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Abstract
Real-world data are considered a potentially valuable source of evidence for assess-
ing medical technologies in clinical practice, but their widespread use is hampered 
by numerous challenges. Using the case of coronary stents in Italy, we investigate 
the potential of administrative databases for estimating costs and health outcomes 
associated with the use of medical devices in real world conditions. An administra-
tive dataset was created ad hoc by merging hospital records from patients admitted 
between 2013 and 2019 for stent implantations with ambulatory records, pharma-
ceutical use data and vital statistics. Health outcomes were multifold: all-cause and 
cardiac mortality and myocardial infarction, within 30 days, 1, 2, 5  years. Costs 
were estimated from the National Health System perspective. We used multivaria-
ble Cox models and propensity score (PS) methods (PS matching; stratification on 
PS; inverse probability of treatment weighting using PS; PS adjustment). 257,907 
coronary stents were implanted in 113,912 patients. For all health outcomes and 
follow-up times, and across all methods, patients receiving drug-eluting stents 
(DES) presented lower risk. For all-cause mortality, the DES patient advantage 
over bare-metal stent (BMS) patients declined over time but remained significant 
even at 5 years. For myocardial infarction, results remained quite stable. The DES 
group presented lower cumulative total costs (ranging from 3264 to 2363 Euros 
less depending on methods). Our results confirm the consolidated evidence of the 
benefits of DES compared to BMS. The consistency of results across methods 
suggests internal validity of the study, while highlighting strengths and limitations 
of each depending on research context. Administrative data yield great potential 
to perform comparative effectiveness and cost-effectiveness analysis of medical 
devices provided certain conditions are met.
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1 | INTRODUCTION

In the past decade we have witnessed increasing calls for greater use of real-world data (RWD) and real-world evidence (RWE) 
by decision makers, both for regulatory reasons (i.e., enabling faster provision of innovative technologies to patients) and to 
support health technology assessment (HTA) and decisions regarding market access and reimbursement. The reasons for this 
increased attention are multiple. First, – especially in the case of highly innovative products -clinical trial-generated evidence 
may not be available at all, leaving decision makers with the option of delaying the decision or making the assessment on 
available evidence. Second, evidence stemming from RWD is expected to address some of the limitations associated with the 
use of trial-generated efficacy data. It has been argued that, due to the complexity of treatment regimens, demographic and 
clinical heterogeneity of patients receiving treatments, and the long time frame of many treatments, trial-generated data present 
limitations to predict the relative effectiveness and economic impact of health technologies in routine clinical practice (Makady 
et al., 2017).

Contemporarily with this greater opening by HTA agencies to RWD, the quantity and availability of RWD has grown expo-
nentially, thus providing more opportunities to researchers to generate RWE. Although interest is observed across all types of 
health technologies, the greatest opportunity for wider use of RWD may be in the medical device field. This is due to intrinsic 
characteristics of medical devices that make their impact particularly sensitive to the real-life conditions in which they are used. 
The issues include iterative and rapid changes in device design, the need to account for the role of operator expertize in clinical 
outcomes (i.e., the effectiveness of a device is likely to differ largely from its efficacy due to use-specific effects, like the pres-
ence of a learning curve), and challenges in the realization of an experimental study which does not grant the elimination of 
biases from selection or awareness (lack of blinding). In addition, diffusion of medical devices in clinical practice, in the vast 
majority of cases, is not bound to experimental studies, which compels decision-makers to decide upon other types of evidence 
(Tarricone, Torbica, & Drummond, 2017).

While the growing availability of RWD could be seen as a prime opportunity to respond to the changing needs of decision 
makers, the enormous variety of data sources could lead to confusion. RWD can include an infinite variety of sources from 
medical health records, registries, biobanks, administrative data, health surveys, observational studies, health insurance data to 
data generated from mobile applications, etc. Thanks to growing attention on the matter recently, there has been some effort to 
reach consensus on the definition of RWD that has brought some clarity (Makady, de Boer, Hillege, Klungel, & Goettsch, 2017).

With specific focus on medical devices, a plethora of potential sources of data stems from routine clinical practice. A recent 
study systematically mapped RWD sources in 15 European countries for three different medical devices. The number of sources 
varied substantially across countries for each case study, and there was enormous heterogeneity in the quality and quantity of 
data collected. Depending on the characteristics of the devices and the stage of the product lifecycle, certain types of RWD 
sources were more commonly available: registries are the most important source for mature technologies, but they present a 
series of challenges for generating RWE (Pongiglione et al., 2021).

Digital innovation has permitted the generation, collection and storage of a large volume of health-related data that can be 
employed to track patient health and monitor health service delivery and technology use during all stages of the life cycle. In 
recent years, electronic administrative databases have become increasingly popular as a source of RWD for several reasons. 
First, the virtually unselected nature of the target population allows for results that can be generalized to real-world routine 
clinical practice. Second, the availability of large temporal series makes it possible to study the long-term outcomes of chronic 
treatments. Third, data are routinely collected so that prompt availability of data reduces the time and costs of research (Corrao 
& Mancia, 2015).

While all these features hold the promise of better matching policymakers' needs, use of administrative data for evaluation 
of medical devices presents numerous challenges that need to be adequately addressed (Tarricone et al., 2017). In recent years, 
methodological research has made extraordinary progress with the development of methods, algorithms, and designs that over-
come, or at least rationally take into account, the pitfalls of observational research, including those based on administrative data 
sets (Berger et al., 2017; Gansen, 2018; Mendlowitz et al., 2020; Wang et al., 2017).

The general aim of this study is to assess the feasibility and applicability of using administrative data to generate useful 
evidence for informing HTA of medical devices. As mentioned above, administrative data routinely collected by healthcare 
systems provide unique datasets that represent several advantages in addition to being readily accessible by decision makers. 
However, the extent to which this evidence and the methods used can support decision making on medical devices remains 
unclear.

We address this gap by conducting an empirical analysis of a large administrative database from the Lombardy region, the 
largest and most affluent region in Italy, that systematically collects data on demographic, clinical and economic information of 
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patients and healthcare structures in the region, allowing for an analysis of the entire history of diagnostic and therapeutic path-
ways of each individual. Our empirical analysis is aimed at providing a proof-of-concept case study on the opportunities and 
challenges of using administrative data for cost and outcome evaluation of medical devices. Specifically, we use the case study 
of coronary stents to compare the effectiveness on health outcomes of two types of medical devices and assess relative costs; 
this translates into answering the following research question, “Is beginning treatment with drug-eluting stents more effective 
than beginning treatment with bare-metal stents in reducing mortality and myocardial infarction observed up to 5 years?” 
“Are  there differences in cumulative medical costs incurred up to 5 years by the two groups?”

2 | DATA AND METHODS

2.1 | Lombardy administrative databases

The Lombardy Region collects and analyses healthcare data to evaluate and compare the appropriateness, effectiveness and 
efficiency of healthcare provided over population groups or structures. The regional databases contain sensitive data according 
to the definition of Legislative Decree 196/2003, and we could access them through a formal agreement under the premise of a 
European Horizon 2020 project COMED (https://cordis.europa.eu/project/id/779306).

More specifically, we had access to the following administrative databases: hospital discharge records (‘Scheda di dimis-
sione ospedaliera’ (SDO)) which includes a special appendix for endoprostheses implanted during the admission, called 
“SDO4”; ambulatory records; pharmaceutical use data and vital statistics. Discharge records include information on diagnoses, 
procedures, basic demographics, length of stay. Diagnoses and procedures are classified according to the International Classi-
fication of Diseases-ninth revision- Clinical Modification (ICD-9-CM) codes. Reimbursement to healthcare providers is based 
in the Diagnosis Related Groups (DRG) ICD-9-CM version for hospitalizations, and on a specific list of services and drugs for 
outpatient care (Mazzali et al., 2016).

