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Introduction

In Bayesian nonparametrics the role of the parameter appearing in a statistical model
is taken by a probability distribution; therefore, the parameter space becomes a class of
probability distributions defined on a given sample space. A Bayesian usually considers
the class of all probability measures on the sample space and defines a probability on this
class, the so-called prior distribution.

A precise description of a Bayesian nonparametric problem, the first to our knowledge,
appears in de Finetti [68] in a paper about the problem of fitting a smooth curve onto an
empirical distribution. At that time workable prior distributions on spaces whose elements
are probabilities were not known. For these we have to wait until the 60’ when a few
schemes were put forward. Freedman [72] and Fabius [48] introduced a class of random
probability measures termed tailfree. Unfortunately, these papers were not directly aimed
at Bayesian nonparametric analysis so that their importance with respect to this topic
was not immediately recognized. Rolph [168] suggested a scheme for constructing random
probability distributions based on moments evaluation. A definite impetus to nonparamet-
ric inference within the Bayesian approach to statistics came eventually with the papers by
Ferguson [61] (see also Ferguson [62]) and Doksum [25] based on the cited papers of Fabius
and Freedman as well as on the paper by Dubins and Freedman [35]. In these papers a
particular tailfree random probability measures, termed Dirichlet process, is presented. In
particular, the Dirichlet process is characterized by the double advantage of having a large
support, with respect to a suitable topology on the space of probability measures on the
sample space, and of being analytically manageable for Bayesian posterior computations.

Since the introduction of the Dirichlet process, the literature on Bayesian nonpara-
metrics has grown enormously and need for solutions of new problems has caused the
introduction of new prior distribution.

I.1 Exchangeability and de Finetti’s representation theorem

The notion of exchangeability, due to Bruno de Finetti, represents a cornerstone of Bayesian
statistics. Indeed, the power of exchangeability derives from the celebrated representation
theorem for sequences of exchangeable observations, provided by de Finetti [67] (see also
de Finetti [69]). At this point it seems appropriate to give a brief description of these
concepts and results, summarizing parts of Regazzini [164], key references for foundation
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issues concerning the Bayesian paradigm.
Suppose the observations take values in a complete and separable metric space, i.e.

a Polish space, to be denoted by X with corresponding Borel σ-field X . Let us con-
sider the space (X∞,X ∞) where X∞ indicates the set of all sequence {xi, i ≥ 1} of
elements of X whereas X ∞ is the σ-field generated by the subset of X∞ of the type
A1 ⊗ · · · ⊗An ⊗X∞ = {x ∈ X∞ : x1 ∈ A1, . . . , xn ∈ An} with n ≥ 1 and A1, . . . , An ∈X .
By assuming that the observation process is extendible to infinity, each observation Xi can
be viewed as a measurable function from X∞ into X according to the definition Xi(x) = xi

for i ≥ 1 and for every x = {xj , j ≥ 1} ∈ X∞. According to the Ionesco-Tulcea theorem it
is known that for all p ∈ PX, there exists a unique probability measure p∞ on (X∞,X ∞)
such that

p∞(A1 ⊗ · · · ⊗An ⊗ X∞) =
n∏
i=1

p(Ai)

for any n ∈ N and A1, . . . , An ∈X . In particular, a probability measure τ on (X∞,X ∞)
makes the Xi exchangeable if the distribution of {Xπ(i), i ≥ 1} is the same as the distribu-
tion of {Xi, i ≥ 1} for any finite permutation π. In the present framework, it is well-known
that the set PX of all probability measures on (X,X ) is also a Polish space if endowed
with a metric ρ, termed Prokhorov metric, which metrizes the topology of weak conver-
gence of probability measures (see Prokhorov [158]). In particular, let PX be the σ-field on
PX generated by the weak convergence topology. Any random element from a probability
space (Ω,F ,P) into (PX,PX) is said to be a random probability measure on X.

The starting point for de Finetti’s representation of an exchangeable law is the state-
ment of the existence of a random probability measure P on X which is the limit (in
distribution) of the empirical distribution of X1, . . . , Xn an n tends to infinity. Denote by
δx the probability measure with unit mass at x ∈ X. Then the empirical distribution

en(X1, . . . , Xn) :=
1
n

n∑
i=1

δXi

is an example of random probability measure, and the following proposition makes the
previous remarks precise:

“If {Xn, n ≥ 1} is exchangeable with respect to τ , then there is a random probability
measure P on X such that

lim
n→+∞

ρ(en(X1, . . . , Xn), P ) = 0 a.s.-P (I.1.1)

where ρ is the Prokhorov metric.”

Furthermore, under the hypothesis that p is a realization of P , i.e. p is the “real” dis-
tribution of the characteristic under observation, one expects, since the observations are
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collected under analogous environmental conditions, that the Xi’s are independent and
identically distributed with common distribution p. This fact is the essence of the follow-
ing version of de Finetti’s representation theorem:

“If {Xn, n ≥ 1} in exchangeable with respect to τ , then for any B ∈X ∞

τ(X1, Xn, . . . ∈ B|P ) = P∞(B) a.s.-P (I.1.2)

where given any probability measure µ on (X,X ), µ∞ denotes the distribution of {Xn, n ≥
1} when the Xn’s are supposed to be independent and identically distributed with common
distribution µ. Conversely, if there is a random probability measure P such that(5.1.4)
holds, then the Xn’s are exchangeable”.

The following statement represents another equivalent version of de Finetti’s representa-
tion theorem:

“{Xn, n ≥ 1} is exchangeable if and only if there is a probability measure Q on (PX,PX)
such that for any B ∈X ∞

τ(X1, Xn, . . . ∈ B) =
∫
PX

P∞(B)Q(dP ) (I.1.3)

where Q, the so-called de Finetti’s measure of {Xn, n ≥ 1}, is uniquely determined and
coincides with the distribution of P .”

The Bayesian paradigm can be introduced by considering a process of observations
{Xn, n ≥ 1} taking values on some space X and by assuming that the observations are
taken under homogeneous physcal conditions, i.e. the order in which the observations are
detected is not relevant for the inferential purpose. Therefore, given a sample X1, . . . , Xn

of size n taking values in X, these are assumed to be realizations of n random variables
belonging to an infinite exchangeable sequence {Xn, n ≥ 1} of random variables with
values in X. Exchangeability and de Finetti’s representation theorem imply the existence
of a random element P ∈ PX such that, conditionally on P = p, the random variables
{Xn, n ≥ 1} are independent and identically distributed with probability distribution p.
Initial opinion about the sequence {Xn, n ≥ 1} are expressed through the probability
distribution Q of P and updated by means of Bayes theorem; all inferential questions
related to the sequence {Xn, n ≥ 1} are the answered on the basis on the conditional
probability distribution of P , given the observed sample from {Xn, n ≥ 1}. Since we are
concerned with an inferential problem whose basic ingredients are an infinite exchangeable
sequence {Xn, n ≥ 1} of random variables with values in X and a random probabilily
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measure P , the natural space where to embed it is the product space (X∞×PX,X
∞⊗PX)

where X∞ × PX = {(x, p) : x ∈ X∞, p ∈ PX} while X ∞ ⊗PX is the smallest σ-field of
subsets of X∞×PX containing the family of measurable rectangle {A⊗B : A ∈X ∞, B ∈
PX}. The probability distribution Q of P , often called the prior probability distribution,
plays a pivotal role for the definition of a probability measure on (X∞ ×PX,X

∞ ⊗PX).
In fact, given a probability measure Q defined on the space (PX,PX), we set

π(C) =
∫
PX

p∞({x ∈ X∞ : (x, p) ∈ C})Q(dp) (I.1.4)

for all C ∈ X∞ × PX. Note that, when C = (A1 ⊗ · · · ⊗ An ⊗ X∞) × B for any n ∈ N,
Ai ∈X for i = 1, . . . , n and B ∈ PX, then

π(C) =
∫
B

n∏
i=1

p(Ai)Q(dp)

It can be checked that π is probability measure on (X∞×PX,X
∞⊗PX). Therefore, given

a probability measure Q on (PX,PX), we call statistical space (or statistical model) the
triple (X∞ × PX,X

∞ ⊗PX, π) where π is the probability measure defined as in (5.1.2).
Once given the statistical space it is possible to tackling any inferential problem: the

hypotetical inference if the aim is to infer on the random element P ∈ PX and the predictive
inference if the aim is to infer on the random element X ∈ X given an observed sample
X1, . . . , Xn from {Xn, n ≥ 1}. Since (X∞,PX) is a Polish space, for any n ∈ N and
(x1, . . . , xn) ∈ Xn there exists a regular conditional probability q on (X ∞ ⊗PX) given
X1 = x1, . . . , Xn = xn. This means that for any n ∈ N there exists a function q : Xn ⊗
(X ∞ ⊗PX)→ [0, 1] such that

i) for all (x1, . . . , xn) ∈ Xn, q((x1, . . . , xn), ·) is a probability on (X∞×PX,X
∞⊗PX);

ii) for all C ∈X ∞⊗PX, q(·, C) is a measurable map from (Xn,X n) to ([0, 1],R∩[0, 1])

iii) for all A ∈X n, C ∈X ∞ ⊗PX

π(C ∩ (X1, . . . , Xn)−1(A)) =
∫
A
q((x1, . . . , xn), C)τn(dx1, . . . , dxn)

where τn is the probability distribution induced on (Xn,X n) by the random vector
(X1, . . . , Xn)

Given n ∈ N and (x1, . . . , xn) ∈ Xn, the probability Q(·|X1 = x1, . . . , Xn = xn) on
(PX,PX), defined by setting

Q(B|X1 = x1, . . . , Xn = xn) = q((x1, . . . , xn),X∞ ×B)π(X∞ ×B|X1 = x1, . . . , Xn = xn)
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for any B ∈ PX, is called posterior probability distribution of P : this is the condi-
tional distribution of P given X1 = x1, . . . , Xn = xn. Analogously, given m,n ∈ N and
(x1, . . . , xn) ∈ Xn, the probability τm(·|X1 = x1, . . . , Xn = xn) on (Xm,X m) defined by
setting for any A ∈X m

τm(A|X1 = x1, . . . , Xn = xn) = q((x1, . . . , xn), (A⊗ X∞)⊗ PX)

is called predictive probability distribution ofXn+1, . . . , Xn+m: this is the conditional prob-
ability distribution of Xn+1, . . . , Xn+m given the observed sample X1 = x1, . . . , Xn = xn.

So far we introduced the Bayesian paradigm and we highlighted how in a Bayesian
nonparametric inferential problem the role of the parameter appearing in the statistical
model is taken by a probability distribution. Therefore, the parameter space of the statis-
tical model is represented by the class of all probability measures on a given sample space
and the problem of placing a probability distribution on this class, the so-called prior
distribution, becames crucial. In light of these considerations, it becomes evident that the
notion of exchangeability combined with de Finetti’s representation theorem cannot be
reduced to a mere synonym of conditional independence and identity in distribution; in-
deed, it provides a coherent subjective solution to the inferential problem, which includes
in a unifying way both the “parametric” and the “nonparametric” case.

I.2 Prior distribution on spaces of probability measures

As far as the problem of assigning prior distribution on spaces of probability measures
is concerned, it is convenient to start with the case of a finite X, i.e. X := {a1, . . . , ak},
k being a fixed element of N. Hence, the law of any random sequence {Xn, n ≥ 1} with
values in (X∞,X ∞) is completely characterized by its restriction to all events {X1 =
x1, . . . , Xn = xn} defined for all (x1, . . . , xn) in Xn and for all n ∈ N. In particular, if
{Xn, n ≥ 1} is exchangeable with respect to τ , then by (I.1.3), there exists one and only
one probability distribution function Q such that

τ(X1 = x1, . . . , Xn = xn) =
∫

∆(k−1)

k−1∏
i=1

v
n(ai)
i

(
1−

k−1∑
i=1

vi

)n(ak)

Q(dv1, . . . , dvk−1)

with support included in ∆(k−1) := {(v1, . . . , vk−1) : vi ≥ 0, i = 1, . . . , k−1,
∑

1≤i≤k−1 vi ≤
1} holds for any (x1, . . . , xn) ∈ Xn and for any n ∈ N with n(ai) =

∑
1≤j≤n δai(xj) for

i = 1, . . . , k,
∑

1≤i≤k n(ai) and v0 := 1 if v = 0. Obviously there is a one-to-one cor-
respondence between the set of all probability measures on (PX,PX) and the set of all
distribution functions Q with support included in ∆(k−1). Thus, one immediately sees that
the representation theorem provides a coherent framework for the usual implementation
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of the Bayesian paradigm for the multinomial model. In this case the de Finetti measure
Q is the so called prior distibution.

A statistician, due to convinction or lack of information, is often not able to commit
himself to assuming finite X. If this is the case, assessing Q can become cumbersome.
Indeed, if a quite deep knowledge of the random phenomenon under consideration is avail-
able, the statistician may be able to isolate the randomness (e.g. through a functional
relation) and, consequently, to restrict the class of admissible laws. The concrete imple-
mentation of statistical methods greatly benefits from such restrictions which usually, but
not necessarily, are reflected upon the assumption that de Finetti’s measures are supported
by parametric families of probabilities and parameters belong a subset of some finite di-
mensional Eucledian space. If one set P ′X = {Pθ : θ ∈ Θ} and assigns a de Finetti measure
such that Q(P ′X) = 1, there exists a bijection f : Θ→ P ′X such that Q induces a probability
measure q on Θ by means of q(B) = Q(f(B)) for every B ∈ Θ. The general question to
be answered by the statistician is wheather, on the basis of the available information, it
is coherent to reduce the class of all formally admissible distributions on a given sample
space to some distiguished parametric family. From a concrete point of view, parametric
structures would stem from distinguished assumptions formulated about the probabilistic
modelling of the random phenomenon under study. The reader is referred to, e.g, Bernardo
and Smith [6] and Shervish [175] and reference therein.

In cases, in which the statistician is in a position to assume neither a finite X or a
restriction of the class of admissible distributions, a so called nonparametric approach has
to be undertaken. Such an approach essentially corresponds to the impossibility of a com-
mitment about a probabilistic model underlying the phenomenon at issue. Thus, it should
be clear that the term nonparametric, commonly used to designate it, is vacuous since it
does not reflect the non-informativeness which leads to adopt this very same approach.
Nonetheless, it will be sometimes employed in the sequel, however bearing in mind its cor-
rect interpretation. In this case, as far as the problem of assessing a de Finetti measure is
concerned, it seems natural to regard it as a problem of extending the multinomial model.
The prominent role, played by the Dirichlet distribution in the multinomial case, is held by
an appropriately defined functional Dirichlet distribution or Dirichlet process prior. This
is due to the fact that the relevan advantages regarding the mathematical tractability of
the Dirichlet distribution, in particular, the solution it provides to the problem of prevision
and its reproducibility property in passing to the posterior distribution, carry over to the
functional Dirichlet distribution. Other de Finetti measure are attempts to generalize the
Dirichlet process prior in various directions.

It has to be said immediately that the major drawback inherent to a Bayesian nonpara-
metric approach is represented by the analytica formulation of priors. From a conceptual
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point of view, the assumption of exchangeability makes the assessment of a particular Q
simpler, since it can be relied upon (I.1.1)-(I.1.3). Indeed, one can always go back to the
case of exchangeable observations, according to the following line of reasoning. Any Q on
(PX,PX) can be thought of as the de Finetti measure of an exchangeable τ on (X∞,X ∞),
according to (I.1.3). Hence, in order to specify the analytica form of Q, it is convenient
to think of Q as the probability law of the unknown distribution of a characteristic, with
values in X, of the elements of a population that is sampled with replacement. So, Q will
be assessed as if it were the limiting distribution of the empirical distribution connected
with the above fictitious sequence of trials.

I.3 Outline of the thesis

On the basis of the previous paragraphs, one can state that random probability measures
represent the essence of Bayesian nonparametrics both from a conceptual and practical
perspective. In particular, they are the starting point of the present treatment which aims
at providing some contributions to the Dirichlet process and to some related classes of ran-
dom probability measures obtained by transformations of increasing additive processes.

Parts of this thesis are based upon Favaro and Walker [50], Favaro et al. [55], Favaro
et al. [52], Favaro et al. [53], Favaro and Walker [51], Favaro et al. [54], Favaro et al. [56]
and Favaro and Walker [57]. The first paper represents the first seminal work: there, a new
distributional equation having as unique solution the Dirichlet process is proved and it is
used to provide an alternative series representation of the Dirichlet process. The second
paper, moving from the new distributional equation introduced in Favaro and Walker [50],
defines and investigates a new measure-valued Markov chain which generalizes the well
known Feigin-Tweedie Markov chain widely used to provide properties of linear functionals
of the Dirichlet process and approximation procedures for estimating the law of the mean
of the Dirichlet process. The third and the fourth paper consider the new distributional
equation introduced in Favaro and Walker [50] in order to provide two characterization
of a Fleming-Viot processes which is a wide class of measure-valued diffusion processes
arising as large population limits of so-called particle processes. The fifth paper repre-
sents the second seminal work: there, some developments for a class of random probability
measures, termed generalized Dirichlet processes, which induces exchangeable sequences
which are characterized by a more elaborated predictive structure that those one arising
from Gibbs-type random probability measures. The sixth paper investigates in details the
posterior behavior of the generalized Dirichlet process and it provides conditional distribu-
tions and the corresponding Bayesian nonparametric estimators derived from the random
partition structure characterized by the generalized Dirichlet process. The last one con-
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siders some developments on the Bayesian nonparametric inference for species sampling
problems based on the two parameter Poisson-Dirichlet process. The dissertation is struc-
tured in two parts.

The first part of the dissertation deals with the Dirichlet process and with some classes
of measure-valued random processes having as unique invariant measure the law of the
Dirichlet process. Given a general Polish space X, we start by considering a new distribu-
tional equation defined on a the set of all probability measures on (X,X ) and having as
unique solution the Dirichlet process on X; some applications of this new distributional
equation are then considered in order to provide new characterizations of the Dirichlet
process. In particular, a generalization of the constructive definition of the Dirichlet pro-
cess proposed by Sethuraman is derived and investigated with emphasis on its application
to the Dirichlet process approximations. Moreover, the new distributional equation for the
Dirichlet process is considered in order to provide some contributions on measure-valued
random processes having as unique invariant measure the law of the Dirichlet process: the
first contribution regards the definition and the study of a measure-valued Markov chain
which generalizes the well known Feigin-Tweedie Markov chain and which still has the
law of the Dirichlet process as unique invariant measure; the second contribution regards
a characterization of the so-called particle process driving a wide class of measure-valued
diffusion processes termed Fleming-Viot processes and having as unique invariant measure
the law of the Dirichlet process.

The second part of the dissertation deals with random probability measures derived by
normalization of increasing additive process and in particular with the class of normalized
random measures with independent increments (NRMIs). The subclass on NRMIs with
logarithmic singularity is defined and an appealing example, termed generalized Dirichlet
process; by considering its characterization in terms of normalized superposition of inde-
pendent Gamma processes, the generalized Dirichlet process is deeply investigated and a
comprehensive treatment in terms of finite dimensional distributions, moments, predictive
distributions and posterior distributions. In particular, such process induces exchangeable
random partitions which are characterized by a more elaborate clustering structure than
those arising from Gibbs-type random probability measures. A natural area of application
of these random probability measures is represented by species sampling problems and, in
particular, prediction problems in genomics. To this end we study both the distribution
of the number of distinct species present in a sample and the distribution of the number
of new species conditionally on an observed sample. We also provide the nonparametric
Bayesian estimator, under quadratic loss, for the number of new species in an additional
sample of given size and for the discovery probability as function of the size of the addi-
tional sample. Some developments on the conditional distributions and the corresponding
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Bayesian nonparametric estimators recently obtainied for the class of Gibbs-type random
probability measures are also provided.

A brief review of the main results to be presented seems appropriate at this point.
In Chapter 1, after introducing the definition and the main properties of the Dirichlet

process, we define a generalization of the constructive definition of the Dirichlet process
proposed by Sethuraman. In particular, the new constructive definition for the Dirichlet
process is obtained from the original Sethuraman’s construction nesting an appropriate
random convex linear combination of random variables from a Blackwell-MacQueen Pólya
sequence. Properties of the new definition of the Dirichlet process are studied.

In Chapter 2 we provide some remarks on the approximation of the Dirichlet process.
Moving from a series representation for the Dirichlet process which includes the Sethura-
man series representation as particular case, we consider the application of two stopping
procedures: a random stopping procedure which corresponds to the truncation of the series
at a random number of terms and the almost sure stopping procedure which corresponds to
the truncation of the series at a fixed number ot terms. In particular, the accuracy in these
approximations is given with respect to the corresponding approximations obtained using
the Sethuraman series representation of the Dirichlet process. A straightforward extension
of the random stopping procedure to the more general class of infinite dimensional stick-
breaking random measures is considered. As a by-product, we also obtain some interesting
results related to the convolution of distributions belonging to the class of generalized
convolutions of mixtures of Exponential distributions.

In Chapter 3, moving from a distributional equation having as unique solution the
Dirichlet process, we define and we investigate a new measure-valued Markov chain having
as unique invariant measure the law of a Dirichlet process. This Markov chain general-
izes the well known Feigin-Tweedie Markov chain which has been widely used to provide
properties of linear functionals of the Dirichlet process and approximation procedures for
estimating the law of the mean of the Dirichlet process. Our main aim in this chapter is
to show that the Feigin-Tweedie chain sits in a large class of chains indexed by an integer
n ∈ N and they worked solely on the case n = 1, where n can be viewed as a sample size.
We provide properties of this new class of Markov chain.

In Chapter 4 we consider a different class of random processes having as unique in-
variant measure the law of a Dirichlet process. This class of random process is termed
Fleming-Viot processes and it is a wide class of measure-valued diffusion processes arising
as large population limits of so-called particle processes. Here we invert the procedure and
show that a countable population process can be derived directly from the neutral diffu-
sion model, with no arbitrary assumptions. We study the atomic structure of the neutral
diffusion model, and elicit a finite dimensional particle process from the time-dependent



xiv Introduction

random measure, for any chosen population size. The static properties are consequences
of the fact that its stationary distribution is the Dirichlet process, and rely on a new rep-
resentation for it. The dynamics are derived directly from the transition function of the
neutral diffusion model. As by-product we also obtain a new constructive definition of the
Dirichlet process.

In Chapter 5 we consider priors obtained by normalizing random measures with inde-
pendent increments (NRMIs) we define a new class on NRMIs, the so-called NRMI with
logarithmic singularity. The class of NRMIs with logarithmic singularity includes as par-
ticular case the celebrated Dirichlet process and on the other hand it does not include
the normalized generalized Gamma process recently introduced in the context of mixture
models and species sampling problems. In particular, we are interested in a generalization
of the Dirichlet process which has been recently introduced in the literature and which
is in the class of NRMIs with logarithmic singularity, the so-called generalized Dirichlet
process. Some developments of the generalized Dirichlet process are presented in terms of
its finite dimensional distributions, moments, predictive distributions and posterior distri-
butions.

In Chapter 6 we investigate a class of random probability measures, termed generalized
Dirichlet processes, which has been recently introduced in the literature and further in-
vestigated in Chapter 5. Such processes induce exchangeable random partitions which are
characterized by a more elaborate clustering structure than those arising from Gibbs-type
random probability measures. A natural area of application of these random probability
measures is represented by species sampling problems and, in particular, prediction prob-
lems in genomics. To this end we study both the distribution of the number of distinct
species present in a sample and the distribution of the number of new species conditionally
on an observed sample. Some developments on the conditional distributions and the corre-
sponding Bayesian nonparametric estimators recently obtainied for the class of Gibbs-type
random probability measures are also provided.
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1
A generalized constructive definition

for Dirichlet processes

In this chapter we introduce a generalization of the constructive definition of the Dirichlet
process proposed by Sethuraman. The new constructive definition for the Dirichlet pro-
cess is obtained from the original Sethuraman’s construction nesting an appropriate ran-
dom convex linear combination of random variables from a Blackwell-MacQueen Pólya
sequence. Properties of the new definition of the Dirichlet process are studied.

1.1 Introduction

Let us consider a topology T such that (X, T ) is a Polish space endowed with the Borel
σ-field X and let PX be the space of probability measures on (X,X ) endowed with its
σ-field PX generated by the weak convergence topology1 W which makes (PX,W) a Polish
space. The first example of probability measure on (PX,PX) useful as prior distribution
for Bayesian nonparametrics is the probability measure induced by the celebrated Dirichlet
process whose characterization and essential properties were extensively presented by Fer-
guson [61] and Ferguson [62] and further investigated by Blackwell [9] and Blackwell and
MacQueen [10]. Various authors have considered other characterizations and properties of
the Dirichlet process. In particular, in this chapter we are interested in the constructive
definition of the Dirichlet process proposed by Sethuraman [174] and here recalled.

Let α be a finite measure with total mass a and define α0 := α/a. Let (Ω,F ,P) be a
probability space supporting two independent sequence of r.v.s θ := {θi, i ≥ 1} and Y :=
{Yi, i ≥ 1} such that the application (θ, Y ) : Ω→ ([0, 1]×X)∞ is (F , (R ∩ [0, 1]⊗X )∞)-
measurable. In particular, the sequence θ is a sequence of independent r.v.s identically
distributed a ccording to a Beta distribution function with parameter (1, a) for i ≥ 1

1The weak convergence topology is the topology induced by the measurable projection mappings ℘B :

PX → [0, 1], with B ∈ X , defined for all p ∈ PX by ℘B(P ) := P (B).
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and the sequence Y is a sequence of independent r.v.s identically distributed according to
α0. The condition of independence between the sequence of r.v.s θ and Y and the usual
construction of a product measure implies the existence of the probability space (Ω,F ,P)
supporting the r.v. (θ, Y ) and does not require any restrictions on X, such as it being a
Polish space. We now consider the sequence of r.v.s {pi, i ≥ 1} obtained from the sequence
θ, by the so-called stick-breaking construction

p1 = θ1

pi = θi

i−1∏
j=1

(1− θj) i ≥ 2

p1 = θ1 and The stick-breaking construction implies that as n → +∞,
∑

1≤i≤n pi =
1−

∏
1≤i≤n(1− θi)→ 1 a.s. For any B ∈ X let P : Ω→ PX be the map defined by

ω 7→
∑
i≥1

pi(ω)δYi(ω)(B) (1.1.1)

which is clearly a measurable map and takes values in the subset of discrete probability
measures on (X,X ). In particular, Sethuraman [174] proved that for any finite measurable
partition B1, . . . , Bk of X, (P (·, B1), . . . , P (·, Bk)) is distributed according to a Dirichlet
distribution function with parameter (α(B1), . . . , α(Bk)). This establishes that P defined
in (1.1.1) is a Dirichlet process with parameter α. A more direct way to describe the
constructive definition (1.1.1) is as follows. Let {Yi, i ≥ 1} be a sequence of r.v.s i.i.d. with
common distribution α0. Let {pi, i ≥ 1} be a sequence of probabilities from a discrete
distribution on the integers with discrete failure rate {θi, i ≥ 1} which are i.i.d. distributed
according to a Beta distribution function with parameter (1, a). Let P be the r.p.m. that
puts weights pn at the r.p.m. δYn for n ≥ 1.

In this chapter our main aim is to introduce a new constructive definition for the
Dirichlet process on X with parameter α that includes as particular case the constructive
definition proposed by Sethuraman. For any fixed integer-valued sequence n• := {ni, i ≥
1} we denote the new constructive definition of the Dirichlet process by P (n•) which
is obtained from the original Sethuraman’s construction nesting at each an appropriate
random convex linear combination of r.v.s instead of the r.p.m. δYi for i ≥ 1. We prove
that P (n•) is still a r.p.m. on X which gives probability one to the subset of the discrete
probabily measures on (X,X ). Moreover, we will prove that for any finite measurable
partition B1, . . . , Bk of X, the r.v. (P (n•)(·, B1), . . . , P (n•)(·, Bk)) is distributed according to
a Dirichlet distribution function with parameter (α(B1), . . . , α(Bk)) for any finite measure
α on (X,X ). This establishes that P (ñ) is a Dirichlet process with parameter α. Finally,
following similar arguments to those used in Sethurman [174], we provide a posterior
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analysis based on the generalized series representation of the Dirichlet process.
The chapter is structured as follows. In Section 1.2, we recall the definition of the

Dirichlet process in terms of the family of its finite dimensional distributions as originally
defined by Ferguson [61] and we consider some of its properties. Section 1.3 contains
the main results of the chapter; in particular we provide a new constructive definition of
the Dirichlet process and we discuss some of its properties. In Section 1.5 we provide the
posterior characterization of the Dirichlet process based on the new constructive definition
of the Dirichlet process. Section 1.4 is devoted to a discussion of the results.

1.2 The Dirichlet process

In the introduction we recalled the constructive definition of the Dirichlet process intro-
duced by Sethuraman [174]. In this section we recall the definition of the Dirichlet process
via its family of finite dimensional distribution as originally defined by Ferguson [61]. Some
of the main properties of the Dirichlet process are also recalled.

In order to define the Dirichlet process, let AX be the space of locally finite non-
negative measures on (X,X ) endowed with the σ-field AX generated by the vague topol-
ogy2 V which makes (AX,V) a Polish space. Let α ∈ AX be a finite measure with to-
tal mass a := α(X) and for any finite measurable partition B1, . . . , Bk of X such that
α(Bi) > 0 for i = 1, . . . , k and k ≥ 2 we introduced the Dirichlet distribution with param-
eter (α(B1), . . . , α(Bk))

Πk(A;α(B1), . . . , α(Bk)) (1.2.1)

:=
Γ(a)∏k

i=1 Γ(α(Bi))

∫
Ã∩∆(k−1)

k−1∏
i=1

x
α(Bi)−1
i

(
1−

k−1∑
i=1

xi

)α(Bk)−1

dx1 · · · dxk−1

for any A ∈ (R∩[0, 1])k where Ã := {(x1, . . . , xk−1) : (x1, . . . , xk−1, 1−
∑

1≤i≤k−1 xi) ∈ A}.
Moreover, we set

Π1(A; X) = δ1(A) A ∈ R ∩ [0, 1]

Let A1, . . . , An be n distinct ordered elements in X and let B1, . . . , Bk be the finite
partition generated by A1, . . . , An. If α(Bi) > 0 for i = 1, . . . , k we denote by qA1,...,An the
probability measure on ((R ∩ [0, 1])n,R ∩ [0, 1])n defined by

q̃A1,...,An(B) := Πk

({
(x1, . . . , xk) : X̃ ∈ B

}
;B1, . . . , Bk

)
(1.2.2)

2The vague topology is the topology induced by the mappings πg : µ 7→
R

X gdµ with f a continuous

function g : X → R+.
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where

X̃ :=

 ∑
i:Bi⊂A1

xi, . . . ,
∑

i:Bi⊂An

xi


for any B ∈ (R ∩ [0, 1])n. If α(Bi) = 0 for some i, then we consider B

′
1, . . . , B

′

k′
obtained

from the finite measurable partition B1, . . . , Bk of X by removing the set Bi such that
α(Bi) = 0. Then we denote by qA1,...,An the probability measure on ((R∩[0, 1])n,R∩[0, 1])n

defined by

q̃A1,...,An(B) := Πk′

({
(x1, . . . , xk′ ) : X̃

′ ∈ B
}

;B
′
1, . . . , B

′

k′

)
(1.2.3)

where

X̃
′

:=

 ∑
i:B
′
i⊂A1

xi, . . . ,
∑

i:B
′
i⊂An

xi


for any B ∈ (R ∩ [0, 1])n, where

∑
i:C
′
i⊂Aj

xi := 0 if {i : B
′
i ⊂ Aj} = ∅ and Π1(A;B) =

δ1(A) if α(B) = a. We now define the following finite dimensional Kolmogorov spaces
([0, 1]n, (R∩ [0, 1])n, q̃A1,...,An) and the family of finite dimensional probability distribution
Q := {q̃A1,...,An : A1, . . . , An ∈ X , n ∈ N}. We can show that Q satisfies the following
conditions:

C1) for any n ∈ N and any finite permutation σ of {1, . . . , n}

q̃A1,...,An(B) = q̃Aσ(1),...,Aσ(n)
(σB) ∀B ∈ (R ∩ [0, 1])n

where σB = {(xσ(1), . . . , xσ(n)) : (x1, . . . , xn) ∈ B};

C2) q̃X = δ1, where δx is the point mass at x;

C3) for any family of sets A1, . . . , An in X , letD1, . . . , Dk be a finite measurable partition
of X such that it is finer than the finite partition generated by A1, . . . , An. Then for
any B ∈ (R ∩ [0, 1])n

q̃A1,...,An(B) = q̃D1,...,Dk(B
′
)

where

B
′

=

(x1, . . . , xk) ∈ [0, 1]k :

 ∑
i:Di⊂A1

xi . . . ,
∑

i:Di⊂An

xi

 ∈ B


C4) for any sequence {An, n ≥ 1} of measurable subset of X such that An ↓ ∅

q̃An ⇒ δ0.
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Hence, according to Proposition 3.9.2 of Regazzini [164] (see also Regazzini and Petris
[162]), there exists a unique r.p.m. P on X admitting Q as its family of finite dimensional
distribution. We term such a r.p.m. P a Ferguson-Dirichlet r.p.m. with parameter α (or
simply a Dirichlet process with parameter α) since it was originally introduced by Ferguson
[61]. Finally, we denote by Π the distribution of the Dirichlet process with parameter α.

We now consider some basic properties of the Dirichlet process with parameter α which
make it an appealing prior distribution for Bayesian nonparametric statistics. In particular
we consider the predictive distributions, the posterior process and the support. Let α ∈ AX

be a finite measure with total mass a and for any sequence {xn, n ≥ 1} ∈ X∞ we set

µ
(1,...,n)
n+1 (x1, . . . , xn;B) :=

α(B) +
∑n

i=1 δxi(B)
a+ n

B ∈X . (1.2.4)

For any B ∈X we can rewrite the right-hand side of(1.2.4) as a convex linear combination
of a probability measure and of an empirical distribution

a

a+ n
µ1(B) +

1
a+ n

n∑
i=1

δxi(B) B ∈X

where µ1 := α/a. It can be easily checked that {µ1, µ
(1)
2 , µ

(1,2)
3 , . . .} is a sequence of prob-

ability measures on (X,X ) and for any B ∈X and for any n ∈ N

(x1, . . . , xn) 7→ µ
(1,...,n)
n+1 (x1, . . . , xn;B)

is a measurable function with respect to (Xn,X n). Then, according to the Ionescu-Tulcea
theorem, there exists a unique probability measure µ on the space (X∞,X ∞) such that

µ(A1 ⊗ · · · ⊗An ⊗ X∞) (1.2.5)

=
∫
A1

µ1(dx1)
∫
A2

µ
(1)
2 (x1; dx2) · · ·

∫
An

µ(1,...,n−1)
n (x1, . . . , xn−1; dxn)

for any A1, . . . , An in X and for any n ∈ N.
We observe that with respect to µ, µ1 represents the distribution of a certain r.v. X1 on
X and µ

(1,...,n−1)
n represent the regular conditional probability of a certain r.v. Xn given

X1, . . . , Xn−1 for any n ≥ 2. The sequence {Xn, n ≥ 1} is usually known as the Blackwell-
MacQueen Pólya sequence with parameter α since it was first investigated by Blackwell
and MacQueen [10].

Theorem 1.2.1. (cfr. Blackwell and MacQueen [10]) Let {Xn, n ≥ 1} be the Blackwell-
MacQueen Pólya sequence with parameter α.

i) as n → +∞, µ(1,...,n−1)
n converges with probability 1 to a limiting discrete measure

P ∗;
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ii) P ∗ is a Dirichlet process with parameter α;

iii) given P ∗, the sequence {Xn, n ≥ 1} is a sequence of independent r.v. with distribution
P ∗.

Theorem 1.2.2. (cfr. Regazzini [161]) Let {Xn, n ≥ 1} be the Blackwell-MacQueen Pólya
sequence with parameter α. Then, the unique probability measure µ of {Xn, n ≥ 1} such
that (1.2.4) is a sistem of predictive probability measures is exchangeable and its de Finetti
measure is Π.

Theorem 1.2.1 and Theorem 1.2.2 represent two important characterizations of the
Blackwell-MacQueen Pólya sequence. In particular, we observe that if {Xn, n ≥ 1} is
the Blackwell-MacQueen Pólya with parameter α, then it can be easily checked that Xi

is distributed according to α/a. The Dirichlet process is useful only if we can do the
necessary calculations for making inference. The most crucial is updating in the light of
data. In the next theorem we consider the conditional distribution of a Dirichlet process
P on X with parameter α given a sample X1, . . . , Xn from P . It turns out that this
conditional distribution is also Dirichlet process.

Theorem 1.2.3. (cfr. Ferguson [61]) Let P be a Dirichlet process on X with parameter
α, and let X1, . . . , Xn be a sample of size n from P . Then the conditional distribution of
P given X1, . . . , Xn is as a Dirichlet process with parameter α+

∑
1≤i≤n δXi.

In particular, the distribution of the posterior r.p.m. found in Theorem 1.2.3 is a regular
conditional distribution.

