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1.5.1 Lévy measure, paths and distributional properties . . . . . . . . . . . . 25

1.6 Random measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6.1 Poisson integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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Preface

Lévy processes find their roots at the beginning of XX century, when at first infinitely divis-

ible distributions were studied by Bruno DeFinetti, who first posed problems that would be

solved over a seventeen-year span basically by the strong mathematical personalities of Andrei

Kolmogorov, Paul Lévy and Aleksandr Yakovlevich Khinchine.

From that moment a great amount of work in this direction has been performed, both from a

purely theoretical point of view, with the developement of the basic theory, and for instance

with the introduction of stable processes in 1925, and with the matching of theory of stochastic

processes with martingale theory in the 1940’s. Lévy processes , as we are going to see, consti-

tute a wide class containing well known examples as Poisson processes or Brownian motions,

but also Markov processes and semimartingales.

In applications, mostly in mathematical finance, they provide more flexible distributions for

the asset returns on which derivative securities are based; the usual model is the Black-Scholes

model, dating 1973, although it basically goes back to Samuelson (1965) who improved Bache-

lier’s introduction of Brownian motion in 1900.

Although being forced to give up some important properties of Brownian motion driven markets

like completeness for instance, it has been shown both with qualitative and quantitative results

that the more general Lévy processes are suitable as driving the background distributions of

asset returns.

In this direction an important and realistical role have had hyperbolic distributions, introduced

by Barndorff-Nielsen in the late 1970’s, which also have been employed in modelization of fluid
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Preface

turbulence and for instance of the distribution of particle size from aeolian sand deposits.

Meixner process is a particular case of Lévy process whose origins can be found also in the

theory of orthogonal polynomials, in particular the so called Meixner-Pollaczeck polynomials,

to which it is related by a martingale relation. The basics of this process have been given by

W.Shoutens in 1999, who also pointed out the polynomial origin, and by B.Grigelionis the same

year, who derived this process as a particular case of the generalized-z processes.

The first part of this work is devoted to the general introduction of Lévy process along with

the most common tools and relations for characterizing their properties. In the first chapter an

historical background is also given, with the relations with infinitely divisible distributions and

martingale and semimartingale theory.

The second chapter lists a non-exhaustive collection of some of the most interesting Lévy pro-

cesses, from Poisson process and Brownian motion, to α-stable processes, with details on each

one’s properties, and, where possible, a sample of trajectory with respect of a given choice of

the parameters involved.

Part two of this work is dedicated to Meixner process.

In chapter 3 Meixner process is defined in the classical way, i.e. relying on the infinitely divis-

ible Meixner distribution, seen as a particular case of generalized-z distribution, and classical

estimators of the parameters involved are given (namely moments and ML estimators); the sec-

ond part of chapter 3 contains the calculations which allow the writing of Meixner process as

a time-changed Brownian motion, which fact should lead to a simple way of simulating trajec-

tories of the process, which will be shown in chapter 6, and some particular and very technical

characterizations mainly due to the work of J.Pitman and M.Yor.

Chapter 4 deals with Esscher transform, the most common tool used to price financial deriva-

tives based on Lévy processes, introducing some problems, mainly of market incompleteness,

that generate when substituting the usual Brownian motion with more general Lévy processes.

Chapter 5 is devoted to the introduction of theory of orthogonal polynomials, and points out

7
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what are the conditions that allow Meixner process to be generated from this different point of

view, along with a graphical analysis of moments of Meixner process and the computation of

Fisher’s information for Meixner-Pollaczeck polynomials.

Last, chapter 6 shows graphically the main properties of Meixner process and its better behavior

with respect to usual Brownian motion when attempting to model financial asset returns.

The simulations have been performed with R software, while most of the computing and the

study of the properties has been carried on with Mathematica 7.0.0.

The present thesis is firstly a review of most of the literature available on Meixner process. The

justification of this is mainly the relative dispersion of the concerning publications: Meixner

process in fact appears often as an example or as a subsection of more general cases but it is not

studied by itself, while for its properties, fitting properties and mathematical origins it deserves

to be studied as a stand alone model.

This means a good amount of job has been performed trying to put together and give the right

placement to what up to now is known about this particular element of the class of Lévy pro-

cesses .

The usual theoretical introduction regarding general Lévy processes and consequent examples,

constructed using the classical way (namely characteristic function) which can be found in

chapters 1 and 2, convey a “classical” definition of Meixner process, first given independently

by W. Schoutens and B. Grigelionis as said. Their first intention was to apply this new process as

a mathematical financial model, following the fashion of the already tested hyperbolic processes

introduced by Barndorff-Nielsen.

In this context our contribution stands with the proof of a particular case (corollary 1, section

4.5) of a theorem by B. Grigelionis, which provides the general Esscher martingale measure for

Meixner process on which an analogous of the famous Black-Scholes pricing formula can be

based.

In 2000 W. Schoutens also provides a stronger mathematical foundation of the process, by
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means of orthogonal polynomials, which can be found in chapter 4.

Thus, the central chapter 3 describes the main effect of the theory contained in chapters 1 (with

examples in chapter 2) and 4.

Some important details were missing from first formulation of the process: ML parameter es-

timation of the background Meixner distribution, which can be seen in chapter 3, and mostly

a double characterization of the process in terms of subordinated Brownian motion (given by

D.B.Madan and M.Yor as cited), and in terms of “process containing an hyperbolic function in

the characteristic function” (given by J.Pitman and M.Yor).

The chance of writing Meixner process as a subordinated Brownian motion makes possible to

simulate the process. To our knowledge, in the revised literature simulations of trajectories of

Meixner process don’t appear anywhere. We obtained some results in this sense, by using an

original R routine based on the work of Madan and Yor: these results are shown in section 6.2.

Once defined and characterized, Meixner process can be well employed as a model for financial

data, namely log returns of market indexes or assets as well. An example has been carried out

in this sense in section 6.3, evaluating model performance by means of two possible distances

between underlying distributions, and comparing the result with another model derived from

Normal Inverse Gaussian process, which was already known.

Note: the notations Xt or X(t) will be used equivalently for a stochastic process X = {Xt =

X(t), t ≥ 0}.
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Chapter 1

Some Elements about Lévy Processes

1.1 Introduction

Lévy processes are a product of the mathematics of the first 35 years of XX century. They

constitute a fundamental class in the theory of stochastic processes, containing as its elements

basic and already well known processes as Brownian motions and Poisson processes to name a

couple, of which they provide a generalization and a more flexible example.

The importance of Lévy processes is very well acquainted both as a class of stochastic processes

which for instance stands as a starting point for the study of other families of processes as

Markov processes (Lévy processes actually form the class of space-time homogeneous Markov

processes) or semimartingales, and as a set of model which provide more flexibility in contexts

like mathematical finance.

Here, in fact, a good amount of literature has shown the inadequacy and stiffness of the usual

Brownian-motion-based models as opposite to the more pitchable, fitting and general Lévy

processes .

The introduction of Lévy processes in finance , though, is not painless: it rouses different

kinds of problems, both practical and theoretical; the situation of incomplete market which they

generate is not always easy to handle both in terms of calculations and of teoretical structures
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1.2. Historical remarks Chapter 1

involved, as for instance the multiplicity of equivalent martingale measures on which most of

the option pricing theory is based.

Since the last part of the 1990’s different applications have ben tried for Lévy processes ranging

from description of fluid turbulence to quantum fields.

1.2 Historical remarks

The first results on Lévy processes date back to the late 1920’s with the study of infinitely

divisible (ID) distributions.

Bruno DeFinetti was the recognized pioneer of ID distributions with his 1929 − 1931 papers,

but the term infinitely divisible distributions will appear only 5 years later in the Moscow math-

ematical school, in the 1936 unpublished ph.D thesis by G.M.Bawly (1908 − 1941). The first

formal definition of an ID distribution was given by A.Y.Khinchine in [Khi37b] and reads:

Definition 1. A distribution of a random variable which for any positive integer n can be repre-

sented as a sum of n identically distributed independent random variables is called an infinitely

divisible distribution.

Lévy himself attributes to Khinchine the use of the name indéfinitement divisible. The canonical

form of ID distributions is known in literature as Lévy-Khinchine formula, surely because it was

so named by Gnedenko and Kolmogorov.

In the following it will be seen how ID distributions are intimately related to Lévy processes

. By now let us recall the theorems historically significative concerning the structure of ID

distributions

Theorem 1. (DeFinetti) A characteristic function is ID if and only if it has the form

φ(t) = lim
m→∞

exp[pm(ψm(t)− 1)],

where pm are numbers in R+, while ψm(t) are characteristic functions.

12



1.2. Historical remarks Chapter 1

Theorem 2. (DeFinetti) The limit of a sequence of finite products of Poisson-type characteristic

functions is ID. The converse it is also true.

This means that the class of ID laws coincides with the class of distribution limits of finite

convolutions of distributions of Poisson type.

Theorem 3. (Kolmogorov canonical representation) The function φ(t) is the characteristic

function of an ID distribution with finite second moment if and only if it can be written as

log φ(t) = iγt+

∫ +∞

−∞

(
eitu − 1− itu

) dK(u)

u2
,

where γ is a real constant, and K(x) is a non decreasing and bounded function such that

K(−∞) = 0. The integrand is defined such that for u = 0 it is equal to −t2/2.

Theorem 4. (Lévy canonical representation) The function φ(t) is the characteristic function of

an ID distribution if and only if it can be written as

log φ(t) = iγt− σ2

2
t2 +

∫ 0−

−∞

(
eitu − 1− itu

1 + u2

)
dM(u)+

+

∫ +∞

0+

(
eitu − 1− itu

1 + u2

)
dN(u),

where γ ∈ R, σ ∈ R+ and the functions M(u), N(u) satisfy the following conditions:

1. M(u) and N(u) are non decreasing in (−∞, 0) and (0,+∞) respectively;

2. M(−∞) = N(+∞) = 0;

3. the integrals
∫ 0

−ε u
2 dM(u) and

∫ ε
0
u2 dN(u) are finite for every ε > 0.

Theorem 5. (Lévy-Khinchine canonical representation) The function φ(t) is the characteristic

function of an ID distribution if and only if it can be written as

log φ(t) = iγt+

∫ +∞

−∞

(
eitu − 1− itu

1 + u2

)
1 + u2

u2
dG(u),

where γ ∈ R, and G(u) is a non decreasing and bounded function such that G(−∞) = 0. The

integrand is defined such that for u = 0 it is equal to −t2/2.

13



1.2. Historical remarks Chapter 1

Just after the 1928 International Congress of Mathematician held in Bologna from 3 to 10

September 1928, DeFinetti started a research regarding functions with random increments based

on the theory of ID characteristic functions. His results can be summarized in a number of

relevant theorems partly stated above.

The papers published in 1929 − 1931 by DeFinetti in the Rendiconti della Reale Accademia

Nazionale dei Lincei, attracted the attention of Kolmogorov who was interested to solve the so

called DeFinetti’s problem, that is to find the general formula for the characteristic function of

ID distributions.

Kolmogorov gave an exhaustive answer to the problem for the case of variables with finite

second moment in two notes of 1932; his final result is known as the Kolmogorov canonical

representation shown above.

The general case of DeFinetti’s problem, including the case of infinite variance, was investigated

in 1934 − 1935 by P.Lévy, and his result, independent from that of Kolmorogov, is the Lévy

canonical representation shown above. More details are given in the paper by F.Mainardi and

S.Rogosin [MR06].

A.Y.Khinchine came in 1937 to show that Lévy’s result can be obtained also by an extension

of Kolmogorov’s method, and his final statement is the celebrated Lévy-Khinchine canonical

representation formula for the ID characteristic functions. An interesting translation of the

russian article by Khinchine [Khi37a] can be found as well in [MR06].

That’s how the main results regarding ID distributions were born; in the following it will be

shown their relationship with the concept of Lévy process .

Also, in the following part of the first chapter Lévy processes will be introduced in a general

framework, describing the main results that will be somehow useful or referred to in the follow-

ing. It is natural that the study of Lévy processes from a theoretical point of view has reached a

real deep level of developement, but it is not the aim of this first part of the work giving account

of all the details that can be for instance found in Sato [Sat99], Appelbaum [App04], and in

14



1.3. Definition of Lévy Process Chapter 1

Jacod and Shiryaev’s books [JS02] for a more accurate part of the semimartingale topic and for

a more general point of observation.

Then we present the two main theorems (namely the Lévy-Khinchine representation and the

Lévy-Itô decomposition) with part of the theoretical auxiliary construction to get them.

We generally will be following the approach of Appelbaum [App04], integrating with some

examples taken from the lectures delivered by G.Samorodnitsky [Sam07] in 2007.

1.3 Definition of Lévy Process

To embed the processes we are going to introduce in the correct environment, some definitions

have to be set to characterize the right spaces and the main theoretical structures which will

appear in the following.

Let (Ω,F ,F, P ) be a stochastic basis, i.e. a probability space (Ω,F , P ) equipped with a

filtration F = (Ft)t∈R+; filtration here means an increasing and right-continuous family of

sub-σ-algebrae of F (i.e. Fs ⊂ Ft for s ≤ t and Ft =
⋂
s>t Fs).

By convention let F∞ = F and F∞− =
∨
s∈R+

Fs.

Definition 2. A stochastic process on (Ω,F , P ) is called adapted to the filtration F if X(t) is

Ft−measurable for all t ≥ 0.

Definition 3. A random variable T defined on (Ω,F , P ) with values on [0,∞] is a stopping

time with respect to F if the event {T ≤ t, t ≥ 0} belongs to Ft.

Definition 4. An adapted stochastic process X = {X(t), t ≥ 0} such that E[X(t)] ≤ ∞ for

all t ≥ 0 is a martingale with respect to the usual filtration F if for all 0 ≤ s ≤ t it holds that

E[X(t)|Fs] = X(s) a.s.

Definition 5. A stochastic process X = {X(t), t ≥ 0} defined on (Ω,F ,F, P ) with values in

Rd, d ∈ [1,∞) is called a Lévy process if the following conditions are satisfied:

15



1.3. Definition of Lévy Process Chapter 1

(L1) X(0) = 0 a.s.

(L2) X has independent increments, i.e. X(t) −X(s) is independent of Fs for any 0 ≤ s <

t ≤ T .

(L3) X has stationary increments, i.e. for any s, t ≥ 0 the distribution of the increment X(t+

s)−X(t) does not depend on t.

(L4) X is stochastically continuous, i.e. for every t ≥ 0 and ε > 0:

lim
s→t

P (|X(t)−X(s)| > ε) = 0.

1.3.1 Infinite divisibility

As we have already seen, one of the main concepts laying beneath the idea of Lévy process is

the notion of infinite divisibility, on which is also based one of the main and most important

results of the theory: the Lévy-Khinchine formula. The definition of infinite divisibility is given

generally for random vectors, and then the link with Lévy processes is usually shown.

Definition 6. Let X be a random vector taking values in Rd with law µX . We say that X is

infinitely divisible if, for all n ∈ N, there exist i.i.d. random vectors Y (n)
1 , . . . , Y

(n)
n such that

X
d
= Y

(n)
1 + . . .+ Y (n)

n . (1.1)

Let φX(u) = E[ei(u,X)] denote the characteristic function of X , where u ∈ Rd.

More generally, if µ ∈ M1(Rd), the set of all Borel probability measures on Rd, then φµ(u) =∫
Rd e

i(u,y)µ(dy).

Proposition 1. The following are equivalent:

(1) X is infinitely divisible;

(2) µX has a convolution nth root that is itself the law of a random vector, for each n ∈ N;
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1.3. Definition of Lévy Process Chapter 1

(3) φX has an nth root that is itself the characteristic function of a random vector, for each

n ∈ N.

Proof

(1)⇒ (2). The common law of the Y (n)
j , j = 1, . . . , n is the required convolution nth root.

(2)⇒ (3). Let Y be a random variable with law (µX)1/n. We have , for each u ∈ Rd ,

φX(u) =

∫
. . .

∫
ei(u,y1+...+yn)(µX)1/n(dy1) . . . (µX)1/n(dyn) = ϕY (u)n

where ϕY (u) =
∫

Rd e
i(u,y)(µX)1/n(dy), and the required result follows.

(3)⇒(1). Choose Y (n)
1 , . . . , Y

(n)
n to be independent copies of the given random vector; then we

have

E[ei(u,X)] = E[ei(u,Y
(n)
1 )] . . . E[ei(u,Y

(n)
n )] = E[ei(u,Y

(n)
1 +...+Y

(n)
n )]

from which we deduce (1.1) as required.

It is possible to generalize the definition of infinite divisibility as follows:

Definition 7. µ ∈ M1(Rd) is infinitely divisible if it has a convolution nth root inM1(Rd) for

each n ∈ N.

As a consequence, it can be taken as an operative characterizing definition of infinite divisibility

the following

Definition 8. µ ∈ M1(Rd) is infinitely divisible if and only if for each n ∈ N there exists

µ1/n ∈M1(Rd) for which

φµ(u) =
[
φµ1/n(u)

]n
for each u ∈ Rd.

Observation: the convolution nth root µ1/n in definition 8 above is unique when µ is infinitely

divisible. Moreover, in this case the complex-valued function φµ always has a “distinguished”

nth root, which we denote by φ1/n
µ ; this is the characteristic function of µ1/n (see Sato,[Sat99]

pgg. 32− 4, for details).
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Trivial examples of distributions enjoying this property are the Gaussian and Poisson distribu-

tions. Other examples of infinitely divisible distributions are the compound Poisson distribution,

the exponential, the Γ distribution, the geometric, the negative binomial, the Cauchy distribution

and the strictly stable distribution.

Counterexamples are the uniform and binomial distributions.

The two following examples open the path to the Lévy-Khinchine formula, as they provide a

typical fashion of the characteristic function of an infinitely divisible random variable

Example 1. (Gaussian distribution) Let Y ∼ N(µ,Σ), with µ ∈ Rd and Σ a d × d symmetric

positive definite matrix. If we consider for every n ∈ N

Y (n) ∼ N (µ/n, (1/n)Σ)

then it’s easy to verify that Y (n)
1 + . . .+ Y

(n)
n

d
= Y .

It is also easily computed the characteristic function of Y as

φY (u) = E
[
ei(u,Y )

]
= exp

(
−1

2
uΣu′ + i(u, µ)

)
Example 2. (compound Poisson distribution) Let Y =

∑N
j=1 Zj , where N ∼ P (λ) and

Z1, . . . , ZN i.i.d. random vectors and independent of N . Consider now for every n ∈ N,

N (n) ∼ P (λ/n)

so that

Y (n) =
N(n)∑
j=1

Zj,

where N (n)
1 , . . . , N

(n)
n are independent and identically distributed as P (λ/n), and {Zi,j, i ≥

1, j = 1, . . . , n} are i.i.d. sequences, each one composed by independent and identically dis-

tributed random variables independent of N (n)
j . Then

Y
(n)
j =

N
(n)
j∑
i=1

Zi,j, j = 1, . . . , n

18



1.3. Definition of Lévy Process Chapter 1

and
n∑
j=1

N
(n)
j∑
i=1

Zi,j
d
=

N
(n)
1 +···+N(n)

n∑
j=1

Zi
d
= Y

The characteristic function of Y is

φY (u) = E[ei(u,Y )] = E
[
ei(
∑N
j=1 u,Zj)

]
= E

[
E
(
ei
∑N
j=1(u,Zj)|N

)]
=

= E
[
E
(
ei(u,Z1)

)N]
By denoting with r = E

[
ei(θ,Z1)

]
and with PZ the common distribution of Zj, j = 1, . . . , n, we

obtain

E
[
rN
]

=
∞∑
i=1

riλi

i!
exp(−λ) = exp(−λ)

∞∑
i=1

(λr)i

i!
exp{−λ(1− r)} =

= exp{−λ(1− E[exp{i(u, Z1)}])} =

= exp

{
−λ
∫

Rd
(1− exp{i(u, z)})PZ(dz)

}
=

= exp

{
−
∫

Rd
(1− exp{i(u, z)})λPZ(dz)

}
=

and setting λPZ(dz) = ν(dz) we have

= exp

{
−
∫

Rd
(1− exp{i(u, z)})ν(dz)

}
where ν(·) is a finite measure (since it is a probability measure multiplied by a finite constant).

Also, if we consider two independent infinitely divisible random vectors Y1 and Y2, then it can

be easily proven that the random vector Y = Y1 + Y2 is still infinitely divisible. For instance

considering Y1 as in example 1 and Y2 as in example 2 then

φY (u) = φY1(u)φY2(u) =

= exp

{
−1

2
uΣu′ + i(µ, u)−

∫
Rd

(1− exp{i(u, z)})ν(dz)

}
This last expression is very close to the general expression of an infinitely divisible random

vector which we will see hereafter.
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1.3. Definition of Lévy Process Chapter 1

Here we introduce two more interesting properties of distributions underlying evantual Lévy

processes . Let φµ(u) like in definition 6:

Definition 9. Let µ be a probability measure on Rd. It is called selfdecomposable, or of class

L, if for any b > 1 there is a probability measure ρb on Rd such that

φµ(u) = φµ(u/b)φρb(u). (1.2)

It is called semi selfdecomposable if there are some b > 1 and some infinitely divisible measure

ρb satisfying (1.2).

Proposition 2. If µ is selfdecomposable then is infinitely divisible and for any b > 1 ρb is

uniquely determined and infinitely divisible.

If µ is semi selfdecomposable, then µ is infinitely divisible and ρb is uniquely determined.

Proof: see Sato [Sat99], pg. 93.

The relation between possible representations of selfdecomposable distributions is given in a

work by Jeanblanc, Pitman and Yor [JPY02].

A final characterization of selfdecomposable distributions is given by the following

Proposition 3. A distribution µ is selfdecomposable if and only if for any fixed H > 0 it is the

distribution of X(1), where {X(t), t ≥ 0} is a process with the following properties:

• it is additive, i.e. (L1), (L2) and (L4) hold,

• it is H−self-similar, meaning that for each c > 0

{X(ct), t ≥ 0} d
= {cHX(t), t ≥ 0}.

1.3.2 Lévy-Khinchine formula

Here is the formula, first established by P.Lévy and A.Y.Khintchine in the late 1930’s, which

gives a characterization of infinitely divisible random variables through their characteristic func-

tions. First a definition is needed.
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1.3. Definition of Lévy Process Chapter 1

Definition 10. Let ν be a Borel measure defined on Rd \ {0} = {x ∈ Rd : x 6= 0}. We say that

ν is a Lévy measure if ∫
Rd\{0}

(1 ∧ |y|2)ν(dy) <∞ (1.3)

Since |y|2 ∧ ε ≤ |y|2 ∧ 1 whenever 0 < ε ≤ 1, it follows from (1.3) that

ν{(−ε, ε)c} <∞, for all ε > 0.

Moreover it is easy to prove that every Lévy measure on Rd \ {0} is σ−finite. Note also that

any finite measure on Rd \ {0} is a Lévy measure. The result given below is usually called the

Lévy-Khintchine formula and it is the cornerstone for much of what follows.

Theorem 6. (Lévy-Khinchine representation) µ ∈ M1(Rd) is infinitely divisible if there exists

a vector b ∈ Rd, a positive definite symmetric d×d matrix A and a Lévy measure ν on Rd \{0}

such that, for all u ∈ Rd,

φµ(u) = exp
{
i(b, u)− 1

2
(u,Au)+

+

∫
Rd\{0}

[
ei(u,y) − 1− i(u, y)1IB̂(y)

]
ν(dy)

}
, (1.4)

where B̂ = B1(0), an Rd−ball of radius 1 around 0.

Conversely, any mapping of the form (1.4) is the characteristic function of an infinitely divisible

probability measure on Rd.

Proof: see for instance Sato, [Sat99].

Observations and remarks

1. The proof of the “only if ” part is particularly elaborate. See [Sat99], pgg. 41−45, for one

way of doing this. An alternative approach will be given in the following, as a byproduct

of the Lévy-Itô decomposition.

2. The choice of “cut-off” function c(y) = y1IB that occurs within the integral in (1.4) is

arbitrary.
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1.3. Definition of Lévy Process Chapter 1

A replacement that is often used is

c(y) =
y

1 + |y|2
.

The only constraint in choosing c is that the function gc(y) = ei(u,y) − 1 − i(c(y), u)

should be ν−integrable for each u ∈ Rd .

Adopting a different c forces to change the vector b accordingly in (1.4).

3. Relative to the choice of c that we have taken, the members of the triple (b, A, ν) are

called the characteristics of the infinitely divisible random vector X . Examples of these

are:

• Gaussian case: b is the mean, A is the covariance matrix, ν = 0.

• Poisson case: b = 0, A = 0, ν = cδ1, with δ1 the Dirac measure with mass on {1}.

• Compound Poisson case: b = 0, A = 0, ν = cµ, where c > 0 and µ is a probability

measure on Rd.

The characteristic function φµ(u) is often written as eψ(u): ψ is often referred to as the charac-

teristic exponent or Lévy exponent.

Here we state the relationship between Lévy processes and infinite divisibility; from this point

on, where omitted, for the proofs see for instance Sato [Sat99] or Appelbaum [App04]:

Proposition 4. If X is a Lévy process , then X(t) is infinitely divisible for each t ≥ 0.

