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Abstract

Tensors play an important role in many applications and are fundamental objects
of multilinear algebra and multivariate functions. When handling partial differential
equations, the solutions often lie in the closure of a tensor space. In several fields of
research, for example in psychometrics, chemometrics, recommendation systems, and
signal processing, data appears in the form of multidimensional arrays. Multilinear
maps and homogeneous polynomials are naturally identified as tensors and symmetric
tensors, respectively.

The thesis deals with several topics on multilinear optimization and optimization
using low-rank models. The contribution of this thesis starts by finding the maximum
relative distance that a real rank-two tensor can have to the set of rank-one tensors
in Chapter 1. Equivalently, one can ask for the smallest ratio of spectral and Frobenius
norm. This question is easy to answer for matrices as the distance of a matrix to
rank-one matrices is given by the singular value decomposition. A rank-r matrix of
Frobenius norm one has a spectral norm of at least 1/

√
r. For tensors, the topic best

rank-one approximation ratio is under current research. This deals with the same
question but typically for tensors restricted to a certain tensor space and no further
algebraic restrictions. The answer is only known for certain formats of tensor spaces
and underlying fields. Motivated by the simple answer for matrices, we are interested
in the maximum distance of a rank-r tensor to rank-one tensors, independent of the
underlying tensor space.

The ratio of spectral and Frobenius norm for special classes of tensors is of intrinsic
interest. It gives norm bounds for two natural norms in tensor spaces. The spectral
norm is natural when viewing a tensor as a multilinear form while the Frobenius norm
is a natural norm for a tensor product of Hilbert spaces. The distance from rank-one
tensors also appears in the context of quantum entanglement. Here, tensor rank is a
discrete measure of entanglement, while the distance to rank-one tensors is a continuous
measure of entanglement. This work can thus be seen as exploring the difference between
these two measures of entanglement.

While the answer for general r is out of scope, we provide the maximum distance in
the case r = 2 using techniques from non-smooth optimization and utilizing the small
number of parameters necessary to describe a rank-two tensor.

The second chapter is concerned with low-rank approximations of solutions to
parabolic partial differential equations. Oftentimes, the domain of a partial differential
equation is separable and solutions can be well approximated by functions of low rank.
It then makes sense to discretize on huge grits and impose low-rank constraints. The
analysis of such an approach becomes difficult, as we are looking for solutions lying on
a manifold and not on a linear space. The resulting equations are known in a broader
context as the Dirac-Frenkel variational principle. We start an analysis of the underlying
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infinite dimensional problem. For this, we capture properties of a model problem, an
anisotropic diffusion equation, and show existence and uniqueness of solutions in a more
abstract setting. Furthermore, we provide stability estimates and a convergence proof
of space-discrete solutions to the underlying space-continuous solution.

Finally, we treat multiparameter eigenvalue problems in the third chapter. They
appear most notably when separation of variables is applied to boundary eigenvalue
problems, but spectral parameters cannot be separated. Multiparameter eigenvalue
problems generalize both linear systems of equations and generalized eigenvalue problems.
We summarize classical notions of definiteness that guarantee that all solutions are real.
In the case of linear systems of equations, these imply that the equations are of full rank.
For the generalized eigenvalue problem (A + λB)u = 0, they imply that span{A,B}
consists of symmetric matrices and contains a positive definite matrix.

Multiparameter eigenvalue problems can be solved with the help of multilinear
algebra techniques by solving associated linear eigenvalue problems. These can however
be huge, even if the associated original problem is of moderate size. For the case of
definite multiparameter eigenvalue problems, we propose Newton-type methods to find
specific solutions with certain properties, which makes the resulting equations have
unique solutions. We provide local and global convergence properties and demonstrate
the performance of the resulting methods in numerical experiments.
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Introduction

Tensors play an important role in many applications and are fundamental objects
of multilinear algebra and multivariate functions. When handling partial differential
equations, the solutions often lie in the closure of a tensor space. In several fields of
research, for example in psychometrics, chemometrics, recommendation systems, and
signal processing, data appears in the form of multidimensional arrays. Multilinear
maps and homogeneous polynomials are naturally identified as tensors and symmetric
tensors, respectively.

In this thesis, we cover three different topics using low-rank tensor formats building
on [EU21, BEKU21, EN22] each with a different aspect of optimization in tensor spaces.
The first chapter builds on [EU21]. There, we find a more geometric result concerning
the relative distance of the sets of rank-one and rank-two tensors. In the second chapter,
we have a theoretical existence and uniqueness result for approximations of solutions
to parabolic problems using low-rank tensor formats. These results appeared mostly
already in [BEKU21]. The final chapter covers multiparameter eigenvalue problems,
where rank-one tensors appear naturally as solutions. We use the structure of the
problem to find efficient methods to compute solutions. This chapter is motivated
by [EN22] and extends its results to a more general setting.

We now give a more general introduction to the topic of tensors and multilinear
optimization. Before we formally define tensors and tensor products, let us review two
examples appearing throughout this thesis. Note that the tensor product of spaces is
only defined up to isomorphism. Therefore, the following examples only show one way
to identify objects as tensors.

Example. The space of real m× n matrices Rm×n is isomorphic to the tensor space
Rm⊗Rn. Every matrix is a finite sum of rank-one matrices uvT. A bilinear map
a : Rm×Rn → R is uniquely represented by a matrix A ∈ Rm×n via a(x, y) = xTAy
and a quadratic map a : Rn → R is uniquely represented by a symmetric matrix
A ∈ Sym2Rn via a(x) = xTAx.

Example. The space of square-integrable functions L2(Ω) over a product domain
Ω = Ω1 × Ω2 is the closure of L2(Ω1) ⊗ L2(Ω2) with respect to the norm L2(Ω)
norm ∥f∥2L2(Ω) =

∫∫
Ω |f(x, y)|2 dx dy. The algebraic tensor space L2(Ω1) ⊗ L2(Ω2)

consists of finite sums of functions g(x, y) = g1(x)g2(y) where gi ∈ L2(Ωi). The
inner product ⟨·, ·⟩L2(Ω) on L2(Ω) is naturally induced by ⟨·, ·⟩L2(Ω1) and ⟨·, ·⟩L2(Ω2) as
⟨f1f2, g1g2⟩L2(Ω) = ⟨f1, g1⟩L2(Ω1)⟨f2, g2⟩L2(Ω2). Oftentimes, L2(Ω1) ⊗ L2(Ω2) already
denotes the closure with respect to this norm [Hac19, Chapter 4].

An elegant way to define the tensor product is via the universal property ; see
e.g., [Gre67, Chapter I §2] or [Vak17, Chapter 1.3.5].
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INTRODUCTION

Definition (Tensor product via universal property). Let U ,V and T be vector spaces
and ⊗ : U ×V → T , (u, v) 7→ u⊗ v be a bilinear map. The pair (T ,⊗) is called a tensor
product for U and V if for every bilinear map a : U × V → W to a linear space W there
is a unique linear map L : T → W such that a(u, v) = L(u⊗ v).

The definition is summarized in the commutative diagram

U × V T

W

⊗

a ∃!L .

From this definition follows directly that any two tensor products for U and V are
uniquely isomorphic. In absence of a representative, we write U ⊗ V for the tensor
product of U and V. In the definition, we may replace the existence of a unique linear
map with just the existence of a linear map if in addition T = span{u⊗v : u ∈ U , v ∈ V}.
The tensor product for two linear spaces U and V always exists and there is an explicit
construction. This can be used as an alternative definition of the tensor product; see
e.g., [Hac19, Chapter 3.2.1].

Example. Let a : Rm×Rn → V be a bilinear map. Define L : Rm×n as the linear map
satisfying L(uvT) = a(u, v). This map is determined uniquely since {uvT : u ∈ Rm, v ∈
Rn} is a generating system for Rm×n. Therefore, (u, v) 7→ uvT defines a tensor product.

The tensor products U ⊗ (V ⊗W) and (U ⊗ V)⊗W are uniquely isomorphic such
that the diagram

U × V ×W U × (V ⊗W) U ⊗ (V ⊗W)

(U ⊗ V)×W (U ⊗ V)⊗W

commutes. By successively applying the universal property there is a unique linear map
from U ⊗ (V ⊗W) to (U ⊗V)⊗W and vice versa. Note that the maps from U ×V ×W
to U ⊗ (V ⊗ W) and (U ⊗ V) ⊗ W are trilinear. First, we can lift the trilinear map
from U × V × W to (U ⊗ V) ⊗ W uniquely to a bilinear map from U × (V ⊗ W) to
(U ⊗ V) ⊗W and finally a unique linear map from U ⊗ (V ⊗W) to (U ⊗ V) ⊗W. It
is therefore reasonable to speak of the tensor product of d spaces for any d ≥ 2. An
element of a tensor product of d spaces is called a tensor of order d. It is one important
aspect of the definition of tensors via the universal property that we get a direct way to
make multilinear maps linear by going to the tensor product of the respective spaces.

Example. The space of real multidimensional arrays or hypermatrices Rn1×...×nd is
isomorphic to the tensor space

⊗d
i=1R

ni . The coordinate vectors ei1,...,id are then

2



Introduction

= + · · · + and = + · · · +

Figure 1: Decomposition of matrices and tensors into a sum of outer products.

associated with ei1 ⊗ ei2 ⊗ . . .⊗ eid . Every multidimensional array ai1,...,id is a sum of
products of one-dimensional arrays u1,i1u2,i2 . . . ud,id , for example as the weighted sum
of the coordinate vectors ei1,...,id .

The decomposition of a three-dimensional array into a sum of products of one-
dimensional arrays can be visualized similarly to matrices. For matrices, we have
a sum of outer products uvT and for three-dimensional arrays, we multiply a third
vector; see Figure 1. In data science, tensors and multidimensional arrays are taken as
synonyms, and we also often refer to multidimensional arrays as tensors.

The tensor product can be defined using the universal property or by an explicit
construction. A third way to define the tensor product is via multilinear maps; see
e.g., [Lan12, Chapter 2.3]. Let U and V be vector spaces over a field k and U∗ and
V∗ be their respective dual spaces. Then the set of linear maps U∗ → V and the
set of bilinear maps U∗ × V∗ → k is also denoted by U ⊗ V. If the spaces U and V
are finite-dimensional, this defines the same object as in the definition via universal
property up to isomorphism. This definition directly identifies tensors as multilinear
maps. However, in infinite dimensions, this definition does not coincide with the one
via the universal property.

Example. Let U = ℓ2 ∼= U∗ be the space of square-summable real sequences and let ⟨·, ·⟩
denote the inner product on ℓ2. This defines a bilinear map from U ×U ∼= U∗×U∗ → R,
but is itself no element of U ⊗U as it cannot be generated by finitely many bilinear maps
of the form (u, v) 7→ ⟨u, ui⟩⟨v, vi⟩. Similarly, the identity map U → U is no element of
U ⊗ U as U has no finite basis.

For infinite-dimensional spaces, the tensor product is usually not complete with
respect to natural norms defined on it. It often makes sense to directly define a
topological tensor product of vector spaces. Given a suitable norm, this is the closure
of the algebraic definition of tensor spaces. For further details, we refer to [Hac19,
Chapter 4].
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INTRODUCTION

Matrix and tensor rank and decompositions

Let us recall the rank of matrices and linear operators from linear algebra.

Definition (Rank of matrices and linear operators). Let A ∈ Rm×n be a matrix. Then
the rank of A is

rankA = dim span{a : a is a column of A} = dim{Ax : x ∈ Rn}
= dim span{a : a is a row of A} = dim{ATx : x ∈ Rm}

= min{r : there exist ui and vi such that A =
r∑

i=1

uiv
T
i }.

Similarly let L : U → V be a linear operator and L∗ : V∗ → U∗ be its dual operator.
Then

rankL = dim rangeL = dim rangeL∗

= min{r : there exist ui ∈ U∗ and vi ∈ V such that L(x) =

r∑
i=1

ui(x)vi}.

It is a basic fact from linear algebra that all these definitions of rank coincide. One
of the most important objects in this work will be the matrices of rank one uvT and
their pendant to tensors. A rank-one tensor is the tensor product u1 ⊗ u2 ⊗ . . .⊗ ud of
nonzero vectors u1, . . . , ud. They constitute the nonzero image of the multilinear map

×d
i=1 Ui →

⊗d
i=1 Ui which is a cone. Its projective version is called the Segre variety.

A decomposition into a sum of rank-one matrices uiv
T
i for a matrix A can also be

expressed as a matrix factorization A = UV T where the columns of U and V consist of
the vectors ui and vi, respectively. Finding such a factorization plays an important role in
data science. One famous example is the Netflix price [BL07]. This is a recommendation
system problem, often solved using matrix factorization techniques [KBV09]. Here
incomplete user and product data is stored in a matrix, where the entries measure
how much a user likes a given item. A prediction for a user can be computed via
matrix completion under the assumption that the data has a low-rank structure, see
e.g., [CR09, Van13].

However, the use of matrices is sometimes limited. To examine this, let us review
fluorescence spectroscopy, a method in chemical science, described in [SBG04, Chap-
ter 10.2]. We have a mixture of k fluorescent substances, each having an excitation
spectrum ai and emission spectrum bi. We assume linear behaviour, i.e., when exciting
substance i with the wavelengths x, the measured emission is bi(a

T
i x). Each substance

has a concentration ci. For the mixture, we get the matrix M =
∑k

i=1 cibia
T
i which

we can measure. We would like to find the different substances and their excitation
and emission spectrum, i.e., the factorization BCAT, where A and B contain ai and bi

4



MATRIX AND TENSOR RANK AND DECOMPOSITIONS

as its columns and C is a diagonal matrix containing the concentrations ci. However,
the matrices cannot be recovered uniquely, even when neglecting the trivial scaling
ambiguities. Indeed, a matrix factorization is never unique. Let A = UV T with
U ∈ Rm×k and V ∈ Rn×k. Then A = (US)(S−1V T) holds true for any invertible matrix
S ∈ Rk×k. One solution to this problem is to repeat the experiment ℓ times with
different concentrations. We then measure the data in M ∈ Rℓ×m×n with ℓ different
mixtures, m different measurements of the emission spectrum, and n different excitation
spectra. We now want to find matrices A and B such that for each different mixture j
we find a diagonal matrix Cj containing the concentrations such that Mj = BCjA

T.
Finding this parallel factorization is equivalent to finding the decomposition into a sum
of rank-one tensors

M =

k∑
i=1

ci ⊗ bi ⊗ ai,

where ci is now a vector storing the concentrations of substance i in the mixture j. A
decomposition into a sum of rank-one tensors of order at least 3 is often unique when
disregarding the order. Therefore, the rank-one tensors in the decomposition can have
actual meaning and are of interest when analyzing data. This leads to the following
generalization of rank to tensors.

Definition (Rank of a tensor). Let A ∈
⊗d

i=1 Ui be a tensor of order d. The rank of A
is the minimal number r such that

A =
r∑

i=1

u1,i ⊗ . . .⊗ ud,i

denoted by rankA.

Note that tensors in the algebraic tensor product always have finite rank, but when
at least two spaces are infinite-dimensional there is no upper bound for the rank. For a
tensor A in the closure of the algebraic tensors product, it is possible that rankA = ∞.
The decomposition of a tensor into a sum of rank-one tensors is known under different
names in different fields. The name canonical decomposition (CANDECOMP) was intro-
duced in [CC70], and the procedure as parallel factor analysis (PARAFAC) in [Har70].
In mathematics, it is now often known as the canonical polyadic decomposition (CPD).

The problem of uniqueness of a decomposition is handled in algebraic geometry under
identifiability of tensors. Many results on uniqueness rely on Kruskal’s criterion [Kru77].
There are also criteria from algebraic geometry, see e.g., [Lan12, Chapter 12.3], and the
problem of identifiability is still being researched.

The tensor rank defined above only generalizes the last equality in the definition of
the rank of matrices. The notion of column and row rank in the first two equalities is
better generalized as the multilinear rank of a tensor.

5



INTRODUCTION

Definition (Multilinear rank of a tensor). Let A ∈
⊗d

i=1 Ui and view it as the linear
maps Aj : U∗

j →
⊗

i ̸=j Ui for j = 1, . . . , d. Then its multilinear rank is the d-tuple
rankmultilinA = (rankA1, . . . , rankAd).

The multilinear rank is also called tensor subspace rank or Tucker rank. Matrices are
the special case, since for a matrix A the multilinear rank is just (rankA, rankA). For
general tensors we only have the inequalities rj ≤ rankA ≤

∏
i ̸=j ri where (r1, . . . , rd) =

rankmultilinA and in general no rj has to be equal to rankA.

This is not the only way that tensor and matrix rank behave differently. For instance,
let A ∈ Rn×n be a symmetric matrix. Then A has the symmetric decomposition
A =

∑r
i=1 λiuiu

T
i for some ui ∈ Rn and λi ∈ R. Such a decomposition can be generated

by an eigenvalue decomposition of A = UΛUT with an orthogonal matrix U . We can
define the symmetric rank of a matrix as the smallest number r such that a symmetric
decomposition exists. It is again a basic fact from linear algebra that the symmetric
rank coincides with the usual rank. For real symmetric matrices, this is simply because
the multiplicity of the eigenvalue zero coincides with the dimension of the kernel of the
symmetric matrix, which determines the dimension of its image and therefore its rank.
We can also define the symmetric rank of symmetric tensors.

Definition (Symmetric tensors and symmetric rank). Let Sd be the set of permutations
of d elements. We associate every permutation σ ∈ Sd with a linear map

⊗d
i=1 U →⊗d

i=1 U generated by

u1 ⊗ . . .⊗ ud 7→ uπ(1) ⊗ . . .⊗ uπ(d)

and denote it again by σ. A tensor A in
⊗d

i=1 U is symmetric if σ(A) = A for all

σ ∈ Sd. We denote the set of symmetric tensors in
⊗d

i=1 U as Symd U and the symmetric
rank-one tensor u⊗ u⊗ . . .⊗ u as ud. The symmetric rank of a symmetric tensor A is
the smallest number r such that A =

∑r
i=1 λiu

d
i denoted by rankSA = r.

In many special cases, it can be shown that rankSA = rankA for symmetric
tensors and therefore it was conjectured that symmetric rank and rank coincide in
general [CGLM08]. However, Shitov provided a counterexample in [Shi18] and therefore
both notions of rank for symmetric tensors differ in general.

Also unlike matrix rank, the rank of a tensor depends on the field. For example,
tensors in R2×2×2 can also be considered as tensors in C2×2×2 but the ranks may differ.
Consider the tensor A = e111 − e112 − e121 − e211 where eijk = ei ⊗ ej ⊗ ek. Using
Cayley’s hyperdeterminant one can show that rankA = 3 as a real tensor [dSL08,
Proposition 5.10] but we can be decompose A = 1

2

(
(e1 + ie2)

3 + (e1 − ie2)
3
)
using

complex rank-one tensors.

6



LOW-RANK APPROXIMATION

Low-rank approximation

In many applications, data is not given directly as matrices or tensors of low rank. It
can however make sense to find a good low-rank approximation for further analysis.
Let for example N data points be given in a d-dimensional space. These can be stored
in a matrix A ∈ Rd×N . Here, a principal component analysis can be helpful. For this,
let µ ∈ Rd be the mean of the data and 1N ∈ RN be the vector containing only ones.
Assuming d ≤ N , we can then express A in the form

A = µ1TN +
d∑

i=1

σiuiv
T
i = µ1TN + UΣV T

with orthonormal sets of vectors ui ∈ Rd, vi ∈ RN and descending positive real values σi.
The vectors ui are the eigenvectors of the covariance matrix (A − µ1T

N )(A − µ1T
N )T.

It can be helpful to project the data onto the subspace spanned by only the first few
eigenvectors ui, for example, to lower the dimensions or to find clusters.

The principal component analysis is an instance of the singular value decomposition

(SVD). Any m × n matrix can be decomposed as A = UΣV T =
∑min{m,n}

i=1 σiuiv
T
i

where the matrices U and V have orthonormal columns. The respective columns are
the left and right singular vectors ui and vi, and the nonnegative descending entries
σ1 ≥ σ2 ≥ . . . ≥ 0 of the diagonal matrix Σ ∈ Rm×n are the singular values. The singular
values σi contain important information of the matrix. For instance, its Frobenius norm
is

∥A∥F :=

√√√√ m∑
i=1

n∑
j=1

|Aij |2 =

√√√√min{n,m}∑
i=1

σ2
i

and its spectral norm is

∥A∥σ := max
∥u∥2=1=∥v∥2

uTAv = σ1.

The singular value decomposition is also the tool to find the best rank k approximation
of a matrix in Frobenius or spectral norm.

Theorem (Schmidt, Eckhart-Young-Mirsky). Let A = UΣV T be a singular value
decomposition for a matrix A ∈ Rm×n. Then

min
rankB≤k

∥A−B∥F =

√√√√min{n,m}∑
i=k+1

σ2
i and min

rankB≤k
∥A−B∥σ = σk+1

and the minimum is attained for
∑k

i=1 σiuiv
T
i = UkΣkV

T
k , where Uk ∈ Rm×k and

Vk ∈ Rn×k consist of the first k left and respectively right singular vectors and Σk ∈ Rk×k

is the diagonal matrix with the first k singular values as its entries.

7
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This approximation was first discovered by Schmidt in 1907 for the case of functions
in two variables and the L2 norm in [Sch07, § 18]. Later Eckhart and Young formulated
this theorem for matrices and the Frobenius norm in [EY36], and Mirsky found a
generalization for unitarily invariant norms in [Mir60].

It is not obvious why data should be close to low rank. However, an approach to
explain that this still works in many cases is evaluated in [UT19]. The authors show
that matrices generated by certain latent variable models can be well approximated by
low-rank matrices. It is also worth mentioning that even if N points of data are not
close to a low-dimensional subspace, there is a linear map L onto a space of dimension
k ≈ logN

ϵ2
, which depends only on the number of points N and not their dimension, such

that
(1− ϵ)∥x− y∥2 ≤ ∥L(x− y)∥2 ≤ (1 + ϵ)∥x− y∥2

for any two of the data points x and y, i.e., distances are preserved approximately.
This was first proven by Johnson and Lindenstrauss in [JL84] and is known as the
Johnson-Lindenstrauss lemma. It is therefore possible to recover many properties using
a low-rank model approximately even when the data is not inherently close to low rank.

One other application is to approximate functions on a product domain Ω1 × Ω2,
where Ωi ⊂ Rni . We can discretize such a function f on an N1 × N2 grid. Here, N1

and N2 can already be quite huge since they itself have to cover a multidimensional
domain. Storing such an approximation directly can get infeasible quickly. However,
if f(x, y) ≈

∑k
i=1 gi(x)hi(y) with a small k, we can also store an approximation as a

product of N1 × k and N2 × k matrices and make storing feasible. The naturally arising
question is when functions in two variables can be approximated well by a small number
of products of functions in one variable. If functions are sufficiently smooth, then a
decay of singular values in the analog of the singular value decomposition for functions

in L2(Ω1 × Ω2) = L2(Ω1)⊗ L2(Ω2)
∥·∥L2(Ω) can be observed. Here, the key is mixed

regularity, i.e., the function is also bounded in the norm induced by the inner product
⟨·, ·⟩Hs,s

mix(Ω1×Ω2) = ⟨·, ·⟩Hs(Ω1)⟨·, ·⟩Hs(Ω2) [SU14, GH14], where Hs is the Sobolev space
containing functions with square integrable weak derivatives up to order s. However,
it is suggested in [GH14] that low-rank approximation is not optimal in dimension
reduction and instead the use of sparse grids is proposed.

In general, it makes sense to reduce the complexity to store solutions of high-
dimensional problems. For the Sylvester equation

AX −XB = C,

it was shown in [Gra04b] that, if the matrix C is of low rank, the solution X can be
approximated with error ϵ with matrices of rank O(− log(ϵ)), i.e., the error decays
exponentially with respect to rank. This is generalized to finite-dimensional tensor
equations of a similar form in [Gra04a]. For the infinite-dimensional Lyapunov equation
with unbounded operators, it was shown that the error decays almost exponentially
in [GK14] and a similar result for certain elliptic partial differential equations was shown

8



LOW-RANK APPROXIMATION

= and =

Figure 2: Subspace representation of tensors with order 2 and 3.

in [DDGS16]. In Chapter 2, motivated by the fact that solutions to partial differential
equations are often well approximated by functions in a low-rank model, we provide
existence and uniqueness results for a certain way to obtain low-rank approximations to
solutions of parabolic problems.

We have collected arguments why data and functions are often close to low-rank
matrices and tensors, and the best approximation of matrices in Frobenius norm can be
found via the singular value decomposition. For tensors of higher order, we do not have
an analogous tool. One problem is that tensors of bounded rank do not necessarily form
a closed set. A prime example is the tensor

u⊗ u⊗ v + u⊗ v ⊗ u+ v ⊗ u⊗ u = lim
t→0

1

t

(
(u+ tv)3 − u3

)
,

a rank-three tensor which is a limit of rank-two tensors. Only tensors of rank at most
one form a closed set in every tensor space. Therefore, some tensors do not have a
best rank-k approximation. In [dSL08] it is shown that over the real numbers there
are instances where these tensors do not form isolated sets but have positive volume.
Hence, the approximation problem is not always well-posed. Many other tensor-related
problems, like determining rank, approximating analogs of singular and eigenvectors,
and approximating its spectral norm, are NP-hard [HL13]. There is an analogy to
the Eckhart-Young Theorem that was found in [DOT18]. For a sufficiently general
complex tensor, its best rank-k approximation lies in the linear hull of its critical
rank-one approximations. Note, however, that there are too many critical rank-one
approximations. A general symmetric tensor A ∈ SymdCn has (d−1)n−1

d−2 =
∑n−1

i=0 (d−1)i

different eigenvalues [CS13]. Chapter 1 is related to this topic. We explore properties of
critical rank-one approximations to rank-two tensors.

For a stable approximation of tensors, subspace representations are used. Instead
of representing a tensor A in the full space

⊗d
i=1 Ui, an approximation Ã ∈

⊗d
i=1 Vi

with Vi ⊂ Ui is used. A quasi-optimal approximation can be found using the multilinear
singular value decomposition [DLDMV00a] and, when needed, better approximations
can be obtained using iterative methods [DLDMV00b]. Notably, the smallest possible
subspaces Vi for an exact representation reveal rankmultilinA just as a matrix factoriza-
tion with smallest possible dimensions are rank revealing. For matrices, the singular

9
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value decomposition is a subspace representation, where the subspaces get stored in the
singular vectors ui and vi; see Figure 2 for an illustration. For tensors of large order
d, hierarchical tensor formats were introduced in [HK09, OT09] and have been widely
used in numerical tensor calculus.