Each database includes a unique, anonymized ID for each patient, which allows for follow up over time as well as linking 
the records from different datasets to combine patient demographic and clinical characteristics (from SDO) with information on 
the device implanted (from SDO4), medications prescribed and used, outpatient visits performed, and vital statistics. Data from 
SDO, ambulatory records and pharmaceutical use data have been available since 2000, while SDO4 since 2010. As described 
in the next section, we define as baseline the first stent implantation registered between 2013 and 2019; hence, we are able to 
control for previous hospitalizations as well as implantations.

2.2 | The case study: Coronary stents

The choice of using coronary stents as a case study, comparing bare-metal stents (BMS) and drug-eluting stents (DES), was 
based on the characteristics and clinical history of those medical devices. The scientific evidence and expert opinion on these 
technologies have changed substantially over time. DES entered the market in the early 2000s and was initially considered supe-
rior to BMS, resulting in quick adoption in the United States (US) and in most European countries (Epstein et al., 2012; Packer 
et al., 2006). In Italy, DES procedures comprised about 38% of all percutaneous transluminal coronary angioplasty (PTCA) 
procedures between 2003 and 2007, rising from 30% in 2004 to more than 50% in 2006 (Cappellaro et al., 2011). However, 
in the initial phase of DES use, an increase in the incidence of reported sub-acute stent thrombosis and higher long-term 
mortality rates were recorded, and the preference toward the use of DES declined after 2005 (Chitkara & Pujara, 2010). With 
the entrance into the market of second generation DES, with considerable improvements over the previous version, their use 
increased again (Epstein et al., 2012), and contemporary DES were generally preferred to BMS due to a lower risk of reste-
nosis (Bønaa et al., 2016). In 2012, the European Society of Cardiology (ESC) issued a Class IIa, Level A recommendation 
stating that for the treatment of patients with a STEMI diagnosis, DES should generally be preferred over BMS unless there are 
specific contraindications (Steg et al., 2012). The more recent ESC guidelines, published in 2014 (Kolh et al., 2014) and 2018 
(Neumann et al., 2019), recommended DES use even further, making it a Class Ia recommendation.

From the cost perspective, the purchasing costs for DES are generally higher compared to BMS, but their long-term 
outcomes make them more cost-effective than BMS (Cheng et al., 2019).
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2.3 | Study design

When designing non-randomized studies for comparative effectiveness, a useful structural approach is the so-called ‘target 
trial’ approach proposed by Hernan and Robins (Hernán et al., 2016). It suggests designing any observational data analysis as if 
one would design a randomized clinical trial and outlines a framework for comparative effectiveness research using RWD that 
revolves around the explicit description and emulation of the target trial. Although the purpose of this study it is not to emulate 
a specific existing RCT, it is useful to structure the research following the main steps recommended by Hernan. We developed 
a study protocol accordingly, available as supplementary material, and have organized the description of methods according to 
the elements of the framework.

2.3.1 | Population study and eligibility criteria

To identify hospitalizations for percutaneous coronary interventions involving coronary stent implantation, we extracted data 
from the dataset “Endoprosthesis admission” (SDO4) when the device implanted was either a drug eluting coronary stent or a 
non-drug eluting coronary stent, for the years between 2013 and 2019. If a SDO4 record was not available, but hospital admis-
sions reported a stent insertion procedure, patients were also eligible.

Our sample consisted of patients admitted to hospital between 2013 and 2019 for a stent implantation (i.e., we considered 
as baseline the first admission since 2013, where it was the first hospital admission ever for a patient or the first during the 
observation time). Patients receiving both types of stents simultaneously were not included.

2.3.2 | Treatment strategy and assignment

Two treatment strategies were compared: DES implantation and BMS implantation. The intention was to compare a treatment 
strategy that begins with DES compared to one that begins with BMS, irrespective of what subsequent treatment was received 
(e.g., including patients who received BMS and subsequently received DES).

The treatments in the observational study are identified from the SDO4 data and defined using codes specific to this dataset. 
Specifically, the codes 02B and 02H were used for DES (in two cases, the device is the same, the way the service is delivered 
is different, i.e., outsourced vs. not outsourced) and the codes 02A and 02G for BMS. 1

When data from SDO4 were not available, but the corresponding hospital admission record was available, we identified 
treatments based on ICD-9-CM codes 36.06 (Insertion of non-drug-eluting coronary artery stent(s)) for BMS and 36.07 (Inser-
tion of drug-eluting coronary artery stent(s)) for DES.

Subjects were assigned to a treatment arm at the time of their first hospital admission for a stent implantation between 2013 
and 2019. There was no Grace period -time during which treatment initiation can happen-in the treatment strategy.

2.3.3 | Follow-up and clinical outcomes

The study baseline is at the time of eligibility, which is when individuals are admitted for stent implantation. The study's 
follow-up period starts at baseline and ends at the end of the 5-year follow-up period unless right censoring occurs. The three 
endpoints of interest for our study were time-to-event in nature and consisted of all-cause and cardiac mortality and the occur-
rence of myocardial infarction (MI) at different time points: 30 days, 1 year, 2 and 5 years after discharge for the baseline proce-
dure. Data on deaths were retrieved from the regional dataset on vital statistics. Cardiac mortality was defined based on ICD10 
classification selecting all deaths whose cause was under chapter I “cardiac rheumatoid mortality”. MI was identified through 
hospital admissions with ICD-9-CM diagnosis codes 410. x.

2.4 | Economic outcomes

Costs were estimated from the National Health System perspective and are reported in Euros. Resource utilization included 
baseline costs, consisting of the cost of the first hospital admission and cost of implanted device(s); and follow-up costs up to 
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5 years including acute heart disease-related health care costs for inpatient admissions and general and heart-related health care 
costs for outpatient visits, costs of coronary stents implanted subsequently, and general and heart disease-related medications 
since baseline admission.

We identified heart disease-related hospital admissions based on the literature and discussions with a clinician expert in 
cardiology, and selected the following diagnosis codes: 410.x (acute myocardial infarction), 412 (old myocardial infarction), 
429.7x (certain sequelae of MI not elsewhere classified); and procedure codes: 36.1x (Bypass anastomosis for heart revascular-
ization), 00.6x (procedures on blood vessels), 36.0x (Removal of coronary artery obstruction and insertion of stent(s)), 39.50 
(Angioplasty or atherectomy of other non-coronary vessel(s)).

For outpatient visits, the ICD-9-CM codes are not a compulsory field in the discharge form, hence we selected events based 
on the compulsory field “specialty code”; in particular: cardiology, vascular surgery for angiology, vascular surgery for angiol-
ogy in outpatient surgery, and check-up visit.

