ﬁ Sensors

Article

Adaptable and Robust EEG Bad Channel Detection Using Local
Outlier Factor (LOF)

Velu Prabhakar Kumarave

check for
updates

Citation: Kumaravel, V.P; Buiatti, M.;
Parise, E.; Farella, E. Adaptable and
Robust EEG Bad Channel Detection
Using Local Outlier Factor (LOF).
Sensors 2022, 22,7314. https://
doi.org/10.3390/522197314

Academic Editor: Adrian Barbu

Received: 12 August 2022
Accepted: 22 September 2022
Published: 27 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 1,2,%

, Marco Buiatti >(7, Eugenio Parise 2(, Elisabetta Farella **

1
2

Digital Society Center, Fondazione Bruno Kessler, 38123 Trento, Italy
Center for Mind /Brain Sciences, University of Trento, 38068 Rovereto, Italy
*  Correspondence: vkumaravel@fbk.eu (VPK.); efarella@fbk.eu (E.F.)

Abstract: Electroencephalogram (EEG) data are typically affected by artifacts. The detection and
removal of bad channels (i.e., with poor signal-to-noise ratio) is a crucial initial step. EEG data
acquired from different populations require different cleaning strategies due to the inherent differ-
ences in the data quality, the artifacts” nature, and the employed experimental paradigm. To deal
with such differences, we propose a robust EEG bad channel detection method based on the Local
Outlier Factor (LOF) algorithm. Unlike most existing bad channel detection algorithms that look
for the global distribution of channels, LOF identifies bad channels relative to the local cluster of
channels, which makes it adaptable to any kind of EEG. To test the performance and versatility of
the proposed algorithm, we validated it on EEG acquired from three populations (newborns, infants,
and adults) and using two experimental paradigms (event-related and frequency-tagging). We found
that LOF can be applied to all kinds of EEG data after calibrating its main hyperparameter: the LOF
threshold. We benchmarked the performance of our approach with the existing state-of-the-art (SoA)
bad channel detection methods. We found that LOF outperforms all of them by improving the F1
Score, our chosen performance metric, by about 40% for newborns and infants and 87.5% for adults.
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1. Introduction

EEG is a widely used, non-invasive neuroimaging technique for recording the brain’s
electrical activity for clinical monitoring, neuroscience research, and Brain-Computer
Interface (BCI) applications [1,2]. However, the primary drawback of using EEG is its high
susceptibility to biological and technical artifacts, i.e., signals that do not originate from
the brain [3]. Common artifact sources include the electrical activity of the eyes, heart, and
muscles, electrical artifacts due to cable movements, and electromagnetic interference from
the surroundings [4].

To recover the neural information, such artifacts should be identified and removed
from the acquired data. Several artifact removal methods based on the widely used
Independent Component Analysis (ICA) have been proposed [5-9] that work best for
stereotypical artifacts such as eye blinks. To deal with non-stereotypical artifacts, such as
motion artifacts, the Artifacts Subspace Reconstruction (ASR) algorithm is increasingly
becoming popular [10-12]. However, all these methods require a crucial, preliminary step:
detecting and removing noisy sensors/channels. This work focuses on this important
preprocessing step. EEG channels/sensors that have a poor signal-to-noise ratio (SNR)
due to biological or technical artifacts contaminating a larger portion of the recording are
commonly termed as “bad channels”. Bad channel detection is crucial in removing artifacts
for the following reasons:

(i) Removing noisy segments of EEG in the presence of bad channels can lead to severe
data loss due to a misleading overall rejection threshold.
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(if) The presence of bad channels can produce a strong bias on the overall statistics of the
extracted neural features leading to the wrong interpretation of the experiments.

(iii) Further, bad channels can also bias the source level analysis as they often suppress
the information from the adjacent good channels, resulting in a wrong source recon-
struction.

The artifact preprocessing strategy varies depending on the population from which
the EEG was acquired and the employed experimental paradigm. For example, in adult
EEG, the artifacts have well-defined temporal and spatial features such as eye blinks
(here, ICA is a good solution). Instead, developmental EEG collected from newborns,
infants, or young children present more challenges in cleaning as the artifacts are primarily
due to uncontrolled motion (here, ASR processing before ICA is recommended [13]). As
such, artifact removal tools developed for adult EEG might not be optimal for newborn
EEG. Secondly, EEG artifact preprocessing also depends on the experimental paradigm.
For example, EEG offline preprocessing for computing Event-Related Potentials (ERPs)
requires a different cleaning strategy compared to EEG processing for Frequency-Tagging
methodology. This is because the neural response of the latter, being associated with a
specific frequency instead of a broad frequency range, is less affected by artifacts than ERP
responses [14]. In sum, the experts’ annotations of bad channels usually vary according to
the population and the experimental design.

In a broad sense, bad channel detection is an anomaly detection problem. It is the
process of finding records that significantly deviate from the regular data. Usually, the total
number of anomalies is lower than the regular ones in a given dataset. Depending on the
availability of labels for regular and anomaly data points, supervised (which requires labels
for both classes), semi-supervised (which requires labels only for regular data points), and
unsupervised (which requires no labels) methods can be employed. Here, we briefly discuss
the state-of-the-art anomaly detection methods using unsupervised learning approaches.