Models with exact low-rank solutions

There are many interesting optimization problems where the exact rank is already
known. One class of problems appears when an original bilinear or quadratic problem
gets lifted to a linear problem on the tensor space. One example is blind deconvolution.
A convolution u ∗ v = w is bilinear in u and v and therefore by the universal property
there is a linear map L such that L(u ⊗ v) = u ∗ v = w. Blurring of pictures and
reverberation in acoustics are instances where a convolution of a signal u, say the
picture or the sound, and a point spread function v, say a bad lens or reflections off
walls, appears. When v is known, the process of deconvoluting u from w is solving a
linear system. When v is unknown, the deconvolution becomes blind and both u and v
have to be computed. Often, the point spread vector is also of interest, for example in
seismology. To allow for unique recovery, additional assumptions on u and v have to
be made, for example, they are assumed to lie in low-dimensional subspaces U and V.
In [ARR14] this problem is solved by recovering both u and v as the rank-one matrix
uvT = A from the linear measurements L(A) = w. Since the dimension of U ⊗V is much
higher than w, there are many possible solutions A. Among these solutions, the one
with the lowest rank is desired. Minimizing rank is however a non-convex and NP-hard
problem. Instead, the convex problem of minimizing the nuclear norm ∥A∥∗ =

∑n
i=1 σi

is utilized. The unit ball of matrices in nuclear norm is the convex envelope of rank-one
matrices with Frobenius norm one. Minimizing the nuclear norm of an affine linear set
can be solved with semidefinite programming [RFP10].

A similar problem is phase retrieval. Here, we have the measurements |⟨u, vi⟩|2 of a
complex vector u ∈ Cn. We lost information on the phase in these measurements. In
[CSV13] this problem is handled by lifting the real quadratic measurements to a linear
map on Hermitian matrices and again minimizing nuclear norm to find uuH.

Also, many eigenvalue problems have low-rank solutions. Consider for example the
matrix-valued eigenvalue problem

AX +XB = λX.

Its eigenvalues are given by µi + νj with corresponding eigenvectors uiv
T
j , where (µi, ui)

and (νj , vj) are the eigenvalues and eigenvectors of A and BT, respectively. Similarly,
the eigenfunctions of the Laplacian on a rectangular domain

∆f(x, y) :=
∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y) = λf(x, y) for (x, y) ∈ (a, b)× (c, d)

10
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factorize as f(x, y) = g(x)h(y) where g′′(x) = µg(x) and h′′(y) = νh(y). In both cases,
the operator has the structure L1 ⊗ id+ id⊗L2. Separating coordinates can often lead
to factorized solutions. One other example is the Laplacian in polar coordinates. This
is given by

∆f(r, φ) =
∂2

∂r2
f(r, φ) +

1

r

∂

∂r
f(r, φ) +

1

r2
∂2

∂ϕ2
f(r, φ)

and its eigenfunctions on a disc are given by g(r)h(φ) where h(ϕ) = a sin(nφ)+b cos(nφ)
and g is a fitting Bessel function. There are many possibilities to separate coordinates,
but not always spectral parameters can be decoupled. Then a product ansatz can lead
to multiparameter eigenvalue problems. These are the prime focus of Chapter 3.

Contribution of this thesis

The thesis deals with several topics on multilinear optimization and optimization using
low-rank models. The contribution of this thesis starts by finding the maximum relative
distance that a real rank-two tensor can have to the set of rank-one tensors in Chapter 1.
Equivalently, one can ask for the smallest ratio of spectral and Frobenius norm. This
question is easy to answer for matrices as the distance of a matrix to rank-one matrices is
given by the singular value decomposition. A rank-r matrix of Frobenius norm one has a
spectral norm of at least 1/

√
r. For tensors, the topic best rank-one approximation ratio

is under current research. This deals with the same question but typically for tensors
restricted to a certain tensor space and no further algebraic restrictions. The answer is
only known for certain formats of tensor spaces and underlying fields. Motivated by
the simple answer for matrices, we are interested in the maximum distance of a rank-r
tensor to rank-one tensors, independent of the underlying tensor space.

The ratio of spectral and Frobenius norm for special classes of tensors is of intrinsic
interest. It gives norm bounds for two natural norms in tensor spaces. The spectral
norm is natural when viewing a tensor as a multilinear form while the Frobenius norm
is a natural norm for a tensor product of Hilbert spaces. The distance from rank-one
tensors also appears in the context of quantum entanglement. Here, tensor rank is a
discrete measure of entanglement, while the distance to rank-one tensors is a continuous
measure of entanglement. This work can thus be seen as exploring the difference between
these two measures of entanglement.

While the answer for general r is out of scope, we provide the maximum distance
in the case r = 2 using techniques from non-smooth optimization and utilizing the
small number of parameters necessary to describe a rank-two tensor. Here, Section 1.2,
which deals with symmetric rank-two tensors, appeared in slightly altered form in the
preprint [EU21]. The content of Section 1.1 is a novel contribution.

The second chapter is concerned with low-rank approximations of solutions to
parabolic partial differential equations. Oftentimes, the domain of a partial differential
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equation is separable and solutions can be well approximated by functions of low
rank. It then makes sense to discretize on huge grits and impose low-rank constraints.
The analysis of such an approach becomes difficult, as we are looking for solutions
lying on a manifold and not on a linear space. The resulting equations are known in
a broader context as the Dirac-Frenkel variational principle. We start the analysis
of the underlying infinite-dimensional problem. For this, we capture properties of a
model problem, an anisotropic diffusion equation, and show existence and uniqueness
of solutions in a more abstract setting. Furthermore, we provide stability estimates
and a convergence proof of space-discrete solutions to the underlying space-continuous
solution. The contents of Chapter 2 appeared mostly in altered form in [BEKU21]. The
results in Theorem 2.6 and Section 2.5 are new contributions.

Finally, we treat multiparameter eigenvalue problems in the third chapter. They
appear most notably when separation of variables is applied to boundary eigenvalue
problems, but spectral parameters cannot be separated. Multiparameter eigenvalue
problems generalize both linear systems of equations and generalized eigenvalue problems.
We summarize classical notions of definiteness that guarantee that all solutions are real.
In the case of linear systems of equations, these imply that the equations are of full rank.
For the generalized eigenvalue problem (A + λB)u = 0, they imply that span{A,B}
consists of symmetric matrices and contains a positive definite matrix.

Multiparameter eigenvalue problems can be solved with the help of multilinear
algebra techniques by solving associated linear eigenvalue problems. These can however
be huge, even if the associated original problem is of moderate size. For the case of
definite multiparameter eigenvalue problems, we propose Newton-type methods to find
specific solutions with certain properties, which makes the resulting equations have
unique solutions. We provide local and global convergence properties and demonstrate
the performance of the resulting methods in numerical experiments. Chapter 3 builds
on the results of [EN22], where two-parameter eigenvalue problems are treated. The
convergence results in [EN22] can be seen as special cases of the results in Section 3.3
and Section 3.4.

12



Chapter 1

Maximum relative distance of real
rank-two to rank-one tensors

Let A ∈
⊗d

i=1Hi be a tensor and Hi be Hilbert spaces. There are two very natural
norms for the tensor A. One norm is inherited from the induced inner product

⟨u1 ⊗ u2 ⊗ . . .⊗ ud, v1 ⊗ v2 ⊗ . . .⊗ vd⟩F = ⟨u1, v1⟩⟨u2, v2⟩ . . . ⟨ud, vd⟩.

The induced inner product and the respective norm are called Frobenius inner product
and Frobenius norm, also known as the Hilbert-Schmidt norm for linear operators and
the Schur norm for matrices. For multidimensional arrays A = [ai1,...,id ]

n1,...,nd
i1=1,...,id=1, this

is just the Euclidean norm

∥A∥F =

√√√√ n1∑
i1=1

. . .

nd∑
id=1

|ai1,...,id |
2.

The other norm is inherited from the associated multilinear operator and is called
the spectral norm. It is defined as

∥A∥σ = max
∥w1∥=1,...,∥wd∥=1

|⟨A, w1 ⊗ w2 ⊗ . . .⊗ wd⟩F|. (1.1)

The Frobenius and spectral norm determine the distance in Frobenius norm of a
tensor to the closest rank-one tensor since

min
rankB=1

∥A−B∥2F = ∥A∥2F − ∥A∥2σ. (1.2)

The relative distance minrankB=1 ∥A−B∥F/∥A∥F is determined by the ratio of both
norms. Obviously, ∥A∥σ ≤ ∥A∥F. If the tensor space is finite dimensional, then there is
a constant c such that ∥A∥σ ≥ c∥A∥F for all A ∈

⊗d
i=1Hi. The smallest such constant

determines the maximum relative distance of a tensor to rank-one tensors

max
A∈
⊗d

i=1 Hi

min
rankB=1

∥A−B∥F
∥A∥F

= max
A∈
⊗d

i=1 Hi

√
1− ∥A∥2σ

∥A∥2F
.

The minimal possible ratio ∥A∥σ/∥A∥F that can be achieved is also called the best
rank-one approximation ratio of the given tensor space [Qi11]. The ratio is of theoretical
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and practical relevance, for example in problems of low-rank approximation and also in
quantum entanglement. In quantum physics, rank-one tensors describe separable, and
therefore unentangled, states and the distance to such separable states is a geometric
measure of entanglement [Shi95, WG03].

The Frobenius and spectral norm of a matrix, and therefore its distance to rank-one
matrices, can be determined from the singular value decomposition. It follows directly
that

∥A∥σ
∥A∥F

≥ 1√
min{m,n}

and min
rankB=1

∥A−B∥F
∥A∥F

≤

√
1− 1

min{m,n}

for A ∈ Rm×n and equality is attained for matrices with identical singular values.
For tensors, the situation is less clear and is under current research; see e.g., [Qi11,

KM15, LNSU18, LZ20, AKU20]. A trivial bound of the approximation ratio for a tensor
A ∈

⊗d
i=1R

ni with n1 ≤ n2 ≤ . . . ≤ nd is

∥A∥σ
∥A∥F

≥ 1√∏d−1
i=1 ni

,

which is attained by approximating A with a rank-one tensor with the largest fiber
[ai1,...,id ]

nd
id=1 of A and zero otherwise.

The trivial bound is not always attained. One example are tensors in R3×3×3. Here
the approximation ratio is [AKU20]

min
A∈R3×3×3

∥A∥σ
∥A∥F

=
1√
7
.

For n = 2, 4, 8, the approximation ratio in T =
⊗d

i=1R
n is the trivial bound

min
A∈T

∥A∥σ
∥A∥F

=
1√
nd−1

and is attained only for orthogonal tensors up to scaling [LNSU18]. In the cases n = 4
and n = 8, orthogonal tensors of order at least three are never symmetric, which leads
to the interesting conclusion, that for S = SymdRn

min
A∈S

∥A∥σ
∥A∥F

>
1√
nd−1

.

Therefore, unlike for matrices, the approximation ratios for symmetric and general
tensors do not always coincide.

Also unlike matrices, the approximation ratio depends on the field. In [CKP00] it
was shown that

min
A∈C2×2×2

∥A∥σ
∥A∥F

=
2

3
,
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which is larger than the approximation ratio for R2×2×2.
In this chapter, we want to start discussing the ratio not for a given tensor space,

but for tensors of a given rank. In quantum physics, the tensor rank in the form of
Schmidt measure is a discrete measure of entanglement, while the distance to rank-one
tensors is a continuous one. From the perspective of quantum physics, the following can
be interpreted as analyzing how far both measures can differ. For matrices, this ratio is

min
rankA=r

∥A∥σ
∥A∥F

=
1√
r

and is attained for matrices with r identical nonzero singular values. For tensors, the
situation is again less clear. We have the following result for rank-two tensors.

Theorem 1.1. Let Hi be real Hilbert spaces and A ∈
⊗d

i=1Hi be a tensor of rank two.
Then for d ≥ 3

∥A∥σ >

(
1− 1

d

) d−1
2

∥A∥F. (1.3)

In particular, let W = limt→0
1
t

(⊗d
i=1(ui + tvi)−

⊗d
i=1 ui

)
for orthonormal vectors

ui, vi ∈ Hi. Then

∥W∥σ =

(
1− 1

d

) d−1
2

∥W∥F,

i.e., the inequality (1.3) is sharp.

Proof. The inequality follows directly from the first observation in Section 1.1, Proposi-
tion 1.2, and Theorem 1.6 further below. The equality for W follows from Theorem 1.6
with a change of orthogonal bases.

Together with (1.2) this implies

min
rankB=1

∥A−B∥F <

√
1−

(
1− 1

d

)d−1

∥A∥F

for a rank-two tensor A of order d. Note that the bound is not attained for any rank-two
tensor. This is because, unlike rank-two matrices, the set of tensors of rank two is not
closed. We will show that equality is indeed only attained for tensors of border rank two,
i.e., tensors that are limits of rank-two tensors, that are not of rank two themselves.
Theorem 1.1 also implies the uniform bounds

∥A∥σ >
1√
e
∥A∥F and min

rankB=1
∥A−B∥F <

√
1− 1

e
∥A∥F

for rank-two tensors A of any order since (1− 1/d)(d−1)/2 ↘ 1/
√
e as d → ∞.
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1.1 Reduction to binary forms

We start this section with the observation that we can restrict to the case of rank-two
tensors in

⊗d
i=1R

2. Indeed, the tensor A =
⊗d

i=1 ui +
⊗d

i=1 vi lies in the tensor space⊗d
i=1 span{ui, vi} and span{ui, vi} is isomorphic to R2 since ui, vi come from a real

Hilbert space.
Our next proposition lets us reduce our study further to symmetric tensor spaces.

Together with the previous observation, we can then reduce to SymdR2 which can be
identified as the space of real homogeneous polynomials of degree d in two variables,
i.e., binary forms.

Proposition 1.2. Let A ∈
⊗d

i=1Hi be a real rank-two tensor. Then there is symmetric
rank-two tensor AS ∈ SymdR2 with ∥A∥F = ∥AS∥F and ∥A∥σ ≥ ∥AS∥σ.

For the proof, we require the following two lemmas on the behavior of successively
taking geometric means of positive real numbers, and the relation of Frobenius and
spectral norm of two certain 2× 2 matrices.

Lemma 1.3. Let x, y ≥ 0 and define the sequence

x0 = x, x1 =
(
xd−1y

) 1
d
, xk+2 =

(
xd−1
k+1xk

) 1
d
.

Then limk→∞ xk =
(
xdy
) 1

d+1 .

Proof. We may assume x, y > 0, otherwise the result follows immediately. We show via
induction that

xk =
(
xd

k+1+(−1)kyd
k+(−1)k−1

) 1

dk(d+1) . (1.4)

The cases k = 0 and k = 1 follow directly. Now let (1.4) be true for 1, . . . , k + 1. Then

xk+2 =
(
xd−1
k+1xk

) 1
d
= x

(
(d−1)(dk+2+(−1)k+1)

dk+2(d+1)
+

dk+1+(−1)k

dk+1(d+1)

)
y

(
(d−1)(dk+1+(−1)k)

dk+1(d+1)
+

dk+(−1)k−1

dk(d+1)

)

=
(
xd

k+3+(−1)k+2
yd

k+2+(−1)k+1
) 1

dk+2(d+1) ,

proving (1.4). Taking the limit k → ∞ gives the result.

Lemma 1.4. Let 0 ≤ x, y ≤ 1 and define the matrices

A =

(
a+ bxy bx

√
1− y2

by
√
1− x2 b

√
(1− x2)(1− y2)

)
and B =

(
a+ bxy b

√
xy − x2y2

b
√

xy − x2y2 b(1− xy)

)
.

Then ∥A∥F = ∥B∥F and ∥A∥σ ≥ ∥B∥σ.

16



1.1. REDUCTION TO BINARY FORMS

Proof. A direct calculation shows that ∥A∥F = ∥B∥F. The singular values of 2 × 2

matrices are given by σ2
1,2 = F 2/2±

√
F 4/4− |D|2, where F is the Frobenius norm and

D is the determinant of the matrix. We have

|detA|2 = a2b2(1− x2 − y2 + x2y2) and |detB|2 = a2b2(1− 2xy + x2y2).

Since 2xy ≤ x2 + y2 implies |detA|2 ≤ |detB|2, the largest singular value of A, which
equals its spectral norm, is larger or equal to the largest singular value of B.

Proof of Proposition 1.2. Let A = α
⊗d

i=1 ui + β
⊗d

i=1 vi with ∥ui∥ = 1 = ∥vi∥. Let

U =

d⊗
i=1

ui and V =

d⊗
i=1

vi.

Then ∥A∥2F = α2∥U∥2F + 2αβ⟨U,V⟩F + β2∥V∥2F. We may assume that ui, vi ∈ R2

and after an orthogonal change of bases and possibly changing sign of β, we may also

assume that ui = e1 and vi = xie1 +
√
1− x2i e2 with 0 ≤ xi ≤ 1. We will show that

replacing k factors of V, i.e., the vectors vi1 , . . . , vik , with v = xe1 +
√
1− x2e2, where

x =
∏k

j=1 x
1/k
ij

is the geometric mean, leads to a tensor with the same Frobenius but
smaller spectral norm. We may assume that we replace the first k vectors v1, . . . , vk.
This tensor reads Ak = αU+ βVk with Vk =

⊗k
i=1 v ⊗

⊗d
i=k+1 vi and since

⟨U,Vk⟩F =

k∏
i=1

⟨ui, v⟩
d∏

i=k+1

⟨ui, vi⟩ = xk
d∏

i=k+1

xi =

d∏
i=1

xi =

d∏
i=1

⟨ui, vi⟩ = ⟨U,V⟩F,

the Frobenius norm of A and Ak coincide. We show inductively that the spectral norm
does not increase with k, i.e., ∥Ak+1∥σ ≤ ∥Ak∥σ ≤ ∥A∥σ. For k = d, this gives a
symmetric tensor with the desired properties. We start with k = 2. Let w1, . . . , wd be
the maximizers in

max
∥w1∥=...=∥wd∥=1

⟨A2,⊗d
i=1wi⟩F = ∥A2∥σ.

Let a = α
∏d

i=3⟨ui, wi⟩, b = β
∏d

i=3⟨vi, wi⟩, and define the matrices

A = ae1e
T
1 + bv1v

T
2 and B = ae1e

T
1 + bvvT.

These matrices represent the bilinear forms in w̃1 and w̃2

w̃T
1Aw̃2 = ⟨A, w̃1 ⊗ w̃2 ⊗

d⊗
i=3

wi⟩F and w̃T
1Bw̃2 = ⟨A2, w̃1 ⊗ w̃2 ⊗

d⊗
i=3

wi⟩F.

Therefore,

∥A∥σ = max
∥w̃1∥=∥w̃2∥=1

w̃T
1Aw̃2 = max

∥w̃1∥=∥w̃2∥=1
⟨A, w̃1 ⊗ w̃2 ⊗

d⊗
i=3

wi⟩F ≤ ∥A∥σ
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and

∥B∥σ = max
∥w̃1∥=∥w̃2∥=1

w̃T
1Bw̃2 = max

∥w̃1∥=∥w̃2∥=1
⟨A2, w̃1 ⊗ w̃2 ⊗

d⊗
i=3

wi⟩F = ∥A2∥σ.

Lemma 1.4 implies ∥B∥σ ≤ ∥A∥σ and therefore ∥A2∥σ ≤ ∥A∥σ.
Now assume that replacing k factors of V in this manner results in a tensor

Ak with a smaller or equal spectral norm. We now replace the first k factors of
V and the second to k + 1-st factor of V successively, i.e., we first replace V with
the rank-one tensor Ṽ0 =

⊗k
i=1 ṽ0 ⊗

⊗d
i=k+1 vi and then with the rank-one tensor

Ṽ1 = ṽ0⊗
⊗k+1

i=2 ṽ1⊗
⊗d

i=k+2 vi and repeating. This leads to a sequence Bℓ = αU+βṼℓ

with nonincreasing spectral norm. The vectors read ṽℓ = yℓe1 +
√

1− y2ℓ e2 with

y0 =

k∏
i=1

x
1/k
i , y1 =

(
xk−1xk+1

) 1
k
, yℓ+2 =

(
yk−1
ℓ+1 yℓ

) 1
k
.

By Lemma 1.3, this sequence converges to( k∏
i=1

x
1/k
i

)k

xk+1

1/(k+1)

=

k+1∏
i=1

x
1/(k+1)
i ,

i.e., the sequence of tensors Bℓ converges to Ak+1. Since the spectral norm of the
sequence Bℓ is nonincreasing, also ∥Ak+1∥σ ≤ ∥Ak∥σ ≤ ∥A∥σ, concluding the proof.

Proposition 1.2 allows us to restrict to symmetric tensors. Note that while for
symmetric tensors the notions of rank and symmetric rank are not the same in gen-
eral [Shi18], they coincide for rank-two tensors, see, e.g., [ZHQ16]. We can further
restrict our search for rank-two tensors with the minimal ratio of spectral and Frobenius
norm with the following observation.

Lemma 1.5. Let A = aU+ bV with rank-one tensor U and V. Assume further that
∥U∥F = ∥V∥F = 1, ⟨U,V⟩F ≥ 0 and a, b > 0. Then

∥A∥σ ≥ 1√
2
∥A∥F.

Proof. Without loss of generality, assume |a| ≥ |b|. Then

∥A∥2σ ≥ ⟨A,U⟩2F ≥ a2 + 2ab⟨V,U⟩F

and
∥A∥2F = a2 + 2ab⟨V,U⟩F + b2 ≤ 2a2 + 4ab⟨V,U⟩F

since 0 ≤ ⟨V,U⟩F ≤ 1 and a ≥ b > 0. The claim follows.
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Figure 1.1: The ratio ∥p∥∞/∥p∥B norm of p(x, y) = a(x+ ty)d − b(x− ty)d.

We can therefore restrict our search to symmetric tensors A = aud− bvd in SymdR2

with a, b > 0, ∥u∥ = ∥v∥ = 1, and ⟨u, v⟩ ≥ 0. Due to a result by Banach [Ban38], the
definition of the spectral norm (1.1) of a symmetric tensor simplifies to

∥A∥σ = max
∥w∥=1

∣∣∣⟨A, wd⟩F
∣∣∣.

It will be convenient to identify symmetric tensors with the associated polynomial
pA(w) = ⟨A, wd⟩F. The spectral norm of the tensor A corresponds to the uniform norm
of polynomials on the sphere

∥p∥∞ := max
∥w∥=1

|p(w)|.

If w is a maximizer of |pA(w)| on the sphere, then pA(w)wd is a best rank-one approxi-
mations of A in Frobenius norm. Similarly, if ±wd is a best rank-one approximation,
then w maximizes 1/∥w∥d|pA(w)|.

The Frobenius norm corresponds to the Bombieri norm

∥p∥B :=

√√√√∑
|α|=1

(
d

α

)−1

|cα|2,

where p(w) =
∑

|α|=1 cαw
α with the multi index notation α = (α1, . . . , αn) ∈ {0, . . . , d}n,

wα = wα1
1 . . . wαd

d , |α| = α1 + . . .+ αn, and
(
d
α

)
= d!

α1!...αd!
.

Since all norms are invariant to orthogonal change of basis, the ratio of spectral and
Frobenius norm of aud−bvd depends only on the angle between the vectors u and v, and
the ratio of a and b. We can restrict to the case a, b > 0, ∥u∥ = ∥v∥ = 1, and ⟨u, v⟩ ≥ 0
and the ratio is determined by the quantities arctan(a/b) ∈ (0, π/2) and ⟨u, v⟩ ∈ [0, 1).
These quantities are attained for a = cosφ, b = sinφ, u = (e1 + te2) /

√
1 + t2, and
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v = (e1 − te2) /
√
1 + t2 with t ∈ (0, 1] and φ ∈ (0, π/2). Since scaling has no effect on

the ratio, we can also use u = e1 + te2 v = e1 − te2. The corresponding polynomial is
p(x, y) = a(x+ ty)d − b(x− ty)d. We computed the ratio of the uniform and Bombieri
norm in Figure 1.1 numerically for d = 2, . . . , 5. Figure 1.1 indicates that the smallest
ratio is attained for a = b and t → 0.

1.2 Symmetric case

In this section, we prove a version of Theorem 1.1 for symmetric tensors. It is convenient
to introduce notation for the symmetric part of rank-one tensors. We define

u1u2 . . . ud :=
1

d!

∑
σ∈Sd

uσ1 ⊗ uσ2 ⊗ · · · ⊗ uσd
,

where Sd is the permutation group of d elements. This is consistent with the notation
ud = ⊗d

i=1u for symmetric rank-one tensors and it resembles the product of polynomials.

Theorem 1.6. Let H be a real Hilbert space and A ∈ SymdH be a tensor of rank two.
Then for d ≥ 3

∥A∥σ >

(
1− 1

d

) d−1
2

∥A∥F. (1.5)

In particular, let W = dud−1v = limt→0
1
t

(
(u+ tv)d − ud

)
for orthonormal vectors

u, v ∈ H. Then

∥W∥σ =

(
1− 1

d

) d−1
2

∥W∥F,

i.e., the inequality (1.5) is sharp.

Proof. Let A = U+V where U and V are symmetric rank-one tensors. If ⟨U,V⟩F < 0
and ∥U∥F = ∥V∥F or ⟨U,V⟩F ≥ 0, then Proposition 1.12 further below and Lemma 1.5,
respectively, imply (1.5). In the following, Proposition 1.8 and Proposition 1.9 imply
that the minimal ratio cannot be attained for ⟨U,V⟩F < 0 and ∥U∥F ̸= ∥V∥F. The
infimum ratio of norms therefore has to be attained on the boundary of rank-two tensors.
Finally, Proposition 1.7 and Proposition 1.14 show that the inequality is correct and
sharp.

1.2.1 Maximal distance

We first prove that inequality (1.5) is sharp. For this, it is helpful to switch to the
perspective of polynomials.
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Proposition 1.7. The polynomial corresponding to W = limt→0
1
t

(
(e1 + te2)

d − ed1
)
is

p(x, y) = dxd−1y. Furthermore,

∥W∥F = ∥p∥B =
√
d and ∥W∥σ = ∥p∥∞ = (d− 1)

d−1
2 d

d
2 ,

i.e., ∥W∥σ = (1− 1/d)(d−1)/2∥W∥F.

Proof. Note that W = d
dt(e1 + te2)

d|t=0. The polynomial corresponding to (e1 + te2)
d is

pt(x, y) = (x+ ty)d and ∂
∂tpt(x, y)|t=0 = dxd−1y = p(x, y). The stated Bombieri norm

of p follows from the definition. The uniform norm is

max dxd−1y such that x2 + y2 = 1.

The KKT conditions lead to the necessary optimality condition (d− 1)xd−2y2 = xd. We
find that x =

√
1− 1/d and y = 1/

√
d is a maximizer, and the stated uniform norm of

p follows.

