◦40’E 250 m 1 January 2014–31 December 2015

4.2.2 CALIOP

CALIOP is a two-wavelength polarization-sensitive lidar on the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which has been observing
the vertical distribution and occurrence of aerosols and clouds since June 2006 (Winker
et al., 2009). CALIPSO aerosol products include vertical profiles of the aerosol extinction
coefficient, aerosol backscatter coefficient, particle–linear depolarization ratio, and aerosol
subtype. CALIPSO aerosol subtypes defined in the most recent version 4 data products
include marine, dust, dusty marine, polluted dust, clean continental, polluted continen-
tal/smoke, and elevated smoke (Kim et al., 2018). In the present work, we used the
CALIPSO level 2 version 4.20 aerosol profile product (NASA/LARC/SD/ASDC, 2018),
which included aerosol optical properties and subtype information at a uniform horizontal
resolution of 5 km and a vertical resolution of 60 m within the troposphere. We also used
the relative humidity profiles included in the CALIPSO product obtained from the Global
Modelling and Assimilation Office Data Assimilation System (Molod et al., 2015).

CCN Concentrations from CALIOP

The Optical Modelling of CALIPSO Aerosol Microphysics (OMCAM; Choudhury and
Tesche, 2022a) and the Polarization Lidar Photometer Networking (POLIPHON; Mamouri
and Ansmann, 2015, 2016) are the two techniques for estimating CCN concentrations from
CALIOP measurements. Prior to the application of the CALIPSO aerosol parameters, we
applied all the quality control measures suggested by Tackett et al. (2018) and only se-
lected high-quality cloud-free retrievals. We also separated the dust mixtures into dust and
non-dust contributions following Tesche et al. (2009). In both methods, we first needed to
convert the CALIOP extinction coefficient to dry number concentrations of aerosols within
a size range where they were likely to act as CCN. The number concentration was then
used in aerosol-type specific CCN parametrizations to compute nCCN at defined supersatu-
rations. POLIPHON uses a set of equations to convert the CALIOP extinction coefficient
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(α) to a dry aerosol number concentration with radius greater than j nm (nj,dry) as

nj,dry = C · αx, (4.1)

where j is 50 nm for continental and marine aerosols and 100 nm for dust aerosols; C

is the conversion factor; and x is the extinction exponent obtained from the regression
analysis of long-term AERONET measurements of AOD and size distributions (Mamouri
and Ansmann, 2016; Ansmann et al., 2019, 2021b). The values of C and x used in this work
are listed in Table 4.2. Similar to Choudhury et al. (2022), we used regression constants for
continental (clean continental and polluted continental) and marine aerosols from Mamouri
and Ansmann (2016), desert dust from Ansmann et al. (2019), and smoke aerosols from
Ansmann et al. (2021b).

Table 4.2: Conversion factor (C in Mm cm−3) and extinction exponent (x) values for POLIPHON
and OMCAM algorithms used to estimate nj,dry from Equation (4.1). Note that x = 1 for OM-
CAM.

Type POLIPHON (Ambient) OMCAM (Dry)
C x C

Dust 8.855 0.7525 11.085
Clean continental 25.3 0.94 3.6

Marine 7.2 0.85 2.4
Elevated smoke 17 0.79 22

Polluted continental 25.3 0.94 24.93

In contrast to POLIPHON, OMCAM uses the aerosol microphysical properties (nor-
malized size distributions and refractive indices) in the CALIPSO aerosol model (Omar
et al., 2009) and scales the size distribution to reproduce the CALIOP extinction coefficient
(Choudhury and Tesche, 2022a) using the MOPSMAP modelling package (Gasteiger and
Wiegner, 2018). The scaled size distribution is then used to compute the required aerosol
number concentration to be used in the corresponding CCN parametrization. While eval-
uating the OMCAM estimated aerosol number concentrations with airborne in situ mea-
surements, Choudhury et al. (2022) found that the marine model from Omar et al. (2009)
resulted in an underestimation of n50,dry and suggested using the AERONET-based marine
model from Sayer et al. (2012). We thus used the OMCAM algorithm with an updated
marine model in our validation study. To correct the ambient CALIOP extinction coef-
ficient for the hygroscopicity of hydrophilic aerosols, we used the kappa parametrization
(Petters and Kreidenweis, 2007) included in the MOPSMAP package with globally aver-
aged kappa values of 0.3 for continental aerosols (clean continental, polluted continental,
elevated smoke), and 0.7 for marine aerosols (Andreae and Rosenfeld, 2008). Schmale et al.
(2018) also found similar kappa values using the in situ data considered in this study. Dust
is treated as hydrophobic, so no hygroscopicity correction was applied for dust retrievals.
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To apply the hygroscopicity correction, following Choudhury et al. (2022), we first esti-
mated the growth factors at different relative humidity (RH) values for different aerosol
subtypes using the microphysical properties from the CALIPSO aerosol model and Sayer
et al. (2012) (for marine subtype). We then correct the CALIOP extinction coefficient by
using these growth factors. Previous studies found this method to yield reasonable results
even under highly humid conditions such as within the marine boundary layer (Choudhury
and Tesche, 2022a; Choudhury et al., 2022). Choudhury et al. (2022) parametrized the dry
aerosol number concentrations linearly (x = 1 in Equation (4.1)) for the dry aerosol extinc-
tion coefficient. The corresponding values are given in Table 4.2. It is worth noting that
the linear relationship in OMCAM held only for the dry extinction coefficient. In contrast,
the POLIPHON technique was originally formulated for ambient conditions assuming a
constant RH of 80 and 60 % for marine and continental aerosols, respectively (Mamouri
and Ansmann, 2016). Thus, for POLIPHON, we only applied the hygroscopicity correction
when the ambient RH exceeded these values for the corresponding aerosol types.