Ramaswamy et al. proposed a k-nearest neighbors global anomaly detection method
[15]. First, the number of k neighbors is assigned for the given data. Then, the distance
to the k-th nearest neighbor is used to rank the outliers. The drawback of this approach
is that the outliers close to the clusters are often undetected (as this technique is “global”
rather than “local”) [16]. To overcome such a limitation of distance-based outliers detection,
Breunig et al. were the first to propose the idea of a local anomaly detection algorithm:
the Local Outlier Factor (LOF) [17]. The LOF score is the ratio of the local density of a
record to that of its k-nearest neighbors. An interesting property of LOF is that the average
regular instances with similar densities to their neighbors will have a score of 1.0. In
terms of interpretability, the LOF score is better than the arbitrary score we achieve using
the k-nearest neighbors method. Yet, it is not straightforward to establish a threshold
for the LOF score that separates outliers from normal points. Authors in [18] attempted
to overcome this difficulty by replacing the conventional LOF scores with an anomaly
probability called Local Outlier Probability (LoOP). The LoOP algorithm computes the
standard deviation of distances to the nearest neighbors based on the assumption that
distances follow a half-Gaussian distribution. The resultant probabilistic set distance is
used to compute the local density score, to which a Gaussian error function is applied
to derive a final probability measure. Despite an interpretable probabilistic measure for
anomalies, the approach received critical thoughts [19]. Notably, the authors in [16] showed
that LoOP probability scores are equivalent to the normalized LOF scores (i.e., in the range
[0, 1]).

In recent years, the scientific community has removed threshold subjectivity to outlier
detection by incorporating outlier probabilities for structural health monitoring applica-
tions [20,21]. These methods are validated on 1-D point vectors where each point was
assigned an outlier probability. In the context of EEG, however, if the total number of outlier
points is identified for each channel, then a threshold is still required to determine the final
set of anomalous channels. Further, it is worth noting that analyzing individual sensors
might not produce desirable results in a multi-channel EEG where the spatial correlation
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between channels is a vital property. It is, therefore, essential to find the hidden local
properties in the data from multiple sensors. Hence, it is not clear whether the methods
proposed in [20,21] are suitable for the EEG bad channel detection problem.

Within the EEG literature, the widely used bad channel detection methods employ
measures such as Kurtosis [22], Pearson Correlation [23], Channel Variance, Hurst Ex-
ponent [24], and Normalized Power Amplitude [25]. While these methods have shown
remarkable results in their respective studies, there are mainly three limitations: (1) Most of
these methods assume a normal distribution for EEG data and obtain distribution-based
statistical measures (e.g., Kurtosis, Variance, Standard Deviation) to detect bad channels.
However, most real EEG data do not follow a normal distribution unless the data length is
extremely short [26]. (2) Measures such as Channel Variance do not consider the intrinsic
variability of the EEG signal across channels (for example, the variance of EEG amplitudes
in frontal electrodes is usually higher than the one from central electrodes). (3) These
methods were validated on only one kind of EEG (i.e., measures used in [23,24] for adult
EEG; measure used in [25] for infants EEG). Our preliminary analysis suggested that they
produce sub-optimal results when applied to other kinds of data than the ones that they
are intended for. In addition to these traditional methods, there are a few deep neural
network-based approaches to detect anomalous EEG channels [27-29]. For the compactness
of this paper, they are not discussed in further detail as we focus only on traditional models.

Given the importance of identifying local patterns in EEG bad channel detection, in
this work, we consider the Local Outlier Factor (LOF) [17,30] to automatically detect and
remove bad channels. LOF is a “local” approach because it measures the degree of isolation
of a given channel with respect to its “local” neighborhood (where the neighborhood is
defined using the k-neighbors algorithm [31] computed from the activity vectors associated
with each channel and not to be confused with the spatial distance between the electrodes).
In other words, LOF assigns an outlier score for each channel by computing its local density,
where locality is defined by the k-neighbors algorithm. Thanks to this property, LOF
is a robust technique compared to traditional methods that employ global measures of
uncertainty and, therefore, is adaptable to the differences in the EEG mentioned above.

As we mentioned earlier, it is not straightforward to find a decision threshold that
separates outliers using LOF scores. This decision boundary depends on the nature of
the data and the definition of outliers. In this work, we propose an automated calibration
approach to identify the optimal threshold using a pre-labeled dataset collected from the
same laboratory and under a similar experimental setup. The proposed approach is based
on our observation that the optimal LOF threshold does not change from one dataset to
another given similar EEG acquisition settings (i.e., same EEG system, similar population,
and same experimental design).

In previous work, we introduced LOF for the first time on EEG data as the first step of
a pipeline for artifact removal in developmental studies [13]. Here, we provide a complete
characterization of LOF, presenting further development and validation of the method in
the following three directions: (1) We present a novel, robust, and fully automatic method
for computing LOF key parameters from a single dataset with annotated bad channels;
(2) To test LOF adaptability to any kind of data, we validate LOF on newborn, infant,
and adult datasets. We highlight that each of these datasets was acquired using different
EEG paradigms; (3) To prove the robustness of the proposed approach, we systematically
compare LOF performance with other EEG bad channel detection measures.