1.2.2 Optimality conditions

For proving Theorem 1.6 we will determine the critical points of the optimization
problem

inf
a,b∈R

∥u∥=∥v∥=1

F (a, b, u, v) =
∥aud − bvd∥2σ
∥aud − bvd∥2F

. (1.6)

The target function in (1.6) can be written as a composition

F (a, b, u, v) = G(φ(a, b, u, v))

where

G : SymdR2 → R, G(A) =
∥A∥2σ
∥A∥2F

,

and
φ : R×R×R2×R2 → SymdR2, φ(a, b, u, v) = aud − bvd.

While φ is smooth, the map G is not differentiable at all points. However, G is the
quotient of the smooth function A 7→ ∥A∥2F and the convex function A 7→ ∥A∥2σ. There-
fore, the rules for generalized gradients of regular functions are applicable; see [Cla90,
Section 2.3]. It follows that the subdifferential of G in a point A can be computed using
a quotient rule, which yields

∂G(A) =
2∥A∥σ
∥A∥4F

(
∂(∥A∥σ)∥A∥2F −A∥A∥σ

)
.

Here ∂(∥A∥σ) denotes the subdifferential of the spectral norm in A. The derivative of φ
equals

φ′(a, b, u, v)[δa, δb, δu, δv] = ud−1(ad · δu+ δa · u)− vd−1(db · δv + δb · v), (1.7)
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which leads to

∂F (a, b, u, v)[δa, δb, δu, δv]

=
2∥A∥σ
∥A∥4F

⟨∂(∥A∥σ)∥A∥2F −A∥A∥σ, ud−1(ad · δu+ δa · u)− vd−1(db · δv + δb · v)⟩F,

(1.8)
where A = φ(a, b, u, v) for brevity. The subdifferential of the spectral norm can be
characterized as the convex hull of normalized best rank-one approximations, i.e.,

∂(∥A∥σ) = conv argmax
B∈Symd R2

rankB=1
∥B∥F=1

⟨A,B⟩F, (1.9)

see [Cla75, Theorem2.1] in general, and [AKU20, Section 2.3] in particular. In words,
∂(∥A∥σ) equals the convex hull of the normalized symmetric best rank-one approxima-
tions of A.

The first-order optimality condition 0 ∈ ∂F (a, b, u, v) (see, e.g., [Cla90, Proposi-
tion 2.3.2]) for problem (1.6) together with (1.8) and (1.9) imply that

λ(aud − bvd) ∈ Pu,v conv argmax
B∈Symd R2

rankB=1
∥B∥F=1

⟨aud − bvd,B⟩F, (1.10)

where Pu,v is the orthogonal projection onto the image of the linear map ϕ′(a, b, u, v)
in (1.7), i.e., the linear subspace {ud−1δu+vd−1δv : δu, δv ∈ R2} of SymdR2, and λ ∈ R
is a Lagrange multiplier.

We now show that the optimality condition (1.10) cannot hold for a tensor aud− bvd

admitting a unique best symmetric rank-one approximation. This is an interesting anal-
ogy to the fact that matrices achieving a minimal ratio of spectral and Frobenius norm
have equal singular values, and therefore have no unique best rank-one approximations.

Proposition 1.8. Let A = aud − bvd have rank two. If A has a unique best symmetric
rank-one approximation, then A is not a critical point of the optimization problem (1.6).

Proof. Let ±wd be the best rank-one approximation of A. Note that ⟨A, wd⟩ ≠ 0. Since
A = φ′(a, b, u, v)[1, 1, 0, 0] in (1.7), this implies Pu,vw

d ̸= 0. A direct computation shows
Pu,vw

d = αud−1w + βvd−1w for some α, β ∈ R. However, since u and v are linearly
independent, we have the decomposition

{ud−1δu+ vd−1δv : δu, δv ∈ Rn} = {ud−1δu : δu ∈ Rn} ⊕ {vd−1δv : δv ∈ Rn}

into two complementary subspaces. Therefore, (1.10) is only possible if w is both a
multiple of u and v, which contradicts the linear independence of u and v.
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1.2.3 Unique symmetric best rank-one approximations

We now present a class of symmetric rank-two tensors admitting unique best symmetric
rank-one approximations. By the result of Proposition 1.8, these can then be excluded
from the further discussion on the minimal norm ratio.

Proposition 1.9. Let A = aud − bvd with u ̸= v, ∥u∥ = ∥v∥ = 1, ⟨u, v⟩ > 0 and
a > b > 0. Then A has exactly one best symmetric rank-one approximation.

For the proof, we require auxiliary results. One is the following fact about polyno-
mials.

Lemma 1.10. Let α, γ > 0, β ≥ 0, and d ≥ 2. The equation x = γ(x− α)(x+ β)d−1

has two real solutions for x if d is even, and three real solutions if d is odd.

Proof. Let p(x) = γ(x− α)(x+ β)d−1 − x. Then by the intermediate value theorem, p
must have at least two real zeros, namely one in the interval [−β, 0] and another one in
the interval (α,∞). On the other hand,

p′(x) = γd(x+ β)d−2

(
x− (d− 1)α− β

d

)
− 1,

has at most two sign changes, one at a value larger than ((d− 1)α− β)/d and another
at one at a value smaller than −β if d is odd. Therefore, p has at most three real zeros.
The statement follows from the fact that the number of real zeros of a polynomial with
real coefficients has the same parity as its degree.

The second lemma narrows the possible locations of maximizers of the homogeneous
form |pA|.

Lemma 1.11. Under the assumptions of Proposition 1.9, let w be a maximizer of
|pA(w)| =

∣∣⟨aud − bvd, wd⟩F
∣∣ subject to ∥w∥ = c > 0. Then |⟨u,w⟩| ≥ |⟨v, w⟩|.

Proof. Assume to the opposite that |⟨u,w⟩| < |⟨v, w⟩| and without loss of generality
⟨v, w⟩ > 0. Let Q be the symmetric orthogonal matrix mapping u to v and v to u (i.e.
Q = I − zzT with z = (u + v)/∥u + v∥), and let w̄ = Qw. Then ⟨u,w⟩ = ⟨v, w̄⟩ and
⟨v, w⟩ = ⟨u, w̄⟩. By assumption, we then have

∣∣⟨aud − bvd, w̄d⟩F
∣∣ = ⟨aud − bvd, w̄d⟩F. If∣∣⟨aud − bvd, wd⟩F

∣∣ = ⟨aud−bvd, wd⟩F, this yields
∣∣⟨aud − bvd, w̄d⟩F

∣∣ > ∣∣⟨aud − bvd, wd⟩F
∣∣

(by using (a+ b)⟨v, w⟩d > (a+ b)⟨u,w⟩d) which contradicts the optimality of w. In the
other case,

∣∣⟨aud − bvd, wd⟩F
∣∣ = −⟨aud − bvd, wd⟩F, optimality implies

b(⟨u,w⟩d + ⟨v, w⟩d) > a(⟨u,w⟩d + ⟨v, w⟩d)

which contradicts a > b.
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Figure 1.2: The values of the polynomial p(x, y) = a(x+ ty)d− b(x− ty)d with a > b > 0
on the circle (x, y) = (cosφ, sinφ).

We are now in the position to prove Proposition 1.9. We use Lemma 1.10 to show
that, depending on the parity of d, the associated polynomial pA has either six or four
critical points on the circle x2 + y2 = 1. These critical points come in pairs (x, y) and
(−x,−y) and correspond to critical best rank-one approximations. Afterwards, we use
Lemma 1.11 to show that only one of these pairs can correspond to the best rank-one
approximation, which can be anticipated by Figure 1.2.

Proof of Proposition 1.9. We can assume that A ∈ SymdR2, so that u, v ∈ R2. Without
loss of generality, since we can change coordinates, we can consider a = 1, u = e2 and
d
√
bv = αe1 + βe2 with α, β > 0 (since ⟨u, v⟩ > 0), and α2 + β2 < 1 (since b < a = 1).

Let λ2(x2 + y2) = 1 and λ > 0, i.e., λ(x, y) is a point on the unit circle. Then

pA(λx, λy) = λd[yd − (αx+ βy)d]. (1.11)

Critical points on the circle are characterized by x ∂
∂ypA − y ∂

∂xpA = 0, which means

xyd−1 − (βx− αy)(αx+ βy)d−1 = 0

independent of λ. Note that here y = 0 is not possible since both α and β are nonzero.
Recall that a symmetric best rank-one approximation of A is given as pA(w)wd, where
w maximizes |pA(w)| on the circle. Since pA(−w) = (−1)dpA(w), in order to prove the
assertion it suffices to show that |pA(λx, λy)| has exactly one maximizer (λx, λy) with
y = 1. The optimality condition at such a point reduces to

x = (βx− α)(αx+ β)d−1. (1.12)

Hence, we only need to show that there is exactly one solution x of this equation
corresponding to a global maximum of |pA| on the unit circle.
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If y = 1, then pA in (1.11) has a zero at x0 = (1− β)/α. Then

x0 =
1− β

α
>

β − β2 − α2

α
= (βx0 − α)(αx0 + β)d−1.

This shows that (1.12) has at least one solution x∗ > x0. We consider a solution x∗ of
this kind such that the corresponding unit vector w = λ(x∗e1 + e2) is a local maximum
of |pA| on the unit circle. Taking the sign changes of x− (βx− α)(αx+ β)d−1 and the
sign of pA into account, x∗ indeed corresponds to a local maximizer. We have

|⟨u,w⟩| = λ <
λ
d
√
b
=

λ
d
√
b
(αx0 + β) < λ

1
d
√
b
(αx∗ + β) = |⟨v, w⟩|.

By Lemma 1.11, w is not a global maximum of |pA|. If d is even, then by Lemma 1.10
equation (1.12) has exactly two solutions and therefore only one corresponds to a global
maximum. If d is odd, then by the same lemma (1.12) has three solutions. Taking into
account that pA in (1.11) has only one zero for y = 1, one of these solutions corresponds
to a local minimizer of |pA|. Hence, there is only one global maximizer.

Proposition 1.8 and Proposition 1.9 show that the minimal ratio in (1.6) is not
achieved for a ̸= b.

1.2.4 Difference of two normalized rank-one tensors

In this section, we show by a direct calculation that ∥A∥σ/∥A∥F > ∥W∥σ/∥W∥F when
A is the difference of two symmetric rank-one tensors with the same norm and W is
from Proposition 1.7. We will switch to the perspective of polynomials, and find two
useful point evaluations to estimate the uniform norm.

Proposition 1.12. Let u ̸= v, ∥u∥ = ∥v∥ ≠ 0, ⟨u, v⟩ ≥ 0 and d ≥ 3. Then

∥ud − vd∥2σ
∥ud − vd∥2F

>

(
1− 1

d

)d−1

.

We require the following version of Jensen’s inequality.

Lemma 1.13. Let f : [a, b] → R be convex and continuously differentiable. If a+ b =
a′ + b′ and a < a′ < b′ < b, then

1

b− a

∫ b

a
f(x) dx ≥ 1

b′ − a′

∫ b′

a′
f(x) dx ≥ f

(
a+ b

2

)
.

The inequalities are strict if f is strictly convex.
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Proof. Without loss of generality let a = −b and a′ = −b′. A substitution results in

1

b

∫ b

−b
f(x) dx =

1

b′

∫ b′

−b′
f

(
b

b′
x

)
− f(x) + f(x) dx

=
1

b′

∫ b′

−b′
f(x) dx+

1

b′

∫ b′

0

∫ bx
b′

x
f ′(y)− f ′(−y) dy dx ≥ 1

b′

∫ b′

−b′
f(x) dx,

by monotonicity of the derivative of a convex function. This shows the first of the
asserted inequalities. The second inequality is just Jensen’s inequality, noting that
a+b
2 = a′+b′

2 . If f is strictly convex, then f ′ is strictly monotone and the inequalities are
strict.

Proof of Proposition 1.12. We can assume that ud − vd ∈ SymdR2 and identify ud − vd

with its polynomial. We only need to consider pt(x, y) = (x + ty)d − (x − ty)d with
t ∈ (0, 1]. The other cases follow after applying a rotation and scaling. Then

∥pt∥2B = 2(1 + t2)d − 2(1− t2)d =: g(t). (1.13)

First, we apply the estimate

∥pt∥∞ ≥ pt

(
1√

1 + t2
,

t√
1 + t2

)
=

(1 + t2)d − (1− t2)d
√
1 + t2

d
,

which yields

∥pt∥2∞
∥pt∥2B

≥ (1 + t2)d − (1− t2)d

2(1 + t2)d
=

1

2

(
1−

(
1− t2

1 + t2

)d
)
.

The right-hand side is monotonically increasing in the interval (0, 1]. For t = 1/
√
d− 1

it equals

1

2

(
1−

(
d− 2

d

)d
)

=
dd − (d− 2)d

2dd
.

This value is larger than (1− 1/d)d−1 = ((d− 1)/d)d−1 since, using Lemma 1.13 with

the function f(t) = 2d td−1, it holds that
∫ d
d−2 f(t) dt = dd − (d− 2)d > 2d(d− 1)d−1 for

d ≥ 3. This shows
∥pt∥2∞
∥pt∥2B

>

(
1− 1

d

)d−1

for all t ∈
[
1/

√
d− 1, 1

]
. It remains to verify this inequality for all t ∈

(
0, 1/

√
d− 1

)
,

which is a little bit more involved. The starting point is another lower bound for the
uniform norm, namely

∥pt∥∞ ≥ pt

(√
1− 1

d
,
1√
d

)
=

1
√
d
d

((√
d− 1 + t

)d
−
(√

d− 1− t
)d)

=: h(t).
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Note that pt(x, y)/t → 2dxd−1y = 2pW(x, y) as t → 0 with W from Proposition 1.7 and
therefore

lim
t→0

h(t)2

g(t)
=

∥W∥2σ
∥W∥2F

=

(
1− 1

d

)d−1

.

We now claim that
d

dt

h(t)2

g(t)
> 0 for t ∈

(
0,
√

1
d−1

)
which then proves the assertion. This claim is equivalent to the positivity of

√
d
d

4d

(
2h′(t)g(t)− g′(t)h(t)

)
=

[(√
d− 1 + t

)d−1
+
(√

d− 1− t
)d−1

][
(1 + t2)d − (1− t2)d

]

− t

[(√
d− 1 + t

)d
−
(√

d− 1− t
)d ][

(1 + t2)d−1 + (1− t2)d−1

]
.

Let

a :=
(√

d− 1− t
)
(1− t2) =

√
d− 1− t− t2

√
d− 1 + t3,

b :=
(√

d− 1 + t
)
(1 + t2) =

√
d− 1 + t+ t2

√
d− 1 + t3,

a′ :=
(√

d− 1− t
)
(1 + t2) =

√
d− 1− t+ t2

√
d− 1− t3,

b′ :=
(√

d− 1 + t
)
(1− t2) =

√
d− 1 + t− t2

√
d− 1− t3.

Then elementary manipulations result in

√
d
d

4d

(
2h′(t)g(t)− g′(t)h(t)

)
=
(
bd−1 − ad−1

)(
1− t

√
d− 1

)
−
(
(b′)d−1 − (a′)d−1

)(
1 + t

√
d− 1

)
. (1.14)

Note that for t ∈
(
0, 1/

√
d− 1

)
we have b > b′ > a′ > a and

b− a = 2t
(
1 + t

√
d− 1

)
, b′ − a′ = 2t

(
1− t

√
d− 1

)
.

Therefore, with f(t) = (d− 1)td−2 we can rewrite (1.14) as

1

4d

√
d
d(
2h′(t)g(t)− g′(t)h(t)

)
=

1

2t

[
(b′ − a′)

∫ b

a
f(x) dx− (b− a)

∫ b′

a′
f(x) dx

]
.
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Moreover,
a+ b

2
=

√
d− 1 + 2t3 >

√
d− 1− 2t3 =

a′ + b′

2
,

and therefore a′′ := a+b−(b′−a′)
2 > a′ > a and b > b′′ := a+b+(b′−a′)

2 > b′. Since
a′′ + b′′ = a+ b and a′′ − b′′ = a′ − b′, Lemma 1.13 yields

(b′ − a′)

∫ b

a
f(x) dx ≥ (b− a)

∫ b′′

a′′
f(x) dx > (b− a)

∫ b′

a′
f(x) dx,

where the second inequality follows from the monotonicity of f . This shows that (1.14)
is positive.

1.2.5 Behaviour on the boundary

Finally, we consider tensors lying on the boundary of the set of symmetric rank-two
tensors. We will again turn to the perspective of the respective polynomials and find
two useful point evaluations to estimate the uniform norm.

Proposition 1.14. Let A be a limit of symmetric rank-two tensors and rankA > 2.

Then ∥A∥2σ ≥
(
1− 1

d

)d−1 ∥A∥2F and equality is attained if and only if A = ud−1v for
some orthogonal u and v, that is, for tensors arising from scaling and orthogonal
transformations of the tensor W from Proposition 1.7.

The boundary of rank-two tensors is well studied. We require the following well-
known parametrization; see, e.g., [BL14]. We offer a self-contained proof for complete-
ness.

Lemma 1.15. Let A be a limit of symmetric rank-two tensors and rankA > 2. Then
A is of the form

A = aud + bdud−1v

with ⟨u, v⟩ = 0 and ∥u∥ = ∥v∥ = 1.

Proof. Let An = udn ± vdn with limn→∞An = A or limn→∞An = −A. It is not difficult
to see that un and vn must be unbounded since otherwise there is a subsequence of
An converging to a tensor of rank at most two, contradicting rankA > 2. We write
vn = snun + tnwn with ∥wn∥ = 1 and ⟨un, wn⟩ = 0. Then

An = (1± sdn)u
d
n ±

d∑
k=1

(
d

k

)
sd−k
n tknu

d−k
n wk

n,

and it can be checked that all terms are pairwise orthogonal. Hence, since An converges,
all terms must be bounded and by passing to a subsequence we can assume that all of
them converge. Due to ∥un∥ → ∞ we have 1± sdn → 0 for the first term, which implies
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that the sequence sn is bounded. Therefore, considering the term k = 1, the sequence
tn∥un∥d−1 is bounded which automatically implies tkn∥un∥d−k → 0 for all k > 1. We
conclude that

lim
n→∞

An = lim
n→∞

(1± sdn)u
d
n + lim

n→∞
dsd−1

n tnu
d−1
n wn = aud + bdud−1v

which proves the assertion.

Proof of Proposition 1.14. Using Lemma 1.15, scaling and orthogonal transformations,
we can assume A = aed1 + bded−1

1 e2 ∈ SymdR2 with a, b ≥ 0. We switch to the
perspective of polynomials and study p(x, y) = axd + bxd−1y. Then ∥p∥2B = a2 + b2d.
We have the following two lower bounds for the uniform norm:

∥p∥∞ ≥ p

(√
1− 1

d
,
1√
d

)
=

1
√
d
d

(
a
√
d− 1

d
+ bd

√
d− 1

d−1
)

(1.15)

and
∥p∥∞ ≥ p (1, 0) = a. (1.16)

We can restrict to the case ∥p∥2B = a2 + b2d = 1 and need to show that

∥p∥∞ >

(
1− 1

d

) d−1
2

whenever a > 0. The first lower bound (1.15) implies that this is true whenever
b > (

√
d− a

√
d− 1)/d. Together with 1 = a2 + b2d and a, b ≥ 0 this verifies the claim

for 0 < a < 2
√
d(d− 1)/(2d− 1). If a ≥ 2

√
d(d− 1)/(2d− 1), then the second lower

bound (1.16) yields the desired estimate

∥p∥2∞ ≥ a2 ≥

(
2
√

d(d− 1)

2d− 1

)2

>
d− 1

d
>

(
1− 1

d

)d−1

for d ≥ 3.

1.3 Outlook

We have established the maximum relative distance of a real rank-two tensor to the
set of rank-one tensors. However, it is not clear if similar techniques can be applied
to gain results for tensors of higher rank. For rank-two tensors, we found that the
maximum distance is attained for symmetric tensors. Again, it is not clear if this is
the case for tensors of higher rank and results on tensors in full tensor spaces may
suggest that this is not always the case. Another interesting question arises when we
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consider the influence of the field. We already discussed the influence of the field on the
rank-one approximation ratio. When we consider the results of Theorem 1.1 for d = 3
and [CKP00], we observe that

inf
A∈R2×2×2

rankA=2

∥A∥σ
∥A∥F

=
2

3
= min

A∈C2×2×2

∥A∥σ
∥A∥F

= inf
A∈C2×2×2

rankA=2

∥A∥σ
∥A∥F

since tensors of complex rank two are dense in C2×2×2. That is, for tensors of order
d = 3 and of rank two, the maximum relative distance coincides for real and complex
tensors.
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Chapter 2

Dynamical low-rank
approximations to parabolic

problems

Oftentimes, low-rank models need to be adapted when new data is observed. However,
a new computation might be expensive or even unfeasible. Indeed, in many cases, the
matrix A(ti) containing the underlying data at different times (ti) is not stored and
there is only access to the increment A(ti+1) +A(ti) and the model X(ti). If the model
at different times is a rank-r matrix X(ti), a natural update is

X(ti+1) = argmin
rankX=r

∥X −X(ti)−A(ti+1) +A(ti)∥2F,

i.e., a low-rank model with a similar increment is chosen. The first-order optimality
condition for this problem is

⟨X −X(ti), Y ⟩F = ⟨A(ti+1) +A(ti), Y ⟩F for all Y ∈ TXMr,

where TXMr is the tangent space to the manifold Mr of rank-r matrices at X. When
passing to continuous times, the optimality condition becomes the evolution equation

⟨X ′(t), Y ⟩F = ⟨A′(t), Y ⟩F for all Y ∈ TX(t)Mr

in weak form. In finite dimensions, since X(t) ∈ Mr, this is equivalent to the explicit
form

X ′(t) = PTX(t)MrA
′(t),

where PTX(t)Mr is the orthogonal projection onto the tangent space TX(t)Mr. Of course,
nothing prevents us to exchange the increment A′ by a general differential equation. We
then have a problem of the form

⟨X ′(t), Y ⟩F = ⟨F (X(t), t), Y ⟩F for all Y ∈ TX(t)Mr. (2.1)

This approach was first considered in [KL07a] for low-rank matrices, but variational
principles analogous to (2.1) were already used by Dirac in [Dir30] to compute approxi-
mations of wave functions as antisymmetrized rank-one tensors. In the literature, this
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CHAPTER 2. DYNAMICAL LOW-RANK APPROXIMATIONS

approach is known as the Dirac-Frenkel variational principle and is used for many
different non-linear reduced models; see e.g., [Lub08, Chapter II and Chapter IV].

In this chapter, we are concerned with the case where (2.1) comes from a parabolic
partial differential equation with a separable spacial domain Ω = Ω1 × Ω2. When
the solutions of partial differential equations can be well approximated by functions
in a low-rank format, a typical strategy is to discretize on huge but finite grids, and
afterwards impose low-rank constraints; see e.g., [Hac19, Chapter 16 and Chapter 17.3]
and [BSU16]. Numerical methods for computing solutions on low-rank manifolds are
under current research; see e.g., [LO14, CL22]. When analyzing such an approach, it is
important to understand the underlying infinite-dimensional problems. A first step is
the existence and uniqueness of solutions. For elliptic partial differential equations, it
is not too difficult to provide a framework that ensures existence of solutions [BSU16,
Section 4]. We will see, that the parabolic case is more delicate. First, we study a model
problem in Section 2.1 and extract features that can be expected in a more general case.
We formulate an abstract problem in Section 2.2 and provide a temporal discretization
in Section 2.3. In Section 2.4, we show that the solutions of the time-discrete problem
converge to a solution of the continuous problem and that this solution is essentially
unique. Finally, we show that also solutions to a space-discrete problem converge to the
unique solution in Section 2.5.

2.1 Model problem

As a model, we consider the anisotropic diffusion equation

∂

∂t
u(x, t)−∇x · (B(t)∇xu(x, t)) = f(x, t) for (x, t) ∈ Ω× (0, T ),

u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω

(2.2)

on the product domain Ω = (0, 1) × (0, 1). Here, B(t) is a 2 × 2 matrix, and we
assume it to be uniformly bounded and positive definite, as well as Lipschitz continuous
with respect to t. When B is constant such an equation is for example attained when
considering an isotropic diffusion equation after a linear change of variables.

Typically, one does not seek a classical solution for a problem of the form (2.2).
Instead, the problem is formulated in the weak form on function spaces. The solution is
a function u ∈ L2(0, T ;H1

0 (Ω)) with values in the Hilbert space H1
0 (Ω) (the space of

square-integrable functions vanishing on the boundary ∂Ω with square-integrable weak
derivatives in space) and its derivative in time u′ ∈ L2(0, T ;H−1(Ω)) has values in the
dual space H−1(Ω) of H1

0 (Ω). The problem in weak form reads: given u0 ∈ L2(Ω) and
f ∈ L2(0, T ;H−1(Ω)), the solution is a function

u ∈ W (0, T ;H1
0 (Ω), H

−1(Ω)) := {u ∈ L2(0, T ;H1
0 (Ω)) : u

′ ∈ L2(0, T ;H−1(Ω))}
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such that for almost all t ∈ (0, T )

⟨u′(t), v⟩+ a(u(t), v; t) = ⟨f(t), v⟩ for all v ∈ H1
0 (Ω) ,

u(0) = u0.
(2.3)

Here, by ⟨·, ·⟩ we denote the dual paring H−1(Ω)×H1
0 (Ω) and a : H1

0 (Ω)×H1
0 (Ω)× [0, T ]

is a bounded, symmetric and coercive bilinear form

a(u, v; t) :=

∫
Ω
(B(t)∇u(x)) · ∇v(x)dx

for every t. Classical theory provides a unique solution to (2.3); see e.g., [Zei90a,
Theorem23.A] and [Zei90b, Theorem30.A].

Since Ω = (0, 1)×(0, 1), the Hilbert spaces L2(Ω) andH1
0 (Ω) admit certain structures.

For a product u(x, y) = u1(x)u2(y) and v(x, y) = v1(x)v2(y) the inner products are

⟨u, v⟩L2(Ω) = ⟨u1, v1⟩L2(0,1)⟨u2, v2⟩L2(0,1) (2.4)

and

⟨u, v⟩H1
0 (Ω) = ⟨u1, v1⟩H1

0 (0,1)
⟨u2, v2⟩L2(0,1) + ⟨u1, v1⟩L2(0,1)⟨u2, v2⟩H1

0 (0,1)
. (2.5)

Also importantly, the inner product in the Hilbert space H1,1
mix(Ω), which contains the

functions u ∈ H1
0 (Ω) with square integrable mixed derivatives ∂2

∂x∂yu, is given by

⟨u, v⟩
H1,1

mix

=

∫
Ω

∂2

∂x∂y
u(x, y)

∂2

∂x∂y
v(x, y)dxdy = ⟨u1, v1⟩H1

0 (0,1)
⟨u2, v2⟩H1

0 (0,1)
. (2.6)

A function u ∈ L2(Ω) admits a singular value decomposition

u(x, y) =

∞∑
i=1

σi u1,i(x)u2,i(y) for almost every x, y ∈ (0, 1), (2.7)

with L2(0, 1) orthonormal u1,i and u2,i and a nonnegative, square-summable, and
nonincreasing sequence (σi); see e.g., [Hac19, Chapter 4.4.3]. By ranku we denote the
smallest number of nonzero terms needed. Note that ranku = ∞ is possible.