The use of medications was measured using Anatomical Therapeutic Chemical (ATC) codes. The selection was based 
not only on the compounds specifically prescribed for coronary diseases, but also those used for the control of the traditional 
risk factors and the most frequent comorbidities. For medical therapy after PTCA with stent implantation, we selected aspirin 
(B01AC06), clopidogrel (B01AC04), Ticagrelor (B01AC24), Prasugrel (B01AC22), combinations (B01AC30), proton-pump 
inhibitor (A02BC*), acetylsalicylic acid, combinations with proton pump inhibitors (B01AC56), ticlopidine (B01AC05) 
(Brilakis, Patel, & Banerjee, 2013); we also considered the following extra medications: oral hypoglycemic drugs and/or insulin 
(A10), antihypertensive drugs (C02, C03, C08), cardiac drugs (C01), statins (C10AA, C10BA02), beta-blocking agents (C07), 
angiotensin-converting enzyme (ACE)-inhibitors/angiotensin II receptor antagonists (AAIIs) (C09) (Brilakis et  al.,  2013; 
Degli Esposti, Perrone, Veronesi, Buda, & Rossini, 2018).

2.5 | Baseline characteristics

Demographic characteristics of patients were available from SDO and included sex and age in years. Clinical variables were 
selected based on the literature (Bønaa et al., 2016; Piccolo et al., 2019) and availability from administrative records. It is indeed 
recommended to select potentially prognostically important covariates based on subject-matter expertize and existing literature, 
rather than on formal statistical hypothesis testing in the study sample (Austin, 2014).

The selected covariates comprised main diagnoses at the time of indicator admission, in particular angina (identified through 
ICD-9-CM 413), MI (ICD-9-CM 410. x), no ST-segment elevation (ICD-9-CM 410.7); ST-segment elevation (ICD-9-CM 
410.* excluded 410.7*); and co-morbidities distinguishing diabetes mellitus (ICD-9-CM 250.x), hypertension (ICD-9-CM 
401–405), hypercholesterolemia (ICD-9-CM 272.0) and hyperlipidemia (ICD-9-CM 272.2, 272); number of stents implanted 
per patient (retrieved from SDO4). In addition, we estimated the Charlson Comorbidity Index (CCI) (Charlson, Pompei, Ales, 
& MacKenzie, 1987; Gasparini, 2018). Then, we considered an indicator of previous hospital admission within 5 years before 
the baseline admission, as a proxy for general health before baseline; specific medical history within the previous five years 
included diabetes mellitus measured from hospital admissions (ICD-9-CM 250. x) and drug prescriptions (ATC A10x); hyper-
tension (ICD-9-CM 401–405 and/or drug prescription for ATC C02) and hypercholesterolemia (ICD-9-CM 272.0 and/or drug 
prescription for ATC C10); previous myocardial infarction; previous stroke (ICD-9-CM 434.9), previous coronary-artery 
bypass grafting (ICD-9-CM 36.1).

2.6 | Statistical analyses

Continuous variables were presented as the mean ± standard deviation and categorical variables as numbers and percentages. 
Clinical and demographic characteristics between the study groups (DES and BMS) were compared with the Chi-squared test 
for categorical variables and t-test for continuous variables.

2.6.1 | Naïve analyses

First, we present univariate Kaplan and Meier (KM) survival curves at 30-day, 1-year and 5 years for all-cause mortality and 
MI by stent type for the selected sample. Symmetrically, we estimated unadjusted hazard ratios (HRs) with 95% confidence 
intervals (CIs) from Cox proportional hazard regression model for population differences.

PONGIGLIONE aNd TORBICa 29

 10991050, 2022, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hec.4562 by C

ochraneItalia, W
iley O

nline L
ibrary on [30/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



These results are prone to bias, but are helpful to compare an expectedly wrong analysis to the improved adjusted analyses, 
illustrated below. We expect that the adjusted analyses will give a different result to the naïve analyses, and, specifically, HRs 
closer to 1, which suggests they are to some extent controlling for prognostic differences in patients who received the different 
treatments.

2.6.2 | Multivariable-adjusted models

We then used Cox proportional hazards regression models to provide adjusted hazard ratios (HRs) with 95% confidence inter-
vals (CIs) of the indicator variable denoting stent treatment status for all-cause mortality and MI, adjusting for a set of baseline 
covariates described in Section 2.6. For cardiac deaths, as a sensitivity analysis, we also used a Fine and Gray's sub-distribution 
hazard model considering non-cardiac deaths as a competing risk (Fine & Gray, 1999).

After exponentiation, the regression coefficients derived from an adjusted Cox proportional hazards regression model 
denotes the conditional HR: the relative change in the hazard of the occurrence of a time-to-event outcome because of treat-
ment. A conditional treatment effect is the average effect, at the individual level, of changing a subject's treatment status from 
untreated to treated.

Differently from real-world studies, randomized trials by using a Cox proportional hazards model allow for estimating 
marginal treatment effects, that is, the difference in outcomes between two populations that are identical in all respects, except 
that in one population everyone is treated, while in the second population everyone is untreated (Austin, 2014, p. 1244).

Statistical methods, such as propensity score methods, can be applied in real-world settings to estimate marginal effects, 
whereas conventional regression adjustment estimates conditional effects (Austin,  2014). However, when propensity score 
methods, such as propensity score matching, are used with prognostic covariates re-introduced in the final Cox model, the effect 
estimated is conditional.

2.6.3 | Propensity score methods

The propensity score is the probability of receiving the treatment, given a set of observed covariates. Propensity scores are 
used to reduce confounding and match groups based on these covariates. Following the approach of Austin (2014) in the use of 
propensity score methods with time-to-event outcomes in real-world settings, we selected four different propensity score meth-
ods for reducing the effects of confounding when estimating the effects of treatment on outcomes: propensity score matching, 
inverse probability of treatment weighting (IPTW) using the propensity score, propensity score subclassification and covariate 
adjustment using the propensity score.

2.6.4 | Propensity score matching

Propensity score was first estimated fitting a logistic regression for the probability of receiving a DES versus BMS, conditional 
on the demographic and clinical covariates. We then used nearest neighbor with replacement, which is particularly helpful in 
settings where there are few controls compared to the treated individuals (Stuart, 2010)- with a caliper matching of 0.2 σp (stand-
ard deviation of the estimated propensity scores of the sample), already applied to the case of coronary stents (Austin, 2011; 
Iqbal et al., 2016) and 1:3 ratio. Practically, given the peculiarity of treatment in the period considered in this study, such that 
cases largely and progressively outnumber controls, we derived propensity score using a logistic regression which modeled 
the probability of receiving BMS versus DES. Nearest neighbor matching usually estimates the average treatment effect on 
treated (ATT), as it matches control individuals to the treated group and discards controls who are not selected as matches 
(Stuart, 2010). In this case, however, because a caliper was used, the estimand corresponds to neither the ATT nor the average 
treatment effect (ATE), but rather to an average treatment effect in the remaining matched sample (ATM) (Greifer, 2022). The 
success of matching was examined using weighted standardized differences in the distribution of the potential confounders 
between the two stent groups, and a difference of 10% between the 2 groups was considered acceptable (See Table A1 of the 
Supplementary Material for balance diagnostics and Figure A2 for propensity score distribution after matching).

Finally, univariate Cox proportional hazards regression models were run to compare the risk of outcomes with DES versus 
BMS use in the propensity-matched cohorts (marginal effect), and then adjusting for all the covariates used in the multivariable 
Cox PH models, estimating conditional effects.
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2.6.5 | Propensity score subclassification

Subclassification forms groups of individuals who are similar as defined by the decile of the propensity score distribution 
(Stuart, 2010). Propensity score subclassification provides ATT. Austin (2013) examined the performance of several propensity 
score subclassification-based estimators of the marginal effects, all relying on pooling stratum-specific effects, and found high 
bias highlighting that the method does not estimate marginal effects, but conditional measures of effect. To overcome this bias, 
we used the stratum weights to estimate marginal effects, as suggested by Greifer (2022). Then we estimated conditional effects 
introducing into the model all the covariates included in the multivariable Cox model described above.