Ferguson [61] and Blackwell [9] proved that there is a set of discrete distributions
P̃X ⊆ PX such that the Dirichlet process on X with parameter α assigns probability 1
to P̃X. Note that for any given p ∈ PX, the set {x ∈ X : p({x}) > 0} ∈ X since X is
separable; moreover p is discrete if and only if p({x ∈ X : p({x}) > 0}) = 1. One can in
fact prove that the set {p ∈ PX : p({x ∈ X : p({x}) > 0}) = 1} of all discrete probability
distributions on (X,X ) is an element of PX. Then, it can be easily checked that

Π({p ∈ PX : p({x ∈ X : p({x}) > 0}) = 1}) = 1. (1.2.6)

Sethuraman [174] proved an alternative theorem, which not only shows that the Dirichlet
process on X with parameter α is a r.p.m. on discrete distributions, but also gives the useful
series representation (1.1.1) which provide an “algorithm” for approximately simulating a
cumulative distribution function with distribution Π.
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1.3 A generalized Sethuraman’s construction

In this section, moving from the constructive definition of the Dirichlet process on X
introduced by Sethuraman [174] we propose a more general construction and we investigate
its properties.

Let α ∈ AX be a finite measure with total mass a and let n• be a fixed integer-valued
sequence. Let (Ω,F ,P) be a probability space supporting three independent sequences
of r.v.s θ := {θi, i ≥ 1}, q := {(qi,1, . . . , qi,ni), i ≥ 1} and Y := {(Yi,1, . . . , Yi,ni), i ≥ 1},
such that the application (θ, q, Y ) : Ω → ×i≥1([0, 1] × ∆(ni−1) × Xni) is (F ,⊗i≥1(R ∩
[0, 1]⊗Rni ∩∆(ni−1) ⊗X ni))-measurable. In particular, we assume the sequence θ to be
a sequence of independent r.v.s distributed according to a Beta distribution function with
parameter (ni, a) for i ≥ 1, the sequence q to be a sequence of independent r.v.s identically
distributed according to a Dirichlet distribution function with parameter (1, . . . , 1) and
the sequence Y to be a sequence of independent r.v.s (samples of size ni for i ≥ 1)
from a Blackwell-MacQueen Pólya sequence with parameter α, i.e. if Pi are independent
Dirichlet processes with parameter α for i ≥ 1, then for i ≥ 1, Yi,1, . . . , Yi,ni |Pi are i.i.d.
from Pi. The condition of independence between the sequence of r.v.s θ, q and Y and
the usual construction of a product measure implies the existence of the probability space
(Ω,F ,P) supporting the r.v (θ, q, Y ) and does not require any restrictions on X, such as
it being a Polish space. As for the Sethuraman constructive definition, we now consider
the sequence of r.v.s {pi, i ≥ 1} obtained from the sequence θ, by the usual stick-breaking
construction p1 = θ1 and pi = θi

∏
1≤j≤i−1(1 − θj) for i ≥ 2. In particular, the stick-

breaking construction implies that as n→ +∞,
∑

1≤i≤n pi = 1−
∏

1≤i≤n(1− θi)→ 1 a.s.
For any B ∈ X we consider the map P (n•) : Ω→ PX defined by

ω 7→
∑
i≥1

pi(ω)
ni∑
j=1

qi,j(ω)δYi,j(ω)(B) (1.3.1)

which is clearly a measurable map and takes values in the subset of discrete probability
measures on (X,X ). In Theorem 1.3.1 we prove that for any finite measure α ∈ AX and
for any finite measurable partition B1, . . . , Bk of X, the r.v. (P (n•)(·, B1), . . . , P (n•)(·, Bk) is
distributed according to a Dirichlet distribution function with parameter (α(B1), . . . , α(Bk)).
This establishes that P (n•) defined in (1.3.1) is a Dirichlet process with parameter α. Before
proving Theorem 1.3.1 let us cosider the following lemma which introduce a distributional
equation having as unique solution the Dirichlet process with parameter α. For similar dis-
tributional equation for the Dirichlet process see James [98] and for more general r.p.m.,
using the duality with the posterior distribution, see James [96].

Lemma 1.3.1. Let α ∈ AX be a finite measure with total mass a and let n• be a fixed
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integer-valued sequence. If (θ, q, Y ) is the r.v. above described, then the distributional equa-
tion

Qi
d= θi

ni∑
j=1

qi,jδYi,j + (1− θi)Qi i ≥ 1 (1.3.2)

has as its unique solution the Dirichlet process with parameter α.

Proof. For any i ≥ 1, let ξi,1, . . . , ξi,n be n independent r.v.s such that ξi,j is distributed
according to a Beta distribution function with parameter (1, n − j). From Theorem 1 in
Jambunathan [95] it follows that the marginal distributions of the r.v. (qi,1, . . . , qi,n) for
i ≥ 1, can be represented as qi,1 = ξi,1 and qi,j = ξi,j

∏
1≤l≤j−1(1 − ξi,l) for j ≥ 2. By

using this stick-breaking construction it follows by induction that 1 −
∑

1≤j≤n−1 qi,j =∏
1≤j≤n−1(1 − ξi,j). Now, if B1, . . . , Bk is any finite measurable partition of X, then it

follows that

ξi,n(δYi,n(B1), . . . , δYi,n(Bk)) i ≥ 1

is distributed according to a Dirichlet distribution function with the following parameter
(δYi,n(B1), . . . , δYi,n(Bk)). Using the stick-breaking construction for the marginal distribu-
tions of the r.v. (qi,1, . . . , qi,n), it follows by induction the following identity

n∑
j=1

qi,j(δYi,j (B1), . . . , δYi,j (Bk)) (1.3.3)

=
n−1∑
j=1

qi,j(δYi,j (B1), . . . , δYi,j (Bk)) +

1−
n−1∑
j=1

qi,j

 (ξi,n(δYi,n(B1), . . . , δYi,n(Bk))).

Since by construction
∑

1≤j≤n qi,j = 1, then it follows that given Yi,1, . . . , Yi,n

n∑
j=1

qi,j(δYi,j (B1), . . . , δYi,j (Bk))

is distributed according to a Dirichlet distribution function with the following parame-
ter (α(B1) +

∑
1≤j≤n δYi,j (B1), . . . , α(Bk) +

∑
1≤j≤n δYi,j (Bk)). This argument shows that

the Dirichlet process with parameter α satisfies the distributional equation (1.3.2). The
uniqueness of the solution follows by Lemma 3.3 in Sethuraman [174] (see also Vervaat
[185], Section 1).

Lemma 1.3.1 proves that conditional given Y1, . . . , Yn the r.p.m.
∑

1≤j≤n qjδYj is a
Dirichlet process with parameter

∑
1≤i≤n δYi which has been considered as a sort of

Bayesian bootstrap empirical measure by Rubin [170]. Thus, if we denote by P |Y1, . . . , Yn
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the posterior Dirichlet process with parameter α +
∑

1≤i≤n δYi , then as the total mass
a→ 0

P |Y1, . . . , Yn ⇒
n∑
j=1

qjδYj |Y1, . . . , Yn a.s.-P (1.3.4)

i.e., the r.p.m.
∑

1≤j≤n qjδYj is the weak limit a.s.-P of the posterior Dirichlet process
as the total mass tends to zero. In particular, the limit in (1.3.4) has been taken as
a justification of the use of the Dirichlet process with parameter

∑
1≤i≤n δYi as a non-

informative posterior. We are now in the position to prove the following theorem which
represents the main result of this section.

Theorem 1.3.1. Let α ∈ AX be a finite measure with total mass a, let n• be a fixed integer-
valued sequence. Let P (n•) the measurable map defined by (1.3.1). Then, for any finite
measurable partition B1, . . . , Bk of X, (P (n•)(·, B1), . . . , P (n•)(·, Bk)) is a r.v. distributed
according to a Dirichlet d.f with parameter (α(B1), . . . , α(Bk)).

Proof. From Lemma 1.3.1, the distributional equation

P
d= θ1

n1∑
j=1

q1,j(δY1,j (B1), . . . , δY1,j (Bk)) + (1− θ1)P

has as unique solution the Dirichlet process with parameter α. Then, to prove the theorem,
we can use arguments similar to those used in Lemma 1.3.1. In particular for any finite
measurable partition B1, . . . , Bk of X, if we define P̃ := (P (B1), . . . , P (Bk)), then

m∑
i=1

pi

ni∑
j=1

qi,j(δYi,j (B1), . . . , δYi,j (Bk)) +

(
1−

m∑
i=1

pi

)
P̃

=
m−1∑
i=1

pi

ni∑
j=1

qi,j(δYi,j (B1), . . . , δYi,j (Bk))

+

(
1−

m−1∑
i=1

pi

)θm nm∑
j=1

qm,j(δYm,j (B1), . . . , δYm,j (Bk)) + (1− θm)P̃


where

θm

n∑
j=1

qm,j(δYm,j (B1), . . . , δYm,j (Bk)) + (1− θm)P̃

is a r.v. distributed according to a Dirichlet distribution function and its parameter is
(α(B1), . . . , α(Bk)). Then, it follows that

m∑
i=1

pi

ni∑
j=1

qi,j(δYi,j (B1), . . . , δYi,j (Bk)) +

1−
m∑
j=1

pi

 P̃
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is a r.v. distributed according to a Dirichlet distribution function and its parameter is
(α(B1), . . . , α(Bk)). Then, the result follow by taking the limit for m→ +∞.

Theorem 1.3.1 proved that for any fixed integer-valued sequence n•

P (n•) =
∑
i≥1

pi

ni∑
j=1

qi,jδYi,j

is a new constructive definition of the Dirichlet process on X with parameter α. The
original constructive definition of the Dirichlet process obtained by Sethuraman can be
recoverd as particular case by setting n• = 1•, i.e.

P (1•) =
∑
i≥1

pi

1∑
j=1

qi,jδYi,j =
∑
i≥1

piδYi,1 .

Moreover, if we fix n• to be a constant sequence and equal to n ∈ N then, as a consequence
of Theorem 1.3.1 we have the following result.

Corollary 1.3.1. Let n• be a fixed integer-valued constant sequence equal to n ∈ N. Then,
P (n•) ⇒ P ∗ a.s.-P as n→ +∞ where P ∗ is a Dirichlet process with parameter α.

Proof. If we defineHn :=
∑

1≤j≤n q1,jδY1,j , we need to prove that as n→ +∞, the sequence
{Hn, n ≥ 1} converges weakly a.s.-P to a r.p.m. P ∗ and P ∗ is a Dirichlet process with
parameter α. For a bounded and continuous function g : X→ R define Gn :=

∫
XHn(dx).

First of all we prove that for all bounded and continuous g : X→ R, the sequence of r.v.s
{Gn, n ≥ 1} converges a.s. Indeed, let us consider for any k = 1, 2, . . . and m ∈ N0,

Gm+k =

(
m+k∏
i=m

(1− ξi)

)
Gm−1 +

k∑
j=0

ξm+j

m+k∏
i=m+j+1

(1− ξi)

 g(Ym+j).

where {ξn, n ≥ 1} is a sequence of independent r.v. such that ξn is distributed according
to a Beta distribution function with parameter (1, n − 1). Let us denote by Wm,m+k :=∏
m≤i≤m+k(1− ξi) and by K a positive constant such that |g| ≤ K, so that

|Gm+k −Gm−1| ≤ (1−Wm,m+k)Gm−1 +
k∑
j=0

ξm+j

m+k∏
i=m+j+1

(1− ξi)

 |g(Ym+j)|

≤ (1−Wm,m+k)K + (1−Wm,m+k)K = 2K(1−Wm,m+k).

Since 1−Wm,m+k =
∑

m≤i≤m+k pi, where {pi, i ≥ 1} is a sequence of r.v.s defined by the
usual stick-breaking construction p1 = 1 − ξ1 and pi = ξi

∏
2≤j≤i−1(1 − ξj) for i ≥ 2. In
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particular,
∑

i≥1 pi = 1 for almost all ω ∈ Ω since
∑

i≥1 E(log(ξi)) = −
∑

i≥1(i − 1)/i2 =
−∞ (see Ishwaran and James [90], Lemma 1), then 1−Wm,m+k → 0 for almost all ω ∈ Ω.
We conclude that the sequence {Gn, n ≥ 1} is Cauchy a.s., therefore it converges a.s. to
some r.v. By Theorem 2.2 in Berti et al. [7] it follows that there exists a r.p.m. P ∗ on X,
defined on (Ω,F ,P), such that, as n→ +∞,

Hn ⇒ P∗ a.s.-P

Using Theorem 4.2 in Kallenberg [104], the second part of the proof is devoted to prove
that for any finite measurable partition B1, . . . , Bk of X we have (Hn(B1), . . . ,Hn(Bk))⇒
(P ∗(B1), . . . , P ∗(Bk)). In particular, we observe that conditioning to Y1, . . . , Yn, the r.v.
(Hn(B1, . . . ,Hn(Bk)) is distributed according to a Dirichlet distribution funtion with
parameter (

∑
1≤i≤n δYi(B1), . . . ,

∑
1≤i≤n δYi(Bk), n−

∑
1≤j≤k

∑
1≤i≤n δYi(Bj)). Then, the

(r1, . . . , rk)-th moment of (Hn(B1, . . . ,Hn(Bk)) can be calculated as

E[Hr1
n (B1) · · ·Hrk

n (Bk)]

=
∑

(j1,...,jk)∈D(0)
k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1

(j1)r1↑1 · · · (jk)rk↑1
(n)(r1+···+rk)↑1

where we defined D(0)
k,n := {(j1, . . . , jk) ∈ {0, . . . , n}k :

∑
1≤i≤k ji = n}. In particular, we

observe that ∑
(j1,...,jk)∈D(0)

k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1
(j1)r1↑1 · · · (jk)rk↑1

is the (r1, . . . , rk)-th ascending factorial moment for a r.v. distributed according to a
multivariate Pólya distribution function with parameter (n, α(B1), . . . , α(Bk)). Finally,
observe that

E[e
Pk
i=1 itiP (Bi)] = Φ(k)

2

(
α(B1), . . . , α(Bk);

k∑
i=1

α(Bi); it1, . . . , itk

)

=
∑

(r1,...,rk)∈(N0)k

(it1)r1 · · · (itk)rk
r1! · · · rk!

(α(B1))r1↑1 · · · (α(Bk))rp↑1
(a)(r1+···+rk)↑1

Let us consider k = 2 and observe that
1

(n)(r1+r2)↑1

∑
(j1,j2)∈D(0)

2,n

(
n

j1, j2

)
(α(B1))j1↑1(α(B2))j2↑1

(a)n↑1
(j1)r1↑1(j2)r2↑1

=
1

(n)(r1+r2)↑1

r1∑
t1=0

|s(r1, t1)|
t1∑

s1=0

S(t1, s1)
r2∑
t2=0

|s(r2, t2)|
t2∑

s2=0

S(t2, s2)

×
∑

(j1,j2)∈D(0)
2,n

(
n

j1, j2

)
(α(B1))j1↑1(α(B2))j2↑1

(a)n↑1
(j1)s1↓1(j2)s2↓1
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where s(·, ·) is the Stirling number of the first kind and S(·, ·) is the Stirling number of
the second kind. In particular, we have

C
(s1,s2)
n+1 :=

∑
(j1,j2)∈D(0)

2,n+1

(
n+ 1
j1, j2

)
(α(B1))j1↑1(α(B2))j2↑1

(a)(n+1)↑1
(j1)s1↓1(j2)s2↓1

=
n∑

j1=0

(
n+ 1
j1 + 1

)
(α(B1))(j1+1)↑1(α(B2))(n−j1)↑1

(a)(n+1)↑1
(j1 + 1)s1↓1(n− j1)s2↓1

=
n+ 1

(a+ n)

n∑
j1=0

(
n

j1

)
(α(B1) + s1 − 1 + j1 − s1 + 1)

×
(α(B1))j1↑1α(B2)(n−j1)↑1

(a)(n)↑1
(j1)(s1−1)↓1(n− j1)s2↓1

=
(n+ 1)(α(A1) + s1 − 1)

(a+ n)
C(s1−1,s2)
n +

n

(a+ n)
C(s1,s2)
n

The last recursive equation we obtained provides by induction on n, an expression for
the descending factorial moment of order (s1, s2) of a r.v. distributed according to a
bivariate Pólya distribution function with parameter (n, α(B1), α(B2)), i.e. C(s1,s2)

n =
(α(B1))s1↑1(α(B2))s2↑1(n)(s1+s2)↓1/(a)(s1+s2)↑1 where the starting point is

C(1,1)
n =

n−1∑
i=0

(i+ 1)α(A1)
(a+ i)

C
(0,1)
i

n−1∏
j=i+1

j + 1
a+ j

=
Γ(n+ 1)α(A1)

Γ(a+ n)

n−1∑
i=0

Γ(a+ i)
Γ(i+ 1)

C
(0,1)
i

=
Γ(n+ 1)α(A1)

Γ(a+ n)

n−1∑
i=0

Γ(a+ i)
Γ(i+ 1)

iα(A2)
a

=
α(A1)α(A2)(n)2↓1

(a)2↑1

The general case can be easily proved by induction hypothesis. As for the case k = 2, in
general we can write

1
(n)(r1+···+rk)↑1

∑
(j1,...,jk)∈D(0)

k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1
(j1)r1↑1 · · · (jk)rk↑1

=
1

(n)(r1+···+rk)↑1

r1∑
t1=0

|s(r1, t1)|
t1∑

s1=0

S(t1, s1) · · ·
rk∑
tk=0

|s(rk, tk)|
tk∑

sk=0

S(tk, sk)

×
∑

(j1,...,jk)∈D(0)
k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1
(j1)s1↓1 · · · (jk)sk↓1
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In particular, we have

C
(s1,...,sk)
n+1 =

∑
(j1,...,jk)∈D(0)

k,n

(
n

j1 · · · jk

)
(α(B1))j1↑1 · · · (α(Bk))jp↑1

(a)n↑1
(j1)s1↓1 · · · (jk)sk↓1

=
n∑

jk=0

(
n

jp

)
(α(Bk))jp↑1(a− α(Bk))(n−jk)↑1(jk)sk↓1

(a)n↑1

×
∑

(j1,...,jk−1)∈D(0)
k−1,n−jk

(
n− jk

j1 · · · jk−1

)
(α(B1))j1↑1 · · · (α(Bk−1))jk−1↑1

(a− α(Bk))(n−jk)↑1

× (j1)s1↓1 · · · (jk−1)sk−1↓1

=
n∑

jk=0

(
n

jk

)
(α(Bk))jk↑1(a− α(Bk))(n−jk)↑1(jk)sk↓1

(a)n↑1

×
(α(B1))s1↑1 · · · (α(Bk−1))sk−1↑1(n− jk)(s1+···+sk−1)↓1

(a− α(Bk))(s1+···+sk−1)↑1

=
(n+ 1)(α(Bk) + sk − 1)

a+ n
C(s1,...,sk−1)
n +

n+ 1
a+ n

C(s1,...,sk)
n

The last recursive equation we obtained provides by induction on n, an expression for the
descending factorial moment of order (s1, . . . , sk) of a r.v. distributed according to a multi-
variate Pólya distribution function with parameter (n, α(B1), . . . , α(Bk)), i.e. C(s1,...,sk)

n =
(α(B1))s1↑1 · · · (α(Bk))sk↑1(n)(s1+···+sk)↓1(a)(s1+···+sk)↑1 where the starting point is

C(1,...,1)
n =

n−1∑
i=0

(i+ 1)α(Bk)
(a+ i)

C
(1,...,1,0)
i

n−1∏
j=i+1

j + 1
a+ j

=
Γ(n+ 1)
Γ(a+ n)

(α(B1))s1↑1 · · · (α(Bk−1))sk−1↑1α(Bk)
(a− α(Bk))(s1+···+sk−1)↑1

n−1∑
i=0

Γ(a+ i)
Γ(1 + i)

C
(1,...,1,0)
i

=
Γ(n+ 1)
Γ(a+ n)

(α(B1))s1↑1 · · · (α(Bk−1))sk−1↑1α(Bk)
(a− α(Bk))(s1+···+sk−1)↑1

(−1)p+1 Γ(−k − a+ 2)
Γ(−a+ α(Bk) + 2− k)

×
n−1∑
i=0

Γ(a+ i)
Γ(1 + i)

(a− α(Bk))i↑1(−i)(k−1)↑1

(a)i↑1

Γ(−a+ α(Bk)− i+ 1)
Γ(−a− i+ 1)

=
α(B1) · · ·α(Bk)(n)k↓1

(a)k↑1
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Then, we have

lim
n→+∞

1
(n)(r1+···+rk)↑1

r1∑
t1=0

|s(r1, t1)|
t1∑

s1=0

S(t1, s1) · · ·
rk∑
tk=0

|s(rk, tk)|
tk∑

sk=0

S(tk, sk)

×
∑

(j1,...,jk)∈D(0)
k,n

(
n

j1, . . . , jk

)
(α(B1))j1↑1 · · · (α(Bk))jk↑1

(a)n↑1
(j1)s1↓1 · · · (jk)sk↓1

= lim
n→+∞

1
(n)(r1+···+rk)↑1

r1∑
t1=0

|s(r1, t1)|
t1∑

s1=0

S(t1, s1) · · ·
rk∑
tk=0

|s(rk, tk)|
tk∑

sk=0

S(tk, sk)

×
(α(B1))s1↑1 · · · (α(Bk))sk↑1(n)(s1+···+sk)↓1

(a)(s1+···+sk)↑1

=
r1∑
t1=0

|s(r1, t1)|
t1∑

s1=0

S(t1, s1) · · ·
rk∑
tk=0

|s(rk, tk)|
tk∑

sk=0

S(tk, sk)

× lim
n→+∞

(α(B1))s1↑1 · · · (α(Bk))sk↑1(n)(s1+···+sk)↓1

(a)(s1+···+sk)↑1(n)(r1+···+rk)↑1

= |s(r1, r1)|S(r1, r1) · · · |s(rk, rk)|S(rk, rk)
(α(B1))r1↑1 · · · (α(Bk))rk↑1

(a)(r1+···+rk)↑1

=
(α(B1))r1↑1 · · · (α(Bk))rk↑1

(a)(r1+···+rk)↑1

completing the proof.

1.4 Posterior characterization

Let X1, . . . , Xn be a sample of size n from a Dirichlet process with parameter α. For
any fixed integer-valued sequence n• we are now interested in providing the distribution of
P (n•)|X1, . . . , Xn. Since we proved that P (n•) is a Dirichlet process with parameter α, then
from Theorem 1.2.3 it is known that P (n•)|X1, . . . , Xn is a Dirichlet process with parameter
α+

∑
1≤i≤n δXi . However, we show how to prove the posterior distribution starting from

the new constructive definition of the Dirichlet process. Let I be a r.v. having support N
and such that pi = P(I = i|θ, q, Y ) for i ≥ 1. Moreover, let X be a r.v. having support X
and such that, for any fixed integer-valued sequence n• and for any B ∈X

P(X ∈ B|θ, q, Y, I) =
nI∑
j=1

qI,jP(YI,j ∈ B).

Thus, the r.v. X is a function of (θ, q, Y, I). The next lemma represent the extension of
Lemma 4.1. in Sethuraman [174].
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Lemma 1.4.1. Let n• be a fixed integer-valued sequence n•. Then, for any B ∈ X , the
distribution of X given P (n•) is equaivalent to the distribution of P (n•).

Proof. We have

P(X ∈ B|θ, q, Y ) =
∑
i≥1

P(X ∈ B|I = i, θ, q, Y )P(I = i|θ, q, Y )

=
∑
i≥1

pi

ni∑
j=1

qi,jδYi,j (B) = P (n•)(B).

We note that in the constructive definition of the Dirichlet process proposed by Sethu-
raman [174], the r.v. X was defined such that we have P(X ∈ B|θ, q, Y, I) = P(YI ∈ B),
that is X d= YI . We now consider the conditional distribution of P (n•) given X. Let n∗• =
{ni, i ≥ 2} and let θ∗i = θi+1, (q∗i,1, . . . , q

∗
i,ni

) = (qi+1,1, . . . , qi+1,ni) and (Y ∗i,1, . . . , Y
∗
i,ni

) =
(Yi+1,1, . . . , Yi+1,ni) for i ≥ 1. For any fixed integer-valued sequence n•, the r.p.m. P (n•)

defined via the measurable map (1.3.1) satisfies

P (n•) = θ1

n1∑
j=1

q1,jδY1,j + (1− θ1)P (n∗•)
(θ∗,q∗,Y ∗) (1.4.1)

where

P
(n∗•)
(θ∗,q∗,Y ∗) =

∑
i≥1

p∗i

ni∑
j=1

qi,jδYi,j

with p∗1 = θ∗1 and p∗i = θ∗i
∏

1≤j≤i−1(1−θ∗j ) for i ≥ 2. As originally proposed by Sethuraman
[174], it is possible to obtain the posterior distribution separately using the conditional
distribution of the r.v. (θ, q, Y ) given I = 1 and then given I > 1. Before doing this, we
consider the following lemma which extends Lemma 4.2. in Sethuraman [174]. Given a r.v.
X and a r.v. Y we will use the notation L (X) and L (X|Y ) to denote the distribution of
X and the conditional distribution of X given Y , under P, respectively.

Lemma 1.4.2. For any fixed integer-valued sequence n•, let Ỹi := (Yi,1, . . . , Yi,ni) and
q̃i := (qi,1, . . . , qi,ni). Then the conditional distribution of the r.v. (θ, q, Y, I) given I = 1 is

L ((θ1, q̃1, Ỹ1), {(θi, q̃i, Ỹi), i ≥ 2}|I = 1) = L (W )L ((θ, q, Y )) (1.4.2)

where W is a r.v. distributed according to a Beta distribution function with parameter
(n1 + 1, a). The conditional distribution of the r.v. (θ, q, Y, I) given I > 1 is

L ((θ1, q̃1, Ỹ1), {(θi, q̃i, Ỹi), i ≥ 2}, I − 1|I > 1) = L (V )L ((θ, q, Y, I)) (1.4.3)

where V is a r.v. distributed according to a Beta distribution function with parameter
(n1, a+ 1).
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Proof. The proof is along lines similar to the proof of Lemma 4.2. in Sethuraman [174]. If
Ai ∈ R ∩ [0, 1], Bi ∈X ni , Ci ∈ Rni ∩∆(ni−1) for i = 1, . . . ,m, then we consider the joint
distribution

P(θi ∈ Ai, (qi,1, . . . , qi,ni) ∈ Ci, (Yi,1, . . . , Yi,ni) ∈ Bi, i = 1, . . . ,m, I = 1)

∝
∫
×mi=1([0,1]×∆(ni−1)×Xni )

m∏
i=1

x
ni−1+1{i=1}
i (1− xi)a−1

× P((qi,1Yi,1) ∈ (dzi,1, dyi,1), . . . , (qi,ni , Yi,ni) ∈ (dzi,ni , dyi,ni))

× 1{xi∈Ai,(qi,1,...,qi,ni )∈Ci,(yi,1,...,yi,ni )∈Bi,i=1,...,m}dxi.

This implies that, conditional on I = 1, the r.v. θ1 is distributed according to a Beta
distribution function with parameter (n1 + 1, a) and the distributions of θi, (qi,1, . . . , qi,ni)
and (Yi,1, . . . , Yi,ni) for i = 1, . . . ,m do not change. In the same way we consider the joint
distribution,

P(θi ∈ Ai, (qi,1, . . . , qi,ni) ∈ Ci, (Yi,1, . . . , Yi,ni) ∈ Bi, i = 1, . . . ,m, I > 1)

∝
∫
×mi=1([0,1]×∆(ni−1)×Xni )

m∏
i=1

xni−1
i (1− xi)a−1+1{i=1}

× P((qi,1Yi,1) ∈ (dzi,1, dyi,1), . . . , (qi,ni , Yi,ni) ∈ (dzi,ni , dyi,ni))

× 1{xi∈Ai,,(qi,1,...,qi,ni )∈Ci,(yi,1,...,yi,ni )∈Bi,i=1,...,m}dxi

so that (1.4.3) follows by the same arguments used for (1.4.2), since we have that P(I >
1|θ, q, Y ) = (1− θ1).

Proposition 1.4.1. For any fixed integer-valued sequence n•, the r.p.m. P (n•) given X

is a Dirichlet process with parameter α+ δX .

Proof. The proof is along lines similar to the proof of Theorem 4.3. in Sethuraman [174].
We separate the case when I = 1 and I > I. When I = 1 we are interested in the first
part of equation (1.3.1) and we have

L (P (n•)|X, I = 1) = L

θ1

n1∑
j=1

q1,jδY1,j + (1− θ1)P (n•)
(θ∗,q∗,Y ∗)|X, I = 1

 (1.4.4)

= L
(
θ
′
1δX + (1− θ′1)P (n∗∗• )

(θ∗∗,q∗∗∗,Y ∗∗)

)
where for the previous lemma θ

′
1 is a r.v. distributed according to a Beta distribution

function with parameter (n1 + 1, a) and for any finite measurable partition B1, . . . , Bk

of X we have that δX given X is distribuited as a Dirichlet distribution with parameter
(δX(B1), . . . , δX(Bk)), which is equivalent to a Dirichlet distribution with parameter ((n1+
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1)δX(B1), . . . , (n1 + 1)δX(Bk)). Moreover P (n∗∗∗• )
(θ∗∗,q∗∗,Y ∗∗) is a Dirichlet process independent

of θ
′
1 with parameter α. Then P (n•)|X, I = 1 is a Dirichlet process with parameter α +

(n1 + 1)δX . When I > 1 we are interested in the second part of equation (1.4.1), then we
have

L (P (n•)|X, I > 1) = L

θ1

n1∑
j=1

q1,jδY1,j + (1− θ1)P (n∗•)
(θ∗,q∗,Y ∗)

 (1.4.5)

= L

θ′′1 n1∑
j=1

q1,jδY1,j + (1− θ′′1 )P (n∗∗∗• )
(θ∗∗∗,q∗∗∗Y ∗∗∗)


where for the previous lemma θ

′′
1 is a r.v. distributed according to a Beta distribution

function with parameter (n1, a + 1) and P
(n∗∗∗• )
(θ∗∗∗,q∗∗∗Y ∗∗∗) is a r.p.m., independent of θ

′′
1

and Y1, . . . , Yn1 and having distribution the same distribution of P (n•)|X. We combine
Equations (1.4.4) and (1.4.5) to obtain a distributional equation for P (n•)|X. In particular,
we have

P (n•)|X d= A
(
θ
′
1δX + (1− θ′1)P (n∗∗• )

(θ∗∗,q∗∗,Y ∗∗)

)
(1.4.6)

+ (1−A)

θ′′1 n1∑
j=1

q1,jδY1,j + (1− θ′′1 )P (n∗∗∗• )
(θ∗∗∗,q∗∗∗,Y ∗∗∗)


where the r.v.s on the right are independent and the r.v. A taking value 1 and 0 with
probabilities 1/a+1 and a/a+1, respectively. Notice that the distribution of P (n∗∗∗• )

(θ∗∗∗,q∗∗∗,Y ∗∗∗)

is the same of the P (n•)|X which makes (1.4.6) a distributional equation. Finally, we want
to verify that the Dirichlet process with parameter α+δX is a solution of the distributional
equation (1.4.6); then the uniqueness of the solution follows by Lemma 3.3 in Sethuraman
[174] (see also Vervaat [185], Section 1). Let Qα+δX+

P
1≤j≤n1

δY1,j
be a Dirichlet process on

X with parameter α + δX +
∑

1≤j≤n1
δY1,j , then conditional to Y1,1, . . . , Y1,n1 and taking

expectation with respect to Y1,1, . . . , Y1,n1 we have

E[Qα+δX+
Pn1
j=1 δY1,j

] = θ
′′
1

n1∑
j=1

q1,jδY1,j + (1− θ′′1 )P (n∗∗∗• )
(θ∗∗∗,q∗∗∗,Y ∗∗∗)

=
∑

(n1,1,...,n1,k)∈Dk,n1

α(B1)n1,1↑1 · · ·α(Bk)n1,k↑1

(a)n1↑1
Qα+δX+

Pn1
j=1 δY1,j

where (x)y↑1 stands for the Pochhammer symbol for the ascending factorial of x of or-
der y (see Appendix A) and where for any finite measurable partiton B1, . . . , Bk, n1,i =
]{j : Yi,j ∈ Bi} for i = 1, . . . , k and

∑
1≤j≤k n1,j = n1 and Dk,n1 := {(n1,1, . . . , n1,k) ∈
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{1, . . . , n1}k :
∑k

i=1 n1,i = n1}. We consider now the r.v.’s Z1,1, . . . , Z1,n1 having the fol-
lowing distribution

1
a+ 1

δX +
a

a+ 1
α(B1)n1,1↑1 · · ·α(Bk)n1,k↑1

(a)n1↑1
.

and let Q̃α+δX+
P

1≤j≤n1
δZ1,j

be a Dirichlet process on X with parameter given by α+δX +∑
1≤j≤n1

δY1,j . Then

P (n•)|X d= E[Q̃α+δX+
Pn1
j=1 δZ1,j

]

= 1 +
a

a+ 1

∑
(n1,1,...,n1,k)∈Dk,n1

α(B1)n1,1↑1 · · ·α(Bk)n1,k↑1

(a)n1↑1
Qα+δX+

Pn1
j=1 δYi,j

where P (n•)|X is a Dirichlet process with parameter α+ δX .

1.5 Discussion

The constructive definition of the Dirichlet process proposed by Sethuraman [174] was pre-
sented at an invited paper of an IMS meeting in 1980 and also announced in Sethuraman
and Tiwari [173] which dealt with the convergence of Dirichlet processes. This definition
has since been used by several authors to simplify previous calculations and to obtain new
results involving Dirichlet processes. For instance, see Doss [32], Ferguson [63], Ferguson
et al. [66] and Kummar and Tiwari [115].

More recently, Sethuraman’s series representation of the Dirichlet process has been
widely used in several areas of Bayesian nonparametric methods. In particular, it has
been used to simulate the Dirichlet process (see Ishwaran and James [90], Ishwaran and
Zarepour [92] and the reference therein), to find almost sure approximations and random
approximations of the Dirichlet processes (see Ishwaran and Zarepour [94], Muliere and
Tardella [140] and the reference therein) and to define new approaches for computing some
functionals of the Dirichlet processes (see Diaconis and Kemperman [24], Guglielmi [80]
and Guglielmi and Tweedie [81]).

Furthermore, the intuitive idea of the stick-breaking construction for the random
weights in Sethuraman’s series representation has made possible interesting generalizations
of the Dirichlet process. We remind here the class of stick-breaking priors (see Ishwaran
and James [90]), the classes of dependent and order-based dependent Dirichlet processes
(see MacEachern [130], MacEachern [131] and Griffin and Steel [78]) and the class of spa-
tial Dirichlet processes (see Gelfand et al. [73] and Duan et al. [34]).

In this chapter, moving from the constructive definition of the Dirichlet process pro-
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posed by Sethuraman [174]
P =

∑
i≥1

piδYi

we introduced the new constructive definition

P (n•) =
∑
i≥1

pi

ni∑
j=1

qi,jδYi,j

for any fixed integer-valued sequence n•, by nesting in the Sethuraman’s series represen-
tation the r.p.m.

∑
1≤j≤ni qi,jδYi,j (a random convex linear combination of r.v.s from a

Blackwell-MacQueen Pólya sequence) instead of the r.p.m. δYi for i ≥ 1. By its defini-
tion, the new series representation is a r.p.m. which gives probability one to the subset of
discrete probability measures. Moreover, we proved that the finite dimensional marginal
distribution for the new series representation P (n•) are Dirichlet distribution. Therefore,
we proved that the new series representation is a new constructive definition of the Dirich-
let process which includes Sethuraman’s as a particular case. It also include the Blackwell
and MacQueen result as a special case. Finally, following similar arguments to those one
used in Sethuraman [174], we proved that the posterior process is also a Dirichlet process.

On the basis of the large number of applications of the Sethuraman’s series represen-
tation, it seems natural to investigate the consequences of the new series representation
in Bayesian nonparametric methods. In particular, in Chapter 2 we will focus on the ap-
plication of the new series representation of the Dirichlet process to find more flexible
approximations of the Dirichlet process and in Chapter 3 we will use the new series rep-
resentation of the Dirichlet process in order to generalizes some approaches introduced in
the literature for computing functionals of the Dirichlet processes.
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2
Some remarks on Dirichlet process

approximation via series truncations

In this chapter we provide some remarks on the approximation of the Dirichlet process.
Moving from the generalized Sethuraman’s series representation introduced in Chapter 1,
we consider the application of two stopping procedures: a random stopping procedure which
corresponds to the truncation of the series at a random number of terms and the almost
sure stopping procedure which corresponds to the truncation of the series at a fixed number
ot terms. In particular, the accuracy in these approximations is given with respect to the
corresponding approximations obtained using the original Sethuraman series representa-
tion of the Dirichlet process. A straightforward extension of the random stopping procedure
to the more general class of infinite dimensional stick-breaking random measures is consid-
ered. As a by-product, we also obtain some interesting results related to the convolution of
distributions belonging to the class of generalized convolutions of mixtures of Exponential
distributions.