As low-rank representations are convenient for several reasons, one can ask whether
the parabolic equation (2.2) admits approximate solutions of low-rank. In dynamical
low-rank approximation, one assumes this to be the case and attempts to directly evolve
the solution on the set

Mr = {u ∈ L2(Ω): ranku = r} (2.8)

for a certain value r. The set Mr can be shown to be a differentiable manifold in
various ways. In [FHN19] it is shown to be a Banach manifold, and in the appendix
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CHAPTER 2. DYNAMICAL LOW-RANK APPROXIMATIONS

of [BEKU21] it is shown to be an embedded submanifold using submersions. There are
many subtleties for manifolds in infinite dimensions, however we can circumvent many
of these in this chapter. We only require the existence of a tangent space TuMr that
contains the derivatives of curves through the point u in the manifold Mr and certain
curvature estimates.

We study a modified version of (2.3). Given the initial point u0 ∈ Tu(t)Mr ∩H1
0 (Ω)

and f ∈ L2(0, T ;L2(Ω)), we seek

u ∈ W (0, T ;H1
0 (Ω), L

2(Ω)) := {u ∈ L2(0, T ;H1
0 (Ω)) : u

′ ∈ L2(0, T ;L2(Ω))}

such that u(t) ∈ Mr for all t ∈ (0, T ) and

⟨u′(t), v⟩+ a(u(t), v; t) = ⟨f(t), v⟩ for all v ∈ Tu(t)Mr ∩H1
0 (Ω),

u(0) = u0
(2.9)

for almost every t ∈ (0, T ). This can be seen as a nonlinear version of the Galerkin
method. In contrast to (2.3) we only require the equation to hold only for tangent
vectors to the desired solution u(t).

The situation is easier if B(t) is diagonal and f = 0. Then the solutions of (2.3)
and (2.9) coincide and can be computed by separation of variables. From an abstract
perspective, this happens because the unbounded linear operator on L2(Ω) induced by
the bilinear form a maps into the tangent space at u. In [KL07b] a similar problem is
studied, where the operator on L2(Ω) is split into an unbounded part mapping to the
tangent space and an arbitrary bounded part. If B(t) is not diagonal this is not the
case and these results are not applicable.

2.1.1 Properties of the manifold

First, we note that Mr is not closed. Its closure is indeed the set M≤r of functions
with rank at most r. The set M≤r is even weakly sequentially closed; see e.g., [Hac19,
Lemma8.6]. In other words

M≤r = M≤r−1 ∪Mr = Mr = Mr
w
.

Also importantly, the set Mr is a cone. That is, αu ∈ Mr for every u ∈ Mr and α > 0.

2.1.2 Mixed regularity

For convenience, let us denote u = u1 ⊗ u2 ∈ L2(Ω) for the product of functions,
that is, u(x, y) = u1(x)u2(y) for almost every (x, y) ∈ Ω. Every u ∈ Mr admits
infinitely many decompositions

∑r
i=1 u1,i ⊗ u2,i, one of them being the singular value

decomposition (2.7).
A key observation, is that u ∈ Mr ∩ H1

0 (Ω) is also in H1,1
mix(Ω). To see this, let

u =
∑r

i=1 σi u1,i ⊗ u2,i be a singular value decomposition and u ∈ H1
0 (Ω). Since the
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singular vectors u1,i and u2,i are respectively orthonormal in L2(0, 1), equation (2.5)
results in

∥u∥2H1
0 (Ω) =

∑
σ2
i

(
∥u1,i∥2H1

0 (0,1)
+ ∥u2,i∥2H1

0 (0,1)

)
. (2.10)

This already implies that the singular vectors belong to H1
0 (0, 1). Equation (2.6), the

triangle inequality, and Young’s inequality imply

∥u∥
H1,1

mix(Ω)
≤

r∑
i=1

σi∥u1,i∥H1
0 (0,1)

∥u2,i∥H1
0 (0,1)

≤
r∑

i=1

σi
2

(
∥u1,i∥2H1

0 (0,1)
+ ∥u2,i∥2H1

0 (0,1)

)
,

which gives

∥u∥
H1,1

mix(Ω)
≤ 1

2σr
∥u∥2H1

0 (Ω), (2.11)

i.e., the H1,1
mix(Ω)-norm of u is bounded by the inverse of its smallest singular value and

its H1
0 (Ω) norm.

2.1.3 Tangent spaces and curvature estimates

Given a decomposition u =
∑r

i=1 u1,i ⊗ u2,i, the tangent space at u ∈ Mr is given by

TuMr =

{
r∑

i=1

(u1,i ⊗ v2,i + v1,i ⊗ u2,i) : v1,i, v2,i ∈ L2(0, 1)

}
. (2.12)

It is quite apparent, that TuMr contains only tangent vectors. Indeed, the curve
φ(t) =

∑r
i=1 (u1,i + tv1,i)⊗ (u2,i + tv2,i) lies in Mr for small t, φ(0) = u and

φ′(0) =
r∑

i=1

(u1,i ⊗ v2,i + v1,i ⊗ u2,i)

is of the form given in (2.12). For a proof, that TuMr contains all tangent vectors, we
refer to the appendix of [BEKU21]. We denote by U1 = span{u1,i : i = 1, . . . , r} and
U2 = span{u2,i : i = 1, . . . , r} the linear spaces containing the left and right singular
vectors, respectively. Then (2.12) takes the form

TuMr = U1 ⊗ L2(0, 1) + L2(0, 1)⊗ U2

= (U1 ⊗ U2)⊕
(
U1 ⊗ U⊥

2

)
⊕
(
U⊥
1 ⊗ U2

)
=
(
U⊥
1 ⊗ U⊥

2

)⊥
,

(2.13)

where the superscript ⊥ denotes the L2(0, 1) and L2(Ω) orthogonal complement and ⊕
denotes the direct sum of vector spaces, i.e., the intersection of the summands contains
the zero element only. Hence, TuMr is closed and the L2(Ω)-orthogonal projection Pu

onto TuMr is given by

Pu = P1 ⊗ idL2(0,1)+ idL2(0,1)⊗P2 − P1 ⊗ P2

= P1 ⊗ P2 + P1 ⊗
(
idL2(0,1)−P2

)
+
(
idL2(0,1)−P1

)
⊗ P2

= idL2(Ω)−
(
idL2(0,1)−P1

)
⊗
(
idL2(0,1)−P2

)
,

(2.14)
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where P1 and P2 are the L2(0, 1)-orthogonal projections onto U1 and U2, respectively.
The curvature of the manifold Mr at u and the L2(Ω) distance of u to the relative

boundary M≤r−1 of Mr is given by the singular values of u. In particular, let σr be
the smallest singular value of u. Then

min
w∈M≤r−1

∥u− w∥L2(Ω) = σr (2.15)

and for v ∈ Mr, we have the curvature estimates

∥Pu − Pv∥L2(Ω)→L2(Ω) ≤
2

σr
∥u− v∥L2(Ω) (2.16)

and

∥
(
idL2(Ω)−Pv

)
(u− v) ∥L2(Ω) ≤

1

σr
∥u− v∥2L2(Ω); (2.17)

see e.g., the appendix of [BEKU21] or [AJ14, CL10, LRSV13, WCCL16] for similar
results.

We further note, that a weakly compact subset M′ ⊂ Mr has positive L2(Ω)-
distance σ∗ from M≤r−1 and is attained for some u∗ ∈ M′. To see this, note first that
for Banach spaces, by the Eberlein-Šmulian theorem, weak compactness is equivalent
to weak sequential compactness; see e.g., [Die84, Chapter III]. Consider sequences
(un) ⊂ M′ and (vn) ⊂ M≤r−1 such that

∥un − vn∥L2(Ω) ≤ σ∗ + 1/n.

Both sequences are bounded, and hence (un, vn) admits a weakly converging subsequence
with limit (u∗, v∗). Then u∗ ∈ M′ and v∗ ∈ M≤r−1 since both sets are weakly
sequentially closed. Since the norm is weakly sequentially lower semicontinuous, we
obtain σ∗ ≤ ∥u∗ − v∗∥L2(Ω) ≤ σ∗, and thus equality. This shows

σ∗ = min
u∈M′, v∈M≤r−1

∥u− v∥L2(Ω) > 0. (2.18)

2.1.4 Compatibility of tangent spaces

We also use the intersection of the manifold and tangent spaces with the Sovolev space
H1

0 (Ω). First, we require that for u ∈ Mr ∩ H1
0 (Ω) and v ∈ TuMr ∩ H1

0 (Ω) a curve
φ(t) ∈ Mr ∩ H1

0 (Ω) can be chosen, such that φ(0) = u and φ′(0) = v. To see this,
let u =

∑r
i=1 σi u1,i ⊗ u2,i be a singular value decomposition. Then by the second line

of (2.13), we can decompose v = v1 + v2 + v3 with v1 ∈ U1 ⊗ U⊥
2 , v2 ∈ U⊥

1 ⊗ U2 and
v3 ∈ U1 ⊗ U2. More explicitly,

v1 =

r∑
i=1

u1,i ⊗ v2,i, v2 =

r∑
i=1

v1,i ⊗ u2,i, and v3 =

r∑
i=1

r∑
j=1

miju1,i ⊗ u2,j ,
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with v1,i ∈ U⊥
1 , v2,i ∈ U⊥

2 , and
∑r

i=1

∑r
j=1 |mij |2 < ∞. Note that by (2.11)

v3 ∈ U1 ⊗ U2 ⊂ H1
0 (0, 1)⊗H1

0 (0, 1) ⊂ H1
0 (Ω),

and hence v − v3 ∈ TuMr ∩H1
0 (0, 1). Again using L2(0, 1)-orthogonality and (2.5), we

can bound the H1
0 (0, 1)-norm of the factors v1,i and v2,i via

∥v − v3∥2H1
0 (Ω)

=

r∑
i=1

∥v1,i∥2H1
0 (0,1)

+∥v2,i∥2H1
0 (0,1)

+∥u1,i∥2H1
0 (0,1)

∥v1,i∥2L2(0,1)+∥u2,i∥2H1
0 (0,1)

∥v2,i∥2L2(0,1).

Therefore, φ(t) =
∑r

i=1 (u1,i + tv1,i)⊗
(
u2,i + tv2,i + t

∑r
j=1miju2,j

)
is a smooth curve

in Mr ∩H1
0 (Ω) for small |t| and has the desired properties φ(0) = u and φ′(0) = v.

Based on the regularity of the singular vectors one can also show that if u ∈
Mr ∩ H1

0 (Ω), the tangent space projection Pu given in (2.14) can be bounded in
H1

0 (Ω)-norm as a map from H1
0 (Ω) to TuMr ∩H1

0 (Ω) as follows:

∥Puv∥H1
0 (Ω) ≤

(
1 +

r

σr(u)2
∥u∥2H1

0 (Ω)

)1/2

∥v∥H1
0 (Ω), (2.19)

i.e., Pu is a continuous linear operator from H1
0 (Ω) into H1

0 (Ω) if u ∈ Mr ∩H1
0 (Ω); see

e.g., [BEKU21, PropositionA.4].

2.1.5 Operator splitting

We apply the results of Section 2.1.2 and Section 2.1.4 to split the bilinear form a(·, ·; t)
into two parts a1(·, ·; t) and a2(·, ·; t). We can deal with these using different techniques
to obtain existence and uniqueness results. The first part is coming from the diagonal
entries b11(t) and b22(t) of B(t) and the second is coming from the off-diagonal entry
b12(t), i.e.,

a1(u, v; t) =

∫∫
Ω
b11(t)

∂

∂x
u(x, y)

∂

∂x
v(x, y) + b22(t)

∂

∂y
u(x, y)

∂

∂y
v(x, y) dx dy

and

a2(u, v; t) =

∫∫
Ω
b12(t)

∂

∂x
u(x, y)

∂

∂y
v(x, y) + b12(t)

∂

∂y
u(x, y)

∂

∂x
v(x, y) dx dy.

Note that the set of compactly supported and smooth functions C∞
c (Ω) is a dense

subset of H1
0 (Ω) and it is not difficult to see that also Mr ∩ C∞

c (Ω) is a dense subset
of Mr ∩H1

0 (Ω). Therefore, there exists a sequence (un) ⊂ Mr ∩ C∞
c (Ω) converging

to u ∈ Mr ∩H1
0 (Ω) with respect to the H1

0 (Ω) norm. For a compactly supported and
smooth function u, the bilinear forms take the form
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a1(u, v; t) = −
∫∫

Ω

(
b11(t)

∂2

∂x2
u(x, y) + b22(t)

∂2

∂y2
u(x, y)

)
v(x, y) dx dy

and

a2(u, v; t) = −
∫∫

Ω
2b12(t)

∂2

∂x∂y
u(x, y)v(x, y) dx dy.

For any u ∈ Mr ∩ C∞
c (Ω) let u =

∑r
i=1 σi u1,i ⊗ u2,i be its singular value de-

composition. Then, by orthogonality, σi u1,i(x) =
∫ 1
0 u(x, y)u2,i dy and σi u2,i(y) =∫ 1

0 u(x, y)u1,i dx. It follows, that the singular vectors are smooth and compactly sup-
ported, i.e., the singular vectors u1,i, u2,i lie in C∞

c (0, 1). It follows that

b11(t)
∂2

∂x2
u+ b22(t)

∂2

∂y2
u

=
r∑

i=1

σi

(
b11(t)

(
∂2

∂x2
u1,i

)
⊗ u2,i + b22(t)u1,i ⊗

(
∂2

∂y2
u2,i

))
∈ TuMr.

Hence,

a1(u, v; t) = −⟨b11(t)
∂2

∂x2
u+ b22(t)

∂2

∂y2
u, v⟩L2(Ω)

= −⟨b11(t)
∂2

∂x2
u+ b22(t)

∂2

∂y2
u, Puv⟩L2(Ω) = a1(u, Puv; t)

(2.20)

is fulfilled for any u ∈ Mr ∩ C∞
c (Ω) and v ∈ H1

0 (Ω). Both the left-hand side and
the right-hand side of (2.20) are well defined for all u ∈ Mr ∩ H1

0 (Ω) due to (2.19).
Indeed, let (un) ⊂ Mr ∩ C∞

c (Ω) converge to u ∈ Mr ∩ H1
0 (Ω). Then a1(un, v; t)

converges to a1(u, v; t) since a1 is a bounded bilinear form H1
0 (Ω)×H1

0 (Ω) → R. Since
∥u − un∥L2(Ω) ≲ ∥u − un∥H1

0 (Ω), the sequence (Punv) converges to Puv in L2(Ω) due

to (2.16). The set L2(Ω) is a dense subset of H−1(Ω) and ∥Punv∥H1
0 (Ω) is bounded

due to (2.19). Hence, the sequence (Punv) converges weakly to Puv in H1
0 (Ω); see

e.g., [Zei90a, Proposition 21.23(g)]. By continuity, a1(un, ·; t) converges to a1(u, ·; t)
in H−1(Ω) as n → ∞. This implies convergence of a1(un, Punv; t) to a1(u, Puv; t) as
n → ∞; see e.g., [Zei90a, Proposition 21.23(j)]. Ofcourse the limits coming from the
right-hand side and the left-hand side of (2.20) have to coincide. Hence, equation (2.20)
holds for any u ∈ Mr H1

0 (Ω) and v ∈ H1
0 (Ω).

To handle the bilinear form a2, we use (2.11) to bound a2(u, v; t) in terms of the
H1

0 (Ω)-norm of u and the L2(Ω)-norm of v. For u ∈ Mr ∩H1
0 (Ω) we get

a2(u, v; t) = −2b12(t)

〈
∂2

∂x∂y
u, v

〉
L2(Ω)

≤ |b12(t)|
σr

∥u∥2H1
0 (Ω)∥v∥L2(Ω), (2.21)
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where σr is the smallest singular value of u. That is, the bilinear form a2(·, ·; t) induces
a linear operator A2(t) such that ∥A2(t)u∥L2(Ω) is bounded in terms of the smallest
singular value of u and its H1

0 (Ω)-norm for u ∈ Mr ∩H1
0 (Ω).

2.2 Abstract formulation

Motivated by the properties of the model problem discussed in Section 2.1, we formulate
a more general setting. We consider a Gelfand triplet V ↪→ H ∼= H∗ ↪→ V∗ of Hilbert
spaces, where V is compactly embedded in H. This implies that the embedding is also
continuous, i.e.,

∥u∥H ≲ ∥u∥V . (2.22)

In our model problem H = L2(Ω) and V = H1
0 (Ω), the compact embedding is due to

the Rellich–Kondrachov theorem and (2.22) is the Poincaré inequality ; see e.g., [Zei90a,
Proposition 18.9 and Proposition 19.25].

By ⟨·, ·⟩ : V∗ × V → R we denote the dual pairing between V∗ and V. Note that for
u ∈ H ⊂ V∗ and v ∈ V ⊂ H the dual pairing and the inner product on H coincide, i.e.,
⟨u, v⟩H = ⟨u, v⟩. We will frequently identify u ∈ V as an element of H and in turn also
as an element in V∗. For every t ∈ [0, T ], let a(·, ·; t) : V × V → R be a bilinear form
which is assumed to be symmetric,

a(u, v; t) = a(v, u; t) for all u, v ∈ V and t ∈ [0, T ],

uniformly bounded, i.e., there exists β > 0 such that

|a(u, v; t)| ≤ β∥u∥V∥v∥V for all u, v ∈ V and t ∈ [0, T ],

and uniformly coercive, i.e., there exists µ > 0 such that

a(u, u; t) ≥ µ∥u∥2V for all u ∈ V and t ∈ [0, T ].

Under these assumptions, a(·, ·; t) is an inner product on V defining an equivalent norm.
Furthermore, it defines a bounded operator

A(t) : V → V∗ (2.23)

such that

a(u, v; t) = ⟨A(t)u, v⟩ for all u, v ∈ V.

We also assume that a(u, v; t) is Lipschitz continuous with respect to t. In other
words, there exists an L ≥ 0 such that

|a(u, v; t)− a(u, v; s)| ≤ Lβ∥u∥V∥v∥V |t− s| (2.24)
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for all u, v ∈ V and s, t ∈ [0, T ]. In the model problem, this corresponds to the Lipschitz
continuity of the function t 7→ B(t).

We deal with evolution equations on a submanifold M ⊂ H. We do not require an
exact notion of a manifold here. For our purpose it is sufficient that for every point
u ∈ M there exists a closed subspace TuM ⊂ H such that TuM contains all tangent
vectors to M at u. Here, a tangent vector is any v ∈ H for which there exists a (strongly)
differentiable curve φ : (−ϵ, ϵ) → H (for some ϵ > 0) such that φ(t) ∈ M for all t and

φ(0) = u, φ′(0) = v.

By Pu : H → TuM we denote the H-orthogonal projection onto TuM. We will also
assume M∩V to be nonempty as well as TuM∩V to be nonempty for u ∈ M∩ V.

The abstract problem takes the following form.

Problem 2.1. Given f ∈ L2(0, T ;H) and u0 ∈ M∩ V, find

u ∈ W (0, T ;V,H) := {u ∈ L2(0, T ;V) : u′ ∈ L2(0, T ;H)}

such that for almost all t ∈ [0, T ],

u(t) ∈ M,

⟨u′(t), v⟩+ a(u(t), v; t) = ⟨f(t), v⟩ for all v ∈ Tu(t)M∩V,
u(0) = u0.

(2.25)

We emphasize again that the main challenge for the analysis of solutions to this
weak formulation is that according to the Dirac-Frenkel principle, the test functions are
from the tangent space only. For now, we require additional smoothness of the initial
value u0 and the right-hand side f compared to solutions on the entire space V and
we do not know if this is necessary. To show that Problem 2.1 admits solutions we
will require several assumptions. These assumptions are abstractions of corresponding
properties of the model problem of a low-rank manifold as discussed in Section 2.1, and
hence the main results of this chapter apply to this setting. The assumptions are the
following.

A1 (Cone property) M is a cone, that is, u ∈ M implies su ∈ M for all s > 0.

A2 (Curvature bound) For every subset M′ of M that is weakly compact in H, there
exists a constant κ = κ(M′) such that

∥Pu − Pv∥H→H ≤ κ∥u− v∥H

and
∥(I − Pu)(u− v)∥H ≤ κ∥u− v∥2H

for all u, v ∈ M′.
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A3 (Compatibility of tangent spaces)

(a) For u ∈ M ∩ V and v ∈ TuM ∩ V an admissible curve with φ(0) = u,
φ′(0) = v can be chosen such that

φ(t) ∈ M∩ V

for all |t| small enough.

(b) If u ∈ M∩ V and v ∈ V then Puv ∈ TuM∩V.

A4 (Operator splitting) The associated operator A(t) in (2.23) admits a splitting

A(t) = A1(t) +A2(t)

into two uniformly bounded operators V → V∗ such that for all t ∈ [0, T ], all
u ∈ M∩ V and all v ∈ V, the following holds:

(a) A1(t) maps to the tangent space, i.e.,

⟨A1(t)u, v⟩ = ⟨A1(t)u, Puv⟩.

(b) A2(t) is locally bounded from M∩V to H, i.e., for every subset M′ of M
that is weakly compact in H, there exists γ = γ(M′) > 0 such that

A2(t)u ∈ H and ∥A2(t)u∥H ≤ γ∥u∥ηV for all u ∈ M′

with an η > 0 independent of M′.

For the model-problem, we explained A1 in Section 2.1.1, the estimates in A2
are (2.16) and (2.17) in Section 2.1.3, the compatibility of tangent spaces A3 is discussed
in Section 2.1.4, especially A3(b) follows from (2.19), and the operator splitting A4
is elaborated in the equations (2.20) and (2.21) of Section 2.1.5. For A4(b) we take
into account, that every weakly compact subset of Mr has a positive distance from its
relative boundary as stated in (2.18) and η = 2.

We may weaken the uniform coercivity assumption to a uniform G̊arding inequality

⟨A(t)u, u⟩ ≥ µ∥u∥2V − α∥u∥2H

as seen below. In the model problem, we can therefore not only handle Dirichlet
boundary conditions but for instance also Neumann boundary conditions. To see this,
suppose v is a solution (in the sense of Problem 2.1) of

⟨v′(t) + (A(t) + α id)v(t), w⟩ = ⟨e−αtf(t), w⟩ for all w ∈ Tv(t)M∩V,
v(0) = u0,
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which, given the G̊arding inequality, has a uniformly coercive operator A(t) + α id, that
also fulfills assumption A4 given that M is a cone. Then u(t) = eαtv(t) solves the
equation

⟨u′(t) +A(t)u(t), w⟩ = ⟨f(t), w⟩ for all w ∈ Tv(t)M∩V,
u(0) = u0.

But since M is a cone, we have Tu(t)M∩V = Tv(t)M∩V , that is, u is indeed a solution
of Problem 2.1 for the initial operator A(t). For convenience, we can therefore restrict
ourselves to the coercive case.

2.3 Temporal discretization

We discretize in time to show the existence of solutions to Problem 2.1 given assump-
tions A1-A4. An backward Euler method for Problem 2.1 is of the form〈

ui+1 − ui
ti+1 − ti

, v

〉
+ a(ui+1, v; ti+1) = ⟨fi+1, v⟩ for all v ∈ Tui+1M∩V (2.26)

with ti+1 > ti and ui ∈ M∩V . Here, fi+1 is the mean value of f on the interval [ti, ti+1],
that is,

fi+1 =
1

ti+1 − ti

∫ ti+1

ti

f(t) dt. (2.27)

For constant time intervals ti+1 − ti = τ , we can define the piecewise constant in-
terpolation fτ (t) = fi for t ∈ ((i − 1)τ, iτ ]. This is called the zero-order Clément
quasi-interpolant of f and converges strongly to f in L2(0, T ;H); see e.g., the footnote
to equation (8.58) in [Rou13].

As the test space depends on the solution, this equation appears quite difficult
to solve. However, when a(·, ·; ti+1) is symmetric, (2.26) is the first order optimality
condition of the optimization problem

ui+1 = argmin
u∈Mw∩V

Fi(u) (2.28)

with Fi(u) :=
1

2(ti+1−ti)
∥u− ui∥2H + 1

2a(u, u; ti+1)− ⟨fi+1, u⟩. The existence of a solution

to (2.28) and the corresponding optimality condition (2.26) can be shown by basic
functional analysis results.

Lemma 2.2. The optimization problem (2.28) has at least one solution.

Proof. Since Fi is convex and continuous on V it is also weakly sequentially lower
semicontinuous on V ; see, e.g., [Zei95, Section 2.5, Lemma 5]. Note that Fi has bounded
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sublevel sets on V since the bilinear form a(·, ·; ti+1) is coercive by assumption. We
may therefore restrict the analysis to a sublevel set. Since V is a Hilbert space, it is a
reflexive Banach space. By the Banach-Alaoglu theorem, a weakly closed and bounded
subset of a reflexive Banach space is weakly compact and therefore weakly sequentially
compact by the Eberlein-Šmulian theorem; see e.g., [Die84, Chapter II and Chapter III].
It now follows that Fi attains a minimum on every weakly sequentially closed subset of
V since the intersection with a weakly closed and bounded set is weakly sequentially
compact; see, e.g. [Zei85, Proposition 38.12(d)]. It hence remains to verify that Mw ∩ V
is weakly sequentially closed in V. Consider a sequence (un) ⊂ Mw ∩ V converging
weakly in V to u ∈ V. Obviously, since H∗ ⊂ V∗, weak convergence in V implies weak
convergence in H, and since Mw

is weakly sequentially closed in H, we get u ∈ Mw ∩V .
This shows that this set is weakly sequentially closed in V.

Lemma 2.3. Any local minimizer ui+1 of Fi on M∩V fulfils (2.26). If ui+1 is a local
minimizer of Fi on Mw ∩ V, then〈

ui+1 − ui
ti+1 − ti

, ui+1

〉
+ a(ui+1, ui+1; ti+1) = ⟨fi+1, ui+1⟩.

Proof. For the first case, let v ∈ Tui+1M∩V. By the assumption A3(a), we can find a
differentiable curve φ(t) defined for |t| small enough such that φ(0) = ui+1, φ

′(0) = v
and φ(t) ∈ M∩ V . Then t 7→ Fi(φ(t)) has a local minimum at t = 0 and the derivative
F ′
i (φ(0)) ◦φ′(0) is zero since Fi is continuously differentiable. This yields (2.26). If ui+1

is not in M, we still have φ(t) = (1 + t)ui+1 ∈ Mw ∩ V since Mw ∩ V is a cone. The
same argument provides the final equation.