The fraction of aerosols that can act as CCN depends not only on the particle’s physical
and chemical properties but also on the atmospheric water vapor supersaturation, depends
on meteorological parameters such as temperature, pressure, water content, vertical wind
velocity and the resulting cooling rate. Given the complexities in measuring atmospheric
nCCN, Mamouri and Ansmann (2016) defined nj,dry in Equation (4.1) as representing the
nCCN at ss = 0.15–0.20 %. The nCCN at higher supersaturations are expressed as a mul-
tiple of nj,dry. In the present work, we considered CALIOP-derived nCCN at ss = 0.2 %
(i.e., nj,dry) in the comparison study because this parameter was provided by all of the
in situ stations. The in situ data included simultaneous measurements of hourly nCCN

and aerosol-sized distributions (Schmale et al., 2017). To assess the CCN parameteriza-
tions used in our retrievals, we compared the nj,dry as estimated from the size distributions
with measurements of the nCCN at 0.2 % supersaturation. Figure 4.2 shows a comparison
of the in situ nCCN from direct measurements and nj,dry inferred from the concurrent in
situ size-distribution measurements for the sites listed in Table 4.1. We considered n50,dry

for all stations except Finokalia, for which we compared n100,dry as this particular site is
frequently influenced by dust aerosols (Schmale et al., 2017, 2018). This approach was
also supported by the CALIOP profiles within a 3◦ by 3◦ grid box surrounding the sta-
tion in which 70–90 % of the monthly extinction coefficients were classified as related to
dust, polluted dust, and dusty marine aerosol subtypes (not shown). Figure 4.2 shows very
good agreement between in situ nj,dry and nCCN with a Spearman correlation coefficient
(R) of 0.9, a normalized mean bias (NMB) of 20 %, and normalized mean error (NME) of
34 %. We therefore concluded that the use of aerosol-size-based CCN parametrizations as
suggested by Mamouri and Ansmann (2016) provided reasonable estimates of nCCN.

4.2.3 Comparison Methodology

Compared to passive sensors and the resulting column-integrated parameters, CALIOP
measures height-resolved aerosol properties that can be aggregated to obtain their spatial
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Figure 4.2: Comparison of concurrent in situ measurements of hourly nCCN at 0.2 % supersatu-
ration and nj,dry (j = 100 nm for dust influenced Finokalia station and j = 50 nm for other sites).
The values of correlation coefficient (R), total number of bins (N), normalized mean bias (NMB)
and normalized mean error (NME) are given in the legend.

and vertical distribution. However, CALIOP has a very small footprint on the order of
tens of meters compared to the hundreds of kilometers of passive sensors. Hence, monthly
CALIPSO level 3 data products are reported at a coarse 2° × 5° latitude-longitude grid
(Winker et al., 2013; Tackett et al., 2018). To compare CALIOP observations with those at
the in situ stations considered in this study, we defined a 3°×3° latitude–longitude grid box
centered at the geographical location of a station and then considered all the CALIPSO level
2 profiles within that domain. Thus, the selected profiles were used to compute the nCCN

as discussed in Section 2.2. These individual profiles were then averaged to obtain monthly
mean profiles of nCCN for each grid box that was compared to the in situ data. Monthly
averaging was used to compensate for (i) the relatively large area in the satellite-to-surface
comparison that might include scenarios in which CALIOP and an in situ site observed
different air masses and (ii) the local extremes in the in situ time series that were unlikely
to be covered in the satellite observations. Note that our grid was finer than the 5° × 5°
in Fanourgakis et al. (2019) for comparing multi-model simulations of nCCN with surface
in situ measurements. For comparison to the in situ data at ground, CALIOP-derived
profiles of CCN concentration were averaged from the surface to 1 km in height (to capture
boundary-layer aerosols) except for the alpine site (Puy de Dôme), for which the averaging
was extended to a height of 2 km. The comparison method used to determine the absolute
error between the satellite and in situ measurement was the NME and to assess the relative
bias of the satellite retrieval it was the NMB. The Spearman correlation coefficient (R) was
used to assess the ability of satellite retrievals to represent the variability in the in situ
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measurements. As the CALIOP-derived nCCN represented nj,dry (j = 50 nm for continental
and marine, and 100 nm for dust aerosols) at 0.2 % supersaturation, we also compared them
with the in situ measurements of nj,dry (j = 100 nm for dust influenced Finokalia station
and 50 nm for other stations). This approach enabled us to consider in situ measurements
also for months that were lacking CCN measurements and to increases the number of data
points to be considered in the statistical analysis.

4.3 Comparison of CCN Concentrations

The comparison of the monthly mean nCCN (at ss = 0.2 %) at the in situ stations and inferred
from CALIOP measurements is presented in Figure 4.3 and Table 4.3. At all sites, monthly
in situ nj,dry are either comparable or larger than the directly measured in situ nCCN with
average NMB and NME values of 20.7 and 39.8 %, respectively and nearly identical monthly
variations. Overall, the CALIOP estimates of monthly nCCN using OMCAM algorithm
were larger than the in situ observations with a mean NMB and NME of 49 % (31 %) and
76 % (93 %) for nighttime (daytime) retrievals, respectively. The POLIPHON algorithm
resulted in even larger CCN values with NMB and NME values of 129 % (89 %) and 138.5 %
(133.2 %) for nighttime (daytime) retrievals, respectively. A fraction of this overestimation
comes from the consideration of pure size-based CCN parameterization (Equation (4.1)),
which considers all aerosols within the selected size limit to be CCN active. This is also
seen in Figure 4.2 and Figure 4.3, where nj,dry overestimated nCCN with a positive bias of
about 20 %. The statistics improve somewhat for the comparison of nj,dry (Table 4.3). The
best nCCN absolute error agreement was found at Puy de Dôme with nighttime OMCAM
estimates resulting in an absolute error of about 43 %. Overall, worst agreement between
CALIOP and in situ measurements was found at dust-influenced Finokalia with NME values
as high as a factor of 1 for OMCAM and 1.5 for POLIPHON retrievals. Such disagreement
was also reported in Choudhury et al. (2022) for dust and marine aerosol mixtures and
may be because of changes in the microphysical properties of the aerosol types caused
by either chemical or cloud processing. Assuming dust aerosols to be hydrophobic may
also have contributed to the disagreement. Overall, about 88 % (91 %) and 77 % (88 %)
of either of the daytime or nighttime monthly CALIOP nCCN estimates from OMCAM
and POLIPHON algorithms, respectively, stayed within a factor of 1.5 of the monthly
in situ nCCN (nj,dry) measurements. In some cases, the findings from CALIOP daytime
and nighttime retrievals differed by several orders of magnitude. On closer inspection,
we found that the daytime and nighttime tracks covered different geographical locations
within a grid box. Furthermore, in any given month, the number of days with a daytime
CALIPSO track within the considered domain was not always the same as that for nighttime
overpasses. Also, the sensitivity of CALIOP to aerosols was different during day and night.
These factors were likely to have caused the differences observed between the daytime and
nighttime nCCN retrievals.