As a proof-of-concept, we first validated LOF on simulated EEG generated with the
SEREEGA toolbox [32] and contaminated five randomly chosen channels with different
kinds of artifacts. With the known ground truth, we validated the performance of LOF.
Then, we validated LOF on real EEG datasets acquired from three different populations:
newborns, infants, and adults. The newborn datasets (1 = 21) with annotated bad channels
were acquired in the study [14]. For infants, we used EEG (n = 28) acquired in another
study [33] with annotated bad channels via visual inspection by the respective authors. We
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used the open-source adult datasets (1 = 14; multiple sessions for each participant leading
to an overall 113 files) with annotated bad channels from OpenNeuro [34].

For comparative evaluation, we chose state-of-the-art (SoA) methods such as
Kurtosis and bad channel detection techniques in widely used EEG pipelines, namely,
FASTER [24,35], CRD [23,36], and HAPPE [25]. Considering the imbalanced proportion
of good and bad channels (94% vs. 6%), we validated all methods using a robust metric:
the F1 Score [37]. This is the first study to evaluate and compare bad channel detection
methods on EEG acquired from different populations. The source code compatible with
EEGLAB [22] is made freely available (https://github.com/vpKumaravel /NEAR/tree/
main/NEAR_ChannelRejection-master (accessed on 11 August 2022)) [38].

2. Materials and Methods
2.1. LOF Algorithm

The LOF algorithm quantifies the outlierness of each electrode in the multidimensional
activity space where each electrode is associated with a vector representing its EEG activity
(not to be confounded with its physical location on the scalp). The algorithm is described
as follows:

1. The optimal k value (i.e., the number of nearest neighbors) is first computed using the
Natural Neighbors algorithm (NaN [39]), a data-centric non-parametric approach.

2. For a given channel p, the LOF algorithm identifies k neighbor channels based
on the predefined distance metric (e.g., Euclidean) using the k-nearest neighbors
algorithm [31].

3. Then, a reachability distance is computed between channels. For example, let us
consider two channels, namely p and o. The reachability distance between p and o is
computed as follows:

reach-dist ;(p, 0) = max{k-distance(0),d(p,0)} 1)

where k-distance (0) is computed using the knnsearch function (MATLAB [40]) and
d(p, o) is the Euclidean distance between two channel vectors. Intuitively, if channel
p is far from o, the reachability distance is their actual Euclidean distance. Instead,
if they are sufficiently close, the Euclidean distance is replaced by the k-distance of
channel o (See Figure 1). Considering the k-distance rather than the actual distance
reduces the statistical fluctuations for the points existing within the k neighborhood.

4. Once the reachability distance of each channel with respect to its neighbors is com-

puted, then the local reachability density (LRD) is determined as follows:

Yoen, (p) reach-dist y(p,0)
INk(p)|

where Ny (p) refers to the total number of k neighbors of p.
To put it in words, the LRD of the channel p is the inverse of the average reachability
distance based on the k-nearest neighbors of p. Intuitively, channel p will have a lower
LRD if it were an outlier (i.e., bad) channel because it is not easily "reachable” by most
of its neighbors.

5. Asa final step, the local outlier factor (LOF) is computed as follows:

LRDy (p) = 1/< @)

LRD,
B LoeNy (p) LRD:: ((Z;

The LOF of channel p is the ratio of the average LRD of k neighbors of p to the LRD of
p. The lower p’s LRD is, and the higher the LRD of p’s k-nearest neighbors are, the
higher the LOF value of p is (and, therefore, possibly an outlier). In other words, an
outlier channel would display a lower LRD (therefore, larger in distance) compared to
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its neighbors (on average). Note that if channel p has a similar LRD value compared
to its k neighbors, the LOF score would be approximately 1.

-y -

— o -

Figure 1. An example scenario for the computation of reachability distance using k = 3. The dotted
circle represents the k neighborhood of point 0. All blue points represent the data samples. For
the demonstration, let us consider only two points, p1 (lies within the k neighborhood) and p2 (lies
outside the k neighborhood). The reachability distance between point p1 and o will be the k-distance
(knnsearch, MATLAB [40])) whereas the reachability distance between point p2 and o will be the
Euclidean distance between them.

2.2. LOF Threshold Computation

In an ideal scenario where the objects (or samples) form a uniform or a Gaussian clus-
ter, inliers would yield LOFs approximately equal to 1, as can be inferred from Equation (3).
As such, any object (or sample) that exceeds a LOF score of 1 can be considered an outlier.
However, this criterion might vary in real-world data, where the distribution of objects
is unknown and less likely to be uniform or Gaussian. A thorough investigation of the
decision boundary is required as there are different EEG settings (populations, experimen-
tal paradigms, and so on) and the definition of outliers varies according to the settings.
Therefore, in this work, we consider the LOFy,, as a hyperparameter to be optimized using
the supervised approach (i.e., with annotated bad channels as the true labels). Precisely,
we used the k-fold cross-validation technique [41] to systematically identify the optimal
LOFy,, (exhaustive search in the range between 1 and 5, in steps of 0.1) at which the F1

Score is maximized. 5« TP
X
Flscore = o b T TP+ IN @

where TP, FP, and EN indicate the number of true positives, false positives, and false
negatives respectively.