In the following section, we ensure that given u0 ∈ M∩ V and small enough time
interval [0, T ∗] the iterates ui are in the intersection M∩V. We can therefore provide
an interval [0, T ∗] and timesteps 0 = t0 < t1 < . . . < tN = T ∗ on which the sequence
(ui) fulfills (2.26).

In the following, we set τ = T ∗/N and ti = iτ . With u0 ∈ M ∩ V we generate
a sequence (ui)

N
i=0 ⊂ Mw ∩ V. We construct the piecewise affine linear interpolation

ûτ : [0, T
∗] → V and piecewise constant interpolation v̂τ : [0, T

∗] → V, i.e.,

ûτ (t) =
(i+ 1)τ − t

τ
ui +

t− iτ

τ
ui+1 and v̂τ (t) = ui+1

for t ∈ (iτ, (i+ 1)τ ].

2.3.1 Energy estimates

We first provide discrete a priori estimates for the time-discrete solution and its finite
differences. These show that ûτ and v̂τ are uniformly bounded in L∞(0, T ;V) and that
the derivatives v̂′τ are uniformly bounded in L2(0, T ∗;H). In turn, we get a weakly
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converging subsequence. Its limit is a candidate for a solution to Problem 2.1. The cone
property A1 is crucial.

Lemma 2.4. The sequence (ui)
N
i=0 ⊂ Mw ∩ V generated by (2.28) with the time step

τ = T ∗/N satisfies the estimates

∥uN∥2H +

N∑
i=1

∥ui − ui−1∥2H + µτ

N∑
i=1

∥ui∥2V ≤ ∥u0∥2H + C1∥f∥2L2(0,T ∗;H), (2.29)

τ
N∑
i=1

∥∥∥∥ui − ui−1

τ

∥∥∥∥2
H
≤ C2

(
∥u0∥2V + ∥f∥2L2(0,T ∗;H)

)
, (2.30)

∥ui∥2V ≤ C3

(
∥u0∥2V + ∥f∥2L2(0,T ∗;H)

)
, i = 1, . . . , N, (2.31)

where C1, C2, C3 > 0 depend on β, µ, L, and on the constant for the continuity of the
embedding V ↪→ H in (2.22). As a result, ûτ and v̂τ are bounded in L∞(0, T ∗;V), and
v̂′τ is bounded in L2(0, T ∗;H), uniformly for τ → 0.

Proof. We use coercivity of a, the optimality condition in Lemma 2.3, and the identity

⟨ui+1 − ui, ui+1⟩ = ⟨ui+1 − ui, ui+1⟩H =
1

2

(
∥ui+1∥2H − ∥ui∥2H + ∥ui+1 − ui∥2H

)
,

to get

∥ui+1∥2H − ∥ui∥2H + ∥ui+1 − ui∥2H + 2τµ∥ui+1∥2V ≤ 2τ⟨fi+1, ui+1⟩.

We use Young’s inequality to attain 2τ⟨fi+1, ui+1⟩ ≤ τ/µ∥fi+1∥2V∗ + µτ∥ui+1∥2V and
hence

∥ui+1∥2H − ∥ui∥2H + ∥ui+1 − ui∥2H + τµ∥ui+1∥2V ≤ τ

µ
∥fi+1∥2V∗ .

The constant of continuity H ∼= H∗ ↪→ V∗ depends only on the constant of continuity
V ↪→ H in (2.22). We therefore get

∥fi+1∥2V∗ ≤ C1∥fi+1∥2H = C1

∥∥∥∥1τ
∫ ti+1

ti

1 · f(t) dt
∥∥∥∥2
H
≤ C1

τ

∫ ti+1

ti

∥f(t)∥2H dt (2.32)

by the Cauchy-Schwarz inequality and the definition of fi in (2.27). Summation over
the index i results in (2.29).

Next we prove (2.30). Since ui+1 minimizes Fi, its value is smaller than Fi(ui), i.e.,

2Fi(ui+1) =
1

τ
∥ui+1 − ui∥2H + a(ui+1, ui+1; ti+1)− 2⟨fi+1, ui+1⟩

≤ a(ui, ui; ti+1)− 2⟨fi+1, ui⟩ = 2Fi(ui).
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Using Young’s inequality, it follows that

τ

∥∥∥∥ui+1 − ui
τ

∥∥∥∥2
H
≤ a(ui, ui; ti+1)− a(ui+1, ui+1; ti+1) + 2τ

〈
fi+1,

ui+1 − ui
τ

〉
≤ a(ui, ui; ti+1)− a(ui+1, ui+1; ti+1) + 2τ∥fi+1∥2H +

τ

2

∥∥∥∥ui+1 − ui
τ

∥∥∥∥2
H
.

This yields

τ

∥∥∥∥ui+1 − ui
τ

∥∥∥∥2
H
≤ 2a(ui, ui; ti+1)− 2a(ui+1, ui+1; ti+1) + 4τ∥fi+1∥2H. (2.33)

We sum over i and get

τ
N∑
i=1

∥∥∥∥ui − ui−1

τ

∥∥∥∥2
H
≤ 2a(u0, u0; 0) + 2

N∑
i=1

(
a(ui−1, ui−1; ti)− a(ui−1, ui−1; ti−1)

)
− 2a(uN , uN ;T ∗) + 4τ

N∑
i=1

∥fi∥2H.

Using the Lipschitz continuity (2.24) in t of the bilinear form then allows for the estimate

τ

N∑
i=1

∥∥∥∥ui − ui−1

τ

∥∥∥∥2
H
≤ 2β∥u0∥2V + 2βLτ

N∑
i=1

∥ui−1∥2V + 4τ

N∑
i=1

∥fi∥2H

≤ 2β(1 + Lτ)∥u0∥2V + 2βLτ
N∑
i=1

∥ui∥2V + 4τ
N∑
i=1

∥fi∥2H.

We may use (2.29) to get

τ

N∑
i=1

∥∥∥∥ui − ui−1

τ

∥∥∥∥2
H
≤ 2β(1 + Lτ)∥u0∥2V + 4τ

N∑
i=1

∥fi∥2H +
2βL

µ

(
∥u0∥2H +

τ

µ

N∑
i=1

∥fi∥2V∗

)
.

The desired estimate (2.30) follows with (2.32) and ∥u0∥2H ≲ ∥u0∥2V .
For the last estimate (2.31) we start with (2.33). We readily obtain

0 ≤ a(uj−1, uj−1; tj)− a(uj , uj ; tj) + 2τ∥fj∥2H.

We sum over j = 1, . . . , i and rearrange to obtain

a(ui, ui; ti) ≤ a(u0, u0; 0) +

i∑
j=1

(
a(uj−1, uj−1; tj)− a(uj−1, uj−1; tj−1)

)
+ 2τ

i∑
j=1

∥fj∥2H.
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This implies

µ∥ui∥2V ≤ β∥u0∥2V + βLτ

i∑
j=1

∥uj−1∥2V + 2τ

i∑
j=1

∥fj∥2H

≤ β(1 + Lτ)∥u0∥2V + βLτ
N∑
j=1

∥uj∥2V + 2τ
N∑
j=1

∥fj∥2H

for any i = 1, . . . , N . Using (2.29) and (2.32) yields (2.31).

We can now assure that the iterates ui lie in M for i = 1, . . . , N if T ∗ is sufficiently
small. Let u0 ∈ V have positive H-distance σ to the relative boundary Mw \M and
let c = C2(∥u0∥2V + ∥f∥2L2(0,T ;H)) be the right-hand side of (2.30) from Lemma 2.4 with

T ∗ = T . Then

∥ui − u0∥2H ≤

 i∑
j=1

τ

∥∥∥∥uj − uj−1

τ

∥∥∥∥
H

2

≤ iτ2
N∑
j=1

∥∥∥∥uj − ui−j

τ

∥∥∥∥2
H
≤ T ∗c (2.34)

and hence ∥ui − u0∥2H ≤ σ2 for all i whenever T ∗ < σ2/c. Choosing a small enough T ∗

therefore ensures ui ∈ M for all i = 1, . . . , N .

2.4 Existence and uniqueness of solutions

We are now in the position to show the existence of a solution to Problem 2.1. Recall
that ûτ and v̂τ are the piecewise affine linear and piecewise constant interpolations of the
sequence (ui) generated by the implicit Euler method (2.26). We show via compactness
arguments that the interpolations ûτ and v̂τ have a common weak limit û in L2(0, T ∗,V).
The main difficulty is confirming (2.25) for the limit û of the time-discrete solutions
since the tangent spaces at û(t) differ from the ones at v̂τ (t) and we therefore have to
use the Lipschitz continuity of the tangent space projection in Assumption A2.

Theorem 2.5. Let a(u, v; t) define a bounded and coercive bilinear form in u and v,
uniformly with respect to t, and let a be Lipschitz continuous with respect to t. Further-
more, let the assumptions stated in Problem 2.1 and A1-A4 hold true and let ûτ and
v̂τ be the piecewise affine linear and piecewise constant interpolations given by

ûτ (t) =
(i+ 1)τ − t

τ
ui +

t− iτ

τ
ui+1 and v̂τ (t) = ui+1

for t ∈ (iτ, (i+ 1)τ ].
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(a) The functions ûτ and v̂τ converge, up to subsequences, weakly in L2(0, T ∗;V) and
strongly in L2(0, T ∗;H), to the same function û ∈ L∞(0, T ∗;V) ∩W (0, T ∗;V,H)
with û(0) = u0, while the weak derivatives û′τ converge weakly to û′ in L2(0, T ∗;H),
again up to subsequences. The functions ûτ converge, up to subsequences, strongly
in C(0, T ;H) to û. Furthermore, the function values û(t) lie in Mw∩V for almost
all t ∈ [0, T ∗].

(b) Let u0 have positive H-distance σ to the relative boundary Mw \M. Then there
exists a constant c > 0 independent of σ such that û solves Problem 2.1 on the
time interval [0, T ∗] when T ∗ < σ2/c.

Proof of Theorem 2.5 (a). It follows from (2.29) and (2.30) in Lemma 2.4 that ûτ and
v̂τ are uniformly bounded in L2(0, T ∗;V). Therefore, refinement in time generates
sequences which converge weakly in L2(0, T ∗;V), up to subsequence, i.e.,

ûτ ⇀ û and v̂τ ⇀ v̂ in L2(0, T ∗;V).

In particular, ûτ − v̂τ converges weakly in L2(0, T ∗;H) to û− v̂. Comparing the two
sequences in L2(0, T ∗;H), we get

∫ T ∗

0
∥ûτ − v̂τ∥2H dt =

N∑
i=1

∫ ti

ti−1

∥ûτ − v̂τ∥2H dt

= τ
N∑
i=1

∫ 1

0
∥(s− 1)(ui − ui−1)∥2H ds

=
τ

3

N∑
i=1

∥ui − ui−1∥2H,

and together with (2.30) in Lemma 2.4 this results in∫ T ∗

0
∥ûτ − v̂τ∥2H dt ≤ C2τ

2

3

(
∥u0∥2V + ∥f∥2L2(0,T ∗;H)

)
, (2.35)

which tends to zero as τ → 0. We conclude û = v̂.

Likewise, û′τ is uniformly bounded in L2(0, T ∗;H) and thus, up to subsequences,
û′τ ⇀ ŵ for some ŵ ∈ L2(0, T ∗;H). We next show that ŵ is the weak derivative of û.
For this, we need to verify that∫ T ∗

0
⟨ŵ(t), v⟩ϕ(t) + ⟨û(t), v⟩ϕ′(t) dt = 0

for arbitrary v ∈ V and ϕ ∈ C∞
0 (0, T ∗). Adding and subtracting the weak derivative of
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ûτ , we get∫
T ∗

⟨ŵ(t), v⟩ϕ(t) + ⟨û(t), v⟩ϕ′(t) dt

=

∫
T ∗

⟨ŵ(t)− û′τ (t), v⟩ϕ(t) + ⟨û(t)− ûτ (t), v⟩ϕ′(t) dt.

Since ûτ ⇀ û and û′τ ⇀ ŵ in L2(0, T ∗;V) and L2(0, T ∗;H), respectively, and since vϕ,
vϕ′ ∈ L2(0, T ∗;V), the right hand side converges to zero. Thus, ŵ = û′.

The strong convergence of ûτ in L2(0, T ∗;H) follows from the theorem of Aubin
and Lions; see e.g., [Sho97, Proposition III.1.3]. It states that when V is compactly em-
bedded into H, then the space W (0, T ∗;V,H) is compactly embedded into L2(0, T ∗;H).
Thereby, the weak convergence of ûτ and û′τ that we just have proved implies the
strong convergence of a subsequence ûτ → û in L2(0, T ∗;H). This together with (2.35)
directly proves that also ûτ → v̂ in L2(0, T ∗;H). By (2.31) the sequences (ûτ ) and
(v̂τ ) are also bounded in L∞(0, T ∗;V) and hence converge with respect to the weak∗

topology in L∞(0, T ∗;V), again up to subsequence. Since the L∞(0, T ∗;V)-norm is
weakly∗ sequentially semicontinuous, we even obtain û ∈ L∞(0, T ∗;V).

Similarly, the strong convergence of ûτ in C(0, T ∗;H) follows from another version
of the Aubin-Lions theorem; see e.g., [Sim87, Section 8]. This version states when
V is compactly embedded in H, then a set that is bounded in L∞(0, T ∗;V) with
derivatives bounded in L2(0, T ∗;H) is relatively compact in C(0, T ∗;H). Hence, strong
convergence follows from the estimates (2.30) and (2.31) in Lemma 2.4. This readily
implies û(0) = limτ↘0 ûτ (0) = u0.

It remains to show that û(t) ∈ Mw
for almost all t ∈ (0, T ∗). We already proved

u(t) = limτ↘0 ûτ (t). Therefore, it is sufficient to show that the H-distance of ûτ (t) from
Mw

converges to zero. Indeed, since ûτ is an affine linear interpolation of the sequence
(ui) ⊂ Mw

, the estimate (2.30) implies

∥ui − ûτ (t)∥2H ≤ ∥ui − ui−1∥2H ≤ τC2

(
∥u0∥2V + ∥f∥2L2(0,T ∗;H)

)
for t ∈ ((i−1)τ, iτ ]. Hence, the distance of ûτ (t) to Mw

converges uniformly to zero.

Proof of Theorem 2.5 (b). We provided a condition such that (ui) ⊂ M′ ⊂ M lies in a
weakly compact subset independent of the timestep τ in (2.34). Hence, there is a weakly
compact subset M′ ⊂ M such that û(t), v̂τ (t) ∈ M′ and the optimality condition (2.26)
holds due to Lemma 2.3. In terms of ûτ and v̂τ this may be written as

⟨û′τ (t), w(t)⟩+ ⟨Aτ (t)v̂τ (t), w(t)⟩ = ⟨fτ (t), w(t)⟩ for w(t) ∈ Tv̂τ (t)M∩V,

where Aτ (t) = A(iτ) and fτ (t) = fi for t ∈ ((i − 1)τ, iτ ] are piecewise constant
interpolations. It follows that∫ T ∗

0
⟨û′τ (t), w(t)⟩+ ⟨Aτ (t)v̂τ (t), w(t)⟩ − ⟨fτ (t), w(t)⟩dt = 0 (2.36)
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for w(t) ∈ Tv̂τ (t)M∩V almost everywhere. We will show∫ T ∗

0
⟨û′(t), w(t)⟩+ ⟨A(t)û(t), w(t)⟩ − ⟨f(t), w(t)⟩dt = 0 (2.37)

for w ∈ L∞(0, T ∗;V) and w(t) ∈ Tû(t)M almost everywhere. This implies (2.25) as
desired, since in the opposite case there would be a subset S ⊆ [0, T ∗] of positive measure
such that for all t ∈ S we have

⟨û′(t), w(t)⟩+ ⟨A(t)û(t), w(t)⟩ − ⟨f(t), w(t)⟩ ≠ 0

for some w(t) ∈ Tû(t)M∩V. By appropriately scaling these w(t), we can then choose
w ∈ L∞(0, T ∗;V) such that w(t) ∈ Tû(t)M∩ V almost everywhere and the left-hand
side in (2.37) is positive.

Now let w ∈ L∞(0, T ∗;V) be given such that w(t) ∈ Tû(t)M almost everywhere.
Assumption A3(b) implies Pv̂τ (t)w(t) ∈ Tv̂τ (t)M∩V almost everywhere and hence∫ T ∗

0
⟨û′τ (t), Pv̂τ (t)w(t)⟩+ ⟨Aτ (t)v̂τ (t), Pv̂τ (t)w(t)⟩ − ⟨fτ (t), Pv̂τ (t)w(t)⟩dt = 0 (2.38)

because of (2.36). We have∫ T ∗

0
∥Pv̂τ (t)w(t)− w(t)∥2H dt ≤

∫ T ∗

0
∥Pv̂τ (t) − Pû(t)∥2H→H∥w(t)∥2H dt

and hence Assumption A2 implies that Pvτw converges strongly to w in L2(0, T ∗;H).
Since fτ converges strongly to f and û′τ converges weakly to û′ in L2(0, T ∗;H), we have∫ T ∗

0
⟨fτ (t), Pv̂τ (t)w(t)⟩ dt →

∫ T ∗

0
⟨f(t), w(t)⟩ dt

and ∫ T ∗

0
⟨û′τ (t), Pv̂τ (t)w(t)⟩ dt →

∫ T ∗

0
⟨û′(t), w(t)⟩ dt

see e.g., [Zei90a, Proposition 21.23(j)]. It remains to show∫ T ∗

0
⟨Aτ (t)v̂τ (t), Pv̂τ (t)w(t)⟩ dt →

∫ T ∗

0
⟨A(t)û(t), w(t)⟩ dt. (2.39)

We will proceed pointwise. We have∣∣⟨Aτ (t)v̂τ (t), Pv̂τ (t)w(t)⟩ − ⟨A(t)û(t), w(t)⟩
∣∣

≤
∣∣⟨Aτ (t)v̂τ (t), Pv̂τ (t)w(t)− w(t)⟩

∣∣+ ∣∣⟨(Aτ (t)−A(t)
)
v̂τ (t), w(t)⟩

∣∣
+
∣∣⟨A(t)(v̂τ (t)− û(t)

)
, w(t)⟩

∣∣.
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For the second summand, the Lipschitz continuity of A implies∣∣⟨(Aτ (t)−A(t)
)
v̂τ (t), w(t)⟩

∣∣ ≤ τLβ∥v(t)∥V∥w(t)∥V → 0 as τ → 0.

For the third summand, the weak convergence in L2(0, T ∗;V) implies that∫ T ∗

0

∣∣⟨A(t)
(
v̂τ (t)− û(t)

)
, w(t)⟩

∣∣ dt → 0 as τ → 0

and therefore

⟨A(t)
(
v̂τ (t)− û(t)

)
, w(t)⟩ → 0 as τ → 0

for almost every t, possibly after passing to a subsequence; see e.g., [PW18, Corol-
lary 2.3.20]. We have the integrable bound∣∣⟨A(t)(v̂τ (t)− û(t)

)
, w(t)⟩

∣∣ ≤ β (∥v̂τ (t)∥V + ∥û(t)∥V) ∥w(t)∥V .

For the first part, we denote A1,τ (t) = A1(iτ) and A2,τ (t) = A2(iτ) for t ∈ ((i− 1)τ, iτ ]
and use Assumption A2 and Assumption A4. We get∣∣⟨Aτ (t)v̂τ (t), Pv̂τ (t)w(t)− w(t)⟩

∣∣ = ∣∣⟨A1,τ (t)v̂τ (t) +A2,τ (t)v̂τ (t), Pv̂τ (t)w(t)− w(t)⟩
∣∣

≤ 0 + γ∥v̂τ (t)∥ηV∥w(t)∥H∥û(t)− v̂τ (t)∥H,

where the part concerning A1,τ vanishes due to Assumption A4(a) and γ = γ(M′)
and η are taken from Assumption A4(b). Due to the strong convergence of v̂τ to û in
L2(0, T ∗;H), this expression converges to zero for almost every t, again after passing to
a subsequence. We also provided integrable bounds for every summand, hence (2.39)
follows by dominated convergence. Therefore, the left-hand side in (2.38) converges to
the left-hand side in (2.37) and the assertion follows as described.

Next, we turn our attention to the stability of this problem. For this, let v ∈
W (0, T ∗;V,H) satisfy

v(t) ∈ M,

⟨v′(t), w⟩+ a(v(t), w; t) = ⟨g(t), w⟩ for all w ∈ Tv(t)M∩V,
v(0) = v0.

(2.40)

for almost every t. We give bounds to pointwise distance ∥u(t)− v(t)∥H for a solution u
of Problem 2.1 under the condition, that u and v are in Lη(0, T ;V). This is well
defined since W (0, T ∗;V,H) is continuously embedded into C(0, T ∗;H); see e.g., [Zei90a,
Proposition 23.23]. Note that solutions obtained from the time-stepping scheme are in
L∞(0, T ;V) ⊂ Lη(0, T ;V). In the model problem of Section 2.1 and there is no further
restriction since η = 2 is fulfilled. In the case when M is a linear space, then the
difference u− v satisfies a similar equation to (2.25) and (2.40) with the right-hand side
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replaced with f − g, and we can evaluate at w = u(t) − v(t) to get classical stability
estimates for linear parabolic problems. We follow a similar idea but since u− v does
not satisfy an appropriate equation and u(t)− v(t) does not lie in the tangent space
Tu(t)M, we have to resort to Assumption A2. This results in a cruder estimate.

Theorem 2.6. Let u be a solution of Problem 2.1 and v be a solution to (2.40) in the
time interval [0, T ∗]. Assume that the continuous representatives u, v ∈ C(0, T ∗;H) have
values in a weakly compact subset M′ ⊂ M. Moreover, assume that u, v ∈ Lη(0, T ∗;V)
where η is from Assumption A4(b). Then

∥u(t)− v(t)∥2H ≤
(
∥u0 − v0∥2H +

1

c

∫ t

0
∥f(s)− g(s)∥2H ds

)
exp(Λ(t) + ct),

for any c > 0 and

Λ(t) := 2κ

∫ t

0
∥u′(s)∥H + ∥v′(s)∥H + γ

(
∥u(s)∥ηV + ∥v(s)∥ηV

)
+ ∥f(s)∥H + ∥g(s)∥H ds,

where κ = κ(M′) is from Assumption A4(b) and

0 ≤ Λ(t) ≤ 2κ
(
∥u′∥L1(0,T ∗;H) + ∥v′∥L1(0,T ∗;H) + γ

(
∥u∥ηLη(0,T ∗;V) + ∥v∥ηLη(0,T ∗;V)

)
+ ∥f(s)∥L1(0,T ∗;H) + ∥g(s)∥L1(0,T ∗;H)

)
< ∞

for all t ∈ [0, T ∗].

Proof. We use integration by parts in the sense of [Zei90a, Proposition 23.23(iv)]. This
results in

1

2

d

dt
∥u(t)−v(t)∥2H ≤ ⟨u′(t)−v′(t)+A(t)(u(t)−v(t))−f(t)+g(t)+f(t)−g(t), u(t)−v(t)⟩

for almost all t ∈ [0, T ∗] by coercivity of A(t) and adding and subtracting ⟨f(t) −
g(t), u(t) − v(t)⟩. We add and subtract (2.40) and (2.25) with w = Pv(t)(u(t) − v(t))
and w = Pu(t)(u(t)− v(t)), respectively. This results in

1

2

d

dt
∥u(t)− v(t)∥2H

≤ ⟨f(t)− g(t), u(t)− v(t)⟩+ ⟨u′(t) +A(t)u(t)− f(t), (id−Pu(t))(u(t)− v(t))⟩
− ⟨v′(t) +A(t)v(t)− g(t), (id−Pv(t))(u(t)− v(t))⟩.

We use Young’s inequality to estimate

⟨f(t)− g(t), u(t)− v(t)⟩ ≤ 1

2c
∥f(t)− g(t)∥2H +

c

2
∥u(t)− v(t)∥2H
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and Assumption A4 to get

1

2

d

dt
∥u(t)− v(t)∥2H

≤
(
∥u′(t)∥H + γ∥u(t)∥ηV + ∥f(t)∥H

)
∥(id−Pu(t))(u(t)− v(t))∥H

+
(
∥v′(t)∥H + γ∥v(t)∥ηV + ∥g(t)∥H

)
∥(id−Pv(t))(u(t)− v(t))∥H

+
1

2c
∥f(t)− g(t)∥2H +

c

2
∥u(t)− v(t)∥2H.

Finally, Assumption A2 implies

d

dt
∥u(t)− v(t)∥2H

≤
(
2κ
(
∥u′(t)∥H + ∥v′(t)∥H + γ

(
∥u(t)∥ηV + ∥u(t)∥ηV

)
+ ∥f(t)∥H + ∥g(t)∥H

)
+ c
)

· ∥u(t)− v(t)∥2H +
1

c
∥f(t)− g(t)∥2H

and the results follows from Grönwall’s lemma; see e.g. [Tes12, Lemma2.7]. Here, we
take into account that L2(0, T ∗;H) ⊂ L1(0, T ∗;H).

This stability estimate is meaningful since solutions coming from the time stepping
scheme satisfy the integrability assumptions and lie in a compact subset M′ ⊂ M for
small enough T ∗ due to (2.34).

Combining Theorem 2.5 with a continuation argument and invoking Theorem 2.6,
we obtain a unique solution on a maximal time interval.

Theorem 2.7. Let the assumptions stated in Section 2.2 hold and let u0 have positive H-
distance from Mw \M. There exists T ∗ ∈ (0, T ] and u ∈ W (0, T ∗;V,H)∩L∞(0, T ∗;V)
such that u solves Problem 2.1 on the time interval [0, T ∗], and its continuous represen-
tative u ∈ C(0, T ∗;H) satisfies u(t) ∈ M for all t ∈ [0, T ∗). Here, T ∗ is maximal for
the evolution on M in the sense that if T ∗ < T , then

lim inf
t→T ∗

inf
v∈Mw\M

∥u(t)− v∥H = 0.