2.1 Introduction

In this chapter we are interested in the series representation of the Dirichlet process pro-
posed by Sethuraman [174] and in the generalization proposed in Section 1.3 of Chapter 1
and here recalled. Let (X, T ) be the usual Polish space endowed with the Borel σ-field X

and consider the following associated spaces of measures AX and PX. In particular, AX is
the space of locally finite non-negative measures on (X,X ) endowed with the σ-field AX

generated by the vague topology V which makes (AX,V) a Polish space, and PX is the
space of probability measures on (X,X ) endowed with its σ-field PX generated by the
weak convergence topologyW which makes (PX,W) a Polish space. Let α ∈ AX be a finite
measure with total mass a, let n• := {ni, i ≥ 1} be a fixed integer-valued sequence and let
(Ω,F ,P) be a probability space supporting three independent sequences of random vari-
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ables (r.v.s) θ := {θi, i ≥ 1}, q := {(qi,1, . . . , qi,ni), i ≥ 1} and Y := {(Yi,1, . . . , Yi,ni), i ≥ 1}.
The sequence θ is a sequence of independent r.v.s distributed according to a Beta distribu-
tion function with parameter (ni, a), for i ≥ 1, the sequence q is a sequence of independent
r.v.s identically distributed according to a Dirichlet distribution function with parameter
(1, . . . , 1) and the sequence Y is a sequence of independent r.v.s (samples of size ni for
i ≥ 1) from a Blackwell-MacQueen Pólya sequence with parameter α, i.e. if Pi for i ≥ 1
are independent Dirichlet processes with parameter α, then for any i ≥ 1, Yi,1, . . . , Yi,ni |Pi
are independent and identically distributed (i.i.d.) from Pi. The condition of independence
between the sequence of r.v.s θ, q and Y and the usual construction of a product measure
implies the existence of the probability space (Ω,F ,P) supporting the r.v.(θ, q, Y ) and
does not require any restrictions on X, such as it being a Polish space. For any B ∈ X

consider the measurable map P (n•) : Ω→ PX defined by

ω 7→
∑
i≥1

pi(ω)
ni∑
j=1

qi,j(ω)δYi,j(ω)(B) (2.1.1)

where {pi, i ≥ 1} is a sequence of r.v.s obtained from the sequence of r.v.s θ by the usual
stick-breaking construction, i.e. p1 = θ1 and pi = θi

∏
1≤j≤i−1(1 − θj) for i ≥ 2. Then,

in Section 1.3 of Chapter 1 it is proved that P (n•) in (2.1.1) is a random probability
measure (r.p.m.) on X and in particular it is a Dirichlet process with parameter α. The
measurable map (2.1.1) generalizes the measurable map used for the Sethuraman series
representation which can be recoverd setting n• = 1•, where 1• is defined as a sequence of
one. In particular, under the condition n• = 1•, for any B ∈X (2.1.1) reduces to

ω 7→
∑
i≥1

pi(ω)δYi(ω)(B) (2.1.2)

and it is proved by Sethuraman [174] that P in (2.1.2) is a r.p.m. on X and in particular
P is a Dirichlet process with parameter α.

The Sethuraman series representation has been widely used in the literature in order
to simplify previous calculations and to obtain new results involving the Dirichlet process.
For instance, see Doss [32], Ferguson [63], Ferguson et al. [66] and Kummar and Tiwari
[115]. More recently, the Sethuraman series representation has been used to simulate the
Dirichlet process (see Ishwaran and James [90], Ishwaran and Zarepour [92] and the refer-
ence therein) and to find approximations of the Dirichlet process (see Muliere and Tardella
[140], Ishwaran and Zarepour [94] and the reference therein).

From the Sethuraman series representation it is immediate to note that simulating the
Dirichlet process requires the simulation of an infinite number of r.v.s. To avoid that, it
is natural to construct new r.p.m.s which approximate, under an appropriate metric on
(PX,W), the Dirichlet process. In Muliere and Tardella [140] a random stopping procedure
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for the Sethuraman series representation has been proposed in order to approximate the
Dirichlet process. This procedure is based on stopping the Seturaman series representation
at a random number of terms, assigning the remaining probability mass to a random point
Y chosen independently according to the distribution α0 := α/a. In particular, for any
ε ∈ (0, 1] the ε-Dirichlet process with parameter (α, ε) is defined as the r.p.m. Pε : Ω→ PX

such that for any B ∈X

ω 7→
Mε(ω)∑
i=1

pi(ω)δYi(ω)(B) +Rε(ω)δY0(ω)(B) (2.1.3)

where

Mε := inf

{
m ∈ N:

m∑
i=1

pi > 1− ε

}

Rε := 1−
Mε∑
i=1

pi

and Y0 is a r.v. distributed according to α0. As shown by Mulere and Tardella [140],
an interesting feature of the ε-Dirichlet process is that under an appropriate metric on
(PX,W), the random stopping procedure can fix in advance the closeness ε between the
Dirichlet process and the ε-Dirichlet process. In particular, this appealing feature can also
be extended to the distributions of several fanctionals of the Dirichlet process.

A different type of approximation for the Dirichlet process has been proposed by Ish-
waran and Zarepour [94] (see also Ishwaran and Zarepour [93]) and it is still based on the
truncation of the Sethuraman series representation of the Dirichlet proccess. Differently
from the approach proposed by Muliere and Tardella [140], an almost sure stopping pro-
cedure for the Sethuraman series representation is proposed. In particular, for any M ∈ N
the M -Dirichlet process with parameter (α,M) is defined as the r.p.m. PM : Ω→ PX such
that for any B ∈X

ω 7→
M∑
i=1

pi(ω)δYi(ω)(B) (2.1.4)

where pM := 1 −
∑

1≤i≤M−1 pi to ensure that PM is a well-defined r.p.m. As shown by
Ishwaran and Zarepour [94] the closeness between the M -Dirichlet process and the Dirich-
let process increase exponentially fast in M , and thus a moderate M should be able to
achieve an accurate approximation.

In this chapter our aim is to apply the random stopping procedure and the almost sure
stopping procedure to the generalized Sethuram series representation (2.1.1). As regard
the application of the random stopping procedure to (2.1.1), we consider the definition of
a new truncated r.p.m. which is the truncation of the series (2.1.1) at a random number
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of terms. The main problem in the application of the random stopping procedure to the
more elaborated series representation of the Dirichlet process (2.1.1), is due to the char-
acterization of the distribution of the random number of terms of the truncated r.p.m.
As shown in Muliere and Tardella [140], for the random truncation of the Sethuraman
series representation (2.1.1), the distribution of the random number of terms can be easily
computed and it coincides with the Poisson distribution with parameter −a log(ε). Differ-
ently, for the truncation of the generalized Sethuraman series representation (2.1.1) the
distribution of the random number of terms of the truncated r.p.m. has not always a sim-
ple expression and in general it involves the convolution of distributions belonging to the
class of generalized convolutions of mixtures of Exponential distributions (see Bondesson
[11] and Bondesson [12]). As regard the application of the almost sure stopping procedure
to (2.1.1), we consider the definition of a new truncated r.p.m. which is the almost sure
truncation of the series (2.1.1) at a fixed number of terms. Moving from these two new
truncated series representation for the Dirichlet process, we consider their accuracy in
the approximation of the Dirichlet process and we provide a comparison with the corre-
sponding accuracy in the approximation of the Dirichlet process using the truncated series
representations obtained by the Sethuramn series representation. Our goal is to verify if
the more flexible series representation can be useful to obtain better approximations of
the Dirichlet process.

Recently, the almost sure stopping procedure introduced by Ishwaran and Zarepour
[94] (see also Ishwaran and Zarepour [93]) has been extetended by Ishwaran and James
[90] to a more general class of r.p.m. which includes the Dirichlet process as particular
case, the so-called class of infinite dimensional stick-breaking random measures. In partic-
ular, for the class of infinite dimensional stick-breaking random measures, in Ishwaran and
James [90] is underlined the problem of finding an appropriate method for selecting the
truncation level M which may be very large in order to obtain a reasonable approxima-
tion. After a brief introduction of the class of infinite dimensional stick-breaking random
measures, we propose the application of the the random stopping procedure to the class
of infinite dimensional stick-breaking random measures in in order to provide a solution
to the problem of the selection of an appropriate truncation level M .

The chapter is structured as follow. In Section 2.2 we define a new random truncated
Dirichlet process and we provide a comparison in terms of accuracy in the approximation
with the ε-Dirichlet process. In particular, as a by-product, we also obtain some interest-
ing results related to the convolution of distributions belonging to the class of generalized
convolutions of mixtures of Exponential distributions. In Section 2.3 we define a new al-
most sure truncated Dirichlet process and we provide a comparison in terms of accuracy
in the approximation with the M -Dirichlet process. In Section 2.4 we define the class of
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random truncated stick-breaking random measures. Section 2.5 is devoted to a discussion
of the results.

2.2 The random stopping procedure

In this section, using the generalized series representation for the Dirichlet process (2.1.1),
we define by its random truncation a new r.p.m. which approximates, under an appropri-
ate metric on (PX,W), the Dirichlet process. This new r.p.m. generalizes the ε-Dirichlet
process proposed by Muliere and Tardella [140]; in particular, a comparison between the
new random approximation of the Dirichlet process and the ε-Dirichlet process is given.

Definition 2.2.1. Let α ∈ AX be a finite measure and let n• be a fixed integer-valued
sequence. For any ε ∈ (0, 1], the generalized ε-Dirichlet processes with parameter (α, ε, n•)
is the r.p.m. P (n•)

ε : Ω→ PX such that for any B ∈X

ω 7→
M

(n•)
ε (ω)∑
i=1

pi(ω)
ni∑
j=1

qi,j(ω)δYi,j(ω)(B) +R
(n•)
ε (ω)

n0∑
j=1

q0,jδY0,j(ω)(B) (2.2.1)

where

M
(n•)
ε := inf

{
m ∈ N :

m∑
i=1

pi > 1− ε

}

R
(n•)
ε := 1−

M
(n•)
ε∑
i=1

pi

and for n0 ∈ N, (q0,1, . . . , q0,n0) is a r.v. distributed according to a Dirichlet distribu-
tion function with parameter (1, . . . , 1) and (Y0,1, . . . , Y0,n0) is a r.v. from a Blackwell-
MacQueen Pólya sequence with parameter α.

As we can see from Definition 2.2.1 the random stopping procedure follows the origi-
nal idea proposed by Muliere and Tardella [140]. In particular, it is based on stopping the
generalized series representation of the Dirichlet process at a random number of terms,
assigning the remaining probability mass to n0 random points Y0,1, . . . , Y0,n0 chosen ide-
pendently from a from a Blackwell-MacQueen Pólya sequence. As a consequence of the
generalized series representation of the Dirichlet process, the definition of ε-Dirichlet pro-
cess with parameter (α, ε) can be recoverd from Definiton 2.2.1 setting n• = 1• in (2.2.1),
i.e. the ε-Dirichlet process with parameter (α, ε) corresponds to the generalized ε-Dirichlet
process with parameter (α, ε, 1•).

As for the ε-Dirichlet process, the Definition 2.2.1 implies the closeness, in the total
variation metric ρV on (PX,W), between the generalized ε-Dirichlet processes and the



28 2. Some remarks on Dirichlet process approximation via series truncations

Dirichlet process, i.e. for any ω ∈ Ω ρV (P
(n•)
ε (ω, ·), P (ω, ·)) ≤ ε on a set of P-probability

1. As regard the the closeness, in the Prokhorov metric1 ρP on (PX,W), between the gen-
eralized ε-Dirichlet processes and the Dirichlet process we consider the following lemma.

Lemma 2.2.1. For any ω ∈ Ω and for any ε ∈ (0, 1]

ρP (P (n•)
ε (ω, ·), P (ω, ·)) ≤ ε.

Proof. The proof follows by the same arguments used in Lemma 2 in Muliere and Tardella
[140].

As for the ε-Dirichlet process, Lemma 2.2.1 implies that the random stopping procedure
for the generalized series representation of the Dirichlet process (2.1.1) can fix in advance
the closeness ε between the generalized ε-Dirichlet process and the Dirichlet process.

Now, moving from Definition 2.2.1 our aim is to investigate about the distribution of
the stopping time r.v. M

(n•)
ε and provide a comparison with the Poisson distribution with

parameter −a log(ε) obtained by Muliere and Tardella [140] for the stopping time of the
ε-Dirichlet process. We write

R(n•)
ε = 1−

M
(n•)
ε∑
i=1

pi =
M

(n•)
ε∏
i=1

(1− θi)

then the r.v. M (n•)
ε can be written as

M (n•)
ε = inf

{
m ∈ N :

m∑
i=1

log(1− θi) < log(ε)

}
. (2.2.2)

As we can see from (2.2.2) the r.v.M (n•)
ε involves the distribution of the r.v.

∑
1≤i≤m log(1−

θi). In particular, if we find the distribution of
∑

1≤i≤m log(1 − θi), then using some ar-

guments related to the point processes we can determine the disribution of M (n•)
ε . The

distribution of the r.v. − log(1 − θi) is a known distribution belonging to the class of
generalized convolutions of mixtures of Exponential distributions (see Bondesson [11] and
Bondesson [12]) which is a class of distributions closed with respect to positive transla-
tion, change of scale, convolution and convolution roots. In particular, if θi is distributed
according to a Beta distribution function with parameter (1, a), then − log(1− θi) is dis-
tributed according to an Exponential distribution function with parameter a. Here, we are
interested in investigating the distribution of the r.v.

∑
1≤i≤m log(1− θi) under the more

general assumption that θi is distributed according to a Beta distribution function with
1The Prokhorov metric ρP on (PX,W) is a metric such that ρP (Pn, P ) → 0 as n→ +∞ if and only if

Pn ⇒ P as n→ +∞ (see Section 6 in Billingsley [8]).
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parameter (ni, a) for i = 1, . . . ,m.
We first consider some general results about the convolution of m negative logarithm

of r.v.s distributed according to a Beta distribution function with parameter (ai, bi) for
i = 1, . . . ,m. Some of the results of the next lemma are expressed in terms of the Gauss
hypergeometric function 2F1 (see Appendix C).

Lemma 2.2.2. For any m ∈ N, let Y1, . . . , Ym be m independent r.v.s distributed accord-
ing to a Beta distribution function with parameter (ai, bi) for i = 1, . . . ,m. If X∗m :=∑

1≤i≤m− log(1− Yi), then

i) for any z ≥ 0

P(X∗m ≤ z) (2.2.3)

=

(
Γ

(
m∑
k=1

ak

))−1 m∏
k=1

Γ(ak + bk)
Γ(bk)

∑
k≥0

ρk

∫ 1

e−z
ybm−1(1− y)k+

Pm
k=1 ak−1dy

where ρ0 := 1 and

ρk :=
∑

(j1,...,jm−1)∈[k]m−1
0

m−1∏
i=1

(ai+1 − di)ji↑1(ai +
∑i−1

l=1 al + jl)ji↑1
ji!(
∑m

k=1 ak +
∑i−1

l=1 jl)ji↑1
k ≥ 1

where (x)y↑1 stands for the Pochhammer symbol for the ascending factorial of x of
order y (see Appendix A) and where di := bi − bi+1 for i = 1, . . . ,m− 1;

ii) if ai, bi ∈ N for i = 1, . . . ,m for any z ≥ 0

P(Y ∗m ≤ z) =
n∑
k=1

ek−1∑
j=0

∫ 1

e−z

Kk,jx
dk−1(− log(x))ek−j−1

(ek − j − 1)!j!
dx (2.2.4)

where

Kk,0 :=
∑
q 6=k

(dq − dk)−eq

and

Kk,j :=
j−1∑
r=0

∑
q 6=k

(−1)r+1

(
j − 1
r

)
r!Kk,j−r−1

(dq − dk)r+1
j = 1, . . . , ek − 1

where dk denotes the n different integers that occour with multiplicity ek among bi−1,
bi, bi + 1, . . . , ai + bi − 2 for i = 1, . . . ,m;
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iii) if ai ∈ N for i = 1, . . . ,m for any z ≥ 0

P(X∗m ≤ z) (2.2.5)

=
m∏
k=1

Γ(ak + bk)
Γ(ak)Γ(bk)

∑
(i1,...,im−1)∈×m−1

k=1 [ak−1]0

(
m−1∏
k=1

(
ak+1 − 1

ik

)
(−1)ik(ak − ik−1 + ik)−1

)

×
∫ 1

e−z
xbm−1(1− x)

Pm
k=1 ak−1

×
m−1∏
k=1

2F1(ak − ik−1 + ik,−dk + ak+1; ak − ik−1 + ik + 1; 1− x)dx

where dk := bk − bk+1 for k = 1, . . . ,m− 1;

iv) if bi+1 = bi + ai for i = 1, . . . ,m− 1 for any z ≥ 0

P(X∗m ≤ z) =
Γ(b1 +

∑m
k=1 ak)

Γ(b1)Γ(
∑m

k=1 ak)

∫ 1

e−z
xb1−1(1− x)

Pm
k=1 ak−1dx. (2.2.6)

Proof. As regard the point i), for any z ≥ 0 we have

P(X∗m ≤ z) = P

(
−

m∑
i=1

(log(1− Yi)) ≤ z

)
= P

(
m∏
i=1

(1− Yi) ≥ e−z
)

which is the probability that the product of m independent r.v.s (1−Y1), . . . , (1−Ym) dis-
tributed according to a Beta distribution function with parameter (bi, ai), for i = 1, . . . ,m
is greater than e−z. An explicit expression for the density function of the product of m
independent r.v.s distributed according to a Beta distribution function with parameter
(bi, ai) was provided by Nandi [143] and later by Tang and Gupta [178]. Then, the result
follows.

As regard the point ii) it follows by the same arguments of point i). In particular we
need to evaluate the probability that the product of m independent r.v.s (1−Y1), . . . , (1−
Ym) distributed according to a Beta distribution function with parameter (bi, ai) with
ai, bi ∈ N for i = 1, . . . ,m is greater than e−z. An explicit expression for the density func-
tion of the product of m independent r.v.s distributed according to a Beta distribution
function with parameter (bi, ai) with ai, bi ∈ N for i = 1, . . . ,m was provided by Springer
and Thompson [176]. Then, the result follows.

As regard the point iii), for any z ≥ 0 we have

P(X∗m ≤ z) = P

(
−

m∑
i=1

(log(1− Yi)) ≤ z

)
= P

(
m∏
i=1

(1− Yi) ≥ e−z
)

which is the probability that the product of m independent r.v.s (1 − Y1), . . . , (1 − Ym)
distributed according to a Beta distribution function with parameter (bi, ai) with ai ∈ N is
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greater than e−z. We consider a general expression for the density function of the product of
m independent r.v.s distributed according to a Beta distribution function with parameter
(bi, ai) for i = 1, . . . ,m provided by Wilks [197] in terms of a multiple integral

P(X∗m ≤ z) =
m∏
k=1

Γ(ak + bk)
Γ(ak)Γ(bk)

∫ 1

e−z
xbm−1(1− x)

Pm
k=1 ak−1

=
∫

(0,1)m−1

m−1∏
k=1

wak−1
k (1− ωk)

Pm
i=k+1 ak−1

×

(
1− (1− x)

(
1−

k∏
i=1

(1− ωi)

))bk−bk+1−ak+1

dωkdx.

First, we consider the change of variable vk = (1−
∏

1≤i≤k(1− ωi)) for k = 1, . . . ,m− 1.
It can be easily checked that the absolute value of the determinant of the Jacobian matrix
is
∏

1≤k≤m−2(1− vi)−1. Second, since | arg(1 + (−1 + x))| < π, we can then use Equation
3.194.1 in Gradshteyn and Ryzhik [77] to solve the multiple integral. In particular, using
the Binomial theorem we have

P(X∗m ≤ z) =
m∏
k=1

Γ(ak + bk)
Γ(ak)Γ(bk)

∫ 1

e−z
xbm−1(1− x)

Pm
k=1 ak−1

×
∫

(0,1)m−1

m−1∏
k=1

v
ak−ik−1+ik−1
k (1− (1− x)vk)bk−bk+1−ak+1dvkdx

×
∑

(i1,...,im−1)∈×m−1
k=1 [ak−1]0

m−1∏
k=1

(
ak+1 − 1

ik

)
(−1)ik

=
m∏
k=1

Γ(ak + bk)
Γ(ak)Γ(bk)

∫ 1

e−z
xbm−1(1− x)

Pm
k=1 ak−1

×
∑

(i1,...,im−1)∈×m−1
k=1 [ak−1]0

m−1∏
k=1

(
ak+1 − 1

ik

)
(−1)ik

×
∫

(0,1)m−1

m−1∏
k=1

v
ak−ik−1+ik−1
k (1 + (−1 + x)vk)bk−bk+1−ak+1dvkdx

=
m∏
k=1

Γ(ak + bk)
Γ(ak)Γ(bk)

∫ 1

e−z
xbm−1(1− x)

Pm
k=1 ak−1

×
∑

(i1,...,im−1)∈×m−1
k=1 [ak−1]0

m−1∏
k=1

(
ak+1 − 1

ik

)
(−1)ik(ak − ik−1 + ik)−1

× 2F1(ak − ik−1 + ik,−bk + bk+1 + ak+1; ak − ik−1 + ik + 1; 1− x)dx.

As regard the point iv) it follows by the same arguments of point i). In particular we need
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to evaluate the probability that the product of m independent r.v.s (1− Y1), . . . , (1− Ym)
distributed according to a Beta distribution function with parameter (bi, ai) with bi+1 =
bi + ai for i = 1, . . . ,m − 1 is greater than e−z. It is known from Jambunathan [95]
that product of m independent r.v.s (1 − Y1), . . . , (1 − Ym) with parameter (bi, ai) with
bi+1 = bi + ai for i = 1, . . . ,m − 1 is still distributed according to a Beta distribution
function with parameter (b1,

∑
1≤k≤m ai).

As corollary of Lemma 2.2.2 we provide a result related to the convolution of Expo-
nential distributions. In particular, given m ∈ N independent r.v.s X1, . . . , Xm distributed
according to an Exponential distribution function with parameter bi for i = 1, . . . ,m, we
consider the distribution of the r.v. X∗m =

∑
1≤i≤mXi which correspond to the distribu-

tion computed in point iii) of Lemma 2.2.2 under the condition ai = 1 for i = 1, . . . ,m.
The convolution of Exponential distributions and its importance in applications is known
in the literature and it has been recently reviewed by Nadarajah [142]. Here, we pro-
vide a different approach to compute the convolution of Exponential distributions and in
particular we provide a more simple expression for it.

Corollary 2.2.1. For any m ∈ N, let X1, . . . , Xm be m independent r.v.s distributed
according to an Exponential distribution function with parameter bi for i = 1, . . . ,m. If
X∗m :=

∑
1≤i≤mXi, then

i) for any z ≥ 0

P(X∗m ≤ z) = bm

(
m−1∏
k=1

bk(−bk(−1)1{dk 6=0} − bk+1)−1{dk 6=0}

)

×
∑

(i1,...,im−1)∈×m−1
k=1 [1{dk 6=0}]0

(
m−1∏
k=1

(
1{dk 6=0}
ik

)
(−1)−ik

)
ρ(i1,...,im−1)(z)

where, if bm +
∑

1≤k≤m−1 ikdk 6= 0

ρ(i1,...,im−1)(z) :=

(
bm +

m−1∑
k=1

ikdk)

)−Pm−1
k=1 1{dk=0}−1

× γ

(
1 +

m−1∑
k=1

1{dk=0}, z

(
bm +

m−1∑
k=1

ikdk)

))
and if bm +

∑
1≤k≤m−1 ikdk = 0

ρ(i1,...,im−1)(z) :=
z1+

Pm−1
k=1 1{dk=0}

1 +
∑m−1

k=1 1{dk=0}

where dk := bk − bk+1 for k = 1, . . . ,m − 1 and where in general γ(x, y) :=∫ y
0 t

x−1e−tdt is the lower incomplete Gamma function;
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ii) if b = bi for i = 1, . . . ,m for any z ≥ 0

P(X∗m ≤ z) =
1

(m− 1)!
γ(m, bz)

where in general γ(x, y) :=
∫ y

0 t
x−1e−tdt is the lower incomplete Gamma function;

iii) if bi 6= bj for any i 6= j for any z ≥ 0

P(X∗m ≤ z) =
m−1∏
k=1

bk

m∑
k=1

1− e−bkz

bk
∏
j 6=k(bj − bk)

.

Proof. As regard the point i), for any z ≥ 0

P(X∗m ≤ z) = P

(
m∑
k=1

Xi ≤ z

)

= P

(
−

m∑
i=1

(log(1− Yi)) ≤ z

)
= P

(
m∏
i=1

(1− Yi) ≥ e−z
)

where Y1, . . . , Ym are m independent r.v.s distributed according to a Beta distribution
function with parameter (1, bi). Then, following the approach used in Lemma 2.2.2 we
have

P (X∗m ≤ z) =
m∏
k=1

bk

∫ 1

e−z
xbm−1(1− x)m−1

∫
(0,1)m−1

m−1∏
k=1

(1− (1− x)vk)bk−bk+1−1dvkdx

=
m∏
k=1

bk

∫ 1

e−z
xbm−1(1− x)m−1

m−1∏
k=1

∫ 1

0
(1 + (−1 + x)vk)bk−bk+1−1dvkdx

=
m∏
k=1

bk

∫ 1

e−z
xbm−1(1− x)m−1

m−1∏
k=1

2F1(1,−bk + bk+1 + 1; 2; 1− x)dx

We can write the last equation as

m∏
k=1

bk

∫ 1

e−z
xbm−1(1− x)m−1

m−1∏
k=1

(
− log(x)

1− x

)
1{bk=bk+1}

×
m−1∏
k=1

(
xbk−bk+1 − 1

(1− x)(bk(−1)1{bk 6=bk+1} + bk+1)

)
1{bk 6=bk+1}

dx

=
m∏
k=1

bk

∫ 1

e−z
xbm−1(1− x)m−1

×
m−1∏
k=1

(−1)1{bk=bk+1}(xbk−bk+1 − 1)1{bk 6=bk+1}

(1− x)(bk(−1)1{bk 6=bk+1} + bk+1)1{bk 6=bk+1}(log(x))−1{bk=bk+1}
dx
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=
m∏
k=1

bk

∫ 1

e−z
xbm−1(−1)m−1

×
m−1∏
k=1

(xbk−bk+1 − 1)1{bk 6=bk+1}

(−bk(−1)1{bk 6=bk+1} − bk+1)1{bk 6=bk+1}(log(x))−1{bk=bk+1}
dx

= (−1)m−1

∫ 1

e−z
bmx

bm−1
m−1∏
k=1

bk(−bk(−1)1{bk 6=bk+1} − bk+1)−1{bk 6=bk+1}

×
m−1∏
k=1

(xbk−bk+1 − 1)1{bk 6=bk+1}(log(x))1{bk=bk+1}dx

= (−1)m−1bm

∫ 1

e−z
xbm−1

m−1∏
k=1

bk(−bk(−1)1{bk 6=bk+1} − bk+1)−1{bk 6=bk+1}

×
∑

(i1,...,im−1)∈×m−1
k=1 [1{dk 6=0}]0

m−1∏
k=1

(
1{bk 6=bk+1}

ik

)
(−1)1{bk 6=bk+1}−ik

× xik(bk−bk+1)(log(x))1{bk=bk+1}dx

= (−1)m−1bm

m−1∏
k=1

bk(−bk(−1)1{bk 6=bk+1} − bk+1)−1{bk 6=bk+1}

×
∑

(i1,...,im−1)∈×m−1
k=1 [1{dk 6=0}]0

(
m−1∏
k=1

(
1{bk 6=bk+1}

ik

)
(−1)1{bk 6=bk+1}−ik

)

×
∫ 1

e−z
xbm−1+

Pm−1
k=1 ik(bk−bk+1)(log(x))

Pm−1
k=1 1{bk=bk+1}dx

Then P(X > e−z) can be computed via a change of variable and using Equation 3.381.1
in [77]. In particular, we have

P(X > e−z) = (−1)m−1bm

m−1∏
k=1

bk(−bk(−1)1{bk 6=bk+1} − bk+1)−1{bk 6=bk+1}

×
∑

(i1,...,im−1)∈×m−1
k=1 [1{dk 6=0}]0

(
m−1∏
k=1

(
1{bk 6=bk+1}

ik

)
(−1)1{bk 6=bk+1}−ik

)

×
∫ 1

e−z
xbm−1+

Pm−1
k=1 ik(bk−bk+1)(log(x))

Pm−1
k=1 1{bk=bk+1}dx

= (−1)m−1bm

m−1∏
k=1

bk(−bk(−1)1{bk 6=bk+1} − bk+1)−1{bk 6=bk+1}

×
∑

(i1,...,im−1)∈×m−1
k=1 [1{dk 6=0}]0

(
m−1∏
k=1

(
1{bk 6=bk+1}

ik

)
(−1)1{bk 6=bk+1}−ik

)
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× (−1)
Pm−1
k=1 1{bk=bk+1}

∫ z

0
e−t(bm+

Pm−1
k=1 ik(bk−bk+1))t

Pm−1
k=1 1{bk=bk+1}dt

= (−1)m−1bm

m−1∏
k=1

bk(−bk(−1)1{bk 6=bk+1} − bk+1)−1{bk 6=bk+1}

×
∑

(i1,...,im−1)∈×m−1
k=1 [1{dk 6=0}]0

(
m−1∏
k=1

(
1{bk 6=bk+1}

ik

)
(−1)1−ik

)

×
∫ z

0
e−t(bm+

Pm−1
k=1 ik(bk−bk+1))t

Pm−1
k=1 1{bk=bk+1}dt

= bm

m−1∏
k=1

bk(−bk(−1)1{bk 6=bk+1} − bk+1)−1{bk 6=bk+1}

×
∑

(i1,...,im−1)∈×m−1
k=1 [1{dk 6=0}]0

(
m−1∏
k=1

(
1{bk 6=bk+1}

ik

)
(−1)−ik

)

×
∫ z

0
e−t(bm+

Pm−1
k=1 ik(bk−bk+1))t

Pm−1
k=1 1{bk=bk+1}dt

where, in particular∫ z

0
e−t(bm+

Pm−1
k=1 ik(bk−bk+1))t

Pm−1
k=1 1{bk=bk+1}dt

=

(
bm +

m−1∑
k=1

ik(bk − bk+1))

)−Pm−1
k=1 1{bk=bk+1}−1

× γ

(
1 +

m−1∑
k=1

1{bk=bk+1}, z

(
bm +

m−1∑
k=1

ik(bk − bk+1))

))

if bm +
∑

1≤k≤m−1 ik(bk − bk+1) 6= 0 and

∫ z

0
e−t(bm+

Pm−1
k=1 ik(bk−bk+1))t

Pm−1
k=1 1{bk=bk+1}dt =

z
1+

Pm−1
k=1 1{bk=bk+1}

1 +
∑m−1

k=1 1{bk=bk+1}

if bm +
∑

1≤k≤m−1 ik(bk − bk+1) = 0, where in general γ(x, y) :=
∫ y

0 t
x−1e−tdt is the

lower incomplete Gamma function. Then the result follows defining dk := bk − bk+1 for
k = 1, . . . ,m− 1 and by substitution.

The point ii) can be easily obtained as a special case of i). In particular it is known that
the r.v. X∗m is distributed according to the Erlang distribution function with parameter
(m, b).

The point iii) can be easily obtained as a special case of iii). However, we provide an
alternative proof by induction following the hint in Problem 12 of Chapter 1 in Feller [60].
In particular, Let fYi(yi) be the density function induced by the Exponential distribution
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function with parameter bi. We prove the statement by induction on m. In particular, it
can be easily checked that for m = 2

fY ∗2(y) = b1b2

(
e−b1y

b2 − b1
+

e−b2y

b1 − b2

)
.

Now, fix m ≥ 3, and assume the statement of the lemma is true for m− 1. Then we have

fY ∗m(y) =
m−1∏
i=1

bi

m−1∑
j=1

e−bjy∏
k 6=j(bk − bj)

=
m∏
i=1

m−1∑
j=1

e−bmy − e−bjy
(bj − bm)

∏
k 6=j(bk − bj)

=
m∏
i=1

m−1∑
j=1

e−bjy∏
k 6=j(bk − bj)

− e−bmy∏
k 6=j(bk − bj)

 .

Then the proof is completed if we show that the coefficient of e−bmy in the last equation fits
the coefficients 1/

∏
1≤k≤n−1(bk−bm) i.e. or, equivalently, −

∑
1≤j≤m 1/

∏
k 6=j(bk−bj) = 0.

Then, we write
m∑
j=1

1∏
k 6=j(bk − bj)

=
m∑
j=1

∏
k 6=l 6=j(bk − bj)∏
k 6=l(bk − bl)

which is zero if and only if
∑

1≤j≤m
∏
k 6=l 6=j(bk − bj)(bk − bl) = 0. In particular, from the

last equation we obtain
m∑
j=1

∏
k 6=l 6=j

(bk − bj)(bk − bl) =
m∑
j=1

∏
j 6=k 6=l 6=j

(bk − bl)
∏
k=j 6=l

(bk − bl)

= ±
m∑
j=1

∏
j 6=k>l 6=j

(bk − bl)2
∏
k=j>l

(bk − bl)
∏
k=j<l

(bk − bl)

= ±
m∑
j=1

∏
j 6=k>l 6=j

(bk − bl)2
∏
j=k>l

(bk − bl)
∏
k>l=j

(bk − bl)(−1)n−j

= ±
∏
k>l

(bk − bl)
m∑
j=1

∏
j 6=k>l 6=j

(bk − bl)(−1)n−j

which is zero if and only if
∑

1≤j≤m
∏
j 6=k>l 6=j(bk− bl)(−1)j = 0. In particular, we observe

that the product
∏
j 6=k>l 6=j(bk − bl)(−1)j is a Vandermonde determinant of

1 b1 b21 · · · bn−2
1

1 b2 b22 · · · bn−2
2

...
...

...
. . .

...
1 bj−1 b2j−1 · · · bn−2

j−1

1 bj+1 b2j+1 · · · bn−2
j+1

...
...

...
. . .

...
1 bn b2n · · · bn−2

n
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and hence the last equation is nothing else but the expansion of the determinant of
1 1 b1 b21 · · · bn−2

1

1 1 b2 b22 · · · bn−2
2

...
...

...
...

. . .
...

1 1 bn b2n · · · bn−2
n


with respect to its second column. Since this determinant is zero, then the statement is
proven.

Lemma 2.2.2 provide a general results on the convolution of m negative logarithm
of r.v.s distributed according to a Beta distribution function with parameter (ai, bi) for
i = 1, . . . ,m under some different assumptions on the parameter (ai, bi) for i = 1, . . . ,m.
For our purpose we are interested in the distribution of θ∗m := −

∑
1≤k≤m log(1 − θi)

when θi is distributed according to a Beta distribution function with parameter (ni, a) for
i = 1, . . . ,m, which corresponds to (2.2.5) under the condition ai = a for i = 1, . . . ,m. In
particular, we observe equation (2.2.5) can be further simplified by the application of the
distant neighbors property of the Gauss hypergeometric function. For any m ∈ N and for
any vector (i1, . . . , im−1) if we define nk := ak − ik−1 + ik for k = 1, . . . ,m, then

m−1∏
k=1

2F1(nk,−dk + ak+1;nk + 1; 1− x)

=
m−1∏
k=1

(−nk)(nk−1)↑1(1− x)−(nk−1)

(1− nk)(nk−1)↑1

×
∑

(l1,...,lm−1)∈×m−1
k=1 [nk−1]0

m−1∏
k=1

(−1)lk
(
nk − 1
lk

)
2F1(1,−dk + ak+1 − lk; 2; 1− x).

Then, following the same arguments used in the proof of point i) of Corollary 2.2.1, it can
be easily checked that for any z ≥ 0

P(θ∗m ≤ z) (2.2.7)

=
m∏
k=1

Γ(a+ nk)
Γ(a)Γ(nk)

∑
(i1,...,im)∈×m−1

k=1 [nk−1]0

(
m∏
k=1

(
nk − 1
ik

)
(−1)−ik

)

× (a+ im)

(
m−1∏
k=1

(a+ ik)(−(a+ ik)(−1)1{ik−ik+1 6=0} − (a+ ik+1))−1{ik−ik+1 6=0}

)

×
∑

(j1,...,jm−1)∈×m−1
k=1 [ik−ik+1 6=0]0

(
m−1∏
k=1

(
1{ik−ik+1 6=0}

jk

)
(−1)−jk

)
ρ(j1,...,jm−1)(z)
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where, if a+ im +
∑

1≤k≤m−1 jk(ik − ik+1) 6= 0

ρ(j1,...,jm−1)(z) =

(
a+ im +

m−1∑
k=1

ik(ik − ik+1))

)−Pm−1
k=1 1{ik−ik+1=0}−1

× γ

(
1 +

m−1∑
k=1

1{ik−ik+1=0}, z

(
a+ im +

m−1∑
k=1

ikik − ik+1)

))

and if a+ im +
∑

1≤k≤m−1 jk(ik − ik+1) = 0

ρ(j1,...,jm−1)(z) =
z

1+
Pm−1
k=1 1{ik−ik+1=0}

1 +
∑m−1

k=1 1{ik−ik+1=0}
.