It is known that CALIOP may fail to detect aerosol layers with a lower aerosol load (Ma
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Figure 4.3: Monthly time series of nj,dry (green) and nCCN (red) as derived from ground-based
in situ measurements and nCCN inferred from CALIOP observations using the OMCAM (gray
dots for nighttime data and blue for daytime data) and POLIPHON (gray diamonds for nighttime
and blue for daytime data) algorithms at Cawbauw (a), Melpitz (b), Vavihill (c), Seoul (d), Puy
de Dôme (e), Barrow (f), and Finokalia (g) stations. The semi-transparent data points are for the
cases where the number of CALIOP data bins with finite aerosol retrievals used to produce the
monthly average are less than 100.

et al., 2018; Watson-Parris et al., 2018; Quaas et al., 2020). On analyzing the number of
CALIOP data bins with valid aerosol retrieval (Nbins) used to compute the monthly nCCN

time series in Figure 4.3, we identified several cases where Nbins < 100 (25th percentile)
coincided with outliers (semi-transparent points in Figure 4.3). Figure 4.4 shows how
the comparison of CALIOP-derived CCN concentrations with the in situ measurements
improved when only months with Nbins > 100 are considered in the analysis. In that case,
the CALIOP estimates of nCCN using POLIPHON are in reasonable agreement with the
in situ nj,dry and nCCN with NME values of 83 and 123 %, NMB values of 62 and 108 %,
and R values of 0.61 and 0.7, respectively. The OMCAM estimates were in even better
agreement with the in situ nj,dry and nCCN with NME values of 54 and 71 %, NMB values
of 9 and 39 %, and R values of 0.63 and 0.68, respectively.

Along with the aerosol load, the number of days in a month observed (DMO) by
CALIOP within a grid box may also have a significant impact on the nCCN retrieval.
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Figure 4.4: Comparison of nCCN (a,c) and nj,dry (b,d) from in situ and CALIOP (day and night
combined) measurements using OMCAM (a,b) and POLIPHON (c,d) for Nbins > 100 at all sites
given in Table 4.1

.

In general, CALIOP-derived monthly values are expected to be more representative of a
region within higher DMO. The DMO value depends on the geographical location (about
19 days at high latitude Barrow and 7 days at Melpitz station) and the size of the grid box,
especially along the longitude. As the former cannot be modulated, increasing the grid box
for CALIOP sampling is the only possible way to get higher DMO values. We therefore
suggest using a relatively coarse 2° × 5° latitude–longitude grid (also used in CALIPSO
level 3 data (Tackett et al., 2018)) to estimate a global height-resolved nCCN to obtain a
regionally representative result. Even so, CALIOP has the potential to provide height-
and type-resolved nCCN over both land and oceans. With regards to the ACI study, the
height-resolved measurements can be used to estimate the nCCN close to cloud base and the
type-resolved measurements to quantify the anthropogenic component. The availability of
more than a decade of CALIOP measurements provides a unique opportunity to study the
global and seasonal distribution of CCN concentrations for different aerosol types. How-
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Table 4.3: Comparison statistics of monthly nCCN at ss = 0.2 % (in cm−3) and nj,dry (in cm−3)
derived from in situ and CALIOP measurements. The values enclosed within brackets are for
daytime CALIOP retrievals and the unbracketed values represent nighttime retrievals. The nor-
malized mean bias (NMB) and normalized mean error (NME) are given along with their averages
weighted by the number of observation months for each station.

Stations
NMB (%) NME (%)

OMCAM POLIPHON OMCAM POLIPHON
nCCN nj,dry nCCN nj,dry nCCN nj,dry nCCN nj,dry

Cabauw 44 (−9.9) 14.2 (−30.3) 123.3 (36.7) 79.8 (6.13) 72 (53.2) 66.6 (40.6) 134.8.1 (84.6) 102.6 (47.7)
Melpitz 47 (7.8) 43 (53.1) 134.9 (62.5) 128.5 (135) 82.7 (70) 78 (97.8) 151.6 (104.6) 140.3 (154.1)
Vavihill 17 (54.3) 12.1 (33.7) 99.6 (147.6) 83.6 (115) 44.2 (82.2) 47.8 (66.5) 105.4 (159.2) 92.1 (129)
Seoul 31.5 (19.6) 2.7 (−10.6) 88.3 (62.9) 48.9 (23.5) 75.3 (80) 39.7 (49) 106.5 (97.9) 63.5 (59)

Puy de Dôme 29.5 (100.8) 23.5 (122.2) 125.7 (219.2) 115.2 (254.6) 43 (157.3) 41.4 (172.3) 125.7 (254.1) 115.2 (281.1)
Barrow 113.6 (−41.7) 1 (−15) 241.7 (−15.7) 61.6 (56.7) 117.5 (84.9) 72.5 (55.8) 241.7 (94.2) 80.7 (70.9)

Finokalia 93.9 (127.3) 109.8 (126.3) 151.9 (146.1) 167.8 (150) 106.8 (189.3) 109.8 (170.4) 154.7 (196) 167.8 (174.1)
Average 48.8 (31.1) 26.7 (25.3) 128.6 (89) 91.2 (78.4) 75.9 (93.3) 62.6 (79.4) 138.5 (133.2) 104.3 (107.9)

ever, such a study is not within the scope of the present work and will be presented in
future studies.