2.6.6 | Inverse probability of treatment weighting using the propensity score

Inverse probability of treatment weighting uses weights based on the propensity score to create a synthetic sample in which 
the distribution of measured baseline covariates is independent of treatment assignment (Austin, 2014). In a point treatment 
situation (time-invariant covariates), we can adjust for a set of confounders C when estimating the effect of discrete exposure A 
by weighting observations i by the inverse probability weights. We used stabilized weights (Hernán, Miguel Ángel, Brumback, 
& Robins, 2000; van der Wal, Willem M & Geskus, 2011), that in a point treatment situation are expressed as

𝑤𝑤𝑖𝑖 =
𝑃𝑃 (𝐴𝐴𝑖𝑖 = 𝑎𝑎𝑖𝑖)

𝑃𝑃 (𝐴𝐴𝑖𝑖 = 𝑎𝑎𝑖𝑖|𝐶𝐶𝑖𝑖 = 𝑐𝑐𝑖𝑖)
 

The denominator contains the probability of the observed exposure level given the observed values of covariates C, and the 
numerator contains the probability of the observed exposure level, which is just the observed frequency.

These weights were assigned to each patient, with IPTW = 1/wi for treated patients (DES); and IPTW = 1/(1-wi) for control 
patients (BMS). They allow for estimating the ATE. Moreover, we trimmed weights that exceed the 99.5 percentile to that value 
(Austin & Stuart, 2015).

In order to also estimate ATT, we assigned weight 1 to treated and wi equal to 𝐴𝐴
𝑒𝑒𝑖𝑖

1−𝑒𝑒𝑖𝑖

 to untreated 𝐴𝐴

(

𝑤𝑤𝑖𝑖 = 𝐴𝐴𝑖𝑖 + (1 − 𝐴𝐴𝑖𝑖)
𝑒𝑒𝑖𝑖

1−𝑒𝑒𝑖𝑖

)

 .
Figure A3 of the appendix illustrates ATE stabilized weights and ATT weight distribution plots.
Finally, Cox proportional hazards regression with robust standard errors (Austin, 2016) were used to determine the effect 

of DES use on selected outcomes incorporating all covariates included in the multivariable models and weighting for IPTW in 
the final model.

2.6.7 | Covariate adjustment using the propensity score

Finally, we used covariate adjustment using the propensity score. Here we estimated the propensity score for receiving DES 
versus BMS using logistic regression and then run a Cox model to estimate the treatment effect on time-to-event outcomes 
controlling for the propensity score. Austin (2013) showed via a Montecarlo simulation that the estimation of marginal hazard 
ratios with adjustment using PS is substantially biased, and when estimating conditional hazard ratios, the magnitude of bias 
seems to depend on settings (Austin 2013).

2.6.8 | Kaplan-Meier Sample Average

To estimate and compare the cumulative medical costs between DES and BMS patients, we considered the matched sample, 
obtained from 1:3 PSM and conducted Kaplan-Meier Sample Average (KMSA) estimates (Chen, Rolfes, & Zhao, 2015; Cheng 
et al., 2019; Lin et al., 1997). This technique accounts for censoring due to loss at follow-up and/or occurrence of the event 
(all-cause mortality) and partitions the follow-up period (5 years) for each patient into time-intervals, that we set at 1-year 
expressed in days. Medical costs are then calculated as the sum of the Kaplan-Meier estimates of the probability of survival 
to the beginning of each interval, multiplied by the corresponding estimates of costs, during the interval, being conditional on 
survival to the beginning of the interval. We produced four types of estimates, two “naïve” and two “weighted estimators”. The 
first two are named “Available Sample estimator” (AS) and “Complete Case estimator” (CC) and are a weighted average; the 
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first considers all individuals (�̂�� =
∑�

1 ��
�  where Mi are total costs and n total individuals), the second estimator accounts for 

events (�̂�� =
∑�

1 Δ���
∑�

1 Δ�
 where Δ is the event indicator). The other estimators account for censoring as just described. The Bang 

and Tsiatis estimator (also known as Weighted Complete Case estimator) is �̂�� = 1
�
∑�

1
Δ���
�̂(��)

 where 𝐴𝐴 �̂�𝐾 (𝑇𝑇𝑖𝑖) is the Kaplan-Meier 
estimator of the probability of censoring at time Ti. The Zhao and Tian's estimator (also known as Weighted Available Sample 

estimator) is �̂�� = 1
�
∑�

1

[

Δ�
��

�̂(��)
+ (1 − Δ�) ��−�(��)

�̂(��)

]

 where M (Ci) is the average of cost until time Ci among individuals 

with event time later than Ci. This is explained in the manual of the R package we used for the estimation (see below).
We produced these calculations for the total costs registered since baseline admission and then separately for each cost 

registered at baseline and at follow-up.
All analyses were run using R version 3.6.0. In particular, the package survival was used for Cox regression model (Therneau 

& Lumley, 2015) and cmprsk for competing risk (Gray & Gray, 2020), ipw for inverse probability of treatment weighting (van 
der Wal et al., 2011), MatchIt for propensity score matching (Ho, 2027) and ccostr for Kaplan-Meier sample average (Børty, 
Brøndum, & Bøgsted, 2019).

3 | RESULTS

3.1 | Sample

Out of 157,385 patients selected from SDO data, 113,912 had information on coronary stent implantation from SDO4. Exclud-
ing cases where both types of devices were contemporarily implanted (N = 1821) and including cases where the endoprosthesis 
record was not available from SDO4, but classification was retrievable from hospital records (DES corresponding to ICD-9-CM 
36.07; BMS to 36.06) (N = 2426), we ended up with a sample equal to 114,517 (see figure A1 in the Supplementary Material), 
of which 114,502 had complete records on selected confounders.

Table 1 reports patient characteristics by type of stent. Compared to BMS patients, patients receiving DES on average 
were younger, and a higher percentage was male; they more frequently had diabetes; hypertension, hypercholesterolemia and 
hyperlipidemia. Their cardiac diagnosis was more frequently angina and MI with NSTEMI and less frequently MI with STEMI. 
DES patients (that were younger as observed) tended to have a better health history, with fewer previous admissions, lower 
CCI, lower prevalence of previous conditions including MI and hypertension, but higher prevalence of previous diabetes and 
hypercholesterolemia. The number of implanted stents at admission baseline was higher among DES patients (1.9 cardiac stents 
implanted on average vs. 1.5 in BMS patients), and their length of stay at first admission was shorter (6.8 vs. 9.3 days for BMS 
patients).

3.2 | Stents

Between 2013 and 2019, the endoprosthesis data (SDO4) included 257,907 coronary stents implanted on 113,912 unique 
patients. The distribution of the two types, drug-eluting and not drug-eluting, over time is illustrated in Figure 1, while Figure 2 
reports the average purchase cost of device for the two types of stents over the 7 years. As expected, the use of DES was 
already predominant at the beginning of the study period, and in the following years it further increased (Figure 1), with BMS 
use declining from 20% in 2013 to less than 1% at the end of 2019. Conversely, over the study period the average device cost 
declined by about 50% for DES (837 Euro in 2013, 404 Euro in 2019) and increased by 87% for BMS (from 382 Euro in 2013 
to 716 in 2019).