Using the distribution of the convolution of m negative logarithm of r.v.s distributed
according to a Beta distribution function with parameter (ni, a) for i = 1, . . . ,m and some
arguments related to the point processes we obtain the following result which generalizes
Lemma 3 in [140].

Lemma 2.2.3. For any ε ∈ (0, 1], M (n•)
ε is a r.v. on N such that

P(M (n•)
ε = m) =


P(θ∗m ≤ − log(ε)) m = 1

P(θ∗m ≤ − log(ε))− P(θ∗(m+1) ≤ − log(ε) m > 1
(2.2.8)

where P(θ∗m ≤ z) is given by (2.2.7).

Proof. Using the definition of the random stopping time given by (2.2.2) we define the
following point process

M (n•)
ε (− log(ε)) := inf

{
m ∈ N0 :

m∑
i=1

log(1− θi) < log(ε)

}
.

In particular, we have M
(n•)
ε (− log(ε)) = M

(n•)
ε − 1, i.e. M (n•)

ε − 1 is the number of
occurrences at time − log(ε) in a point process. Because in a point process the number
of occurrences by time − log(ε) is greater than or equal to m if and only if the m-th
occurrence occurs before of at time − log(ε), then

P(M (n•)
ε (− log(ε)) = m) = P(M (n•)

ε (− log(ε)) < m+ 1)− P(M (n•)
ε (− log(ε)) < m).

Then, the probability distribution (2.2.8) follows by the fact

P(M (n•)
ε (− log(ε)) < m) = 1− P(θ∗m < log(ε))

where θ∗m =
∑

1≤k≤m− log(1 − θk) with θk is a r.v. distributed according to a Beta
distribution function with parameter (ni, a) for i = 1, . . . ,m.
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By construction, the distribution of the r.v. M (n•)
ε generalized the Poisson distribu-

tion with parameter −a log(ε) obtained in Lemma 3 in Muliere and Tardella [140] which
can be recovered setting n• = 1• in (2.2.8). We now compare the random truncation of
the Sethuraman series represetaion (2.1.3) with the random truncation of the generalized
Sethuraman series representation (2.2.1). Since we know the distribution of the of M (n•)

ε ,
a comparison based on computer simulation it is possible and requires to implement in
a source code the formula for (2.2.8). In the next propositions we provide an analytic
approach to compare the random truncation of the Sethuraman series represetaion (2.1.3)
with the random truncation of the generalized Sethuraman series representation (2.2.1).
In particular, we show that the best choice of n• consists in n• = 1•, i.e. the best approxi-
mation of the Dirichlet process is obtained using the random truncation of the generalized
Sethuraman series representation (2.2.1).

Theorem 2.2.1. For any ε ∈ (0, 1], let M (n•)
ε be a r.v. on N distributed according to

(2.2.8) and let Mε be a r.v. on N distributed according to a Poisson distribution function
with parameter −a log(ε). Then

∑
i≥1

 i∑
j=1

ni

P(M (n•)
ε = i) >

∑
i≥1

 i∑
j=1

ni

P(Mε = i). (2.2.9)

Proof. First of all we can write the left side of (2.2.9) in terms of P(θ̃∗i ≤ − log(ε)) for
i ≥ 1, where θ̃∗i := −

∑
1≤j≤i log(1− θ̃j) where θ̃1, . . . , θ̃i are i r.v.s distributed according

to a Beta distribution function with parameter (nj , a) for j = 1, . . . , i. In particular, we
have

∑
i≥1

 i∑
j=1

ni

P(M (n•)
ε = i) =

∑
i≥1

ni+1

1−
i∑

j=1

P(M (n•)
ε = i)


= n1 +

∑
i≥1

ni+1P(θ̃∗i ≤ − log(ε)).

In the same fashion we can write the right side of (2.2.9) in terms of P(θ∗i ≤ − log(ε)) for
i ≥ 1, where θ∗i := −

∑
1≤j≤i log(1− θj) where θ1, . . . , θi are i r.v.s distributed according

to a Beta distribution function with parameter (1, a) for j = 1, . . . , i.

∑
i≥1

 i∑
j=1

ni

P(Mε = i) =
∑
i≥1

ni+1

1−
i∑

j=1

P(Mε = i)


= n1 +

∑
i≥1

ni+1P(θ∗i ≤ − log(ε)).
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We know that if n1 = n2 = . . . = n
M

(n•)
ε

, then the right side of (2.2.9) coincides with
1− log(ε). Therefore, we need to prove the that

n1 +
∑
i≥1

ni+1P(θ̃∗i ≤ − log(ε)) > 1− log(ε).

Without lost of generality, for any fixed j ∈ N we can prove the above condition considering
that at least one ni increase. Therefore, we can see that we can concentrate in the index
i∗ := inf{i ∈ N : ni > 1}, i.e. in the index i∗ such that ni > 1 for i = i∗ and ni ∈ N for
i > i∗and ni = 1 for i < i∗. Therefore for any ε ∈ (0, 1] and for a fixed i∗ ∈ N we need to
prove that for i∗ = 1 ∑

i≥1

ni+1P(θ̃∗i ≤ − log(ε)) > 1− log(ε)− n1

and, for i∗ > 1∑
i≥i∗

ni+1P(θ̃∗i ≤ − log(ε)) > − log(ε)− ni∗P(θ∗(i
∗−1) ≤ − log(ε)).

If we consider the two extreme points ε = 1 and the limit ε→ 0+, then for any i∗ the above
conditions are verified. This is sufficient to assert that for i∗ = 1 and for any ε ∈ (0, 1]∑

i≥1

ni+1P(θ̃∗i ≤ − log(ε)) > 1− log(ε)− n1

and for i∗ > 1 and for any ε ∈ (0, 1]∑
i≥i∗

ni+1P(θ̃∗i ≤ − log(ε)) > − log(ε)− ni∗P(θ∗(i
∗−1) ≤ − log(ε)).

Theorem 2.2.2. For any ε ∈ (0, 1], let M (n•)
ε be a r.v. on N distributed according to

(2.2.8) and let Mε be a r.v. on N distributed according to a Poisson distribution function
with parameter −a log(ε). Then

∑
i≥1

 i∑
j=1

ni

P(M (n•)
ε = i) >

∑
i≥1

iP(Mε = i)

for some nj → +∞ for j = 1, . . . , i.

Proof. To prove this proposition we use a contraddiction that is, we prove that if nj∗ →
+∞ for some j = 1, . . . , i then negative logic of

∑
i≥1

 i∑
j=1

ni

P(M (n•)
ε = i) >

∑
i≥1

iP(Mε = i)
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is false. Using the same idea of Theorem 2.2.1 we focus on the case i∗ = 1. For i∗ > 1
follows by the same arguments. The negative logic of the last equation is that for n1 → +∞
there exists an ε ∈ (0, 1] such that ∀ε ∈ (0, 1]∑

i≥1

P(θ̃?i ≤ − log(ε)) ≤ 1− log(ε)− n1

where again θ∗i := −
∑

1≤j≤i log(1− θj) where θ1, . . . , θi are i r.v.s distributed according
to a Beta distribution function with parameter (1, a) for j = 1, . . . , i. The last equation
implies that if n1 → +∞ there exists an ε ∈ (0, 1] such that ∀ε ∈ (0, 1]

P(θ̃1 ≤ − log(ε)) = (1− ε)n1 ≤ 1− log(ε)− n1

and it is false.

2.3 The almost sure stopping procedure

In this section, we still use the generalized series representation of the Dirichlet process
(2.1.1) and we consider its almost sure truncation in order to define a new r.p.m. which
approximate, under an appropriate metric on (PX,W), the Dirichlet process. This new
r.p.m. generalizes theM -Dirichlet process proposed by proposed by Ishwaran and Zarepour
[94] (see also Ishwaran and Zarepour [93]); in particular, a comparison between the new
almost sure approximation of the Dirichlet process and the M -Dirichlet process is given.

Definition 2.3.1. Let α ∈ AX be a finite measure and let n• be a fixed integer-valued
sequence. For any M ∈ N, a generalized M -Dirichlet processes with parameter (α,M, n•)
is the r.p.m. P (n•)

M : Ω→ PX such that for any B ∈X

ω 7→
M∑
i=1

pi(ω)
ni∑
j=1

qi,j(ω)δYi,j(ω)(B) (2.3.1)

where we necessarily set pM := 1 −
∑

1≤i≤M−1 pi to ensure that P (n•)
M is a well defined

r.p.m.

As a consequence of the generalized series representation of the Dirichlet process, the
definition of M -Dirichlet process can be recoverd from Definiton 2.3.1 setting n• = 1• in
(2.3.1), i.e. the M -Dirichlet process with parameter (α,M) corresponds to the generalized
M -Dirichlet process with parameter (α,M, 1•).

In the same way as in Section 2.2, we now provide a comparison between the generalized
M -Dirichlet process and the M -Dirichlet process. In other word, we provide a comparison
between the r.p.m. P (n•)

M defined by (2.3.1) and the r.p.m. PM defined by (2.1.4). Following
the approach proposed in [90] we consider the following proposition.
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Proposition 2.3.1. For any M ∈ N let p1, . . . , pM be the random weights of the general-
ized M -Dirichlet process. Then, for any k0 ∈ N

E

∑
i≥M

nipi

k0

=
M−1∏
i=1

(a)k0↑1
(ni + a)k0↑1

∏
i≥0

ki∑
ki+1

(
ki
ki+1

)
n
ki−ki+1

M+i (a)ki+1↑1(nM+i)(ki−ki+1)↑1

(nM+i + a)ki↑1

(2.3.2)

and

E

∑
i≥M

nk0
i p

k0
i

 =
M−1∏
i=1

(a)k0↑1
(ni + a)k0↑1

∑
i≥M

nk0
i (ni)k0↑1((a)k0↑1)i−M∏i

j=M (nj − a)k0↑1
. (2.3.3)

Proof. If we prove (2.3.2) then the proof of (2.3.3) follows similar arguments. In particular,
for any k0 ∈ N we need to compute

E

∑
i≥M

nipi

k0

=
M−1∏
i=1

(a)k0↑1
(ni + a)k0↑1

E [nMθM + nM+1θM+1(1− θM ) · · · ]k0

where, to compute the expected value E [nMθM + nM+1θM+1(1− θM ) · · · ]k0 we can use
the Binomial theorem. Then, we define EM [θ̃]k0 := E [nMθM + nM+1θM+1(1− θM ) · · · ]k0

and we obtain

EM [θ̃]k0 =
k0∑
k1=0

(
k0

k1

)
nk0−k1
M (a)k1↑1(nM )(k0−k1)↑1

(nM + a)k0↑1
EM+1[θ̃]k1

=
k0∑
k1=0

(
k0

k1

)
nk0−k1
M (a)k1↑1(nM )(k0−k1)↑1

(nM + a)k0↑1

×
k1∑
k2=0

(
k1

k2

)
nk1−k2
M+1 (a)k2↑1(nM+1)(k1−k2)↑1

(nM+1 + a)k1↑1
EM+2[θ̃]k2

=
∏
i≥0

ki∑
ki+1

(
ki
ki+1

)
n
ki−ki+1

M+i (a)ki+1↑1(nM+i)ki−ki+1↑1

(nM+i + a)ki↑1
.

Then, equation (2.3.3) can be easily proved following the same argument used for equation
(2.3.2). Then, we need to compute

E[nk0
Mθ

k0
M + nk0

M+1θ
k0
M+1(1− θM )k0 + · · · ] = E[nk0

Mθ
k0
M + (1− θM )k0(nk0

M+1θ
k0
M+1 + · · · )]

=
∑
i≥M

nk0
i (ni)k0↑1(a)k0↑1)i−M∏i

j=M (nj − a)k0↑1

and the proof is completed.
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Equation (2.3.2) and (2.3.3) decrese in M . In particular, for a moderate M we can
obtain an accurate approximation of the Dirichlet process. From Proposition 2.3.1 it can
be easily checked that under the condition n• = 1•, then

E

∑
i≥M

pi

k0

=
(

a

a+ k0

)M−1

(2.3.4)

and

E

∑
i≥M

pk0
i

 =
(

a

a+ k0

)M−1 Γ(k0)Γ(a)
Γ(a+ k0)

. (2.3.5)

We can compare formula (2.3.2) with (2.3.4) and formula (2.3.3) with (2.3.5) with respect
to the accuracy of approximation. It is obvious from (2.3.2) and (2.3.3) that for a fixed M
we can improve the accuracy of approximation increasing an ni for i = 1, . . . ,M .

Nevertheless, fixing M we do not have a well-balanced comparison because for a fixed
M we have to consider as benchmark the total number of r.v.’s involved in the series
representation that is 2M for the M -Dirichlet process of Ishwaran and Zarepour [94].
Using this comparison we can easly verify that the best strategy is that proposed by
Ishwaran and Zarepour [94]. In fact for any M ∈ N(

a

a+ k0

)M−1

≤
(a)k0↑1

(M − 2 + a)k0↑1
E[(M − 1)θM ]k0

and (
a

a+ k0

)M−1 Γ(k0)Γ(a)
Γ(a+ k0)

≤
(a)k0↑1

(M − 2 + a)k0↑1
E[(M − 1)k0θk0

M ]

under the constraint that the total number of r.v.s involved in the series represetation of
the truncated r.p.m. is 2M .

2.4 The random stopping procedure for stick-breaking ran-

dom measures

The class of infinite dimensional stick-breaking random measures has been introduced by
Ishwaran and James [90] as a class of all a.s. discrete r.p.m.s Q : Ω → PX such that for
any B ∈X

ω 7→
∑
i≥1

piδYi(ω)(B) (2.4.1)

where {pi, i ≥ 1} a sequence of r.v.s chosen independent of the sequence {Yi, i ≥ 1} and so
that 0 ≤ pi ≤ 1 and

∑
i≥1 pi = 1. In particular, given α ∈ AX a finite measure with total

mass a, it is assumed that {Yi, i ≥ 1} is a sequence of i.i.d. r.v.s from α0. The method
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of construction for the random weights {pi, i ≥ 1} is what sets stick-breaking random
measure apart from general r.p.m. Q expressible as (2.4.1). Here, a formal definition of an
infinite dimensional stick-breaking random measures.

Definition 2.4.1. Let α ∈ AX be a finite measure and let a• and b• be two sequences of
positive real number. An infinite dimensional stick-breaking random measure on X with
parameter (α, a•, b•) is an a.s. discrete r.p.m. Q on X of the form (2.4.1) such that the
sequence {pi, i ≥ 1} is obtained by stick-breaking construction from a sequence {θi, i ≥ 1}
of independent r.v.s distributed according to a Beta distribution function with parameter
(ai, bi) for i ∈ N.

The stick-breaking notion for constructing random weights has a very long story. For
examples, see Halmos [82], Freedman [72], Fabius [48], Connor and Mosimann [21] and
Kingman [109]. In particular, the definition of stick-breaking random measure gives one a
unified way of connecting together a collection of seemingly unrelated measures scattered
throughout the literature. These include the Dirichlet process, the two parameter Poisson-
Dirichlet process introduced by Pitman and Yor [154], the Dirichlet multinomial process
introduced by Muliere and Secchi [139], the m-spike models introduced by Liu [127], the
finite dimensional Dirichlet process introduced by Ishwaran and Zarepour [94] (see also
Ishwaran and Zarepour [93]) and the Beta two parameter process introduced by Ishwaran
and Zarepour [92].

From Definition 2.4.1 it follows that an infinite dimensional stick-breaking random
measure Q is only well defined if its random weights sum to one with probability one. In
particular it can be easilty cheked∑

i≥1

pi = 1 a.s. ⇔
∑
i≥1

E(log(1− θi)) = −∞

or, alternativley
∑

i≥1 log(1 + ai/bi) = +∞. In particular, the Dirichlet process with pa-
rameter α can be recoverd as particular case of the infinite dimensional stick-breaking
measure Q having random weights {pi, i ≥ 1} obtained by the stick-breaking construction
from a sequence {θi, i ≥ 1} of i.i.d. r.v.s distruted according to a Beta distribution func-
tion with parameter (1, a) where a is the total mass of the measure α. In particular, this
corresponds to the Sethuraman series representation of the Dirichlet process (2.1.2).

The two parameter Poisson-Dirichlet process and the Beta two parameter process are
further examples of infinite dimensional stick-breaking measures. In particular, the two
parameter Poisson-Dirichlet process introduced by Pitman and Yor [154] has been the
subject of a considerable amount of reseach interest. A key property of the two parameter
Poisson-Dirichlet process is its characterization as an infinite dimensional stick-breaking
random measure due to Pitman [149] and Pitman [151]. As shown there, the size-biased
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random permutation for the ranked random weights from the measure produces a sequence
of random weights derived using a residual allocation scheme (see Pitman [152]), or what
we are calling a stick-breaking scheme. This then identify the two parameter Poisson-
Dirichlet process as an infinite dimensional stick-breaking random measure where the ran-
dom weights {pi, i ≥ 1} are obtained by the stick-breaking construction with {θi, i ≥ 1} a
sequence of independent r.v.s distributed according to a Beta distribution function with
parameter (1 − σ, b + iσ) where 0 ≤ σ ≤ 1 and b > −σ. The Dirichlet process with pa-
rameter α can be recovered from the two parameter Poisson-Dirichlet process by setting
σ = 0 and b = a where a is the total mass of α. Another important example is the process
obtained from the two parameter Poisson-Dirichlet process by setting b = 0 which corre-
spond to a measure whose random weights are based on a stable law with index σ.

As shown by Ishwaran and James [90] an interesting subclass of the class of infinite
dimensional stick-breaking random measures is the class of r.p.m.s obtained by the almost
sure trunctation of infinite dimensional stick-breaking random measures. As we introduced
in Section 2.1, the almost sure truncation was originally proposed by Ishwaran and Zare-
pour [94] (see also Ishwaran and Zarepour [93]) for the Sethuraman series representation
of the Dirichlet process. For any M ∈ N, the trunctaion is applied by discarding the
M + 1,M + 2, . . . terms in Q and replacing pM with 1− p1 − . . .− pM−1. Notice that this
also corresponds to setting θM = 1 in the stick-breaking construction. In particular, given
an infinite dimensional stick-breaking random measure Q with parameter (α, a•, b•), for
any M ∈ N we denote by QM its almost truncation and we call it the M -stick-breaking
random measure with parameter (α, a•, b•,M). The M -Dirichlet process with parameter
(α,M) proposed by Ishwaran and Zarepour [94] (see also Ishwaran and Zarepour [93])
can be recoverd as an almost sure truncation of the Sethuraman series representation
of the Dirichlet process with parameter α. Determining an appropriate truncation level
can be based on the moments of the random weights. For instance, the following theo-
rem can be used to determining an appropriate truncation lavel for the two parameter
Poisson-Dirichlet process.

Theorem 2.4.1. (cfr. Ishwaran and James [90]) Let {pi, i ≥ 1} be the sequence of ran-
dom weights characterizing the stick-breaking representation of the two parameter Poisson-
Dirichlet process. For any M ∈ N and any r ∈ N

E

∑
k≥M

(pk)
r

 =
M−1∏
k=1

(b+ kσ)r↑1
(σ + (k − 1)σ + 1)r↑1

(2.4.2)

and

E

∑
k≥M

prk

 = E

∑
k≥M

(pk)
r

 (1− σ)(r−1)↑1

(b+ (M − 1)σ + 1)(r−1)↑1
. (2.4.3)
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Given a measure α ∈ AX a finite measure with total mass a, as particular case of
equation (2.4.2) and equation (2.4.3) we can obtain the equation (2.3.4) and the equation
(2.3.5) for the Dirichet process setting σ = 0 and b = a. In particular equation (2.3.4) and
the equation (2.3.5) underline that a moderate M should be able to achive an accurate
approximation. In general, for an infinite dimensional stick-breaking random measure Q
a very large value for M may be needed for reasonable accuracy. For instance, it the
particular case of the two parameter Poisson-Dirichlet process obtained by setting b = 0,
we have

E

∑
k≥M

pk

 =
σM−1(M − 1)!

(σ + 1) · · · ((M − 2)σ + 1)
.

Note that the value of M needed to keep this value small rapidly increases as σ approaches
one. Thus it may not be feasible to approximated the corresponding process over all values
of σ.

Here, in order to solve the problem of the selection of an appropriateM ∈ N, we propose
the application of the random stopping rule to the class of the infinite dimensional stick-
breaking random measures as an alternative to the almost sure truncation. In particular,
we extend to the class of the infinite dimensional stick-breaking random measures the
random stopping rule proposed by Muliere and Tardella [140] for the Sethuraman series
representation of the Dirichlet process.

Definition 2.4.2. Let Q be an infinite dimensional stick-breaking random measure on X
with parameter (α, a•, b•). For any ε, the ε-stick-breaking random measure with parameter
(α, a•, b•, ε) is a r.p.m. Qε : Ω→ PX such that, for any B ∈X

ω 7→
Mε(ω)∑
i=1

pi(ω)δYi(ω)(B) +Rε(ω)δY0(ω)(B) (2.4.4)

where

Mε := inf

{
m ∈ N:

m∑
i=1

pi > 1− ε

}

Rε = 1−
Mε∑
i=1

pi

and Y0 is a r.v. distributed according to α0.

As a consequence of the definition of infinite dimensional stick-breking random mea-
sure, the definition of ε-stick breaking random measure, the definition of ε-Dirichlet process
with parameter (α, ε) can be recoverd from Definiton 2.4.2 when Q is the Dirichlet process
with parameter α, i.e. when Q is an infinite infinite dimensional stick-breaking random
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measure with parameter (α, 1•, a•) where a• is the sequence of the total mass of α.
The Definition 2.4.2 implies the closeness, in the total variation metric ρV on (PX,W),

between the infinite dimensional sitck-breaking random measure Q and its corresponding
ε-stick-breaking random measure Qε, i.e. for any ω ∈ Ω ρV (Qε(ω, ·), Q(ω, ·)) ≤ ε on a set
of P-probability 1. As regard the the closeness, in the Prokhorov metric between the infi-
nite dimensional sitck-breaking random measure Q and its corresponding ε-stick-breaking
random measure Qε we consider the following lemma.

Lemma 2.4.1. For any ω ∈ Ω and for any ε ∈ (0, 1]

ρP (Qε(ω, ·), Q(ω, ·)) ≤ ε.

Proof. The proof follows by the same arguments used in Lemma 2 in Muliere and Tardella
[140].

In particular, Lemma 2.4.1 implies that the application of the random stopping proce-
dure to an infinite dimensional stick-breaking random measure Q can fix in advance the
closeness ε with its corresponding random approximation Qε. Thus, the random stopping
procedure for the class of infinite dimensional stick-breaking random measures provide a
solution to the problem of the selection of an appropriate M in the class of the almost
sure truncated stick-breaking random measures. In particular, this appealing feature can
also be extended to the distributions of several fanctionals of an infinte dimensional stick-
breaking random measure.

In the definition of the ε-stick-breaking random measure the role of the stopping time
Mε it to allow generating a random probability as close as one wants (in the total varia-
tion distance) to the corresponding infinite dimensional stick-breaking random measure.
We write

Rε = 1−
Mε∑
i=1

pi =
Mε∏
i=1

(1− θi)

then the r.v. Mε can be written as

Mε = inf

{
m ∈ N :

m∑
i=1

log(1− θi) < log(ε)

}
.

As we can see, the r.v. Mε involves the distribution of the r.v.
∑

1≤i≤m log(1− θi) which
has been computed in Lemma 2.2.2 point i). Then, the following lemma provide the dis-
tribution of Mε.

Lemma 2.4.2. For any ε ∈ (0, 1], Mε is a r.v. on N such that

P(Mε = m) =


P(θ∗m ≤ − log(ε)) m = 1

P(θ∗m ≤ − log(ε))− P(θ∗(m+1) ≤ − log(ε) m > 1
(2.4.5)



48 2. Some remarks on Dirichlet process approximation via series truncations

where P(θ∗m ≤ z) is given by (2.2.3).

Proof. The proof follows by the same arguments used in Lemma 2.2.3.

2.5 Discussion

In the first part of this chapter, moving from the alternative constructive definition of
the Dirichlet process (2.1.1) which includes the Sethuraman constructive definition as par-
ticular case, we considered the application of two different stopping procedure. The first
stopping procedure we applied to the series representation (2.1.1) was originally proposed
by Muliere and Tardella [140] for the Sethuraman series representation and it corresponds
to the truncation of the series at a random number of terms. The second stopping proce-
dure we applied to the series representation (2.1.1) was originally proposed by Ishwaran
and Zarepour [94] (see also Ishwaran and Zarepour [93]) for the Sethuraman series repre-
sentation and it corresponds to the truncation of the series at a fixed number ot terms.

As regard the application of the random stopping procedure to the series representa-
tion (2.1.1) we defined the new random truncated r.p.m. (2.2.1), the so-called generalized
ε-Dirichlet process and we provided a comparison, in terms of accuracy in the Dirichlet
process approximation, with respect to the ε-Dirichlet defined by Muliere and Tardella
[140]. In particular, Theorem 2.2.1 and Theorem 2.2.2 have shown that using the ran-
dom stopping procedure of the series representation (2.1.1) the best approximation of the
Dirichlet process corresponds with the choice of n• = 1•. In other words, the best approxi-
mation of the Dirichlet process is obtained using the random truncation of the Sethuraman
series representation as proposed by Muliere and Tardella [140]. As a by-product of this
analysis, we also obtain in Lemma 2.2.2 and in Corollary 2.2.1 some interesting results
related to the convolution of distributions belonging to the class of generalized convolu-
tions of mixtures of Exponential distributions (see Bondesson [11] and Bondesson [12]). In
particular Corollary 2.2.1 provide a simple expression for the convolution of Exponential
distributions whose importance in applications is known in the literature and it has been
recently reviewed by Nadarajah [142].

As regard the application of the almost sure stopping procedure to the series represen-
tation (2.1.1) we defined the new random truncated r.p.m. (2.3.1), the so-called generalized
M -Dirichlet process and we provided a comparison, in terms of accuracy in the Dirichlet
process approximation, with respect the M -Dirichlet defined by Ishwaran and Zarepour
[94] (see also Ishwaran and Zarepour [93]). In particular, Proposition 2.3.1 has shown that
using the random stopping procedure of the series representation (2.1.1) the best approx-
imation of the Dirichlet process corresponds with the choice of n• = 1•. In other words,
the best approximation of the Dirichlet process is obtained using the random truncation
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of the Sethuraman series representation as proposed by Muliere and Tardella [140].
In the second part of we provided a straightforward extension of the random stop-

ping procedure to the more general class of infinite dimensional stick-breaking random
measures introduced by Ishwaran and James [90]. In particular, in Ishwaran and James
[90] is considered the subclass of the almost sure trunctation of infinite dimensional stick-
breaking random measures and the roblem of finding an appropriate method for selecting
the truncation level M for an infinite dimensional stick-breaking random measure is un-
derlined. In order to give a solution to this problem we considered the definition of the
class of ε-stick-breaking random measures which is defined as the class of r.p.m. obtained
by the random trunction of the infinite dimensional stick-breaking random measures. In
particular, differently from the almost sure truncatd stick-breaking random measures, the
the ε-stick-breaking random measures admit the possibility to fix in advance the closeness
ε with respect to the corresponding infinite dimensional stick-breaking random measure.
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3
Some developments on the

Feigin-Tweedie Markov chain

In this chapter, moving from the distributional equation for the Dirichlet process introduced
in Chapter 1, we define and we investigate a new measure-valued Markov chain having as
unique invariant measure the law of a Dirichlet process. This Markov chain generalizes the
well known Feigin-Tweedie Markov chain which has been widely used to provide properties
of linear functionals of the Dirichlet process and approximation procedures for estimating
the law of the mean of the Dirichlet process. Our main aim in this chapter is to show that
the Feigin-Tweedie chain sits in a large class of chains indexed by an integer n ∈ N and
they worked solely on the case n = 1, where n can be viewed as a sample size. We provide
properties of this new class of Markov chain.

3.1 Introduction

In this chapter we focus on an interesting result obtained by Feigin and Tweedie [58] which
characterizes the law of the Dirichlet process as the unique invariant measure of a certain
measure-valued Markov chain. Let (X, T ) be the usual Polish space endowed with the
Borel σ-field X and consider the following associated spaces of measures AX and PX. In
particular, AX is the space of locally finite non-negative measures on (X,X ) endowed with
the σ-field AX generated by the vague topology V which makes (AX,V) a Polish space, and
PX is the space of probability measures on (X,X ) endowed with its σ-field PX generated
by the weak convergence topologyW which makes (PX,W) a Polish space. Let α ∈ AX be
a finite measure with total mass a and let P be a Dirichlet process on X with parameter
α. Furthermore, let Y be a random variable (r.v.) distributed according to α0 := α/a and
let θ be a r.v. distributed according to a Beta distribution function with parameter (1, a)
and independent of Y . Then, according to Theorem 3.4 in Sethuraman [174], the Dirichlet



52 3. Some developments on the Feigin-Tweedie Markov chain

process on X with parameter α is the unique solution of the distributional equation

P
d= θδY + (1− θ)P, (3.1.1)

where all the r.v.s on the right hand-side are independent. Equation (3.1.1) has been
widely used in the literature in order to provide characterizations both of the Dirichlet
process and of the mean of the Dirichlet process. See Hjort and Ongaro [85] and references
therein. In particular, in Feigin and Tweedie [58], equation (3.1.1) is recognised as the
distributional equation for the unique invariant measure of a Markov chain {Pm,m ≥ 0}
on PX defined via the recursion

Pm = θmδYm + (1− θm)Pm−1 m ≥ 1 (3.1.2)

where P0 ∈ PX is arbitrary and {Ym,m ≥ 1} and {θm,m ≥ 1} are two independent
sequences of independent and identically distributed (i.i.d.) r.v.s distributed as Y and θ,
respectively. In Feigin and Tweedie [58] it is shown that the Markov chain {Pm,m ≥ 0}
has as unique invariant measure the law of a Dirichlet process P on X with parameter α.
This approach has been particularly convenient for analyzing the existence and properties
of linear functional of the Dirichlet process because they also turn out to be derivable
as strong limits of Markov chain on R. In particular, in Feigin and Tweedie [58], by
investigating the linear functional {Gm,m ≥ 0}, with Gm :=

∫
X g(x)Pm(·, dx) for m ≥ 0

and for any real-valued measurable function g : X → R, properties of the corresponding
linear functional of a Dirichlet process are given. The existence of the linear functional
G :=

∫
X g(x)P (·, dx) of the Dirichlet process P is characterized according to the condition∫

X log(1 + |g(x)|)α(dx) < +∞. These functionals were considered by Hannum et al. [83]
and their existence was also investigated by Doss and Sellke [33] who referred to them as
moments.

Further developments of the linear functional Markov chain {Gm,m ≥ 0} are provided
by Guglielmi and Tweedie [81] and by Jarner and Tweedie [103]. In Guglielmi and Tweedie
[81], the distribution M of the mean functional M :=

∫
X xP (ω, dx) of a Dirichlet process

on R with parameter α is characterized as the unique limiting distribution of the real-
valued Markov chain {Mm,m ≥ 0} with Mm :=

∫
X xPm(ω, dx) for m ≥ 0. Guglielmi and

Tweedie [81] proved that the rate of convergence in total variation of the Markov chain
{Mm,m ≥ 0} to M is geometric if α0 admits finite expectation and they found bounds
on the rate of convergence. These results are then used to simulate effectively from the
distribution M by the empirical distribution of a sample from the m-th step distribution
of the approximating Markov chain {Mm,m ≥ 0} starting from any point x ∈ R. In
particular, the characterization of the Dirichlet process given in Feigin and Tweedie [58]
is used to develop a Markov chain Monte Carlo (MCMC) algorithm which provides a
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useful tool to evaluate the approximation error in simulating M . In general, all the results
obtained by Guglielmi and Tweedie [81] can be applied to any functional G of a Dirichlet
process P on X since the distribution of G corresponds to the distribution of G ◦αg where
αg(B) := α(g−1(B)) for any B ∈ R.

From the distributional equation (3.1.1), a constructive definition of the Dirichlet pro-
cess has been proposed by Sethuraman [174]. In particular, if α ∈ AX is a finite measure
with total mass a and P is a Dirichlet process with parameter α, then

P =
∑
i≥1

piδYi (3.1.3)

where {pi, i ≥ 1} is a sequence of r.v.s obtained by the stick-breaking construction p1 =
w1 and pi = wi

∏
1≤j≤i−1(1 − wj) for i > 1 with {wi, i ≥ 1} a sequence of i.i.d. r.v.s

distributed according to a Beta distribution function with parameter (1, a), and {Yi, i ≥ 1}
is a sequence of i.i.d. r.v.s distributed according to α0. Then, equation (3.1.1) arises by
considering

P = p1δY1 + (1− w1)
∑
i≥2

p̃jδYi

where now p̃2 = w2 and p̃i = wi
∏

2≤j≤i−1(1− wj) for i > 2. Thus it is easy to see that

P̃ :=
∑
i≥2

p̃iδYj (3.1.4)

is also a Dirichlet process with parameter α and it is independent of (p1, Y1). If we want
to extend this idea to n initial samples, we would consider writing

P =
n∑
i=1

piδYi +
∑
i≥n+1

piδYj

which can be written as

P = θ
n∑
i=1

(pi
θ

)
δYi + (1− θ)P̃

where θ =
∑

1≤i≤n pi = 1−
∏

1≤i≤n(1−wi) and P̃ is a Dirichlet process with parameter α
independent of the r.v. ((p1, Y1), . . . , (pn, Yn)). However this is not an easy extension since
the distribution of θ is unclear and moreover θ and

∑
1≤i≤n (pi/θ) δYi are not independent.

For this reason we consider an alternative distributional equation for the n which has been
introduced in Section 1.3 of Chapter 1 and here recalled.

In particular, let α ∈ AX be a finite measure with total mass a and let P be a Dirichlet
process on X with parameter α. Furthermore, let {Yj , j ≥ 1} be a Blackwell-MacQueen
Pólya sequence with parameter α, i.e. if P is a Dirichlet processes with parameter α, then
for any n ∈ N, Y1, . . . , Yn|P are i.i.d. from P . For any n ∈ N let (q1, . . . , qn) be a r.v.
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distributed according to Dirichlet distribution function with parameter (1, . . . , 1) and let
θ be a r.v. distributed according to a Beta distribution function with parameter (n, a)
such that P , {Yj , j ≥ 1}, (q1, . . . , qn) and θ are mutually independent. Moving from such
collection of random elements and assuming independence between them, in Section 1.3.
of Chapter 1 it is shown that for any n ∈ N, the distributional equation

P
d= θ

n∑
j=1

qjδYj + (1− θ)P (3.1.5)

has as unique solution the Dirichlet process on X with parameter α. It can be easily
checked that the distributional equation (3.1.5) generalizes the distributional equation
(3.1.2) which can be recovered setting n = 1. So where precisely does this distributional
equation come from with solution the Dirichlet process with parameter α? Since it is
clear it does not come from the Sethuraman series representation. In fact it comes from
a posterior representation of the Dirichlet process. In particular, it is well known that if
P is a Dirichlet process with parameter α then P |Y1, . . . , Yn is a Dirichlet process with
parameter α +

∑
1≤i≤n δYi and the law of

∫
[P |Y1, . . . , Yn]Q(dY1, . . . , dYn) is the law of

a Dirichlet process with parameter α when Y1, . . . , Yn has the distribution of the first n
samples of a Blackwell-MacQueen Pólya sequence with parameter α (see Antoniak [2]).
Thus, the key now is to write

P |Y1, . . . , Yn
d= θ

n∑
j=1

qjδYj |Y1, . . . , Yn + (1− θ)P

where θ is distributed according to a Beta distribution function with parameter (n, a).
Hence, the distributional equation (3.1.5) follows.

In this chapter, following the original idea of Feigin and Tweedie [58], our aim is to
use the more general distributional equation (3.1.5) in order to define a Markov chain
{P (n)

m ,m ≥ 0} on PX which generalizes the Feigin-Tweedie Markov chain and which still
has as unique invariant measure the law of a Dirichlet process with parameter α. In particu-
lar, we are interested in providing a detailed analysis of the Markov chain {P (n)

m ,m ≥ 0} in
order to verify if it preserves all the properties of the original Markov chain {Pm,m ≥ 0}
proposed by Feigin and Tweedie [58]. Furthermore, a special case of the Markov chain
{P (n)

m ,m ≥ 0} is considered by assuming as state space the subset of PX of all probability
measures with a finite number k ∈ N of massees. Under this assumption on the state
space, the Markov chain {P (n)

m ,m ≥ 0} is interpreted as a discrete time stochastic model
describing the evolution of the proportions of k distinct types in a population of a certain
constant size. Comparisons, in terms of the transion probabilities, are given with respect
to similar models known in the literature (see Ewens [45]).
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Moving from the Markov chain {P (n)
m ,m ≥ 0}, we are interested in providing prop-

erties of the associated linear functional Markov chain {G(n)
m ,m ≥ 0} with G

(n)
m :=∫

X g(x)P (n)
m (ω, dx) for m ≥ 0 and for any real-valued measurable function g : X → R

such that
∫

R log(1 + |g(x)|)α(dx) < +∞. These properties represent the starting point
to study the rates of covergence in total variation of the new mean functional Markov
chain {M (n)

m ,m ≥ 0} with M
(n)
m :=

∫
X xP

(n)
m (ω, dx) for m ≥ 0 to the mean functional M

of a Dirichlet process on (R,R) with parameter α. In particular, following the same idea
proposed by Guglielmi and Tweedie [81] we provide an approximation of the distribution
M using the empirical distribution of a sample from the m-th step distribution of the
approximating Markov chain {M̃m,m ≥ 0} starting from any point x ∈ R.