4.4 Conclusions

We presented a comparison of monthly in situ CCN concentrations (nCCN) and dry aerosol
number concentrations (nj,dry) with the spaceborne lidar CALIOP retrievals. POLIPHON
and OMCAM algorithms were used to estimate nj,dry and nCCN from CALIOP measure-
ments. Both techniques rely on size-based CCN parametrizations. A comparison of the
concurrent in situ measurements of nCCN and nj,dry at all stations supported the appli-
cability of the size-based CCN parametrizations. We found that the CALIOP estimates
of monthly nCCN at 0.2 % supersaturation were generally in good agreement with the in
situ measurements: about 88 % (91 %) and 77 % (88 %) of nCCN (nj,dry) estimates from
OMCAM and POLIPHON algorithms remaining within a factor of 1.5 of the in situ mea-
surements, respectively. Disagreement was primarily found for the monthly retrievals where
the number of aerosol samples detected by CALIOP was less than 100 (25th percentile).
Excluding such retrievals, we found the OMCAM nCCN estimates to have better agreement
with the in situ measurements with a normalized mean error of 71 %, normalized mean
bias of 39 %, and correlation coefficient of 0.68. The in situ stations considered in this
validation study cover different continental environments. Future studies involving a direct
comparison of CALIOP retrievals with measurements over oceans, (e.g., from Hudson et al.
(2010)) will provide better insight into the ability of CALIOP to estimate marine nCCN.
Having said that, our findings along with previous comparison studies (Marinou et al., 2019;
Georgoulias et al., 2020; Choudhury and Tesche, 2022a; Choudhury et al., 2022) support
the feasibility of constructing a global height-resolved nCCN climatology from CALIOP
measurements. Such a dataset would be invaluable not only for studying aerosol-cloud
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interactions (Bellouin et al., 2020; Quaas et al., 2020) but also serve as a benchmark for
regional and global climate models.





Summary and conclusions

This dissertation presents a novel CCN retrieval algorithm based on optical modelling
of CALIPSO aerosol microphysics (OMCAM) and is designed specifically for application
to CALIPSO lidar measurements. OMCAM uses the CALIPSO level 2 aerosol profile
product together with the CALIPSO aerosol model that includes a set of normalized size
distributions and refractive indices of specific aerosol subtypes called clean marine, dust,
polluted continental, clean continental, elevated smoke, polluted dust, and dusty marine.
OMCAM requires four aerosol input parameters from CALIPSO data: extinction coeffi-
cient, backscatter coefficient, depolarization ratio, and subtype mask. The depolarization
ratio is first used to separate the extinction coefficient of aerosol mixtures (polluted dust and
dusty marine) according to the contributions of spherical and non-spherical particles. The
resulting type-specific aerosol extinction coefficients are then used to estimate the aerosol
size distribution. This is done by linearly scaling the total aerosol number concentrations
of the normalized dry size distribution of the CALIPSO aerosol model in light scatter-
ing calculations with the MOPSMAP optical modelling package (Gasteiger and Wiegner,
2018) to match the CALIPSO-inferred extinction coefficient. The final adjusted size dis-
tributions are then used to infer concentration of particles with a dry radius larger than
a certain threshold which forms the input needed in the CCN parametrizations (Mamouri
and Ansmann, 2016) that enables an estimation of CCN concentrations (nCCN) at multiple
supersaturations independent of geographical location and underlying surface type. The
algorithm also accounts for the hygroscopic growth of hydrophilic aerosols by using the
kappa parametrization (Petters and Kreidenweis, 2007) within the MOPSMAP package.
The globally averaged kappa values of 0.3 for continental aerosols (polluted continental,
clean continental, and elevated smoke) and 0.7 for marine aerosols are considered (Andreae
and Rosenfeld, 2008). The RH correction can either be applied to the initial dry normalized
size distribution or the ambient CALIPSO measurement.

The OMCAM algorithm is build around the initial normalized size distributions given
in the CALIPSO aerosol model that are assumed to retain their shape for different aerosol
concentrations, i.e., the volume fraction, standard deviation, and mean radius of the size
distributions are assumed to be intensive and independent of the aerosol volume. While
this approximation holds good in most scenarios (Omar et al., 2005), it may result in errors
in situations with complicated aerosol mixtures, and may not account for natural variabil-
ity as a result of chemical processing and ageing. Thus, a sensitivity study was performed
in which the initial size distribution parameters were varied to quantify the uncertainty

79



80 Summary and conclusions

associated with the algorithm. Furthermore, the algorithm outputs were validated thor-
oughly using temporally and spatially co-located in-situ measurements. For the validation,
airborne observations conducted over the Pacific and Atlantic oceans during the ATom
campaign (Wofsy et al., 2018) were used along with the long-term surface in-situ mea-
surements collected at seven selected ground stations (Schmale et al., 2017). The airborne
profile measurements are crucial to assess the ability of OMCAM to estimate height-resolved
nCCN. While the surface stations may not provide height-resolved information, they offer
long-term measurements at a very high temporal resolution. Such data are necessary to
evaluate the ability of OMCAM in capturing the temporal variations of nCCN. The main
findings and the derived conclusions are summarized in the following sections.

Sensitivity analysis

To estimate the uncertainty associated with the OMCAM algorithm, sensitivity studies
were performed by modifying the input parameters. OMCAM relies primarily on the fixed
volume-normalized aerosol size distributions derived from CALIPSO aerosol model. While
such approximation may simplify the algorithm, it does not account for natural processes
like aerosol ageing and chemical processing that may change the size distributions and hy-
groscopicity of aerosols. To account for such errors that may arise because of the assump-
tions, the standard deviation, mean radius, and volume fraction of the initial normalized
size distributions and the RH values were varied and the output CCN concentrations were
found to remain within a factor of 1.5 and 2. Incorporating further uncertainties from
the CCN parametrizations and the CALIPSO retrievals, the overall uncertainty associated
with the OMCAM-derived CCN concentrations was estimated to be within a factor of 2
and 3. This level of uncertainty is usually expected for remote sensing of cloud-relevant
aerosol number concentrations (Shinozuka et al., 2015; Mamouri and Ansmann, 2016).