3.3 | Outcome analysis

Figure 3 reports the unadjusted Kaplan-Meier survival curves at 30-day, 1-year and 5 years all-cause mortality and MI by stent 
type for the selected sample (DES = 106,86, BMD = 8416). The curves do not account for potential differences in the popu-
lations receiving the two types of device, and therefore results are interpretable along with the descriptive statistics of health 
outcomes in Table 1: re-admissions for MI are much more frequent than mortality in the short term (30 days), and after two 

PONGIGLIONE aNd TORBICa32

 10991050, 2022, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hec.4562 by C

ochraneItalia, W
iley O

nline L
ibrary on [30/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and five years of follow-up; especially for BMS, mortality becomes a more frequent event. In terms of differences between 
the survival curves of the two types of stents, they are more marked for mortality and are all significantly different based on 
log-rank tests.

Table 2 synthesizes the results obtained for each health outcome using different methodologies. Different methods produced 
different estimands and treatment effects, as described in Section 2.7.3 and reported in the table. Hence not all results are 
directly comparable. Here we proceed discussing the univariable model first and then the other models, discussing results 
comparable to one another.
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DES BMS p-value

N 106,086 (92.6) 8416 (7.4)

Age (s.d.) 67.5 (11.4) 73.0 (12.0) <0.0001

Male sex 80,851 (76.2) 5823 (69.2) <0.0001

Comorbidities

 Diabetes mellitus 25,572 (24.1) 1697 (20.2) <0.0001

 Hypertension 26,117 (24.6) 1947 (23.1) <0.0001

 Hypercholesterolemia 93,792 (88.4) 6811 (80.9) <0.0001

 Hyperlipidemia 93,600 (88.2) 6805 (80.9) <0.0001

Cardiac diagnosis

 Angina 17,559 (16.6) 712 (8.5) <0.0001

 Myocardial infarction No ST-segment elevation 23,012 (21.7) 1691 (20.1) 0.0004

 Myocardial infarction ST-segment elevation 31,850 (30.0) 3951 (46.9) <0.0001

 Charlson comorbidity index (s.d.) 0.91 (1.01) 1.23 (1.17) <0.0001

 No. of stents implanted per patient (s.d.) 1.88 (1.22) 1.48 (0.91) <0.0001

Previous conditions

 Previous hospital admission (yes) 45,172 (42.6) 4374 (52.0) <0.0001

 Myocardial infarction a 3428 (3.2) 412 (4.9) <0.0001

 Previous stroke a 126 (0.11) 15 (0.18) 0.2076

 Coronary-artery bypass grafting a 1451 (1.4) 116 (1.4) 0.9362

 Diabetes mellitus 23,113 (21.8) 1615 (19.2) <0.0001

 Hypertension 14,621 (13.8) 1596 (19.0) <0.0001

 Hypercholesterolemia 46,709 (44.0) 3558) (42.3) <0.0001

 Length of stay at first admission in days (s.d.) 6.84 (6.64) 9.29 (8.58) <0.0001

Outcomes

 Mortality 30 days 1374 (1.3) 549 (7.1) <0.0001

 Mortality 1 year 3229 (3.0) 1142 (13.6) <0.0001

 Mortality 2 years 4503 (4.2) 1461 (17.4) <0.0001

 Mortality 5 years 6523 (6.1) 2169 (25.8) <0.0001

 Cardiovascular mortality 30 days 1254 (1.2) 547 (6.5) <0.0001

 Cardiovascular mortality 1 year 2302 (2.2) 852 (10.1) <0.0001

 Cardiovascular mortality 2 years 2878 (2.7) 985 (11.7) <0.0001

 Cardiovascular mortality 5 years 3676 (3.5) 1280 (15.2) <0.0001

 Myocardial infarction in 30 days 9041 (8.5) 1221 (14.5) <0.0001

 Myocardial infarction in 1 year 11,084 (10.4) 1567 (18.6) <0.0001

 Myocardial infarction in 2 years 12,148 (11.5) 1666 (19.8) <0.0001

 Myocardial infarction in 5 years 13,526 (12.8) 1841 (21.9) <0.0001

Note: Values are numbers (percentage) of the total sample (N = 114,571) unless stated otherwise.
Abbreviations: BMS, bare-metal stents; DES, Drug-eluting stent; s.d., standard deviation.
 aPercentage calculated among those having previous admissions.

T A B L E  1  Baseline demographic and 
procedural characteristics for the total study 
population
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The univariable Cox model presented much lower hazard ratios for all health outcomes. This suggests that DES and BMS 
patients differed in several clinical and demographic characteristics related to the considered outcomes. Once we accounted for 
main confounders, the HRs from the multivariable Cox model were much higher compared to univariable model, but still all 
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F I G U R E  1  Percutaneous coronary stents with drug-eluting and bare metal stents between 2013 and 2019 (N = 257,907). The number of 
implanted stents is reported within or above bars [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  2  Average purchase cost of device (95% CI) by stent type and year [Colour figure can be viewed at wileyonlinelibrary.com]
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significantly lower than 1, indicating a largely reduced mortality risk for DES patients compared to BMS patients, as well as 
lower risks for myocardial infarction and cardiac mortality, for all follow up times.

Estimates of the marginal effects (i.e., outcome difference in populations identical in all respects but treatment), produced 
by IPTW, PSM and PS subclassification, ranged considerably, for all outcomes and follow up time points, depending on meth-
ods. Overall, PSM produced the marginal HRs closest to 1, suggesting that the matched sample, that included a much smaller 
group of treated, may be composed of more similar patients overall. The effect estimated here is an average treatment effect of 
the matched sample, which is neither an ATE nor an ATT, and despite being smaller compared to other results, still suggests 
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F I G U R E  3  Univariate Kaplan-Meier 
survival curves of 30-day, 1-year and 5-year 
clinical outcomes after baseline percutaneous 
coronary intervention by stent type for the 
following endpoints: all-cause death (a), 
myocardial infarction (b). BMS = bare metal 
stent; DES = drug-eluting stent [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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a remarkably lower mortality HR for DES patients as well as for myocardial infarction, although less markedly lower. On the 
other hand, the IPTW produced the lowest HRs (closest to 0) for both ATE and ATT marginal estimands. PS subclassification 
produced ATT marginal effects, that, compared to ATT marginal effects produced by IPTW, are much closer to 1, especially 
for MI (up to 14% points higher 0.67 (0.66–0.69) versus 0.81 (0.76–0.87)).

PONGIGLIONE aNd TORBICa36

Hazard ratio (95% CI) Hazard ratio (95% CI) Hazard ratio (95% CI)
Hazard ratio 
(95% CI)

30 days 1 year 2 years 5 years

All-cause mortality

 Univariable cox model 0.18 (0.16–0.20) 0.22 (0.21–0.24) 0.25 (0.23–0.26) 0.29 (0.27–0.30)

 Multivariable cox model 0.48 (0.43–0.54) 0.52 (0.48–0.57) 0.58 (0.54–0.62) 0.62 (0.59–0.66)

 IPTW ATE marginal 0.40 (0.36–0.45) 0.40 (0.37–0.45) 0.44 (0.41–0.47) 0.50 (0.47–0.53)

 IPTW ATE conditional 0.41 (0.36–0.46) 0.38 (0.35–0.41) 0.42 (0.39–0.45) 0.48 (0.45–0.51)

 IPTW ATT marginal 0.38 (0.36–0.41) 0.37 (0.36–0.39) 0.41 (0.40–0.43) 0.47 (0.46–0.49)

 IPTW ATT conditional 0.40 (0.32–0.50) 0.36 (0.26–0.48) 0.40 (0.31–0.50) 0.45 (0.37–0.55)