In either case, u is the unique solution of Problem 2.1 in W (0, T ∗;V,H) ∩ Lη(0, T ∗;V).
The solution satisfies

∥u∥2L2(0,T ∗;V) ≤ ∥u0∥2H + C1∥f∥2L2(0,T ∗;H), (2.41)

∥u′∥2L2(0,T ∗;H) ≤ C2

(
∥u0∥2V + ∥f∥2L2(0,T ∗;H)

)
, (2.42)

∥u∥2L∞(0,T ∗;V) ≤ C3

(
∥u0∥2V + ∥f∥2L2(0,T ∗;H)

)
, (2.43)

where C1, C2, and C3 are the constants from Lemma 2.4.
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Proof. Let u, v be two solutions of Problem 2.1 in W (0, T ∗;V,H) ∩ Lη(0, T ∗;V) and
consider them as their continuous representatives in C(0, T ∗;H). Theorem 2.6 implies
u(t) = v(t) for every t in a compact subinterval of [0, T ∗). Since [0, T ∗) is the union
of its compact sub intervals, we have u(t) = v(t) for every t ∈ [0, T ∗). Hence, u is the
unique solution of Problem 2.1 in W (0, T ∗;V,H) ∩ Lη(0, T ∗;V).

Theorem 2.5 provides us with a solution u of Problem 2.1 on a time interval [0, T1]
with 0 < T1 ≤ T such that u ∈ L∞(0, T1;V) and either T1 = T or T1 < σ2

0/c where σ0
is the H-distance of u0 from Mw \M and c > 0 is the constant from Theorem 2.5(b).
In the latter case, we may assume without loss of generality that u ∈ C(0, T1;H) and
u(T1) ∈ M ∩ V. Let σ1 be the H-distance of u1 from Mw \M. If T1 < T , applying
again Theorem 2.5 on [T1, T ] with starting value u0 = u(T1), we obtain a continuation
of u to an interval [0, T2] with either T2 = T or T2 < T1 + σ2

1/c. In the latter case, we
can again assume u ∈ C(0, T2;H) and u(T2) ∈ V with corresponding distance σ2 > 0.
We thus inductively obtain sequences (Ti) of final times and (σi) of positive distances
which either terminate with Ti = T for some i, in which case we are done. Otherwise,
Ti is defined for all i and Ti → T ∗ ≤ T . Clearly, the constructed u ∈ C(0, T ∗;H) solves
(2.25) on [0, T ∗). If infi σi > 0, then Ti+1−Ti is bounded from below, which contradicts
Ti ≤ T ∗. Thus lim infi→∞ σi = 0 holds, which implies the assertion.

The estimates (2.41), (2.42), and (2.43) follow from the weak convergence of ûτ in
L2(0, T ∗;V) and û′τ in L2(0, T ∗;H) and the weak∗ convergence of ûτ in L∞(0, T ∗;V)
and weakly and weakly∗ sequentially lower semicontinuity of the respective norms.

With this result, the sequence (ûτ ) converges in the given time interval without
passing to a subsequence. Every converging subsequence has the unique solution as
its limit and since every subsequence has a converging subsequence, (ûτ ) converges to
the unique solution u ∈ W (0, T ∗;V,H) ∩ Lη(0, T ∗;V) by a subsequence of subsequence
argument.

2.5 Convergence of spatial discretizations

Our result is only useful for numerical analysis if the unique solution in Theorem 2.7
is also the limit of space-discrete solutions. We provide a convergence result under
compatibility assumptions on the discrete spaces Vh ⊂ V with M. The space-discrete
problem is of the following form.

Problem 2.8. Given f ∈ L2(0, T ;H) and u0,h ∈ M∩Vh, find uh ∈ W (0, T ;V,H) such
that for almost all t ∈ [0, T ],

uh(t) ∈ M∩ Vh,

⟨u′h(t), vh⟩+ a(uh(t), vh; t) = ⟨f(t), vh⟩ for all vh ∈ Tuh(t)M∩Vh,

uh(0) = uh,0.

(2.44)
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We require that the discrete subspaces Vh ⊂ V have the following properties.

B1 (Approximation property) There is a projection Qh : V → Vh, such that

∥Qhv∥V ≤ c∥v∥V

for every h > 0 and v ∈ V and the sequence (Qhv) converges to v in V as h ↘ 0.
For every u ∈ M ∩ V there exists a sequence (uh) with uh ∈ M ∩ Vh and uh
converges to u in V as h ↘ 0.

B2 (Compatibility of tangent spaces)

(a) For uh ∈ M∩ Vh and vh ∈ TuM∩Vh an admissible curve with φ(0) = uh,
φ′(0) = vh can be chosen such that

φ(t) ∈ M∩ Vh

for all |t| small enough.

(b) If uh ∈ M∩Vh and vh ∈ Vh are fulfilled, it follows that Puh
vh ∈ Tuh

M∩Vh.

The model problem described in Section 2.1 allows for such a space discretization.
One instance is obtained from homogeneous bilinear quadrilateral elements. These can
be interpreted as the tensor product Ph ⊗ Ph ⊂ H1

0 (Ω) of the space of piecewise affine
linear functions

Ph := {u ∈ C0(0, 1) : u is affine linear on the interval ((i− 1)h, ih) for i = 1, . . . , N},

where h = 1/N and N ∈ N. The set Mr ∩ Ph ⊗ Ph is nonempty when N > r and
Property B2 is satisfied for M = Mr and Vh = Ph ⊗ Ph. This can be seen by
uh ∈ Mr ∩ Ph ⊗ Ph representing as

uh =

r∑
i=1

u1,i ⊗ u2,i

with u1,i, u2,i ∈ Ph. Then the interestion

Tuh
Mr ∩ Ph ⊗ Ph =

{
r∑

i=1

u1,i ⊗ v2,i + v1,i ⊗ u2,i : v1,i, v2,i ∈ Ph

}
,

is the tangent space of the rank-r manifold in Ph ⊗ Ph.
For every u ∈ H1

0 (0, 1) the sequence (uh) with uh ∈ Ph and uh(ih) = u(ih) for
i = 0, . . . , N converges strongly to u as h ↘ 0. It follows that for u ∈ H1,1

mix(Ω) the
interpolation uh ∈ Ph ⊗ Ph with uh(ih, jh) = u(ih, jh) for i, j = 0, . . . , N converges
strongly to u in H1,1

mix(Ω). Since H1,1
mix(Ω) is a dense subset and continuously embedded
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in H1
0 (Ω), there is also a sequence (uh) with uh ∈ Ph ⊗ Ph converging to u in H1

0 (Ω).
Hence, the H1

0 (Ω)-orthogonal projection Qh : H
1
0 (Ω) → Ph ⊗ Ph satisfies the first part

of Property B1. Since u ∈ Mr ∩H1
0 (Ω) is also also in H1,1

mix(Ω), we may also use the
interpolation uh(ih, jh) = u(ih, jh) and rankuh ≤ r. If rankuh < r, we may add a
small perturbation ϵh ∈ Ph ⊗ Ph such rank(uh + ϵh) = r and ∥ϵh∥H1

0 (Ω) → 0 as h ↘ 0.
Therefore, the model problem also satisfies Property B1.

Theorem 2.9. Let (u0,h) ⊂ M∩ Vh be a sequence that converges to u0 in V as h ↘ 0
and let u0 have positive H-distance σ to the relative boundary Mw \M. Then there
exists a constant c > 0 independent of σ and a constant h0 > 0 such that there is a
unique uh in W (0, T ∗;V,H) ∩ Lη(0, T ∗;V) that solves Problem 2.8 on the time interval
[0, T ∗] when T ∗ < σ2/c for all h ≤ h0. Furthermore, uh converges to the unique solution
u of Problem 2.1 in W (0, T ∗;V,H) ∩ Lη(0, T ∗;V) weakly in L2(0, T ∗;V) and strongly
in C(0, T ∗;H), while the weak derivatives u′h converge weakly to u′ in L2(0, T ∗,H).

Proof. Since u0,h converges to u0 in V , there exists an h0 > 0 such that ∥u0,h − u0∥V ≤
σ/2 and ∥u0,h − u0∥H ≤ σ/2 for all h ≤ h0 due to (2.22). Therefore, the H-distance of
u0,h from Mw \M is at least σ/2. Hence, applying Theorem 2.5 with Vh in place of V
provides solutions uh to Problem 2.8 on a time interval [0, T ∗] with T ∗ < σ2/(4c) for
every h ≤ h0. Furthermore, Theorem 2.7 provides the estimates

∥uh∥2L2(0,T ∗;V) ≤
(
∥u0∥H +

σ

2

)2
+ C1∥f∥2L2(0,T ∗;H),

∥u′h∥2L2(0,T ∗;H) ≤ C2

((
∥u0∥V +

σ

2

)2
+ ∥f∥2L2(0,T ∗;H)

)
,

∥uh∥2L∞(0,T ∗;V) ≤ C3

((
∥u0∥V +

σ

2

)2
+ ∥f∥2L2(0,T ∗;H)

)
and hence, there exists a subsequence of (uh) converging weakly to ũ in L2(0, T ∗;V) and
weakly∗ in L∞(0, T ∗;V) and the derivatives (u′h) converging weakly to w̃ in L2(0, T ∗;H).

We next show that w̃ is the weak derivative of ũ. For this, we need to verify that∫ T ∗

0
⟨w̃(t), v)⟩ϕ(t) + ⟨ũ(t), v⟩ϕ′(t) dt = 0

for arbitrary v ∈ V and ϕ ∈ C∞
0 (0, T ∗). For any vh ∈ Vh we may add and subtract the

weak derivative of uh∫
T ∗

⟨w̃(t), vh⟩ϕ(t) + ⟨ũ(t), vh⟩ϕ′(t) dt

=

∫
T ∗

⟨w̃(t)− u′h(t), vh⟩ϕ(t) + ⟨ũ(t)− uh(t), vh⟩ϕ′(t) dt.
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Now let (vh) be a sequence converging to v in V. Then it follows that∫
T ∗

⟨w̃(t), v⟩ϕ(t) + ⟨ũ(t), v⟩ϕ′(t) dt = lim
h↘0

∫
T ∗

⟨w̃(t), vh⟩ϕ(t) + ⟨ũ(t), vh⟩ϕ′(t) dt

= lim
h↘0

∫
T ∗

⟨w̃(t)− u′h(t), vh⟩ϕ(t) + ⟨ũ(t)− uh(t), vh⟩ϕ′(t) dt = 0

since vhϕ converges strongly to vϕ in L2(0, T ∗;V). Therefore, the sequence (uh) converges
weakly in W (0, T ∗;V,H) and due to the Aubin-Lions theorem strongly in C(0, T ∗;H)
to ũ, taking into account that the sequence (uh) is bounded in L∞(0, T ∗;V). This also
implies that the initial condition ũ(0) = limh↘0 uh(0) = limh↘0 u0,h = u0.

It remains to show that ũ satisfies (2.25) and is therefore the unique solution of
Problem 2.1 in W (0, T ∗;V,H) ∩ Lη(0, T ∗;V). It then follows that the entire sequence
converges to ũ. For v ∈ Tũ(t)M∩V , we consider (vh) = (Qhv) which converges strongly
to v in V. Property B1 implies that the sequence is uniformly bounded in V and due
to (2.22) also in H. By (2.44), we have

⟨u′h(t), Puh(t)vh⟩+ a(uh(t), Puh(t)vh; t) = ⟨f(t), Puh(t)vh⟩

for almost every t since Puh(t)vh ∈ M ∩ Vh by Property B2(b). We have chosen the
time interval in a way such that uh(t) ∈ M′ ⊂ M lie in a weakly compact subset for all
t ∈ [0, T ∗]. Hence, using Assumption A2,

∥v − Puh(t)vh∥H ≤ ∥v − Puh(t)v∥H + ∥Puh(t)(v − vh)∥H
≤ κ(M′)∥ũ(t)− uh(t)∥H∥v∥H + ∥v − vh∥H,

(2.45)

i.e., Puh(t)vh converges strongly to v inH. Using a similar argument as in Theorem 2.5(b),
it is sufficient to show∫ T ∗

0
⟨ũ′(t), v(t)⟩+ a(ũ(t), v(t); t)− ⟨f(t), v(t)⟩ dt = 0

for all v ∈ L∞(0, T ∗;V) with v(t) ∈ Tũ(t)M∩V for almost every t.
Since Puh(t)Qhv(t) converges to v(t) in H for almost all t ∈ [0, T ∗] and we have the

square integrable bound (2.45), it follows that Puh(t)Qhv(t) converges strongly to v in
L2(0, T ∗;H). This together with weak convergence of (u′h) in L2(0, T ∗;H) implies

lim
h↘0

∫ T ∗

0
⟨u′h(t), Puh(t)Qhv(t)⟩−⟨f(t), Puh(t)Qhv(t)⟩ dt =

∫ T ∗

0
⟨ũ′(t), v(t)⟩−⟨f(t), v(t)⟩ dt.

Finally, we use Assumption A4. We have

a(uh(t), Puh(t)Qhv(t); t)− a(ũ(t), v(t); t)

= ⟨A1(t)uh(t), Puh(t)Qhv(t)⟩ − ⟨A1(t)ũ(t), v(t)⟩
+ ⟨A2(t)uh(t), Puh(t)Qhv(t)⟩ − ⟨A2(t)ũ(t), v(t)⟩
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and due to Assumption A4(a)

⟨A1(t)uh(t), Puh(t)Qhv(t)⟩ = ⟨A1(t)uh(t), Qhv(t)⟩.

This implies

lim
h↘0

∫ T ∗

0
⟨A1(t)uh(t), Puh(t)Qhv(t)⟩ − ⟨A1(t)u(t), v(t)⟩ dt = 0

as uh converges weakly to ũ and Qhv converges strongly to v in L2(0, T ∗;V). For the
second summand, we have

⟨A2(t)uh(t), Puh(t)Qhv(t)⟩ − ⟨A2(t)ũ(t), v(t)⟩
= ⟨A2(t)uh(t), Puh(t)Qhv(t)− v(t)⟩+ ⟨A2(t)(ũ(t)− uh(t)), v(t)⟩,

where ∣∣⟨A2(t)uh(t), Puh(t)Qhv(t)− v(t)⟩
∣∣ ≤ γ∥uh(t)∥ηV∥Puh(t)Qhv(t)− v(t)∥H

and
∫ T ∗

0 ∥uh(t)∥ηV∥Puh(t)Qhv(t) − v(t)∥H dt → 0 by (2.45) and the uniform bound of
uh in L∞(0, T ∗;V). Moreover, since uh converges weakly to ũ in L2(0, T ∗;V), we have∫ T ∗

0 ⟨A2(t)(ũ(t)− uh(t)), v(t)⟩ dt → 0 as h ↘ 0. Combining these results, we have∫ T ∗

0
a(uh(t), Puh(t)Qhv(t); t)− a(ũ(t), v(t); t) dt → 0 as h ↘ 0

and hence∫ T ∗

0
⟨ũ′(t), v(t)⟩+ a(ũ(t), v(t); t)− ⟨f(t), v(t)⟩ dt

= lim
h↘0

∫ T ∗

0
⟨u′h(t), Puh(t)Qhv(t)⟩+a(uh(t), Puh(t)Qhv(t); t)−⟨f(t), Puh(t)Qhv(t)⟩ dt = 0

for all v ∈ L∞(0, T ∗;V) with v(t) ∈ Tũ(t)M∩V for almost every t.

2.6 Outlook

We have established results for the existence and uniqueness of dynamical low-rank
approximations to solutions of certain parabolic problems. Furthermore, we showed con-
vergence of either time-discrete or space-discrete solutions to the underlying continuous
approximation. We expect that our results are also applicable for higher-dimensional
parabolic problems for suitable low-rank tensor formats [KL10, LOV15, LRSV13]. Nat-
urally, it is of interest under which conditions dynamical low-rank approximations are
good approximations to the underlying unrestrained problem and how to establish
convergence rates for discrete low-rank approximations.
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Chapter 3

Solving definite multiparameter
eigenvalue problems

In this chapter, we are concerned with the multiparameter eigenvalue problem (MEP).
For this, let Akℓ ∈ Cnk×nk be square matrices. We look for unit vectors uk ∈ Uk ⊂ Cnk

and (λ1, . . . , λm) ∈ Cm such that(
A10 + λ1A11 + . . .+ λmA1m

)
u1 =0(

A20 + λ1A21 + . . .+ λmA2m

)
u2 =0

...
...

...
...

...(
Am0 + λ1Am1 + . . .+ λmAmm

)
um =0

(3.1)

or for (λ0, . . . , λm) ̸= 0 in the homogeneous version(
λ0A10 + λ1A11 + . . .+ λmA1m

)
u1 = 0(

λ0A20 + λ1A21 + . . .+ λmA2m

)
u2 = 0

...
...

...
...

...(
λ0Am0 + λ1Am1 + . . .+ λmAmm

)
um =0,

(3.2)

We call u1⊗ . . .⊗um an eigenvector corresponding to the eigenvalue λ = (λ1, . . . , λm) in
case of (3.1) and the eigenvalue λ = (λ0, . . . , λm) in case of (3.2). The MEP generalizes
linear systems of equations and generalized eigenvalue problems. In the case m = 1,
the MEP is a generalized eigenvalue problem, and if nk = 1 for k = 1, . . . ,m, then the
MEP reduces to a linear system of equations.

The solutions to the MEP can be obtained using multilinear algebra techniques; see
e.g., [Atk72, Theorem 6.8.1]. The idea is to apply a multilinear version of Cramer’s rule
for linear systems. For uk, vk ∈ Cnk and k = 1, . . . ,m, define the matrix

W̃ (v1, . . . , vm, u1, . . . , um) = [w̃kℓ(uk, vk)]
m,m
k=1,ℓ=0 =

[
vHk Akℓuk

]m,m

k=1,ℓ=0
.

If u1 ⊗ . . .⊗ um is an eigenvector corresponding to λ = (λ0, . . . , λm), then

W̃ (v1, . . . , vm, u1, . . . , um)λ = 0
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for all vk ∈ Cnk . Now assume there is µ = (µ0, . . . , µm) such that for all uk ∈ Uk
µ0 µ1 . . . µm

w̃10(u1, v1) w̃11(u1, v1) . . . w̃1m(u1, v1)
...

...
...

w̃m0(um, vm) w̃m1(um, vm) . . . w̃mm(um, vm)

 =

(
µT

W̃ (v1, . . . , vm, u1, . . . , um)

)

is invertible for some vk ∈ Cnk . Let u1 ⊗ . . .⊗ um be an eigenvector corresponding to
λ = (λ0, . . . , λm). It follows from Cramer’s rule that

λm det

(
µ

W̃ (v1, . . . , vm, u1, . . . , um)

)

= det


µ0 . . . µm−1 µTλ

w̃10(u1, v1) . . . w̃1,m−1(u1, v1) 0
...

...
...

w̃m0(um, vm) . . . w̃m,m−1(um, vm) 0

 .

Note that the determinants above are linear in each uk and antilinear in each vk. We
can therefore define linear operators ∆,∆m :

⊗m
k=1C

nk →
⊗m

k=1C
nk that satisfy

(v1 ⊗ . . .⊗ vm)H∆(u1 ⊗ . . .⊗ um) = det

(
µT

W̃ (v1, . . . , vm, u1, . . . , um)

)
(3.3)

and

(v1⊗. . .⊗vm)H∆m(u1⊗. . .⊗um) = (−1)m det

 w̃10(u1, v1) . . . w̃1,m−1(u1, v1)
...

...
w̃m0(um, vm) . . . w̃m,m−1(um, vm)

 .

Hence, the eigenpair (λ, u1 ⊗ . . .⊗ um) satisfies

µTλ ∆m(u1 ⊗ . . .⊗ um) = λm∆(u1 ⊗ . . .⊗ um)

and we can define similar linear operators ∆0, . . . ,∆m−1 that satisfy

µTλ ∆ℓ(u1 ⊗ . . .⊗ um) = λℓ∆(u1 ⊗ . . .⊗ um). (3.4)

Hence, all eigenpairs of the MEP can be obtained as the solutions to the simultaneous
eigenvalue problems (3.4). In [Atk72, Chapter 6] the converse is also shown. In addition,
the linear operators ∆−1∆ℓ commute, and their eigenvectors consist of decomposible
tensors u1 ⊗ . . .⊗ um.

Multiparameter eigenvalue problems have been extensively studied; see e.g., [Atk72,
Vol88]. They naturally arise in mathematical physics when variables can be separated
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but resulting spectral parameters cannot. We will discuss this case more thoroughly in
Section 3.2. There are many other applications that lead to (3.1) or (3.2) including delay
differential equations [JH09] and optimization problems [SNTI16]. They can also appear
when the domain of a boundary eigenvalue problem is decomposed [RJ21, Section 5.2].
We also want to remark that some nonlinear eigenvalue problems can be expressed
by (3.1) as described in [RJ21]. For example, the polynomial eigenvalue problem

M(λ)u =

m∑
k=0

λkAku = 0

can be expressed as (3.1) by setting λk = λk and adding equations

(Ak0 + λ1Ak1 + λk−1Ak,k−1 + λkAk,k)uk = 0

such that det(Ak0 + λ1Ak1 + λk−1Ak,k−1 + λkAk,k) = λk − λ1λk−1. This however leads
to a singular MEP if m > 2, i.e., there is no µ such that ∆ in (3.4) is nonsingular. The
more simple polynomial eigenvalue problem

M(λ)u = (A+ λB + λkC)u

can be transformed into a nonsingular two-parameter eigenvalue problem whose linear
eigenvalue problem (3.4) can take various forms, one being the linearization described
in [MW02]. Similarly, the MEP contains many nonlinear eigenvalue problems with
algebraic relations of the spectral parameters λ0, . . . , λm.

There are various approaches to solve (3.1), many of which use the linear eigenvalue
problem (3.4). For the case that all matrices are Hermitian and ∆0 is positive definite,
this was first considered in [ST86], and for the more general case, that ∆0 is invertible
in [HKP05] by using the generalized Schur decomposition. These approaches work well
when

∏m
k=1 nk is not too large, as they have a complexity of order O(

∏m
k=1 n

3
k). This

is only feasible for small nk and m, as otherwise
∏m

k=1 nk is getting too large. For
m = 2 and larger nk, subspace methods are being used to find a selection of eigenvalues.
In [HP02] and [HKP05] a Jacobi-Davidson type method for the two-parameter case
was proposed and in [MP15] an Arnoldi type method was considered. For m = 3
various subspace methods were proposed in [HMMP19]. Another possibility is based on
homotopy continuation, for example discussed in [Ple00] and [DYY16]. These aim to
find all eigenvalues.

In this chapter, we extend results from [EN22]. In [EN22], we were considering the
two-parameter eigenvalue problem under the assumption that all matrices are Hermitian
and ∆0 is positive definite. We used the notion of the signed index of an eigenvalue and
employed an alternating algorithm that has a geometric interpretation closely related to
Newton’s method and also an optimization perspective. We will thoroughly discuss the
signed index of an eigenvalue in Section 3.1. In this chapter, we use similar ideas for
the MEP (3.1) and its homogeneous form (3.2) under certain definiteness assumptions.
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These are satisfied for a class of boundary eigenvalue problems which we introduce in
Section 3.2. We introduce Newton-type methods in Section 3.3 and discuss a perspective
coming from optimization problems in Section 3.4. These methods also apply to MEPs
with large nk and m when only a few eigenvalues of certain multiindex are sought; the
complexity per eigenvalue is in O(

∑m
k=1 n

3
k). Finally, in Section 3.5 we explore the

performance of these methods in numerical experiments.
Using Newton’s method for MEPs is not a new idea and was proposed previously,

e.g. in [Pod08] by looking for joint zeros of fk(λ) = det(
∑m

ℓ=0 λℓAkℓ) and k = 1, . . . ,m.
However, for general MEPs, this is sensitive to initialization and a good starting guess is
required. We circumvent this problem by applying Newton’s method to functions that
have unique zeros. Our proposed methods are related to methods solving multiparameter
Sturm-Liouville eigenvalue problems by looking for eigenfunctions with a certain amount
of internal zeros; see e.g., [Lev94, Lev99]. The concept of internal zeros of eigenfunctions
of Sturm-Liouville eigenvalue problems is a special case of the multiindex of an eigenvalue
which will be explained in the upcoming two sections.

3.1 Definite multiparameter eigenvalue problems

In this section, we aim to discuss a generalization of the well-known fact from linear
algebra that any Hermitian matrix A = AH has only real eigenvalues. For this purpose,
we collect some results from [Vol88, Chapter 1]. From now on, we will always assume that
all matrices Akℓ in (3.1) and (3.2) are Hermitian. Now assume that λ = (λ0, . . . , λm) is
real. Then

m∑
ℓ=0

λℓAkℓ for k = 1, . . . ,m

are Hermitian matrices and all their respective eigenvalues are real. This observation
leads to the following definition.

Definition 3.1. Let λ ∈ Rm+1 be an eigenvalue of (3.2). The multiindex of λ is the
m-tuple i = (i1, . . . , im) such that 0 is the ik-th largest eigenvalue of

∑m
ℓ=0 λℓAkℓ.

In the case m = 1, a simple condition that eigenvalues can be chosen real, is that
there is a positive definite matrix µ0A10 + µ1A11 for some real (µ0, µ1) ̸= 0. For MEPs,
we consider the matrix

W (u1, . . . , um) =

 uH1A10u1 . . . uH1A1mu1
...

...
uHmAm0um . . . uHmAmmum

 . (3.5)

Definition 3.2. The MEP (3.2) is called locally definite if rankW (u1, . . . , um) = m
for all uk ∈ Uk, k = 1, . . . ,m.
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Now let u1 ⊗ . . .⊗ um be an eigenvector corresponding to the eigenvalue λ. Then
λ is in the nullspace of W (u1, . . . , um). If the MEP is locally definite, this nullspace
is one-dimensional. Since W (u1, . . . , um) is real, the eigenvalue can thus be chosen
real as well. By scaling, we may restrict the search for eigenvalues to the sphere
Sm = {λ ∈ Rm+1 : ∥λ∥ = 1}. By the above consideration, we may further restrict to the
set

P = {λ ∈ Sm : W (u)λ = 0 for some u ∈ U1 × . . .× Um}. (3.6)

This set obviously has the symmetry P = −P. In fact, it is the disjoint union of two
connected sets P+ and P− = −P+; see e.g., [Vol88, Lemma1.2.1]. Here, P+ is the set

P+ =

{
λ ∈ Sm : W (u)λ = 0 and det

(
λT

W (u)

)
> 0 for some u ∈ U1 × . . .× Um

}
.

With this machinery, we can characterize all eigenvalues of a locally definite
MEP (3.2).

Theorem 3.3. [Vol88, Theorem1.4.1] Let the MEP (3.2) be locally definite. Then for
every multiindex i ∈ {1, . . . , n1} × . . .× {1, . . . , nm} and every sign σ ∈ {+,−} there is
a unique eigenvalue λ ∈ Pσ of multiindex i. We say λ is of signed index (i, σ).

It is also useful to consider stronger definiteness assumptions, which in practice are
often satisfied.

Definition 3.4. The MEP (3.2) is called definite with respect to µ ∈ Sm if

det

(
µT

W (u1, . . . , um)

)
> 0

for all uk ∈ Uk, k = 1, . . . ,m.