Validation

The primary output of the OMCAM algorithm is the aerosol number concentration, which is
further used in the predefined CCN parametrizations suggested by Mamouri and Ansmann
(2016) to infer CCN concentrations at multiple supersaturations. Thus, to evaluate the
results of the algorithm, the aerosol and CCN number concentrations have to be compared
to the results of in-situ observations.

In the first step of the validation, the OMCAM-estimated aerosol number concentrations
are evaluated with the airborne measurements performed during the ATom campaigns. The
comparison shows an acceptable agreement between the OMCAM-estimated and in-situ
measured n50,dry with a correlation coefficient of 0.82, a mean of 283.4 cm−3, a root mean
square error (RMSE) of 247.2 cm−3, and a bias of 44.45 cm−3. A closer look at the compar-
ison for different aerosol subtypes reveals a reasonable agreement for all subtypes except
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marine aerosols (mean =134.6 cm−3, RMSE = 144.3 cm−3, and bias = 84 cm−3), for which
the OMCAM estimates are about an order smaller than ATom measurements. A possible
reason for the underestimation of magnitude was attributed to the marine aerosol model
used in CALIPSO as it was built from a small number of in-situ measurements of sea salt size
distributions. Thus, the algorithm was revised by replacing the existing marine model with
an updated AERONET-based marine model (Sayer et al., 2012). The revised algorithm
results in improved n50,dry estimates for marine-dominated cases with mean = 176.3 cm−3,
RMSE = 135.42 cm−3, and bias = −21.7 cm−3. This level of agreement between spaceborne
and in-situ derived aerosol number concentrations across different height levels and aerosol
types has not been achieved before.

In the second step of the validation uses the in-situ data from Schmale et al. (2017),
which include simultaneous measurements of aerosol number and CCN concentrations at
seven surface in-situ stations covering different aerosol environments. The simultaneous in-
situ measurements of nj,dry and nCCN are used also to evaluate the CCN parametrizations
given in Mamouri and Ansmann (2016). The in-situ nj,dry agree with the in-situ nCCN

with a 20 % normalized mean bias (NMB) and 34 % normalized mean error (NME). This
demonstrates the potential of simple aerosol-size-based CCN parametrizations. Further, the
CALIPSO-estimated monthly time-series nCCN are found to agree with the in-situ measure-
ments with a 39 % NMB and 71 % NME. CALIPSO-estimated nj,dry agree somewhat better
with in-situ measurements with 8.7 % NMB and 53.6 % NME. To summarize the validation
effort, it is found that OMCAM shows great promise in capturing the temporal evolution
of nj,dry and nCCN when applied to spaceborne CALIPSO lidar.

The spaceborne CALIPSO lidar has now collected a unique data set of more than 15 years
of global height- and type-resolved aerosol optical properties. The OMCAM algorithm
presented in this dissertation enables the conversion of the aerosol optical properties into
cloud-relevant microphysical properties such as aerosol and CCN number concentration.
The OMCAM retrieval is found to be reasonably consistent with co-located independent
in-situ measurements at different altitude ranges over both land and ocean. Such an agree-
ment has not yet been achieved for spaceborne estimates of CCN concentrations. The
findings presented in this thesis therefore demonstrates the potential of OMCAM to derive
3D global climatological data related to aerosol and CCN number concentration that would
be extremely helpful for studying aerosol-cloud interactions and evaluating and constraining
global model simulations.





Outlook

Global 3D CCN climatology

The OMCAM validation results in Chapters 3 and 4 together with the length of the
CALIPSO time series of more than 15 years pave the way towards inferring a global height-
resolved climatology of CCN concentrations. To construct regional representative gridded
data from CALIPSO lidar measurements, a minimum temporal resolution of one month
and a latitude–longitude grid resolution of 2°×5° is recommended (Choudhury and Tesche,
2022b). The monthly time resolution accounts for the rather long 16 days orbital cycle of
CALIPSO. The coarser grid resolution ensures a sufficient sampling frequency within each
grid box during one month. The annual average column-integrated nCCN at 0.2 % supersat-
uration estimated from applying OMCAM to CALIPSO measurements during the year 2007
with the suggested spatial and temporal resolution is shown in Figure 6.1b. In comparison
to POLDER retrievals of nCCN (Figure 6.1a and Hasekamp et al., 2019) over oceans for the
year 2006, the OMCAM-retrieved values are smaller by about 1 to 2 orders of magnitude.
The distribution of CCN is, however, similar in both the retrievals with hotspots close to
the continents and decreasing magnitude further away from the continents. Also, there are
noticeable differences in the regional aerosol distributions, for instance over Indonesia and
the eastern Pacific ocean. Such regional differences may may be related to the fact that
different years were considered for estimating the annual averages. Other factors like the
difference in sampling frequency and spatial–temporal resolution may also contribute to
the differences.

The OMCAM-derived nCCN can be further separated into contributions from differ-
ent aerosol types. Figure 6.2 depicts the global distribution of column-integrated nCCN

averaged over the year 2007 as derived for the four aerosol types: dust, polluted continen-
tal, marine, and elevated smoke. Dust and polluted continental aerosols are the dominant
contributors to global nCCN with the former found also far from its continental sources.
As expected, emerging economies in Asia are the hotspots for CCN related to polluted
continental aerosols. Dry and arid regions of the Middle East and Northern Africa are
dominated by dust. Smoke aerosols are mostly confined to regions that are affected by
forest fires. Marine aerosols are limited to oceans and are the most spatially homogenous
and least abundant type of CCN. The application of OMCAM will be further expanded
to the complete CALIPSO data set to construct a global 3D nCCN climatology. The thus
obtained data set will be crucial for studying the latitudinal, longitudinal, and altitudi-
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Figure 6.1: Annual average column integrated nCCN from POLDER for the year 2006 (a) and
CALIPSO for the year 2007 (b). CALIPSO measurements started in June 2006 and, therefore,
the year 2007 is selected to obtain the annual mean concentrations for comparison.

nal distributions of nCCN for different aerosol types as well as their seasonal and annual
variations and trends.