Before proceeding we make a remark about an interesting connection with the Markov
chain {Pm,m ≥ 0} defined via recursion (3.1.5). The sample Y1, . . . , Yn can be obtained
by considering a Dirichlet process P with parameter α and then taking Y1, . . . , Yn|P̃ to be
i.i.d. P̃ defined in (3.1.4). Hence we could consider the distributional equation

P
d= θ

n∑
j=1

qjδYj + (1− θ)P̃ (3.1.6)

where the Y1, . . . , Yn are i.i.d. from P and P̃ is a Dirichlet process with parameter α with P ,
θ and P̃ being mutually independent. We have essentially switched P̃ and P around since
they are independent and both Dirichlet processes with parameter α. Then the solution of
the of distributional equation (3.1.6) would again be a Dirichlet process with parameter α
and the Markov chain which corresponds to (3.1.2) would turn out to be a Wright-Fisher
model (see Ewens [45] and references therein).

The chapter is structured as follows. In Section 3.2, moving from the distributional
equation (3.1.5), we define the Markov chain {P (n)

m ,m ≥ 0} on PX and we prove that
it has as unique invariant measure the law of a Dirichlet process with parameter α. In
Section 3.3 we consider the transition densities of the Markov chain {P (n)

m ,m ≥ 0} on
the subset of PX of all probability measures with a finite number k ∈ N of massees. In
Section 3.4 a detailed analysis of the mean functional Markov chain {M (n)

m ,m ≥ 0} and
we discuss some illustrative examples. In Section 3.5 we consider a different application
of the distributional equation (3.1.5) related to the mean functional of a Dirichlet process
with parameter α. Section 3.6 is devoted to a discussion of the results.

3.2 A generalized Feigin-Tweedie Markov chain

In this section our aim is to use the distributional equation (3.1.5) in order to define a
Markov chain on the space PX that generalizes the Markov chain proposed by Feigin and
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Tweedie [58] and which still has as unique invariant measure the law of a Dirichlet process
with parameter α.

Let α ∈ AX be a finite measure with total mass a and let (Ω,F ,P) be a probabil-
ity space supporting a sequence θ := {θm,m ≥ 1} and for any n ∈ N the sequences
q := {(qm,1, . . . , qm,n),m ≥ 1} and Y := {(Ym,1, . . . , Ym,n),m ≥ 1}. The sequence θ is a
sequence of independent r.v.s distributed according to a Beta distribution function with
parameter (n, a) while q is a sequence of independent r.v.s identically distributed accord-
ing to a Dirichlet distribution function with parameter (1, . . . , 1) and Y is a sequence of
independent r.v.s (samples of size n) from a Blackwell-MacQueen Pólya sequence with pa-
rameter α, i.e. if Pm, for any m ∈ N are independent Dirichlet processes with parameter α,
then for any m ∈ N, Ym,1, . . . , Ym,n|Pm are i.i.d. from Pm. The condition of independence
between the sequence of r.v.s θ, q and Y and the usual construction of a product measure
implies the existence of the probability space (Ω,F ,P) supporting the r.v. (θ, q, Y ) and
does not require any restrictions on X, such as it being a Polish space. Moving from such
collection of random elements, for any n ∈ N we define the Markov chain {P (n)

m ,m ≥ 0}
on PX via the recursion

P (n)
m = θm

n∑
j=1

qm,jδYm,j + (1− θm)P (n)
m−1 m ≥ 1 (3.2.1)

where P (n)
0 ∈ PX is arbitrary.

By construction, the Markov chain {Pm,m ≥ 0} proposed by Feigin and Tweedie [58]
and defined via the recursion (3.1.2) can be recoverd from the Markov chain {P (n)

m ,m ≥ 0}
by setting n = 1. Following the original idea of Feigin and Tweedie [58] by equation
(3.2.1) we define the Markov chain {P (n)

m ,m ≥ 0} from a distributional equation having
as unique solution the Dirichlet process. In particular, the Markov chain {P (n)

m ,m ≥ 0}
is defined from the distributional equation (3.1.5) which generalizes the distributional
equation (3.1.1) by the substitution of the random probability measure (r.p.m.) δY with
the random convex linear combination

∑
1≤j≤n qjδYj . In the next theorem we provide an

alternative proof for the solution of the distributional equation (3.1.5). The proof easily
follows from three lemmas here: the first one recalls a property of the Dirichlet distribution
function and its proof can be found in Wilks [196], Section 7; the second one can be derived
by a simple transformation of r.v.s; the third one is related to the uniqueness of the solution
of the distributional equation (3.1.5) and its proof can be found in Sethuraman [174] (see
also Vervaat [185], Section 1).

Lemma 3.2.1. For any k ∈ N, let β = (β1, . . . , βk) and γ = (γ1, . . . , γk) ∈ Rk . Let
U , V be independent k-dimensional r.v.s distributed according to a Dirichlet distribution
function with parameter β and γ, respectively. Let W be a r.v. independent of (U, V ) and
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distributed according to a Beta distribution function with parameter
∑

1≤i≤k βi,
∑

1≤i≤k γi.
Then, WU + (1−W )V is distributed according to a Dirichlet distribution with parameter
β + γ.

Lemma 3.2.2. For any n ∈ N, let ξ1, . . . , ξn be n independent r.v.s such that ξi is dis-
tributed according to a Beta distribution function with parameter (1, n− i) for i = 1, . . . , n
(ξn = 1 a.s.). If q1 = ξ1 and qj = ξj

∏
1≤i≤j−1(1 − ξi) for j = 2, . . . , n, then (q1, . . . , qn)

is a r.v. with
∑

1≤i≤n qi = 1 distributed according to a Dirichlet distribution function with
parameter (1, . . . , 1).

Lemma 3.2.3. (cfr. Sethuraman [174]) Let W , U be a pair of r.v.s where W takes values
in [−1, 1] and U takes values in a linear space. Suppose that V is a r.v. taking values in the
same linear space as U and which is independent of (W,U) and satisfies the distributional
equation

V
d= U +WV. (3.2.2)

Suppose that P(|W | = 1) 6= 1. Then there is only one distribution for V that satisfies
(3.2.2).

Theorem 3.2.1. The distributional equation (3.1.5) has the Dirichlet process with param-
eter α as its unique solution.

Proof. From Skorohod’s theorem and Lemma 3.2.2 it follows that there exist n independent
r.v.s ξ1, . . . , ξn such that ξi is distributed according to a Beta distribution function with
parameter (1, n − i) for i = 1, . . . , n and q1 = ξ1 and qj = ξj

∏
1≤i≤j−1(1 − ξi) for j =

2, . . . , n. Further, since ξn = 1 a.s., then
∑

1≤j≤n qj = 1 a.s. and it can be verified by
induction that

1−
i∑

j=1

qj =
i∏

j=1

(1− ξj) i = 1, . . . , n− 1.

Let B1, . . . , Bk be a finite measurable partition of X. We first prove that conditionally on
Y1, . . . , Yn, the finite dimensional distribution of the r.p.m.

∑
1≤j≤n qjδYj is the Dirichlet

distribution with parameter given by the following (
∑

1≤j≤n δYj (B1), . . . ,
∑

1≤j≤n δYj (Bk)).
Actually, since n∑

j=1

qjδYj

 (·, B1), . . . ,

 n∑
j=1

qjδYj

 (·, Bk)

 =

 n∑
j=1

qjδYj (B1), . . . ,
n∑
j=1

qjδYj (Bk)


=

 ∑
j:Yj∈B1

qj , . . . ,
∑

j:Yj∈Bk

qj

 ,



58 3. Some developments on the Feigin-Tweedie Markov chain

conditionally on Y1, . . . , Yn, the r.v. (
∑

j:Yj∈B1
qj , . . . ,

∑
j:Yj∈Bk qj) is distributed according

to a Dirichlet distribution function with parameter given by (n1, . . . , nk), where nj =∑
1≤i≤n δYi(Bj) for j = 1, . . . , n. Then, using Lemma 3.2.1, it follows that, conditionally on

Y1, . . . , Yn, the finite dimensional distributions of the right hand-side of (3.1.5) are Dirichlet
with updated parameter ((α(B1) +

∑
1≤j≤n δYj (B1), . . . , α(Bk) +

∑
1≤j≤n δYj (Bk)). This

argument verifies that the Dirichlet process with parameter α satisfies the distributional
equation (3.1.5). This solution is unique by Lemma 3.2.3.

Using similar arguments to those used in Feigin and Tweedie [58] we now provide a
detailed analysis of the Markov chain {P (n)

m ,m ≥ 0}. To this aim, we make use of some
results on limit theory for Markov chains on general state space (see Meyn and Tweedie
[141]) together with a result in Kallenberg [104] about converge of r.p.m.s. We denote
by C(R) the set of bounded and continuous functions g : X → R. The following lemma
reduces the problem of convergence of the Markov chain {P (n)

m ,m ≥ 0} to the problem of
weak convergence of its bounded linear functionals.

Lemma 3.2.4. Let {P (n)
m ,m ≥ 0} be the Markov chain defined by (3.2.1). Then, if as

m→ +∞ ∫
X
g(x)P (n)

m (·, dx)⇒ some Xg ∀g ∈ C(R), (3.2.3)

then there exists a r.p.m. P ∗, such that P (n)
m ⇒ P ∗ as m→ +∞ and Xg

d=
∫

X g(x)P ∗(·, dx)
for all g ∈ C(R).

Proof. The proof is an application of Lemma 5.1 in Kallenberg [104] to the Markov chain
{P (n)

m ,m ≥ 0}.

Lemma 3.2.5. Let {P (n)
m ,m ≥ 0} be the Markov chain defined by (3.2.1) and let g ∈ C(R).

Then {G(n)
m ,m ≥ 0} is a Markov chain on R whose unique invariant measure Πg is the

distribution of the random Dirichlet functional G. In particular, {G(n)
m ,m ≥ 0} converges

weakly for Πg-almost all starting points G(n)
0 .

Proof. The proof is along lines similar to the proof of Lemma 2 in Feigin and Tweedie
[58]. From the recursive equation (3.2.1),

G(n)
m =

∫
X
g(x)P (n)

m (·, dx)

= θm

∫
X
g(x)

n∑
j=1

qm,jδYm,j (dx) + (1− θm)G(n)
m−1 = θm

n∑
j=1

qm,jg(Ym,j) + (1− θm)G(n)
m−1.

Then {G(n)
m ,m ≥ 1} is a Markov chain on R and in particular is a Markov chain restricted

to the compact set [−||g||, ||g||] where ||g|| = supX |g(x)|. From Meyn and Tweedie [141] a
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Markov chain on a compact space has at least one finite invariant measure if it is a weak
Feller Markov chain, that is if the transition probability P(G(n)

m ∈ ·|G(n)
m−1 = x∗) is a lower

semicontinuous function in x∗. For a fixed y ∈ R we have

lim inf
x→x∗

P(G(n)
m ≤ y|G(n)

m−1 = x)

= lim inf
x→x∗

P

θm n∑
j=1

qm,jg(Ym,j) ≤ y − x(1− θm)


= lim inf

x→x∗

∫
(0,1)

P

 n∑
j=1

qm,jg(Ym,j) ≤
y − x(1− z)

z

P(θm ∈ dz)

≥
∫

(0,1)
lim inf
x→x∗

P

 n∑
j=1

qm,jg(Ym,j) ≤
y − x(1− z)

z

P(θm ∈ dz)

=
∫

(0,1)
P

 n∑
j=1

qm,jg(Ym,j) ≤
y − x∗(1− z)

z

P(θm ∈ dz)

= P(G(n)
m ≤ y|G(n)

m−1 = x∗),

since the distribution of
∑

1≤j≤n qn,jg(Ym,j) has at most a countable numbers of atoms and

θm is absolutely continuous. This prove that {G(n)
m ,m ≥ 0} is a weak Feller Markov chain.

Now, if we show that {G(n)
m ,m ≥ 0} is φ-irreducible for a finite measure φ, then the Markov

chain is Harris positive recurrent and the invariant measure is unique (see Proposition 4.3.
in Tweedie [183]). Let us consider the following event E := {Y1,1 = Y1,2 = · · · = Y1,n}.
Then for a finite measure φ we have to prove that if φ(A) > 0, then P(G(n)

1 ∈ A|G(n)
0 ) > 0

for any G(n)
0 . We observe that

P(G(n)
1 ∈ A|G(n)

0 ) = P(G(n)
1 ∈ A|G(n)

0 , E)P(E|G(n)
0 ) + P(G(n)

1 ∈ A|G(n)
0 , Ec)P(Ec|G(n)

0 )

= P(G(n)
1 ∈ A|G(n)

0 , E)P(E) + P(G(n)
1 ∈ A|G(n)

0 , Ec)P(Ec)

≥ P(G(n)
1 ∈ A|G(n)

0 , E)P(E).

Therefore, since P(E) > 0, we have to prove that

P(G(n)
1 ∈ A|G(n)

0 , E) > 0

for any G(n)
0 and for any A such that φ(A) > 0. Nevertheless, given E and G

(n)
0 ,

G
(n)
1 = θ1g(Y1) + (1− θ1)G(n)

0

where θ1 is distributed according to a Beta distribution function with parameter (n, a),
so that the distribution of G(n)

1 |G
(n)
0 , E admits a density with respect to the Lebesgue
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measure on [G(n)
0 , g(X1)] for G(n)

0 < g(X1) (and similarly for G(n)
0 > g(X1)). Then, using

the same argument in Lemma 2 in Feigin and Tweedie [58], we can conclude that P(G(n)
1 ∈

A|G(n)
0 , E) > 0 for a suitable measure φ such that φ(A) > 0. We prove the aperiodicity

of {G(n)
m ,m ≥ 0} by contradiction. If the chain is periodic with period d > 1, the exist d

disjoint sets D1, . . . , Dd such that for i = 1, . . . d− 1

P(G(n)
m ∈ Di+1|G(n)

m−1 = x) = 1 ∀x ∈ Di

which implies

P

z n∑
j=1

qm,jg(Ym,j) + (1− z)x ∈ Di+1

 = 1 z almost anywhere-λ|(0,1),

where λ|(0,1) is the Lebesgue measure restricted to (0, 1). We have

P

 n∑
j=1

qm,jg(Ym,j) ∈ Di+1

 = 1 ∀i = 0, . . . , d− 1.

For generic α and g this is in contradiction with the assumption d > 1. By Theorem
13.3.4. in Meyn and Tweedie [141], there exists a unique invariant probability measure Πg

for {G(n)
m ,m ≥ 0}.

The convergence result in Lemma 3.2.5 does not depend on P
(n)
0 , so we can state the

following proposition which prove that the Markov chain {P (n)
m ,m ≥ 0} has as unique

invariant measure the law of a Dirichlet process with parameter α.

Theorem 3.2.2. The Markov chain {P (n)
m ,m ≥ 0} has a unique invariant measure Π

which is the law of a Dirichlet process with parameter α.

Proof. From Lemma 3.2.5, as m → +∞, G(n)
m ⇒ G for Πg-almost starting points G(n)

0 .
Moreover, for Lemma 3.2.4 there exists a r.p.m. P ∗ such that P (n)

m ⇒ P ∗ as m → +∞.
The law of P ∗ is the invariant measure for the Markov chain {P (n)

m ,m ≥ 0}. Then, for
Lemma 3.2.4, as m→ +∞∫

X
g(x)dP (n)

m (·, dx)⇒
∫

X
g(x)P ∗(·, dx)

and the limit is unique for any g ∈ C(R). Since for any random measure ζ1 and ζ2 we
know that

ζ1
d= ζ2 ⇔

∫
X
g(x)ζ1(·, dx) =

∫
X
g(x)ζ2(·, dx)

for any g ∈ C(R) (see Theorem 3.1. in Kallenberg [104]), the invariant measure for the
Markov chain {P (n)

m ,m ≥ 0} is unique. By the definition of {P (n)
m ,m ≥ 0} it is straight-

forward to show that the limit P ∗ must satisfy (3.1.5) so that P ∗ is the Dirichlet process
with parameter α.
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So far we extended the convergence result proved in Feigin and Tweedie [58] to the
Markov chain {P (n)

m ,m ≥ 0}. We conclude this section by giving a result on the Harris
ergodicity of the Markov chain {G(n)

m ,m ≥ 0}. In Feigin and Tweedie [58] it is shown that∫
X |g(x)|P (·, dx) is finite or infinite a.s. according to the condition

∫
X log(1 + |g(x)|)α(dx)

(see also Hannum et. al [83], Doss and Sellke [33], Yamato [188] and Cifarelli and Regazzini
[18]). In particular in Feigin and Tweedie [58], the sufficiency is proved using arguments
involving the Harris ergodicity of the Markov chain {Gm,m ≥ 0}. In the next theorem we
have the same sufficient condition for the Harris ergodicity of the Markov chain {G(n)

m ,m ≥
0}.

Theorem 3.2.3. Let α ∈ AX be a finite measure with total mass a and g : X → R any
measurable function. If ∫

X
log(1 + |g(x)|)α(dx) < +∞ (3.2.4)

then the Markov chain {G(n)
m ,m ≥ 0} is Harris ergodic with unique invariant measure Πg.

Proof. The proof is along lines similar to the proof of Theorem 2 in Feigin and Tweedie
[58]. The proof of φ-irreducibility is virtually identical to that of Lemma 3.2.5. On the
other hand, if f(u) = log(1 + |u|), if there exists a compact set K ⊂ R and ε > 0 such that

E[f(G(n)
1 )|G(n)

0 ] < +∞ G
(n)
0 ∈ K

and

E[f(G(n)
1 )|G(n)

0 ] ≤ f(G(n)
0 )− ε G

(n)
0 ∈ Kc,

Harris ergodicity follows. We have

f(G(n)
1 ) = log

1 +

∣∣∣∣∣∣θ1

n∑
j=1

q1,jg(Y1,j) + (1− θ1)G(n)
0

∣∣∣∣∣∣


= log

1 +

∣∣∣∣∣∣(1− θ∗1)
n∑
j=1

q1,jg(Y1,j) + θ∗1G
(n)
0

∣∣∣∣∣∣


≤ log

1 + (1− θ∗1)

∣∣∣∣∣∣
n∑
j=1

q1,jg(Y1,j)

∣∣∣∣∣∣+ θ∗1|G
(n)
0 |


≤ log

1 +

∣∣∣∣∣∣
n∑
j=1

q1,jg(Y1,j)

∣∣∣∣∣∣
+ log

(
1 + θ∗1|G

(n)
0 |
)

≤
n∑
j=1

log (1 + |g(Y1,j)|) + log
(

1 + θ∗1|G
(n)
0 |
)
.
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Observe that the marginal distribution of each Y1,j is α0. Since −∞ < E[log(θ∗1)] < +∞
and (3.2.4) holds, E[f(G(n)

1 )|G(n)
0 ] < +∞ for G(n)

0 ∈ K. Moreover, if K = [−k, k], k > 0,
since

f(G(n)
1 ) ≤ f

(1− θ∗1)

∣∣∣∣∣∣
n∑
j=1

q1,jg(Y1,j)

∣∣∣∣∣∣+ θ∗1|G
(n)
0 |


= f(G(n)

0 ) + log(θ∗1) + log

1 + (1− θ∗1)
∣∣∣∑n

j=1 q1,jg(Y1,j)
∣∣∣+ θ∗1|G

(n)
0 |

(1 + |G(n)
0 |)θ∗1

 ,

then, if we choose ε = −1/2E[log(θ∗1)] and k large enough such that the following condition
is true,

E

log

1 + (1− θ∗1)
∣∣∣∑n

j=1 q1,jg(Y1,j)
∣∣∣+ θ∗1|K|

(1 + |K|)θ∗1

 < ε,

we have
E[f(G(n)

1 )|G(n)
0 ] ≤ f(G(n)

0 )− ε G
(n)
0 ∈ Kc.

Therefore, by Harris ergodicity {G(n)
m ,m ≥ 0} has a unique invariant distribution. Since the

Dirichlet process P is the unique solution of (3.1.5) and by Theorem 3.2.2 its distribution is
the unique invariant measure of {P (n)

m ,m ≥ 0}, G must satisfy the distributional equation

G = θ

n∑
j=1

qjg(Yj) + (1− θ)G.

We conclude that the law of G is the unique invariant distribution for the chain {G(n)
m ,m ≥

0}.

Condition (3.2.4) corresponds to the original condition discovered in Feigin and Tweedie
[58]. Then, Propostion 3.2.3 show how, for a more general Markov chain having the law
of a Dirichlet process with parameter α as invariant measure, the condition required for
the existence of a functional g ∈ C(R) is the same.

Theorem 3.2.4. Let α ∈ AX be a finite measure with total mass a and let P be a Dirichlet
process with parmatere α. If for any n ∈ N any g ∈ C(R+)

∃i ≤ n : E [log (1 + |g(Y1,j)|)] = +∞ (3.2.5)

then
∫

X g(x)P (·, dx) = +∞ a.s.

Proof. The r.v. (Y1,1, . . . , Y1,n) is a sample of size n from a Blackwell-MacQueen Pólya
sequence with parameter α and conditional to P , the marginal distribution of each Y1,j ∼
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α0. Then the proof follows from Theorem 3 in Feigin and Tweedie [58] where it is proved
that if ∫

X
log(1 + |g(x)|)α(dx) = +∞

then ∫
X
g(x)P (·, dx) =∞ a.s.-Π

Theorem 3.2.3 and Theorem 3.2.4 provide a condition for the existence of linear func-
tionals of a Dirichlet process on (X,X ) with parameter α and they can be summarized
by the following proposition.

Theorem 3.2.5. Let α ∈ AX be a finite measure with total mass a, let P be a Dirichlet
process on X with parameter α and let g ∈ C(R). Then

∫
X |g(x)|P (·, dx) is finite a.s.-Π or

infinite a.s.-Π according to the condition
∫

X log(1 + |g(x)|)α(dx) is finite or infinite.

Proof. The proof follows immediately from Theorem 3.2.3 and Theorem 3.2.4 Note that,
in the infinite case,

∫
X g(x)P (·, dx) may be undefined, or may be infinite, a.s.

We conclude this section providing a discussion about the conjecture of using a random
parameter n for the Markov chain {P (n)

m ,m ≥ 0} in order to prove the existence of a
continuous time version of the Markov chain {P (n)

m ,m ≥ 0}. A different approach in order
to construct a continuous time version of the Markov chain {P (n)

m ,m ≥ 0} is described
in chapter 5 where also an interesting connection with a class of measure-valued diffusion
process is considered.

In order to make the Markov chain {P (n)
m ,m ≥ 0} in continuous time we consider the

parameter n to be random. In particular, for any t ≥ 0 we consider a r.v. Nt on N and
we define its distribution by dn(t) := P(Nt = n). We now consider a conjecture about the
existence of a continuous time version {Pt, t ≥ 0} of the Markov chain {P (n)

m ,m ≥ 0} by
looking at the Chapman-Kolmogorov equation

p(t+ s, µ, dν) =
∫
PX

p(t, ν, ·)p(s, µ, dν)

where in general p(t, µ, dν) := P(Pt ∈ dν|P0 = µ). The idea is to consider a Chapman-
Kolmogorov equation from the recursive equation (3.2.1). In particular, at time t+ s

Pt+s = θt

Nt+s∑
j=1

qt,jδYt,j + (1− θt)Ps

and at time s

Ps = θs

Ns∑
j=1

qs,jδYs,j + (1− θs)P0
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where we remember that now θt is a r.v. distributed according to a Beta distribution
function with parameter (Nt, a). Then if we substitute Pt+s with its formal expression we
can derive the followig Chapman-Kolmogorov condition

θt+s

Nt+s∑
j=1

qt+s,jδYt+s,j + (1− θt+s)P0 (3.2.6)

= θt

Nt∑
j=1

qt,jδYt,j + (1− θt)

θs Ns∑
j=1

qs,jδYs,j + (1− θs)P0


What we want to find is the distribution of Nt that satisfies the equation (3.2.6). If we
find the distribution of Nt such that is true the following

(1− θt+s)
d= (1− θt)(1− θs) (3.2.7)

then we can write

θt

Nt∑
j=1

qt,jδYt,j + θs(1− θt)
Ns∑
j=1

qs,jδYs,j + (1− θt)(1− θs)P0

= θt

Nt∑
j=1

qt,jδYt,j + (1− θt)

θs Ns∑
j=1

Qs,jδYs,j + (1− θs)P0


Then, the Chapman Kolmogorov equation (3.2.6) holds true if we prove that

θt+s

Nt+s∑
j=1

qt+s,jδYt+s,j = θt

Nt∑
j=1

qt,jδYt,j + θs(1− θt)
Ns∑
j=1

qs,jδYs,j

Equation (3.2.7) implies that θt+s
d= θt + θs(1 − θt) then to satisfy the last equation we

need that Nt+s
d= Nt +Ns that is, the number of atoms at time t+ s is equal to the sum

of the number of atoms at time t and at time s. Therefore we conjecture that in order to
prove the Chapman Kolmogorov equation (3.2.6) we need to find the distribution of Nt

such that the masses and the number of locations of the random measures of the right side
of (3.2.6) are equal in distribution respectively to the masses and the number locations
of the random measures of the left side of (3.2.6). This mean that we have to find the
distribution for Nt that satisfies the following distributional equation

(1− θt+s)
d= (1− θt)(1− θs)

under the constraint on the number of location Nt+s
d= Nt +Ns.
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3.3 The Feigin-Tweedie Markov chain on the finite dimen-

sional symplex

Moving from the distributional equation (3.1.5), in Section 3.2 we provided a detailed
analysis of the Markov chain {P (n)

m ,m ≥ 1} having state space PX and unique invariant
measure the law of a Dirichlet process with parameter α ∈ AX with α a finite measure.
In this section we restrict the attention on a Markov chain {Q(n)

m ,m ≥ 1} which can be
recoverd from the Markov chain {P (n)

m ,m ≥ 1} assuming the state space to be the finite
dimensional space ∆(k−1) ⊂ PX corresponding to the space of all probability measure on
([k],K ) where K is the σ-field of all subsets of [k]. In particular, we are interested to
obtain the transition density of the Markov chain {Q(n)

m ,m ≥ 1} in order to compare it
with the transition density of other Markov chain ∆(k−1) with invariant measure the law
of the Dirichlet distribution.

For any k ∈ N, let (a1, . . . , ak) be a vector of positive real number such that a :=∑
1≤i≤k ai and for any n ∈ N, let {(Ym,1, . . . , Ym,n),m ≥ 0} be a sequence of independent

r.v.s each one a sample of size n from a Pólya sequence with parameter (a1, . . . , ak).
Moreover, for any n ∈ N, let {(qm,1, . . . , qm,n),m ≥ 1} be a sequence of independent
r.v.s identically distribuited according to a Dirichlet distribution function with parameter
(1, . . . , 1). Finally, let {θm,m ≥ 1} be sequence of independent r.v.s such that θm is
distribuited according to a Beta distribution function with parameter (n, a). We further
assume that the sequences {(Ym,1, . . . , Ym,n),m ≥ 0, j ≥ 1}, {(qm,1, . . . , qm,n),m ≥ 1} and
{θm,m ≥ 1} are mutually independent. Moving from such collection of random sequences
we then define the Markov chain {Q(n)

m ,m ≥ 0} on ∆(k−1) via the recursion

Q(n)
m = θm

n∑
j=1

qm,jδYm,j + (1− θm)Q(n)
m−1 m ≥ 1 (3.3.1)

where Q(n)
0 ∈ ∆(k−1) is arbitrary. Since ∆(k−1) ⊂ PX, then it can be checked that the

Markov chain {Q(n)
m ,m ≥ 1} on ∆(k−1) has the same properties of the Markov chain

{P (n)
m ,m ≥ 1} on PX and in particular, it has as unique invariant measure, the measure

the law of a Dirichlet distribution with parameter (a1, . . . , ak).
The Markov chain {Q(n)

m ,m ≥ 1} can be interpreted as a discrete time stochastic model
describing the evolution of the proportions of k distinct types A1, . . . , Ak in a population
of a certain constant size. We can describe this discrete time stochastic model as follows.
At each time m we associate a Pólya urn with n balls of k different colours A1, . . . , Ak

such that for any a ∈ R+

ai = aP(observing a ball of colour Ai) i = 1, . . . , k
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Therefore, Q(n)
m ∈ ∆(k−1) describes the proportions at the generation m as a mixture with

random weights θm between the proportions Q(n)
m−1 ∈ ∆(k−1) at the generation m− 1 and

the proportions induced by a sample Ym,1, . . . , Ym,n of size n from a Pólya sequences, i.e.
for any m ∈ N

P(Ym,n = Ai|Ym,1, . . . , Ym,n−1) =
ai +

∑n−1
j=1 δYm,j (Ai)

a+ n− 1
.

The weights of the mixutre are given by a r.v. distributed according to a Beta distribution
function with parameter (n, a). In the discrete time stochastic model above described
the role of the Pólya urn is of primary importance. In particular, the proportions in the
population changes according to the Pólya mechanism which drives the discrete time
stochastic model. The interesting feature of this discrete time stochastic model is that
as m → +∞ the proportions of individual types are distributed according to a Dirichlet
distribution function with parameter (a1, . . . , ak).

In the literature, the most studied class of discrete time stochastic model describing the
evolution of the proportions in a population of constant size is the Wright-Fisher models
(see Ewens [45]). Consider a population of fixed size n in any generation, and a single locus
at which k alleles are possible. Each individual in the population is one of the k allelic
types, denoted by A1, . . . , Ak. Let Q(n)

m,j be the proportion of individuals of allelic type Aj
at time m. Clearly

Q
(n)
m,j ∈ [0, 1],

k∑
j=1

Q
(n)
m,j = 1 m ≥ 0.

Several Markov chain models are used to describe the evolution of Q(n)
m . We will assume

selectively neutrality, and allow mutation between types. To this we define a matrix M

with the following elements

mi,j := P{allele of type Ai mutates to Aj} i 6= j

and set mi,i = 1−
∑

j 6=imi,j . If the current value of Q(n)
m is q, then for j = 1, 2, . . . , k the

fraction of allelic type Aj in the gene pool after mutation is the j-th element of the vector
qM and we denote this element by πj . The Wright-Fisher model precribes the transition
probabilities

P(Q(n)
m+1 = p|Q(n)

n−1 = q) =
(

n

nq1, . . . , nqk

)
πnq11 · · ·πnjkk (3.3.2)

where (3.3.2) corresponds to random mating and multinomial sampling of the gene pool
which is divided into fractions πj of allelic type Aj for j = 1, 2, . . . , k. This model has
non-overlapping generations. An analogus process in which generations overlap, can is
described in Karlin and McGregor [105] and Kelly [106].
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In this section our aim is to investigate the transition probabilities of the Markov chain
{Q(n)

m ,m ≥ 1} described via the recursion (3.3.1). In particular, we are interested in finding
the transition probabilities of the Markov chain {Q(n)

m ,m ≥ 1} and in comparing it with
the transition probabilities of the Wright-Fisher model. We start considering a population
of fixed size n in any generation, and a single locus at which 2 alleles are possible. Each
individual in the population is one of the 2 allelic types denoted by A1, A2. Let x, y ∈ ∆(1),
then the model precribes the transition probabilities

P(Q(n)
m ≤ y|Q(n)

m−1 = x)

= P

θm n∑
j=1

qm,jδYm,j + (1− θm)Q(n)
m−1 ≤ y|Q

(n)
m−1 = x


= P

 n∑
j=1

qm,jδYm,j ≤
y − (1− θm)Q(n)

m−1

θm
|Q(n)

m−1 = x


=
∫

(0,1)
P

 n∑
j=1

qm,jδYm,j ≤
y − (1− z)Q(n)

m−1

z
|Q(n)

m−1 = x

P(θm ∈ dz)

=
∑

(n1,n2)∈D2,n

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
∫

(0,1)
P

 n∑
j=1

qm,jδYm,j |Ym,1, . . . , Ym,n ≤
y − (1− z)x

z

P(θm ∈ dz)

where,
∑

1≤j≤n qm,jδYm,j |Ym,1, . . . , Ym,n is a r.v. distributed according to a Beta distribu-
tion function with parameter (n1, n2) where n1 :=

∑
1≤j≤nm δYm,j (A1) and n2 := n − n1.

Before considering a more explicit expression for the transition probabilities of the Markov
chain {Q(n)

m ,m ≥ 1} we states the following lemma which relates the cumulative distribu-
tion function of a Beta distribution function with integer parameter with the cumulative
distribution function of a Binomial distribution function. The results of the next lemma
are expressed in terms of the Gauss hypergeometric function 2F1 (see Appendix C).

Lemma 3.3.1. Let X be a r.v. distributed according to a Beta distribution function with
parameter (a, b) with a, b ∈ N and let Y be a r.v. distributed according to a Binomial
distribution function with parameter (a+ b− 1, 1− x) with a, b ∈ N. Then

P(X ≤ x) = P(Y ≤ b− 1). (3.3.3)

Proof. The proof is based on the application of a simple property of the Gauss hypergeo-
metric function 2F1 (see Appendix C)

2F1(a, 1− b; a+ 1;x) =
Γ(a+ 1)Γ(b)

Γ(a+ b)

a+b−1∑
j=a

(
a+ b− 1

j

)
xj−a(1− x)a+b−1−j .
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Then we have

P(X ≤ x) =
Γ(a+ b)
Γ(a)Γ(b)

∫ x

0
ta−1(1− t)b−1dt

=
xa

a
2F1(a, 1− b; a+ 1;x) = (1− x)b2F1(1, a+ b; a+ 1;x)

=
a+b−1∑
j=a

(
a+ b− 1

j

)
xj(1− x)a+b−1−j =

b−1∑
j=0

(
a+ b− 1

j

)
xa+b−1−j(1− x)j

where the last step follows for a known reduction result for the Gauss hypergeometric
function with integer parameter. Then, the last expression is the cumulative distribution
function of a Binomial distribution with parameter (a+ b− 1, 1− x).

Using Lemma 3.3.1, we can compute an explicit expression for the transition proba-
bilities of the Markov chain {Q(n)

m ,m ≥ 1}. In particular, we have

P(Q(n)
m ≤ y|Q(n)

m−1 = x)

=
∑

(n1,n2)∈D2,n

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
∫

(0,1)
P

 n∑
j=1

qm,jδYm,j |Ym,1, . . . , Ym,n ≤
y − (1− z)x

z

P(θm ∈ dz)

=
∑

(n1,n2)∈D2,n

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
∫

(0,1)

1− P

 n∑
j=1

qm,j(1− δYm,j )|Ym,1, . . . , Ym,n ≤ 1− y − (1− z)x
z

P(θm ∈ dz)

=
∑

(n1,n2)∈D2,n

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
n−1∑
j=n1

(
n− 1
j

)∫
(0,1)

(
y − (1− z)x

z

)j (
1− y − (1− z)x

z

)n−j−1

P(θm ∈ dz).

we can obtain the transition density for the Markov chain {Q(n)
m ,m ≥ 1}. In particular,
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we have

d

dy
P(Q(n)

m ≤ y|Q(n)
m−1 = x)

=
∑

(n1,n2)∈D2,n

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
n−1∑
j=n1

(
n− 1
j

)∫
(0,1)

d

dy

(
y − (1− z)x

z

)j (
1− y − (1− z)x

z

)n−j−1

P(θm ∈ dz)

=
∑

(n1,n2)∈D2,n

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
∫

(0,1)

1
z

 n−1∑
j=n1

(
n− 1
j

)
j

(
y − (1− z)x

z

)j−1(
1− y − (1− z)x

z

)n−1−j

−
n−1∑
j=n1

(
n− 1
j

)
(n− j − 1)

(
y − (1− z)x

z

)j (
1− y − (1− z)x

z

)n−2−j
P(θm ∈ dz)

=
∑

(n1,n2)∈D2,n

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
∫

(0,1)

1
z

Γ(n)
Γ(n1)Γ(n2)

(
y − (1− z)x

z

)n1−1(
1− y − (1− z)x

z

)n2−1

P(θm ∈ dz).

We observe that the transition densities of the Markov chain {Q(n)
m ,m ≥ 1} correspond

to the densities of a suitable transormation of mixtures of Beta distribution function with
parameter (n1, n2). In particular, if Q(n)

m−1 is distributed according to a Beta distribution
function with parameter (a1, a2), then P(Ym,1, . . . , Ym,n|Q(n)

m−1 = x) is distributed accord-
ing to a Binomial distribution function with parameter (x, n). Therefore, we have

d

dy
P(Q(n)

m ≤ y|Q(n)
m−1 = x)

=
∑

(n1,n2)∈D2,n

(
n

n1

)
xn1(1− x)n2

×
∫

(0,1)

1
z

Γ(n)
Γ(n1)Γ(n2)

(
y − (1− z)x

z

)n1−1(
1− y − (1− z)x

z

)n2−1

P(θm ∈ dz).