Proof: for each n ∈ N it is possible to write

X(t) = Y
(n)

1 (t) + . . .+ Y (n)
n (t),

where each

Y
(n)
k (t) = X(kt/n)−X((k − 1)t/n)

The Y (n)
k (t) are i.i.d by (L2) and (L3).
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1.3. Definition of Lévy Process Chapter 1

By Proposition 4, we can write φX(t)(u) = eψ(t,u) for each t ≥ 0, u ∈ Rd , where each ψ(t, ·)

is a characteristic exponent. We will see below that ψ(t, u) = tψ(1, u) for each t ≥ 0, u ∈ Rd

, but first the following lemma is needed:

Lemma 1. If X = {X(t), t ≥ 0} is stochastically continuous, then the map t → φX(t)(u) is

continuous for each u ∈ Rd .

Theorem 7. If X is a Lévy process , then

φX(t)(u) = etψ(u)

for each u ∈ Rd, t ≥ 0, where ψ is the characteristic exponent of X(1).

We now have the Lévy-Khinchine formula for a Lévy process X = {X(t), t ≥ 0} ,

E[ei(u,X(t))] = exp

(
t

[
i(b, u)− 1

2
(u,Au)+

+

∫
Rd\{0}

[
ei(u,y) − 1− i(u, y)1IB̂(y)

]
ν(dy)

])

for each t ≥ 0, u ∈ Rd, where (b, A, ν) are the characteristics of X(1).

We will define the characteristic exponent and the characteristics of a Lévy process X to be

those of the random variable X(1).

It is easy to show that the sum of two independent Lévy processes is again a Lévy process

Theorem 8. If X = {X(t), t ≥ 0} is a stochastic process and there exists a sequence of

Lévy processes {Xn, n ∈ N} with each Xn = {Xn(t), t ≥ 0} such that Xn(t) converges in

probability to X(t) for each t ≥ 0, and

lim
n→∞

lim sup
t→0

P (|Xn(t)−X(t)| > a) = 0

for all a > 0, then X is a Lévy process .
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1.4 Subordinators

Subordinators introduce a simple procedure of transforming a stochastic process into another

stochastic process through random time change by an increasing Lévy process independent of

the original starting process. The idea was first introduced by Bochner in 1949. Subordination

is also a good auxiliary method to reduce complex processes to known ones by means of a

suitable time change.

Definition 11. A subordinator is a one-dimensional Lévy process that is a.s. non-decreasing.

Such processes can be thought of as a random model of time evolution, since if T = {T (t), t ≥

0} is a subordinator we have

T (t) ≥ 0 a.s., for each t > 0,

and

T (t1) ≤ T (t2) a.s.,whenever t1 ≤ t2.

As a counterexample, the process X = {X(t), t ≥ 0, X(t) ∼ N(0, At)} is such that P (X(t) ≥

0) = P (X(t) ≤ 0) = 1/2, therefore it is clear that such a process cannot be a subordinator.

More generally we have

Theorem 9. If T is a subordinator, then its characteristic exponent takes the form

ψ(u) = ibu+

∫ ∞
0

(eiuy − 1)λ(dy), (1.5)

where b ≥ 0 and the Lévy measure λ satisfies the additional requirements

λ(−∞, 0) = 0 and
∫ ∞

0

(y ∧ 1)λ(dy) <∞.

Conversely, any mapping from Rd → C of the form (1.5) is the characteristic exponent of a

subordinator.

We call the pair (b, λ) the characteristics of the subordinator T .
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1.5 Lévy measure, jumps of a Lévy process and Poisson ran-

dom measures

Let us understand what the condition (1.3) say; firstly it is sufficiently clear that

ν(|x| ≥ 1) <∞,

and moreover ∫
(−1,1)

x2ν(dx) <∞ (1.6)

These two conditions are sufficient to ensure that integral (1.4) converges since the integrand is

O(1) for |x| ≥ 1 and O(x2) for |x| < 1.

In principle (1.6) means that two possibilities could show up:

• ν(−1, 1) <∞;

• ν(−1, 1) = ∞. In this latter case, it necessarily holds that ν(|x| ∈ (ε, 1)) < ∞, but

ν(|x| < ε) =∞, for 0 < ε < 1.

The Lévy measure ν describes the size and rate of arrival of jumps of the Lévy process X(t).

It could be naively explained like in a small period of time dt a jump of size x occurs with

probability ν(dx)dt+ o(dt). If it were the case that ν(−1, 1) =∞ then the latter interpretation

would suggest that the smaller the jump size, the greater the intensity and so the discontinuities

in the path of a Lévy process are predominantly made up of arbitrarily small jumps.

1.5.1 Lévy measure, paths and distributional properties

The Lévy measure is responsible for the richness of the class of Lévy processes and carries

useful information about the structure of the process. Also path properties can be read from the

Lévy measure.

Proposition 5. Let X be a Lévy process on R with triplet (a, b, ν).
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i) If ν(R) <∞, then almost all paths of X have a finite number of jumps on every compact

interval. In this case, the Lévy process has finite activity.

ii) If ν(R) = ∞, then almost all paths of X have an infinite number of jumps on every

compact interval. In this case, the Lévy process has infinite activity.

Proof: see theorem 21.3 in Sato [Sat99].

Whether a Lévy process has finite variation or not, also depends on the Lévy measure (and on

the presence or absence of a Brownian part).

Proposition 6. Let X be a Lévy process with triplet (a, b, ν).

i) If b = 0 and
∫
|x|≤1
|x|ν(dx) <∞, then almost all paths of X have finite variation.

ii) If b 6= 0 or
∫
|x|≤1
|x|ν(dx) =∞, then almost all paths of X have infinite variation.

Proof: see theorem 21.9 in Sato [Sat99].

The Lévy measure also carries information about the finiteness of the moments of a Lévy pro-

cess. This is particularly useful information in mathematical finance, related to the existence of

a martingale measure. The finiteness of the moments of a Lévy process is related to the finite-

ness of an integral over the Lévy measure (more precisely, the restriction of the Lévy measure

to jumps larger than 1 in absolute value, i.e. “big jumps”).

Proposition 7. Let X be a Lévy process with triplet (a, b, ν).

i) X(t) has finite p-th moment for p ∈ R+ (meaning that E[|X(t)|p] < ∞) if and only if∫
|x|≥1
|x|pν(dx) <∞

ii) X(t) has finite p-th exponential moment for p ∈ R (E[epX(t)] < ∞) if and only if∫
|x|≥1

epxν(dx) <∞
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Proof: the proof of these results can be found in theorem 25.3 in Sato [Sat99].

Actually, the conclusion of this theorem holds for the general class of submultiplicative func-

tions (cf. def. 25.1 in Sato [Sat99]), which contains exp(px) and |x|p ∨ 1 as special cases.

Definition 12. A function f : (0,∞) → (0,∞) is called regularly varying with exponent β if

f(t) > 0, for t large enough and, for any c > 0

lim
t→∞

f(ct)

f(t)
= cβ.

If β = 0, the function f is said to be slowly varying.

Theorem 10. Let Y be an infinitely divisible random variable with Lévy measure ν. Then Y

has a regularly varying tail with exponent α if and only if

ν{z : z > t}

is regularly varying with exponent α. If this is true, moreover

lim
t→∞

P (Y > t)

ν{z : z > t}
= 1.

A property which often appears in financial data is the following

Definition 13. A distribution function f(x) has semiheavy tails if the tails of the distribution

behave like

f(x) ∼


C−|x|ρ− exp(η−|x|) as x→ −∞,

C+|x|ρ+ exp(η+|x|) as x→∞

for some ρ+, ρ− ∈ R and C−, C+, η−, η+ ≥ 0.

For a couple of observations, we introduce a very important process associated to a Lévy process

X .

Definition 14. The jump process ∆X = {∆X(t), t ≥ 0} is defined by

∆X(t) = X(t)−X(t−), for each t ≥ 0
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X(t−) is the left limit at the point t; clearly ∆X is an adapted process but it is not, in general, a

Lévy process .

Lemma 2. If X is a Lévy process , then, for fixed t > 0, ∆X(t) = 0 a.s..

Proof: let {t(n), n ∈ N} be a sequence in R+ with t(n) ↑ t as n → ∞; then, since X has

cádlág paths, limn→∞X(t(n)) = X(t−). However, by (L4) the sequence {X(t(n)), n ∈ N}

converges in probability toX(t) and so has a subsequence that converges almost surely toX(t).

The result follows by uniqueness of limits.

Much of the analytic difficulty in manipulating Lévy processes arises from the fact that it is

possible for them to have ∑
0≤s≤t

|X(s)| =∞ a.s.

and the way these difficulties are overcome exploits the fact that we always have

∑
0≤s≤t

|X(s)|2 <∞ a.s.

But, rather than exploring ∆X itself further, it is generally more profitable to count jumps of

specified size. More precisely, let 0 ≤ t <∞, and A ∈ B(Rd \ {0}). Define

N(t, A) = ]{0 ≤ s ≤ t : ∆X(s) ∈ A} =
∑

0≤s≤t

1IA(∆X(s)).

Note that for each ω ∈ Ω and t ≥ 0, the set function A→ N(t, A)(ω) is a counting measure on

B(Rd \ {0}) and hence

E[N(t, A)] =

∫
N(t, A)(ω)dP (ω)

is a Borel measure on B(Rd \{0}). We write µ(·) = E[N(1, ·)] and call it the intensity measure

associated with X .

Definition 15. We say that A ∈ B(Rd \ {0}) is bounded below if 0 /∈ Ā.

Lemma 3. If A is bounded below, then N(t, A) <∞ a.s. for all t ≥ 0.
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Proof: see Appelbaum, [App04], pg. 87.

Note that if A fails to be bounded below then lemma 3 may no longer hold, because of the

accumulation of infinite numbers of small jumps.

Theorem 11.

(1) If A is bounded below, then {N(t, A), t ≥ 0} is a Poisson process with intensity µ(A).

(2) If A1, . . . , Am ∈ B(Rd \ {0}) are disjoint, then the random variables

N(t, A1), . . . , N(t, Am) are independent.

Proof: see Appelbaum, [App04], pg. 88.

1.6 Random measures

Definition 16. Let (S,A) be a measurable space and (Ω,F ,F, P ) be a stochastic basis. A

random measure M on (S,A) is a collection of random variables {M(B), B ∈ A} such that:

(1) M(∅) = 0;

(2) (σ−additivity) given any sequence {An, n ∈ N} of mutually disjoint sets in A,

M

(⋃
n∈N

An

)
=
∑
n∈N

M(An) a.s.;

(3) (independently scattered property) for each disjoint family {B1, . . . , Bn} in A, the ran-

dom variables M(B1), . . . ,M(Bn) are independent.

Definition 17. We say that we have a Poisson random measure if each M(B) has a Poisson

distribution whenever M(B) <∞.

In many cases of interest, we obtain a σ−finite measure λ on (S,A) by the prescription λ(A) =

E[M(A)] for all A ∈ A. Conversely we have:
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Theorem 12. Given a σ−finite measure λ on a measurable space (S,A), there exists a Poisson

random measure M on a probability space (Ω,F , P ) such that λ(A) = E[M(A)] for all A ∈

A.

Proof: See e.g. [Sat99], pg. 122.

Suppose that S = R+ × U , where U is a measurable space equipped with a σ−algebra C , and

A = B(R+)⊗ C . Let p = {p(t), t ≥ 0} be an adapted process taking values in U such that M

is a Poisson random measure on S , where M([0, t)× A) = ]{0 ≤ s < t : p(s) ∈ A} for each

t ≥ 0 and A ∈ C. In this case we say that p is a Poisson point process and M is its associated

Poisson random measure.

The next necessary concept is a merger of the two important ideas of the random measure and

the martingale.

Let U be a topological space and take C to be its Borel σ−algebra. Let M be a random measure

on S = R+ × U . For each A ∈ C, define a process MA = {MA(t), t ≥ 0} by MA(t) =

M([0, t)× A).

Definition 18. We say that M is a martingale-valued measure if there exists V ∈ C such that

MA is a martingale whenever Ā ∩ V = ∅. We call V the associated forbidden set (which may

of course itself be ∅).

The key example of these concepts for our work is as follows:

Example 3. Let U = Rd \ {0} and C be its Borel σ−algebra. Let X be a Lévy process; then

∆X is a Poisson point process and N is its associated Poisson random measure.

Definition 19. For each t ≥ 0 and A bounded below, we define the compensated Poisson

random measure by

Ñ(t, A) = N(t, A)− tµ(A).
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{Ñ(t, A), t ≥ 0} is a martingale and so Ñ extends to a martingale-valued measure with forbid-

den set {0}.

Here are the main properties of the Poisson random measure N :

(1) For each t > 0, ω ∈ Ω, N(t, ·)(ω) is a counting measure on B(Rd \ {0}).

(2) For each A bounded below, {N(t, A), t ≥ 0} is a Poisson process with intensity µ(A) =

E[N(, A)].

(3) {Ñ(t, A), t ≥ 0} is a martingale-valued measure, where Ñ(t, A) = N(t, A) − tµ(A),

for A bounded below.

1.6.1 Poisson integration

Let f : Rd → Rd be a Borel measurable function and let A be bounded below; then for each

t > 0, ω ∈ Ω, we may define the Poisson integral of f as a random finite sum by∫
A

f(x)N(t, dx)(ω) =
∑
x∈A

f(x)N(t, {x})(ω).

Note that each
∫
A
f(x)N(t, dx) is an Rd-valued random variable and gives rise to a cádlág

stochastic process as we vary t .

Now, since N(t, {x}) = 0⇔ X(u) = x for at least one 0 ≤ u ≤ t, we have∫
A

f(x)N(t, dx) =
∑

0≤u≤t

f(∆X(u))1IA(∆X(u)) (1.7)

Let {TAn , n ∈ N} be the arrival times for the Poisson process {N(t, A), t ≥ 0}. Then another

useful representation for Poisson integrals, which follows immediately from (1.7), is∫
A

f(x)N(t, dx) =
∑
n∈N

f(∆X(TAn ))1I[0,t](T
A
n ). (1.8)

From this, we will sometimes use µA to denote the restriction to A of the measure µ.

Theorem 13. Let A be bounded below. Then:
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(1) for each t ≥ 0,
∫
A
f(x)N(t, dx) has a compound Poisson distribution such that, for each

u ∈ Rd,

E

[
exp

{
i

(
u,

∫
A

f(x)N(t, dx)

)}]
= exp

[
t

∫
A

(ei(u,x) − 1)µf (dx)

]
where µf = µ ◦ f−1;

(2) if f ∈ L1(A, µA), we have

E

[∫
A

f(x)N(t, dx)

]
= t

∫
A

f(x)µ(dx);

(3) if f ∈ L2(A, µA), we have

V ar

(∣∣∣∣∣
∫
A

f(x)N(t, dx)

∣∣∣∣∣
)

= t

∫
A

|f(x)|2µ(dx).

Proof: see for instance Appelbaum, [App04], pg. 92.

It follows from theorem 13 (2) that a Poisson integral will fail to have a finite mean if f /∈

L1(A, µ).

Consider the sequence of jump size random variables {Y A
f (n), n ∈ N}, where each

Y A
f (n) =

∫
A

f(x)N(TAn , dx)−
∫
A

f(x)N(TAn−1, dx).

It follows from (1.8) and (5.20) that

Y A
f (n) = f(∆X(TAn )),

for each n ∈ N .

Theorem 14.

(1) {Y A
f (n), n ∈ N} are i.i.d. with common law given by

P (Y A
f (n) ∈ B) =

µ(A ∩ f−1(B))

µ(A)

for each B ∈ B(Rd).
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(2) {
∫
A
f(x)N(t, dx), t ≥ 0} is a compound Poisson process.

Proof: See e.g. [App04], pg. 93− 4.

Definition 20. For each f ∈ L1(A, µA), t ≥ 0, we define the compensated Poisson integral by∫
A

f(x)Ñ(t, dx) =

∫
A

f(x)N(t, dx)− t
∫
A

f(x)µ(dx).

A straightforward argument shows that{∫
A

f(x)Ñ(t, dx), t ≥ 0

}
is a martingale. By theorem 13 (1) and (3) we can easily deduce the following two important

facts:

E

[
exp

{
i

(
u,

∫
A

f(x)Ñ(t, dx)

)}]
=

= exp

{
t

∫
A

[ei(u,x) − 1− i(u, x)]µf (dx)

}
(1.9)

for each u ∈ Rdand, for f ∈ L2(A, µA),

E

[∣∣∣∫
A

f(x)Ñ(t, dx)
∣∣∣2] = t

∫
A

|f(x)|2µ(dx).

1.7 Lévy-Itô decomposition

Here is one of the key results in the elementary theory of Lévy process , namely the celebrated

Lévy-Itô decomposition of the sample paths into continuous and jump parts. Some preliminary

results are needed for the proof of the main result. Most of the auxiliary proof will be omitted;

for details see [App04].

Proposition 8. Let Mj, j = 1, 2 be two cádlág centered martingales. Suppose that, for some j,

Mj is L2 and that for each t ≥ 0, E[|V (Mk(t)|2) <∞ where k 6= j and for a cádlág mapping
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g : [a, b] → Rd with P a partition of interval [a, b] of the form [a = t1 < t2 < . . . , < tn <

tn+1 = b] in R, V (g) = supP
∑n

i=1|g(ti+1)− g(ti)|; then

E[(M1(t),M2(t))] = E
[ ∑

0≤s≤t

(∆M1(s),∆M2(s))
]
.

Definition 21. (from Schoutens, [Sch03]) Let P be a partition of the interval [a, b] as above

introduced and g : [a, b]→ R cádlág. If V (g) <∞ we say that g has finite variation on [a, b].

If this is not the case, the function is said to be of infinite variation.

Definition 22. (from Eberlein, [Ebe09]) Let X = {X(t), t ≥ 0} be a Lévy process with Lévy

measure ν. Then X has finite activity if ν(R) <∞, otherwise it has infinite activity.

The following is a special case of proposition above, which plays a major role below.

Example 4. Let A and B be bounded below and suppose that f ∈ L2(A, µA), g ∈ L2(B, µB).

For each t ≥ 0, let M1(t) =
∫
A
f(x)Ñ(t, dx) and

M2(t) =
∫
B
g(x)Ñ(t, dx); then

V (M1(t)) ≤ V

(∫
A

f(x)N(t, dx)

)
+ V

(
t

∫
A

f(x)ν(dx)

)
≤

≤
∫
A

|f(x)|N(t, dx) + t

∫
A

f(x)ν(dx).

From this and the Cauchy-Schwarz inequality we have E[|V (M1(t)|2] < ∞, and so we can

apply proposition above in this case.

Observe that E[M1(t)M2(t)] = 0 for each t ≥ 0 if A ∩B = ∅.

Moreover it can be shown that proposition above fails to hold when M1 = M2 = B , where B

is a standard Brownian motion.

Theorem 15. If Ap, p = 1, 2 are disjoint and bounded below, then{∫
A1
xN(t, dx), t ≥ 0

}
and

{∫
A2
xN(t, dx), t ≥ 0

}
are independent stochastic processes.

Theorem 16. If X is a Lévy process with bounded jumps then we have E[|X(t)|m] <∞ for all

m ∈ N.
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For each a > 0, consider the compound Poisson process{∫
|x|≥a

xN(t, dx), t ≥ 0

}
and define a new stochastic process Ya = {Ya(t), t ≥ 0} by the prescription

Ya(t) = X(t)−
∫
|x|≥a

xN(t, dx).

Intuitively, Ya is what remains of the Lévy process X when all the jumps of size greater

than a have been removed. We can get more insight into its paths by considering the im-

pact of removing each jump. Let {Tn, n ∈ N} be the arrival times for the Poisson process

{N(t, Ba(0)c), t ≥ 0}. Then we have

Ya(t) =



X(t) for 0 ≤ t < T1,

X(T−1 ) for t = T1,

X(t)−X(T1) +X(T−1 ) for T1 < t < T2,

Ya(T
−
2 ) for t = T2,

and so on recursively.

Theorem 17. Ya is a Lévy process .

Proof: (L1) is immediate. For (L2) and (L3) we argue as in the proof of theorem 11 and deduce

that, for each 0 ≤ s < t < ∞, Ya(t) − Ya(s) is Fs,t−measurable where Fs,t = σ{X(u) −

X(v) : s ≤ v ≤ u < t}. To establish (L4), use the fact that for each b > 0, t ≥ 0,

P (|Ya(t)| > b} ≤ P (|X(t)| > b/2) + P

(∣∣∣∣∣
∫
|x|≥a

xN(t, dx)

∣∣∣∣∣ > b/2

)
.
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1.7. Lévy-Itô decomposition Chapter 1

It is immediately deduced the following:

Corollary 1. A Lévy process has bounded jumps if and only if it is of the form Ya for some

a > 0.

For each a > 0, we define a Lévy process Ŷa = {Ŷa(t), t ≥ 0} by

Ŷa = Ya(t)− E[Ya(t)].

It is then easy to verify that Ŷa is a cádlág centred L2−martingale. In the following, it will

be convenient to take a = 1 and write the processes Y1, Ŷ1 simply as Y, Ŷ , respectively.

So Y is what remains of our Lévy process when all jumps whose magnitude is larger than

1 have been removed, and Ŷ is the centered version of Y . We also introduce the notation

M(t, A) =
∫
A
xÑ(t, dx) for t ≥ 0 and A bounded below.

The following is a key step towards our required result.

Theorem 18. For each t ≥ 0,

Ŷ (t) = Yc(t) + Yd(t),

where Yc and Yd are independent Lévy process , Yc has continuous sample paths and

Yd(t) =

∫
|x|<1

xÑ(t, dx).

We recall that µ is the intensity measure of the Poisson random measure N .

Corollary 2. µ is a Lévy measure.

Proof: it has been already shown that µ{(−1, 1)c} <∞. We also have∫
|x|≤1

|x|2µ(dx) = lim
n→∞

∫
An

|x|2µ(dx) = lim
n→∞

E[|M(t, An|)2] =

= E[|Yd|2] <∞,

and the result is established.
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Corollary 3. For each t ≥ 0, u ∈ Rd,

E[ei(u,Yd(t))] = exp

{
t

∫
|x|<1

[ei(u,x) − 1− i(u, x)]µ(dx)

}
.

Proof: Take limits in equation (1.9).

Theorem 19. Yc is a Brownian motion.

Theorem 20. (Lévy-Itô decomposition) If X is a Lévy process, then there exists b ∈ Rd, a

Brownian motion BA with covariance matrix A and an independent Poisson random measure

N on R+ × (Rd \ {0}) such that, for each t ≥ 0,

X(t) = bt+BA(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx). (1.10)

Proof: this follows from theorems (18) and (19) with

b = E

[
X(1)−

∫
|x|≥1

xN(1, dx)

]
.

The fact that BA and N are independent follows from the argument of theorem 15.

Observe that the process {
∫
|x|<1

xÑ(t, dx), t ≥ 0} in (1.10) is the compensated sum of small

jumps. The compensation takes care of the analytic complications in the Lévy-Khintchine

formula in a probabilistically pleasing way, since it is an L2−martingale.

The process {
∫
|x|≥1

xN(t, dx), t ≥ 0} describing the “large jumps” in (1.10) is a compound

Poisson process by theorem (14).

Moreover, it holds the following

Corollary 4. The characteristics (b, A, ν) of a Lévy process are uniquely determined by the

process.

Proof: this follows from the construction that led to theorem 20.
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1.8 Semimartingales

Let (Ω,F, P ) be the usual filtered probability space:

Definition 23.

(1) An adapted stochastic process X = {X(t), t ≥ 0} is a local martingale if there is a

nondecreasing sequence of stopping times T1 ≤ T2 ≤ . . . such that for every n ≤ 1

stopped process

{X(t ∧ Tn), t ≥ 0, n ≥ 1}

is a martingale.

(2) An adapted stochastic process X = {X(t), t ≥ 0} is a semimartingale if it can be written

in the form

X(t) = M(t) + A(t), t ≥ 0

where {M(t), t ≥ 0} is a local martingale, and {A(t), t ≥ 0} is an adapted stochastic

process of a local bounded variation.

The basic importance of semimartingales is given from the fact that on this family of stochastic

processes it is possible to develop an unified theory of stochastic integration, i.e. to give sense

of
∫ t

0
F (s)X(ds) for a suitable class of adapted processes and itegrators X .

The main interesting theorem for our purposes is the following

Theorem 21. Every Lévy process X = {X(t), t ≥ 0} is a semimartingale with respect to its

natural filtration Ft = σ{X(s), 0 ≤ s ≤ t}.

Proof: the Lévy-Itô decomposition of X is the backbone of the proof: let X(t) = B(t) + µt +

Xp(t) with t ≥ 0 and where

Xp(t) =

∫
|x|≥1

xN(t, dx) +

∫
|x|<1

xÑ(t, dz), t ≥ 0 (1.11)
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as in (1.10).

By defining Y1(t), Y2(t), t ≥ 0 respectively the first and second summand of (1.11), it is possible

to write

X(t) = [B(t) + Y2(t)] + [Y1(t) + µt], t ≥ 0,

and to claim that this is the semimartingale decomposition of Lévy process X = {X(t), t ≥ 0}

.