 Adjustment using PS 0.45 (0.40–0.51) 0.51 (0.47–0.55) 0.55 (0.51–0.59) 0.59 (0.56–0.63)

 PSM nearest 1:3 caliper 0.2 marginal a 0.53 (0.47–0.59) 0.56 (0.52–0.61) 0.60 (0.56–0.65) 0.64 (0.61–0.68)

 PSM nearest 1:3 caliper 0.2 conditional a 0.55 (0.49–0.62) 0.58 (0.53–0.62) 0.62 (0.58–0.66) 0.65 (0.61–0.69)

 PS Subclassification marginal 0.48 (0.42–0.55) 0.54 (0.49–0.59) 0.58 (0.53–0.62) 0.63 (0.59–0.67)

 PS Subclassification conditional 0.55 (0.47–0.63) 0.58 (0.53–0.64) 0.62 (0.57–0.67) 0.66 (0.62–0.70)

Myocardial infarction

 Univariable cox model 0.55 (0.51–0.58) 0.52 (0.49–0.54) 0.54 (0.51–0.57) 0.57 (0.55–0.60)

 Multivariable cox model 0.79 (0.74–0.85) 0.73 (0.69–0.78) 0.75 (0.71–0.79) 0.78 (0.74–0.82)

 IPTW ATE marginal 0.69 (0.65–0.73) 0.63 (0.60–0.66) 0.64 (0.61–0.67) 0.67 (0.63–0.70)

 IPTW ATE conditional 0.62 (0.59–0.66) 0.57 (0.54–0.60) 0.59 (0.56–0.62) 0.62 (0.59–0.65)

 IPTW ATT marginal 0.67 (0.66–0.69) 0.61 (0.60–0.63) 0.62 (0.61–0.64) 0.65 (0.64–0.67)

 IPTW ATT conditional 0.61 (0.50–0.75) 0.56 (0.47–0.66) 0.57 (0.48–0.68) 0.60 (0.52–0.71)

 Adjustment using PS 0.80 (0.74–0.85) 0.73 (0.69–0.78) 0.75 (0.71–0.79) 0.77 (0.73–0.81)

 PSM nearest 1:3 caliper 0.2 marginal a 0.83 (0.78–0.89) 0.77 (0.73–0.82) 0.79 (0.74–0.84) 0.81 (0.76–0.86)

 PSM nearest 1:3 caliper 0.2 conditional a 0.83 (0.77–0.89) 0.77 (0.72–0.82) 0.78 (0.74–0.83) 0.80 (0.76–0.85)

 PS Subclassification marginal 0.81 (0.76–0.87) 0.76 (0.71–0.81) 0.77 (0.73–0.82) 0.79 (0.74–0.83)

 PS Subclassification conditional 0.82 (0.76–0.88) 0.76 (0.71–0.81) 0.77 (0.73–0.82) 0.79 (0.74–0.84)

Cardiac mortality

 Univariable cox model 0.18 (0.16–0.20) 0.21 (0.19–0.23) 0.23 (0.22–0.25) 0.26 (0.24–0.27)

 Multivariable cox model 0.49 (0.43–0.55) 0.53 (0.49–0.59) 0.59 (0.54–0.64) 0.62 (0.58–0.67)

 IPTW ATE marginal 0.41 (0.37–0.47) 0.48 (0.44–0.54) 0.52 (0.48–0.58) 0.57 (0.52–0.62)

 IPTW ATE conditional 0.42 (0.34–0.52) 0.47 (0.40–0.55) 0.51 (0.43–0.59) 0.55 (0.48–0.62)

 IPTW ATT marginal 0.40 (0.37–0.42) 0.47 (0.44–0.49) 0.51 (0.48–0.53) 0.55 (0.53–0.57)

 IPTW ATT conditional 0.42 (0.33–0.52) 0.46 (0.38–0.55) 0.49 (0.42–0.58) 0.53 (0.46–0.61)

 Adjustment using PS 0.46 (0.41–0.52) 0.51 (0.46–0.56) 0.55 (0.51–0.60) 0.58 (0.54–0.62)

 PSM nearest 1:3 caliper 0.2 marginal a 0.49 (0.44–0.56) 0.54 (0.49–0.59) 0.59 (0.54–0.64) 0.63 (0.58–0.68)

 PSM nearest 1:3 caliper 0.2 conditional a 0.52 (0.46–0.59) 0.54 (0.49–0.59) 0.58 (0.54–0.64) 0.62 (0.58–0.67)

 PS Subclassification marginal 0.48 (0.42–0.55) 0.54 (0.48–0.60) 0.58 (0.53–0.64) 0.62 (0.57–0.67)

 PS Subclassification conditional 0.55 (0.47–0.64) 0.59 (0.52–0.66) 0.63 (0.57–0.70) 0.65 (0.60–0.71)

Note: Hazard ratios (95% confidence intervals) for drug-eluting versus bare metal stents.
 aSample size = 24,899.

T A B L E  2  Adjusted outcomes after percutaneous coronary intervention
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Estimates of conditional effects (i.e., average effect at the individual level of changing a subject's treatment status) were 
estimated by adjustment for PS and by PSM and PS subclassification adding the prognostic control variables included in the 
multivariable Cox model. Here too, results produced by PSM and PS subclassification were closer in magnitude compared to 
IPTW. For example, the HR for all-cause mortality at 30 days ranged from 0.40 (IPTW ATT), to 0.45 (PS adjustment), to 0.55 
from PSM and PS subclassification.

Looking at follow-up time, for all-cause mortality, the DES patient advantage over BMS patients declined over time across 
all effects and estimands but remained significant even 5 years after baseline implantation. For the MI endpoint, the lower 
hazard of DES patients remained quite stable in magnitude, with a lower HR observed in the medium term (1 and 2 years 
follow-up). For cardiac mortality, the Fine and Gray's hazard model was also run for the univariable and multivariable Cox 
models, accounting for competing risks; results are presented in Table A2 of the Supplementary Material and are consistent 
with those shown in Table 2.

3.4 | Cumulative medical costs

We applied the KMSA on the 1:3 matched sample in a 5-year time frame, results are shown in Table 3. The DES group was 
found to have lower cumulative total costs, according to all methods (as low as 3264 Euros according to AS, or 2362 based on 
the CC method). Looking at single components of costs, the main driver of the lower costs of DES were less expensive hospi-
talizations, both at baseline -where the average length of stay was 9.3 days for BMS (8.6 sd) and 7.4 days for DES (7.1 sd)- and 
at follow-up. The average cost of the devices implanted at baseline and also those implanted at follow-up was higher for DES 
patients. Ambulatory costs at follow-up were very similar for the two groups, while the cost of medication use after the baseline 
visits related to percutaneous interventions was higher for patients receiving DES, as well as the cost of general medications. 
Another study (Cheng et al., 2019) found higher cumulative outpatient, inpatient, and cardiovascular diseases related outpatient 
costs for DES patients compared to BMS patients, and a lower cumulative inpatient cost related to cardiovascular disease.

4 | DISCUSSION

This paper aims to provide a proof-of-concept case study on the opportunities and challenges of using administrative data to 
inform the evaluation of medical devices. To do so, we exploited a privileged permission to access multiple administrative data-
bases at the patient level of a major region in Italy, Lombardy, linked through an anonymized identification number. We used 
the case of coronary stent implantation to assess whether administrative data are potentially suitable for investigating costs and 
health outcomes of medical technologies and whether existing methodologies for observational data can be applied using such 
data sources. Our primary objective indeed was to assess the feasibility of using this data for informing comparative effective-
ness studies and, more generally, health technology assessments, shedding the light on the challenges (as well as advantages) 
these sources of data may bring. To our knowledge, this is the first attempt of this kind in the literature.