We now consider the extension of the above calculation to a population of sized n with
k distinct types. The population has a fixed size n in any generation, and a single locus
at which k alleles are possible. Each individual in the population is one of the k allelic
types denoted by A1, . . . , Ak. Let x, y ∈ ∆(k−1), then the model precribes the transition
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probabilities

P(Q(n)
m ≤ y|Q(n)

m−1 = x)

= P

θm n∑
j=1

qm,jδYm,j + (1− θm)Q(n)
m−1 ≤ y|Q

(n)
m−1 = x


= P

 n∑
j=1

qm,jδYm,j ≤
y − (1− θm)Q(n)

m−1

θm
|Q(n)

m−1 = x


=
∫

(0,1)
P

 n∑
j=1

qm,jδYm,j ≤
y − (1− z)Q(n)

m−1

z
|Q(n)

m−1 = x

P(θm ∈ dz)

=
∑

(n1,...,nk)∈Dn,k

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
∫

(0,1)
P

 n∑
j=1

qm,jδYm,j (A1)|Ym,1, . . . , Ym,n ≤
y − (1− z)x

z

P(θm ∈ dz)

where
∑

1≤j≤n qm,jδYm,j |Ym,1, . . . , Ym,n is a r.v. distributed according to a Dirichlet dis-
tribution function with parameter (n1, . . . , nk) where ni :=

∑
1≤j≤n δYm,j (Ai) for i =

1, . . . , k − 1 and nk := n −
∑

1≤i≤k−1 ni. Before considering a more explicit expression

for the transition probabilities of the Markov chain {Q(n)
m ,m ≥ 1} we states the follow-

ing lemma which relates the cumulative distribution function of a Dirichlet distribution
function with integer parameter to the cumulative distribution function of a Multinomial
distribution function.

Lemma 3.3.2. Let (X1, . . . , Xk−1) be a r.v. distributed according to a Dirichlet distribu-
tion function with parameter (a1, . . . , ak) with ai ∈ N for i = 1, . . . , k. Then

P(X1 ≤ x1, . . . , Xk−1 ≤ xk−1) (3.3.4)

=
ak−1∑
j1=0

j1∑
j2=0

· · ·
jk−1∑
jk=0

M

k−2∏
i=1

x
ai+jk−i−jk−i+1

i x
ak+ak−1−j1−1
k−1

(
1−

k−1∑
i=1

xi

)jk

where

M :=
( ∑k

i=1 ai − 1
jk, a1 + jk−1 − jk, . . . , ak−1 + j1 − j2, ak + ak−1 − j1 − 1

)
. (3.3.5)

Proof. The proof applied recursively the equality for Gauss hypergeometric function with
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integer parameters used in Lemma 3.3.1.

P(X1 ≤ x1, . . . , Xk−1 ≤ xk−1)

=
Γ(
∑k

i=1 ai)∏k
i=1 Γ(ai)

∫ x1

0
· · ·
∫ xk−1

0

k−1∏
i=1

tai−1
i

(
1−

k−1∑
i=1

ti

)ak−1

dti

=
∏k
i=1 Γ(ai)

Γ(
∑k

i=1 ai)

∫ x1

0
· · ·
∫ xk−2

0
2F1

(
ak−1, 1− ak; ak−1 + 1;

xk−1

1−
∑k−2

i=1 ti

)
x
ak−1

k−1

ak−1

×
k−2∏
i=1

tai−1
i

(
1−

k−2∑
i=1

ti

)ak−1

dti

=
Γ(
∑k

i=1 ai)∏k−2
i=1 Γ(ai)Γ(ak−1 + ak)

ak∑
j1=1

(
ak−1 + ak − 1

j1

)
x
ak−1+ak−j−2
k−1

×
∫ x1

0
· · ·
∫ xk−2

0

k−2∏
i=1

tai−1
i

(
1−

k−2∑
i=1

ti − xk−1

)j1−1

dti

=
Γ(
∑k

i=1 ai)
Γ(a1)Γ(ak−1 + ak)

ak∑
j1=1

(
ak−1 + ak − 1

j1

)
x
ak−1+ak−j1−2
k−1

×
j1∑
j2=1

(
ak−2 + j1 − 1

j2

)
x
ak−2+j1−j2−2
k−2

Γ(j1)
Γ(ak−2 + j1)

· · ·

· · · ×
jk−2∑
jk−1=1

(
a2 + jk−2 − 1

jk−1

)
x
a2+jk−2−jk−1−2
2

Γ(jk−2)
Γ(a2 + jk−2)

×
∫ x1

0
ta1−1
1 (1− t1 − x2 − · · · − xk−1)jk−1−1dt1

=
Γ(
∑k

i=1 ai)
Γ(a1)Γ(ak−1 + ak)

ak∑
j1=1

(
ak−1 + ak − 1

j1

)
x
ak−1+ak−j1−2
k−1

×
j1∑
j2=1

(
ak−2 + j1 − 1

j2

)
x
ak−2+j1−j2−2
k−2

Γ(j1)
Γ(ak−2 + j1)

· · ·

×
jk−2∑
jk−1=1

(
a2 + jk−2 − 1

jk−1

)
x
a2+jk−2−jk−1−2
2

Γ(jk−2)
Γ(a2 + jk−2)

× (1−
k−1∑
i=1

xi)jk−1−1x
a1
1

a1
2F1

(
a1, 1− jk−1; a1 + 1;

x1

1−
∑k−1

i=2 xi

)

=
Γ(
∑k

i=1 ai)
Γ(ak−1 + ak)

ak∑
j1=1

(
ak−1 + ak − 1

j1

)
x
ak−1+ak−j1−2
k−1

×
j1∑
j2=1

(
ak−2 + j1 − 1

j2

)
x
ak−2+j1−j2−2
k−2

Γ(j1)
Γ(ak−2 + j1)

· · ·
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· · · ×
jk−2∑
jk−1=1

(
a2 + jk−2 − 1

jk−1

)
x
a2+jk−2−jk−1−2
2

Γ(jk−2)
Γ(a2 + jk−2)

×
jk−1−1∑
jk=1

(
a1 + jk−1 − 1

jk

)
x
a1+jk−1−jk−2
1

Γ(jk−1)
Γ(a1 + jk−1)

(
1−

k−1∑
i=1

ti

)jk

=
ak−1∑
j1=0

j1∑
j2=0

· · ·
jk−1∑
jk=0

(
−1 +

∑k
i=1 ai

jk, a1 + jk−1 − jk, . . . , ak + ak−1 − j1 − 1

)

×
k−2∏
i=1

x
ai+jk−i−jk−i+1

i x
ak+ak−1−j1−1
k−1 (1− |x|)jk .

Lemma 3.3.2 gives an alternative representation for the cumulative distribution func-
tion of a Dirichlet distribution function with integer parameters in terms of a cumula-
tive distribution function of a Multinomial distribution function. It extends to the k-
dimensional case Lemma 3.3.1.

In the next lemma we give a further representation for the cumulative distribution
function of a Dirichlet distribution function in terms of first Lauricella multiple hyper-
geometric functions (see Appendix C). Then, as corollary we obtain an apparentely new
representation for the first Lauricella multiple hypergeometric functions with integer pa-
rameters.

Lemma 3.3.3. Let (X1, . . . , Xk−1) be a r.v. distributed according to a Dirichlet distribu-
tion function with parameter (a1, . . . , ak) with ai ∈ N for i = 1, . . . , k. Then

P(X1 ≤ x1, . . . , Xk−1 ≤ xk−1)

=
Γ(
∑k

i=1 ai)∏k
i=1 Γ(ai)

∫ 1

0
. . .

∫ 1

0

k−1∏
i=1

tai−1
i

(
1−

k−1∑
i=1

tixi

)ak−1

dt1 · · · dtk−1.

Proof. Following [47] we have

Γ(
∑k

i=1 ai)∏k
i=1 Γ(ai)

P(X1 ≤ x1, . . . , Xk−1 ≤ xk−1) =
∫ x1

0
. . .

∫ xk−1

0

k−1∏
i=1

tai−1
i

(
1−

k−1∑
i=1

ti

)ak−1

.

If the integrand is expanded by the Multinomial theorem, the multiple series formed
converges uniformly over the range of integration, so that term by term integration is
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justified. Then we have

Γ(
∑k

i=1 ai)∏k
i=1 Γ(ai)

P(X1 ≤ x1, . . . , Xk−1 ≤ xk−1)

=
∑

(j1,...,jk−1)∈Dak,k−1

(1− ak)ak−1↑1

j1! · · · jk−1!

∫ x1

0
ta1+j1−1
1 dt1 · · ·

∫ xk−1

0
t
ak−1+jk−1−1
k−1 dtk−1

=
1∏k−1

i=1 ni
F

(k−1)
A (1− ak, a1, . . . , ak−1; a1 + 1, . . . , ak−1 + 1;x1, . . . , xk−1).

where (x)y↑1 stands for the Pochhammer symbol for the ascending factorial of x of order y
(see Appendix A). Then the result follows using the the integral rapresentation of Eulero-
type for the first Lauricella multiple hypergeometric function.

Corollary 3.3.1. Let (a1, . . . , ak) be k dimesional vector such that ai ∈ N for i = 1, . . . , k
and let M be the multinomial coefficent defined by (3.3.5). Then

F
(k−1)
A (1− ak, a1, . . . , ak−1; a1 + 1, . . . , ak−1 + 1;x1, . . . , xk−1)

=
∏k
i=1 Γ(ai)

Γ(
∑k

i=1 ai)

k−1∏
i=1

ai

ak−1∑
j1=0

j1∑
j2=0

· · ·
jk−1∑
jk=0

M

k−2∏
i=1

x
ai+jk−i−jk−i+1

i x
ak+ak−1−j1−1
k−1

(
1−

k−1∑
i=1

xi

)jk
.

Proof. The proof follows from the two different representions for the cumulative distribu-
tion function of a Dirichlet distribution with integer parameter obtained in Lemma 3.3.2
and Lemma 3.3.3.

On the basis of the result in Lemma 3.3.2 it is possible to obtain an explicit expression
for the transition densities of the Markov chain. In the unidimensional setting we proceeded
using a series representation for the cumulative distribution function of a Beta distribution
function. Here we want to extend that approach using the result on the first Lauricella
multiple hypergeometric functions. Using Lemma 3.3.2 we can give an expression for the
transition functions for the Markov chain {Q(n)

m ,m ≥ 1}. In particular, we have

P(Q(n)
m ≤ y|Q(n)

m−1 = x)

=
∑

(n1,...,nk)∈Dn,k

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

×
∫

(0,1)

nk−1∑
j1=0

j1∑
j2=0

· · ·
jk−1∑
jk=0

M

k−2∏
i=1

(
yi − (1− θm)xi

θm

)ni+jk−i−jk−i+1

×
(
yk−1 − (1− z)xk−1

z

)nk+nk−1−j1−1
(

1−
k−1∑
i=1

yi − (1− z)xi
z

)jk
P(θm ∈ dz).
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Using the Leibnitz rule of integration we can obtain the transition density for the Markov
chain {Q(n)

m ,m ≥ 1}. In particular we have

dk−1

dy1 · · · , dyk−1
P(Q(n)

m ≤ y|Q(n)
m−1 = x)

=
∑

(n1,...,nk)∈Dn,k

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

× (n− 1)!
(n− k)!

∫
(0,1)

1
zk−1

(
n− k

n1 − 1, . . . , nk − 1

)

×
k−1∏
i=1

(
yi − (1− z)xi

z

)ni−1
(

1−
k−1∑
i=1

yi − (1− z)xi
z

)nk−1

P(θm ∈ dz)

=
∑

(n1,...,nk)∈Dn,k

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

× Γ(n)

Γ(n1) · · ·Γ(n−
∑k−1

i=1 ni)

×
∫

(0,1)

1
zk−1

k−1∏
i=1

(
yi − (1− z)xi

z

)ni−1
(

1−
k−1∑
i=1

yi − (1− z)xi
z

)nk−1

P(θm ∈ dz).

Thus, we can conclude with the following propoposition.

Proposition 3.3.1. For any k ∈ N, let {Q(n)
m ,m ≥ 1} be a Markov chain on ∆(k−1)

defined via the recursion (3.3.1). Then, for any m ∈ N and for any x, y ∈ ∆(k−1), the
transition densities of {Q(n)

m ,m ≥ 1}

f(x,m; y) (3.3.6)

=
∑

(n1,...,nk)∈Dk,n

P(Ym,1, . . . , Ym,n|Q(n)
m−1 = x)

Γ(n)

Γ(n1) · · ·Γ(n−
∑k−1

i=1 ni)

×
∫

(0,1)

1
zk−1

k−1∏
i=1

(
yi − (1− z)xi

z

)ni−1
(

1−
k−1∑
i=1

yi − (1− z)xi
z

)nk−1

P(θm ∈ dz).

Therefore, from Proposition 3.3.1 we observe that the transition densities of the Markov
chain {Q(n)

m ,m ≥ 1} correspond to the densities of a suitable transormation of mixtures
of a Dirichlet distribution function with parameter (n1, . . . , nk). In particular, if Q(n)

m−1

is distributed according to a Dirichlet distribution function with parameter (a1, . . . , ak),
then P(Ym,1, . . . , Ym,n|Q(n)

m−1 = x) is distributed according to a Multinomial distribution
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function with parameter (x1, . . . , xk−1, n). Therefore, we have

dk−1

dy1 · · · , dyk−1
P(Q(n)

m ≤ y|Q(n)
m−1 = x)

=
∑

(n1,...,nk)∈Dk,n

(
n

n1, . . . , nk

)
xn1

1 · · ·x
nk−1

k−1

(
1−

k−1∑
i=1

xi

)nk

× Γ(n)

Γ(n1) · · ·Γ(n−
∑k−1

i=1 ni)

×
∫

(0,1)

1
zk−1

k−1∏
i=1

(
yi − (1− z)xi

z

)ni−1
(

1−
k−1∑
i=1

yi − (1− z)xi
z

)nk−1

P(θm ∈ dz).

3.4 Rates of convergence of the mean functional Markov

chain

In this section our aim is to investigate the rate of convergence in total variation of the
mean functional Markov chain {M (n)

m ,m ≥ 0} to the mean functional of a Dirichlet process
on R with parameter α.

Let X = R and let {P (n)
m ,m ≥ 0} be the Markov chain on PR defined by (3.2.1). We

consider the mean functional Markov chain {M (n)
m ,m ≥ 0} defined recursively by

M (n)
m = θm

n∑
j=1

qm,jYm,j + (1− θm)M (n)
m−1 m ≥ 1 (3.4.1)

where M
(n)
0 ∈ R is arbitrary. For a detailed analysis of rates of convergence in total

variation of the Markov chain {Mm,m ≥ 0} to the mean functional M of a Dirichlet
process see Guglielmi and Tweedie [81] and Jarner and Tweedie [103]. From Theorem
3.2.3 we know that under the condition∫

R
log(1 + |x|)α(dx) < +∞ (3.4.2)

the Markov chain {M (n)
m ,m ≥ 0} has the distribution M ofM as unique invariant measure.

We denote the smallest interval containing the support of α by [L,U ],−∞ ≤ L < U ≤ +∞,
that is,

α((−∞, L) ∪ (U,+∞)) = 0 (3.4.3)

and no smaller closed interval has this property. We recall that for a real-valued measurable
function g : X → R, all the results in this section can be applied to more general linear
functional G of a Dirichlet process on an arbitrary Polish space (X,X ), since G has the
same distribution as G ◦ αg where αg(B) := α(g−1(B)) for any B ∈ R.
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Before introducing the main result of this section, we recall some definition and some
results recently developed for Markov chain with general state-space. Fop definition not
given below, see Nummelin [146] and Meyn and Tweedie [141]. We consider a Markov chain
{Φm,m ≥ 0} with state space S, S being a Borel subset of R, not necessarily countable,
endowed with σ-field R∩S. Such Markov chain {Φm,m ≥ 0}, with transition probabilities
pm(x,A) = P(Φm ∈ A)|Φ0 = x) for m ≥ 1, is called Harris ergodic if and only if there
exists a probability measure π on (S,R ∩ S), called an invariant or limiting distribution,
such that

lim
m→+∞

||pm(x, ·)− π|| = 0 ∀x ∈ S

where ‖P1(·)−P2(·)‖ := supA∈R |P1(A)−P2(A)|, P1 and P2 being probability measures. A
Harris ergodic chain {Φm,m ≥ 0} with invariant distribution π is said to be geometrically
ergodic, or to converge geometrically, it there exists 0 < ρ < 1 and a non-negative function
R on S with

∫
SR(x)π(dx) < +∞, such that

||pm(x, ·)− π|| ≥ R(x)ρm ∀x ∈ S

The chain is said to be uniformly ergodic, or to converge uniformly, if as m→ +∞∑
x

||pm(x, ·)− π|| → 0

or, equivalently, if there exist 0 < ρ < 1 and a positive constant R independent of x, such
that

||pm(x, ·)− π|| ≤ Rρm ∀x ∈ S.

Finally, we consider the definition of small set and drift function. A set C is called small
if there exists n0 ∈ N, ε > 0 and a probabilty measure ϕ on (R,R) such that

pm0(x,A) ≥ εϕ(A) ∀A ∈ R, ∀x ∈ C.

The chain {Φm,m ≥ 0} satisfies the geometric Foster-Lyapunov drift condition if there
exist a function V : R → [1,+∞), a small set C and constants b < +∞, 0 < λ < 1, such
that, for all x ∈ S

PV (x) :=
∫

S
P (x, dy)V (y) ≤ λV (x) + b1C(x). (3.4.4)

When (3.4.4) holds then the chain is known to be geometrically ergodic. Finally, we say
that a real-valued chain {Φm,m ≥ 0} is stocastically monotone if x 7→ P(Φm < s|Φ0 = x)
is a non-increasing function for m ≥ 1 and any s ∈ R.

The next theorem is an extension of Theorem 1 in Guglielemi and Tweedie [81] to the
Markov chain {M (n)

m ,m ≥ 0}. In particular, using results developed for Markov chains on
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a general state space (see Meyn and Tweedie [141]) we provide some further properties for
the Markov chain {M (n)

m ,m ≥ 0}. For any x ∈ R and for any A ∈ R, we define pm(x,A) :=
P(M (n)

m ∈ A|M (n)
0 = x). Then, our aim is to show that, provided

∫
R |x|α(dx) < +∞, we

have for some ρ < 1

||pm(x, ·)−M (·)|| < R(x)ρn ∀x ∈ R (3.4.5)

Theorem 3.4.1. The Markov chain {M (n)
m ,m ≥ 0} has the following properties

i) {M (n)
m ,m ≥ 0} is a stocastically monotone Markov chain;

ii) if further

E[|Y1,1|] =
∫

R
|x|α(dx) < +∞, (3.4.6)

then {M (n)
m ,m ≥ 0} is a geometrically ergodic Markov chain;

iii) if the support of α is bounded then {M (n)
m ,m ≥ 0} is an uniformly ergodic Markov

chain.

Proof. Given the definition of stochastically monotone Markov chain, we have that for
z1 < z2, s ∈ R,

p1(z1, (−∞, s)) = P

θ1

n∑
j=1

q1,jY1,j + (1− θ1)z1 < s


≥ P

θ1

n∑
j=1

q1,jY1,j + (1− θ1)z2 < a

 = p1(z2, (−∞, s)).

We now show that under condition (3.4.6) the Markov chain {M (n)
m ,m ≥ 0} satisfies the

Foster-Lyapunov condition for the function V (x) = 1+ |x|. This fact implies the geometric
ergodicity of the {M (n)

m ,m ≥ 0} (see Meyn and Tweedie [141], Chapter 15). We have

pV (x) =
∫

X
(1 + |y|)p(x, dy)

= 1 + E

∣∣∣∣∣∣θ1

n∑
j=1

q1,jY1,j + (1− θ1)x

∣∣∣∣∣∣


≤ 1 + E[θ1]
n∑
j=1

E [|q1,jY1,j |] + |x|E[1− θ1]

≤ 1 +
n

n+ a

n∑
j=1

E [|q1,jY1,j |] +
a

n+ a
|x| = 1 +

n

n+ a
E[|Y1,1|] +

a

n+ a
|x|.
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Now we have to find the small set C(n) such that the Foster-Lyapunov condition holds,
i.e. we have to find the small set C(n) such that

1 +
n

n+ a
E[|Y1,1|] +

a

n+ a
|x| ≤ λ(1 + |x|) + b1C(n)(x) (3.4.7)

for some constant b < +∞ and 0 < λ < 1. Then if we consider the following set

C(n) = [−K(n)(λ),K(n)(λ)], (3.4.8)

where
K(n)(λ) :=

1− λ+ n/(n+ a)E[|Y1,1|]
λ− a/(n+ a)

, (3.4.9)

then, condition (3.4.7) holds for all

λ ∈
(

a

n+ a
, 1
)
, b ≥ 1− λ+

n

n+ a
E[|Y1,1|].

As in Lemma 3.2.5 we can prove that the Markov chain {M (n)
m ,m ≥ 0} is weak Feller;

then, since C(n) is a compact set, it is a small set (see Tweedie [182]).
Finally, we prove that the Markov chain {M (n)

m ,m ≥ 0} is uniformly ergodic when the
support of α is bounded. Since for λ→ a/(n+a) the small set C(n) = [−∞,+∞], then we
can choose λ such that C(n) ⊇ [L,U ], where [L,U ] is the support of α. Then the uniform
ergodicity holds by the same arguments used in Theorem 1 in Guglielmi and Tweedie
[81].

We briefly comment on the results obtained in Theorem 3.4.1. Theorem 3.4.1 shows
that under the same condition as in Theorem 1 in Guglielmi and Tweedie [81], the Markov
chain {M (n)

m ,m ≥ 0} is geometrically or uniformly ergodic. In particular, the small sets
C(n) generalize the corresponding small set C obtained in Theorem 1 in Guglielmi and
Tweedie [81] which can be recovered by setting n = 1

C = [−K(λ),K(λ)] (3.4.10)

where
K(λ) :=

1− λ+ 1/(1 + a)E[|Y1,1|]
λ− a/(1 + a)

. (3.4.11)

In that paper, it is clear from the illustrative examples that the convergence of the chain
{Mm,m ≥ 0} is slow when the total mass a is large. For the Markov chain {M (n)

m ,m ≥ 0}
the size of the small set C(n) can be controlled by a further parameter n; this fact suggests
that the upper bounds of the rate of convergence of the Markov chain {M (n)

m ,m ≥ 0}
depends of n. In particular, we observe that the small sets C(n) correspond to the small
sets C when the total mass of the measure α is chosen to be a/n. According to the
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rate of convergence obtained in Guglielmi and Tweedie [81] these observations imply that
as n increases the Markov chain {M (n)

m ,m ≥ 0} converges geometrically faster (in total
variation) to M than the Markov chain {Mm,m ≥ 0} (this is not surprising since a greater
number of r.v.s have been sampled per iteration).

Remark 3.4.1. Condition (3.4.6) can be relaxed. If the following condition holds

E[|Y1,1|s] =
∫

R
|y|sα0(dx) < +∞ for some 0 < s < 1, (3.4.12)

then the Markov chain {M (n)
m ,m ≥ 0} is geometrically ergodic. In this case, as in the

proof of Theorem 2.3. in Jarner and Tweedie [103], let V (x) = 1 + |x|s. Then, if E[(1 +
|
∑

1≤j≤n q1,jY1,j |)s] < +∞, it is straightforward to prove that the Foster-Lyapunov condi-
tion PV (x) ≤ λV (x) + b1C̃(n)(x) for some constant b < +∞,

E[(1− θ1)s] =
Γ(a+ s)Γ(a+ n)
Γ(a)Γ(a+ s+ n)

< λ < 1

and for some compact set C̃(n). Of course (3.4.12) implies

E[(1 + |
n∑
j=1

q1,jY1,j |)s] < +∞

if fact conditioning on the random number N of distinct values Y ∗1,1, . . . Y
∗

1,N in Y1,1, . . . , Y1,n,
1 ≤ N ≤ n, we have∣∣∣∣∣∣

n∑
j=1

q1,jY1,j

∣∣∣∣∣∣ ≤
N∑
j=1

q̃1,j |Y ∗1,j | ≤ max{|Y ∗1,1|, . . . , |Y ∗1,N |}.

The {Y ∗1,1, . . . , Y ∗1,N} are i.i.d. according to α0, so that

E

∣∣∣∣∣∣
n∑
j=1

q1,jY1,j

∣∣∣∣∣∣
s ≤ ∫ +∞

0
ysN(A0(y))N−1α0(dy)

≤ N
∫ +∞

0
ysα0(dy) ≤ nE[|Y1,j |s] < +∞,

where A0 is the distribution function corresponding to the probability measure α0, and this
is equivalent to E[(1 + |

∑
1≤j≤n q1,jY1,j |)s] < +∞.

For instance if α0 is a Cauchy standard distribution and a > 0, condition (3.4.12) is
fullfilled so that the Markov chain {M (n)

m ,m ≥ 0} will turn out to be geometrically ergodic
for any fixed n.
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Following a similar construction to that one proposed in Guglielmi and Tweedie [81]
we now establish analytic upper bounds on the rate of convergence. If we consider the
event E := {Y1,1 = Y1,2 = · · · = Y1,n} then, for any A ∈ R and any x ∈ R,

p1(x,A) ≥ P(M (n)
1 ∈ A|E,M (n)

0, = x)P(E)

=
Γ(n− 1)Γ(a)

Γ(a+ n)
(α0({x})δx(A) + (1− α0({x}))

× P (θ1Y1,1 + (1− θ1)x ∈ A|Y1,1 6= x))

≥ %Γ(n− 1)Γ(a)
Γ(a+ n)

P (θ1Y1,1 + (1− θ1)x ∈ A|Y1,1 6= x)

where
0 < % := 1− sup (α0({x})) ≤ 1

and the supremum being taken on the set of discontinuity points of A0(x) := α0((−∞, x])
for any x ∈ R. Thus, we can consider the conditional denstiy f

M
(n)
1 |M(n)

0 ,Y1,1,E
(z) of the

r.v. M (n)
1 given M

(n)
0 = x, Y1,1 6= x and E, which is

f
M

(n)
1 |M(n)

0 ,Y1,1,E
(z) (3.4.13)

=
Γ(a+ n)
Γ(a)Γ(n)

∫
R∩{x}c

(z − x)n−1(y1,1 − z)a−1

(y1,1 − x)a+n−2|y1,1 − x|
1(0,1)

(
z − x
y1,1 − x

)
A0(dy1,1)

=
Γ(a+ n)
Γ(a)Γ(n)

(∫
(−∞,x)

(x− z)n−1(z − y1,1)a−1

(x− y1,1)a+n−1
1(0,1)

(
x− z
x− y1,1

)
A0(dy1,1)

+
∫

(x,+∞)

(z − x)n−1(y1,1 − z)a−1

(y1,1 − x)a+n−1
1(0,1)

(
z − x
y1,1 − x

)
A0(dy1,1)

)
.

Therefore, if z < x

f∗
M

(n)
1 |M(n)

0 ,Y1,1,E
(z) =

Γ(a+ n)
Γ(a)Γ(n)

∫
(−∞,z)

(x− z)n−1(z − y1,1)a−1

(x− y1,1)a+n−1
A0(dy1,1)

and if z > x

f∗
M

(n)
1 |M(n)

0 ,Y1,1,E
(z) =

Γ(a+ n)
Γ(a)Γ(n)

∫
(z,+∞)

(z − x)n−1(y1,1 − z)a−1

(y1,1 − x)a+n−1
A0(dy1,1).

Now, if we find that infx∈C(n) f
M

(n)
1 |M(n)

0 ,Y1,1,E
(z) ≥ p0(z), where p0(z) is some density,

then
ε0 :=

∫
R
p0(z)dz > 0

implies

p1(x,A) ≥ %ε0

∫
A

p0(z)
ε0

dz = ε

∫
A

p0(z)
ε0

dz, A ∈ R, (3.4.14)
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where ε := %ε0. Observe that for any η < 1/2, if

S1 :=
{

(z, y) ∈ R2 : z < −K(λ)(n),
z

η
+K(λ)(n)

(
1
η
− 1
)
< y < z

}
,

and
S2 :=

{
(z, y) ∈ R2 : z > K(λ)(n), z < y <

z

η
−K(λ)(n)

(
1
η
− 1
)}

,

we have∫
R

inf
x∈C(n)

f
M

(n)
1 |M(n)

0 ,Y1,1,E
(z)dz ≥

∫
S1

ηn−1 Γ(a+ n)
Γ(a)Γ(n)

(z − y1,1)a−1

(x− y)a
A0(dy1,1)dz

+
∫
S2

ηn−1 Γ(a+ n)
Γ(a)Γ(n)

(y1,1 − z)a−1

(y − x)a
A0(dy1,1)dz

≥
∫
S1

ηn−1 Γ(a+ n)
Γ(a)Γ(n)

(z − y1,1)a−1

(K(n)(λ)− y)a
A0(dy1,1)dz

+
∫
S2

ηn−1 Γ(a+ n)
Γ(a)Γ(n)

(y1,1 − z)a−1

(y −K(n)(λ))a
A0(dy1,1)dz,

which is defined to be ε0. Therefore, if

p0(z) :=
∫

(z/η+K(n)(λ)(1/η−1),z)
ηn−1 Γ(a+ n)

Γ(a)Γ(n)
(z − y1,1)a−1

(K(n)(λ)− y)a
A0(dy1,1)1(−∞,−K(λ)(n))(z)

+
∫

(z,z/η−K(n)(λ)(1/η−1))
ηn−1 Γ(a+ n)

Γ(a)Γ(n)
(y1,1 − z)a−1

(y −K(n)(λ))a
A0(dy1,1)1(K(λ)(n),+∞)(z)

then condition (3.4.14) is verified and

ε = (1− sup(α0({x})))
(∫

S1

ηn−1 Γ(a+ n)
Γ(a)Γ(n)

(z − y1,1)a−1

(K(n)(λ)− y)a
A0(dy1,1)dz (3.4.15)

+
∫
S2

ηn−1 Γ(a+ n)
Γ(a)Γ(n)

(y1,1 − z)a−1

(y −K(n)(λ))a
A0(dy1,1)dz

)
.

Once ε has been determined, we can use the minorization to establish rate of geometric
convergence of the Markov chain {M (n)

m ,m ≥ 0}. In paticular we can apply results in
Section 4 of Guglielmi and Tweedie [81] to recover the actual bound on on ‖pm(x, ·) −
M (·)‖.

We first consider the geometric ergodicity under the condition of “one side” parameter
α and stochastic monotonicity. Suppose that the interval [L,U ] on one side or the other:
for convenience, assume that −∞ < L. Then the set [L,+∞) is again absorbing and
we can restrict attention to this set. We will use the drift condition in (3.4.7) and also
the stochastic monotonicity of Theorem 3.4.1. We take C = [L,K(n)(λ)] and apply the
results of Roberts and Tweedie [167] to the Markov chain {M (n)

m ,m ≥ 0} in this case. Take
d := 1 +K(n)(λ), and ε as defined in (3.4.15). We define

J := d+ λ−1(b− ε)
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η :=
log(J/(1− ε))

log(λ−1)

ζ(x) := V (x)M ((−∞, x]) +
∫

(z,+∞)
V (z)M (dz)

ξ(x) :=
log(ζ(x))
log(λ−1)

With these values we have

Theorem 3.4.2. Suppose E[|Y1,1|] < +∞ and let M0 = x ∈ [L,+∞). Then

i) if J < 1, then for m > ξ(x) + η(1− ε)/(λη − (1− ε)),

||pm(x, ·)−M (·)|| ≤ ζ(x)
ε

1− J
λm

ii) if J ≥ 1, and ρ = (1− ε)η−1
, for m > ξ(x) + η(1− ε)/ε

||pm(x, ·)−M (·)|| ≤ ζ(x)log(ρ)/ log(λ) eε(m− ξ(x) + η)
η

ρm

iii) if J ≥ 1, then for any 1 > w > ρ = (1− ε)η−1

||pm(x, ·)−M (·)|| ≤ (1− (1− ε)/w)w−ξ(x)

1− (1− ε)wη
wm

Proof. i) and ii) are a direct corollary of Theorem 2.2 in Roberts and Tweedie [167]. For
iii), we can use the same method of proof as in that theorem, but use Equation 33 in
Roberts and Tweedie [166] rather than Theorem 5.1 of Roberts and Tweedie [166].

We observe that ζ(x) is generally unknown, even if it can bounded by

ζ(x) ≤ V (x) +
∫

R
V (z)M (dz) ≤ V (x) +

b

1− λ
< +∞ (3.4.16)

as noted by Roberts and Tweedie [167]. This bound is very rough and in many cases it
might be better to estimate ζ(x) by

Zm
∗

V = V (x)
1
m

m∗∑
i=1

1(−∞,x](Mi) +
1
m

m∑
i=1

1(x,+∞)(Mi)(1 + |Mi|)

for m big enough, using the Law of Large Numbers for Markov chains.
We now consider the geometric rate of convergence and other rate of convergences when

the parameter α has doubly infinite support. When α has support that is unbounded on
both side, we cannot use the stochastic monotonicity results and we turn to the results
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on Roberts and Tweedie [166]. There are two different approaches given in that paper.
First, we can use the results of Theorem 5.1 and Theorem 5.2 of Roberts and Tweedie
[166]. As they show, we can construct a bivariate test function h(x, y) := (V (x)−V (y))/2,
which satisfies the drift condition (for the bivariate kernel denote P2 and the test set
C

(n)
2 = C(n) × C(n))

P2h ≤ λ2h+ b21C(n)
2

where
λ2 := λ+

2
2(1 + d)

, b2 :=
b(1 + 2d)

2 + 2d
. (3.4.17)

For λ2 < 1 we require d = 1 +K(n)(λ) > b/2(1− λ)− 1. The definition of K(n)(λ) shows
that if we choose λ close enough to the minimal value a/a + n then this can always be
achived although the resulting set C(n) may ger to be somewhat large and this might
result in ε becoming unacceptably small. With these values we now construct

J2 := d+ λ−1
2 (b2 − ε)

η2 :=
log(J2/(1− ε))

log(λ−1
2 )

ζ2(x) := V (x)M ((−∞, x]) +
∫

(z,+∞)
V (z)M (dz)/2

ξ2(x) :=
log(ζ2(x))
log(λ−1

2 )

Following Roberts and Tweedie [166] let m
′

:= m− ξ2(x) and define β̂m as

β̂m =


λ−1

2 J2 < 1

(1− ε)−1/η2(1 + η2/m
′
)−1/η2 J2 ≥ 1

As corollary of Theorem 5.1 and of Equation 33 in Roberts and Tweedie [166] we then
have the general bounds.

Theorem 3.4.3. Suppose E[|Y1,1| < +∞] Then,

(i) if J2 < 1, then for m > ξ2(x) + η2(1− ε)/(λη2
2 − (1− ε)),

||pm(x, ·)−M (·)|| ≤ ζ2(x)
1− λ2(1− ε)

1− J2
λm2

(ii) if J2 ≥ 1, then for m > ξ2(x) + η2(1− ε)/ε

||pm(x, ·)−M (·)|| ≤ (1− β̂n(1− ε))

(
1 +

m
′

η2

)
(β̂m)−m

′



84 3. Some developments on the Feigin-Tweedie Markov chain

(iii) if J2 ≥ 1, then for any 1 > w > ρ = (1− ε)η
−1
2

||pm(x, ·)−M (·)|| ≤ (1− (1− ε)/w)w−ξ2(x)

1− (1− ε)wη2
wm

Note again that in these bounds we need the value ζ2(x). This can be bounded, again
inefficiently in many contexts, by V (x)+b/(1−λ)/2; alternatively it could be estimated by
the Law of Large Numbers using the sum V (x) +

∑n
i=1 V (Mi)/n. As a second approach,

from Theorem 4.2 of Roberts and Tweedie [166], we have

Theorem 3.4.4. The partial sums of the transient laws converge to to Mα with a bound
given by∣∣∣∣∣
∣∣∣∣∣ 1
m

m∑
k=1

pm
∗
(x, ·)−M (·)

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

m

{
2 +

(log(V (x)) + log(b/1− λ) + 2/ε log(J/1− ε))
log(λ−1)

}
(3.4.18)

Although this is not a bound on geometric convergence, it still serves the purpose
from the point of simulations. If we set m large enough that the right side of (3.4.18) is
small enough to meet our approximation criteria, then we can draw from the distribution
m−1

∑
1≤i≤m p

m∗(x, ·) by first drawing a value of m∗ uniformly in the range {1, 2, . . . ,m}
and then drawing from the resultant distribution pm

∗
(x, ·).