Firstly B(t) + Y2(t), t ≥ 0 is a Lévy process with generating triplet (Σ, 0, ν1I{|x|<1}), and

trivially a zero-mean process.

Every zero-mean Lévy process is a martingale with respect of its natural filtration; let in fact be

X̃(t) a zero-mean Lévy process and F̃t = σ{X̃(s), 0 ≤ s ≤ t}, t ≥ 0, hence

E[X̃(t)|F̃s] = E[X̃(t)− X̃(s)|F̃s] + E[X̃(s)|F̃s] =

= E[X̃(t)− X̃(s)] + X̃(s) = X̃(s).

Indeed it is also a martingale with respect to the filtration generated by X: the only extra

information is in the jumps in Y1(t), but the statement follows for independence.

Then M(t) = B(t) + Y2(t), t ≥ 0 is a Ft = σ{X(s), 0 ≤ s ≤ t}−martingale, t ≥ 0.

Now what we need to check is thatA(t) = Y1(t)+µt is an adapted process of bounded variation.

Supposing adaptedness holds (trivially because µt is a constant for every t ≥ 0 and Y1(t) is

adapded with respect to its own filtration, which is a subset of σ{X(s), 0 ≤ s ≤ t}, t ≥ 0), it

is easy to see that

(1) {µt, t ≥ 0} is of locally bounded variation for linearity;

(2) {Y1(t), t ≥ 0} is still a Lévy process with generating triplet (0, 0, ν1I{|x|≥1}), which is a

compound Poisson process (of locally bounded variation because piecewise constant).
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1.8.1 Characteristics of semimartingales

The notion of characteristics of a semimartingale is introduced to generalize the idea of Lévy

triplet. Recall that by Lévy-Khinchine representation the Lévy triplet was identified uniquely.

If X is a semimartingale, the idea applies in the following intuitive way: the aim is to find two

processes {Bt} and {Ct}, and a random measure ν such that if we define the process φt(u) by

means of the one-dimensional Lévy-Khinchine formula through

log φt(u) = iuBt −
1

2
u2Ct +

∫
R\{0}

[
eiuy − 1− iuh(y)

]
ν([0, t]× dy), (1.12)

with h(x) any bounded Borel function with compact support which “behaves like x” near the

origin, then it holds that
exp(iuXt)

φt(u)
(1.13)

is a martingale. It is not possible to find a triplet (B,C, ν) which is deterministic (unless X is

a semimartingale with independent increments), but it is possible to find an unique triplet for

which (1.13) holds and that is predictable. A triplet of this kind is called the characteristics of

X . See Jacod and Shiryaev, [JS02], pg. 75− 76 for che exact definition.

1.9 Conclusions

This first chapter set the theme of our discussion, introducing the main elements which will be

specified where necessary in the following. The main references for this chapter are given by

the books of Sato, [Sat99], Appelbaum, [App04], and Bertoin, [Ber96].

It is clear how the main results are linked to the Lévy-Khinchine and Itô decompositions, and

as for the main definition is concerned, to the notion of infinite divisibility.
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Chapter 2

Some Particular Examples of

the Applications of Lévy Process

In this chapter we will see a quick review of some of the most interesting or important Lévy

processes , describing their origins and main properties and, where possible, showing some sim-

ulated trajectories. The simulations are not always easy to obtain, unless either the increments

distribution is known in a closed analytical form or a representation through subordinator can

be written, which is not always the case.

So the examples introduced here, besides the classical starting points as Poisson process or

Brownian motion, are relevant either for their applications, mainly in mathematical finance, or

for their capability of being simulated, or both.

This in part also shows the importance of having a subordinator representation of the process:

subordinators in fact provide a good way for simulation. When possible, simulations are ob-

tained with R software on a fixed time grid for the sake of simplicity. Hence most of the work

in this case has been performed in creating the routines for simulating the trajectories of the

processes.

The list is clearly not exhaustive, as for instance drops all the section generating from stable

processes (self similar processes, fractional Lévy motions and others): the aim here is to de-
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scribe the possible variety of some of these processes which will in some sense constitute the

starting point for the following, and by themselves provide a wide range of models generally

used to model financial markets.

The first introduced are the basic processes.

2.1 Poisson Process

Let λ > 0 and µλ be a probability distribution on k = 0, 1, 2, . . . and such that

µλ({k}) =
e−λλk

k

i.e. the Poisson distribution P (λ). It is easy to evaluate the characteristic function of a random

variable X ∼ P (λ) as

φP (u) =
∑
k≥0

eiuxµλ({x}) = e−λ(1−eiu) =
[
e−

λ
n (1− eiu)

]n
,

the latter equality showing infinite divisibility of the Poisson distribution, since it has the char-

acteristic function equal to the sum of the characteristic functions of n independent Poisson

distributions each with parameter λ/n.

This means we can define a Lévy process, the Poisson process, N = {N(t), t ≥ 0} with

intensity parameter λ as the process which starts at 0, has independent and stationary increments

and where the increment over a time interval of length s > 0 enjoys a P (λs) distribution.

So the Poisson process turns out to be an increasing pure jump process, with jump sizes always

equal to 1; this means that the Lévy triplet is given by (0, 0, λδ1), where δ1 is the Dirac measure

at point 1, i.e. a measure with a mass of only 1 at point 1.

The time between two jumps follows an Exp(λ) distribution.

It is easy to evaluate the first moments of a Poisson distribution:
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P (λ)

mean λ

variance λ

skewness λ−1/2

kurtosis 3 + λ−1

0 5 10 15 20 25 30

0
5

10
15

20
25

30

λ = 0.75
time

X
(t)

0 5 10 15 20 25 30

0
10

20
30

40
50

60

λ = 2
time

X
(t)

Figure 2.1: two different trajectories of a Poisson process, respectively with parameters λ = 0.75 and

λ = 2

This process provides a good theoretical standing point for the construction of more complex

models, besides its standard use as counting process.

2.2 Compound Poisson Process

Suppose now N = {N(t), t ≥ 0} is a Poisson process with intensity parameter λ > 0 and that

Zi, i = 1, 2, . . . is an i.i.d. sequence of random variables independent of N and following a law

PZ with characteristic function φZ(u).
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Then the process

X(t) =

N(t)∑
k=0

Zk, t ≥ 0

is a compound Poisson process; the value of the process at time t is the sum of a random

(∼ P (λt)) numbers with common distribution PZ . Obviously the ordinary Poisson process

corresponds to the case where Zi = 1 for all i, i.e. where the distribution is degenerate at point

1.

From example 2 in chapter 1 we see that compound Poisson distribution is infinitely divisible

and hence its associated Lévy process has characteristic function

E[eiuX(t)] = exp

(
t

∫
R
(exp{iux} − 1)ν(dx)

)
= exp(tλ(φZ(u)− 1)),

where ν(dx) = λPZ(dx) and which leads to a Lévy triplet given by[∫ 1

−1

xν(dx), 0, ν(dx)

]
.

Here are some samples of possible trajectories of this process
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-1
0

-5
0

5
10

time

X
(t)

Figure 2.2: two different possible trajectories of a Compound Poisson process: intensity of jumps λ =

10, distribution of jumps N(0, 1) (left); intensity of jumps λ = 30, distribution of jumps N(0, 1)
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Figure 2.3: two different possible trajectories of a Compound Poisson process: intensity of jumps λ =

10, distribution of jumps N(3, 5) (left); intensity of jumps λ = 10, distribution of jumps Γ(1, 1/2)

The following, and last result of this section is the proof of a slight generalization of DeFinetti’s

theorem 2 seen in the beginning paragraph:

Theorem 22. Every infinite divisible distribution is the limit of a sequence of a compound

Poisson distributions.

Proof: : let µ be an infinitely divisible probability measure, and choose a real sequence tn ↓ 0.

Define µn by its characteristic function as

φµn(u) := exp{t−1
n (φµ(u)− 1)} = exp

[
t−1
n

∫
Rd\{0}

(ei(u,x) − 1)µtn(dx)

]
.

The distribution of µn is compound Poisson. Now observe that

φµn(u) = exp[t−1
n (etn log φµ(u) − 1)] = exp[t−1

n (tn log φµ(u) +O(t2n))]

for each u as n→∞. Therefore φµn(u)→ elog φµ(u) = φµ(u).
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2.3 Brownian Motion

1 A stochastic process W (t) on Rd is a Brownian motion (or a Wiener process) if it is a Lévy

process and

(1) for t > 0, W (t) has a Gaussian distribution with mean 0 and covariance matrix tI (with

I the d× d identity matrix);

(2) there is Ω0 ∈ F with P (Ω0) = 1 such that for every ω ∈ Ω0, W (t, ω) is continuous in t.

Details on simple properties of Brownian motion are given for instance in Sato, [Sat99], pgg.

24− 8.

In this standard case the probability measure underlying the process is the N(0, t), which is

trivially infinitely divisible.

For the general case of a one dimensional Brownian motion with drift b ∈ R, the probability

measure is given by

µb,t(dx) =
1√
2πt2

e−
(x−b)2

2t2 dx;

1A brief historical note: the history of Brownian motion dates back to 1828 whien the scottish botanist Robert

Brown observed pollen grains and the spores of mosses and Equisetum suspended in water under a microscope;

he observed minute particles within vacuoles in the pollen grains executing a continuous jittery motion. He then

compared the same motion in particles of dust, enabling him to rule out the hypothesis that the effect was due to

pollen being “alive”. In 1900 Bachelier considered Brownian motion as a possible model for stock market prices,

at a time when the topic was not considered worth of studying.

In 1905 A.Einstein considered Brownian motion as a model for particles in suspension. He observed that, if the

kinetic theory of fluids were correct, then the molecules of water would move at random and so a small particle

would receive a random number of impacts of random strength and from random directions in any short period of

time.

Such a bombardment would cause a sufficiently small particle to move in exactly the way described by Brown.

In 1923 N.Wiener defined and constructed Brownian motion rigorously for the first time.

With the work of Samuelson (1965) Brownian motion reappeared as a modeling tool for finance.
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it is also well known that

φµb,t(u) =

∫
R
eiuxµb,t(dx) = eiub−

1
2
t2u2

=

[
e
iu b
n
− 1

2

(
u√
n

)2
t2
]n

again showing that is an infinitely divisible distribution and leading then to the Lévy triplet

[b, t, 0]

It is trivial to verify that, given a standard one-dimensional Brownian motion W (t), a Brownian

motion with drift has the form

X(t) = bt+
√
tW (t)

The obvious moments are

N(b, t)

mean b

variance t

skewness 0

kurtosis 3
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(t)
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5
10

time
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Figure 2.4: two different possible trajectories of a Brownian Motion: volatility t = 4, drift b = 0 (left);

volatility t = 25, drift b = 1.5 (right)
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2.4 Lévy jump-diffusion process

This is a process in which the jump component is given by a compound Poisson process. It can

be represented in the form

X(t) = bt+
√
cW (t) +

N(t)∑
i=1

Yi,

where b ∈ R, c > 0, W (t) is the standard Brownian motion, {N(t), t ≥ 0} is a Poisson process

with intensity λ > 0 and {Yi, i ≥ 1} is a sequence of i.i.d. random variables, independent of

N(t).

Here is a couple of simulations from this process:
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Figure 2.5: two different possible trajectories of a jump diffusion process: σ2 = 10, b = 0, Yi ∼

N(0, 1), λ = 10 (left); σ2 = 10, b = 3, Yi ∼ N(1, 5), λ = 5 (right)

For normally distributed random variables Yi, Merton in [Mer76] introduces this process for

asset return modeling; in a work by Kou, [Kou02], double exponentially distributed jump size

variables Yi are used.
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2.5 Gamma process

The density function of a Γ(a, b) random variable with a, b > 0 is given by

fG(x; a, b) =
ba

Γ(a)
xa−1e−bx, x > 0.

The characteristic function is easily obtainable as

φG(u; a, b) =
(

1− iu
b

)−a
=

[(
1− iu

b

)−a/n]n
,

which shows that it is infinitely divisible. Therefore the Gamma process is defined as the process

XG = {XG(t), t ≥ 0} with parameters a, b > 0 which starts at 0 and has stationary and

independent increments distributed as a Γ(a, b).

More precisely, time t enters in the first parameter, as XG(t) ∼ Γ(at, b), if X is a Gamma

process. The Lévy triplet is given by[
a(1− exp(−b))

b
, 0, a exp(−bx)x−11I{x>0}(dx)

]
From the characteristic function, the moments are immediately derived:

Γ(a, b)

mean a/b

variance a/b2

skewness 2a−1/2

kurtosis 3(1 + 2a−1)

and a scaling property holds: if X ∼ Γ(a, b), then for any c > 0, cX ∼ Γ(a, b/c).

From the fact the increments distribution is completely analitically determined, it is easy to

draw trajectories of Gamma process:
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Figure 2.6: two different possible trajectories of a Gamma process Γ(a, b) with a = 3t (left), and a = 30t

(right), and b = 1 always

2.6 Variance Gamma process

The characteristic function of the Variance Gamma (V G(σ, ν, θ)) law is given by

φV G(u;σ, ν, θ) =

(
1− iuθν − 1

2
σ2νu2

)−1/ν

which is infinitely divisible; this way a Lévy process X remains defined, which starts at 0,

has independent and stationary increments and for which the increment X(s + t) − X(s)
d
=

V G(σ
√
t, ν/t, tθ) over the interval [s, s+ t].

For the process X(t) It holds that

φV G(u;σ, ν, θ) = φV G(u;σ
√
t, ν/t, tθ) = [φV G(u;σ, ν, θ)]t =

=

(
1− iuθν +

1

2
σ2νu2

)−t/ν
(2.1)
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Theorem 23. (Madan, Carr, Chang [MC98]) The V G process may be expressed as the differ-

ence of two independent increasing Gamma processes, specifically

XV G(t;σ, ν, θ) = XG1(t;µ1, ν1)−XG2(t;µ2, ν2).

Proof: the characteristic function (2.1) may be written as the product of the following two

characteristic functions,

φG1(u) =

(
1

1− i(ν1/µ1)u

)(µ2
1/ν1)t

and

φG2(u) =

(
1

1− i(ν2/µ2)u

)(µ2
2/ν2)t

with µ1, µ2, ν1 and ν2 satisfying

µ2
1

ν1

=
µ2

2

ν2

=
1

ν
,

ν1ν2

µ1µ2

=
σ2ν

2
,

ν1

µ1

− ν2

µ2

= θν.

It follows that the V G process is the difference of two Gamma processes with mean rates µ1, µ2

and variance rates ν1, ν2 respectively.

The explicit relation between the parameters of the Gamma processes differenced in (23) and

the original parameters of the V G process is given by

µ1 =
1

2

√
θ2 +

2σ2

ν
+
θ

2
, µ2 =

1

2

√
θ2 +

2σ2

ν
− θ

2

ν1 =

(
1

2

√
θ2 +

2σ2

ν
+
θ

2

)2

ν, ν2 =

(
1

2

√
θ2 +

2σ2

ν
− θ

2

)2

ν

This characterization allows the Lévy measure to be determined

νV G(dx) =


C exp(Gx)|x|−1dx, x < 0

C exp(−Mx)x−1dx, x > 0,
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where

C = 1/ν > 0,

G =

(√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν

)−1

> 0,

M =

(√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν

)−1

> 0,

which lead to a different possible parametrization of the process.

The Lévy measure has infinite mass, and hence V G process has infinitely many jumps in any

finite time interval. Since ∫ 1

−1

|x|νV G(dx) <∞,

a V G process has paths of finite variation. A V G process has no Brownian component and its

Lévy triplet is given by

[γ, 0, νV G(dx)],

where

γ =
−C[G(exp(−M)− 1)]−M [exp(−G)− 1]

MG

2.6.1 Representation by subordination

Another way of defining a V G process, always in [MC98] who first introduced this Lévy pro-

cess , is obtaining it by evaluating Brownian motion with drift at a random time given by a

gamma process. Let

b(t; θ, σ) = θt+ σW (t)

where W (t) is a standard Brownian motion. The process b(t; θ, σ) is a Brownian motion with

drift θ and volatility σ. Now the V G processXV G(t;σ, ν, θ), is defined in terms of the Brownian
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motion with drift b(t; θ, σ) and the Gamma process with unit mean rate, Γ(t; 1, ν) as

XV G(t;σ, ν, θ) = b(XG(t; 1, ν); θ, σ).

The V G process has three parameters: (i) σ the volatility of the Brownian motion, (ii) ν the

variance rate of the gamma time change and (iii) θ the drift in the Brownian motion with drift.

The process therefore provides two dimensions of control on the distribution over and above

that of the volatility. We will observe below that control is attained over the skew via θ and over

kurtosis with ν.

The density function for the V G process at time t can be expressed conditional on the realization

of the Gamma time change g as a normal density function. The unconditional density may then

be obtained on integrating out g employing the density of the Gamma process for the time

change g. This gives us fV G(x), the density for, XV G(t), as

fV G(x) =

∫ ∞
0

1

σ
√

2πg
exp

(
−(x− θg)2

2σ2g

)
g
t
ν
−1 exp (−g/ν)

νt/νΓ(t/ν)
dx.
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Here are some simulations obtained following algorithm 6.11, pg. 192 in Cont and Tankov’s

work [CT03]
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Figure 2.7: Different possible trajectories of a Variance Gamma process with σ = 2, θ = 0.5, κ =

1/ν = 0.005 (upper left),σ = 0.02, θ = 0.5, κ = 1/ν = 0.005 (upper right), σ = 2, θ = 0.5, κ =

1/ν = 0.05 (lower left), σ = 2, θ = 0.05, κ = 1/ν = 0.05 (lower right)
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Let us finally see the moments with respect to different possible parametrizations introduced

above:

V G(σ, θ, ν) V G(σ, θ, 0) V G(C,G,M) V G(C,G,G)

mean θ 0 C(G−M)
MG 0

variance σ2 + νθ2 σ2 C(G2+M2)
(MG)2 2CG−2

skewness θν(3σ2+2νθ2)

(σ2+νθ2)3/2 0 2(G3−M3)

C1/2(G2+M2)3/2 0

kurtosis 3
[
1 + 2ν − νσ4

(σ2+νθ2)2

]
3(1 + ν) 3

[
1 + 2(G4+M4)

C(M2+G2)2

]
3(1 + 1

C )

The V G process can be advantageous to use in option pricing since it allows for a wider mod-

eling of skewness and kurtosis than the Brownian motion does. As such the Variance Gamma

model allows to consistently price options with different strikes and maturities using a single

set of parameters. Madan and Seneta in [MS90] introduce a symmetric version of the variance

gamma process is introduced. In [MC98] the authors extend the model to allow for an asym-

metric form and present a formula to price European options under the variance gamma process.

Hirsa and Madan in [HM03], show how to price American options under variance gamma.

Fiorani in [Fio03] presents numerical solutions for European and American barrier options

under variance gamma process. He also provides computer programming code to price vanilla

and barrier European and American barrier options under variance gamma process.

The variance gamma process has been successfully applied in the modeling of credit risk in

structural models. The pure jump nature of the process and the possibility to control skewness

and kurtosis of the distribution allow the model to price correctly the risk of default of securities

having a short maturity, something that is generally not possible with structural models in which

the underlying assets follow a Brownian motion.

55



2.7. Inverse Gaussian Process Chapter 2

2.7 Inverse Gaussian Process

Let T (a,b) be the first time that a standard Brownian motion with drift b > 0 reaches the positive

level a > 0. It is well known that this random time follows an Inverse Gaussian distribution

IG(a, b) which has characteristic function

φIG(u; a, b) = exp
[
−a
(√
−2iu+ b2 − b

)]
Moreover this is an infinitely devisibile distribution and we can define the IG process X(IG)

with parameters a, b > 0 as the process starting at 0, has independent and stationary increments

such that

E[exp(iuX
(IG)
t )] = φIG(u; at, b) =

= exp[−at(
√
−2iu+ b2 − b)].

The density function of the Inverse Gaussian distribution with parameters a, b is explicitly

known:

fIG(x; a, b) =
a√
2π

exp(ab)x−3/2 exp

[
−1

2
(a2x−1 + b2x)

]
, x > 0. (2.2)

The Lévy measure here is given by

νIG(dx) = (2πx3)−1/2a exp

[
−1

2
b2x

]
1I{x>0}dx,

and the first element of the Lévy triplet equals

γ =
a

b
(2N(b)− 1), where N(x) =

∫ x

−∞

1√
2π
e−

u2

2 du.

It is possible to generate Inverse Gaussian random variables through a sort of rejection algo-

rithm; this gives the chance to also draw a trajectory for an IG process. Here are four examples
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Figure 2.8: Different possible trajectories of an Inverse Gaussian process with a = 0.005, b = 0.2 (upper

left), a = 0.05, b = 0.2 (upper right), a = 0.5, b = 0.02 (lower left), a = 0.5, b = 0.2 (lower right)

The Inverse Gaussian distribution is unimodal with a mode at (
√

4a2b2 + 9− 3)/(2b2). We also
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have that:

E[X−α] =

(
b

a

)2α+1

E[Xα+1], α ∈ R.

Moreover

IG(a, b)

mean a/b

variance a/b3

skewness 3(ab)−1/2

kurtosis 3[1 + 5(ab)−1]

and finally IG distribution satisfies the scaling property X ∼ IG(a, b) then for a positive c,

cX ∼ IG(a
√
c, b/
√
c).

2.8 Generalized Inverse Gaussian Process

The distribution IG(a, b) above can be extended to what is called the Generalized Inverse Gaus-

sian law GIG(λ, a, b); its density function is given by

fGIG(x;λ, a, b) =
(b/a)λ

2Kλ(ab)
xλ−1 exp

[
−1

2
(a2x−1 + b2x)

]
, x > 0. (2.3)

The parameters are such that λ ∈ R, a, b ≥ 0 and not simultaneousy 0.

The characteristic function is

φGIG(u;λ, a, b) =
1

Kλ(ab)

(
1− 2i

u

b2

)λ/2
Kλ(ab

√
1− 2iub−2),

with Kλ(z) the modified Bessel function of the third kind, i.e. one of the two linearly indepen-

dent integrals of the Bessel differential equation

z2d
2w

dz2
+ z

dw

dz
− (z2 + λ2)w = 0

It is a regular function of z throughout the z-plane cut along the negative real axis, and for

fixed z(6= 0) it is an entire function of λ. For further reference and details see Abramowitz and

Stegun, [AS64], p.374.
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Barndorff-Nielsen and Halgreen show in [BNH77] that this distribution is infinitely divisible,

hence it is possible to define the GIG process, the Lévy process whose increment over the

interval [s, s+ t], s, t ≥ 0 has characteristic function [φGIG(u;λ, a, b)]t.

The Lévy measure is pretty complicated and has a density on R+ given by

ν(x) = x−1 exp

[
−1

2
b2x

](
a2

∫ ∞
0

exp(−xz)g(z) dz + max{0, λ}
)
,

with

g(z) =
[
π2a2z{J2

|λ|(a
√

2z) + Y 2
|λ|(a
√

2z)}
]−1

,

where Jλ(z) and Yλ(z) are solution of the differential equation

z2d
2w

dz2
+ z

dw

dz
+ (z2 − λ2)w = 0

Each one is a regular (holomorphic) function of z throughout the z-plane cut along the negative

real axis, and for fixed z(6= 0) each is an entire (integral) function of λ. For further reference

[AS64], p.358..

There is a general formula to evaluate the moments of a random variableX following aGIG(λ, a, b)

distribution, and is given by

E[Xk] =
(a
b

)k Kλ+k(ab)

Kλ(ab)
, k ∈ R,

from this it can be deduced that

GIG(λ, a, b)

mean aKλ+1(ab)/(bKλ(ab))

variance a2(bKλ(ab))
−2[Kλ+2(ab)Kλ(ab)]

2.8.1 Particular cases

• IG(a, b) distribution: it is obtained for λ = −1/2 in the GIG(λ, a, b); this descends

from the fact that

K−1/2(x) =

√
π

2x
exp(−x);
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• Γ(ã, b̃) distribution: for a = 0, λ = ã > 0, b =
√

2b̃ inGIG(λ, a, b), derives the Γ(ã, b̃)

distribution.

2.9 Tempered Stable Process

The characteristic function of the Tempered Stable distribution TS(κ, a, b), a > 0, b ≥ 0, 0 <

κ < 1, is given by

φTS(u;κ, a, b) = eab−a(b1/κ−2iu)κ ;

it is infinitely divisible and hence the TS Lévy process can be defined from this as the process

starting at 0, having independent and stationary increments and whose incrementX(TS)
t+s −X

(TS)
s

follows a TS(κ, ta, b) distribution over the interval [t, t+ s].

The Lévy measure of the process is derived from the characteristic function as

νTS(dx) =
aκ2κ

Γ(1− κ)

∫ 1

0

x−κe−(1/2)b1/κx dx.