Extending OMCAM to retrieve INP concentrations

Following the basic idea of Mamouri and Ansmann (2016), OMCAM can also be used to
infer the number concentration of aerosols with a dry radius > 250 nm (n250,dry) from space-
borne CALIPSO lidar measurements. This parameter then forms the input to INP parame-
terizations (DeMott et al., 2010, 2015; Ullrich et al., 2017) for estimating the concentrations
of activated INPs (nINP) at different temperatures via multiple nucleation pathways. As
presented in Chapter 3 (Choudhury et al., 2022), the OMCAM-derived n250,dry are in rea-
sonable agreement with in-situ measurements. However, a direct comparison with in-situ
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Figure 6.2: Annual average column-integrated nCCN from CALIPSO for dust (a), polluted
continental (b), marine (c), and elevated smoke (d) aerosols for the year 2007.

INP measurements would be required to further evaluate the reliability of an OMCAM-
derived INP product. Extending OMCAM towards also retrieving INP concentrations is
a logical next step that would enable the compilation of a global 3D INP climatology. As
there is currently no global INP information, neither from atmospheric models nor from
observations, such a data set would make a step change in studying ACI in ice-containing
clouds on a global scale.

Radiative forcing due to ACI

The OMCAM-derived information on nCCN and nINP can be combined with cloud pa-
rameters from passive sensors to quantify the radiative forcing associated with ACI (Bel-
louin et al., 2020). Figure 6.1 shows the annual average nCCN derived from POLDER and
CALIPSO lidar measurements. Compared to the polarimetric retrievals of nCCN (Figure
6.1a) that were recently used by Hasekamp et al. (2019) to study ACI, CALIPSO lidar has
no limitations for retrievals over land. Furthermore, the OMCAM-derived nCCN is height-
resolved and, thus, provides the possibility to consider only those aerosols that lie close to
cloud base and are actually in a position to interact with clouds in ACI studies. As shown
in Figure 6.2, the OMCAM-derived nCCN can be further separated into contributions from
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Figure 6.3: Annual nCCN within 1–2 km height above mean sea level from CALIPSO (a) and box
model (b) along with their zonal (c) and meridional (d) variations averaged over the year 2007.

different aerosol types. This is crucial for quantifying the anthropogenic or human-induced
radiative forcing. Global nINP can be used in estimating the forcing associated with ice-
containing clouds, which is still not considered even in the recent IPCC report (Forster
et al., 2021). The retrieved nCCN and nINP products can be used to obtain a more reli-
able radiative forcing estimates and, therefore, improve the physical basis of future climate
projections.

Model evaluation

The OMCAM-derived global height-resolved nCCN data are also invaluable for evaluating
the representation of such particles in global model. Figure 6.3 compares the OMCAM-
derived annual average nCCN and the outputs from an aerosol box model (Haghighatnasab
et al., 2022) at a supersaturation of 0.2 % within an altitude range from 1 to 2 km above
mean sea level during the year 2007. The model estimates nCCN by coupling the aerosol
mass mixing ratio as derived from Copernicus Atmospheric Monitoring Service (CAMS)
reanalysis data (Inness et al., 2019) with the CCN parameterization from Abdul-Razzak
and Ghan (2000). The preliminary comparison shows that the modelled nCCN values are
comparable with OMCAM retrievals over oceans. However, the OMCAM estimates are no-
ticeably larger in magnitude than the model over land. Interestingly, this difference is more
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evident in dust-influenced regions (Figure 6.2a). When dust aerosols are not considered,
the OMCAM-derived nCCN values are in very good agreement with the model (Figures
6.3c and 6.3d). Furthermore, the modelled values over Australia are almost an order of
magnitude smaller than that derived with OMCAM. A possible reason for the lower model-
derived values can be attributed to missing aerosol sources over land regions in CAMS data
(Errera et al., 2021). However, a more detailed comparison involving multi-year data is
necessary before reaching more robust conclusions. The long-term OMCAM nCCN data
will be a benchmark for validating the ability of models to capture the spatial, temporal,
and altitudinal distribution of CCN in the atmosphere.
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Costantino, L. and Bréon, F.-M.: Aerosol indirect effect on warm clouds over South-East
Atlantic, from co-located MODIS and CALIPSO observations, Atmospheric Chemistry
and Physics, 13, 69–88, doi:10.5194/acp-13-69-2013, 2013.



References 93

Coulier, P. J.: Note sur une nouvelle propriete de l’air, Jour. pharm. chim., 8, 165–172,
1875.

DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H.,
Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting global atmospheric ice
nuclei distributions and their impacts on climate, Proceedings of the National Academy
of Sciences, 107, 11 217–11 222, doi:10.1073/pnas.0910818107, 2010.

DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo,
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Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling,
Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and
Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmospheric Chemistry
and Physics, 19, 3515–3556, doi:10.5194/acp-19-3515-2019, 2019.

https://acp.copernicus.org/articles/22/8457/2022/
https://acp.copernicus.org/articles/22/8457/2022/


References 97

Jia, H., Ma, X., Yu, F., and Quaas, J.: Significant underestimation of radiative forcing by
aerosol–cloud interactions derived from satellite-based methods, Nature communications,
12, 1–11, doi:10.1038/s41467-021-23888-1, 2021.

Jiang, J. H., Su, H., Huang, L., Wang, Y., Massie, S., Zhao, B., Omar, A., and Wang,
Z.: Contrasting effects on deep convective clouds by different types of aerosols, Nature
Communications, 9, 3874, doi:10.1038/s41467-018-06280-4, 2018.