We used the number of folds k = 10, a common choice in machine learning [42,43], and
for each fold, 50% of the data are used for testing on both newborns and infants datasets.
As our adult dataset contains multiple sessions from the same subject, and in order to avoid
subject-specific leakage in the training set, we used the group shuffling procedure (using the
GroupShuffleSplit method from SciKit [41]) rather than using the default random shuffling
in each fold. An example is shown in Figure 2. For visualization purposes, we show only
five folds and seven groups (i.e., seven subjects with a diverse number of sessions each).
The “class’ label indicates two classes: good and bad channels (indicated as vertical lines
in orange). The ‘Groups’ label shows different colors for each subject, and the number of
channels in each group varies (depending on the number of EEG recording sessions for
each subject). It can be seen that the groups used as the training set for a particular fold
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are not used as the testing set (thereby avoiding data leakage), and in each fold, different
combinations of groups are used for training to effectively validate LOF on the limited EEG
samples (113 files with 62 channels each leading to a total of 7006 EEG channels).

In addition, since LOF scores can be different depending on the employed distance
metric, we compared the classification performance of LOF using each of these two metrics:
Euclidean (euc; ‘euclidean’ in MATLAB [40]) and Standardized Euclidean (seuc; ‘seuclidean’
in MATLAB [40]). As the other possible distance metrics, such as ‘correlation” and "spear-
man’, performed worse in our empirical analysis, we discarded them for further analysis.
To provide a quick review for the readers, here we define Euclidean (euc) and Standardized
Euclidean (seuc) of two point vectors p and g with cardinality n. The Euclidean distance is
the length of a line segment between two points in Euclidean space and is defined as

n

euc(p,q) =/ L@ — pi)° ©)
i=1

The Standardized Euclidean distance (seuc) is, in essence, the Euclidean distance
computed using standardized data (i.e., each coordinate difference is scaled by the corre-
sponding standard deviation) defined as

seuc(p,q) = \/ é((% — pi)/std(q;, pi))? (6)

Group Shuffle Split with 5 Folds

[ Testing set

Fold 1 I Training set

Fold 2

Fold 3

Fold 4

Fold 5

Class I THHEI 1 FE e T N PR
Groups | [

1000 1500 2000 2500 3000 3500 4000
Channel index

Figure 2. A working example of the group shuffle split cross-validation technique with test size =
50%. The x-axis represents the channel indices. The brown vertical lines in the ‘Class” row indicate
bad channels while the blue background represents good channels. ‘Groups’ indicate the subjects,
each containing a different number of sessions. For illustration purposes, we restricted the number
of folds to five and the number of subjects (‘Groups’) to seven. Note that in any given fold, no
group simultaneously takes part in both training and test sets, thereby avoiding subject-specific
data leakage.

2.3. Bad Channel Detection based on Statistical Measures

The simplest features to detect bad channels are channel-wise mean amplitude (Mean),
Inter-Quartile Range (IQR), or Median Amplitude Deviation (MAD). The outliers in the
data influence the Mean, IQR, and MAD values (even if IQR and MAD are more robust
measures than the Mean). As such, the thresholds that work well for noisier data cannot be
optimal for relatively cleaner data and vice versa.

As LOF measures the degree of outlierness by considering only the cluster of neigh-
boring channels and not the whole distribution of the data, the obtained LOF scores are
relatively insensitive to outliers present in the data compared to the aforementioned fea-
tures. To numerically validate this statement, we computed the Mean, IQR, and MAD
for each channel of all EEG files. Further, we computed LOF scores using both Euclidean
(euc) and Standardized Euclidean (seuc) as distance metrics for comparison. Each measure
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(e.g., Mean) from each EEG file is normalized to keep the [0, 1] range. Then, we changed
the decision threshold from 0 to 1 in steps of 0.005 and computed the False Positive Rate
(FPR, i.e., the probability of inaccurately predicting the “good” channel as “bad”) and True
Positive Rate (TPR, i.e., the probability of accurately predicting “bad” channel as “bad”) for
each threshold. An aggregate measure AUC (Area Under the Curve), which uses both FPR
and TPR is used as the validation metric. The feature with the highest AUC value can be
considered optimal for bad channel detection.

2.4. State-of-the-Art Bad Channel Detection Methods

In this section, we introduce the state-of-the-art methods for detecting bad channels in
EEG that we will compare with LOF.

1.  Kurtosis
Kurtosis is a higher-order statistical measure that reflects the Gaussianity of a dis-
tribution. Positive kurtosis indicates a super-Gaussian distribution, while negative
kurtosis denotes a sub-Gaussian distribution. Despite being a simple measure, it
has been widely used as a reliable feature for several artifact removal methods in
EEG [44-46]. We used the EEGLAB function pop_rejspec to detect bad channels with
default parameter settings. In particular, the kurtosis values computed for each chan-
nel were normalized to have zero mean and unit standard deviation (using z-score).
Channels with a z-score of more than five were identified as bad channels.