The main properties of this class of distributions are

TS(κ, a, b)

mean 2aκb(κ−1)/κ

variance 4aκ(1− κ)b(κ−2)/κ

skewness (κ− 2)[abκ(1− κ)]−1/2

kurtosis 3 + [4κ− 6− κ(1− κ)][abκ(1− κ)]−1

2.9.1 Particular cases

• IG(a, b) distribution: for κ = 1/2;

• Γ(a, b) distribution: for the limiting case κ→ 0.
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2.10 Generalized Hyperbolic Process

Generalized hyperbolic distributions were introduced by Barndorff-Nielsen in [BN78] as a pow-

erful five-parameter class of distributions to generate flexible Lévy processes. The Lebesgue

density for these distributions is given by

fGH(x) = a(λ, α, β, δ)
[
δ2 + (x− µ)2

]λ−1/2
2 +

+Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp{β(x− µ)} (2.4)

where the first normalizing constant is

a(λ, α, β, δ) =
(α2 − β2)λ/2

αλ−1/2
√

2πδλKλ(δ
√
α2 − β2)

and the parameter space is given by λ ∈ R, µ ∈ R and

δ ≥ 0, α > 0 −α < β < α if λ > 0

δ > 0, α > 0 −α < β < α if λ = 0

δ > 0, α ≥ 0 −α ≤ β ≤ α if λ < 0

In the same paper, the representation of the density of a generalized hyperbolic distribution as a

mean-variance mixture of gaussian distribution is provided as

fGH(x) =

∫ ∞
0

1√
2πv

exp

{
−(x− βv − µ)

2v

}
gγ,χ,ψ(v) dv,

with x ∈ R, and where the mixing density gγ,χ,ψ(v) is the density of the generalized inverse

gaussian distribution, i.e.

gγ,χ,ψ(v) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

vλ−1 exp

{
−χv

−1 + ψv

2

}
,

with v > 0, β, µ, γ ∈ R, (χ, ψ) ∈ Θγ , as seen in (2.3), with

Θγ =



{(χ, ψ) : χ ≥ 0, ψ > 0}, if γ > 0,

{(χ, ψ) : χ > 0, ψ > 0}, if γ = 0,

{(χ, ψ) : χ > 0, ψ ≥ 0}, if γ < 0,

61



2.10. Generalized Hyperbolic Process Chapter 2

and Kλ(z) is the usual modified Bessel function of the third kind.

Three subclasses of generalized hyperbolic distributions with semiheavy tails are used success-

fully in modeling observational series from finance and turbulence. Summarizing the most

common cases one has

Parameters Mixing distribution Mixture distribution

γ = 1 hyperbola distribution hyperbolic distribution

β = µ = χ = 0

γ = ψ > 0
gamma distribution Variance Gamma distribution

The moment generating function MGH(u) exists for u with |β + u| < α and is given by

MGH(u) = exp {µu}
[

α2 − β2

α2 − (β + u)2

]λ/2
Kλ(δ

√
α2 − (β + u)2)

Kλ(δ
√
α2 − β2)

.

As a consequence exponential moments E [exp(Xt)] are finite, which is crucial for pricing

derivatives under martingale measure.

Let X be an absolutely continuous real random variable with p.d.f. fGH(x); then the following

quantities can be evaluated, taking ζ = δ
√
α2 − β2:

GH(λ, α, β, δ)

mean βδ
α2−β2

Kλ+1(ζ)

Kλ(ζ)

variance δ2
[
Kλ+1(ζ)

ζKλ(ζ)
+ β2

α2−β2

(
Kλ+2(ζ)

Kλ(ζ)
− K2

λ+1(ζ)

K2
λ(ζ)

)]
The characteristic function is obtained as φGH(x) = MGH(ix); analyzing φGH in its form (1.4),

obviously in the one-dimensional case, it can be observed that there is no Gaussian part, i.e.

generalized hyperbolic Lévy motions are purely discontinuous processes. The Lévy measure

ν(dx) is given by

νGH(dx) =
eβx

|x|

∫ ∞
0

exp
(
−|x|

√
2y + α2

)
π2y[J2

|λ|(δ
√

2y) + Y 2
|λ|(δ
√

2y)]
dy + 1I{λ≥0}λe

−α|x|.

where the functions Jλ(z), Yλ(z) the usual Bessel functions.
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2.10.1 Particular cases

Setting λ = 1/2 in (2.4) one gets another interesting subclass, the normal inverse gaussian

(NIG) distributions, used in finance for the first time in [BN98].

2.11 Normal Inverse Gaussian Process

The base distribution for this process is the Normal Inverse Gaussian (NIG(α, β, δ)) with pa-

rameters α > 0, |β| < α and δ > 0. The characteristic function is

φNIG(u;α, β, δ) = exp[−δ(
√
α2 − (β + iu)2 −

√
α2 − β2)],

which is infinitely divisible (see for instance Barndorff-Nielsen, [BN97]) and so generates in

the usual way a Lévy process whose variables X(NIG)
t follow a NIG(α, β, tδ) law.

Moreover the Lévy measure is given by

νNIG(dx) =
δα

π

exp(βx)K1(α|x|)
|x|

dx,

where as usual Kλ(x) denotes the modified Bessel function of the third kind.

It can be shown that a NIG process has no Brownian component and Lévy triplet given by[
2δα

π

∫ 1

0

sinh(βx)K1(αx) dx, 0, νNIG(dx)

]
.

The density of a NIG(α, β, δ) is given by

fNIG(x;α, β, δ) = a(α, β, δ)q
(x
δ

)−1

K1

(
δαq

(x
δ

))
exp(βx), (2.5)

where

a(α, β, δ) = π−1α exp(δ
√
α2 − β2),

and

q(x) =
√

1 + x2
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The distribution is symmetric around 0 provided that β = 0. The parameters α̃ = δα, β̃ = δβ

are invariant under location-scale changes.

Let now be IG(a, b) be the Inverse Gaussian distribution with density function (2.2): because

of the first two moments of IG(a, b) it can be seen that NIG(α, β, δ) distribution is a normal

variance-mean mixture.

In fact it occurs as the marginal distribution of X for a pair of random variables (Z,X) where

Z ∼ IG(δ,
√
α2 − β2) distribution while conditional on Z = z, X ∼ N(βz, z). This is the

reason why it is referred to (2.5) as the Normal Inverse Gaussian distribution.

It can also be observed that for β = 0, α → ∞ and δ/α = σ2, the N(0, σ2) distribution

appears, and that moreover Cauchy distribution is a particular case of NIG(0, 0, 0).

2.11.1 Representation by subordination

As a direct consequence of the mixture representation of the NIG distribution, one can see that

the NIG Lévy process X(t)(NIG) can be represented via random time change of a Brownian

motion as

X(t)(NIG) = δW (Z(t)) + βδ2Z(t)

where W (t) is the standard Brownian and Z(t), stochastically independent of W (t), is an

IG(1,
√
α2 − β2) process.

The variable Z(t) can be interpreted as the first passage at time level δt of a Brownian motion

with drift
√
α2 − β2 and diffusion coefficient 1. For more details see [BN97].

It holds that if X ∼ NIG(α, β, δ) then −X ∼ NIG(α,−β, δ).

The following forms for the characteristics hold:
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NIG(α, β, δ) NIG(α, 0, δ)

mean δβ/
√
α2 − β2 0

variance α2δ(α2 − β2)−3/2 δ/α

skewness 3βα−1δ−1/2(α2 − β2)−1/4 0

kurtosis 3

(
1 + α2+4β2

δα2
√
α2−β2

)
3(1 + 1

δα
)

Moreover, the NIG distributions have semiheavy tails; more precisely

fNIG(x;α, β, δ) ∼ |x|−3/2 exp[(∓α + β)x], as x→ ±∞

The following simulations are obtained via subordination following [CT03]:
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Figure 2.9: Different possible trajectories of a Normal Inverse Gaussian process, respectively with pa-

rameters α = 0.2025, β = 0.2, δ = 0.5 (upper left), α = 20, β = 20, δ = 0.5 (upper right), α = 2000,

β = 2000, δ = 0.005 (lower left), α = 0.2025, β = 0.2, δ = 0.05 (lower right)
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The NIG distribution can approximate most hyperbolic distributions very closely but can also

describe observations with considerably heavier tail behaviour than the log linear rate of de-

crease that characterizes the hyperbolic shape. Since, in addition, the NIG distribution has

more tractable probabilistic properties than the hyperbolic, it seems potentially of substantial

usefulness.

The study of velocity differences in moderate and high Reynolds number turbulent wind fields is

of central importance in turbulence, both theoretically and practically. Numerous and extensive

observational investigations have shown that the velocity differences typically follow distribu-

tions that are close to symmetric and have tail that are either nearly log linear or somewhat

heavier.

However the normal inverse Gaussian distribution seems to offer an attractive alternative start-

ing point for parametric modelling in turbulence because of its special probabilistic properties

and its ability to describe the typical tail behaviour of the velocity differences. Eberlein and

Keller in [EK95], show that the hyperbolic distribution provides a very good fit to the distribu-

tions of daily returns measured on the log scale, of single stocks or portfolios of stocks from

a number of German enterprises. The time series of daily returns concerned do not exhibit

significant autocorrelations, nor do the derived series of squared returns. It is therefore natural

to try to model the logarithmic stock price processes as Lévy processes , and for this purpose

in the cited paper the hyperbolic Lévy processes are introduced, via the fact that hyperbolic

distributions are infinitely divisible.

Following works have shown that the NIG distribution provides an even better description

of the German data than the hyperbolic, and that the data point to the NIG as bein the most

appropriate within the class of generalized hyperbolic distributions.
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2.12 CGMY Processes

Carr, Geman, Madan and Yor [CGMY02] introduced a class of infinitely divisible distributions

- called CGMY- which estends the Variance Gamma model above. CGMY Lévy process have

purely discontinuous paths, that is it contains no Brownian part, and the Lévy density is given

by

νCGMY (x) =


C

exp (−G|x|)
|x|1+Y

, x < 0,

C
exp (−Mx)

x1+Y
, x > 0.

The parameter space is C,G,M > 0 and Y ∈ (−∞, 2); choosing the Y parameter such that

Y ≥ 2, does not yield a valid Lévy measure. The process has infinite activity if and only if

Y ∈ [0, 2) and the paths have infinite variation if and only if Y ∈ [1, 2).

2.12.1 Particular Cases

For Y = 0 one gets the three parameter Variance Gamma distributions, also a subclass of

generalized hyperbolic distributions.

For Y < 0 the characteristic function of CGMY distribution is given by

φCGMY (u) = exp
{
CΓ(−Y )

[
(M − iu)Y −MY + (G+ iu)Y −GY

]}
The characteristics of the process can be evaluated as

CGMY (C,G,M, Y )

mean C(MY−1 −GY−1)Γ(1− Y )

variance C(MY−2 −GY−2)Γ(2− Y )

skewness C(MY−3−GY−3)Γ(3−Y )

(C(MY−2−GY−2)Γ(2−Y ))3/2

kurtosis 3 + C(MY−4−GY−4)Γ(4−Y )
(C(MY−2−GY−2)Γ(2−Y ))2
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2.13 α-stable Processes

Stable distributions are a classical subject in probability; they constitute a four parameter class

of distributions with characteristic function given by

φS(u) = exp {σα(−|u|α) + iuω(u, α, β) + iµu}

where

ω(u, α, β) =


β|u|α−1 tan (πα/2) , α 6= 1,

−β 2
π

log|u|, α = 1.

The parameter space is α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1] and µ ∈ R.
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Figure 2.10: Different possible trajectories of an α−stable process, respectively with α =

0.5, 0.75, 1, 1.9
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2.13.1 Particular Cases

Observe that for α = 2 one gets gaussian distribution with mean µ and variance 2σ2. For α < 2

there is no gaussian part which means that the paths of an α−stable Lévy process are purely

discontinuous in this case.

Summarizing, explicit densities are known in three cases only:

Parameters Distribution

α = 2, β = 0 Gaussian distribution

α = 1, β = 0 Cauchy distribution

α = 1/2, β = 1 Lévy distribution

The usefulness of stable distributions in modern financial theory is limited for α 6= 2 by the fact

that the basic requirement of the existence of finite exponential moments is not satisfied.

When α is small, the process has very fat tails, and the trajectory is dominated by big jumps.

Note how this graph resembles the trajectory of a compound Poisson process. When α is large,

the behavior is determined by small jumps and the trajectory resembles that of a Brownian

motion, although occasionally we see some jumps. The third graph (lower left) corresponds to

the Cauchy process (α = 1) which is between the two cases. Here both big and small jumps

have a significant effect.

In the following the Meixner process will be introduced and studied, along with its alternative

way of generation deriving from the theory of orthogonal polynomials.
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Chapter 3

Meixner Process: definition and properties

In this chapter the often neglected Meixner process will be introduced. It is possible to define

this kind of process in basically two ways; the first is the classical one, through the definition

of a background distribution, namely the Meixner distribution, a member of the generalized-z

distributions seen in the previous section, and the respective characteristic function. Since its

infinite divisibility, the associated Lévy process remains defined in a completely natural fashion.

From this, one can derive and evaluate all the properties, realizing an effective higher grade of

flexibility of the process with respect to the usual Brownian motion for instance.

Another way of deriving this process will be described in the next chapter and is hidden in

the integrals of a particular form of linear differential equation of the second order (namely

an equation of hypergeometric type). This kind of approach provides a deeper insight in the

structure of the process, and in general of most of Lévy processes listed up to this moment.

Also non trivial is the representation of this process as a subordinated Brownian motion; the

theoretical problem is solved in a paper by Madan and Yor [MY06], and it is a good starting

point for simulating the process.
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3.1 Generalized z-distributions

In a paper by Prentice, [Pre75], a class of distributions having the following density

fZ(x) =
2π exp

{
2πβ1

α
(x− µ)

}
αB(β1, β2)

(
1 + exp

{
2π
α

(x− µ)
})β1+β2

, x ∈ R,

where α > 0, β1 > 0, β2 > 0, µ ∈ R, and B(β1, β2) is the Euler beta function is introduced. It

is easy to check that the characteristic function of such a density is

φZ(u) =
B(β1 + iαu

2π
, β2 − iαu

2π
)

B(β1, β2)
exp (iµu) , u ∈ R.

Of course z distributions have semiheavy tails and they are self-decomposable.

A probability distribution on R is called a generalized z distribution (GZD(α, β1, β2, δ, µ)) if

φGZ(u) =

(
B(β1 + iαu

2π
, β2 − iαu

2π
)

B(β1, β2)

)2δ

exp {iµu} , u ∈ R, δ > 0.

GZD(α, β1, β2, δ, µ) is infinitely divisible with Lévy triplet [a, 0, ν(dx)], where

a =
αδ

π

∫ 2π/α

0

e−β2s − e−β1s

1− e−s
ds+ µ, ν(dx) = v(x)dx,

and where

v(x) =



2δ exp
{
−2πβ2

α
x
}

x
(
1− exp

{
2π
α
x
}) , if x > 0,

2δ exp
{
−2πβ1

α
x
}

|x|
(
1− exp

{
2π
α
x
}) , if x < 0,

Let now {κn}n≥1 be the sequence of the cumulants of GZD(α, β1, β2, δ, µ); γ1 = κ3/κ
3/2
2 the

skewness, and γ2 = κ4/κ
2
2 the kurtosis; denote also

νn(β1, β2) =

∫ ∞
0

sn−1 e
−β2s + (−1)ne−β1s

1− e−s
ds, n ≥ 1

then the following formulae hold

κ1 =
αδ

π
ν1(β1, β2) + µ, κn =

2αnδ

(2π)n
νn(β1, β2), n ≥ 2;

γ1 =
ν3(β1, β2)

(2δν3
2(β1, β2))

1/2
, γ2 =

ν4(β1, β2)

2δν2
2(β1, β2)
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A particular case of GZD distribution happens when β1 = 1
2

+ β
2π
, β2 = 1

2
− β

2π
, giving place

to Meixner distribution MD(α, β, δ, µ), which we will see in the following.

Definition 24. For all α > 0,−π < β < π, δ > 0, and µ ∈ R

MD(α, β, δ, µ) = GZD

(
α,

1

2
+

β

2π
,
1

2
− β

2π
, δ, µ

)
.

It can be observed that generalized hyperbolic distributions and generalized z−distributions are

non intersecting sets; nevertheless it is known that z−distributions also can be characterized as

variance-mean mixtures of Gaussian distributions with the mixing distribution H(λ, ν), λ >

0, ν < λ2/2 having characteristic functions

φ(x)H(λ,ν) =
∞∏
k=0

(
1− ix

1
2
(λ+ k)2 − ν

)−1

, x ∈ R,

that are infinite convolutions of the exponential distributions with parameters λk = 1
2
(λ +

k)2 − ν, k ≥ 0.

3.2 Meixner distribution

It has been already pointed out in the preceding section that a probability distribution is called

a Meixner distribution, denoted by MD(α, β, δ, µ) if

MD(α, β, δ, µ) = GZD

(
α,

1

2
+

β

2π
,
1

2
− β

2π
, δ, µ

)
with GZD (α, β1, β2, δ, µ) a generalized z distribution as in the work of Grigelionis [Gri01].

Let now (Ω,F , P ) the usual probability space; the density of a random variable X enjoying a

Meixner distribution MD(α, β, δ, µ) is given by

fM(x;α, β, δ, µ) =
(2 cos(β/2))2δ

2απΓ(2δ)
exp

{
β(x− µ)

α

} ∣∣∣∣∣Γ
(
δ +

i(x− µ)

α

)∣∣∣∣∣
2

, (3.1)

with α > 0,−π < β < π, δ > 0, µ ∈ R and Γ(·) the Euler Gamma function.
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µ and α are respectively location and scale parameters, while β and δ decide the shape of the

distribution.

By consequence, ifX ∼MD(α, β, δ, µ), the variable Z = (X−µ)/α enjoys aMD(1, β, δ, 0).

The characteristic function of X is

φMD(u) = E
[
eiuX

]
=

(
cos (β/2)

cosh αu−iβ
2

)2δ

eiµu (3.2)

Let us now state and prove the main properties of a Meixner distribution.

Proposition 9. MD(α, β, δ, µ) is infinitely divisible with Lévy characteristics [a, 0, ν(dx)] given

by:

a = αδ tan
β

2
− 2δ

∫ +∞

1

sinh(βx/α)

sinh(πx/α)
dx+ µ, ν(dx) = δ

exp(βx/α)

x sinh(πx/α)
dx (3.3)

Proof: (see Schoutens, [Sch03], pgg.44− 45) denote

κ(u) = 2δ log

(
cos(β/2)

cos
(
αu+β

2

))+ µu, u ∈
(
−π − β

α
,
π − β
α

)
the cumulant function of X . Since

κ′(u) = αδ tan
αu+ β

2
+ µ,

from simple properties of the Gamma function (see [AS64], 6.1.30, 6.1.31 in the generalized

case, and [GR94], 6.421.1) it can be obtained that:

κ′′(u) = 2α2δ

(
2 cos

αu+ β

2

)−2

=
α2δ

π

∫ +∞

−∞
|Γ(1 + ix)|2 exp{x(αu+ β)} =

= δ

∫ +∞

−∞

x exp(βx/α)

sinh(πx/α)
exp(xu) dx.

From theorem 2.2 in [BLBL92] we have that κ(u) is the cumulant function of an infinitely di-

visible probability distribution having Lévy measure ν(dx), for which the proposed expression

of ν(dx) above holds true, and the second element of the Lévy characteristics equal to zero.

Since the first Lévy characteristic is equal to

κ′(0)−
∫
|x|>1

xπ(dx) = αδ tan
β

2
− 2δ

∫ +∞

1

sinh βx/α

sinh πx/α
dx+ µ,

74



3.2. Meixner distribution Chapter 3

we have the conclusion.

In particular, for infinite divisibility of MD(α, β, δ, µ) it holds that

φMD(u;α, β, δ, µ) = [φMD(u;α, β, δ/n, µ/n)]n,

for every n ∈ N. A consequence of this fact is that

Corollary 5. IfXj ∼MD(α, β, δj, µj), j = 1, . . . , n and these random variables are mutually

independent, then

X1 + . . .+Xn ∼MD

(
α, β,

n∑
j=1

δj,

n∑
j=1

µj

)
.

Proposition 10. MD(α, β, δ, µ) is self decomposable and has semiheavy tails.

Proof: denote with

v(x) = δ
exp(βx/α)

x sinh(πx/α)
, x ∈ R; (3.4)

By the criterion in [Luk70], in order to prove thatMD(α, β, δ, µ) is self decomposable, it has to

be proven that MD(α, β, δ, µ) belongs to the Lévy class L, for which it suffices to check that,

for all x ∈ R

w(x) := −v(x)− xv′(x) ≥ 0.

From (3.4) it can be easily seen that in our case

w(x) =
δ

2α

[
(π − β) exp

(
π + β

α
x

)
+ (π + β) exp

(
−π + β

α
x

)] [
sinh

(πx
α

)]−2

,

which is nonnegative for all x ∈ R, α > 0, β ∈ (−π, π), µ ∈ R, and δ > 0.

Semiheaviness of tails follows again from (3.4) using (3.2), and obtaining that

fM(x;α, β, δ, µ) =


C−|x|ρ− exp(−η−|x|), as x→ −∞,

C+|x|ρ+ exp(−η+|x|), as x→∞,

with

ρ+ = ρ− = 2δ − 1, η− =
π − β
α

, η+ =
π + β

α
, C± =

e±µη±

Γ(2δ)

(
2π

αB(π+β
2π
, π−β

2π
)

)2δ
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and B(x, y) the Euler Beta function.

It is easy to obtain the forms of the first moments of an MD(α, β, δ, µ); following the same

notation introduced for generalized z distributions it holds that

κ1 = αδ tan

(
β

2

)
+ µ, κ2 =

α2δ

1 + cos β
,

γ1 = sin

(
β

2

)√
2

δ
, γ2 = 3 +

2− cos β

δ
.

As it can be seen from the following graphics, both the skewness and the kurtosis of a Meixner

distribution allow more flexibility with respect to an usual Gaussian one:

-2

0

2

Β

0.0

0.5

1.0

∆

-2

0

2

Figure 3.1: Skewness of a Meixner distribution, −π < β < π, 0 < δ < 1; turquoise plane z = 0 is the

skewness of the Gaussian distribution
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Figure 3.2: Kurtosis of a Meixner distribution,−π < β < π, 0 < δ < 1; blue plane k = 3 is the kurtosis

of the Gaussian distribution

3.3 Estimation for the Meixner distribution

Literature regarding Meixner process usually relies on metod of moments estimated parame-

ters, clearly for the relative simplicity of computations involved. Maximum likelihood is also

possible in this case and is described for instance in a paper by Grigoletto and Provasi, [GP09],

which will be followed for the section below.

3.3.1 Method of moments estimation

Suppose x1, . . . , xn a random sample drawn fromX ∼MD(α, β, δ, µ); it is relatively simple to

estimate the moments of a Meixner distribution by method of moments. Let x̄ and s2 as usual the

sample mean and uncorrected variance respctively; moreover, defining µ̄k = n−1
∑n

i=1(xi−x̄)k,

for k = 2, 3, 4, let the sample skewness and kurtosis be γ̄1 = µ̄3/µ̄
3/2
2 , and γ̄2 = µ̄4/µ̄

2
2. Then
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the equalities of theoretical moments with their sample counterparts leads to these relations

δ̄ =
1

γ̄2 − γ̄1 − 3
, β̄ =

sgn(γ̄1)

cos(2− δ̄(γ̄2 − 3))
,

ᾱ = s

√
cos β̄ + 1

ᾱ
, µ̄ = x̄− ᾱδ̄ tan

(
β̄

2

)
.

Observe that moment estimates do not exist when γ̄2 < 2γ̄2
1 + 3.

3.3.2 Maximum Likelihood estimation

Let x1, . . . , xn be a random sample as above; the loglikelihood function is given by the expres-

sion

ln(α, β, δ, µ) =δ log(2 cos(β/2))− log(2απ)− log(Γ(2δ))+

+ βz̄ +
1

n

n∑
i=1

log|Γ(δ + izi)|2,

where

zi =
xi − µ
α

, z̄ =

∑n
i=1 zi
n

.

The MLE θ̂ML for the vector of parameters θ = (α, β, δ, µ) is obtained by solving

θ̂ML = arg max
θ∈Θ

ln(θ)

with Θ the parameter space for θ. For Meixner distribution is possible to compute the ML esti-

mate În(θ̂ML) of the information matrix, since the expressions defining the first two derivatives

of loglikelihood functions are explicitly available ([GP09], Appendix A), and these expressions

can be used to maximize very efficiently the loglikelihood function via Newton-type algorithm

based on moments estimates as starting points.

In the same paper is shown also how is analytically challenghing to verify the regularity con-

ditions for asymptotic normality of the MLE in this framework, and is suggested to check the

convergence of the estimators via Monte Carlo simulations.
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By parametric bootstrap, also it can be assessed also the slow rate of convergence of the mul-

tivariate skewness and kurtosis indexes to theoretical values; in particular it resulted that the

speed of convergence is inversely related to the kurtosis parameter δ.

This suggest caution when performing inference based on asymptotic properties of maximum

likelihood estimates for Meixner distribution, even when medium sized samples are taken into

account.

3.4 Meixner process

Given infinite divisibility of MD(α, β, δ, µ), a Lévy process can be associated with it in the

fashion seen in previous chapter, which is called the Meixner process.

More precisely, a Meixner process X = {X(t), t ≥ 0} is a stochastic process starting at zero,

with independent and stationary increments, and with

X(t) ∼MD(α, β, δt, µ).