This definition is equivalent to the condition that P in (3.6) is the disjoint union of
the connected sets

P+ = {λ ∈ P : µTλ > 0}

and P− = −P+. It also follows that the linear operator ∆ defined in (3.3) is positive
definite; see e.g., [Vol88, Theorem4.4.1]. For the inhomogeneous MEP (3.1) definiteness
with respect to µ = (1, 0, . . . , 0) is naturally a good condition. In this case, Theorem 3.3
implies, that every eigenvalue of signed index (i,+) can be scaled to λ = (1, λ1, . . . , λm).
If the MEP is definite with respect to (1, 0, . . . , 0), it is called right definite. When we
consider a right definite MEP of the form (3.1), we denote

Q =

{
λ ∈ Rm : W (u)

(
1
λ

)
= 0 for some u ∈ U1 × . . .× Um

}
as an analog of P. The sets Pσ and Q can be seen as analogies to the numerical range
of a linear operator.
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Another commonly used assumption is left definiteness. The MEP is left definite
with respect to µ = (0, µ1, . . . , µm) if the matrices Ak0 are negative definite and

det



uH1A11u1 . . . uHmA1mum
...

...
uHk−1Ak−1,1uk−1 . . . uHk−1Ak−1,muk−1

µ1 . . . µm

uHk+1Ak+1,1uk+1 . . . uHk+1Ak+1,muk+1
...

...
uHmAm1um . . . uHmAmmum


> 0 (3.7)

for k = 1, . . . ,m. Left definiteness implies definiteness with respect to µ.
Many problems coming from application are either right or left definite or both. To

end this section, we want to state a useful equivalent condition for local definiteness.

Lemma 3.5. [Vol88, Theorem1.4.3] The MEP (3.2) is locally definite if and only if
for every σ = (σ1, . . . , σm) ∈ {−1, 1}m there is α = (α0, . . . , αm) ∈ Rm+1 such that∑m

ℓ=0 σku
H
kAkℓukαℓ > 0 for all uk ∈ Uk, k = 1, . . . ,m.

This condition states that local definiteness is equivalent to existence of parameters
α = (α0, . . . , αm) for every sign σk ∈ {−1, 1} such that σk

∑m
ℓ=0 αℓAkℓ is positive definite

for k = 1, . . . ,m. With this lemma, it is not difficult to see that local definiteness and
definiteness are equivalent for m = 2. If the MEP is definite with respect to µ, it follows
directly that it is local definite as well. For the converse direction, choose α = (α0, α1, α2)
and β = (β0, β1, β2) such that

∑2
ℓ=0 αℓAkℓ and (−1)k

∑2
ℓ=0 βℓAkℓ are positive definite

for k = 1, 2. Next, choose µ orthogonal to α and β such that det
(
µ α β

)
> 0. Then

det

(
µT

W (u1, u2)

)
det
(
µ α β

)
= det

 µTµ 0 0∑2
ℓ=0 µℓu

H
1A1ℓu1

∑2
ℓ=0 αℓu

H
1A1ℓu1

∑2
ℓ=0 βℓu

H
1A1ℓu1∑2

ℓ=0 µℓu
H
2A2ℓu2

∑2
ℓ=0 αℓu

H
2A2ℓu2

∑2
ℓ=0 βℓu

H
2A2ℓu2

 > 0,

i.e., the MEP is definite with respect to µ. For m ≥ 3 local definiteness no longer implies
definiteness. A counter example is given in [Vol88, Chapter 1.5] and in Section 3.5.4.

3.2 Multiparameter Sturm-Liouville problems

As a motivation, consider the Helmholtz equation with Dirichlet boundary conditions

∆u(x) + λu(x) = 0 for x ∈ Ω

u(x) = 0 for x ∈ ∂Ω
(3.8)
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on a domain Ω. If the domain is the hyperrectangle Ω = (a1, b1)× . . .× (am, bm), then
the solutions of (3.8) can be easily obtained by separating the variables and solving the
one-dimensional boundary value problems

u′′k(xk) + λk uk(xk) = 0 for xk ∈ (ak, bk) and uk(ak) = 0 = uk(bk),

which are readily solved. The solutions of (3.8) are given by u(x1, . . . , xm) =
∏m

k=1 uk(xk)
and λ =

∑m
k=1 λk. If the domain is the disc Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, we can

apply a more involved separation. Using polar coordinates, one obtains the solution via

Φ′′(φ) − ν Φ(φ) = 0 for φ ∈ (0, 2π),
(rR′(r))′ + λ rR(r) + ν 1

rR(r) = 0 for r ∈ (0, 1)

with suitable boundary conditions. These boundary value problems can still be solved
one after another and the solutions of (3.8) are again the products of solutions RΦ and
with the eigenvalue λ.

For our purpose, the situation is more interesting if the domain is the ellipse
Ω = {(x, y) ∈ R2 : x2/a2 + y2/b2 < 1} with b > a > 0. In the elliptical coordinates

x = c cosh(ρ) cos(φ), y = c sinh(ρ) sin(φ),

the equation separates into

P ′′(ρ) + λ c2

2 cosh(2ρ)P (ρ) − ν P (ρ) = 0 for ρ ∈ (0, r),

Φ′′(φ) − λ c2

2 cos(2φ) Φ(φ) + ν Φ(φ) = 0 for φ ∈ (0, 2π),

again with suitable boundary conditions. Here, c describes the focal points of the ellipse
and c2 cosh2 r = a2. The resulting equations are Mathieu’s modified differential equation
and Mathieu’s differential equation, and the spectral parameters cannot be separated.

In higher dimensions, if B = Diag(1/(bm+1 − b1), . . . , 1/(bm+1 − bm)) is a diagonal
matrix with m different positive eigenvalues 0 < bm+1 − bm < . . . < bm+1 − b1 and the
domain is the ellipsoid Ω = {x ∈ Rm : xTBx < 1}, we can separate using the ellipsoidal
coordinates ξ1, . . . , ξm defined by

m∑
ℓ=1

x2ℓ
ξk − bℓ

= 1 for ξk ∈ (bk, bk+1).

We obtain the m coupled differential equations

(p(ξk)u
′
k(ξk))

′ +
(−1)m−k

4p(ξk)

( m∑
ℓ=1

λℓ ξ
ℓ−1
k

)
uk(ξk) = 0 for ξk ∈ (bk, bk+1) (3.9)

with p(ξ) =
√∏m

ℓ=1 |bℓ − ξ| and appropriate boundary conditions; see e.g., [Vol88,
Chapter 6.9], [SW79, Section 1.2], or [MS54, Chapter 1.13].
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All of these problems are coupled Sturm-Liouville eigenvalue problems. They are of
the general form

(pk(xk)u
′
k(xk))

′ + qk(xk)uk(xk) +

( m∑
ℓ=1

λℓ akℓ(xk)

)
uk(xk) = 0 for xk ∈ (ak, bk)

(3.10)
and boundary conditions. Usual assumptions are pk(xk) > 0 for xk ∈ [ak, bk] and
pk is continuously differentiable. This is not the case for (3.9) but oftentimes the
positivity assumption can be weakened; see e.g., [Tes12, Chapter 5.3]. Similar to the
finite dimensional problem (3.1), real eigenvalues λ = (λ1, . . . , λm) have an index since
the occurring operators are self-adjoint with respect to the inner product on L2(ak, bk)
and are bounded from above. There are according existence results for eigenvalues
of signed index; see e.g., [Vol88, Theorem2.5.3 and Theorem2.7.1]. Notably, if the
eigenvalue problem is right definite, then there is an eigenvalue with signed index (i,+).
Right and left definiteness of (3.10) can be checked pointwise. It is right definite if

det

 a11(x1) . . . a1m(x1)
...

...
am1(xm) . . . amm(xm)

 > 0

on a dense subset of [a1, b1]× . . .× [am, bm] and the analog of (3.7) for left definiteness
is satisfied if

det



a11(x1) . . . a1m(x1)
...

...
ak−1,1(xk−1) . . . ak−1,m(xk−1)

µ1 . . . µm

ak+1,1(xk+1) . . . ak+1,m(xk+1)
...

...
am1(xm) . . . amm(xm)


> 0

on a dense subset of [a1, b1]× . . .× [am, bm]; see e.g., [Vol88, Theorem3.6.2].
The multiindex of an eigenvalue also has an interpretation as the internal zeros of the

corresponding eigenfunctions uk of (3.10). An eigenfunction u of the Sturm-Liouville
eigenvalue problem

(p(x)u′(x))′ + q(x)u(x) = λu(x) for x ∈ (a, b)

has n internal zeros if λ is the n+1-th largest eigenvalue under the boundary conditions

cos(α)u(a) + sin(α)u′(a) = 0 and cos(β)u(b) + sin(β)u′(b) = 0,

or 2n internal zeros if λ is the 2n-th or 2n+1-th largest eigenvalue under periodic
boundary conditions, and 2n − 1 internal zeros if λ is the 2n−1-th or 2n-th largest
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eigenvalue under antiperiodic boundary conditions; see e.g, [Tes12, Theorem5.17 and
Theorem5.37] and [CL55, Chapter 8, Theorem2.1 and Theorem3.1]. The analog is
true for the multiindex of an eigenvalue in the case of (3.10). If λ = (λ1, . . . , λm) has
multiindex i = (i1, . . . , im), then uk has ik − 1 or ik internal zeros, depending on the
boundary conditions; see e.g., [Vol88, Theorem3.5.1].

The methods we construct in Section 3.3 compute eigenvalues based on its index.
When the problem comes from a discretization of a multiparameter Sturm-Liouville
eigenvalue problem (3.10), this has the additional interpretation of finding an eigenvalue
whose eigenfunctions have the corresponding number of interior zeros.

3.3 Newton-type methods

For each multiindex i ∈ {1, . . . , n1} × . . .× {1, . . . , nm}, we define the function

Fi : Rm → Rm, λ = (λ1, . . . , λm) 7→ Fi(λ) = (ε1,i1(λ), . . . , εm,im(λ)), (3.11)

where εk,ik(λ) is the ik-th largest eigenvalue of the matrix
∑m

ℓ=0 λℓAkℓ with λ0 = 1.
This is zero if and only if λ is an eigenvalue of the MEP (3.1) with the corresponding
multiindex. Similarly, we define

F̃i : Sm → Rm, λ = (λ0, . . . , λm) 7→ F̃i(λ) = (ε1,i1(λ), . . . , εm,im(λ)) (3.12)

for the homogeneous MEP (3.2). If the MEP is locally definite, it follows from Theo-
rem 3.3 that F̃i has exactly two zeros for every multiindex, one of positive sign and one
of negative sign. If the MEP is right definite, then Fi has a unique zero.

Next, we employ Newton’s method for the functions Fi. For this, we require the
derivative of Fi. It follows from [Kat76, Chapter 2, Theorem5.15, Theorem5.16, and
Theorem6.1] that εk,ik(λ) is analytic in λ if the eigenvalue εk,ik(λ) of

∑m
ℓ=0 λℓAkℓ is

simple. Otherwise, εk,ik(λ) still admits a generalized gradient in the sense of [Cla75,
Definition 1.1]. If εk,ik(λ) is a simple eigenvector with corresponding eigenvalue uk in
the unit sphere Uk, then a simple calculation shows

ε′k,ik(λ)∆λ =
k∑

ℓ=1

uHk∆λℓAkℓuk. (3.13)

If εk,ik(λ) is no simple eigenvalue, the generalized gradient ∂εk,ik(λ) consists of the
convex hull of the linear maps given by the one-sided directional derivatives

{Juk
: Juk

∆λ =

k∑
ℓ=1

uHk∆λℓAkℓuk and uk is an eigenvector corresponding to εk,ik(λ)}.
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This can be seen by applying the characterization for generalized gradients of max-
functions in [Cla75, Theorem2.1] two times to

εk,ik(λ) = max
U∈Cnk×ik

UHU=idik

min
x∈Cik

∥x∥=1

k∑
ℓ=1

xHUHλℓAkℓUx.

This characterization of eigenvalues is known as the minimax principle for Hermitian
matrices; see e.g., [Bha97, Chapter III]. The functions εk,ik are even strongly semis-
mooth [SS02], i.e.,

sup
J∈∂εk,ik (λ+∆λ)

∥εk,ik(λ+∆λ)− εk,ik(λ) + J∆λ∥ ∈ O(∥∆λ∥2). (3.14)

If a function from Rn into Rn is semismooth, a semismooth Newton method can be
applied. If the function is strongly semismooth, then local quadratic convergence is
retained; see e.g., [IS14, Chapter 2] for an overview.

It follows that, whenever all eigenvalues εk,ik(λ) for k = 1, . . . ,m are simple, Fi(λ)
is analytic in λ and its derivative is given by

F ′
i (λ) =

 uH1A11u1 . . . uH1A1mu1
...

...
uHmAm1um . . . uHmAmmum

 , (3.15)

where uk ∈ Uk are the eigenvectors of
∑m

ℓ=0 λℓAkℓ corresponding to the eigenvalue
εk,ik(λ). If the MEP is right definite, then F ′(λ) is invertible. Similarly, Clarke’s
generalized Jacobian ∂Fi(λ) is given by the convex hull of
 uH1A11u1 . . . uH1A1mu1

...
...

uHmAm1um . . . uHmAmmum

 : uk ∈ Uk is an eigenvector corresponding to εk,ik(λ)

 .

Since the functions εk,ik are strongly semismooth, Fi is also strongly semismooth; see
e.g., [IS14, Proposition 1.73]. It follows that a semismooth Newton method applied to
Fi converges locally quadratic; see e.g., [IS14, Theorem2.42].

Given λ(j), the semismooth Newton method computes the next iterate by

J ∈ ∂Fi

(
λ(j)

)
, Fi

(
λ(j)

)
+ J∆λ = 0, λ(j+1) = λ(j) +∆λ.

We can compute a particular choice of J ∈ ∂Fi

(
λ(j)

)
with eigenvectors uk ∈ Uk

corresponding to εk,ik
(
λ(j)

)
as in (3.15). Then Fi

(
λ(j)

)
is given by

Fi

(
λ(j)

)
= W (u1, . . . , um)

(
1

λ(j)

)
=

 uH1A10u1 . . . uH1A1mu1
...

...
uHmAm0um . . . uHmAmmum




1

λ
(j)
1
...

λ
(j)
m

 .
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Algorithm 1 Semismooth Newton method for right definite MEPs

Require: A right definite MEP of the form (3.1) and a multiindex i
Ensure: approximation of an eigenvalue λ of index i
intial guess λ(0) ∈ Rm

for j = 1, 2, . . . do
for k = 1, . . . ,m do

compute ik-th largest eigenvalue of
∑m

ℓ=0 λ
(j−1)
ℓ Akℓ

and a corresponding eigenvector uk ∈ Uk

end for

solve W (u1, . . . , um)

(
1

λ(j)

)
= 0

end for
return λ(j)

The next iterate λ(j+1) is given by

0 = Fi

(
λ(j)

)
+ J∆λ =

 uH1A10u1 . . . uH1A1mu1
...

...
uHmAm0um . . . uHmAmmum




1

λ
(j)
1 +∆λ1

...

λ
(j)
m +∆λm

 ,

i.e., as the solution of the linear equation

W (u1, . . . , um)

(
1

λ(j+1)

)
= 0. (3.16)

If the MEP (3.1) is right definite, this equation has a unique solution. We summarize
this procedure in Algorithm 1.

We can employ a similar algorithm for the homogeneous MEP (3.2). In that case,
we require a signed index (i, σ) and solve the linear equation

W (u1, . . . , um)λ(j+1) = 0 with λ(j+1) ∈ Pσ. (3.17)

The other steps are analogous.
Let us shortly consider Algorithm 1 in the case m = 1. In that case, the MEP (3.1)

is just the generalized eigenvalue problem

Au+ λBu = 0

with positive definite B. Algorithm 1 computes an eigenvalue of a given index by a
Newton method that requires solving an eigenvalue problem in each step. Obviously, it is
computationally less expensive to solve the generalized eigenvalue problem directly. The
following consequence of Sylvester’s law of inertia shows that the index of λ corresponds
to the ordering of the eigenvalues of the generalized eigenvalue problem.
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Algorithm 2 Semismooth splitted Newton method for right definite MEPs

Require: A right definite MEP of the form (3.1) and a multiindex i
Ensure: approximation of an eigenvalue λ of index i
intial guess λ(0) ∈ Rm

for j = 1, 2, . . . do
for k = 2, . . . ,m do

compute ik-th largest eigenvalue of
∑m

ℓ=0 λ
(j−1)
ℓ Akℓ

and a corresponding eigenvector uk ∈ Uk

end for

solve W (1)(u2, . . . , um)

(
1

λ(part) + t λ(hom)

)
= 0 for λ(part) and λ(hom)

find t such that 0 is the i1-th largest eigenvalue of

A10 +
∑m

ℓ=1 λ
(part)
ℓ A1ℓ + t

∑m
ℓ=1 λ

(hom)
ℓ A1ℓ

set λ(j) = λ(part) + t λ(hom)

end for
return λ(j)

Lemma 3.6. Let A,B be symmetric matrices and B be positive definite. Then zero
is the i-th largest eigenvalue of the matrix A+ λB if and only if λ is the i-th smallest
eigenvalue of the generalized eigenvalue problem Au+ λBu = 0.

Proof. Since B is positive definite, it admits a positive definite square root B
1
2 . By

Sylvester’s law of inertia [HJ90, Theorem4.5.8] the matrix A+λB has the same number

of positive and negative eigenvalues as the matrix B− 1
2AB− 1

2 +λ id. Since the eigenvalues
of the generalized eigenvalue problem Au+ λBu = 0 are the same as the ones of the
matrix −B− 1

2AB− 1
2 , the claim follows.

As a consequence, we can solve the generalized eigenvalue problem A + λB and
directly recover the index of the eigenvalue. We can utilize this idea to construct a
modified method, where one component of Fi is forced to be zero in each step. For this,
first consider the case n2 = . . . = nm = 1. Then (3.1) is of the form

A10u1 + λ1A11u1 + . . .+ λmA1mu1 = 0, b+Gλ = 0,

where b ∈ Rm−1 and G ∈ Rm−1×m contain the second to m-th equation of the MEP. If
the MEP is right definite, then rankG = m− 1 and its kernel is given by span{λ(hom)}
and the solution of b + Gλ = 0 is given by λ = λ(part) + tλ(hom). Hence, the MEP
reduces to

A10u1 +

(
m∑
ℓ=1

λ
(part)
ℓ A1ℓ

)
u1 + t

(
m∑
ℓ=1

λ
(hom)
ℓ A1ℓ

)
u1 = 0,

a generalized eigenvalue problem. Here,
∑m

ℓ=1 λ
(hom)
ℓ A1ℓ is definite and we may choose

λ(hom) such that
∑m

ℓ=1 λ
(hom)
ℓ A1ℓ is postive definite. This can be seen as follows. Right
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Algorithm 3 Semismooth cyclic splitted Newton method for right definite MEPs

Require: A right definite MEP of the form (3.1) and a multiindex i
Ensure: approximation of an eigenvalue λ of index i
intial guess λ(0) ∈ Rm

for j = 1, 2, . . . do
set k̃ = j mod m
for k ̸= j mod m do

compute ik-th largest eigenvalue of
∑m

ℓ=0 λ
(j−1)
ℓ Akℓ

and a corresponding eigenvector uk ∈ Uk

end for

solve W (k̃)(u1, . . . , uk̃−1, uk̃+1, . . . , um)

(
1

λ(part) + t λ(hom)

)
= 0

for λ(part) and λ(hom)

find t such that 0 is the ik̃-th largest eigenvalue of

A
k̃0

+
∑m

ℓ=1 λ
(part)
ℓ Ak̃ℓ + t

∑m
ℓ=1 λ

(hom)
ℓ Ak̃ℓ

set λ(j) = λ(part) + t λ(hom)

end for
return λ(j)

definiteness implies that not both uH1

(∑m
ℓ=1 λ

(hom)
ℓ A1ℓ

)
u1 = 0 andGλ(hom) = 0 for every

u1 ∈ U1. Since λ(hom) is in the nullspace of G, this implies uH1

(∑m
ℓ=1 λ

(hom)
ℓ A1ℓ

)
u1 ̸= 0

for every u1 ∈ U1 and therefore
∑m

ℓ=1 λ
(hom)
ℓ A1ℓ is either positive or negative definite.

Therefore, we can use Lemma 3.6 to find λ such that b+Gλ = 0 and ε1,i1(λ) = 0 for
any i1 ∈ {1, . . . , n1}.

We can now apply this idea to a single step of the Newton method. Given λ(j), we
compute εk,ik

(
λ(j)

)
and corresponding eigenvectors uk ∈ Uk for k ̸= k̃. We denote by

W (k̃)(u1, . . . , uk̃−1, uk̃+1, . . . , um) the matrix W (u1, . . . , um) without its k̃-th row, i.e.,

W (k̃)(u1, . . . , uk̃−1, uk̃+1, . . . , um) =



uH1A10u1 . . . uHmA1mum
...

...
uH
k̃−1

A
k̃−1,0

u
k̃−1

. . . uH
k̃−1

A
k̃−1,m

u
k̃−1

uH
k̃+1

A
k̃+1,0

u
k̃+1

. . . uH
k̃+1

A
k̃+1,m

u
k̃+1

...
...

uHmAm0um . . . uHmAmmum


.

Next, we find λ(hom) ̸= 0 and λ(part) such that

W (k̃)(u1, . . . , uk̃−1, uk̃+1, . . . , um)

(
1

λ(part) + t λ(hom)

)
= 0
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(a) (b)

(c)

Figure 3.1: Visualization of Algorithm 1 in (a), Algorithm 2 in (b), and Algorithm 3
in (c) for m = 2 and three different multiindices.

for every t. Finally, we use Lemma 3.6 and definiteness of
∑m

ℓ=1 λ
(hom)
ℓ A

k̃ℓ
to find

the next iterate of the form λ(j+1) = λ(part) + t λ(hom) such that εk̃,ik̃

(
λ(j)

)
= 0. We

summarize this procedure in Algorithm 2 in the case that k̃ = 1 for every step. Another
possibility is use a different k̃ in every step, for example k̃ = j mod m. This is
summarized in Algorithm 3. In the case m = 2, Algorithm 3 coincides with the method
proposed in [EN22].

Changing k̃ in each step has the advantage, that one of the required eigenvalue
problems was already solved in the previous step, and thus reducing the computational
complexity of this method.

We visualized the three methods in Figure 3.1. In there, a two-parameter problem is
shown where the red curves correspond to the eigencurves of the first equation and the
blue curves correspond to the eigencurves of the second equation. It can be seen that
Algorithm 2 forces the first equation to be satisfied as the iterates in orange stay on
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the red curves. The Algorithm 3 cycles between the red and blue curves. One can also
observe that the next iterate of Algorithm 3 is given by the intersection of the tangent
at the current curve and the other curve as described in [EN22, Section 2.3].

All of these methods admit local quadratic convergence. To see this, we have the
following more general result.

Theorem 3.7. Let F1 : Rm → Rm1 and F2 : Rm → Rm2 with m1 +m2 = m be strongly
semismooth, and (F1, F2)(x

∗) = 0. Furthermore, assume there is γ < ∞ such that∥∥∥∥∥
(

J1∫ 1
0 J2(t) dt

)−1
∥∥∥∥∥ ≤ γ

for all J1 ∈ ∂F1(x), J2(t) ∈ ∂F2(ty + (1− t)z) and x, y, z ∈ Rm. Given x(j) ∈ Rm, let
J1 ∈ ∂F1

(
x(j)
)
and let x(j+1) ∈ Rm satisfy the equations

F1

(
x(j)
)
+ J1

(
x(j+1) − x(j)

)
= 0 and F2

(
x(j+1)

)
= 0.

Then
∥∥x∗ − x(j+1)

∥∥ ∈ O
(∥∥x∗ − x(j)

∥∥2).
Proof. Since F2 is semismooth, it is also locally Lipschitz continuous. Therefore, f(t) =
F2

(
tx∗ + (1− t)x(j+1)

)
is locally Lipschitz continuous, almost everywhere differentiable,

and the fundamental theorem of calculus applies, i.e.,

0 = F2 (x
∗)− F2

(
x(j+1)

)
=

∫ 1

0
f ′(t) dt.

Hence, by [IS14, Proposition 1.63], there is J2(t) ∈ ∂F2

(
tx∗ + (1− t)x(j+1)

)
such that

J2(t)
(
x∗ − x(j+1)

)
= f ′(t), that is, there is an element in the generalized Jacobian that

attains the directional derivative, and we get

0 = F2(x
∗)− F2

(
x(j+1)

)
=

∫ 1

0
J2(t) dt

(
x∗ − x(j+1)

)
.

Furthermore, since F1 is strongly semismooth, the first equation for x(j+1) implies∥∥∥J1 (x∗ − x(j+1)
)∥∥∥ =

∥∥∥F1

(
x(j)
)
− F1 (x

∗) + J1

(
x∗ − x(j)

)∥∥∥ ∈ O

(∥∥∥x∗ − x(j)
∥∥∥2) .

Hence, (
J1∫ 1

0 J2(t) dt

)(
x∗ − x(j+1)

)
=

(
F1

(
x(j)
)
− F1 (x

∗) + J1
(
x∗ − x(j)

)
0

)
and the result follows as the matrix on the left-hand side has a bounded inverse.

73



CHAPTER 3. DEFINITE MULTIPARAMETER EIGENVALUE PROBLEMS

This result is applicable for Algorithm 1, Algorithm 2, and Algorithm 3. We already
noted that the functions εk,ik are strongly semismooth. It remains to provide that the
matrix consisting of elements of the generalized Jacobian and averaged elements of the
generalized Jacobian has a uniformly bounded inverse. This is a consequence of the
following statement for right definite MEPs.

Proposition 3.8. Let the MEP (3.1) be right definite and let

J :=


 uH1A11u1 . . . uH1A1mu1

...
...

uHmAm1um . . . uHmAmmum

 : uk ∈ Uk for k = 1, . . . ,m

 .

Then there is γ < ∞ such that
∥∥J−1

∥∥ ≤ γ for all J ∈ convJ .

Proof. First note that J is a compact set in Rm×m as it is the image of the continuous
map

J : U1×. . .×Um → Rm×m, u = (u1, . . . , ud) 7→ J(u)=

 uH1A11u1 . . . uH1A1mu1
...

...
uHmAm1um . . . uHmAmmum


of the compact set U1 × . . .× Um. It follows from Carathéodory’s theorem that convJ
is itself compact since Rm×m is finite dimensional; see e.g., [Tuy16, Theorem1.1 and
Corollary 1.9]. Finally, we show that det J ̸= 0 for J ∈ convJ . Then convJ is
a compact subset of invertible matrices and therefore the set {J−1 : J ∈ convJ } is
compact as inverting a matrix is a continuous map on invertible matrices.