Using the above results, M can be estimate by generating from the Markov chain M̃m,
with m fixed, and the approximation error between the empirical distribution function of a
sample from M

(n)
m and the distribution function M decreases geometrically. In particular

we can approximate M using the empirical distribution of a sample of size k from the
m-th step distribution of the approximating Markov chain {M (n)

m ,m ≥ 0}, starting from
any point x. Using the same notation of Guglielmi and Tweedie [81] we denote by Mm,x

the distribution of M (n)
m given M̃0 = x and by Mm,x

k the empirical distribution of a sample
of size k from the distribution of M (n)

m given M̃0 = x. Then, for any fixed n ∈ N

sup
t∈R
|Mm,x

k (t)−M (t)| ≤ sup
t∈R
|Mm,x

k (t)−Mm,x(t)|+ sup
t∈R
|Mm,x(t)−Mα(t)|

As regard the first term on the right side, there are some inequality to handle it. Since
our purpose is to give a comparison with respect to the results obtained in Guglielmi and
Tweedie [81] we use the Dvoretzy-Kiefer-Wolfowitz inequality. If F is any distribution
function on R, and Fk is the empirical distribution of a sample of size k from F , then this
inequality states that

P
(

sup
x
|Fk(x)− F (x)| < s√

k

)
≥ 1− 58e2s2 s > 0
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(see for instance Serfling [172]). As regard the second term on the right is obviously less
than ||pm(x, ·) −M (·)||, which can be bounded as in (3.4.5) under appropriate circum-
stances.

Here we map out some chains for particular choices of α0. In particular, we highlight
the known and obvious result that the convergence of the Markov chain {M (n)

m ,m ≥ 0}
improves as n increases.

Example 3.4.1. Let α0 be a Uniform distribution on (0, 1) and let a be the total mass.
In this case E[|Y1,j |] = 1/2 so that for any fixed n, the chain will be geometrically ergodic;
moreover it can be proved that (0, 1) is small so that the chain is uniformly ergodic. When
a = 1, Guglielmi and Tweedie [81] showed that the convergence of {Mm,m ≥ 0} is a very
good and there is no need to consider the chain with n > 1. We consider the cases a = 10,
50 and 100, and for each of them we run the chain for n = 1, 2, 10 and 20.

Figure 3.1: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the Uniform distribution on

(0, 1), a = 10 and n = 1 (solid blue line), n = 2 (dashdot red line), n = 10 (dashed magenta line)
and n = 20 (dotted black line).

We found that the traceplots do not depend on the initial values. In Figures 3.1, 3.2
and 3.3 we give the traceplots of M (n)

m when M
(n)
0 = 0; observe that convergence improves

as n increses and it is more evident for larger a. When a = 50 the convergence of the
chain {M (n)

m ,m ≥ 0} seems to happen before m = 50. When a = 100 the convergence of
the chain for n = 1 seems to occur at about m = 350, while m = 20 the convergence is at
about a value between 50 and 75.

Example 3.4.2. Let α0 be a Gaussian distribution with parameter (0, 1) and let a = 10.
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Figure 3.2: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the Uniform distribution on

(0, 1), a = 50 and n = 1 (solid blue line), n = 2 (dashdot red line), n = 10 (dashed magenta line)
and n = 20 (dotted black line).

Figure 3.3: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the Uniform distribution on

(0, 1), a = 100 and n = 1 (solid blue line), n = 2 (dashdot red line), n = 10 (dashed magenta line)
and n = 20 (dotted black line).
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The behaviour of Mm,m ≥ 0 has been considered in Guglielmi and Tweedie [81].

Figure 3.4: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the Gaussian distribution

with parameter (0, 1), a=10, n = 1 and M
(1)
0 = −3 (dashed red line), M (1)

0 = 0 (solid blue line)
and M

(1)
0 = 3 (dotted black line).

Figure 3.5: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the Gaussian distribution

with parameter (0, 1), a=10, n = 10 and M
(1)
0 = −3 (dashed red line), M (1)

0 = 0 (solid blue line)
and M

(1)
0 = 3 (dotted black line).
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Figures 3.4, 3.5 and 3.6 displays the traceplots of M (n)
m ,m ≥ 0 for three different initial

values (M (n)
0 = −3, 0, 3). Also in this case, it is clear that the convergence improves as n

increases.

Example 3.4.3. Let α0 be distributed according to a Cauchy standard distribution and
let a > 1. In this case it is known that M is the Cauchy standard distribution. Of course,
E[|Y1,j |s] < +∞ for any 0 < s < 1, so that the Markov chain {M (n)

m ,m ≥ 0} is geometri-
cally ergodic for any fixed n. We consider the cases a = 10, 50 and 100, and for each of
them we run the chain for n = 1, 2, 10 and 20.

We checked that the empirical distribution from M
(1)
m for m = well approximates the

exact distribution.

3.5 On a Volterra equation associated to the mean of a

Dirichlet process

In Section 3.5 we consider consider the problem of approximating the distribution M

of the mean M of a Dirichlet process with parameter α. In particular we used the the
empirical distribution of a sample from the m-th stepdistribution of the approximating
Markov chain {Mm,m ≥ 0} starting from any point x ∈ R. An exact expression of the
distribution function M was obtained by Cifarelli and Regazzini [18]. Their procedure is

Figure 3.6: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the Gaussian distribution

with parameter (0, 1), a=10, n = 20 and M
(1)
0 = −3 (dashed red line), M (1)

0 = 0 (solid blue line)
and M

(1)
0 = 3 (dotted black line).
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Figure 3.7: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the standard Cauchy distri-

bution, a = 10 and n = 1 (solid blue line), n = 2 (dashdot red line), n = 10 (dashed magenta line)
and n = 20 (dotted black line).

Figure 3.8: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the standard Cauchy distri-

bution, a = 50 and n = 1 (solid blue line), n = 2 (dashdot red line), n = 10 (dashed magenta line)
and n = 20 (dotted black line).
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based on the use of the generalized Stieltjes transform, of order a, of M that we denote
by S .

Let P be a Dirichlet process on R with parameter α ∈ AX where α is a finite measure
and denote by A : α((−∞, x]). Then M =

∫ 0
−∞ F (·, x)dx +

∫ +∞
0 (1 − F (·, x))dx where

F (·, x) := P (·, (−∞, x]) is an extended real r.v. defined on (Ω,F ). The starting point in
Cifarelli and Regazzini [18] is the explicit expression for the generalized Stieltjes transform
of the truncated r.v. U(τ, T ) :=

∫ T
τ (1−F (·, x))dx, τ < T , which yields S by the well known

relation between U(τ, T ) and M . First of all, they observe that {F (t),−∞ < t < +∞} is
a Markov process and by the Markov property they are able to find a recursive relation
for the moments µ(τ, F (τ);T ) of the conditional distritution of U(τ, T ) given F (τ). More
precisely, it turns out that

µn(τ, F (τ);T ) = (1− F (τ))nµ∗n(τ, T )

where µ∗n(τ, T ) are positive constants, recursively defined. If MT (τ, F (τ); ·) is the distri-
bution function of U(τ, T ) given F (τ), and GT is the integral transform of MT (τ, F (τ); ·)
defined by

GT (τ ; z) :=
∫

[0,+∞)
(1 + (yz/(1− x)))A(τ)−adMT (τ, x; dy)

for z ≥ 0, x ∈ [0, 1] then for each n, the n-th coefficient of the power series expansion of
GT (τ ; ·) contains µ∗n(τ, T ); therefore it can be checked that GT satisfies a first order partial

Figure 3.9: Traceplots of the Markov chain {M (n)
m ,m ≥ 0} with α0 the standard Cauchy distri-

bution, a = 100 and n = 1 (solid blue line), n = 2 (dashdot red line), n = 10 (dashed magenta
line) and n = 20 (dotted black line).
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differential equation, whose solution is explicitely given as a function of α. Besides, since
the moments of U(τ, T ) are linked to µ∗n(τ, T ) by E[U(τ, T )]n = bnµ

∗
n(τ, T ) for all n ∈ N,

where bn are suitable coefficients, GT can be expressed as a power series with coefficients
depending on E[U(τ, T )]n. Thus,∫

[0,+∞)

1
(s+ y)a

MT (τ ; dy) =
1
sa

e−
R T
τ (a−A(v)/s+v−τ)dv (3.5.1)

denoting distribution function of U(τ, T ) by MT (τ ; ·), so that the left hand side of (3.5.1)
represents the generalized Stieltjes transform of MT (τ ; ·).

In Guglielmi [80] a simple and direct procedure to calculate S , when the support of
α is bounded from below, is proposed. In particular, when the support of α is bounded
from below, using the distributional equation (3.1.1) for the Dirichlet process on R, a first-
type Volterra equation for the Laplace transform m of M , is provided. From this Volterra
equation, it follows that the Laplace transform of xa−1m(x), say f(t;m), that is equal
to the generalized Stieltjes transform of order a of M , satisfies the first order ordinary
differential equation

− d

dt
f(t;m) = f(t;m)

∫ +∞

0
e−txα̂(x)dx t > −τ (3.5.2)

whose solution is explicitely given. Then, this expression is extended to a more general
case, when α has support bounded from below, if almost all trajectories of P are proba-
bility measures with finite expectation.

In this section we consider the same approach proposed by Guglielmi [80] using the
more general distributional equation (3.1.5) for the Dirichlet process on R. When the sup-
port of α is bounded from below, using the distributional equation (3.1.5) we recover a
new second-type homogeneous Volterra equation for the Laplace transform m of M . In
particular, from this Volterra equation, it follows that the Laplace transform of xa−1m(x),
satisfies a first order ordinary differential equation whose associated homogeneous differ-
ential equation is somehow reminiscent of (3.5.1).

For any n ∈ N we denote by Ã the distribution function of the r.v.
∑

1≤j≤n qjYj

and in particular, we recall that conditionally to Y1, . . . , Yn, Ã is the distribution func-
tion of the mean of a Dirichlet process with parameter

∑
1≤j≤n δYj . For any t ∈ R, let

α̂ :=
∫

X e−txÃ(dx), m(t) :=
∫

X e−txM (dx) and let S be the support of α.

Proposition 3.5.1. If −∞ < τ ≤ inf S, supS ≤ T <∞, the Laplace transform m of M
satisfies the following second-type Volterra equation

tm(t) =
Γ(n+ a)
Γ(n)Γ(a)

n−1∑
k=0

(
n− 1
k

)
(−1)k

∫ t

0

(x
t

)a+k−1
m(x)α̂(t− x)dx (3.5.3)

for t ∈ R.
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Proof. Moving from the distributional equation (3.1.5) which has as unique solution the
Dirichlet process with parameter α, we can obtain the following equation for the mean of
the Dirichlet process

M =
∫

X
xP (·, dx)

=
∫

X
xθ

n∑
j=1

qjδYj (dx) +
∫

X
x(1− θ)P (·, dx)

= θ
n∑
j=1

qj

∫
X
xδYj (dx) + (1− θ)

∫
X
xP (·, dx)

= θ
n∑
j=1

qjYj + (1− θ)M.

If we define θ̃ = 1− θ, then

m(t) = E[e−t((1−θ̃)
Pn
j=1 qjYj+θ̃M)]

=
Γ(n+ a)
Γ(n)Γ(a)

∫ 1

0
xa−1(1− x)n−1

∫
R

E

e−t((1−y)x+yM)|
n∑
j=1

qjYj = x, θ̃ = y

 Ã(dx)dy

=
Γ(n+ a)
Γ(n)Γ(a)

∫ 1

0
ya−1(1− y)n−1m(ty)α̂(t− ty)dy

=
Γ(n+ a)
Γ(n)Γ(a)

n−1∑
k=0

(
n− 1
k

)
(−1)k

∫ t

0

(u
t

)a+k−1 1
t
m(u)α̂(t− u)du.

Equation (3.5.3) is a second-type Volterra equation of the form with factor Γ(n +
a)/Γ(n)Γ(a) and kernel

K(t, x) =
n−1∑
k=0

(
n− 1
k

)
(−1)k

(x
t

)a+k−1
α̂(t− x).

It can be easly checked that if we set n = 1 we obtain the first-type Volterra equation
for the Laplace transform m of M proposed by Gugliemi [80], i.e. a first-type Volterra
equation with kernel

K(t, x) =
(x
t

)a−1
α̂(t− x).

Then, we can consider the following result.

Proposition 3.5.2. If −∞ < τ ≤ inf S, supS ≤ T < +∞, the generalized Stieltjes
transform of order a of M is∫

[0,+∞)

1
(x+ s)a

M(d(τ + x)) = e−
R
[0,T−τ) log(s+x)A(d(τ+x))

s > 0. (3.5.4)
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Proof. From Equation (3.5.3) we have∫ +∞

0
e−txxam(x)dx

=
Γ(a+ n)
Γ(a)Γ(n)

n−1∑
k=0

(−1)k
∫ +∞

0
e−txxa−1

∫ x

0

(v
x

)a+k−1
m(v)α̂(x− v)dvdx

=
Γ(a+ n)
Γ(a)Γ(n)

n−1∑
k=0

(−1)k
∫ +∞

0
e−txxa+k−1m(x)dx

∫ +∞

0
e−tuα̂(u)du

=
Γ(a+ n)
Γ(a)Γ(n)

∫ +∞

0
e−txxa−1m(x)dx

∫ +∞

0
e−tuα̂(u)du

+
Γ(a+ n)
Γ(a)Γ(n)

n−1∑
k=1

(
n− 1
k

)
(−1)k

∫ +∞

0
e−txxa+k−1m(x)dx

∫ +∞

0
e−tuα̂(u)du

i.e., for t > −τ

− d

dt

∫ +∞

0
e−txxa−1m(x)dx

=
Γ(a+ n)
Γ(a)Γ(n)

∫ +∞

0
e−txxa−1m(x)dx

∫ +∞

0
e−txα̂(x)dx

+
Γ(a+ n)
Γ(a)Γ(n)

n−1∑
k=1

(
n− 1
k

)
(−1)k

∫ +∞

0
e−txxa+k−1m(x)dx

∫ +∞

0
e−txα̂(x)dx

which is a first order ordinary differential equation whose associated homogeneous dif-
ferential equation is somehow reminiscent of (3.5.1). In particular, we can write the first
order ordinary differential equation as

− d

dt
f(t,m) = f(t,m)

Γ(a+ n)
Γ(a)Γ(n)

∫ +∞

0
e−txα̂(x)dx+

Γ(a+ n)
Γ(a)Γ(n)

n−1∑
k=1

(
n− 1
k

)
(−1)k

×
∫ +∞

0
e−txxa+k−1m(x)dx

∫ +∞

0
e−txα̂(x)dx

whose solution is

f(t,m) = f(t0,m)eS(t) +
Γ(a+ n)
Γ(a)Γ(n)

n−1∑
k=1

(
n− 1
k

)
(−1)k

∫ t

t0

eS(t)−S(w)

×
∫ +∞

0
e−wxxa+k−1m(x)dx

∫ +∞

0
e−wxα̂(x)dx

= f(t0,m)t−a(Γ(a+n)/Γ(a)Γ(n))e−(Γ(a+n)/Γ(a)Γ(n))
R
[t,τ ] log(1+x/t/t0+x)dA(x)

+
Γ(a+ n)
Γ(a)Γ(n)

n−1∑
k=1

(
n− 1
k

)
(−1)k

∫ t

t0

eS(t)−S(w)

×
∫ +∞

0
e−wxxa+k−1m(x)dx

∫ +∞

0
e−wxα̂(x)dx
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where
S(t) :=

Γ(a+ n)
Γ(a)Γ(n)

log(t−ae−
R
[t,τ ] log(1+x/t/t0+x)dA(x)).

Since as t→ +∞
f(t,m) = Γ(a)

∫
[τ,T ]

1
(t+ y)a

M(dy)→ 1

then

1 = lim
t→+∞

f(t0,m)eS(t) + lim
t→+∞

f(t0,m)
Γ(a+ n)
Γ(a)Γ(n)

n−1∑
k=1

(
n− 1
k

)
(−1)k

∫ t

t0

eS(t)−S(w)

×
∫ +∞

0
e−wxxa+k−1m(x)dx

∫ +∞

0
e−wxα̂(x)dx

=
f(t0,m)

Γ(a)
e

R
[τ,T ] log(t0+x)A(dx)

.

In particular, as proved by Guglielmi [80], Equation (3.5.4) is true under more general
α, i.e. when the support of α is only bounded from below.

Proposition 3.5.3. (cfr. Guglielmi [80]) If −∞ < τ ≤ inf S, and

P
({

ω :
∫

X
|x|P (ω, dx) < +∞

})
= 1

then ∫
[0,+∞)

1
(s+ x− τ)a

M(dx) = e−
R
[τ,+∞) log(s+x−τ)A(dx)

s > 0. (3.5.5)

Expression (3.5.5) is equal to the one obtained by Cifarelli and Regazzini [18] from
(3.5.1).

3.6 Discussion

In this chapter we defined and we investigated a new measure-valued Markov chain
{P (n)

m ,m ≥ 0} having as unique invariant measure the law of a Dirichlet process. For
any fixed n ∈ N, the Markov chain is defined via the recursion

P (n)
m = θm

n∑
j=1

qm,jδYm,j + (1− θm)P (n)
m−1 m ≥ 1

which generalizes the recursion

Pm = θm

n∑
j=1

δYm, + (1− θm)Pm−1 m ≥ 1
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originally used by Feigin and Tweedie [58] to define a measure-valued Markov chain
{Pm,m ≥ 0} having as unique invariant measure the law of a Dirichlet process. In partic-
ular, the Markov chain {Pm,m ≥ 0} sits in the large class of Markov chains indexed by an
integer n ∈ N {{P (n)

m ,m ≥ 0} : n ∈ N} and they worked solely on the case n = 1, where n
can be viewed as a sample size.

For any real-valued measurable function g : X → R we proved that the linear func-
tional Markov chain {G(n)

m ,m ≥ 0} associated to {P (n)
m ,m ≥ 0} keeps all the properties

of the linear functional Markov chain {Gm,m ≥ 0} associated to {Pm,m ≥ 0}. We used
this properties in order to study the rate of convergence in total variation of the mean
functional Markov chain {M (n)

m ≥ 0} to the mean functional of a Dirichlet process and in
particular we observed that the upper bounds of the rate of convergence depends of the
parameter n: as n increases the mean functional Markov chain{M (n)

m ,m ≥ 0} converges
geometrically faster (in total variation) to the mean functional of a Dirichelt process than
the Markov chain {Mm,m ≥ 0}.

Recently a multidimensional version of the Markov chain {Gm,m ≥ 0} has been pro-
posed by Erhardsson [38] and applied to develop a new method to carry out Bayesian
inference for the inverse problem of estimating a finite measure µ from noisy observations
of a finite number of integrals. In particular, let the function gi : X → R for i = 1, . . . , n,
be measurable and linearly independent, and define ḡ : X → Rn by ḡ = (g1, . . . , gn). Let
{Pm,m ≥} the Markov chain defined via recursion (3.1.2) and let {Ḡm,m ≥ 0} be the
Rn-valued Markov chain defined via the recursion

Ḡm = θmYm + (1− θm)Ḡm−1 m ≥ 1 (3.6.1)

where Ḡm :=
∫

X ḡ(x)Pm(·, dx) for m ≥ 0. Then in Erhardsson [38] the following theorem
is proved

Theorem 3.6.1. (cfr. Erhardsson [38]) Let α ∈ AX be a finite measure and let P be a
Dirichlet process with parameter α. Let gi : X→ R be measurable for each i = 1, . . . , n and
define ḡ : X → Rn by g = (g1, . . . , nn). Assume α ◦ g−1 is not supported on a hyperplane
of dimension n− 1, and that the following condition is satisfied∫

X
log(1 + ||g(x)||)α(dx) < +∞

where || · || denotes the Euclidean distance in Rn. Define the Rn-valued Markov chain
{Ḡm,m ≥ 0} as in (3.6.2). Then {Ḡm,m ≥ 0} is positive Harris recurrent with stationary
distribution the law of Ḡ :=

∫
X ḡ(x)P (·, dx).

We conjecture that for any n ∈ N, the results in Theorem 3.6.1 follows also for the
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Rn-valued Markov {Ḡ(n•)
m ,m ≥ 0} defined via the recursion

Ḡ(n)
m = θm

n∑
j=1

Ym,j + (1− θm)Ḡ(n)
m−1 m ≥ 1 (3.6.2)

where Ḡ(n)
m :=

∫
X ḡ(x)P (n)

m (·, dx) for m ≥ 0 and {P (n)
m ,m ≥} is the Markov chain defined

via recursion (3.2.1). As observed by Erhardsson [38], since the law of α0 ◦ g−1 does not in
general have a density with respect to the Lebesgue measure on Rn, then it is not possible
to use directly Proposition 7.1.5 in Meyn and Tweedie [141] in order to to prove that the
Markov chain is φ-irriducible. In particular, the crucial point is to prove that the Markov
chain {Ḡ(n•)

m ,m ≥ 0} is a T -chain, then from Proposition 6.2.1 in Meyn and Tweedie
[141] it follows that {Ḡ(n•)

m ,m ≥ 0} is φ-irriducible and from Theorem 6.2.5 in Meyn and
Tweedie [141] if follows that all compact subsets of Rn are small. The rest of the proof
follows the same argument used in Theorem 3.2.3.



4
On a Fleming-Viot process and

Bayesian nonparametrics

Fleming-Viot processes are a wide class of measure-valued diffusion processes which often
arise as large population limits of so-called particle processes. Here we invert the procedure
and show that a countable population process can be derived directly from the neutral dif-
fusion model, with no arbitrary assumptions. We study the atomic structure of the neutral
diffusion model, and elicit a finite dimensional particle process from the time-dependent
random measure, for any chosen population size. The static properties are consequences
of the fact that its stationary distribution is the Dirichlet process, and rely on a new rep-
resentation for it. The dynamics are derived directly from the transition function of the
neutral diffusion model. As by-product we also obtain a new constructive definition of the
Dirichlet process.

4.1 Introduction

Bayesian nonparametric statistics and population genetics have a common interest in
providing suitable countable representations for the law of random probability measures
(r.p.m.s). The most studied class of r.p.m.s in Bayesian nonparametrics is the Dirichlet
process, whose characterization and properties were presented by Ferguson [61] and Fer-
guson [62] and further investigated by Blackwell [9] and by Blackwell and MacQueen [10].
Let (X, T ) be the usual Polish space endowed with the Borel σ-field X and consider the
following associated spaces of measures AX and PX. In particular, AX is the space of lo-
cally finite non-negative measures on (X,X ) endowed with the σ-field AX generated by
the vague topology V which makes (AX,V) a Polish space, and PX is the space of probabil-
ity measures on (X,X ) endowed with its σ-field PX generated by the weak convergence
topology W which makes (PX,W) a Polish space. As shown by Blackwell and MacQueen



98 4. On a Fleming-Viot process and Bayesian nonparametrics

[10], the Dirichlet process with parameter ν1 can be alternatively defined as the r.p.m. P
derived as a.s. weak limit of the empirical distribution of a sequence {Xn, n ≥ 1} generated
by the sampling scheme

P(Xn+1 ∈ · |X1, . . . , Xn) =
1

θ + n
ν0(·) +

1
θ + n

n∑
j=1

δXj (·) n ≥ 1. (4.1.1)

where ν0 := ν/θ. The sampling scheme (4.1.1) generalizes the Pólya-urn schem and it
is usually called the Blackwell-MacQueen Pólya-urn scheme. In particular, Blackwell and
MacQueen [10] showed that a sequence of observations {Xn, n ≥ 1} drawn according
to the sampling scheme (4.1.1) is equivalent in distribution to a sequence {Xn, n ≥ 1} of
independent and identically distributed (i.i.d.) observations from P , where P is a Dirichlet
process with parameter ν. A sequence {Xn, n ≥ 1} generated by the Blackwell-MacQueen
Pólya-urn scheme (4.1.1) is exchangeable then, denoting by Q the law of a Dirichlet process
P with parameter ν, by the de Finetti representation theorem for any n ∈ N and for any
collection of sets A1, . . . , An ∈X

P(X1 ∈ A1, . . . , Xn ∈ An) =
∫
PX

n∏
i=1

P (·, Ai)Π(dP )

where, as n→ +∞
en(X1, . . . , Xn)⇒ P a.s.-P (4.1.2)

and in particular {en(X1, . . . , Xn), n ≥ 1} is a random sequence of de Finetti measures
with coordinates in PX.

In Population genetics, the Dirichlet process arises as the stationary distribution of a
particular measure-valued diffusion process, the so-called neutral diffusion model, which
describes the evolution of the allele frequencies of a population of genes under the hy-
pothesis of neutral, non-recurrent, parent independent mutation (see Ethier and Kurtz
[42]). The neutral diffusion model has continuous sample paths which are functions from
[0,+∞) to PX and it is characterized in terms of the infinitesimal generator

(Lϕ)(µ) =
k∑
i=1

〈Aif, µk〉+
1
2

∑
1≤j 6=i≤k

(〈Φ(k)
j,i f, µ

k−1〉 − 〈f, µk〉) (4.1.3)

where the domain D(L) is taken to be the set of all bounded functions on PX of the form
ϕ(µ) = 〈f, µk〉, for f a bounded measurable function on Xk, 〈f, µ〉 denoting

∫
X fdµ and

µk being an k-fold product measure. Here Ai is the mutation operator

Af(x) :=
1
2
θ

∫
(f(z)− f(x))ν0(dz) (4.1.4)

1In order to have a notation consistent with respect to the notation in population genetics literature,

in this chapter we use the symbol ν instead of the usual symbol α to denote the parameter of the Dirichlet

process and the symbol θ instead of the usual symbol a to denote to total mass of α.
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applied to the i-th argument of the function f , where θ ∈ R+ and ν0 ∈ PX is the non-
atomic probability measure obtained by the normalization ν/θ. Also we consieder the
definition (Φ(k)

j,i f)(x1, . . . , xk) := f(x1, . . . , xi−1, xj , xi+1, . . . , xk)
The transition density of the neutral diffusion model is provided by Ethier and Griffiths

[41] in terms of a mixture of Dirichlet processes, showing an interesting connection with
the Bayesian framework. This is given by

p(t, µ, dν) =
∑
n≥0

dn(t)
∫

Xn
Π

(
dν|θν0 +

n∑
i=1

δXi

)
µn(dx1, . . . , dxn) (4.1.5)

where µn denotes the n-fold product measure and Π( · |θν0 +
∑

1≤i≤n δXi) denotes the law
of a Dirichlet process, conditional on the observations X1, . . . , Xn each one sampled from
µ. Moreover, in Equation (4.1.5), dn(t) := P(Dt = n), where {Dt, t ≥ 0} is a death process
with rate

λk =
1
2
k(θ + k − 1) (4.1.6)

and such that D0 = +∞ almost surely. In particular, in Tavarè [179] an explicit expression
for dn(t) is given for n ≥ 1

dn(t) =
∑
k≥n

(−1)k−n
(
k

n

)
(θ + n)(k−1)↑1(k!)−1γk,t,θ (4.1.7)

where
γk,t,θ := (θ + 2k − 1)e−λkt

and
d0(t) = 1−

∑
k≥1

(−1)k−1(θ)(k−1)↑1(k!)−1γk,t,θ.

where (x)y↑1 stands for the Pochhammer symbol for the ascending factorial of x of order
y (see Appendix A). Further connections between the Bayesian nonparametric frame-
work and the neutral diffusion model are recently established. In particular Walker et al.
[193] provided a construction of the neutral diffusion model via its transition function
using ideas on Gibbs sampler based Markov processes. Ruggiero and Walker [171] pro-
pose a construction of the neutral diffusion model with selection based on a generalised
Blackwell-MacQueen Pólya urn scheme, obtained from the Bayesian hierarchical mixture
model introduced by Lo [128].

In the first part of this chaper we define a particular continuous time version of the
generalized Feigin-Tweedi Markov chain defined in Chapter 3 and we prove that as its
parameter n→ +∞ it converge in distribution (in the Skorohod topology) to the neutral
diffusion model. Thus, the construction provides a countable representation of the neutral
diffusion model such that the n-sized population version of the measure-valued process
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has the same stationary distribution as the limiting process, which does not hold for the
process of empirical measures. More specifically, after defining a pure jump-type Xn-valued
Markov process based on the Blackwell-MacQueen Pólya-urn scheme, we define a contin-
uous time version of the n-idexed Feigin-Tweedie Markov chain, such that at any time
t ≥ 0 such continuous time process is distributed according to a posterior Dirichlet pro-
cess conditional on the pure jump-type Xn-valued Markov process at time t. The proposed
continuous continuous time version of the generalized Feigin-Tweedie does converge, as its
parameter n→ +∞, to the neutral diffusion model, and in addition its invariant measure
is the law of a Dirichlet process for every size of the population. This offers a slightly dif-
ferent perspective on the theoretical side of the neutral diffusion model, by making more
explicit the role of the measure-valued random element which drives the exchangeable se-
quence of individuals with respect to the relative frequencies. Furthermore, this approach
can be useful when handling a finite population approximation of the neutral diffusion
model for simulation and inference purposes. The classical approach of taking the process
of empirical measures of the particle types is recovered in a special case.

The Fleming-Viot processes, introduced by Fleming and Viot [70] represent a general
class of measure-valued diffusion processes (or superprocesses or diffusion processes in the
Kingman symplex) which includes the neutral diffusion model as particular case. In par-
ticular, the Fleming-Viot processes are generally viewed as limit approximations of the
behavior of finite populations of say n alleles, as n goes to infinity. The model of reproduc-
tion of the n-alleles population is often represented by a n-dimensional particle process
{(Xt,1, . . . , Xt,n), t ≥ 0} with sample paths on the space D[0,+∞)

Xn of càdlàg functions2

from [0,+∞) to Xn. In this case {(Xt,1, . . . , Xt,n), t ≥ 0} is a countable representation of
the Fleming-Viot process {µt, t ≥ 0} in the sense that the process of allele frequencies
{et,n(Xt,1, . . . , Xt,n), t ≥ 0}, where at any t ≥ 0

et,n(Xt,1, . . . , Xt,n) :=
1
n

n∑
j=1

δXt,j

converges in distribution, in the Skorohod topology to {µt, t ≥ 0} as n grows to infinity.
A general theory for a countable representation of Fleming-Viot processes is provided by
Donelly and Kurtz [29] and by Donelly and Kurtz [30].

In the second part of this chapter we consider the opposite problem. Given a measure-
valued diffusion process, and in particular given the neutral diffusion model, we inves-
tigate how a particle process should be in order to be a suitable representation for a
finite-population extract from the limiting diffusion {et,∞, t ≥ 0}. The main point is of

2A càdlàg function is a function that is right continuous and has a left limit. The acronym càdlàg comes

from the French “continue droite, limite gauche”.
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course what suitable means. A reasonable criterion seems be that the defining properties
of the particle process be derived only from the intrinsic features of the neutral diffusion
model itself, with no further arbitrary assumptions. In our case, the static properties of
the particle process will be consequences of the fact that the stationary distribution of the
neutral diffusion model is the Dirichlet process. The dynamic properties will be derived
directly from the transition function (4.1.5) and its implications.

Here the focus is on the almost sure discreteness of the Dirichlet process. This sug-
gests that instead of adopting the usual approach by proposing a population process and
show that this converges in distribution to the measure-valued diffusion, we can invert
the procedure and derive the population process directly from the diffusion. That is, we
investigate the properties of the atoms which give the time-dependent random measure,
and show that for any chosen population size n ∈ N we can elicit n atoms from the random
measure; then their properties automatically define a particle process, each atom being a
particle, with sample paths in D[0,+∞)

Xn . When n grows to infinity the infinite population
process, summarized by its empirical distribution, is equivalent to the neutral diffusion
model. We can thus talk of a population process underlying the neutral diffusion model,
in the sense that all properties of the former are derived by the latter. Such constructive
approach brings new evidence, once again, of the key role played by Blackwell-MacQueen
urn schemes in explaining the fundamental structure of Ferguson-Dirichlet populations.

The chapter is organized as follows. Section 4.2 provides a general introduction on
the Fleming-Viot processes in population genetics. In particular we review some detailed
steps for the construction of the neutral diffusion models and its countable representation.
Section 4.3 describes a continuos time version of the n indexed Feigin-Tweedie Markov
chain introduced in Chapter 3. Section 4.4 states the main result in the finite case, which
is the most relevant here, that is for an arbitrary population size, which determines the
size of the finite dimensional particle process. In particular, the main result is derived by
a new constructive definition of the Dirichlet process which is used to elicit the particles
from the random measure. Section 4.5 provides some discussion and deals with the infinite
population case.

4.2 Fleming-Viot processes in population genetics

This section review the detailed steps for the construction of the neutral diffusion models as
special case of the Fleming-Viot process introduced by Fleming and Viot [70]. In particular,
we recall the countable representation of the neutral diffusion models originally proposed
by Donelly and Kurtz [29] and further developed by Donelly and Kurtz [30].

The neutral diffusion model in population genetics, in which each individual is of
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some type and the set X of the types is finite, has state space the finite dimensional
symplex ∆(X) :=

{
{pi, i ∈ X} ∈ (0, 1]X :

∑
i∈X pi = 1

}
where pi denotes the proportion of

the population that is of type i. Its infinitesimal generator is

L =
1
2

∑
i,j∈X

pi(δi,j − pj)
d2

dpidpj
+
∑
j∈X

(∑
i∈X

qi,jpi

)
d

dpj
(4.2.1)

where δi,j is the Kronecker delta and {qi,j , i, j ∈ X} is the infinitesimal matric for a Markov
process in X; for i 6= j, qi,j is interpreted as the intensity of a mutation from type i to type j.
In particular the domain of the infinitesimal generator L is D(L) = {F∆(X) : F ∈ C2(Rm)}
where C2(Rm) denotes the set of all twice-differentiable continuous function with value in
Rm.

Except for some technical requirements on {qi,j , i, j ∈ X}, the same description is valid
when X is countably infinite. One such example is the stepwise-mutation model proposed
by Otha and Kimura [147], in which X = Z and

qi,j =



θ/2 if j = i± 1

−θ if j = i

0 otherwise

ofr some θ ∈ R+.
The case in which X is uncountably infinite, however, requires a different approach.

The key idea, due to Fleming and Viot [70], is to topologize X by a topology T such that
(X, T ) is a Polish space endowed with the Borel σ-field X and to replace ∆(X) by PX, the
set of all probability measures on (X,X ) endowed with its σ-field PX generated by the
weak convergence topologyW which makes (PX,W) a Polish space. Then, (4.2.1) becomes

(Lϕ)(µ) =
1
2

∫
X

∫
X
µ(dx)(δx(dy)− µ(dy))

d2ϕ(µ)
dµ(x)dµ(y)

+
∫

X
µ(dx)A

(
dϕ(µ)
dµ(·)

)
(x) (4.2.2)

where
dϕ(µ)
dµ(x)

= lim
ε→0+

1
ε

(ϕ(µ+ εδx)− ϕ(µ))

and A is the generator of a Feller semigroup on C(X) where C(X) denotes the set of
all differentiable continuous function with value in X. In particular the domain of the
infinitesimal generator L is

D(L) = {ϕ : ϕ(µ) = F (〈f1, µ〉, . . . , 〈fm, µ〉), F ∈ C2(Rm), f1, . . . , fm ∈ D(A)}

for any m ∈ N, with 〈f, µ〉 :=
∫

X fdµ and the domain D(A) of the Feller semigroup A on
C(X) corresponds to a subspace of C(X). The resulting measure-valued diffusion process
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is reffered to as a Fleming-Viot process. The space X is called the type space and A is
known as the mutation operator. Terms corresponding to recombination and selection can
also be included in (4.2.2).

The Fleming-Viot process arises most naturally as the limit in distribution of certain
sequences of Markov chains occurring in population genetics known as Wright-Fisher mod-
els. The Wright-Fisher model is mathematically simpler than the Fleming-Viot process,
but less reasonable biologically. In a diploid population x1, . . . , xn of size n there are m
gametes and we consider the empirical distribution of the gametic types. It is unnecessary
to require that m be even, so let m ∈ N, and define the application em : Xm → PX by
em(x1, . . . , xm) := 1/m

∑
1≤i≤m δxi . The state space for this model is em(Xm) ⊂ PX. Given

µ ∈ PX, we define µ∗m ∈ PX2 and µ∗∗m , µ
∗∗∗
m ∈ PX by

µ∗m(dx× dy) :=
wm(x, y)µ2(dx× dy)

〈wm, µ2〉
(4.2.3)

µ∗∗m (dx
′
) :=

∫
X2

Rm((x, y), dx
′ × X)µ∗m(dx× dy) (4.2.4)

and
µ∗∗∗m (dx

′
) :=

∫
X
Qm(x, dx

′
)µ∗∗m (dx) (4.2.5)

where for any m ∈ N let wm be a postive, symmetric, bounded, Borel function on X2,
Rm((x, y), dx

′×dy′) be a one-step transition function on X×X 2 satisfying Rm((x, y), dx
′×

dy
′
) = Rm((y, x), dy

′×dx′) and let Qm(x, dx
′
) be a one-step transition function on X×X .

The functions wm, Rm andQm involve selection, recombination and mutation, respectively.
The Wright-Fisher model we are considering is a Markov chain having one-step transition
function pm(µ, dν) on em(Xm)×B(em(Xm)) given by

pm(µ, dν) =
∫

X
(µ∗∗∗)m(dx1 × · · · × dxm)δem(dν) (4.2.6)

where B(em(Xm)) is the Borel σ-field generated by em(Xm). The present formulation of
the model is from Ethier and Kurtz [42].