2. FASTER
FASTER is an automatic EEG artifact rejection method based on statistical thresholding
[24]. FASTER detects bad channels using the following features: (i) Inter-channel
Correlation Coefficient, (ii) Channel Variance, and (iii) Hurst Exponent [47,48].

3.  Clean Raw Data (CRD)
EEGLAB offers an automated approach to clean continuous raw EEG data using
the Clean Raw Data (CRD) plugin [36]. CRD first looks for “Flat-Line” channels
(i.e., channels that recorded constant values for at least 5 seconds). Then, it looks for
bad channels that had predominantly recorded power-line interference noise, and
finally, it looks for spatially uncorrelated channels.

4. HAPPE
While all the above-mentioned techniques were developed for adult EEG, the HAPPE
pipeline is one of the first preprocessing pipelines for removing artifacts from pediatric
EEG [25]. In such data, the level of noisiness is comparatively higher and difficult to
process. To detect bad channels, HAPPE uses the joint probability measure of the aver-
age log power computed between 1 and 125 Hz across all channels. Precisely, channels
are predicted as bad if the computed probability falls more than three standard devi-
ations from the mean. Since developmental EEG presents severe contamination of
artifacts compared to adult EEG, the authors performed the computations twice for
each file.

3. Description of EEG Datasets
3.1. Simulated EEG

As a proof-of-concept, we first validated LOF on simulated neurophysiologically
plausible EEG data with known ground truth for bad channels by using the toolbox
SEREEGA [32] along with our custom scripts to contaminate arbitrarily chosen channels.
Precisely, we generated Steady-State Visually Evoked Potential (SSVEP) data with 64
channels using the following components (See Appendix A for more details):

Component 1: An SSVEP response with a stimulation frequency of 0.8 Hz was added in
bilateral sources in the early visual cortex (MNI coordinates: [-8 —76 10] and [8 —76 10]).

Component 2: Event-unrelated ongoing EEG activity was generated in 62 randomly
selected cortical sources, plus in the 2 sources of the first component located in the early
visual cortex. Such activity is generated as Brown noise (power spectrum increasing as 1/ f2
for f — 0), mimicking the one observed in newborns [49]. Importantly, the signal-to-noise
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ratio between component 1 and component 2 was of the same order of magnitude as the
one measured on real, artifact-free EEG data.

Component 3: Once the neural signal was generated, artifacts in five randomly chosen
channels were added, consisting of intermittent potential shifts and flat signals mimicking
electrical discontinuities, and low-frequency fluctuations (0-10 Hz) mimicking local bad
contacts and movement artifacts. Specifically, flat signals of constant amplitude were
assigned to channels 1 and 49; channels 6 and 35 were contaminated with motion noise; and
channel 16 was contaminated with aperiodic artifacts, representative of jump-like artifacts
(see Figure 3).

10
1"
12
13

Ao ‘ )
A T TS N Y

18
19
20

Scale
75 uV

T

8 10 12 14 16 18 20 22 24 26 26 30 32 34 36 38 40 42 44 46 48 50 52
Time (s)
Figure 3. A sample portion of the simulated EEG. Bad channel 16 (in red) is contaminated with
aperiodic, step-like artifacts. The channels in black are good channels.

3.2. Newborn EEG

We used the datasets collected from two different studies: (a) 10 healthy human
newborns with a mean age of 60 + 22 h for the study investigating face perception in
newborns using the Frequency-Tagging paradigm [14], and (b) 11 healthy newborns with a
mean age of 40 + 16 h for another study investigating the neural basis of number perception
in newborns (Buiatti et al., in preparation). Both datasets were acquired using an EGI
amplifier (GES 400, Electrical Geodesic, Inc, Eugene, OR, USA) at a sampling rate of
250 Hz, referenced to the vertex. We applied a low-pass FIR filter with a cut-off frequency
of 40 Hz to the raw data. Subsequently, we applied a non-causal high pass filter with
[0.1 0.35] Hz as the transition band and a stop-band attenuation of 80 dB. Channels were
marked as bad by the authors of the respective studies using a semi-automated approach
(i.e., using the TrimOutlier toolbox [50] and visual inspection of time course and frequency
distribution). The resultant bad channels are considered as ground-truth in this work. We
highlight that the annotation of bad channels was carried out before the publication of the
original study [14].