Jiang, M., Liu, X., Han, J., Wang, Z., and Xu, M.: Influence of particle properties on
measuring a low-particulate-mass concentration by light extinction method, Fuel, 286,
119 460, doi:10.1016/j.fuel.2020.119460, 2021.

Kacenelenbogen, M., Redemann, J., Vaughan, M. A., Omar, A. H., Russell, P. B.,
Burton, S., Rogers, R. R., Ferrare, R. A., and Hostetler, C. A.: An evaluation
of CALIOP/CALIPSO’s aerosol-above-cloud detection and retrieval capability over
North America, Journal of Geophysical Research: Atmospheres, 119, 230–244, doi:
10.1002/2013JD020178, 2014.

Kalashnikova, O. V. and Sokolik, I. N.: Importance of shapes and compositions of wind-
blown dust particles for remote sensing at solar wavelengths, Geophysical Research Let-
ters, 29, 38–1–38–4, doi:10.1029/2002GL014947, 2002.

Kant, S., Panda, J., Pani, S. K., and Wang, P. K.: Long-term study of aerosol–cloud–
precipitation interaction over the eastern part of India using satellite observations
during pre-monsoon season, Theoretical and Applied Climatology, 136, 605–626, doi:
10.1007/s00704-018-2509-2, 2019.

Kaufman, Y. J. and Koren, I.: Smoke and Pollution Aerosol Effect on Cloud Cover, Science,
313, 655–658, doi:10.1126/science.1126232, 2006.

Kim, J.-S. and Park, K.: Atmospheric Aging of Asian Dust Particles Dur-
ing Long Range Transport, Aerosol Science and Technology, 46, 913–924, doi:
10.1080/02786826.2012.680984, 2012.

Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R.,
Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO
version 4 automated aerosol classification and lidar ratio selection algorithm, Atmospheric
Measurement Techniques, 11, 6107–6135, doi:10.5194/amt-11-6107-2018, 2018.

Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni, A. J., and
Carrico, C. M.: Hygroscopicity and cloud droplet activation of mineral dust aerosol,
Geophysical Research Letters, 36, doi:https://doi.org/10.1029/2009GL037348, https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GL037348, 2009.

Kovacs, T.: Comparing MODIS and AERONET aerosol optical depth at varying separation
distances to assess ground-based validation strategies for spaceborne lidar, Journal of
Geophysical Research: Atmospheres, 111, doi:10.1029/2006JD007349, 2006.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GL037348
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GL037348


98 References

Kumar, P., Sokolik, I. N., and Nenes, A.: Cloud condensation nuclei activity and
droplet activation kinetics of wet processed regional dust samples and minerals, Atmo-
spheric Chemistry and Physics, 11, 8661–8676, doi:10.5194/acp-11-8661-2011, https:
//acp.copernicus.org/articles/11/8661/2011/, 2011.

Lacagnina, C., Hasekamp, O. P., and Torres, O.: Direct radiative effect of aerosols based
on PARASOL and OMI satellite observations, Journal of Geophysical Research: Atmo-
spheres, 122, 2366–2388, doi:https://doi.org/10.1002/2016JD025706, 2017.

Lebsock, M. D., Stephens, G. L., and Kummerow, C.: Multisensor satellite observations
of aerosol effects on warm clouds, Journal of Geophysical Research: Atmospheres, 113,
doi:https://doi.org/10.1029/2008JD009876, 2008.

Liu, T., Liu, Q., Chen, Y., Wang, W., Zhang, H., Li, D., and Sheng, J.: Ef-
fect of aerosols on the macro- and micro-physical properties of warm clouds in the
Beijing-Tianjin-Hebei region, Science of The Total Environment, 720, 137 618, doi:
10.1016/j.scitotenv.2020.137618, 2020.

Liu, Z., Omar, A., Vaughan, M., Hair, J., Kittaka, C., Hu, Y., Powell, K., Trepte, C.,
Winker, D., Hostetler, C., Ferrare, R., and Pierce, R.: CALIPSO lidar observations of
the optical properties of Saharan dust: A case study of long-range transport, Journal of
Geophysical Research: Atmospheres, 113, doi:10.1029/2007JD008878, 2008.

Lohmann, U. and Lesins, G.: Stronger Constraints on the Anthropogenic Indirect Aerosol
Effect, Science, 298, 1012–1015, doi:10.1126/science.1075405, 2002.

Lu, M.-L., Conant, W. C., Jonsson, H. H., Varutbangkul, V., Flagan, R. C., and Se-
infeld, J. H.: The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud
relationships in marine stratocumulus, Journal of Geophysical Research: Atmospheres,
112, doi:10.1029/2006JD007985, 2007.

Lu, M.-L., Feingold, G., Jonsson, H. H., Chuang, P. Y., Gates, H., Flagan, R. C., and
Seinfeld, J. H.: Aerosol-cloud relationships in continental shallow cumulus, Journal of
Geophysical Research: Atmospheres, 113, doi:10.1029/2007JD009354, 2008.

Ma, P.-L., Rasch, P. J., Chepfer, H., Winker, D. M., and Ghan, S. J.: Observational con-
straint on cloud susceptibility weakened by aerosol retrieval limitations, Nature Commu-
nications, 9, 2640, doi:10.1038/s41467-018-05028-4, 2018.

Mamali, D., Marinou, E., Sciare, J., Pikridas, M., Kokkalis, P., Kottas, M., Binietoglou, I.,
Tsekeri, A., Keleshis, C., Engelmann, R., Baars, H., Ansmann, A., Amiridis, V., Russ-
chenberg, H., and Biskos, G.: Vertical profiles of aerosol mass concentration derived by
unmanned airborne in situ and remote sensing instruments during dust events, Atmo-
spheric Measurement Techniques, 11, 2897–2910, doi:10.5194/amt-11-2897-2018, 2018.

https://acp.copernicus.org/articles/11/8661/2011/
https://acp.copernicus.org/articles/11/8661/2011/


References 99

Mamouri, R. E. and Ansmann, A.: Estimated desert-dust ice nuclei profiles from polar-
ization lidar: methodology and case studies, Atmospheric Chemistry and Physics, 15,
3463–3477, doi:10.5194/acp-15-3463-2015, 2015.