Therefore, before we discuss our results, we must put front and center the challenges we incur and their implications. The 
nature of data we use in our analysis (large administrative database) doesn't allow us to be certain about the causality and perfect 
comparability between the two groups. This is intrinsic limitation to all sources of real-world data, and even more evident in 
routinely collected datasets for other purposes. Some of the challenges are clearly linked to and magnified by the technology 
chosen for example, the disproportionally higher number of patients receiving the treatment over time (significantly reduced 
in BMS group) makes the overlap in characteristics between DES and BMS patients particularly problematic in the analysis. 
This and other issues, however, are common, at different extents, across different case studies and observational studies (pres-
ence of unmeasured confounders, selection bias). It could be then questioned whether it is worth at all undertaking this type of 
analysis, and we strongly believe it is, for different reasons. We believe it was worthwhile comparing the BMS and DES using 
the administrative dataset in order to study the advantages and limitations of administrative data for evaluation purposes in 
the absence/scarcity of recent trials given that, although minimal, a proportion of patients still receive BMS. Whether we can 
call causal or not the association between the type of implanted stent and clinical endpoints, it is important to know whether a 
group of patients experience disadvantages to inform policy makers and clinicians so to put in place adequate interventions to 
reduce the gap (e.g., more frequent follow up visits). The other reason why we believe this research has important implications 
despite its limitations is that it provides insights on how to maximize the use of administrative databases, that are existing and 
available sources of information whose analysis implies no additional costs, and how to interpret obtained results, investigating 
appropriate methodologies suitable to face challenges that prevent establishing a causality link.
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The different methodologies applied in this study confirmed the advantage of DES use compared to BMS use, widely iden-
tified in observational studies and in RCTs for selected health outcomes, although some differences in magnitude of the results 
emerged. Comparisons with other studies are challenging, due to different eligibility criteria, methods applied, data sources 
and covariates used, but some correspondence between existing and our findings emerged. For example, the study by Iqbal et al 
(2016) that analyzed patients with acute STEMI who received either DES or BMS during 2008–2014 found substantially simi-
lar results (e.g., based on multivariable Cox model, the HR for DES vs. BMS in all-cause mortality was 0.41 at 30 days, 0.48 
at 1 year and 0.53 at 2 years; based on IPTW ATE HRs for mortality at 30 days was 0.41, 0.48 at 1 year and 0.53 at 2 years). 
Ours and their study used different observational data sources and available control variables were different and so the capabil-
ity of comparing the two groups; for example, they controlled for specific details on the procedures, that are often available in 
cardiac registries but not in administrative records. Some evidence based on previous years (1998–2007), and produced using 
administrative records, was also similar (Yeh, Chandra, McCulloch, & Go, 2011), with DES patients presenting significantly 
lower rates of death at 30 days (odds ratio (OR) based on PS adjustment 0.49, based on PSM 0.55) and 1 year (OR 0.58 and 
0.70, respectively), as well as lower rate of MI at 1 year (OR 0.72 and 0.94 not significant).

A previous meta-analysis which considered studies published or presented up to February 2008 found that in observa-
tional studies DES were associated with significant reductions in mortality and MI (median follow-up 2.5 years); interestingly, 
compared to more recent evidence, while direction of findings is the same, the magnitude of the advantage was smaller (HR 
0.78 and 0.87, respectively). Indeed, the comparison of existing evidence, even among studies which use similar sources 
of data, is challenging, because the timing (years) of implantation is particularly important for this medical technology. As 
shown in Figure 1, the percentage of BMS use has dramatically declined in past years, hence the use of BMS in the present 
may depend on different circumstances compared to a decade earlier. A recent study based on the National Inpatient Sample 
database (United States) explored which patients receive BMS in the era of second generation DES (2010–2014) and found 
that BMS was used in certain high-risk procedures and in patients with multiple comorbidity (Doshi et al., 2018), while this 
was not necessarily the case in earlier years. As a matter of fact, the ESC guidelines for the treatment of patients with a STEMI 
diagnosis since 2012 indicates that DES should generally be preferred over BMS unless there are specific contraindications. 
This is coherent with the higher DES advantage found in more recent studies and ours compared to previous findings. At the 
same time, it warns that the two treatment groups present different characteristics that may not be captured with the informa-
tion available from administrative records and, as a consequence, it is particularly challenging to identify the treatment effect. 
Moreover, in this study we compare patients starting treatment with DES versus BMS and do not consider changes in treatment. 
In a context where guidelines recommend DES over BMS and DES use has become increasingly more common overtime, we 
may expect change in treatment due to clinical guidelines, rather than the effect of treatments (i.e., not because BMS was inef-
fective), and this may alter the representation of the treatments. Future research may be directed to explore precisely this aspect 
and assess changes in treatment strategy, applying methods such as inverse-probability-of-censoring weighting (IPCW) or the 
g-methods (Robins & Hernán, 2009) to deal with time-dependent confounding, to disentangle the effect of clinical guidelines 
and the effect of treatments.

When we compare RWE from our study, as well as from others, with RCT evidence, results are in line only for a subsample 
of endpoints. For all-cause and cardiac mortality, results differ, with no significant differences observed in RCTs between DES 
or BMS use, and reduced risk associated with DES use found in real-world observational studies (Kirtane et al., 2009; Piccolo 
et al., 2019; Suh et al., 2011). An attempt to explain the inconsistency of results was undertaken in the meta-analysis of Kirtane 
and colleagues (2009). They juxtaposed the generalizability and larger sample size which leads to more power for observational 
studies with their vulnerability to confounding that can be mitigated by multivariable adjustment and/or propensity matching, 
but not entirely ruled out. Indeed, as said above, this precisely applies to our setting, which, compared to other RWE such as that 
using cardiac registries, suffers particularly from vulnerability to omitted variables. Not all characteristics considered at baseline 
in RCT studies were available, and, for example, we had no information on smoking status, body mass index, lesion character-
istics and procedural details. Moreover, the available data on medical history and comorbidities were not directly comparable 
with those collected in RCTs or even in registries for various reasons; at time of admission up to five secondary diagnoses are 
registered, and for patients affected by multiple conditions there may be conditions that are not documented (e.g., hypertension 
or diabetes), though this was at least partly attenuated using data from pharmaceutical use. The same applies to medical history, 
which we retrieved from previous admissions; but if a patient suffered from a disease and was not admitted or prescribed with 
drugs, we could not record his/her condition. This limited our ability to match/control and fully address the sample selection 
bias, as it is common for observational data sources. Considering that in recent years, BMS were used mostly in certain high-risk 
procedures and in patients with multiple comorbidity, this becomes a particularly crucial aspect. We echo the hypothesis proposed 
by Kirtane and colleagues (2009) and remark that trials and real-world populations are not comparable. Indeed, in real practice 
BMS have been implanted despite a wealth of data demonstrating the superiority of DES. A study in 2013 investigated why BMS 
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were still used despite that the superiority of DES was widely accepted; the authors prospectively collected data from 31 centers 
in Europe and Asia and identified the main reason for implantation of BMS rather than DES in 744 consecutive percutaneous 
coronary interventions performed in 2012 (Morice et al., 2013). Reasons for using BMS, in order of importance, were large 
vessel diameter, ST-segment elevation myocardial infarction, reimbursement or regulatory reasons, advanced age, concomitant 
oral anticoagulant treatment, increased bleeding risk, cancer, or anemia, planned noncardiac surgery within the next year, and 
anticipated poor dual antiplatelet therapy compliance. As evidence of that, the descriptive statistics shown in Table 1 indicates 
that BMS patients are older and a much larger proportion of them suffered from ST-segment elevation myocardial infarction 
compared to DES. As said above, not all factors identified by Morice et al. could be accounted for. Moreover, the fact that DES 
patients are more likely than BMS to be multimorbid (Table 1) may suggest that, as clinicians saw the benefit of DES over BMS, 
they may have applied the technology to a wider (and higher risk) population who are more likely to accrue a mortality benefit; 
this may explain the mortality benefit of DES patients in RWE, an effect not necessarily seen in RCTs.