3.3. Infant EEG

We used the datasets from a study investigating semantic understanding of common
nouns in preverbal 9-month-old infants [33] using the Event-Related Potentials (ERP)
paradigm. All 28 infants were born full term (gestational age: 37 to 41 weeks) in the normal
weight range (>2500 g). The datasets were acquired using an EGI amplifier (GES 300,
Electrical Geodesic, Inc., Eugene, OR, USA) at a sampling rate of 500 Hz with a low-pass
filter at 200 Hz. Continuous EEG was recorded by 125-channel Geodesic Sensor Nets
referenced to the vertex. All EEG data were visually inspected for bad channels by the
original study’s authors, which are considered the ground truth in this work. Again, the
annotation of bad channels was carried out before the publication of the original study [33].
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3.4. Adult EEG

We used the data from the study [51], validating alpha-power lateralization as feedback
to enhance the visual covert attention task. A total of 14 subjects with a mean age of 23 years
took part in the recordings on three different days, resulting in 130 EEG files (refer to [51]
for more details related to the experimental setup). EEG was recorded with a 64-channel
Hlamp EEG system (g.tec, Austria) at a sampling rate of 512 Hz. The electrodes were
positioned in the standard international 10-10 system. All datasets are available on the
OpenNeuro platform [34]. Out of 130 files, only 113 were usable, and the others were found
corrupted due to import issues. Before applying the LOF algorithm, we filtered the data
at 40 Hz to remove the high-frequency noise components, and subsequently, a high-pass
filter was applied to remove DC drifts. The ground truth bad channels are labeled by visual
inspection by the original study’s authors and indicated as "bad" in the channel description
for each EEG file on the OpenNeuro platform.

4, Results
4.1. LOF wvs. Statistical Measures

We compared the classification performance of statistical measures such as Mean, IQR,
and MAD as well as the LOF using Euclidean (euc) and Standardized Euclidean (seuc)
distance metrics by performing the Area Under the Curve (AUC) analysis. The results are
presented in Figure 4. For all three populations, we observed remarkable improvement in
performance (the AUC curves are concave) for both variants of LOF compared to all other
measures. This suggests that the LOF score is a robust measure against existing outliers
in the data compared to Mean, IQR, and MAD. Further, we observed that LOF using the
seuc metric outperformed the LOF using the euc metric for newborns and infants datasets,
while for the adults dataset, both metrics achieved similar performance. For the analysis
presented hereafter, we based LOF computation on the seuc metric.
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Figure 4. Robustness of LOF algorithm compared to the mean and the median-based (namely,
Interquartile Range (IQR) and Median Absolute Deviation (MAD)) techniques in detecting bad
channels in (a) newborn, (b) infant, and (c) adult data. For comparison within LOF, we used the
default Euclidean distance metric (euc) and the Standardized Euclidean metric (seuc). LOF (seuc)
performs better than LOF (exc) and the considered statistical measures.

4.2. Simulation EEG

We first validated LOF on a synthetic EEG dataset with known bad channels as a proof-
of-concept. The results obtained from the simulated data are summarized in Table 1. While
all methods detect the high-frequency muscle artifacts, only Kurtosis and LOF succeeded
in catching the aperiodic, step-like artifact channel (ID: 16). It is worth highlighting that
Kurtosis classified two good channels as bad (i.e., false positives) while LOF had no false
positives. However, we observed that LOF does not detect the flat line channels. To deal
with this, we integrated the flat line detector (used in the CRD toolbox [23]) with LOF in
our tool [13], resulting in an F1 Score of 1. We, therefore, recommend applying a flat line
detector prior to LOF to obtain the best results. To understand the influence of the number
of channels in the EEG system, we simulated data with 32 and 16 electrodes using the same
strategy. LOF produced similar results (i.e., F1 Score of 1) with 32-channel simulated EEG,
and a slight performance degradation was observed (F1 Score of 0.89) with 16-channel EEG,
still outperforming comparative methods.

Table 1. Summary of results on simulated EEG with 64 channels. ND = Not Detected; PD = Partially
Detected; FD = Fully Detected.

Channel ID 1,49 6,35 16
Methods | Kind of Artifacts Flat Line Motion  Aperiodic False Positives  Fl Score

Kurtosis PD FD FD 2 0.73
FASTER ND FD ND 1 0.4

CRD FD FD ND 0 0.89
HAPPE FD FD ND 0 0.89

LOF ND FD FD 0 0.75

LOF + Flat Line Detector FD FD FD 0 1
4.3. Real EEG

We performed 10-fold cross-validation [42] for each population dataset (with group
shuffling [41] for adult data and random shuffling for infants and newborns data), and the
average F1 Score across all folds is summarized in Figure 5. The numerical values are also
reported in Table 2.
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Figure 5. Performance of bad channel detection methods using the 10-fold cross-validation tech-
nique on (a) Newborn, (b) Infant, and (c¢) Adult EEG. The error bars represent the s.e.m. across
validation folds.
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Table 2. Summary of results on real EEG.

Mean F1 Score (s.e.m.)

Data/Method Kurtosis FASTER CRD HAPPE LOF
Newborn 0.30(0.022)  0.40(0.014)  0.38(0.019)  0.45(0.016)  0.63 (0.018)
Infant 023(0.012)  0.17(0.011)  021(0.006)  0.25(0.008)  0.35 (0.007)
Adult 0.14(0.008)  0.15(0.006)  0.11(0.008)  0.24 (0.006)  0.45 (0.016)

LOF unequivocally outperformed the other methods in all kinds of data, proving
its robustness to different SNR ranges of real data obtained using distinct experimental
paradigms. For newborns (Figure 5a) and infants (Figure 5b), we observed improved
performance of up to 40% compared to other SoA methods. For adults (Figure 5c¢), an
improvement in performance up to 87.5% was observed.