We proceed by induction. We denote by Jk the set consisting of the k-th row of
matrices in J , i.e.,

Jk = {
(
uHkAk1uk . . . uHkAkmuk

)
: uk ∈ Uk}.

Furhthermore, we denote by Vk the set of matrices where the rows ℓ = 1, . . . , k consist
of the convex combinations Jℓ ∈ convJj and the other rows consist of Jℓ ∈ Jℓ for
ℓ = k + 1, . . . ,m, i.e.,

Vk =


J1

...
Jm

 : Jℓ ∈ convJℓ for ℓ = 1, . . . , k and Jℓ ∈ Jℓ for ℓ = k + 1, . . . ,m

 .

From right definiteness, it follows that det J > 0 for J ∈ J = V0. Now let det J > 0
for all J ∈ Vk−1. Then any J ∈ Vk is of the form J =

∑M
j=1 σjJ

(j) where σj ≥ 0,,
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∑M
j=1 σj = 1, and

J (j) =



J1
...

Jk−1

J
(j)
k

Jk+1
...

Jm


for


Jℓ ∈ convJℓ for ℓ = 1, . . . , k − 1,

J
(j)
k ∈ Jk,

and
Jℓ ∈ Jℓ for ℓ = k + 1, . . . ,m.

Then by linearity of the determinant in its rows, we have det J =
∑M

j=1 σj det J
(j) > 0

as J (j) ∈ Vk−1. It follows that detJ > 0 for all J ∈ Vk and k = 0, . . . ,m.

Let J ∈ convJ . By definition, J =
∑M

j=1 σjJ
(j) for some J (j) ∈ J ,

∑M
j=1 σj = 1,

and σj ≥ 0. Then

J =


∑M

j=1 σjJ
(j)
1

...∑M
j=1 σjJ

(j)
m

 for some J
(k)
k ∈ Jk, k = 1, . . .m.

It follows that convJ ⊂ Vm and the assertion is proven.

The local quadratic convergence of Algorithm 1, Algorithm 2, and Algorithm 3
readily follows.

Theorem 3.9. Let the MEP (3.1) be right definite and λ be the unique eigenvalue
of multiindex i. Then the sequences λ(j) generated by Algorithm 1, Algorithm 2, and
Algorithm 3 satisfy ∥∥∥λ− λ(j+1)

∥∥∥ ∈ O

(∥∥∥λ− λ(j)
∥∥∥2) ,

i.e., they admit local quadratic convergence.

Proof. We only consider Algorithm 2 as the proofs for the other ones are analogous.
Let F2 = ε1,i1 and

F1 =

 ε2,i2
...

εm,im

 .

Both are strongly semicontinuous [SS02]. The iterates satisfy the equations of Theo-
rem 3.7 and Proposition 3.8 implies that the inequality concerning generalized Jacobian
is satisfied. The result follows.
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The convergence results are only of local nature. In principle globalization strategies
involving a line search are applicable, however, quadratic convergence would be lost.
Our numerical results however suggest that this is not necessary. In Section 3.4 we
discuss global convergence results for some eigenvalues.

The results of Theorem 3.7 and Proposition 3.8 also imply local quadratic convergence
when two or more lines of Fi are kept zero. This is in principle applicable when an
effective method to compute an eigenvalue of multiindex for a two-parameter eigenvalue
is available.

3.4 Extreme eigenvalues

The problem of finding an eigenvalue of extreme multiindix i ∈ {1, n1} × . . .× {1, nm}
has an optimization perspective. Note again, that eigenvalues of the MEP (3.1) lie in
the set

Q =

{
λ ∈ Rm : W (u)

(
1
λ

)
= 0 for some u ∈ U1 × . . .× Um

}
.

The set Q is not convex, as can be anticipated by Figure 3.1. The eigenvalues of extreme
indices are however extreme points of its convex hull.

Proposition 3.10. Let the MEP (3.1) be right definite. Then

Q ⊂ conv
{
λi : i ∈ {1, n1} × . . .× {1, nm}

}
where λi denotes the eigenvalue of multiindex i.

Proof. Let λ ∈ Q and let u ∈ U1 × . . . × Um be a corresponding vector such that

W (u)

(
1
λ

)
= 0. We denote E = {1, n1}× . . .×{1, nm} as the set of extreme multiindices.

Next, notice that

W (u)

(
1
λi

)
=

 ϵ1
...
ϵm


where ϵk ≥ 0 if ik = nk and ϵk ≤ 0 if ik = 1. Hence,

0 ∈ conv

{
W (u)

(
1
λi

)
: i ∈ E

}
= W (u)

{(
1
λ

)
: λ ∈ conv

{
λi : i ∈ E

}}
.

Since W (u) is of full rank, the solution of W (u)

(
1
λ

)
= 0 is unique and the assertion

follows.
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It follows directly that
min
λ∈Q

µTλ

is attained at an eigenvalue of extreme multiindex. If the MEP (3.1) is left definite with
respect to µ and right definite, then we know which extreme multiindex corresponds to
a maximizing eigenvalue.

Proposition 3.11. Let the MEP (3.1) be right definite and left definite with respect to
µ. Then

min
λ∈Q

µTλ

is attained at the eigenvalue λ1 of multiindex 1 = (1, . . . , 1). Furthermore, there is a
β > 0 such that µT

(
λ− λ1

)
≥ β

∥∥λ− λ1
∥∥ for all λ ∈ Q.

Proof. Let λ ∈ Q and choose u ∈ U1×· · ·×Um such that W (u)

(
1
λ

)
= 0. Note that the

entries of W (u)

(
1
λ1

)
are nonpositive since 0 is the largest eigenvalue of the matrices∑m

ℓ=0 λ
1
ℓAkℓ for k = 1, . . . ,m. Hence,

J(u)
(
λ1 − λ

)
:=

 uH1A11u1 . . . uH1A1mu1
...

...
uHmAm1um . . . uHmAmmum

(λ1 − λ
)
=

 ϵ1
...
ϵm

 (3.18)

with ϵk ≤ 0 for k = 1, . . . ,m. If λ ̸= λ1, then at least one inequality is strict and by
Proposition 3.8 there is γ̃

γ̃ max
k=1,...,m

|ϵk| ≥
∥∥λ1 − λ

∥∥ .
By right definiteness the matrix J(u) is invertible, and by Cramer’s rule and the
condition (3.7) for left definiteness the entries of µT(J(u))−1 are positive. Furthermore,
by compactness of the sets U1, . . . ,Um there is an α > 0 such that the entries are at
least α for every u ∈ U1 × . . .× Um. Hence,

µT
(
λ1 − λ

)
= µT(J(u))−1J(u)

(
λ1 − λ

)
≤ α

γ̃

∥∥λ1 − λ
∥∥ ,

which shows the assertion.

A similar argument also shows that µT
(
λi − λj

)
≤ 0 whenever ik ≤ jk for k =

1, . . . ,m. That is, the map i 7→ µTλi is order preserving with respect to the product
order on multiindices.

Proposition 3.12. Let the MEP (3.1) be right definite and left definite with respect to
µ. Let λi and λj be eigenvalues of multiindices i and j. Then

µTλi ≤ µTλj

if ik ≤ jk for k = 1, . . . ,m.
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Proof. We show that there is a u ∈ U1×· · ·×Um such that J(u)
(
λi − λj

)
has nonpositive

entries. Then the result follows analogously as in the proof of Proposition 3.11. Since 0
is the jk-th largest eigenvalue of

∑m
ℓ=0 λ

j
ℓAkℓ, the ik-th largest eigenvalue of

∑m
ℓ=0 λ

i
ℓAkℓ,

and ik ≤ jk, there is a uk ∈ Uk such that uHk
∑m

ℓ=0

(
λi
ℓ − λj

ℓ

)
Akℓuk ≤ 0. It follows that

J(u1, . . . , um)
(
λi
ℓ − λj

ℓ

)
has nonpositive entries and the result follows.

Hence, if the MEP (3.1) is left and right definite, we can compute eigenvalues that
have small µTλ using Algorithm 1, Algorithm 2, or Algorithm 3 by requiring small
multiindices. Finally, left definiteness also implies global convergence of the methods
when the desired eigenvalue has multiindex 1.

Theorem 3.13. Let the MEP 3.1 be left and right definite. The sequences λ(j) generated
by Algorithm 1, Algorithm 2, and Algorithm 3 converge globally to λ1 when the required
multiindex is 1.

Proof. First notice that λ(j) ∈ Q for j ≥ 1. Thus, due to Proposition 3.11 it is enough
to show that µTλ(j) converges to µTλ1. From Proposition 3.8 and the characterization
of the directional derivatives of F1, it follows that

γ∥F1(λ)∥ ≥
∥∥λ− λ1

∥∥ ,
and furthermore the entries of F1 are nonnegative by the definition of Q and F1(λ).
It follows, that the largest entry of F1(λ) is at least δµT(λ − λ1) with some δ > 0
independent of λ. The difference λ(j) − λ(j+1) satisfies

J
(
λ(j) − λ(j+1)

)
= F1

(
λ(j)

)
for some J ∈ convJ of Proposition 3.8. With a similar argument as in the proof of
Proposition 3.8, we get that µTJ−1 has entries larger than some α for every J ∈ convJ .
Hence,

µT
(
λ(j) − λ(j+1)

)
≥ αδµT

(
λ(j) − λ1

)
and thus

µT
(
λ(j+1) − λ1

)
≤ (1− αδ)µT

(
λ(j) − λ1

)
,

that is global linear convergence of the sequence µTλ(j) to µTλ1.

We want to note that the proofs of Proposition 3.11, Proposition 3.12, and The-
orem 3.13 only require the condition (3.7) and not the negative definiteness of the
matrices Ak0. However, assuming left definiteness is not a real restriction. Indeed, the
negative definiteness can be achieved by a translation of eigenvalues; see e.g., [Vol88,
Lemma2.7.3]. In the case m = 2 right definiteness even implies condition (3.7).
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Proposition 3.14. Let the MEP 3.1 be right definite and m = 2. Then there is a
µ = (0, µ1, µ2) such that condition (3.7) is satisfied.

Proof. The condition (3.7) is equivalent to positive definiteness of the matrices

µ2A11 − µ1A12 and µ1A22 − µ2A21.

We use Lemma 3.5 with σ1 = 1 and σ2 = −1 and get positive definite matrices

α1A11 + α2A12 and − α1A21 − α2A22.

The result follows with µ1 = −α2 and µ2 = α1.

It follows that Algorithm 1, Algorithm 2, and Algorithm 3 converge for extreme
indices when (3.1) is a right definite two-parameter eigenvalue problem.

Corollary 3.15. Let the MEP 3.1 be right definite and m = 2. The sequences λ(j)

generated by Algorithm 1, Algorithm 2, and Algorithm 3 converge globally to λi when
the required multiindex i is extreme, i.e., i ∈ {1, n1} × {1, n2}.

Proof. If i = 1, the result follows directly from Theorem 3.13 and Proposition 3.14. The
case i = (1, n2) follows by permuting equations and changing signs of the matrices A20,
A21, and A22. This is again a right definite two-parameter eigenvalue problem with the
same eigenvalues as the original but the eigenvalue of multiindex (1, n2) of the original
one now has multiindex 1. The other two cases follow analogously.

3.5 Numerical experiments

In this section, we demonstrate the perfomance of Algorithm 1, Algorithm 2, and
Algorithm 3 and compare it with the performance of methods in the MATLAB toolbox
MultiParEig [Ple22]. All numerical experiments were run on one core Intel Xeon Gold
6144 at 3.5 GHz.

We want to note that we did not implement our methods to the highest efficiency.
For example, all methods are parallelizable in multiple fashions. The computation
of an eigenvalue of a certain multiindex is independent of the computation of an
eigenvalue with a different multiindex. These can therefore be computed in parallel.
When computing only one eigenvalue, the computation of the m different eigenvalues
in the second loop of the algorithms can be done in parallel as well. The methods can
also be made more efficient by some precalculations. For example, Algorithm 2 and
Algorithm 3 are more efficient, when the matrices Akℓ for k, ℓ = 1, . . . ,m are diagonal,
as the generalized eigenvalue problems can then easily be transformed into a symmetric
eigenvalue problem. For m = 2, this can be achieved by congruence transformations
beforehand, reducing computational complexity.
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Figure 3.2: Comparison of the performances of Algorithm 1, Algorithm 2, Algorithm 3,
and twopareig [Ple22] for m = 2 and different sizes of matrices. The matrices are
generated randomly such that the MEP is right definite as explained in Section 3.5.1
with n1 = n2 = n. We solve for all n2 eigenvalues.

Throughout the experiments, we track the precision of the found eigenvalues and
eigenvectors by the sum of residual norms

∑m
k=1 ∥

∑m
ℓ=0 λℓAkℓuk∥ . If we look for more

than a single eigenvalue, we sum up these sums of residual norms.

3.5.1 Randomly generated MEPs

At first, we generated matrices for an MEP randomly such that the resulting MEP is
right definite. For m = 2, we achieve this by setting

A11 = A22 = idn

and setting A12 and A21 as diagonal matrices with entries chosen uniform at random in
the interval [−1, 1]. Now with probability one the MEP is right definite. For A10 and
A20 we generate symmetric matrices at random with entries distributed normally.

We used Algorithm 1, Algorithm 2, Algorithm 3, and twopareig [Ple22], which uses
the generalized Schur decomposition, to find every eigenvalue for n× n matrices Aℓk

and n = 10, 15, . . . , 100. The results are summarized in Figure 3.2. Our methods find
eigenvalues with higher precision by orders of magnitude, where Algorithm 2 has a slight
edge, and for n > 40 our methods need less time to find all eigenvalues. This was to be
expected, as the complexity of finding one eigenvalue with our methods is in O(mn3) if
we assume that the number of iterations does not depend on n and m. This leads to
a computational complexity of O(n5) for all eigenvalues in the case m = 2 compared
to a complexity of O(n6) using the generalized Schur decomposition. Figure 3.2 even
suggests a complexity of O(n4).
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Figure 3.3: Comparison of the performances of Algorithm 1, Algorithm 2, Algorithm 3,
and threepareig [Ple22] for m = 3 and different sizes of matrices. The matrices are
generated randomly such that the MEP is right definite as explained in Section 3.5.1
with n1 = n2 = n3 = n. We solve for all n3 eigenvalues.

As a next example, we generated right definite three-parameter eigenvalue problems
at random. Here, we set

A11 = A22 = A33 = idn

and set A12, A13, A21, A23, A31, A32 as diagonal matrices with entries uniformly
distributed in [−1

2 ,
1
2 ] and Ak0 again as symmetric matrices with Gaussian distributed

entries. This also leads to a right definite three-parameter eigenvalue problem with
probability one.

For these three-parameter eigenvalue problems, we compared our methods to three-
pareig [Ple22], which also uses the generalized Schur decomposition. We used our
methods and threepareig to find all n3 eigenvalues with n × n matrices Aℓk with
n = 1, 2, . . . , 20. The results are summarized in Figure 3.3. Threepareig is only able to
solve MEPs with small n, as it explicitly constructs the n3 × n3 matrices ∆k in (3.4)
and runs into memory problems even for matrices of moderate size. For n > 8 our
methods has a smaller time demand, and Algorithm 1, Algorithm 2, and Algorithm 3
have a similar performance. For m = 3 the complexity of our method is O(n6) for
finding all eigenvalues, again assuming the number of iterations is independent of n.
This is small compared to the computational complexity using the generalized Schur
decomposition, which is of the order O(n9). The time plot in Figure 3.3 suggests this is
the case. It is therefore more feasible to find all eigenvalues for larger three-parameter
eigenvalue problems with our methods. The measured precision is again higher by
orders of magnitude.
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Figure 3.4: Comparison of the performances of Algorithm 1, Algorithm 2, Algorithm 3,
and twopareigs [Ple22] for a discretization of (3.19) on polynomial bases of degree 300.
We compute eigenvalues with small λ.

3.5.2 Coupled Mathieu’s differential equations

As a first example coming from boundary eigenvalue problems, we considered the coupled
version of Mathieu’s modified and Mathieu’s equation

P ′′(ρ) + λ cosh(ρ)P (ρ) − ν P (ρ) = 0 for ρ ∈ (0, r), P (0) = 0 = P (1),
Φ′′(φ) − λ cos(φ) Φ(φ) + ν Φ(φ) = 0 for φ ∈ (0, π), Φ(0) = 0 = Φ(π).

(3.19)

This is one of four different configurations arising when separation of variables is applied
to the Helmholtz equation

∆u(x) + λu(x) = 0 for x ∈ Ω

u(x) = 0 for x ∈ ∂Ω

on the ellipse Ω = {(x, y) : x2/ cosh(1) + y2/ sinh(1) < 1}, see e.g., the introduction
of [Vol88]. We discretized these equations on a basis of polynomials of degree 300
using the MATLAB toolbox Chebfun [DHT14]. We computed L2(0, 1)- and L2(0, π)-
orthonormal bases B1 and B2 satisfying the boundary conditions as column vectors and
computed the symmetric matrices

A10 = −
∫ 1

0
B′

1(ρ)B
′
1(ρ)

T dρ, A20 = −
∫ π

0
B′

2(φ)B
′
2(φ)

T dφ,

A11 =

∫ 1

0
cosh(ρ)B1(ρ)B1(ρ)

T dρ, A21 = −
∫ π

0
cos(φ)B2(φ)B2(φ)

T dφ,

A12 = −
∫ 1

0
B1(ρ)B1(ρ)

T dρ, A22 =

∫ π

0
B2(φ)B2(φ)

T dφ
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Figure 3.5: Comparison of the performances of Algorithm 1, Algorithm 2, Algorithm 3,
and threepareigs [Ple22] for a discretization of (3.20) on polynomial bases of degree 16
with boundary conditions (3.21). We compute eigenvalues with small λ3.

with Chebfun. The resulting MEP is left definite with respect to µ = (0, 1, 0) and right
definite. We can thus apply Proposition 3.12 to find eigenvalues and eigenvectors with
small λ by requiring small multiindices in Algorithm 1, Algorithm 2, and Algorithm 3.
For this we impose the product order on multiindices, i.e., i ≤ j if ik ≤ jk for k = 1, . . . ,m.
At first we compute the eigenvalue of multiindex 1. Next we choose a minimal multiindex
i among the ones we have not computed an eigenvalue to and that minimizes minj∈N (i) λ

j,

whereN (i) = {j ∈ {1, . . . , n1}×. . .×{1, . . . , nm} : ik̃−jk̃ = 1 for a single k̃ and ik−jk =
0 otherwise} is a set of neighbors of i.

Using Algorithm 1, Algorithm 2, and Algorithm 3 and this strategy, we com-
puted 5, 10, . . . , 300 eigenvalues with small λ and compared their performances to
twopareigs [Ple22], which uses a Krylov-Schur method [MP15]. The results are summa-
rized in Figure 3.4. For this problem, Algorithm 1 performed the best. Our methods
need the same time for every eigenvalue, whereas twopareigs required more time per
eigenvalue when computing many eigenvalues. When computing more than 50 eigen-
values Algorithm 1 requires less time than twopareigs. The precision of the computed
eigenvalues and eigenvectors is slightly higher when computed with our methods.

3.5.3 Ellipsoidal wave equation

Now we consider a three-parameter eigenvalue problem, that arises from the Helmholtz
equation on the ellipsoid Ω = {(x, y, z) ∈ R3 : x2/x20 + y2/y20 + z2/z20}. A fitting choice
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of ellipsoidal coordinates and separation of variables leads to the equations

p(ξ1) (p(ξ1)u
′
1(ξ1))

′ + λ1u1(ξ1) + λ2ξ1u1(ξ1) + ξ21λ3u1(ξ1) = 0 for ξ1 ∈ (c, d),

p(ξ2) (p(ξ2)u
′
2(ξ2))

′ − λ1u2(ξ2) − λ2ξ2u2(ξ2) − ξ22λ3u2(ξ2) = 0 for ξ2 ∈ (1, c),

p(ξ3) (p(ξ3)u
′
3(ξ3))

′ + λ1u3(ξ3) + λ2ξ3u3(ξ3) + ξ23λ3u3(ξ3) = 0 for ξ3 ∈ (0, 1),
(3.20)

with p(ξ) =
√

|ξ||ξ − 1||ξ − c| and appropriate values of c and d. Here, only λ3 is
connected to the original spectral parameter λ. We again discretize using polynomial
bases B1, B2, and B3 with B1(d) = 0 due to Dirichlet boundary conditions. Again
using the MATLAB toolbox Chebfun, we computed the symmetric matrices

A10 = −
∫ d

c
p(ξ)B′

1(ξ)B
′
1(ξ)

T dξ, A20 = −
∫ c

1
p(ξ)B′

2(ξ)B
′
2(ξ)

T dξ,

A30 = −
∫ 1

0
p(ξ)B′

3(ξ)B
′
3(ξ)

T dξ, A11 =

∫ d

c

1

p(ξ)
B1(ξ)B1(ξ)

T dξ,

A21 = −
∫ c

1

1

p(ξ)
B2(ξ)B2(ξ)

T dξ, A31 =

∫ 1

0

1

p(ξ)
B3(ξ)B3(ξ)

T dξ,

A12 =

∫ d

c

ξ

p(ξ)
B1(ξ)B1(ξ)

T dξ, A22 = −
∫ c

1

ξ

p(ξ)
B2(ξ)B2(ξ)

T dξ,

A32 =

∫ 1

0

ξ

p(ξ)
B3(ξ)B3(ξ)

T dξ, A13 =

∫ d

c

ξ2

p(ξ)
B1(ξ)B1(ξ)

T dξ,

A23 = −
∫ c

1

ξ2

p(ξ)
B2(ξ)B2(ξ)

T dξ, A33 =

∫ 1

0

ξ2

p(ξ)
B3(ξ)B3(ξ)

T dξ.

This discretization leads to the boundary conditions

cu′3(0) + λ1u3(0) = 0,
(c− 1)u′3(1) + λ1u3(1) + λ2u3(1) + λ3u3(1) = 0,
(c− 1)u′2(1) − λ1u2(1) − λ2u2(1) − λ3u2(1) = 0,
(c2 − c)u′2(c) − λ1u2(c) − λ2cu2(c) − λ3c

2u2(c) = 0,
(c2 − c)u′1(c) + λ1u1(c) + λ2cu1(c) + λ3c

2u1(c) = 0,
u1(d) = 0.

(3.21)

This is one of 8 possible configurations for handling singularities at the boundaries of
the interval, see e.g., [HMMP19, Section 2.1]. We set c = 12/7 and d = 16/7 which
corresponds to the ellipsoid with x0 = 1, y0 = 1.5, and z0 = 2, which is also considered
in [HMMP19, Section 5.1]. The resulting eigenvalue problem is right definite and left
definite with respect to µ = (0, 0, 0, 1). Thus, we can apply the strategy described in
the previous example to find eigenvalues with small λ3.

First, we discretized on polynomial bases of degree 16, which leads to n1 = n2 = 17
and n3 = 16. We used our methods and threepareigs [Ple22] to compute 1, 6, . . . , 46
eigenvalues with small λ3. The results are summarized in Figure 3.5. The method
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Figure 3.6: Comparison of the performances of Algorithm 1, Algorithm 2, and Algo-
rithm 3 for a discretization of (3.20) on polynomial bases of degree 300 with boundary
conditions (3.21). We compute eigenvalues with small λ3.

threepareigs requires the matrices ∆0 and ∆3 in (3.4). Our methods do not require these
matrices, which is one reason why the required time for computing some eigenvalues is
smaller using our methods. The precision of our methods is again higher. For small
matrices, Algorithm 1, Algorithm 2, and Algorithm 3 perform similarly. Algorithm 1 is
slightly more precise in this experiment, and Algorithm 3 is slightly faster.

Next, we discretized on polynomial bases of degree 300 in the same way and computed
10, 20, . . . , 130 eigenvalues with small λ3. For this size of matrices, threepareigs is
no longer applicable, as the matrices ∆0 and ∆3 are too large. The methods from
in [HMMP19] are not directly applicable for these generated matrices and require a
preconditioning step described in their article. Our methods are still applicable, as they
only require solving eigenvalue problems with matrices of size ∼ 300. The results are
summarized in Figure 3.6. In this experiment, Algorithm 1 performed the best. Again,
the experiment suggests, that the time required for computing an eigenvalue does not
depend on its multiindex.

3.5.4 Locally definite problem

Finally, we apply our methods to a homogeneous MEP of the form (3.2) that is locally
definite but not definite. The following example is taken from [Vol88, Chapter 1.5]. Let

A10 = A21 = A32 =


1

5
1

1

 , A11 = A20 = A33 =


1

1
5

1

 ,
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A12 = A23 = A30 =


5

1
1

1

 , A13 = A22 = A31 = −


1

1
1

5

 .

The resulting MEP is locally definite which can be seen by applying Lemma 3.5. Indeed,
for every sign σ ∈ {−1, 1}3 one can choose α as one of the vectors ±ei ∈ R4. It is
however not definite. To see this, note that

λ1 =
1√
12

(−1,−3, 1, 1), λ2 =
1√
12

(−1, 1, 1,−3),

λ3 =
1√
12

(−1, 1,−3, 1), λ4 =
1√
12

(3, 1, 1, 1)

are eigenvalues in P+ and λ1+λ2+λ3+λ4 = 0. Hence, there is no µ such that µTλ > 0
for all λ ∈ P+ and the MEP cannot be definite. The eigenvectors are given by the
coordinate vectors ei1 ⊗ ei2 ⊗ ei3 . We used the variant of Algorithm 1 that uses (3.17)
instead of (3.16) to find the next iterate. We computed the eigenvectors and eigenvalues
of each signed index to machine precision indicating that Algorithm 1 is also applicable
to locally definite MEPs that are not definite.

3.6 Concluding remarks and outlook

We presented new methods for computing eigenvalues of definite multiparameter eigen-
value problems based on their signed index. Our approaches only require finding certain
eigenpairs coming from the original problem. This makes it feasible to find eigenvalues
of definite multiparameter eigenvalue problems for larger m using our methods.

Our methods heavily rely on the problem being at least locally definite, so that there
is a one-to-one correspondence of signed indices and eigenvalues. Additionally, local
definiteness forces all eigenvalues to be real. For the case m = 1, we are in the situation
of generalized eigenvalue problems. When a generalized eigenvalue problem is almost
definite, one can show, using inertia laws, that many eigenvalues are real [NN19]. It
would be of interest to investigate the applicability of these results in a situation when
the multiparameter eigenvalue problem is almost definite.
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[FHN19] A. Falcó, W. Hackbusch, and A. Nouy. On the Dirac-Frenkel variational
principle on tensor Banach spaces. Found. Comput. Math., 19(1):159–204,
2019.

[GH14] M. Griebel and H. Harbrecht. Approximation of bi-variate functions:
singular value decomposition versus sparse grids. IMA J. Numer. Anal.,
34(1):28–54, 2014.
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