The characteristic function of a Meixner process will be trivially given by

φMP (u;α, β, δ, µ) = E
[
eiuX(t)

]
=

(
cos (β/2)

cosh αu−iβ
2

)2δt

eiµu, (3.5)

where α > 0,−π < β < π, δ > 0, µ ∈ R.

A standard notation which will be adopted sometimes from now on is X(t) = MP (α, β, δ, µ).

From proposition 9 it is immediately deduced that a Meixner process has no Brownian part and

a pure jump part governed by the Lévy measure ν(dx), as seen in (3.3).

Because ∫ +1

−1

|x|ν(dx) =∞,

Meixner process is of infinite variation.

So we have a Lévy process

• with no Brownian component, pure jump;
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• with moments of all orders;

• of infinite variation;

• with semiheavy tails;

• selfdecomposable.

3.4.1 Meixner process as a subordinated Brownian Motion

As we have explained, some Lévy processes, like the Variance Gamma process and the Normal

Inverse Gaussian process are known by alternative construction as time-changed Brownian mo-

tions; other processes as the CGMY process or the Meixner process are directly identified by

their Lévy measure and it is not clear a priori whether it can be represented as a time changed

Brownian motion. The problem has been solved in a work by Madan and Yor, [MY06], in

which a complete characterization of Meixner process as a time-changed Brownian motion can

be found.

Lévy measure of a subordinated Brownian motion

Suppose the Lévy process X(t) is obtained by subordinating a Brownian motion with drift (i.e.

the process θu + W (u), for {W (u), u ≥ 0} a standard Brownian motion) by an independent

subordinator Y (t) with Lévy measure ν(dy). By a result in Sato, [Sat99], (30.8), pg.198, the

Lévy measure of the process X(t) is given by µ(dx), where

µ(dx) =

∫ ∞
0

1√
2πy

exp

{
−(x− θy)2

2y

}
ν(dy) dx.

Absolute continuity criterion for subordinators

Let TA, TB be two subordinators; the law of the subordinator TA is absolutely continuous with

respect to the subordinator TB, on finite intervals, just if there exists a function f(t) such that
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the Lévy measures νA(dt), νB(dt) for the processes TA and TB respectively are related by

νA(dt) = f(t)νB(dt),

and furthermore, (see [Sat99], thm.33.1)∫ ∞
0

(√
f(t)− 1

)2

νB(dt) <∞

Explicit time change for Meixner process

Already previously given in (3.3) and (3.5) were the Lévy measure ν(dx) and the characteristic

function for the Meixner process. The proof of the chance of writing this process as a time

changed Brownian motion is given in the already cited paper my Madan and Yor ([MY06],

from pg.20 on): here it is clarified how it is necessary to identify the Lévy measure l(u) of a

subordinator such that

ν(dx) =

∫ +∞

−∞

1√
2πy

exp

{
−(x− Ay)2

2y

}
l(y) dy =

= eAy
∫ +∞

−∞

1√
2πy

exp

{
−x

2

2y
− A2y

2

}
l(y) dy.

Setting A = β/α the following must hold for a suitable l(u):

δ

x sinh
(
πx
α

) =

∫ +∞

0

1√
2πy

exp

{
−x

2

2y
− A2y

2

}
l(y) dy

With somewhat delicate algebra one obtains

l(u) =
δα√
2πu3

g(u),

where

g(u) = P
(
M

(3)
1 ≥ C

√
u
)

exp

{
−A

2u

2

}
,

with
1[

M
(3)
1

]2 = T
(3)
1

d
=

1(
maxt≤1 R

(3)
t

) ,
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and R(3)
t the BES(3) process.

For the absolute continuity of the subordinator with respect to the one sided stable 1/2 subordi-

nator, it is required, and easily verified that∫
1√
u3

(√
g(u)− 1

)2

du <∞

Also, for the simulation of Meixner process as a time changed Brownian motion it is possible

to represent (see Pitman and Yor’s paper [PY03])

P
(
M

(3)
1 ≥ C

√
u
)

=
+∞∑

n=−∞

(−1)n exp

{
− n

2π2

2C2u

}
.

Simulation of the Meixner process

The first step is to simulate the jumps of the one sided stable 1/2 with Lévy density

k(x) =
δα√
2πx3

, x > 0.

The small jumps of the subordinator are approximated using the drift

ζ = δα

√
2ε

π

while the arrival rate for the jumps above ε is

λ = δα

√
2

πε

and the jump sizes for the one sided stable 1/2 are

yj =
ε

u2
j

for an independent uniform sequence {uj}. Then the function g(y) at the point yj is evaluated,

and the time change variable is defined as

τ = ζ +
∑
j

yj1I{g(yj)>wj},
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for yet another independent uniform sequence {wj}. It can also be observed that the function

g(y) only uses the parameters α, β and is independent of the parameter δ.

Finally the value of the Meixner random variable or equivalently the unit time level of the

process is then generated as

X =
β

α
τ +
√
τZ, (3.6)

where Z is an independent standard normal random variable.

3.4.2 Particular characterizations of Meixner process

This section is based on the already cited paper by Pitman and Yor [PY03], which particularly

deals with the characterization of Lévy processes associated with hyperbolic functions; so for

the sake of simplicity, remembering the presence of an hyperbolic cosine in the characteristic

function of Meixner process, let us discuss about the case

Ĉ(t) = Ĉt = MP (2, 0, 1/2, 0)

as a representative example, i.e. the process identified, for t ≥ 0 and θ ∈ R, by the characteristic

function

E[exp(iθĈt)] = E

[
exp

(
−1

2
θ2Ct

)]
=

(
1

cosh θ

)t
;

this firstly shows how process Ĉt can be constructed from Ct by Brownian subordination

Ĉt = W (Ct) (3.7)

for {W (t), t ≥ 0} a standard Brownian motion; the law of the subordinator Ct arises in several

different contexts, especially in the study of Brownian motion and Bessel process; in particular

the distribution of C1, for instance, is that of the hitting time of ±1 by the one-dimensional

Brownian motion W , while the distributions of Ct, t = 1, 2 are also of significance in analytic

number theory, due to the Mellin representation of the entire function

ξ(s) :=
1

2
s(s− 1)

(
1

π

)s/2
Γ(s/2)ζ(s),
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where ζ(s) :=
∑+∞

n=1 n
−s, (Re s > 1) is the Riemann’s ζ function, and the entire function

ξ4(s) :=

(
4

π

)(s+1)/2

Γ

(
s+ 1

2

)
Lχ4(s),

where Lχ4(s) :=
∑+∞

n=0(−1)n(2n + 1)−s, (Re s > 0) is the Dirichlet series associated with

the quadratic character modulo 4. The function ξ4(2s + 1) appear as the Mellin transform of

(π/2)C1, and the Mellin transform of C2 is simply related to ξ.

Here are some non trivial properties of process Ĉt:

Theorem 24. The process Ĉt is the unique (i.e. unique in law) Lévy process satisfying the

following moment recurrence for t > 0 and Re s > −1/2:

(t2 + t)E[|Ĉt+2|2s] = t2E[|Ĉt|2s] + E[|Ĉt|2s+2]. (3.8)

This fact can be proven via two relations holding for a standard Brownian motion Wt: from

(3.7) and Brownian scaling Ĉt
d
= W1

√
Ct it holds that

E[|Ĉt|2s] = E[|W1|2s]E[Cs
t ];

moreover, because of the identity in distribution W 2
t

d
= 2yΓ1/2, with Γt a Gamma process, and

E[Γst ] = Γ(t+ s)/Γ(t), for Re s > −t,

E[|Wt|2s] = (2t)s
Γ(1

2
+ s)

Γ(1
2
)

= 2

(
t

2

)s
Γ(2s)

Γ(s)
, for Re s > −1/2

and so, by letting Γ(x+ 1) = xΓ(x),

E[|W1|2(s+1)] = (2s+ 1)E[|W1|2s], for Re s > −1/2.

Also

Theorem 25. The density

fĈt(x) =
1

2π

∫ +∞

−∞

(
1

cosh y

)t
eiyx dy

satisfies the recurrence relation

t(t+ 1)fĈt+2
(x) = (t2 + x2)fĈt(x) (3.9)
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Formula (3.9) for t = 1, 2, . . . was given in [Mor82]; as shown there, fĈt(x) is a polynomial of

degree t divided by cosh(πx/2) if t is an odd integer, and by sinh(πx/2) if t is even. Also, for

the classical representation of the Euler beta function, it holds that

fĈt(x) =
2t−2

π
B

(
t+ ix

2
,
t− ix

2

)
=

2t−2

πΓ(t)

∣∣∣∣∣Γ
(
t+ ix

2

)∣∣∣∣∣
2

.

A slight generalization of (3.8) can be written as

(t2 + t)E[g(Ĉt+2)] = t2E[g(Ĉt)] + E[Ĉ2
t g(Ĉt)], (3.10)

where g is an arbitrary bounded Borel function. This one follows from (3.8) first for symmetric

g by uniqueness of Mellin transform, then for general g by using

E[g(Ĉt)] = E[g(−Ĉt)] = E[g̃(|Ĉt|)], with g̃(x) =
g(x) + g(−x)

2
.

Let now M (a) be the Meixner process whose marginal laws are derived from those of Ĉ by

exponential tilting (Esscher transform, see the following chapter 4), according to the formula

E[g(M
(a)
t )] = (cos a)tE[g(Ĉt) exp(aĈt)], t ≥ 0, −π/2 < a < π/2

The functional recurrence relation (3.10) for Ĉ generalizes immediatly to show that X = M (a)

satisfies the following functional recursion

Theorem 26. A Lévy process X satisfies the functional recursion

c(t2 + t)E[g(Xt+2)] = t2E[g(Xt)] + E[X2
t g(Xt)], (3.11)

for all bounded Borel functions g and all t ≥ 0, for some constant c if and only ifX is a Meixner

process M (a) for some a ∈ (−π/2, π/2); then c = 1/ cos2 a ≥ 1 and recurrence relation above

holds for all Borel g such that the expectations involved are well defined and finite.

Proof: [PY03] suppose that process X satisfies (3.11). By consideration of (3.11) for constant

function g, it is obvious that E(X2
1 ) < ∞ and c = 1 + E(X1)2. Hence c ≥ 1 and X1 has

characteristic function g with two continuous derivatives g′ and g′′.
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Consider now g(x) = eiθx in (3.11) to obtain the following identity of functions of θ:

c(t2 + t)gt+2 = t2gt − (gt)′′ = t2gt − (t2 − t)gt−2(g′)2 − tgt−1g′′

where all the differentiations are with respect to θ and for instance gt(θ) = [g(θ)]t. Cancellig the

common factor of gt and equating coefficients of t2 and t, this amounts to the pair of equalities(
g′

g

)′
= −cg2 =

(
g′

g

)2

− 1.

The argument is completed by the following elementary result: the unique solution g of the

problem 

(
g′

g

)′
=
(
g′

g

)2

− 1

g(0) = 1

g′(0) = i tan(ϕ) for ϕ ∈ (−π/2, π/2)

is

g(θ) =
cos(ϕ)

cosh(θ + iϕ)
.

Corollary 6. The process X = Ĉ is the unique Lévy process such that either

i) the moment recursion (3.8) holds for all s = 0, 1, 2, . . . and the distribution of X1 is

symmetric about 0, or

ii) the functional recursion (3.11) holds with c = 1 for all bounded Borel functions g.

Let now be {Γn,t, t ≥ 0} a sequence of independent gamma processes, and consider for α > 0

the subordinator {Σα,t, t ≥ 0} defined by the follwing weighted sum of these processes

Σα,t =
2

π

∞∑
n=0

Γn,t
(α + n)2

, t ≥ 0.
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The weights are chosen so by the expression of the characteristic function of a gamma process

E[exp(−λΓt)] = (1 + λ)−t one has

E

[
exp

(
−1

2
θ2Σα,t

)]
=


(

1

cosh θ

)t
if α = 1/2,(

θ

sinh θ

)t
if α = 1.

Thus

Ct
d
= Σ1/2,t (3.12)

and also holds true that

WΣα,1
d
= π−1 log

Γα
Γ′α
,

where Γα
d
= Γ′α and independent. For α = 1/2, (3.12) describes the distribution of Ĉ1.

Lévy measures

For a Lévy process X whose Lévy measure is ΛX , let its density be ρX(x) = ΛX(dx)/dx and

X̂t = WXt; it can be shown that the follwing formulae hold

X̂ ρX̂(x) =
ΛX̂(dx)

dx

∫ +∞
−∞ |x|

2sρX̂(x) dx κ2n(X̂1) =
∫ +∞
−∞ x2nρX̂(x) dx

Ĉ
1

2x sinh(πx/2)
(4s − 1)

2Γ(2s)

π2s
ζ(2s) (4n − 1)

4n

2n
|B2n|

where B2n are the rational Bernoulli numbers. A further non trivial characterization can be the

following:

Theorem 27.

i) Let X be a random variable with all moments finite and all odd moments equal to 0; then

Xt
d
= Ĉ2 ⇐⇒ κn+2(X) = 2E[X2n], n ∈ N;

ii) Let X be a rabndom variable with all moments finite; then

Xt
d
= C2 ⇐⇒ κn+1(X) =

E[Xn]

n+ 1/2
, n ∈ N.

87



3.4. Meixner process Chapter 3

Thus, moreover,

Theorem 28. Let {X(t), t ≥ 0} the Lévy process associated with a finite Kolmogorov measure

KX via the standard Kolmogorov representation

E[eiθX(t)] = exp(tΨ(θ)), with Ψ(θ) = iθc+

∫
(eiθx − 1− iθx)x−2K(dx), (3.13)

c ∈ R, and the integrand function defined as −θ2/2 for x = 0. Let also U ∼ U [0, 1] random

variable, independent of X2. Then

i) For each fixed t > 0, assuming that the distribution FX(x) of Xt is symmetric,

Xt
d
= Ĉt ⇐⇒ KX(dx) = FX2(x)dx (3.14)

ii) For each fixed t > 0, without the symmetry assumption,

Xt
d
= Ĉt ⇐⇒ KX(dx) = x2FU2X2

(x)dx

Definition 25. A Lévy process {Xt} is self-generating if its Kolmogorov measureKX is a scalar

multiple of the distribution of Xu for some u ≥ 0:

KX(dx)

KX(R)
= FXu(x)dx; (3.15)

to indicate the value of u and to shorthand, let us say X is SG(u). In particular X is SG(0) if

and only if ψ(θ) = iθc+ σ2θ2/2, i.e. X is a Brownian motion with drift c and variance σ2.

From Kolmogorov representation (3.13) X(t) is SG(u) if and only if

ψ′′(θ)

ψ′′(0)
= exp(uψ(θ)) (3.16)

To restate formula (3.14) above there is the following

Theorem 29. The processX = Ĉ is the unique symmetric SG(2) Lévy process withE[X2
1 ] = 1.
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It is easily seen that for u > 0, a > 0, b 6= 0

{Xt, t ≥ 0} is SG(u)⇐⇒ {aXbt, t ≥ 0} is SG(u/b).

Also, if X is SG(u) and the moment generating function M(ξ) is finite for some ξ ∈ R, then

the exponentially tilted process (Esscher transform) {X(ξ)
t , t ≥ 0} with

P (X
(ξ)
t ≤ x) =

eξxP (Xt ≤ x)

M t(ξ)

is easily seen to be SG(ξ). The self generating Lévy process obtained from Ĉ by these operation

of scaling and exponential tilting have been called generalized hyperbolic secant processes, but

this is nothing but a different definition of the already introduced Meixner process. A theorem

that states the exhaustion of the family of SG processes is the following

Theorem 30. The only Lévy processes {Xt} with the self-generating property (3.15) for some

u ≥ 0 are Brownian motions (for u = 0), and Meixner and Gamma processes (for u > 0).

Proof: the characterization for u = 0 is easy, so consider X which is SG(u) for some u > 0.

Observe first that X cannot have a Gaussian component, or equivalently that KX has no mass

at 0.

For a Gaussian component would make Xu have a density, implying P (Xu = 0) = 0, in

contradiction to (3.15).

Similarly X cannot have a finite Lévy measure because then P (Xu = 0) > 0, which would

force KX to have an atom at 0. By use of the following scaling transformation: for u > 0, a >

0, b 6= 0

{Xt, t ≥ 0} is SG(u)⇐⇒ {aXbt, t ≥ 0} is SG(u/b),

the problem of characterizing all Lévy processes which are SG(u) for arbitrary u > 0 is reduced

to the problem of characterizing all Lévy processes that are SG(u) for some particular u, and

the choice u = 2 is most convenient.
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Also, by a suitable choice of a in (3.4.2) we can reduce to (3.16) with ψ′′(0) = −1. So it is

enough to find all caracteristic exponent ψ(θ) such that

−ψ′′(θ) = exp(2ψ(θ)), with ψ(0) = 0. (3.17)

Set now

D(θ) =
1

E[exp(iθX1)]
= exp(−ψ(θ)) (3.18)

so (3.17) is equivalent to

DD′′ − (D′)2 = 1 with D(0) = 1. (3.19)

The general solution of (3.19) is

Db(θ) =
cosh(θ cosh(b) + b)

cosh(b)

for some b ∈ C, including the limit case when cosh(b) = 0. In particular for b = ia, with

a ∈ (−π/2, π/2), we find

Dia(θ) =
cosh(θ cos(a) + ia)

cos(a)
, (3.20)

corresponding to Meixner process, and the limit case a = ±π/2 corresponds to ±Γ, for Γ the

standard Gamma process.

Other choices of a ∈ R lead to the same examples, due to symmetries of cosh and cos.

To complete the proof it suffices to show that 1/Dia(θ) is not an infinitely divisible characteristic

function if a /∈ R.

For D derived by (3.18) from a Lévy process X we have

D′(0) = −iµ where µ = E[X1] ∈ R

whereas D′ia(0) = sinh(ia) = i sin(a).

This eliminates the case when sin(a) /∈ R and it remains to deal with the case sin(a) ∈ R \

[−1, 1].
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In this case cos2(a) = 1− sin2(a) < 0 implying that cos(a) = iν for some real ν 6= 0. But then

for cosh is 2iπ−periodic the function Dia(θ) in (3.20) is 2π/ν, hence so is 1/Dia(θ).

If 1/Dia(θ) were the characteristic function of X1, the Lévy measure of X would be finite. But

then X could not be self-generating, as remarked at the beginning of the proof.
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Chapter 4

Esscher Transform

4.1 Introduction

As previously stated, Lévy processes provide a lot of flexibility in financial modeling: although

financial returns increments exhibit some kind of serial dependence, many of their essential fea-

tures are captured by this class of models: heavy tails, aggregational gaussianity and volatility

clustering for instance, are some of their features easily described by means of models based on

Lévy processes.

But introduction of jumps always rises the problem of dealing with incomplete market mod-

els; that means that there exist infinitely many martingale measures, compatible with the no-

arbitrage requirement and equivalent to the physical measure describing the underlying evolu-

tion one can use to price derivative securities.

One reasonable way to solve this problem, is based on the observation that in incomplete mar-

kets the “correct” equivalent martingale measure could not be independent on the preferences

of investors any more, so by guessing a suitable utility function describing these preferences,

an “optimal” equivalent martingale measure should maximize the expected value of this utility.

It has been proved that for many interesting cases of utility functions this problem admits a

dual formulation: finding an equivalent martingale measure maximizing some class of utility

92



4.2. Equivalent martingale measure: meaning. Chapter 4

functions is in fact equivalent to find an equivalent martingale measure minimizing some kind

of distance (see for instance Bellini and Frittelli, [BF02]).

Another popular approach to option pricing for incomplete market models had been related to

the construction of the Esscher martingale transform. As it has been already pointed out by

Kallsen and Shiryaev in [KS02], two different Esscher martingale transforms exist for Lévy

processes according to the choice of the parameter which defines the measure: one turns the

ordinary exponential process into a martingale, and another one turns into a martingale the

stochastic exponential. They have been called the Esscher martingale transform for the expo-

nential process and the Esscher martingale transform for the linear process respectively.

It has also been shown by Esche and Schweizer in [ES05] that for exponential Lévy models

the Esscher martingale transform for the linear process is also the minimal entropy martingale

measure, i.e. the equivalent martingale measure which minimizes te relative entropy, and that

this measure has also the property of preserving the Lévy structure of the model (see Hubalek

and Sgarra, [HS06]).

Some examples of these procedures have been illustrated for instance by Fujiwara and Miyahara

in [FM03]. The purpose of this part of the work is to try to fill in the gap on the same topic for

the Meixner process.

4.2 Equivalent martingale measure: meaning.

Definition 26. Let (Ω,FT , P ) an usual probability space; a probability measure Q defined on

(Ω,FT ) is an equivalent martingale measure if:

1. Q ∼ P , i.e. if NQ is the set of all null sets for measure Q, it holds that NQ = NP ;

2. the discounted stock price process S̃t = {exp(−rt)St, t ≥ 0} is a martingale with respect

to Q.
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The fundamental result in assessing a necessary and sufficient condition for the existence of

such an equivalent probability measure, is given by Delbaen and Schachermayer in [DS94],

and it is related to the absence of arbitrage in the underlying market. In particular, the existence

of an equivalent martingale measure implies the absence of arbitrage, but for the converse it

is required to add that it shouldn’t be possible to construct an approximation to an arbitrage

opportunity in some limiting sense.

The existence of such a measure is important for it allows to reduce option pricing to calculating

the expected values of the discounted payoffs not with respect to the physical measure P but

with respect to Q. Working under Q means, as it is usually said, working “in a risk-neutral

world”, since the expected return of the stock under Q equals the risk-free return of the bank

account:

EQ[St|F0] = exp(rt)S0.

An equally important financial problem is that of hedging. A contingent claim can be perfectly

hedged if there is a strategy which can replicate the claim, in the sense of the existence of a

self-financing dynamic portfolio, investing in a bank account and a stock, whose value at any

time point matches the value of the claim. Moreover, the strategy must be admissible, meaning

that the value of portfolio must be bounded from below by a constant.

Definition 27. A market model is called complete if for every integrable contingent claim there

exists an admissible self-financing strategy replicating the claim.

The issue of completeness is related to the uniqueness of the equivalent martingale measure

introduced above. It is in turn linked with the so called predictable representation property of a

martingale.

Definition 28. A martingale M is said to have the predictable representation property if for

any square-integrable random variable H(∈ FT ) it holds that

H = E[H] +

∫ T

0

as dMs, (4.1)
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for some predictable process a = {as, s ∈ [0, T ]}.

Holding (4.1), the process a gives the necessary self-financing admissible strategy.

The problem is that (4.1) holds just for very few martingales, among which the Brownian motion

and the compensated Poisson process for instance.

The uniqueness of an equivalent martingale measure implies property (4.1) which in turn im-

plies market completeness; vice versa not necessarily holds (see [Sch03] for further details).

Property (4.1) for Brownian motion implies the completeness of the usual Black and Scholes

model.

4.3 Esscher Transform: motivation

Both insurance and finance are interested in the fair pricing of financial products. In general the

more an insurance market is liquid (situation which can be associated to many potential offers

of insurance and deregulated markets, for instance) the more a “correct”, “fair” price may be

expected to emerge.

For example, in the case of car insurance, depending on the different characteristics of the

drivers, a so-called “net premium” is evaluated which should cover the expected losses over

the period of contract. To this premium, various loading factors are added (costs, market fluc-

tuations...); the resulting gross premium is also subject to market forces which imply that a

market-conform premium is finally charged.

Very important in the process of determining the above premium is the attitude of both parties

involved towards risk, which can be generally described, as within the more economic literature,

through the notion of utility.

Utility theory provides a method to give insight into decision making in conditions of uncer-

tainty.

An alternative economic tool is equilibrium theory.

95



4.3. Esscher Transform: motivation Chapter 4

Depending on the adopted economic theory, different possible premiums may result: one of

these is the Esscher principle. Rather than being based on the expected loss, the Esscher prin-

ciple starts from the expectation of the loss under an exponentially transformed distribution,

properly normalized.

Besides the pricing of individual risks, more complicated insurance producs involve time, and

hence are based on specific stochastic processes. The classical insurance risk processes are

of the compound Poisson type or their generalizations (like mixed and doubly stochastic com-

pound Poisson processes); the main feature of these processes, making them distinct from typi-

cal diffusion-type models in finance, is their jump structure. Indeed, when turning to fair pricing

in finance, the standard reasoning uses the so called no-arbitrage approach, basically stating that

there cannot be such thing as a riskless gain, which, if precisely formulated, brings in as said,

the fundamental notion of risk neutral martingale measure or equivalent martingale measure.

If the set of equivalent risk-neutral measures is not reduced to one point, then finding the hedg-

ing admissible strategies is no longer possible. The initial investment needed to reproduce the

contingent claim is not defined, and in this sense there is no natural price for the claim under

consideration.

Due to the jump structure of standard risk processes, we find ourselves in the so called incom-

plete market case.

But the introduction of jump processes has a more practical motivation.

Normality of asset returns has played a central role in financial theory; the normality of distri-

bution has been augmented with the assumption of continuity of trajectories when Samuelson

introduced in 1965 the geometric Brownian motion, then used in the first papers by Black-

Scholes and Merton (1973).