4.4. LOF Optimal Threshold

We then investigated how the optimal LOFy,, varies within and across populations by
using 10-fold cross-validation (see Figure 6). For newborns (noisy data, frequency-tagging
paradigm), on average, the optimal threshold was identified as 2.6 £ 0.16. For infants
(mildly noisy data, ERP paradigm), it was 1.6 & 0.24. For adults (relatively clean data,
event-related design with spectral power analysis), a further relaxed threshold of 1.4 & 0.07
was identified to be optimal.

3.5
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o (] o (]
3
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[
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5 20
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(] [
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Figure 6. Summary of optimal range of LOFy,, for different populations. For newborns (low SNR
data), a relaxed threshold of 2.6 is optimal, whereas, for infants (better SNR data), a value of 1.6 is
found to be optimal. Finally, for adults (high SNR data), a conservative threshold of 1.4 is optimal.

5. Discussion

Most current bad channel measures rely on distribution-based statistics (Mean, Vari-
ance, Kurtosis). The primary drawback of such measures is that the underlying EEG data
distribution is not purely Normal/Gaussian. Therefore, fitting the data into such standard-
ized distributions might not produce satisfactory results. Further, these methods have been
calibrated and validated on only one kind of EEG (i.e., either adult EEG or infant EEG).
Given the differences in the EEG distribution according to the population and experimental
design, these measures might not be reliable for other kinds of EEG than the ones they are
intended for. This work introduced a unique, robust measure (Local Outlier Factor) for
detecting bad channels adapted to EEG acquired in any setting.

To better understand why and under what conditions LOF works, we simulated
realistic EEG with known bad channels. We showed that LOF efficiently captures the
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non-stereotypical motion artifacts differently from other methods while simultaneously
keeping false positives to a minimum. The only limitation is that LOF fails to detect the
flat-line channels. Therefore, we recommend that readers use a flat-line detector [36] before
LOF analysis for better results.

LOF is an unsupervised outlier detection originally proposed for suspicious activity
detection in Knowledge Discovery in Database (KDD) applications. However, there is no
clear indication of which should be the decision threshold to detect outliers. In theory, a data
object (in our case, an EEG channel) is an outlier if it has a LOF score of more than 1.0. Our
preliminary analysis showed that this threshold is too strict (resulting in higher false alarms)
for EEG data, which motivated the need to find the optimal LOF threshold. In this study, we
showed how to find the optimal LOF threshold using a single dataset (employing a 10-fold
cross-validation) to get the best results. Our analysis notably suggested that an optimal
threshold for LOF lies around 2.5 for noisier data (newborns EEG) and approximately 1.5
for relatively cleaner data (infants and adults EEG). We strongly recommend the users
follow a similar procedure to calibrate the LOF threshold for their own data. Precisely, we
suggest the users take a portion of datasets to be analyzed (or previously collected datasets
using similar EEG settings) and visually inspect for the bad channels to calibrate the LOF
threshold. In cases where it is impossible (due to the unavailability of labeled data), we
suggest an initial threshold of 1.5 for infant and adult EEG and 2.5 for newborn EEG based
on our study results. In the future, it is desirable to have variants of LOF or other local
outlier detection algorithms without the subjectivity of the decision threshold. As such, it
is worth investigating the algorithms proposed in [20,21] for bad channel detection.

Another hyperparameter we considered is the distance function that LOF utilizes
to compute the local density. We analyzed four possible metrics, namely: Euclidean,
Standardized Euclidean, Pearson Correlation, and Spearman Correlation, and we found
the latter two metrics yielded worse results and discarded them from further analysis.
Among the Euclidean metrics, the Standardized Euclidean (seuc) performed better than the
Euclidean distance (euc). This comparison suggests that for reliable bad channel detection
using LOF, the direction of electrical activity plays a more critical role than the magnitude.
It is a desirable property of LOF applied to EEG as the intrinsic amplitude fluctuations (due
to sensor location and EEG oscillations [52]) do not impact the outlier detection.

Since LOF is a density-based approach, we also investigated the influence of the num-
ber of channels on the algorithm’s performance. Our empirical results in both simulated
and real adult EEG data suggest that LOF is suitable for high-density EEG setups with at
least 32 channels. Therefore, we recommend that users do not use the proposed approach
on low-density EEG (i.e., less than 32 channels). Further developments in the future are
required to make LOF suitable even for low-density EEG.

Another desirable property of LOF is that it does not assume any distribution for
the raw EEG data. The LOF measure is loosely coupled to clustering algorithms (such
as k-nearest neighbors algorithm [31]) and is computed using the relative density of the
identified clusters [17]. Thanks to this, LOF is adaptable to EEG acquired in different
settings. Further, the LOF score is comparatively robust to outliers in the data, as shown
in Figure 4a. With optimal parameters, LOF succeeded in detecting the annotated bad
channels compared to the traditional methods, such as Kurtosis, FASTER, and CRD, which
assume a normal distribution for the EEG signal.