Mamouri, R.-E. and Ansmann, A.: Potential of polarization lidar to provide profiles of
CCN- and INP-relevant aerosol parameters, Atmospheric Chemistry and Physics, 16,
5905–5931, doi:10.5194/acp-16-5905-2016, 2016.

Mamouri, R. E., Amiridis, V., Papayannis, A., Giannakaki, E., Tsaknakis, G., and Balis,
D. S.: Validation of CALIPSO space-borne-derived attenuated backscatter coefficient
profiles using a ground-based lidar in Athens, Greece, Atmospheric Measurement Tech-
niques, 2, 513–522, doi:10.5194/amt-2-513-2009, 2009.

Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chip-
perfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of
GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-
climate model, Geoscientific Model Development, 3, 519–551, doi:10.5194/gmd-3-519-
2010, 2010.

Marinou, E., Tesche, M., Nenes, A., Ansmann, A., Schrod, J., Mamali, D., Tsekeri, A.,
Pikridas, M., Baars, H., Engelmann, R., Voudouri, K.-A., Solomos, S., Sciare, J., Groß,
S., Ewald, F., and Amiridis, V.: Retrieval of ice-nucleating particle concentrations from
lidar observations and comparison with UAV in situ measurements, Atmospheric Chem-
istry and Physics, 19, 11 315–11 342, doi:10.5194/acp-19-11315-2019, 2019.

Masonis, S. J., Anderson, T. L., Covert, D. S., Kapustin, V., Clarke, A. D., Howell, S., and
Moore, K.: A Study of the Extinction-to-Backscatter Ratio of Marine Aerosol during the
Shoreline Environment Aerosol Study, Journal of Atmospheric and Oceanic Technology,
20, 1388–1402, doi:10.1175/1520-0426(2003)020¡1388:ASOTER¿2.0.CO;2, 2003.

McCoy, D. T., Bender, F. A.-M., Mohrmann, J. K. C., Hartmann, D. L., Wood, R., and
Grosvenor, D. P.: The global aerosol-cloud first indirect effect estimated using MODIS,
MERRA, and AeroCom, Journal of Geophysical Research: Atmospheres, 122, 1779–1796,
doi:10.1002/2016JD026141, 2017.

McCoy, I. L., McCoy, D. T., Wood, R., Regayre, L., Watson-Parris, D., Grosvenor,
D. P., Mulcahy, J. P., Hu, Y., Bender, F. A.-M., Field, P. R., Carslaw, K. S., and
Gordon, H.: The hemispheric contrast in cloud microphysical properties constrains
aerosol forcing, Proceedings of the National Academy of Sciences, 117, 18 998–19 006,
doi:10.1073/pnas.1922502117, 2020.

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmo-
spheric general circulation model: evolution from MERRA to MERRA2, Geoscientific
Model Development, 8, 1339–1356, doi:10.5194/gmd-8-1339-2015, 2015.



100 References

Nakajima, T., Higurashi, A., Kawamoto, K., and Penner, J. E.: A possible correlation
between satellite-derived cloud and aerosol microphysical parameters, Geophysical Re-
search Letters, 28, 1171–1174, doi:10.1029/2000GL012186, 2001.

NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 Aerosol Profile, V4-20, doi:
10.5067/CALIOP/CALIPSO/LID L2 05KMAPRO-STANDARD-V4-20, 2018.

Nenes, A., Murray, B., and Bougiatioti, A.: Mineral Dust and its Microphysical Interac-
tions with Clouds, pp. 287–325, Springer Netherlands, Dordrecht, doi:10.1007/978-94-
017-8978-3 12, 2014.

Omar, A. H., Won, J.-G., Winker, D. M., Yoon, S.-C., Dubovik, O., and McCormick,
M. P.: Development of global aerosol models using cluster analysis of Aerosol Robotic
Network (AERONET) measurements, Journal of Geophysical Research: Atmospheres,
110, doi:10.1029/2004JD004874, 2005.

Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare, R. A., Lee, K.-
P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn, R. E., and Liu, Z.: The CALIPSO
Automated Aerosol Classification and Lidar Ratio Selection Algorithm, Journal of Atmo-
spheric and Oceanic Technology, 26, 1994–2014, doi:10.1175/2009JTECHA1231.1, 2009.

Omar, A. H., Winker, D. M., Tackett, J. L., Giles, D. M., Kar, J., Liu, Z., Vaughan,
M. A., Powell, K. A., and Trepte, C. R.: CALIOP and AERONET aerosol optical depth
comparisons: One size fits none, Journal of Geophysical Research: Atmospheres, 118,
4748–4766, doi:10.1002/jgrd.50330, 2013.

Oreopoulos, L., Cho, N., and Lee, D.: Using MODIS cloud regimes to sort diagnostic
signals of aerosol-cloud-precipitation interactions, Journal of Geophysical Research: At-
mospheres, 122, 5416–5440, doi:10.1002/2016JD026120, 2017.

Papagiannopoulos, N., Mona, L., Alados-Arboledas, L., Amiridis, V., Baars, H., Bini-
etoglou, I., Bortoli, D., D’Amico, G., Giunta, A., Guerrero-Rascado, J. L., Schwarz, A.,
Pereira, S., Spinelli, N., Wandinger, U., Wang, X., and Pappalardo, G.: CALIPSO clima-
tological products: evaluation and suggestions from EARLINET, Atmospheric Chemistry
and Physics, 16, 2341–2357, doi:10.5194/acp-16-2341-2016, 2016.

Pappalardo, G., Wandinger, U., Mona, L., Hiebsch, A., Mattis, I., Amodeo, A., Ansmann,
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