As documented in a considerable number of papers written by academics and practitioners, both

normality and continuity assumptions are contradicted by the data in several pieces of evidence.

Return distributions are more leptokurtic than the normal one as noted by Fama as early as

96



4.4. General Theoretical overview Chapter 4

1963; this feature is more accentuated when the holding period becomes shorter, and becomes

particularly clear on high frequency data. Option prices also exhibit the so called volatility smile

as well as prices higher than predicted by the Black-Scholes formula for short-dated options.

At the same time jumps may be clearly identified in equity data; in fact, the inability to trade

continuously implies de facto jumps in prices. These jumps contribute or may be the source of

stochastic volatility while they lead to finite variation trajectories in the absence of a diffusion

term, as observed in practice. As a consequence, risk cannot be fully hedged away and in

most cases there will be infinitely many such equivalent martingale measures so that pricing is

directly linked to an attitude towards risk.

So the question shifts from “which premium principle to use?”, for classical insurance, to

“which equivalent martingale measure to use?”, in the incomplete market financial context.

This is exactly where the Esscher transform enters as one of the possible pricing candidates.

4.4 General Theoretical overview

The Esscher transform was developed to approximate the aggregate claim amount distribution

around a point of interest, say x0, by applying an analitic approximation (the Edgeworth series)

to the transformed distribution with the parameter θ chosen such that the new mean is equal to

x0.

The Esscher transform can be also readily extended to stochastic processes including those

commonly used to model stock-price movements; the parameter θ is determined so that the

modified probability measure is an equivalent martingale measure, with respect to which the

prices of securities are expected discounted payoffs.

The starting point is the usual stochastic basis (Ω,F ,F, P ) endowed with a d−semimartingale

X with characteristics (B,C, ν); the aim is to construct another measure P ′, locally equivalent

to P in such a way that X has some specified properties under P ′, like being a local martingale.
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This problem transates to constructing the density process Zt = dP ′t/dPt in such a way that the

new characteristics (B′, C ′, ν ′) of X under P ′ have some given properties, using the connection

between the characteristics and the density process provided by Girsanov’s theorem: this is in

general a difficult “martingale problem”.

As anticipated, a “natural” possible way of solving this problem was introduced by Esscher

[Ess32] in connection with some actuarial problems.

Here follows the illustration of the method on a simple “random variable” problem, where no

filtration is involved.

Let X be a real-valued random variable defined on a probability space (Ω,F , P ) such that

P (X > 0) > 0 and P (X < 0) > 0.

Problem: construct a measure P ′ equivalent to P such that EP ′ [X] = 0.

From a practical point of view, the idea of Esscher is the following: construct a measure Q ∼ P

by

Q(dω) = ce−X(ω)2

P (dω),

where c is the normalizing constant c = 1/E[e−X
2
]; then let φ(θ) = EQ[eθX ] for θ ∈ R, and

finally

Zθ(ω) =
eθX(ω)

φ(θ)

(
= eθX(ω)−K(θ), with K(θ) = log φ(θ)

)
.

Definition 29. The map x 7→ eθx/φ(θ) is called the Esscher transform.

It is easy to conclude from the construction that EQ[Zθ] = 1 and that Q ∼ P .

Now the measures P ′θ are costructed via the

P ′θ(dω) = Zθ(ω)Q(dω) =
eθX(ω)

φ(θ)
Q(dω).

It is clear that

EP ′ [X] = EQ

(
XeθX

φ(θ)

)
=
φ′(θ)

φ(θ)
,
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where φ′ is the derivative of φ. The two assumptions P (X > 0) > 0 and P (X < 0) > 0 imply

that the strictly convex function φ reaches its minimum at a unique point θ′ , so the equation

φ′(θ) = 0 has θ′ for its unique solution.

Then defining P ′ = P ′θ′ , it is P ′ ∼ P and EP ′ [X] = 0.

Let S(t), for t ≥ 0, denote the price of a non-dividend-paying stock or security at time t, and

assume there is a Lévy process X = {X(t), t ≥ 0} with stationary and independent increments

and X(0) = 0 such that

S(t) = S0e
X(t), t ≥ 0. (4.2)

For each t the random variable X(t), has an infinitely divisible distribution. Let also

Ft(x) = P (X(t) ≤ x)

be its c.d.f., and

Mt(z) = E[ezX(t)]

its moment generating function. By assuming that Mt(z) is continuous in t = 0, one can easily

show that

Mt(z) = (M1(z))t

Assuming also for the sake of simplicity that the random variable X(t) has a density

ft(x) =
d

dx
Ft(x), t > 0,

it holds that

Mt(z) =

∫ +∞

−∞
ezxft(x) dx.

Let now h ∈ R for which Mt(h) is defined. The Esscher transform (parameter θ) of the process

{X(t)} is again a process with stationary and independent increments, whereby the new p.d.f.

of X(t), t > 0 is

ft(x; θ) =
eθxft(x)∫ +∞

−∞ eθyft(y) dy
=
eθxft(x)

Mt(θ)
,
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that is, the modified distribution of X(t) is the Esscher transform of the original distribution.

The corresponding moment generating function is

Mt(z; θ) =

∫ +∞

−∞
ezxft(x; θ) =

Mt(z + θ)

Mt(θ)
.

It also still holds that

Mt(z; θ) = (M1(z; θ))t .

This concept of Esscher transform of a stochastic process appears consistently for this envi-

ronment first in a work by Gerber and Shiu, [GS94]; so the measure of the process has been

modified. Because the exponential function is positive, the modified probability measure is

equivalent to the original probability measure, that is both measures have the same null sets.

Although stock returns have been widely studied, no single distribution has emerged as a clear

winner from these studies, despite the common agreement that the returns’ distributions should

have fatter tails than the traditional normal distribution (see also Cont’s [Con01] qualitative

consoderations). The cited paper [GS94] in addition to lognormal process also discusses option

valuation using both the Gamma and the inverse Gaussian process. Altough the latter process

allows for fatter tails, both the distributions have tails that decay exponentially. Given the

fact that this rate of convergence is necessary for the existence of an Esscher transform, this

should not come as any surprise. Such tail behaviour constraints, however, can be avoided by

considering shifted processes and distributions that are supported for instance on R+.

It still remains to be answered whether the equation that defines θ (see again [GS94]) can always

be solved for a general distibution.

When discussing about heavy-tailed distribution, is not unreasonable to think about stable

Pareto distributions. These distributions are prominent members of the class of infinitely di-

visible distributions that, subsequent to the original works of Mandelbrot and Fama, have often

been used to explain the stochastic behaviour of stock prices. The interest in stable distributions

is largely due to the facts that only stable laws have domains of attraction (generalized central

limit theorem) and that stable distributions belong to their own domain of attraction (stability).
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From a practical viewpoint, stable laws are flexible, empirical models that are capable of ex-

plaining the observed leptokurtosis and skewness in return distributions. Moreover they are able

to capture the essentials of probability structures when sample moments exhibit a nonstationary

behaviour over time.

a stable Pareto distribution can fundemantally be described by the shape (denoted by α, 0 <

α < 2), skewness (denoted by β, |β| ≤ 1), location and scale parameters. Amongst these the

mosto important is the shape parameter, which when decreased increases the tail probabilities.

Two obvoius drawbacks of these distributions are the lack of second moments (also the first if

α < 1) and the absence of explicit expressions for the density functions. These disadvantages

however, are not major obstacles when one considers asset pricing using the notion of risk-

neutral valuation. This is due to the fact that all that is needed is the knowledge of the measure

under which the discounted process is a martingale.

Suppose for instance that X is α−stable, with 0 < α < 2; then the random variable eX has no

finite moments except when X is totally skewed to the left (that is, β = −1). It is important to

note that in this instance when α > 1, the support of this distribution is the interval (−∞,+∞).

Thus, for β = −1 and α > 1, all moments of eX are finite, and setting the location parameter to

0, results in zero expectation. Hence one can consider the modeling of the stock price movement

using the process S(t) = S0e
X(t), with t ≥ 0.

The value of β that was used in deriving the above process also forces the right tails of the

distribution of X(t) to decay rapidly, and as a consequence, the moment generating function

E
[
eγX
]
, γ ≥ 0, exists for all 0 < α ≤ 2 and was shown to be equal to

exp
(
−σ

αγα

A

)
, if α 6= 1, A = cos(απ/2)

exp
(
−2σγ log γ

π

)
, if α = 1

Hence it is possible to consider the approach for a shifted α−stable process X(t) = Y (t) + µt,

where Y (t) is a process with independent increments and an α−stable distribution with β = −1,
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shift parameter equal to 0 and scale parameter equal to (0.5σ2t)1/α. So it holds that

Mt(z) = E
[
ezX(t)

]
= exp

[(
µz − σ2zα

2A

)
t

]
, z ≥ 0,

and A as above. In particular, when α = 2 one gets the classic lognormal distributed stock

price process. However this transformed process does not have the nice properties of a Wiener

process because

Mt(z;h) = exp
{
µzt− σ2t [(z + h)α − hα]

2A

}
, h ≥ 0, z + h ≥ 0

implies that when h 6= 0, the Esscher transform of a shifted α−stable process is no longer an

α−stable process. Despite this drawback, one still has a process with stationary and indepen-

dent increments whose expected values exist for all h ≥ 0.

4.5 Esscher transform for Lévy processes

Let us state the theorems which define the Esscher transform for a Lévy process :

Theorem 31. Suppose T > 0 and θ ∈ R, such that

E
[
eθXT

]
<∞

Then
dP θ

dP
= eθXT−κ(θ)T

defines a probability measure P θ such that P θ ∼ P and {Xt}0≤t≤T is a Lévy process under P θ

with triplet (bθ, cθ, U θ) given by

bθ = b+ θc+

∫
(eθx − 1)h(x)U(dx),

cθ = c,

U θ(dx) = eθxU(dx).
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By denoting the expectation with respect to P θ with Eθ, we have Eθ[ezXt ] = eκ
θ(z)t for 0 ≤

t ≤ T , where

κθ(z) = κ(z + θ)− κ(θ).

If the measure P θ exists, it is called the Esscher transform of P , or Esscher measure.

Theorem 32. Suppose now T > 0 and there exists θ] ∈ R such that

E
[
eθ
]XT
]
<∞ E

[
e(θ]+1)XT

]
<∞

and the equation

κ(θ] + 1)− κ(θ]) = 0

holds, then
dP ]

dP
= eθ

]XT−κ(θ])T ,

defines an equivalent martingale measure for {St = S0e
Xt}0≤t≤T (exponential Lévy process).

The process {Xt}0≤t≤T is a Lévy process under P ] with Lévy triplet (b], c], U ]), where

b] = b+ θ]c+

∫
(eθ

]x − 1)h(x)U(dx),

c] = c,

U ](dx) = eθ
]xU(dx).

By denoting the expectation with respect to P ] with E], we have E][ezXt ] = eκ
](z)t for 0 ≤ t ≤

T , where

κ](z) = κ(z + θ])− κ(θ]).

The measure P ] is called Esscher martingale transform for the exponential Lévy process eX .

Let us add some more definitions to section 1.8:

Definition 30. A real-valued semimartingale is called special if it can be written as

X = X0 +M + V
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for some local martingale M and some predictable process V of finite variation, both starting

at 0.

Alternatively X is a special semimartingale if there exists a predictable process V such that

X −X0 − V is a local martingale.

Definition 31. Process V (unique) is called the compensator or drift process ofX and is written

DX := V .

Definition 32. A real-valued semimartingale X is called exponentially special if exp(X −X0)

is a special semimartingale.

The two theorems above can be seen as a particular case of the following fundamental theorem

(see Kallsen and Shiryaev, [KS02], theorem 4.1, page 421): let the symbol θT · X denote the

stochastic integral of θ relative to X , for some given Lévy process X and real vector θ.

Theorem 33. Let θ ∈ L(X) be such that θT ·X is exponentially special and such that Zθ is a

uniformly integrable martingale. Define P θ ∼ P by its Radon-Nikodym density

dP θ

dP
:= Zθ,

and set

θ(i) := (θ1, . . . , θi−1, θi + 1, θi+1, . . . , θd)T .

Then the processes Si = Si0e
Xi

are P θ-local martingales if and only if
(
θ(i)
)T · X is exponen-

tially special and

KX(θ(i))−KX(θ) = 0, for i = 1, . . . , d.

In this case we call P θ an Esscher martingale transform for exponential processes.

Moreover

Theorem 34. If d = 1 , then the Esscher martingale transform for exponential processes is

unique (provided that it exists).
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For the two following proofs, which are taken from [KS02], two auxiliary preliminar results are

needed.

Theorem 35. A real-valued semimartingale X has an exponential compensator if and only if it

is exponentially special. In this case, the exponential compensator is up to indistinguishability

unique.

Theorem 36. Let θ ∈ L(X) such that θT · X is exponentially special. Then KX(θ) is the

exponential compensator of θT ·X . More specically,

Z : = exp(θT ·X −KX(θ)) =
exp(θT ·X)

E(K̃X(θ)
=

= E

(
θT ·Xc +

eθ
T x − 1

1 + Ŵ (θ)
∗ (µX − ν)

)
∈Mloc,

where Ŵ (θ)t :=
∫

(eθ
T x − 1)ν({t} × dx) andMloc is the space of all local martingales.

Proof of theorem (33): it is a known result (see for instance [JS02], 3.8 pg.168) that exp(X i)

is a Pθ−local martingale if and only if exp(X i)Zθ = exp[(θ(i))T · X −KX(θ)] is a Pθ−local

martingale. By theorems 35 and 36 this is the case if and only if (θ(i))T · X is exponentially

special and KX(θ(i)) = KX(θ) up to indistinguishability.

Proof of theorem (34):

Step 1: Let θ, θ̄ ∈ L(X) be such that

θ ·X, (θ + 1) ·X, θ̄ ·X, (θ̄ + 1) ·X

are exponentially special and such that Pθ and Pθ̄ are Esscher martingale transforms for

exponential processes. Then

KX(θ + 1)−KX(θ) = 0 = KX(θ̄ + 1)−KX(θ̄).

In particular, κ̃(θ + 1) − κ̃(θ) = 0 = κ̃(θ̄ + 1) − κ̃(θ̄)(P ⊗ A)− almost everywhere on

the set {∆A = 0}.
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On the set {∆A 6= 0} we have

∆KX(θ + 1)−∆KX(θ) = 0 = ∆KX(θ̄ + 1)−∆KX(θ̄).

This implies

0 = b+
c

2
+ cθ +

∫
[(ex − 1)eθx − h(x)]F (dx), on the set {∆A = 0}

0 = log
1 +

∫
(e(θ+1)x − 1)ν({t} × dx)

1 +
∫

(eθx − 1)ν({t} × dx)
, on the set {∆A 6= 0}

Parallel statements hold for θ̄.

Step 2: Fix (ω, t) ∈ Ω × [0, T ] and let θ ≤ θ̄ in (ω, t) without loss of generality. Firstly,

suppose that {∆At(ω) = 0}. Since
∫
|(ex − 1)eθx − h(x)|Ft(dx) < ∞ and likewise for

θ̄, we have that

sup
ψ∈[θ,θ̄]

∫
|(ex − 1)eψx − h(x)|Ft(dx) <∞

Define v : [0, 1]→ R by

v(λ) := bt + (1/2)ct + ct(θ + λ(θ̄ − θ)) +

∫ [
(ex − 1)e(θ+λ(θ̄−θ))x−h(x)

]
Ft(dx).

Note that v is a well-defined, continuous, increasing mapping. It can be then concluded

that (θ̄− θ)ct = 0, (θ̄− θ)bt−
∫

(θ̄− θ)h(x)Ft(dx) = 0, and (θ̄− θ)x = 0 for Ft−almost

all x ∈ R.

Secondly, assume that {∆At(ω) 6= 0}. Since
∫
e(θ+1)xν({t}×dx) <∞ and

∫
eθxν({t}×

dx) <∞ and likewise for θ̄, the same integrability conditions hold uniformly on [θ, θ̄].

This time, define v : [0, 1]→ R by

v(λ) := log
1 +

∫
(e(θ+λ(θ̄−θ)+1)x − 1)ν({t} × dx)

1 +
∫

(e(θ+λ(θ̄−θ))x − 1)ν({t} × dx)
.

Observe that v is differentiable on (0, 1) with derivative

v′(λ) =
(θ̄ − θ)

∫
xe(θ+λ(θ̄−θ))xexν({t} × dx)

1 +
∫

(e(θ+λ(θ̄−θ))xex − 1)ν({t} × dx)
+

−
(θ̄ − θ)

∫
xe(θ+λ(θ̄−θ))xν({t} × dx)

1 +
∫

(e(θ+λ(θ̄−θ))x − 1)ν({t} × dx)
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Fix λ ∈ (0, 1) for the moment. Define a family (Q%)%∈[0,1] of probability measures on R

by

Q%(M) :=

∫
M
e%xe(θ+λ(θ̄−θ))xP∆Xt|Ft− (dx)∫
e%xe(θ+λ(θ̄−θ))xP∆Xt|Ft− (dx)

for M a Borel set. With this notion, we have v′(λ) = (θ̄ − θ)[EQ1(I) − EQ0(I)], where

I : R → R, x 7→ x denotes the identity mapping. Since (Q%)%∈[0,1] is a class with

increasing likelihood ratio, it follows that v′(λ) ≥ 0. Therefore v is an increasing mapping

on [0, 1].

It can now be concluded that v(λ) = 0 and v′(λ) = 0 for any λ ∈ (0, 1). This implies

0 = v′(λ) = (θ̄ − θ)
∫
xe(θ+λ(θ̄−θ))x(ex − 1)ν({t} × dx)

for any λ ∈ (0, 1), which in turn means that (θ̄ − θ)x = 0 for ν({t} × ·)−almost all

x ∈ R.

Step 3: It follows that θ ·X = θ̄ ·X , which proves the claim.

4.6 Esscher Transform for Meixner Process

We are now going to prove a simple corollary of a general theorem given by Grigelionis in

[Gri99] which settles the way for the theoretical formulation of the analogue of Black and

Scholes formula. Here is the general theorem with our corollary following:

Theorem 37. The unique value θ? ∈ R such that the discounted geometric Meixner process

S0 exp{Xt − rt}

with t ≥ 0, S0 > 0, r ∈ R, is a martingale is given by

θ? =
2

α
arccos

| sin(α/2)|√
1 + ζ2 − 2ζ cos(α/2)

− β

α
,

where ζ = exp (µ− r)/2δ.
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θ? solves the equation

cos
α(θ? + 1) + β

2
= ζ cos

αθ? + β

2
.

Corollary 1. The unique value θ ∈ R such that the geometric Meixner process

St = S0 exp{Xt}

with t ≥ 0, is a martingale is given by

θ = −1

2
− β

α
+

2kπ

α
, k ∈ Z.

Proof: we first observe that Esscher transform for the Meixner process is structure-preserving,

meaning that the Esscher transform applied on a MD(α, β, δ, µ) still produces a Meixner dis-

tribution MD(α, αθ + β, δ, µ).

This can be seen by noting that the exponential structure of the Esscher transform, just influ-

ences the exponential part of the density, leaving the rest unaltered (see Hubalek and Sgarra

[HS06], for instance).

The corresponding Lévy measure of the transformed process is

νθ(x) = δ
e
αθ+βx
α

x sinh
(
πx
α

) dx.
The Esscher transform P θ for the exponential Meixner process exists when the integral∫

R
eθxδ

e
βx
α

x sinh
(
πx
α

) dx
is finite, which happens for

θ ≤ π − β
α

in a neighborhood of +∞

θ ≥ −π − β
α

in a neighborhood of−∞,

while it turns out the integral is not finite in x = 0 for every θ.
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Moreover, the function ex is R-integrable with respect to the measure uθ(x) when the following

conditions hold:

θ ≤ π − α− β
α

in a neighborhood of +∞

θ ≥ −π − α− β
α

in a neighborhood of−∞,

and, as usual, x 6= 0, for every θ.

The two conditions combined mean that the Esscher transform P θ for the exponential Meixner

process always exists in R \ {0} for

−π + β

α
≤ θ ≤ π − β

α
;

the Esscher-transformed Meixner process is still a Meixner process under P θ, and eX is inte-

grable in R \ {0} under P θ for

−π + α + β

α
≤ θ ≤ π − α− β

α
.

Now consider the cumulant difference κ(θ + 1)− κ(θ); it holds that, for Meixner case,

g(θ) = κ(θ + 1)− κ(θ) = 2δ log

 cos
(
αθ+β

2

)
cos
(
α(θ+1)+β

2

)


Function g(θ) is 4π/α-periodic, and in a single period is defined for

θ < −π + α + β

α
, θ >

π − β
α

and

π − (α + β)

α
<θ < −π + β

α
if α > 2π,

−π + β

α
<θ <

π − (α + β)

α
else.

Our interest is focused now over the θ ∈ R such that κ(θ + 1) − κ(θ) = 0: this happens for

every δ > 0, when

θ = −1

2
− β

α
+

2kπ

α
, k ∈ Z.
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By theorem 32 is now possible to evaluate the form of U ](dx), the Lévy measure of transformed

process, as

U ](dx) =
δe(β−1/2)x

x sinh(πx/α)
dx

4.7 General overview on Minimal Entropy Martingale mea-

sure

The first time in literature that the topic of hedging contingent claims in incomplete market con-

ditions in terms of minimizing risk and corresponding minimal martingale measures is issued,

is in a paper by Föllmer and Schweizer, [FS91]. Such a claim in these conditions will by its own

nature have an intrinsic risk. The problem is to characterize and construct the strategies which

minimize the risk. In a general framework if we cosider a contingent claim at time T given by

a random variable

H ∈ L2(Ω,FT , P )

and we letX be a continuous path stochastic process on (Ω,F , P ) which is supposed to describe

the price fluctuaton of a given stock on which H relies, the problem of finding an optimal strat-

egy is reduced to the chance of decomposing H in a way similar to what the Kunita-Watanabe

decomposition does (cf.[FS91], proposition (2.24) ), namely

H = H0 +

∫ T

0

ξHs dXs + LHT ,

where H0 ∈ L2(Ω,F0, P ), LH = (LHt )0≤t≤T is an L2-martingale orthogonal to M , and ξH

comes from the supposedly true Itô representation of H as

H = H0 +

∫ T

0

ξHs dXs, P − a.s.

and enjoys some integrability properties ( (2.8) in [FS91]). M = (Mt)0≤t≤T is the local martin-

gale component of the Doob-Meyer decomposition of the semimartingale X .
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In a complete market situation, the optimal strategy can be computed in terms of the unique

equivalent martingale measure P ∗, in incomplete markets this is not the case: P ∗ is no longer

unique, and the choice of different martingale measures may lead to different strategies. It is

shown anyway that exists a minimal martingale measure P̂ ∼ P such that the optimal strategy

can be clculated in terms of P̂ .

The departure from the given measure P can be expressed in terms of the relative entropy

H(Q|P ) =


∫

log dQ
dP
dQ ifQ� P,

+∞ else.

In particular it can be shown that P̂ minimizes the relative entropyH(·|P ) among all martingale

measures P ∗ with fixed expectation.

In the work by Esche and Schweizer [ES05], the first step of the equivalence between the

Esscher martingale measure for the linear Lévy process X and the minimal entropy martingale

measure for the exponential Lévy process eX is stated. The objective is completed in two steps.

Keeping it simple for the sake of understanding, the first one is the following

Theorem 38. Let X be a real-valued Lévy process; if the minimal entropy martingale measure

P̂ exists for the exponential Lévy process eX , then X is a Lévy process under P̂ .

The other one:

Theorem 39. If the Esscher martingale measure for the linear Lévy process X̃ exists, then it is

the minimum entropy martingale measure for the exponential Lévy process eX .

This is obviously only one half of the equivalence: the second one is found in [HS06], giving

the complete characterization of the minimum entropy martingale measure for the exponential

Lévy process eX as the Esscher transform for the linear Lévy process X̃ . Namely

Theorem 40. The minimal entropy martingale measure for the exponential Lévy process eX

exists if and only if the Esscher martingale measure for the linear Lévy process X̃ exists. If both

measures exist, they coincide.
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This assumption brings to a complete characterization of the minimal entropy martingale mea-

sure in terms of the Esscher transform, but unfortunately it is not comfortable to use when

making practical examples.

4.7.1 Minimal entropy martingale measure for geometric Lévy processes

Given the process

S̃(t) = e−rtS(t) (4.3)

where r ∈ R, and S(t) is a geometric Lévy process defined as in 4.2, in [FM03] a condition is

given in terms of the Lévy measure ν(dx) under which there exists a probability measure in the

set of all equivalent martingale measures EMM(P ) where

EMM(P ) ={Q ∈ P(Ω,F ) : Q ∼ P on F and

S̃ = (S̃(t),Ft)t∈[0,T ] is a martingale under Q}

which is the minimum in this set.

Let now X(t) be the driving Lévy process and the following fundamental condition:

There exists β∗ ∈ R constant that satisfying both

1. ∫
{x>1}

exeβ
∗(ex−1)ν(dx) <∞,

2.

b+

(
1

2
+ β∗

)
σ2 +

∫
{|x|≤1}

{
(ex − 1)eβ

∗(ex−1) − x
}
ν(dx)+

+

∫
{|x|>1}

(ex − 1)eβ
∗(ex−1)ν(dx) = r.