Remarkably, the second-best performing algorithm was HAPPE [25] with all datasets.
This merit is likely because HAPPE is designed to deal with low SNR datasets (infants and
children EEG), while other methods were validated on adult EEG (where the data quality is
comparatively better). We also highlight that it is the only algorithm that uses normalized
power values (i.e., frequency domain) to detect bad channels. All other methods use
time-series measures (e.g., Hurst Exponent, Pearson Correlation, Channel Variance). This
observation suggests that the frequency-specific measure is more efficient in detecting
artifacts at the channel level.
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Given the outstanding performance of LOF, it is a promising bad channel detection in
EEG acquired in any context from any population. In our previous work, we integrated LOF
into NEAR, the artifact pipeline developed for newborn and infant EEG data [13]. Thanks
to its high degree of versatility, LOF can also be integrated into other existing EEG artifact
removal pipelines such as FASTER (for adult EEG) or HAPPE (for infant EEG) by replacing
their respective bad channel techniques with LOF, which might lead to better overall artifact
removal. We made the source code freely available as an EEGLAB plugin [38]. Even though
we have not investigated the performance of LOF on Magneto-encephalography (MEG)
data, we believe LOF can benefit MEG artifact removal as well.

6. Conclusions

In this work, we proposed an adaptable and robust EEG bad channel detection tool
based on the Local Outlier Factor (LOF) algorithm. We demonstrated that LOF scores
are less sensitive to outliers present in the data, thereby providing a better estimation
of the outliers compared to existing measures used in the EEG literature. We validated
our approach on real EEG acquired from three populations representative of different
experimental designs and SNR ranges. This is the first study to validate bad channel
detection methods on different population datasets. We showed that LOF is flexible to all
kinds of EEG and outperforms the widely used SoA bad channel detection methods.
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Appendix A. Simulating EEG Using SEREEGA Toolbox

In this work, we generated Steady-State Visually Evoked Potential (SSVEP) data
with 64 channels using the toolbox SEREEGA [32]. There are three components in this
process. First, a component containing SSVEP response is simulated. Second, a component
containing background EEG activity is generated. These two components are combined
using a defined Signal-to-Noise ratio. The third component contains the details of the
added channel artifacts. Here, we provide the relevant code snippets.

Component 1: An SSVEP response with a stimulation frequency of 0.8 Hz was added
in bilateral sources in the early visual cortex (MNI coordinates: [-8 —76 10] and [8 —76 10]).
As the SEREEGA toolbox does not directly support SSVEP data simulation, we used the
special feature within the toolbox that allows the inclusion of the existing time series. To do
this, we first generated two symmetrical sources using the following MATLAB command:
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% generate two symmetrical sources in the early visual cortex

1

2 sourcel = 1f_ get_source_nearest (leadfield, [-8 =76 10]); $left hemisphere
3 source2 = 1f_get_source_nearest (leadfield, [8 -76 10]); %right hemisphere
4 sourceVl=[sourcel source2]; % combined

Then, we created a data class component that contains SSVEP signal of 0.8 Hz
as follows:

1 SSVEP = struct(); % empty struct

2 SSVEP.data = sin(2xpix0.8xt); % 0.8 Hz sinusoidal signal

3 SSVEP.index = {'e', ':'};

4 SSVEP.amplitude = 0.5; % this value is derived from a real newborn EEG dataset
5 SSVEP.amplitudeType = 'relative';

We generated the SSVEP component using the SEREEGA function utl_create_component
as follows:

1 SSVEP_component = utl_create_component (sourceVl, SSVEP, leadfield);
2 SSVEP_scalp = generate_scalpdata (SSVEP_component, leadfield, config); %
scalp EEG is generated

Component 2: Event-unrelated ongoing EEG activity was generated in 62 randomly
selected cortical sources, plus in the 2 sources of the first component located in the early
visual cortex.

To simulate background EEG activity, we first generated 62 noise sources and projected
the Brown noise across all those sources using the same function utl_create_component.

1 % generate 62 sources of noise in random voxels

2 noise_source = 1f_get_source_spaced(leadfield, 62, 25);

3 noise_signal = struct('type', 'noise', 'color', 'brown', 'amplitude', 1);

4 noise_components = utl_create_component ([noise_source sourceVl],
noise_signal, leadfield);

5 noise_scalp = generate_scalpdata (noise_components, leadfield, config);

Then, Component 1 (SSVEP) and Component 2 (Background noise) were mixed using
the function utl_mix_data for a defined SNR as follows:

1 signal_scalp = utl_mix_data (SSVEP_scalp, noise_scalp, snr); % SSVEP and ...
background EEG are mixed

Component 3: Once the neural signal was generated, artifacts in five randomly chosen
channels were added by generating flat signals, motion noise, and jump-like artifacts.

To generate flat signals, we assigned a constant amplitude for channels 1 and 49. To
generate motion noise on single channels, we designed a bandpass filter (0-10 Hz passband)
and superimposed the filtered signals with original signals at random time intervals.
Likewise, to create the jump-like artifact, we generated a sawtooth signal (MATLAB [40])
and superimposed it at random time points with the original signal.
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