Taking a step back, the debate on the usefulness and correctness of replicating RCT results in real-world settings is lively. A 
recent commentary (Thompson, 2020) refers to the phenomenon known as ‘efficacy–effectiveness gap’ existing between RCTs 
and RWE, to suggest that a discrepancy between the two may and should be expected. The value of RWE should be recognized 
distinctly from the purposes and research questions of RCTs; indeed, RWE can both complement RCTs and be used to make 
causal inferences (Olson et al., 2021). On the other hand, there can still be some value in the use of RWD to complement RCTs, 
because RWE can also be used to understand why results differ when there is disagreement, and efforts to replicate RCT results 
are to better understand the sources of variation that influence the ability to close the efficacy–effectiveness gap (Crown & 
Bierer, 2021). Our work did not aim to replicate results from existing RCT, but rather to test the usability of large administrative 
databases for assessing costs and health outcomes, which is a fundamental step to advance the ongoing debate on comparabil-
ity of RWE and RCT. We assessed whether different methodologies developed for observational studies are applicable to our 
setting and how results differed, thereby allowing to test their internal validity and identification of best practices -one of the 
goals listed by Thompson (2020).

In discussing applicability of methods and their internal validity, two considerations emerged. The first is specific to our 
case study, the second is general. The comparison of costs and health outcomes between DES and BMS use in the past decade 
is a challenging one, in that we compare two technologies with mature recommendations for use, where DES have been estab-
lished as the preferred technology for several years, while the use of BMS persists but in a very small proportion and particular 
cases; hence, the treated group (DES patients) is much larger than control group. This has methodological implications for the 
creation of a matching sample, for example, and has limited the matching methods applicable (e.g., pair matching requires that 
the sample of untreated subjects be larger than the sample of treated subjects (Austin, 2014)). Moreover, the exceptional use 
of BMS compared to the recommended use of DES makes the availability of clinical and procedural information particularly 
important to compare the two groups. This pushed us to maximize the available information on patients, but at the same time 
highlighted a limitation of the data source we used.

The general consideration pertains to the importance of establishing a priori the effect of primary interest to answer a study 
research question. When dealing with non-collapsible outcome measures, marginal versus conditional treatment effects differ, 
and this must be considered; for example, if the attempt is to replicate RCT results, marginal effects should be estimated. Then, 
which estimand, between ATE or ATT, especially when outcome is time-to-event in nature, is more relevant may depend on 
the research question; for instance, when interested in the effect of a treatment accessible to any patient, ATE may be prefera-
ble, while to assess the effect of a treatment/program for which only a subpopulation is eligible, ATT may be more interesting. 
Indeed, different propensity score methods may be more suited for estimating certain types of estimand, and effects are not 
directly comparable. For example, conditional effects estimated through PSM analysis may be conditional on the PS and the 
covariates included in the outcomes model, whereas the IPTW is conditional on the covariates in the weighted population. 
These conditional effects are not the same. Balancing out pros and cons of each method should also be done depending on the 
research setting and measure of effect of interest. All propensity score methods are implemented beginning with the estimation 
of the propensity score. Weighting may be more sensitive to misspecification of the propensity score (Austin, 2014). In a setting 
like ours, where the treatment and control groups are likely to differ on comorbidity and procedural risks that are not always 
measurable, the correct specification of propensity score may be particularly challenging for IPTW. The HRs estimated with 
both IPTW ATE and ATT were lower compared to HRs obtained from the other methods, and this may depend on that. The 
0.5–99.5 quintile range of stabilized ATE weights went from 0.13 to 2.65, but the full range went up to 122. As additional anal-
ysis, we trimmed weights (results not included into the paper, but available upon request), and findings were sensible to such 
an approach (e.g., HR for all-cause mortality at 30 days based on ATE stabilized weight was 0.40 vs. HR = 0.43 with trimmed 
weights). On the other hand, using PSM with caliper and a 1:3 ratio, likely allowed us to estimate more homogeneous groups, 
but dramatically decreased the treated size and prevented estimating either ATE or ATT, as explained above. More generally, 
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when incomplete matching takes place, and our case study is an extreme example of that, if the unmatched treated subjects are 
very different from the matched treated, ATT estimates are likely to be biased (Austin, 2014). Our case study permitted identi-
fication and remark on the challenges of each method, and the RWD source we used made possible to perform the analysis, but 
also brought in some additional limitations.

Cost analysis represent one of the strengths of our study, in that we had access to high quality data on different categories 
of costs on a very large sample of patients, which are not commonly available, especially in Italy. A further unique feature 
was access to the “SDO4”, the ad hoc dataset for implanted devices, which includes rich information on the device, including 
its cost. More generally, the characteristics of the data represent an asset in that they allow for long-term follow-up to track 
patients  over time, and, as is typical of administrative databases, sample size is large. However, some limitations stem from 
the data that represent challenges in their use for comparative evaluation, as described above, that equally affect estimations of 
effects and comparisons of costs between the two groups.

To conclude, we believe that our work represents an important step that has demonstrated that the Lombardy administrative 
databases -and hence all comparable data sources-shows great potential to evaluate the real-world effectiveness and costs of 
medical technologies. However, there is still a lot that can and should be done in order to make these sources of data valuable for 
evaluation purposes. To maximize the use of such existing data sources for HTA purposes and beyond, it is crucial to understand 
their content in terms of endpoints, costs and possible controls. Having easily access to the metadata on the variables collected in 
the administrative databases or to similar document would be very useful to advance the use of these sources of data more rapidly 
with no additional costs. A reasonable investment could be made to include a minimum set of variables considered important 
to account for confounders in these databases and would represent a remarkable extension of the use of existing sources. In this 
study, we have shown that by accounting for confounding, results change significantly, and once this was done different methods 
produced consistent results. Obviously, we cannot rule out the risk of omitted confounders from observational data, but we believe 
that studies like this one will bring us a step closer to the use of RWE in HTA. This trend is very important bot for the scientific 
community as well as decision makers. Faced with challenges, researchers will continue to strive for methodological improve-
ments to produce reliable evidence base. Policy makers, on the other hand, should recognize the potential of routinely collected 
data and adopt measures to overcome the limitations in access and the information collected. The final aim being that of generating 
value for the healthcare systems, by increasing returns on investments made to set up and run data collections at different levels.
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ENDNOTE
  1 02B = Drug Eluting Coronary Stent (not supplied in service); 02H = Drug Eluting Coronary Stent (supplied in service with in-use haemodynam-

ics); 02A = Coronary Stent Without Drug Delivery (not supplied in service); 02G = Non-drug-eluting Coronary Stent (supplied in service with 
in-use haemodynamics).
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