The main result then is given by

Theorem 41. Supposing the above condition holds, then
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1. It is possible to define a proability measure P ∗ on FT by means of the Esscher transform

dP ∗

dP

∣∣∣∣
Ft

=
eβ
∗R̃t

EP [eβ∗R̃t ]

for every t ∈ [0, T ], where {R̃t}t∈[0,T ] is the return process for {S̃t}t∈[0,T ] defined by

R̃t =

∫
(0,t]

dS̃u

S̃u
.

More concretely
dP ∗

dP

∣∣∣∣
Ft

=
eβ
∗X̂t

EP [eβ∗X̂t ]
= eβ

∗X̂t−b∗t

where X̂t is the process defined by

X̂t = Xt +
1

2
σ2t+

∫
(0,t]

∫
R\{0}

(ex − 1− x)Np(dudx),

with Np(dudx) the counting measure of the point process pt = ∆Xt:

Np((0, t], A) = ]{u ∈ Dp ∩ (0, t] : pu ∈ A}

for A ∈ B(R \ {0}), and Dp = {t > 0 : ∆Xt 6= 0}, and

b∗ =
β∗(1 + β∗)

2
σ2 + β∗b+

∫
R\{0}

[eβ
∗(ex−1) − 1− β∗x1I{|x|≤1}]ν(dx).

2. The stochastic process Xt is still a Lévy process under the above probability measure P ∗

and the Lévy triplet associated with the truncation function h(x) = x1I{|x|≤1} is given by[∫
{|x|≤1}

{
xeβ

∗(ex−1) − 1
}
ν(dx), σ2, ν∗

]
where

ν∗(dx) = eβ
∗(ex−1)ν(dx)

Furthermore the probability measure P ∗ is in EMM and attains the minimal entropy.

Proof: see [FM03], pg. 518.

In the same paper is also given an auxiliary condition for verifying the satisfaction of the fun-

damental condition above (see Proposition 3.3).
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A similar condition is clearly not easily approachable in terms of calculations for a complex

process like Meixner process. This surely is going to be part of the follow up of the research in

this direction.

4.8 Comparisons and conclusions

A notable comparison is performed by Miyahara in [Miy04], where it is observed that the

Esscher Martingale Measure (ESSMM) and the minimal entropy martingale measure (MEMM)

are both obtained by Esscher transform, but they have different properties:

1. For the existence of ESSMM, the condition∫
{|x|>1}

|(ex − 1)eh
∗x|ν(dx) <∞

is necessary, while on the other hand, for the existence of MEMM, the corresponding

condition is ∫
{|x|>1}

|(ex − 1)eθ
∗(ex−1)|ν(dx) <∞.

This condition is satised for wide class of Lévy measures, if θ∗ < 0. Namely, the former

condition is strictly stronger than the latter condition. This means that the MEMM may

be applied to the wider class of models than the ESSMM. The difference works in the

stable process cases. In fact we can make sure that MEMM method can be applied to

geometric stable models but ESSMM method can not be applied to this model.

2. The ESSMM is corresponding to power utility function or logarithm utility function. (See

for instance always Miyahara, [Miy05], where an extensive list of possible candidates

for martingale measures with their respective dual distance functions is collected). On

the other hand the MEMM is corresponding to the exponential utility function. We can

observe that, in the case of ESSMM, the power parameter of the utility function depends

on the parameter value h∗ of the Esscher transform.
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3. The relative entropy is very popular in the eld of information theory, and it is called

Kullback-Leibler Information number or Kullback- Leibler distance. Therefore we can

state that the MEMM is the nearest equivalent martingale measure to the original proba-

bility P in the sense of Kullback-Leibler distance. Recently the idea of minimal distance

martingale measure is studied. Göll and Ruschendorf in [GR01] mention that the relative

entropy is the typical example of the distance in their theory.

4. Large deviation theory is closely related to the minimum relative entropy analysis, and

well-known Sanov’s theorem (or Sanov’s property) provides a connection between the

two fields; in fact it basically says that the MEMM is the most possible empirical proba-

bility measure of paths of price process in the class of the equivalent martingale measures.

In this sense the MEMM should be considered to be an exceptional measure in the class

of all equivalent martingale measures.
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Chapter 5

Elements of theory of orthogonal

polynomials

In this chapter some elements of theory of orthogonal polynomials will be exposed, as they pro-

vide an alternative but insightful approach to Lévy processes . Also, it may be understood where

most of the properties of Lévy processes come from. In particular, the example of Meixner

process will be discussed, together with an additional detail: the Fisher information for the

corresponding family of orthogonal polynomials.

This part is important as it provides a deeper insight, different from the usual “classical” defi-

nitions, of the process of generation of the most known Lévy processes , also with interesting

contacts with theory of differential equations, statistical distributions and martingales. The main

reference for this part is surely the book by Schoutens, [Sch00], and the anticipating paper by

Schoutens and Teugels [ST98].

5.1 Introduction to classical orthogonal polynomials

Definition 33. A differential equation of the form

s(x)y′′ + τ(x)y′ + λy = 0 (5.1)

116



5.1. Introduction to classical orthogonal polynomials Chapter 5

where s(x), τ(x) are polynomials of at most second and first degree respectively and λ is a

constant, is called a differential equation of hypergeometric type, and its solutions functions of

hypergeometric type.

It emerges usually in many problems of applied mathematics and theoretical and mathematical

physics.

If in addition

λ = λn = −nτ ′ − 1

2
n(n− 1)s′′, (5.2)

the equation above has a particular solution of the form y(x) = yn(x), which is a polynomial of

degree n, called a polynomial of hypergeometric type. The polynomials yn(x) are the simplest

solutions for (5.1).

It can be shown that these solutions of (5.1) have the orthogonal property∫ b

a

ym(x)yn(x)ρ(x)dx = d2
nδnm,

with δnm the Kronecker delta, for some constants a, b, possibly infinite, dn 6= 0, and where the

weight function of orthogonality ρ(x) satisfies the differential equation

[s(x)ρ(x)]′ = τ(x)ρ(x). (5.3)

These polynomials of hypergeometric type yn(x) are known as the (very) classical orthogonal

polynomials of a continuous variable.

The analogous holds for polynomials with discrete variable.

Definition 34. A difference equation of hypergeometric type is one of the form

s(x)∆∇y(x) + τ∆y(x) + λy(x) = 0,

where s(x), τ(x) are polynomial of at most second and first degree respectively, λ is a constant,

and

∆f(x) = f(x+ 1)− f(x), and ∇f(x) = f(x)− f(x− 1).

117



5.1. Introduction to classical orthogonal polynomials Chapter 5

If (5.2) holds, the difference equation above has a particular solution of the form y(x) = yn(x),

which is a polynomial of degree n, provided moreover

µm = λ+mτ ′ +
1

2
m(m− 1)s′′ 6= 0, for m = 0, 1, . . . , n− 1.

It can be shown that the polynomials solutions of the difference equation have the orthogonal

property
b∑

x=a

ym(x)yn(x)ρ(x)dx = d2
nδnm,

for some constants a, b, possibly infinite, dn 6= 0, and where the discrete orthogonality measure

ρ(x) satisfies the difference equation

∆[s(x)ρ(x)] = τ(x)ρ(x). (5.4)

These polynomials of hypergeometric type yn(x) are known as the classical orthogonal poly-

nomials of a discrete variable

5.1.1 Classical orthogonal polynomials of a continuous variable

There are in essence five solutions of (5.3), depending on whether the polynomial s(x) is con-

stant, linear, or quadratic, and in this last case, on whether the discriminant D = b2 − 4ac of

s(x) = ax2 + bx+ c is positive, negative, or zero.

These are the possible cases:

Name Symbol deg s(x) D

Jacobi P
(α,β)
n (x) 2 > 0

Bessel 2 = 0

Romanowski 2 < 0

Laguerre L
(α)
n (x) 1

Hermite Hn(x) 0
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Further details

Jacobi polynomials: if s(x) = 1− x2, and τ(x) = −(α + β + 2)x+ β − α, then

ρ(x) = (1− x)α(1 + x)β Beta kernel

Moreover λn = n(n+ α + β + 1), and the orthogonality relation is satisfied for

a = −1, b = 1, α, β > −1

Bessel polynomials: with an appropriate affine change of variable, ρ(x) can be written in the

form

ρ(x) = Cx−αe−β/x, C normalizing constant.

Now if ρ(x) is defined on (0,+∞), α > 1 and β ≥ 0 ensure that ρ(x) is integrable. In

this case s(x) = x2 and τ(x) = (2 − α)x + β. Observe that we have a finite system

of orthogonal polynomials in this case, because for this distribution only the moments of

orders strictly less than α− 1 exist.

Romanowski polynomials: ρ(x) can be written as

ρ(x) = C(1 + x2)−αeβ arctanx, C normalizing constant.

If we assume that ρ(x) is defined on R, then α > 1/2, β ∈ R.

A particular case is given by

α =
n+ 1

2
, β = 0, s(x) = 1 +

x2

n
, τ(x) = −(n− 1)

x

n
, n ∈ {1, 2, . . .}

then

ρ(x) = C
(

1 +
x

n

)−n+1
2
, with C = Γ

(
n+ 1

2

)
1√

nπΓ(n/2)

from which the Student’s t distribution is clearly recognizable.

Because λn = 0, we still have a finite system of orthogonal polynomials.
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Laguerre polynomials: for s(x) = x and τ(x) = −x+ α + 1 one has

ρ(x) =
xαe−x

Γ(α + 1)
Gamma distribution, Γ(α, 1).

Moreover λn = 1. Orthogonality relation is satisfied by Laguerre polynomials for

a = 0, b =∞, α > 1.

Hermite polynomials: let s(x) = 1 and

ρ(x) =
e−x

2

√
π
, Normal distribution N(0, 1/2),

then τ(x) = −2x and λn = 2n.

Hermite polynomials are orthogonal on R. Generally one works with rescaled Hermite

polynomials Hn(x/
√

2), orthogonal with respect to N(0, 1) distribution

ρ(x) =
e−x

2/2

√
2π

.

5.1.2 Orthogonal polynomials of a discrete variable

In order to find an explicit expression for ρ(x) it is useful to rewrite (5.4) in the form

ρ(x+ 1)

ρ(x)
=
s(x) + τ(x)

s(x+ 1)
;

The possible occurrences are (see Schoutens’ book [Sch00] for all the details):

Name Symbol deg s(x)

Hahn Qn(x;α, β,N) 2

Meixner Mn(x; γ, µ) 1

Krawtchouk Kn(x; p,N) 1

Charlier Cn(x; a) 1
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It can be observed that the Charlier polynomials are limit cases of Krawtchouk (for p =

aN−1, N → ∞) and Meixner (for µ = a(a + γ)−1, γ → ∞) polynomials, which are them-

selves limit cases of the Hahn polynomials (α = pt, β = (1 − p)t with p ∈ (0, 1) and t → ∞

for Krawtchouk, and α = γ − 1, β = N(1− γ)γ−1 and N →∞ for Meixner).

It is known that all orthogonal polynomials {Qn(x)} on the real line satisfy a three-term recur-

rence relation

−xQn(x) = bnQn+1(x) + γnQn(x) + cnQn−1(x), n ≥ 1 (5.5)

where in general bn, cn 6= 0 and cn/bn−1 > 0.

For Hahn polynomials for instance one has that

bn =
(n+ α + β + 1)(n+ α + 1)(N − n)

(2n+ α + β + 1)(2n+ α + β + 2)
,

cn =
n(n+ β)(n+ α + β +N + 1)

(2n+ α + β)(2n+ α + β + 1)
,

γn = −(bn + cn)

and moreover, the relation (5.5) can be translated into a recurrence relation which can be ex-

pressed in terms of a second-order difference equation of the form

a(x)Qn(λ(x+ 1)) + b(x)Qn(λ(x)) + c(x)Qn(λ(x− 1)) = −λnQn(λ(x)), (5.6)

where in this case λ(x) = x(x+α+β+1), a quadratic function of x, λn = n, a(x) = bn, b(x) =

−(a(x) + c(x)), and c(x) = cn, with bn, cn the coefficient in the recurrence relation (5.5).

Also, it is a natural question to ask for other orthogonal polynomials to be eigenfunctions of

a second order difference equation of the form (5.6): it can be shown that a set of families

of orthogonal polynomials together with limit transitions between them exists and satisfies the

previous request. The set is called the Askey scheme of hypergeometric orthogonal polynomials.
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Meixner-Pollaczeck polynomials

As a limit case of both Hahn and dual Hahn polyomials (not introduced here, for reference see

[Sch00]) stands the family of Meixner-Pollaczeck polynomials, defined by

P (a)
n (x;φ) =

(2a)n exp{inφ}
n

2F1(−n, a+ ix; 2a; 1− e−2iφ),

where a > 0, 0 < φ < π, and (a)n is the Pochhammer symbol, defined in terms of Euler Gamma

function as

(a)n =
Γ(a+ n)

Γ(a)
, n > 0;

moreover, the notation 2F1(−n, a2; b1; z) is a particular case of the generalized hypergeometric

series with the first numerator parameter equal to a negative integer. Namely

pFq(−n, . . . , ap; b1, . . . , bq; z) =
n∑
j=0

(−n)j . . . (ap)j
(b1)j . . . (bq)j

zj

j
.

The orthogonality relation for these polynomials is given by the following

1

2π

∫ +∞

−∞
e(2φ−π)x|Γ(a+ ix)|2P (a)

m (x;φ)P (a)
n (x;φ) dx =

=
Γ(n+ 2a)

(2 sinφ)2an!
δm,n, a > 0, 0 < φ < π,

while the recurrence relation (5.5) is obtained as

(n+ 1)P
(a)
n+1(x;φ)− 2[x sinφ+ (n+ a) cosφ]P (a)

n (x;φ) + (n+ 2a− 1)P
(a)
n−1(x;φ) = 0.

For further technical details see also (http://fa.its.tudelft.nl/∼koekoek/askey.html, The Askey

scheme of hypergeometric orthogonal polynomials and its q-analogue, by R. Koekoek and R. F.

Swarttouw). Observe that Laguerre polynomials introduced above are limit cases of Meixner-

Pollaczeck polynomials, that is

lim
φ→0

P
( 1

2
α+ 1

2
)

n

(
− x

2φ
;φ

)
= L(α)

n (x)

122



5.2. Connection between orthogonal polynomials
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5.2 Connection between orthogonal polynomials

and Lévy processes

5.2.1 Sheffer Polynomials

Let f(t) and g(t) be functions for which all the necessary derivatives are defined: using the

classical Faá di Bruno formula (explicit n−th derivative formula of the composition f(g(t)) ),

it can be shown that the equation

f(z) exp{xu(z)} =
∞∑
m=0

Qm(x)
zm

m!
(5.7)

generates a family of polynomials {Qm(x),m ≥ 0} when both functions u(z) and f(z) can be

expanded in a formal power series and if u(0) = 0, u′(0) 6= 0 and f(0) 6= 0.

The polynomials Qm(x) so defined are of exact degree m and are called Sheffer polynomials.

Any set of such polynomials is called Sheffer set.

5.2.2 Lévy-Sheffer systems

Let now be τ the inverse functon of u, such that τ(u(z)) = z. Then τ also can be expanded

formally in a power series with τ(0) = 0 and τ ′(0) 6= 0.

Introduce now an additional parameter t ≥ 0 into the polynomials defined in (5.7) by replacing

f(z) with f(z)t.

Definition 35. A polynomial set {Qm(x, t),m ≥ 0, t ≥ 0} is called a Lévy-Sheffer system if it

is defined by a generating function of the form

f(z)t exp{xu(z)} =
∞∑
m=0

Qm(x, t)
zm

m!
(5.8)

where

(i) f(z) and u(z) are analytic in a neighborhood of z = 0;
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(ii) u(0) = 0, f(0) = 1 and u′(0) 6= 0;

(iii) 1/f(τ(iθ)) is an infinitely divisible characteristic function.

If condition (iii) is satisfied there is a Lévy process {Xt, t ≥ 0} defined by the function

φ(θ) = φX(θ) =
1

f(τ(iθ))
(5.9)

The basic link between the polynomials and the corresponding Lévy processes is the following

martingale equality

E[Qm(Xt, t)|Xs] = Qm(Xs, s), 0 ≤ s ≤ t, m ≥ 0. (5.10)

In fact it holds, for the left hand side, that

∞∑
m=0

E[Qm(Xt, t)|Xs]
zm

m!
= E

[
∞∑
m=0

Qm(Xt, t)
zm

m!

∣∣∣∣∣Xs

]
=

= E[f(z)t exp{u(z)Xt}|Xs] =

= f(z)t exp{u(z)Xs}E[exp{u(z)(Xt −Xs)}|Xs];

For the righthand side of (5.10)

∞∑
m=0

Qm(Xs, s)
zm

m!
= f(z)s exp{u(z)Xs}

And then the combination of the two expressions above leads to

E[exp{u(z)(Xt −Xs)}|Xs] = f(z)s−t;

comparing this relationship with the equation determining the Lévy process

E[exp{iθ(Xt −Xs)}|Xs] = φ(θ)t−s,

it can be observed that (5.10) holds true if and only if (5.9) holds.
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5.2.3 Meixner set of orthogonal polynomials

In his historic paper [Mei34], J.Meixner determined all sets of orthogonal polynomials that

satisfy relation (5.7). Here is a sketch of Meixner’s approach, as some elements will be useful

in the following. From (5.7) one has

τ(D)Qm(x) = mQm−1(x), m ≥ 0,

where D = d/dx the differential operator with respect to x. This one in turn leads to

τ(D)(xQm(x)) = τ ′(D)Qm(x) +mxQm−1(x), m ≥ 0.

By Favard’s theorem, the monic set {Qm(x),m ≥ 0} will be orthogonal if and only if the

polynomials satisfy a three-term recurrence relation

Qm+1(x) = (x+ lm+1)Qm(x) + km+1Qm−1(x), (5.11)

where lm ∈ R, km < 0, m ≥ 2. Now multiply by m relation (5.11) rewritten for Qm(x), and

subtract this from (5.11) with τ(D) applied to it:

(1− τ ′(D))Qm(x) =

= (lm+1 − lm)mQm−1(x) +

(
km+1

m
− km
m− 1

)
m(m− 1)Qm−2(x);

after shifting m to m+ 1 and applying τ(D) again, one gets:

(1− τ ′(D))Qm(x) =

= (lm+2 − lm+1)mQm−1(x) +

(
km+2

m+ 1
− km+1

m

)
m(m− 1)Qm−2(x).

Comparing the last two formulas, it can be obtained that

lm+1 − lm = λ, m ≥ 1,

km+1

m
− km
m− 1

= κ, m ≥ 2,

(1− τ ′(D))Qm(x) = λτ(D)Qm(x) + κτ 2(D)Qm(x), m ≥ 0, (5.12)
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and so (5.11) becomes

Qm+1(x) = (x+ l1 +mλ)Qm(x) +m[k2 + (m− 1)κ]Qm−1(x), m ≥ 0, (5.13)

with k2 < 0 and κ ≤ 0. From (5.12) follows that

τ ′(y) = 1− λτ(y)− κτ 2(y). (5.14)

Moreover, from (5.13), using the fact that

f(z) =
∞∑
m=0

Qm(0)
zm

m!
,

the following differential equation for f(z) can be obtained:

f ′(z)

f(z)
=

k2z + l1
1− λz − κz2

. (5.15)

Two quantities α, β are defined by the equation

1− λz − κz2 = (1− αz)(1− βz),

where αβ > 0. Now equation (5.15) can be obviously rewritten, and from (5.14) a differential

equation for u(z) can be obtained:

u′(z) =
1

(1− αz)(1− βz)
.

The explicit solutions of these equations, although a little complicated, are:

u(z) =


1

α−β log
(

1−βz
1−αz

)
, if α 6= β,

z
1−αz if α = β;

log f(z) =



− (k+α`) log(1−αz)
α(α−β)

+ (k+β`) log(1−βz)
β(α−β)

, 0 6= α 6= β 6= 0

k log(1−αz)
α2 + k+α`

α
z

1−αz , α = β 6= 0

− (k+α`) log(1−αz)
α2 − kz

α
, α 6= β = 0

k
2
z2 + `z, α = β = 0
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and also

τ(s) =


exp(βs)−exp(αs)

β exp(βs)−α exp(αs)
, if α 6= β,

s
1+αs

, if α = β

Applying the above to equation (5.8) we obtain a Lévy-Sheffer system with orthogonal poly-

nomials. Since the explicit form of the functions f and τ is now known, we can identify the

ingredients in the following Kolmogorov representation (5.16): this finally determines the un-

derlying process.

After putting ` = −µ, k = −σ2 it can also be found that

log φ(θ) = iµθ + σ2

∫ iθ

0

τ(z) dz.

The identification of c and K in the Kolmogorov representation

log φ(θ) = icθ +

∫ +∞

−∞
(eiθx − 1− iθx)

dK(x)

x2
, (5.16)

where c is a real constant andK(y) is a nondecreasing and bounded function such thatK(−∞) =

0, is done as follows: by taking derivatives in (5.16) at θ = 0 we see that ic = φ′(0) = iE[X1] =

−i`, and hence c = µ. Taking another derivative, the equation∫ +∞

−∞
exp{iθx}dK(x) = σ2τ ′(iθ)

is obtained, which determines K uniquely. The results of subseqent calculations lead to the

explicit form

∫ +∞

−∞
exp{iθx}dK(x) =


σ2(α−β)2 exp(i(α+β)θ)

(β exp(iβθ)−α exp(iαθ))2 , if α 6= β,(
σ

1+iαθ

)2
, if α = β.

It can be also verified that the function
∫ +∞
−∞ exp{iθx}d(K(x)/K(∞)) is indeed a characteristic

function for all values of α, β with αβ > 0. To simplify the further analysis, without loss of

generality the following choice is made:

` = c = 0, k = −K(∞) = −σ2 = −1.
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This way the following holds:

ψ(θ) = log φ(θ) =



iθ(α+β)+log((α−β)/(αeiαθ−βeiβθ))
αβ

, if 0 6= α 6= β 6= 0,

iθ
α
− log(1+iαθ)

α2 , if α = β 6= 0,

iθ
α
− (1−exp(−iαθ))

α2 , if α 6= β = 0,

− θ2

2
, if α = β = 0.

5.2.4 Lévy-Meixner Systems

The approach now is to link all Meixner’s polynomials to a unique Lévy process. The starting

form for the polynomials will be (5.8) while for the Lévy process will be the forms

logE[eiθXt ] = tψ(θ) = t log φX(θ) = t

∫ +∞

−∞
(eiθx − 1− iθx)

dK(x)

x2
,

where K is a probability measure. The two elements are linked by equation

ψ(θ) = − log f(τ(iθ)).

The measure of orthogonality Ψt(x) is also the distribution function of Lévy processXt. Indeed,

by taking generating functions in∫ +∞

−∞
Qm(x, t)Qn(x, t) dΨt(x) = δmncm(t)

and setting n = 0, one has∫ +∞

−∞
f(z)t exp{xu(z)} dΨt(x) = c0 = 1.

Putting u(z) = iθ so that z = τ(iθ), finally produces∫ +∞

−∞
exp(iθx) dΨt(x) =

(
1

f(τ(iθ))

)t
= E[exp(iθXt)].
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5.3 Meixner process from orthogonal polynomials

5.3.1 Meixner process fromMeixner-Pollaczeck polynomials

When α 6= 0, β = ᾱ, the fundamental relations become

u(z) =
1

α− ᾱ
log

(
1− ᾱz
1− αz

)
,

f(z) = (1− αz)
1

α(α−ᾱ) (1− ᾱz)−
1
ᾱ

(α−ᾱ),

ψ(θ) = i
α + ᾱ

αᾱ
θ +

1

αᾱ
log

(
α− ᾱ

α exp(iαθ)− ᾱ exp(iᾱθ)

)
(5.17)

and the following expression is obtained for the basic polynomials
∞∑
m=0

Qm(x; t)
zm

m
= (1− αz)

t−αx
α(α−ᾱ) (1− ᾱz)

(ᾱx−t)
ᾱ(α−ᾱ)

Since β = ᾱ it is natural to write α = ρ exp(iζ); it is necessary now to identify function ψ(θ)

above with a suitable variant ψH(θ). With the introduced expression for α the argument within

the logarithm in the expression for ψ(θ) is rewritten in the form

α− ᾱ
α exp(iαθ)− ᾱ exp(iᾱθ)

= exp(−iθρ cos ζ)
sin ζ

sin(ζ + iθρ sin ζ)
. (5.18)

Hence we put ζ = π/2 + a/2 in the expression for ψH(θ). Taking µ = 1 it holds that

ψ(θ) = i
θ

ρ
cos ζ +

1

2ρ2
ψH(2ρθ sin ζ). (5.19)

Recall that a function ψ : R → C is the characteristic exponent of an infinitely divisible dis-

tribution if and only if there are constants a ∈ R, σ2 ≥ 0 and a measure ν on R \ {0} with∫ +∞
−∞ min{1, x2}ν(dx) <∞ such that

ψ(θ) = iaθ − σ2

2
θ2 +

∫ +∞

−∞
(exp(iθx)− 1− iθx1I{|x|<1})ν(dx)

for every θ, where the measure ν is the Lévy measure.

Also remember that if we have an infinitely divisible distribution with characteristic function

φ(θ), a Lévy process Xt remains defined through the relations

exp(ψX(θ)) = φX(θ) = E[exp(iθX1)] = φ(θ).
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Now it can be observed that if {Yt, t ≥ 0} is a Lévy process with characteristic function

E[eiθYt ] = exp{tψY (θ)},

then also Xt = At+BYCt, with C > 0 is a Lévy process determined by

ψX(θ) = iθA+ CψY (Bθ) (5.20)

From (5.19), the identification between the processes {Xt, t ≥ 0} and Meixner process {Ht, t ≥

0} is then achieved by choosing

A =
1

ρ
cos ζ, B = 2ρ sin ζ, C = (2ρ2)−1.

So

Xt =
t

ρ
cos ζ + 2ρ sin ζHt/(2ρ2)

The Meixner-Pollaczeck polynomial is defined for λ > 0 and 0 < ζ < π by
∞∑
m=0

Pm(y;λ, ζ)
wm

m!
=

(1− exp{iζ}w)−λ+iy

(1− exp{−iζ}w)λ+iy

Here the identification is simple and leads to

w = zρ, λ =
t

2ρ2
, y =

x

2ρ sin ζ
− t

2ρ2
cot ζ.

Moreover the equality

Qm(x, t) = m!ρmPm

(
x

2ρ sin ζ
− t

2ρ2
cot ζ,

t

2ρ2
, ζ

)
,

easily brings to the martingale expression

E

[
Pm

(
H t

2ρ2
;

t

2ρ2
, ζ

) ∣∣∣∣∣H s
2ρ2

]
= Pm

(
H s

2ρ2
;
s

2ρ2
, ζ

)
.

A consequence is that the Meixner(1, 2ζ−π, δ, 0) distribution is the measure of orthogonality of

the Meixner-Pollaczeck polynomials {Pn(x; δ, ζ), n = 0, 1, . . .}. Moreover the monic Meixner-

Pollaczeck polynomials {P̃n(x; δ, ζ), n = 0, 1, . . .} are martingales for the Meixner process

(α = 1, δ = 1, ζ = (β + π)/2):

E

[
P̃n (Ht; t, ζ)

∣∣∣∣∣Hs

]
= P̃m (Hs; s, ζ) .
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It remains to determine K; using the exponential form α = ρ exp(iζ) one gets∫ +∞

−∞
exp(iθx)dK(x) =

(
sin ζ

sin(ζ + iθρ sin ζ)

)2

.

A little algebra reveals that K has a derivative with expression

dK(y)

dy
=

sin ζ

πρ

∣∣∣∣∣Γ
(

1− iy

2ρ sin ζ

)∣∣∣∣∣
2

exp

(
−y(π − 2ζ)

2ρ sin ζ

)
.

We have now tried autonomously to obtain the expression of the moments of Meixner distri-

bution adopting as a starting point the results for Meixner-Pollaczeck polynomials, in partic-

ular formulae (5.17), (5.18), (5.19); calculations have been performed both keeping ζ as vari-

able, and changing it to a as described above. the results are as follows. Recall that for now

µ = 1, δ = 1. From (5.17), the general characteristic exponent

ψ(θ) =
2iρθ cos ζ

ρ2
+

1

ρ2
log

(
e−iθρ cos ζ sin ζ

sin(ζ + iθρ sin ζ)

)
with ρ > 0, 0 < ζ < 2π. It leads, as for (5.19) to

ψH(t) = 2ρ2ψ

(
t

2ρ sin ζ

)
− it cot ζ (5.21)

Now the characteristic function φM(t) of Meixner process Ht at t = 1 is obtainable as

φH(t) = eψH(t) = − csc2

(
x− 2iζ

2

)
sin2 ζ = cos2

(a
2

)
sec2

(
a+ it

2

)
. (5.22)

Now the calculation proceeds as usual by differentiation of the characheristic function to eval-

uate the first two moments, the skewness and kurtosis parameter.

For the expected value we have

131



5.3. Meixner process from orthogonal polynomials Chapter 5

Π

2
Π

3 Π

2
2 Π

Ζ

-5

5

Exp.Value

Π

2
Π

3 Π

2
2 Π

a

-5

5

Exp.Value

Figure 5.1: Expected value of H(1)

while for variance we obtained that
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Figure 5.2: Variance of H(1)

As far as the variance, the two expression obtained are

V ar(H(1)) =
csc2 ζ

2
=

1

1 + cos(a)
,

while for sekewness parameter it holds that

κ3 = − cot ζ

√
2

csc2 ζ
= sin(a)

√
1

1 + cos(a)
,

and the graphics are the following
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Figure 5.3: Skewness parameter of H(1)

which are obvoiusly more pitchable with respect to the constant null skewness of a Brownian

motion, allowing in this case more fitting to the eventually available data. Last the kurtosis, for

which similar observations dan be drawn, whose equations are

κ4 = 5 + cos(2ζ) = 5 + cos(a)

and whose representations

0
Π

2
Π

3 Π

2
2 Π

Ζ

4.5

5.0

5.5

6.0

kurtosis

0
Π

2
Π

3 Π

2
2 Π

a

4.5

5.0

5.5

6.0

kurtosis

Figure 5.4: Kurtosis parameter of H(1)

From a strictly theoretical point of view, following the approach of Dominici in [Dom07] it

is possible to evaluate the Fisher information of the Meixner-Pollaczeck orthogonal polyno-

mials, a concept introduced for general orthogonal polynomials by Sanchéz-Ruiz and Dehesa
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in [SRD05]. They considered a sequence of real polynomials, orthogonal with respect to the

weight function ρ(x) on the interval [a, b]∫ b

a

Pn(x)Pm(x)ρ(d)dx = hnδn,m, m, n = 0, 1, . . . (5.23)

with deg(Pn) = n. Introducing the normalized density functions

ρn(x) =
[Pn(x)]2ρ(x)

hn
, (5.24)

they in fact defined the Fisher information corresponding to the densities (5.24) by

I(n) =

∫ b

a

[ρ′n(x)]2

ρn(x)
. (5.25)

Applying the last formula to the classical hypergeometric polynomials, in [SRD05] I(n) for

Jacobi, Laguerre and Hermite polynomials is evaluated.

Let us state the main theorem in [Dom07].

Theorem 42. The Fisher information of the Meixner-Pollaczeck polynomials is given by

Iφ(P (a)
n ) =

∫ +∞

−∞

[
∂

∂θ
ρn(x)

]2
1

ρn(x)
dx =

2[n2 + (2n+ 1)a]

sin2(φ)
, n = 0, 1, . . . (5.26)

Proof: we have seen that the Meixner-Pollaczeck have the hypergeometric representation

P (a)
n (x;φ) =

(2a)ne
inφ

n!
2F1(−n, a+ ix, 2a; 1− e−2iφ), a > 0, 0 < φ < π. (5.27)

They satisfy the orthogonality relation

1

2π

∫ +∞

−∞
e(2φ−π)x|Γ(a+ ix)|2P (a)

m (x;φ)P (a)
n (x;φ)dx =

Γ(n+ 2a)δn,m
[2 sin(φ)]2an!

, (5.28)

for m,n = 0, 1, . . ., and the recurrence relation

(n+ 1)P
(a)
n+1 − 2[x sin(φ) + (n+ a) cos(φ)]P (a)

n + (n+ 2a− 1)P
(a)
n−1 = 0. (5.29)

Also, a general family of orthogonal polynomials Pn(x) defined by

Pn(x) = 2F1(−n,−x, c; z(θ)), n = 0, 1, . . . (5.30)
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is such that
∂Pn
∂θ

= n
z′

z
[Pn(x)− Pn−1(x)], n = 0, 1, . . . (5.31)

From (5.31) and (5.27) we have

∂P
(a)
n

∂φ
= n cot(φ)P (a)

n −
(n+ 2a− 1)

sin(φ)
P

(a)
n−1,

while (5.24) and (5.28) lead to

ρn(x) =
e(2φ−π)x|Γ(a+ ix)|2[2 sin(φ)]2an![P

(a)
n (nx;φ)]2

2πΓ(n+ 2a)
. (5.32)

Observe that for n = 0, 1, . . .,
∫ +∞
−∞ ρn(x)dx = 1.

Differentiating (5.32) with respect to φ one can get

∂ρn
∂φ

=
2ρn(x)

P
(a)
n

{
[x+ (n+ a) cot(φ)]P (a)

n −
n+ 2a− 1

sin(φ)
P

(a)
n−1

}
= (5.33)

(5.29)
=

ρn(x)

sin(φ)P
(a)
n

[
(n+ 1)P

(a)
n+1 − (n+ 2a− 1)P

(a)
n−1

]
. (5.34)

Therefore: [
∂

∂θ
ρn(x)

]2
1

ρn(x)
=

ρn(x)

sin2(φ)[P
(a)
n ]2

[
(n+ 1)2[P

(a)
n+1]2+

− 2(n+ 1)(n+ 2a− 1)P
(a)
n+1P

(a)
n−1 + (n+ 2a− 1)2[P

(a)
n−1]2

]
= (5.35)

=
1

sin2(φ)
[(n+ 1)(n+ 2a)ρn+1(x) + n(n+ 2a− 1)ρn−1(x)+

− 2(n+ 1)(n+ 2a− 1)
[2 sin(φ)]2an!

Γ(n+ 2a)
ρ(x)P

(a)
n+1P

(a)
n−1],

with

ρ(x) =
e(2φ−pi)x|Γ(a+ ix)|2

2π
.

By integration of (4.30) and from (5.28) one can get[
∂

∂θ
ρn(x)

]2
1

ρn(x)
dx =

1

sin2(φ)
[(n+ 1)(n+ 2a) + n(n+ 2a− 1)],

which concludes the proof.

135



Chapter 6

Further properties of Meixner process and

some applications

Last part of our work deals with applications and graphical representations. First, the role of the

parameters of Meixner distributions is established by means of graphics which show how the

density responds to their variation. The strong feature of such a distribution is basically to have

three independent scale parameters: α and δ act mostly in the same way, pitching the kurtosis of

the distribution, while parameter β is mostly responsible of the skewness. In addition, parameter

µ takes account of the location of the distribution.

The main contribution in this chapter is the simulation of trajectories of Meixner process, which

is as far as we know missing from relative literature. The routine was built from scratch fol-

lowing the theoretical way hinted by the already cited work by Madan and Yor. In this case it

is also possible to understand how the variation of the parameters reflects on the trajectories of

the process, besides the shape of the distribution.

The application of this model for the description of financial log returns descends basically from

the works by Eberlein, [Ebe09], Eberlein and Keller [EK95], and Barndorff-Nielsen [BN78,

BN97, BN98], who first tried to fit hyperbolical distributions to data of the same kind.

A similar approach has been given by Schoutens for instance in [Sch02], but with different
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model diagnostics from the ones we describe here.

6.1 Properties of Meixner distribution

This first section of the last chapter will be devoted to the graphical study of the properties of

Meixner distribution. Here in fact it will e shown the action of different values of the parameters

on the corresponding Meixner distribution.

Starting from equation (3.1)

fM(x;α, β, δ, µ) =
(2 cos(β/2))2δ

2απγ(2δ)
exp

{
β(x− µ)

α

} ∣∣∣∣∣Γ
(
δ +

i(x− µ)

α

)∣∣∣∣∣
2

, (6.1)

it is easily observed first of all, that parameter µ is a location parameter, as the following graph-

ics show
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Figure 6.1: Meixner densities MD(1, 0, 2, µ), µ = −1,−0.5, 0.5, 1

From the graphics the resemblance of the Meixner distribution with the usual Gaussian curve

seems explicit, but every doubt is cleared with the following comparison
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Figure 6.2: Meixner densities (red) MD(1, 0, 2, µ), µ = −1,−0.5, 0.5, 1, compared with the Gaussian

curves (green) having the corresponding mean and variance

As we could expect, the Gaussian curves seems ”less sharpened”, in a way that will be clearer

in the following analysis. From this point on, parameter µ will be set equal to 0 for the sake of

simplicity.

Parameter α > 0 in the distribution is the major responsible of the “excess kurtosis”, i.e. the

accumulation of “more” (with respect to the Gaussian benchmark) mass above the mode of the

distribution. In fact:
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Figure 6.3: Meixner densities MD(α, 0, 2, 0), α = 0.1, 0.5, 1, 5, from darker to lighter blue

A similar although “smoother” behavior induces the variation of parameter δ > 0, as it is visible

from the next image

139



6.1. Properties of Meixner distribution Chapter 6
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Figure 6.4: Meixner densities MD(2, 0, δ, 0), δ = 0.025, 0.5, 2, 5, from darker to lighter blue

The real shape parameter in this case is β ∈ (−π, π). First we observe that for β → ±π brings

to a non valid distribution function (a line flattening onto the x axis); for values different from

±π, the following behavior may be observed for Meixner distribution
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Figure 6.5: Meixner densities MD(2, β, 2, 0), β = −2,−1, 0, 2.025, 2.5, from lighter to darker blue

While the variations of parameters α, δ, µ roughly reflect the correspondent variation of a Gaus-

sian distribution in terms of variance and mean respectively, parameter β is the main shape

parameter of Meixner distribution, allowing an asymmetrical distribution.

As it can be seem from the comparison with a Gaussian distribution having the corresponding

variance, Meixner distribution always maintains above the Gaussian curve, as firstly spotted

above:
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Figure 6.6: Comparison of Meixner distribution (red) with varying β = −2,−1, 1.75, 2.5 and corre-

sponding Gaussian curve (green) with mean and variance varying accordingly

The relative stiffness of Gaussian distribution with respect to Meixner derives exacly from the

lack of capability of growing in terms of variance, when needed in an asymmetrical way. This

fact, combined with the action of the remaining parameters, affects heavily models based on

Gaussian distribution with respect to models based on Meixner-like distributions (i.e. with 3

parameters or more).

6.2 Simulation of Meixner process

In this section we simulate some trajectories of Meixner process relying on the observations

drawn in section 3.4.1 and in particular on equation (3.6); so the following simulation routine

is suggested once again by the fundamental work by Madan and Yor [MY06].

To the knowledge of the author, there is no simulation of the trajectories of Meixner process in

the examined literature.

Here follows the original R code to obtain the trajectories, always supposing µ = 0:
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#Meixner simulation from Madan-Yor "CGMY and Meixner

Subordinators are absolutely continuous with respect to

one sided stable subordinators"

q<-2000 #how many variables

a<-.25 #parameter a

b<-.002 #parameter b

delta<-2 #parameter delta

ep<-0.001

A<-b/a

C<-pi/a

U<-runif(q)

Y<-ep/U

W<-runif(q)

z<-a*delta*sqrt(2*ep/pi)

g<-NULL

for(n in -10:10){for(i in 1:length(Y)){

g[i]<-sum((-1)ˆn*exp(-nˆ2*piˆ2/(2*Cˆ2ˆY[i])))*exp(-Aˆ2*Y[i]/2)}

v<-NULL

for(j in 1:length(g)){

if (g[j]>W[j]) v[j]=1

else v[j]=0}

S<-sum(Y*v)

tau<-z+S

X<-A*tau+rnorm(q)*sqrt(tau)
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T<-10

#s<-0.001

t<-seq(from=0, to=T, by=T/(q-1)) # time-grid

l<-length(t)

M<-NULL

for (m in 1:l){

M[m]<-cumsum(X)[m]}

plot(t, M, type=’p’,cex=0.35,pch=18,xlab="time",ylab="M(t)")

This leads to the following graphics, for different values of the parameters:
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Figure 6.7: Possible trajectories of a Meixner process with the following parameter values for the triplet

(α, β, δ): (0.25, 0.002, 0.2) (left), (0.25, 0.002, 20) (right)
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Figure 6.8: Possible trajectories of a Meixner process with the following parameter values for the

triplet (α, β, δ): (0.25, 0.02, 2) (upper left), (0.25, 0.002, 2) (upper right), (25, 0.002, 2) (lower left),

(0.25, 0.002, 2) (lower right)
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6.3 Modeling financial data via Meixner process

6.3.1 The stock price process

Our aim is to model the price process of an asset (a stock or an index) by a continuous-time

process, often denoted with S = {St, t ≥ 0} as defined in (4.2), which gives asset price at

time t. In order to allow the comparison of investments in different securities, it is usual to

investigate the logarithmic returns (rates of return), defined by

Xt = logSt − logSt−1.

The main reason for this, is that the return over n periods, for instance n days, is clearly the

simple sum

Xt + . . .+Xt+n−1 = logSt+n−1 − logSt−1;

another reason is that in most of the models the stock price St will be modeled by an expo-

nential of some stochastic process, and for continuous-time processes, returns with continuous

compounding log returns are a natural choice.

It is well known that the standard continuous-time model for stock prices is the geometric

Brownian motion,

St = S0 exp

{(
µ− σ2

2

)
t+ σWt

}
which solves the stochastic differential equation

dSt = µStdt+ σStdWt

where σ > 0 and µ ∈ R are coefficients denoting volatility and drift, and {Wt, t ≥ 0} is a

standard Brownian motion. This model underlies the Black-Scholes formula.

This way the returns resulting from the gemoetric Brownian motion are increments of a Brown-

ian motion process, and then independent and normally distributed; but a lot of literature (see for

instance Cont [Con01] and related reference) show that for real data the hypotesis of normality

generally fails.
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An example could be given by the returns evaluated on the closing prices of the NASDAQ index

for year 2009, giving back the following histogram, along with a first raw Gaussian estimation
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Figure 6.9: log returns of closures of NASDAQ index from 02.01.2009 to 29.07.2009 with a moment-

estimated Gaussian model

The situation deteriorates if we consider the return over a wider period of time, starting from

03.05.1990, evaluating 4832 data:
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Figure 6.10: log returns of closures of NASDAQ index from 03.05.1990 to 29.07.2009 with a moment-

estimated Gaussian model

A clear concentration of mass around the maximum of the empirical distribution emerges from

the figures above, along with a consequent “thinning of tails”, intuitively speaking. This com-

bined facts induce to look for a model which can provide these macroscopical features, for

instance Meixner distribution. In fact estimating the parameters via method of moments, the

following results can be achieved:
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Figure 6.11: Meixner distribution added with method of moments estimated parameters: α = 0.0221138,

β = −0.0834728, δ = 1.99758, µ = 0.0035104
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Figure 6.12: Meixner distribution added with method of moments estimated parameters: α = 0.0543601,

β = −0.0299293, δ = 0.172123, µ = 0.000456984

It is necessary to point out that, due to the results shown in chapter 2, for which moments

estimators for many of the listed processes are available, make this estimators easier to evaluate

149



6.3. Modeling financial data via Meixner process Chapter 6

than the maximum likelihood estimators, for instance, which are not always available in a closed

form. In any case, for instance both Eberlein and Keller [EK95] and Schoutens [Sch03] make

use of ML estimators obtaining basically the same results.

The same results can be obtained for stock prices.

As it can be seen, a very good fitting is also obtained with the NIG distribution (2.5), meaning

that the price process follows a NIG process:
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Figure 6.13: NIG distribution (blue line) added with method of moments estimated parameters: α =

45.1484, β = 1.24699, δ = 0.011471

6.3.2 Model Diagnostic

A simple method to assess goodness of fit for these models, is to rely upon distances between

the involved distributions. A good way to perform it, that needs anyway a certain amount of

programming and numerical integration, is given by two distances: the usual Kolmogorov-

Smirnov distance, and the modified Anderson-Darling distance.

The Kolmogorov-Smirnov test, is based upon the following distance among cumulative distri-

150



6.3. Modeling financial data via Meixner process Chapter 6

butions:

Dn = sup
x∈R
|Fn(x)− F (x)|,

where Fn(x) is the empirical distribution function obtained from the data, and F (x) is the fitting

distribution. It is also known that
√
nDn follows a Kolmogorov distribution, which is tabulated.

In financial applications, though, the tails of a return distribution might be of interest, for they

often happen to be deciding factors in protfolio strategies. Assuming a given probability density

with distribution F (x) and measuring the distance between F and the empirical distribution by

the Kolmogorov-Smirnov distance, it turns out that the same importance is given to tha tails as

to the center of the distribution. The reason is that the Kolmogorov-Smirnov distance measures

the uniform distance between the two functions, i.e. the maximum deviation regardless where

it occurs.

An alternative way is provided by the following empirical variant of the Anderson-Darling

statistic (AD), given by

AD = sup
x∈R

|Fn(x)− F (x)|√
F (x)(1− F (x))

;

in this case, the distance is rescaled by dividing the distance through the “standard deviation”

of this distance, given by the denominator of the above formula. It can be observed that the

denominator becomes small for very large and very small values of data: thus the same absolute

deviation between F and Fn in the tails gets a higher weight as it occurs in the center of the

distributions. A possible drawback of this choice is that the distribution of the statistic depends

on the choiche of F and consequently tests about the velidity of the goodness of fit assumption

cannot be performed as easily as the with the Kolmogorov-Smirnov distance.

In our case, the values of distance will be enough to show the better performance of Meixner

distribution in terms of goodness of fit to the data. Corresponding tests may be performed easily.

The following figure shows the estimates of the distribution functions
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Figure 6.14: Empirical distribution function (black) with cumulative distribution functions from Meixner

density (red) and NIG density (blue) obtained by numerical integration. Normal distribution function is

the green line

It is obviously not clear due to the nearness of the estimates of the two Lévy process driving

distribution to the original data. Here are the values of the two distances above for the examined

dataset:

NASDAQ data KS AD

Meixner 0.0327 0.0655

NIG 0.0410 0.0410

Gaussian 0.9998 0.2242

The better performance of the two distribution driving the correspondend geometric Lévy model

(4.2) is very clear compared to the Gaussian distribution and hence to the Brownian motion; a

substantial equivalence holds for the fitting in terms of Anderson-Darling distance.
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6.4 Conclusion

The literature about Meixner process is not very populated.

After its introduction in 1999, some papers have appeared from 2002 to 2009 dealing mainly

with mathematical properties of generalized Lévy processes , i.e. for instance generalization

of Chaotic Representation Property for Lévy processes , extensions of Meixner processes to

“Meixner-type” processes having the parameters of the characteristic exponent state space de-

pendent via theory of pseudo-differential operators, study of properties from the point of view

of more general q−Lévy processes , and the chance of writing infinitesimal generator of the

process through suitable integral operators. They don’t deal with a simpler statistical approach.

It is also sufficiently clear that departure from classical mathematical models for finance gov-

erned by Brownian motion and Gaussian distribution is not totally painless. Theoretical proper-

ties and conditions are mostly well known, but one important problem is given by computational

effort.

Nonetheless our main goal was to try to focus the interest on a process that undoubtly gives

better performances when considered as a mathematical financial model. Another point is that

this claim has been shown not making use of ad-hoc software and creating from scratch all the

routines that in literature are often just suggested or hinted.

So one of the goals was to show that it is possible to apply this process in modeling financial

data with not a great effort in terms of programming.

Despite that, many open theoretical problems remain, which can be the subject of further re-

search, the first one being the evaluation of equivalent martingale measures different from Ess-

cher’s. Some calculations have been performed during this work, but have not given any result

at the moment. Other obscure points are given by minimal martingale measure and optimal

variance martingale measure.

Another interesting issue for developing research is given by the study of subordinated Meixner

process, which is missing to our knowledge from analyzed literature.
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Referring to a work by Aurzada and Dereich, [AD09], a small deviations problem for Meixner

process can be investigated.

From an applicative point of view, it has turned out that some seismological graphics happen

to be very similar to volalility clusters graphics shown for instance by Schoutens in [Sch02],

Fig.6; namely, some background noise recorded on a daily basis by seismomenters and having

causes depending on human activity and on natural phenomena not strictly of a seismological

origin, has such a representation. It can be interesting to investigate the chance of fitting these

data with Meixner-SV models as the one introduced buy Schoutens.

A possible furter employment of Meixner distribution can be spotted as a model for temperature

data in a bayesian hyerarchical approach for jointly describing temperature and precipitation

chianges in multiple climate model as described by Tebaldi and Sansó in [TS09].

The main impression is that in this difficult topic many results are added by very little pieces.

Still by 2006 no one has been able to express Meixner process as a subordinated Brownian

motion, which opens the chance to simulate the process as we have seen. Nonetheless the study

of simulated trajectories as the ones we have introduced here is still missing.

The importance of these models is clear, providing a real flexible and fitting instrument mainly

for financial applications; similar models such as hyperbolic models mostly, have been em-

ployed in theoretical quantum physics and in modeling natural phenomena as turbulence or

sand deposits.

We have also shown how these kind of models could provide a sort of aperture towards different

fields of mathematics, involving statistics indirectly, as the theory of differential equations and

orthogonal polynomials.

This gives the models a sort of mathematical reliability, descending from Meixner’s cited 1934

work, which was known and settled mainly for Brownian motion only up to that moment.
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Lévy models. Quantitative Finance, 6(2):125–145, 2006.

157



BIBLIOGRAPHY Bibliography

[JPY02] M. Jeanblanc, J. Pitman, and M. Yor. Self-similar processes with independent in-
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