For any m ∈ N, let {ν(m)
τ , τ ∈ Z+} be a Wright-Fisher model. Under suitable condition

on wm, Rm and Qm and assuming weak convergence of initial distributions, it can be
shown that as n→ +∞

{ν(m)
bmtc, t ≥ 0} ⇒ {µt, t ≥ 0} (4.2.7)

where bmtc denotes the integer part on mt and where {µt, t ≥ 0} is diffusion process in
PX. Let Lm be the discrete generator of the n-th rescaled Markov chain {ν(m)

bmtc, t ≥ 0}

(Lmϕ)(µ) = m

∫
em(Xm)

(ϕ(ν)− ϕ(µ))pm(µ, dν) (4.2.8)
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where pm(µ, dν) is given by (4.2.6) and we regard (4.2.8) as being defined on all of PX,
not just on em(Xn). We restrict the attention to test functions ϕ of the form

ϕ(µ) = 〈f1, µ〉 · · · 〈fk, µ〉 (4.2.9)

where m ∈ N and f1, . . . , fk ∈ B(X) with B(X) the set of all bounded function with value
in X. By (4.2.6)

(Lmϕ)(µ) = m

∫
em(Xm)

(
k∏
i=1

〈fi, ν〉 −
k∏
i=1

〈fi, µ〉

)
pm(µ, dν) (4.2.10)

= m

(∫
Xm

k∏
i=1

〈fi, em〉(µ∗∗∗m )m(dx1 × · · · × dxm)−
k∏
i=1

〈fi, µ〉

)

= m

m−k ∫
Xm

m∑
j1=1

· · ·
m∑

jk=1

k∏
i=1

fi(xji)(µ
∗∗∗
m )m(dx1 × · · · × dxm)−

k∏
i=1

〈fi, µ〉


=

∑
1≤i<j≤k

(〈fifj , µ∗∗∗m 〉 − 〈fi, µ∗∗∗m 〉〈fj , µ∗∗∗m 〉)
∏
l 6=j,i
〈fl, µ∗∗∗m 〉+

k∑
i=1

m(〈fi, µ∗∗∗m 〉

− 〈fi, µ〉)
∏
l<i

〈fl, µ∗∗∗m 〉+O(m−1)

uniformly in µ ∈ PX. To ensure tha this converges, wa assume the existence of σ ∈
Bsym(X2) (the selection intensity function) where Bsym(X2) is the set of all bounded sym-
metric function with value in X2, a bounded linear transformaion B from B(X) to B(X2)
(the recombination operator) of the form

(Bf)(x, y) = α

∫
X

(f(x
′
)− f(x))R((x, y), dx

′
) (4.2.11)

where α ∈ R (the recombination intensity) and R((x, y), dx
′
) is a one-step transition func-

tion on X2×X , and a possibly unbounded operator A on B(X) (the mutation operator),
defined only on a subspace D(A) such that

wm(x, y) = 1 +m−1σ(x, y) + o(m−1)∫
X
f(x

′
)Rm((x, y), dx

′ × X) = f(x) +m−1(Bf)(x, y) + o(m−1)

and ∫
X
f(x

′
)Qm(x, dx

′
) = f(x) +m−1(Af)(x) + o(m−1)

for all f ∈ D(A), respectively, uniformly in x, y ∈ X. This implies that

〈f, µ∗∗∗m 〉 = 〈f, µ〉+m−1(〈Af, µ〉+〈Bf, µ2〉+〈(f◦π)σ, µ2〉−〈f, µ〉〈σ, µ2〉)+o(m−1) (4.2.12)
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for all f ∈ D(A) uniformly in µ ∈ PX, where π is the projection operator of X2 onto its first
coordinate. Thus, if for ϕ ∈ B(PX) of the form (4.2.9) with k ∈ N and f1, . . . , fk ∈ D(A)
we define

(Lϕ)(µ) =
∑

1≤i<j≤k
(〈fifj , µ〉 − 〈fi, µ〉〈fj , µ〉)

∏
l 6=i,j
〈fl, µ〉 (4.2.13)

+
k∑
i=1

(〈Afi, µ〉+ 〈Bfi, µ2〉)
∏
k 6=i
〈fl, µ〉+

k∑
i=1

(〈(fi ◦ π)σ, µ2〉 − 〈fi, µ〉〈σ, µ2〉)
∏
l 6=i
〈fl, µ〉

then, assuming that D(A)c is an algebra, (4.2.10) and (4.2.12) imply that (Lmϕ)(µ) =
(Lϕ)(µ) + o(1) uniformly in µ ∈ PX. More generally, we define L by

(Lϕ)(µ) =
1
2

∫
X

∫
X
µ(dx)(δx(dy)− µ(dy))

d2ϕ(µ)
dµ(x)dµ(y)

(4.2.14)

+
∫

X
µ(dx)A

(
dϕ(µ)
dµ(·)

)
(x) +

∫
X

∫
X
µ(dx)µ(dy)B

(
dϕ(µ)
dµ(·)

)
(x, y)

+
∫

X

∫
X
µ(dx)µ(dy)(σ(x, y)− σ〈σ, µ2〉)dϕ(µ)

dµ(x)

where dϕ(µ)dµ(x) = limε→0+ ε−1(ϕ(µ + εδx) − ϕ(µ)), and we take D(L) to be the set of
all ϕ ∈ B(PX) of the form

ϕ(µ) = F (〈f1, µ〉, . . . , 〈fk, µ〉) = F (〈f, µ〉) (4.2.15)

where k ∈ N, f1, . . . , fk ∈ D(A) and F ∈ C2(Rk). For such ϕ

(Lϕ)(µ) =
1
2

k∑
i,j=1

(〈fifj , µ〉 − 〈fi, µ〉〈fj , µ〉)Fzi,zj (〈f, µ〉) (4.2.16)

+
k∑
i=1

(〈Afi, µ〉+ 〈Bfi, µ2〉)Fzi(〈f, µ〉)

+
k∑
i=1

(〈(fi ◦ π)σ, µ2〉 − 〈fi, µ〉〈σ, µ2〉)Fzi(〈f, µ〉).

The formulation (4.2.16) is from Fleming and Viot [70], whereas (4.2.14) is due to Dawson
and Hochberg [23].

Another choice for the domain of L that is often useful is the set of all ϕ ∈ B(PX)
of the form ϕ(µ) = 〈f, µm〉, where k ∈ N and f ∈ B(Xk) satisfies certain conditions. To
describe these conditions precisely, we need to be more specific about the assumptions
on A. We assume that X is locally compact and that the closure of A generates a Feller
semigroup {Tt, t ≥ 0} on Ĉ(X), the space of real continuous functions on X vanishing at
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infinity (if X is compact, then Ĉ(X) = C(X)). Note that {Tt, t ≥ 0} is given by a transition
function p(t, x, dξ), that is,

Ttf(x) =
∫

X
f(ξ)p(t, x, dξ).

For each k ∈ N, we define the semigroup {Tk,t, t ≥ 0} on B(Xk) by

Tk,tf(x1, . . . , xk) =
∫

Xk
f(ξ1, . . . , ξk)p(t, x1, dξ1) · · · p(t, xk, dξk)

and let A(k) denote its generator. In addition, for each k ≥ 2 and 1 ≤ i ≤ j ≤ k, we define
Φ(k)
i,j : B(Xk)→ B(Xk−1) by letting Φ(k)

i,j f be the function obtained from f by replacing xj
by xi and renumbering the variables

(Φ(k)
i,j f)(x1, . . . , xk−1) = f(x1, . . . , xj−1, xi, xj , . . . , xk−1).

For each k ∈ N and 1 ≤ i ≤ k, we define H(k)
i : B(Xk)→ B(Xk+1) by

(H(k)
i f)(x1, . . . , xk+1) =

∫
X
f(x1, . . . , xi−1, ξ, xi+1, . . . , xk)R((xi,xk+1

), dξ)

and K
(k)
i : B(Xk)→ B(Xk+2) by

(K(k)
i f)(x1, . . . , xk+2) =

σ̄ + σ(xi, xk+1)− σ(xk+1, xk+2)
2σ̄

f(x1, . . . , xk)

where σ̄ = supx,y,z∈X |σ(x, y)− σ(y, z)| and 0/0 = 0. For each k ∈ N and f ∈ D(A(k)), we
define ϕf ∈ B(PX) by

ϕf (µ) = 〈f, µk〉 (4.2.17)

and we note that (4.2.14) reduces to

(Lϕ)(µ) =
∑

1≤i<j≤k
(〈Φ(k)

i,j f, µ
k−1〉 − 〈f, µk〉) + 〈A(k)f, µk〉+ α

k∑
i=1

(〈H(k)
i f, µk+1〉 − 〈f, µk〉)

(4.2.18)

+ 2σ̄(〈K(k)
i f, µk+2〉 − 〈f, µk〉) + σ̄k〈f, µk〉.

Note that since 〈Φ(k)
j,i f, µ

k−1〉 = 〈Φ(k)
i,j f, µ

k−1〉 implies

1
2

∑
1≤i 6=j≤k

(〈Φ(k)
i,j f, µ

k−1〉 − 〈f, µk〉) =
∑

1≤i<j≤k
(〈Φ(k)

i,j f, µ
k−1〉 − 〈f, µk〉).
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Then (see Ethier and Kurtz [42]), the generator (4.2.18) can be written as

(Lϕ)(µ) =
∑

1≤i 6=j≤k
(〈Φ(k)

i,j f, µ
k−1〉 − 〈f, µk〉) +

k∑
i=1

〈Aif, µk〉+ α

k∑
i=1

(〈H(k)
i f, µk+1〉 − 〈f, µk〉)

(4.2.19)

+
k∑
i=1

(〈σ(xi, xk+1)f, µk+1〉 − 〈σ(xk+1, xk+2)f, µk+2〉).

Moreover, if we do not have recombination, i.e. α = 0 and the selection function is haploid
instead of diploid, i.e.

σ(x, µ) =
∫

X
σ(x, y)µ(dy)

then (see Donelly and Kurtz [30])

(Lϕ)(µ) =
k∑
i=1

〈Aif, µk〉+
1
2

∑
1≤i 6=j≤k

(〈Φ(k)
i,j f, µ

k−1〉 − 〈f, µk〉) (4.2.20)

+
k∑
i=1

(〈σ(xi, µ)f, µk〉 − 〈σ(xk+1)f, µk+1〉).

From (4.2.20), the neutral diffusion model (see Ethier and Kurtz [41] and Donelly and
Kurtz [29]) is recoverd when σ = 0 and

Af(x) =
1
2
θ

∫
X

(f(y)− f(x))p(x, dy).

The next result is essentially from Ethier and Kurtz [40]

Theorem 4.2.1. (cfr. Ethier and Kurtz [40] ) Let X be locally compact and suppos that
the closure of A generates a Feller semigroup on Ĉ(X). Define B in terms of α ∈ R and a
transition function R((x, y), dx

′
) on X2 ×X by (4.2.11), and let σ ∈ Bsym(X)2. Then the

martingale problems for L defined by (4.2.9) and (4.2.13), by (4.2.15) and (4.2.16) and by
(4.2.17) and (4.2.18) are equivalent.

Moving from the above constructions and following Donelly and Kurtz [29] and Donelly
and Kurtz [30] we now recall a further important result which is the countable represen-
tation of the Fleming-Viot process. In particular, Donlly and Kurtz [29] introduced an
Xn-valued process {(Xt,1, . . . , Xt,n), t ≥ 0} which represents the evolution in time of a
population of size n, such that the empirical measure et,n in the infinite population limit
is a Fleming-Viot process. A process of this type, usually called particle process, appeares
implicitly in Dawson and Hochberg [23].
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Let X be a locally compact space. With reference to (4.2.18), observe that in the case
of no recombination or selection

(Lϕ)(µ) =
∑

1≤i<j≤n
(〈Φ(n)

i,j f, µ
n−1〉 − 〈f, µn〉) + 〈A(n)f, µn〉 = 〈Cf, µn〉 (4.2.21)

for all f ∈ D(A(n)), where

(Cf)(x1, . . . , xn) =
∑

1≤i<j≤n
(f(θi,j(x1, . . . , xn))− f(x1, . . . , xn)) + (A(n)f)(x1, . . . , xn)

θi,j(x1, . . . , xn) being the element of Xn obtained from (x1, . . . , xn) by replacing the j-th
component by the i-th. We interpret C as an operator with domain in B(X∞). It is clear
that C is the generator for an X∞-valued process {Xn, n ≥ 1} whose j-th component (the
particle at level j) evolves according to the mutation process until it “looks down” to level
i for some i < j and changes its value to the value on level i.

Let {St, t ≥ 0} denote the Feller semigroup defined on C(X∞) corresponding to C.
Then, viewing C(Xn) as a closed subspace of C(X∞), the following identity holds

Eµ[〈f, µnt 〉] = 〈Stf, µn〉 = E{Xn,n≥1}
µ∞ [f(Xt,1, . . . , Xt,n)] (4.2.22)

for all f ∈ C(Xn) and t ≥ 0. Here Eµ denotes the expectation for the Fleming-Viot process
under the assumption that the initial state is µ, and E{Xn,n≥1}

µ∞ denotes the expectation
for the particle system under the assumption that {X0,n, n ≥ 1} are i.i.d. with common
distribution µ. Let ν ∈ PX. By (4.2.22)∫

PX

Eµ[〈f, µnt 〉]ν(dµ) =
∫
PX

E{Xn,n≥1}
µ∞ [f(Xt,1, . . . , Xt,n)]ν(dµ) (4.2.23)

for all f ∈ B(Xn) and t ≥ 0. The left-hand side of (4.2.23) is the expectation for a
Fleming-Viot process with initial distribution ν, and the right-hand side of (4.2.23) is
the expectation for the particle system under the assumption that {X0,n, n ≥ 1} is an
exchangeable sequence with

P(X0,1 ∈ A1, . . . , X0,n ∈ An) =
∫
PX

n∏
i=1

µ(Ai)ν(dµ). (4.2.24)

In particular, identity (4.2.23) implies that

P(Xt,1 ∈ A1, . . . , Xt,n ∈ An) =
∫
PX

n∏
i=1

µ(Ai)νt(dµ) (4.2.25)

for all t ≥ 0, where νt is the distribution at time t of the Fleming-Viot process with initial
distribution ν. Therefore, if {X0,n, n ≥ 1} is an exchangeable sequence, then {Xt,n, n ≥ 1}
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is an exchangeable sequence, and the corresponding de Finetti measure

µ̂t := lim
n→∞

1
n

n∑
i=1

δXt,i (4.2.26)

has the same distribution as µt. In fact, the next theorem states that the proces {µ̂t, t ≥ 0}
is a version of the Fleming-Viot process.

Theorem 4.2.2. (cfr. Donelly and Kurtz [29]) Let X be a compact space and suppose
that the closure of A generates a Feller semigroup on C(X). Let {Xn, n ≥ 1} be a Markov
process in X∞ with generator C and suppose that {X0,n, n ≥ 1} is exchangeable. Then, for
each t > 0, {Xt,n, n ≥ 1} is exchangeable and the process given by the de Finetti measures
(4.2.26) is a Fleming-Viot process with type space X and mutation operator A.

4.3 The generalized Feigin-Tweedie Markov chain and its

diffusion limit

We consider a pure jump-type Xn-valued Markov process defined by {(Y1,t, . . . , Yn,t), t ≥ 0}
with sample paths in space D[0,∞)

Xn as follows. In particular, for any t ≥ 0, let the r.v.
(Y1,t, . . . , Yn,t) ∈ Xn be n exchangeable particles, which represents a population of size
n. For any t ≥ 0, at every transition one particle is selected with uniform probability
and removed. Conditionally on the other n− 1 particles, whose value is set equal to their
previous one until the next transition, the removed particle is replaced with a sample of
size one from the predictive density associated with the Blackwell-MacQueen Pólya urn
scheme. In particular, for any t ≥ 0, given Xi,t is removed, say, the incoming particle is
sampled from

P(Yi,t ∈ dyi|, Y1,t, . . . , Yi−1,t, Yi+1,t, . . . , Yn,t) =
θ ν0(dyi) +

∑
k 6=i δYk,t(dyi)

θ + n− 1
(4.3.1)

The sojourn times between renewals are driven by a Poisson process with intensity λn =
n(θ+n−1)/2. Let Y := {(Y1,t, . . . , Yn,t), t ≥ 0}, then it can be checked that the infinitesimal
generator associated to the proces {(Y1,t, . . . , Yn,t), t ≥ 0} is given by

(Lf)(Y ) =
n∑
i=1

λn
n

∫
X

(f(ηi(Y |X))− f(y))
θν0(dx) +

∑n
k 6=i δYk(dx)

θ + n− 1
(4.3.2)

=
n∑
i=1

Aif(Y ) +
1
2

∑
1≤k 6=i≤n

(f(ηi(Y |Yk))− f(Y ))

where ηi(Y |X) denotes the vector obtained from (Y1,t, . . . , Yn,t) by replacing Yi with X.
At any time t ≥ 0, the transitions of the process can be seen as the implementation of
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a Gibbs sampler on the distribution of the r.v. (Y1,t, . . . , Yn,t), (4.3.1) being the full condi-
tional distribution of Yi,t. Hence, the sampler generates a Markov chain which is embedded
at jump times (a pure jump-type Xn-valued Markov process) and for any t ≥ 0, the law of
the r.v. (Y1,t, . . . , Yn,t) is its stationary distribution. Since the Poisson rates depend neither
on departure nor on arrival states, the Markov property for the particle process follows
immediately. Furthermore, given that between consecutive jumps the value of the vector
is set to be constant, the law of Y1, . . . , Yn is also the stationary distribution of the pure
jump-type Xn-valued Markov process.

From the pure jump-type Xn-valued Markov process above defined {(Y1,t, . . . , Yn,t), t ≥
0}, we consider the follwing theorem which is the main result for the construction for the
continuous time version of the generalized Feigin-Tweedie Markov chain described in Chap-
ter 3. In particular, using the definition of the generalized Feigin-Tweedie Markov chain
via recursion (3.2.1) we substitute the sample Ym,1, . . . , Ym,n from a Blackwell-MacQueen
Pólya urn scheme with the pure jump-type Xn-valued Markov process {(Y1,t, . . . , Yn,t), t ≥
0}.

Theorem 4.3.1. Let P be a Dirichlet process with parameter ν. For any n ∈ N let
{(Y1,t, . . . , Yn,t), t ≥ 0} be the pure jump-type Xn-valued Markov process above described,
(q1, . . . , qn) be a r.v. distributed according to a Dirichlet distribution function with pa-
rameter (1, . . . , 1) independent of {(Y1,t, . . . , Yn,t), t ≥ 0} and let θn be a r.v. distributed
according to a Beta d.f. with parameter (n, θ) independent of {(Y1,t, . . . , Yn,t), t ≥ 0} and
of (q1, . . . , qn). Then, for any t ≥ 0

P
(n)
t = θn

n∑
j=1

qjδYj,t + (1− θn)P (4.3.3)

is a Dirichlet process with parameter ν.

Proof. Since for any t ≥ 0, (Y1,t, . . . , Yn,t) is a sample of size n from a Blackwell-MacQueen
Pólya urn scheme, then the proof follows similar argument of the proof of Theorem 3.2.1
in Chapter 3.

From the representation of P (n)
t given by Theorem 4.3.1 we can observe that as n →

+∞
E[θn] =

n

n+ θ
→ 1

and as n→ +∞
V ar(θn) =

n θ

(n+ θ)2(n+ 1 + θ)
→ 0

so that θn → 1 in probability for n→∞. Then we have the following diffusion limit result.
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Theorem 4.3.2. Let {µ(t), t ≥ 0} be the neutral diffusion model and let {P (n)
t , t ≥ 0} be

defined by (4.3.3). Then, as n→ +∞

{P (n)
t , t ≥ 0} ⇒ {µ(t), t ≥ 0} (4.3.4)

In order to prove Theorem 4.3.2 we need a few intermediate results. The following
lemma states that when {(Y1,t, . . . , Yn,t), t ≥ 0} it the pure jump-type Xn-valued Markov
process above described, then for any t ≥ 0 P (n)

t |Y1,t, . . . , Yn,t is a Dirichlet process with
parameter ν +

∑
1≤j≤n δYi,t . Loosely speaking, the measure-valued process parallels the

particle process in that the changes in the r.v. (Y1,t, . . . , Yn,t) affect instantaneously the
law of the r.p.m. P (n)

t .

Lemma 4.3.1. Let {P (n)
t , t ≥ 0} be defined by equation (4.3.3), and let {(Y1,t, . . . , Yn,t), t ≥

0} be the pure jump-type Xn-valued Markov process above described. For any s ≥ 0,
P

(n)
t+s|Y1,t+s, . . . , Yn,t+s is distribuited according to a Dirichlet process with parameter ν +∑
1≤j≤n δYi,t+s and

Proof. Suppose the first renewal after time t occurs in t + τ , for some τ > 0. Then the
results is trivial for any 0 < s < τ . Also, if we show that it holds at t + τ , then it is
straightforward to extend it to any t + u, for u > τ . Then, without loss of generality, set
s = τ . At time t + τ a particle Yi, say, is replaced with Z, where Z is either Z ∼ ν0 or
Z ∼ δYk , for some k ∈ {1, . . . , i− 1, i+ 1, . . . , n}. Then we can write P (n)

t+τ as

P
(n)
t+τ = θn

n∑
j=1

qjδYj,t+τ + (1− θn)P

= θn

 n∑
j 6=i

qjδYj,t + wi,n(t+ τ)δZ

+ (1− θn)P

given that when Yi is replaced no other coordinate change. Then it follows that P (n)
t+τ is

a Dirichlet process with parameter ν + δZ +
∑

j 6=i δYj,t , which is equivalent to a Dirichlet
process with parameter ν +

∑
1≤j≤n δYj,t+τ .

We now derive the generator of the measure-valued process {P (n)
t , t ≥ 0}, and we

show that it converges in distribution (in the Skorohod topology) to the neutral diffusion
model. Also, we show that the Dirichlet process is the stationary distribution of the finite
population version of the process. That is, the n-th version of the process has the same
stationary distribution of the limiting diffusion. Consider the vector of random weights
(q1, . . . , qn) defined in Theorem 4.3.1 and for any m < n, let qj1,...,jm be a weight defined
by

qj1,...,jm := qj1
qj2

1− qj1
· · · qjm

1−
∑m−1

l=1 qjl
(4.3.5)
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for 1 ≤ j1 6= · · · 6= jm ≤ n. For any m < n, the weights defined by (4.3.5) correspond to
the probability of picking m elements from an n-dimensional vector without replacement,
once each Yi is assigned a weight qi. That is, the probability of picking the first is qj1 , then
the weights are normalised, so that the probability of picking the second is qj2/(1 − qj1),
and so on. If we pick all n elements, the last weight is obviously one. For any m < n we
define the probability measure on Xm

P
(n)
m,t = θn

∑
1≤j1 6=···6=jm≤n

qj1,...,jmδ(Yj1,t ,...,Yjm,t )
+ (1− θn)Pm (4.3.6)

and
φ(P (n)

t ) := 〈f, P (n)
m,t〉 (4.3.7)

Finally we set
Z

(n)
m,t :=

∑
1≤j1 6=···6=jm≤n

qj1,...,jmδ(Yj1,t ,...,Yjm,t )

Note that if the weights are uniform distributed, then qj1,...,jm simplifies to 1/(n)m↓1.
Therfore, equation (4.3.6) can be seen as a generalisation of the probability measure

µ(m) :=
1

(n)m↓1

∑
1≤i1 6=···6=im≤n

δ(Yi1 ,...,Yim ) (4.3.8)

used by Donelly and Kurtz [30], which is recovered with uniform weights and θn ∼ δ1.
Under the same conditions, (4.3.7) can be seen as a generalisation of the function

(Γ(m)f)(Y ) :=
1

(n)m↓1

∑
1≤i1 6=... 6=im≤n

f(Yi1 , . . . , Yim) (4.3.9)

used in Donelly and Kurtz [29], since 〈f, P (n)
m,t〉 equals to∫

Xm
f(Y1, . . . , Ym)

×

θn ∑
1≤i1 6=···6=im≤n

qi1,...,imδ(Yi1,t,...,Yim,t)
(dx1, . . . , dxm) + (1− θn)P (dx1, . . . , dxm)


which, for θn ∼ δ1, reduces to ∑

1≤i1 6=···6=im≤n
qi1,...,imf(Yi1,t, . . . , Yim,t)

and with uniform weights to (4.3.9). Note that including replacement in (4.3.5) yields the
function (Γ(m)f)(Y ), obtained by replacing (n)m↓1 with nm in (4.3.9) which is asymptot-
ically equivalent to (4.3.9). Let ξ be a r.v. distributed according to ν0, then the generator
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of the measure-valued process {P (n)
t , t ≥ 0} can be written as

(Lφ)(P (n)) = lim
τ↓0

1
τ

∫
PX

(φ(P (n)
t+τ )− φ(P (n)

t ))(1− e−λnτ ) (4.3.10)

×

(
1
n

n∑
i=1

θ

θ + n− 1
Π(dP (n)

n,t+τ |Y1,t, . . . , Yi−1,t, Yi+1,t, . . . , Yn,t, ξ)

+
1
n

n∑
i=1

1
θ + n− 1

n∑
k 6=i

Π(dP (n)
n,t+τ |Y1,t, . . . , Yi−1,t, Yi+1,t, . . . , Yn,t, Yk,t)



Denote with a prime a variable computed in t + τ when τ ↓ 0. Since the probability of
having two jumps in [t, t+ τ ] is o(τ), we obtain

(Lφ)(P (n)) =
n∑
i=1

θ λn
n(θ + n− 1)

∫
PX

[〈f, P ′(n)
n 〉 − 〈f, P (n)

n,t 〉]

×Π(dP
′(n)
n |Y1,t, . . . , Yi−1,t, Yi+1,t, . . . , Yn,t, ξ)

+
∑

1≤k 6=i≤n

λn
n(θ + n− 1)

∫
PX

[〈f, P ′(n)
n 〉 − 〈f, P (n)

n,t 〉]

×Π(dP
′(n)
n |Y1,t, . . . , Yi−1,t, Yi+1,t, . . . , Yn,t, Yk,t)

=
n∑
i=1

θ λn
n(θ + n− 1)

∫
X

∫
PX

[〈f, P ′(n)
n 〉 − 〈f, P (n)

n,t 〉]

×Π(dP
′(n)
n |Y1,t, . . . , Yi−1,t, Yi+1,t, . . . , Yn,t, Z)ν0(dz)

+
∑

1≤k 6=i≤n

λn
n(θ + n− 1)

∫
X

∫
PX

[f, P
′(n)
n 〉 − 〈f, P (n)

n,t 〉]

×Π(dP
′(n)
n |Y1,t, . . . , Yi−1,t, Yi+1,t, . . . , Yn,t, Z)δYk,t(dz)

Recalling the rate λn = 2−1n(θ+ n− 1), then we can write the infinitelsimal generator as
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follows

(Lφ)(P (n)) =
n∑
i=1

1
2
θ

∫
X

[〈f, θnZ
′(n)
n + (1− θn)Pn〉 − 〈f, θnZ(n)

n + (1− θn)Pnn 〉]ν0(dz)

(4.3.11)

+
1
2

∑
1≤k 6=i≤n

∫
X

[〈f, θnZ
′(n)
n + (1− θn)Pn〉 − 〈f, θnP (n) + (1− θn)Pn〉]δYk,t(dz)

=
n∑
i=1

[
1
2
θ

∫
X
θn〈f, Z

′(n)
n 〉ν0(dz)− θn〈f, Z(n)

n 〉
]

+
1
2

∑
1≤k 6=i≤n

[∫
E
αn〈f, Z

′(n)
n 〉δYk,t(dz)− θn〈f, Z

(n)
n 〉
]

Now, if Pi is defined as Pg(y) = 2−1θ
∫

X g(y)ν0(dy) applied to the i-th coordinate, we have
that 2−1θ

∫
X〈f, Z

′(n)
n 〉ν0(dz) corresponds to

1
2
θ

∫
Xn+1

f(y1, . . . , yn)[Z
′(n)
n (dy1, . . . , dyn)]ν0(dz) (4.3.12)

=
1
2
θ

∫
Xn+1

f(X1,t, . . . , Xn,t)

×
∑

1≤j1 6=···6=jn≤n
qj1,...,jnδ(Yj1,t,...,Yji−1,t

,Z,Yji+1,t
,...,Yjn,t)

(dx1, . . . , dxn)ν0(dz)

=
1
2
θ

∫
X

∑
1≤j1 6=···6=jn≤n

qj1,...,jnf(Yj1,t, . . . , Yji−1,t, Z, Yji+1,t, . . . , Yjn,t)ν0(dz)

=
∑

1≤j1 6=···6=jn≤n
qj1,...,jnPjif(Yj1,t, . . . , Yjn,t)

=
∫

Xn
Pif(X1, . . . , Xn)

∑
1≤j1 6=···6=jn≤n

qj1,...,jnδ(Yj1,t,...,Yjn,t)
(dx1, . . . , dxn)

= 〈Pif, Z(n)
n 〉
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In the same way
∫

X〈f, Z
′(n)
n 〉δYk,t(dZ) corresponds to∫

Xn+1

f(X1, . . . , Xn)[Z
′(n)
n (dx1, . . . , dxn)]δYk,t(dx) (4.3.13)

=
∫

Xn+1

f(X1, . . . , Xn)

×
∑

1≤j1 6=···6=jn≤n
qj1,...,jnδ(Yj1,t,...,Yji−1,t

,Z,Yji+1,t
,...,Yjn,t)

(dx1, . . . , dxn)δYjk,t(dz)

=
∫

X

∑
1≤j1 6=···6=jn≤n

qj1,...,jnf(Yj1,t, . . . , Yji−1,t, Z, Yji+1,t, . . . , Yjn,t)δYjk,t(dz)

=
∑

1≤j1 6=···6=jn≤n
qj1,...,jnΦjk,jif(Yj1,t, . . . , Yjn,t)

=
∫

Xn
Φk,if(X1, . . . , Xn)

∑
1≤j1 6=···6=jn≤n

qj1,...,jnδ(Yj1,t,...,Yjn,t)
(dx1, . . . , dxn)

= 〈Φk,if, Z
(n)
n 〉

Using (4.3.12) and (4.3.13), (4.3.11) becomes

n∑
i=1

θn[〈Pif, Z(n)
n 〉 − 〈f, Z(n)

n 〉] +
1
2

∑
1≤k 6=i≤n

αn[〈Φkif, Z
(n)
n 〉 − 〈f, Z(n)

n 〉]

Note that for any m < n, when Yi,t is not an argument of f we have Pif = f and Φk,if = f ,
so that

n∑
i=m+1

θn[〈Pif, Z(n)
n 〉 − 〈f, Z(n)

n 〉] = 0

and
n∑

i=m+1

n∑
k=1,k 6=i

θn[〈Φk,if, Z
(n)
n 〉 − 〈f, Z(n)

n 〉] = 0.

Further, when Yi,t is an argument of f but xk,t is not, we have 〈Φk,if, µ〉 = 〈f, µ〉, so that

m∑
i=1

n∑
k=m+1

θn[〈Φk,if, Z
(n)
n 〉 − 〈f, Z(n)

n 〉] = 0.

Hence, we have

(Lφ)(P (n)) =
m∑
i=1

θn〈Aif, Z(m)
n 〉+

1
2

∑
1≤k 6=i≤m

θn[〈Φk,if, Z
(m)
n 〉 − 〈f, Z(m)

n 〉]

Moving from the above remarks, se can now proceed to prove the result given in
Theorem 4.3.2.
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Proof. Call P its weak limit for n→∞. For µ(m) as in Donelly and Kurtz [30], it is easy
to check that

sup
y∈Xn

∣∣∣〈f, µ(m)〉 − 〈f, µm〉
∣∣∣ (4.3.14)

= sup
y∈Xn

1
nm

∣∣∣∣∣∣
∑

1≤i1 6=···6=im≤n
f(Yi1 , . . . , Yim)−

∑
1≤i1,...,im≤n

f(Yi1 , . . . , Yim)

∣∣∣∣∣∣→ 0

Recalling (4.3.5), observe now that for large n, qi1,...,im behaves like 1/(n)m↓1, since
E[qi] = 1/n and V ar(qi) = (n − 1)/n2(n + 1). Since furthermore θn converges to one in
probability it follows that we can replace µ(m) with P

(m)
n in (4.3.14), yielding

sup
y∈Xn

∣∣∣〈f, P (m)
n 〉 − 〈f, µm〉

∣∣∣→ 0.

This easily implies
sup
y∈En

|(Lφ)(Pn)− (Lϕ)(P )| → 0

where (Lϕ)(P ) is the generator of the neutral diffusion model. Since µn(0) converges
weakly (and in particular to a Dirichlet process) the above computation implies (4.3.4).

4.4 The particle process

Before stating the main result, we give the following lemma, which beside having a key
role in the construction, provides some intuition into the problem. The lemma provides a
new constructive definition of the Dirichlet process. As recalled in the introduction, the
Dirichlet process has been characterised via the Blackwell-MacQueen Pólya urn scheme,
i.e. a sequence of observations {Xn, n ≥ 1} from the Blackwell-MacQueen Pólya urn
scheme (4.1.1) is equivalent to a sequence {Xn, n ≥ 1} of i.i.d. observations from P , where
P is a Dirichlet process with parameter ν.

Lemma 4.4.1. Let {Xn, n ≥ 1} be a sequence of random variables (r.v.s) from the
Blackwell-MacQueen Pólya urn scheme (4.1.1) and for any n ∈ N, let (X1, . . . , Xn) be
a sample of size n from {Xn, n ≥ 1}. Let w1, . . . , wn be n independent r.v.s distributed
according to a Beta distribution function with parameters (1, θ + n − i) for i = 1, . . . , n.
If P is a Dirichlet process on X with parameter ν independent of w1, . . . , wn and for any
n ∈ N, ω ∈ Ω and B ∈X we consider the measurable map Pn : Ω→ PX defined by

Pn(ω,B) :=
n∑
i=1

pi(ω)δXi(ω)(B) +

(
1−

n∑
i=1

pi(ω)

)
P (ω,B) (4.4.1)
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where p1 = w1 and pi = wi
∏

1≤j≤i−1(1 − wj) for i = 2, . . . , n, then Pn is a Dirichlet
process with parameter ν.

Proof. From the definition of Dirichlet process on a Polish space it follows that for any k ∈
N it suffices to prove that statement for an h-dimensional vector (P (·, A1), . . . , P (·, Ak)),
where A1, . . . , Ak is any finite measurable partition of X. For all n ≥ 1 we have that
1−

∑
1≤i≤n pi =

∏
1≤i≤n(1− wi). Using the stick-breaking of the r.v.s p1, . . . , pn we have

n∑
i=1

pi(δXi(A1), . . . , δXi(Ak)) +

(
1−

n∑
i=1

pi

)
(P (·, A1), . . . , P (·, Ak))

=
n−1∑
i=1

pi(δXi(A1), . . . , δXi(Ak)) +

(
1−

n−1∑
i=1

pi

)
× (wn(δXn(A1), . . . , δXn(Ak)) + (1− wn)(P (·, A1), . . . , P (·, Ak))).

Then, it follows by induction that conditionally on (X1, . . . , Xn),

n∑
i=1

pi(δXi(A1), . . . , δXi(Ak)) +

(
1−

n∑
i=1

pi

)
(P (·, A1), . . . , P (·, Ak))

is a r.v. distributed according to a Dirichlet distribution function with parameters (ν(A1)+∑
1≤i≤n δXi(A1), . . . , ν(Ah)+

∑
1≤i≤n δXi(Ak)). The result follows integrating out the r.v.s

X1, . . . , Xn.

The sample path of the neutral diffusion model {µt, t ≥ 0} at stationarity is such that
at each time point the state of the process is a Dirichlet process. From Lemma 4.4.1 it
follows that a representation alternative to (4.1.1)-(4.1.2) of a Dirichlet process is given
by (4.4.1), which can thus be used, once indexed by time, to describe any instant state of
the neutral diffusion model. Given the almost sure discreteness of the Dirichlet process,
the connection between two states of the process at different time points, say without loss
of generality 0 and t > 0, can be expressed according to how many atoms µ0,n and µt,n

share, for arbitrary n ≥ 1, where for any t ≥ 0

µt,n :=
n∑
i=1

pt,iδXt,i +

(
1−

n∑
i=1

pt,i

)
µt.

Thus, the change in time of X1, . . . , Xn in (4.4.1) provides an approximation of the change
undergone by µn. Given a sequence of r.v.s from the Blackwell-MacQueen Pólya urn scheme
(4.1.1) a sample X1, . . . , Xn from this sequence is then a natural candidate for a finite-
dimensional particle process whose components in any instant are from the population
µn. Since the dynamics of the particle process reflect to a certain extent those of the
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measure-valued process, X0,1, . . . , X0,n will remain fixed at their state during the interval
[0, t) so long as X1, . . . , Xn remain atoms of µs,n for 0 ≤ s < t. When one of the atoms
drops out, the state of this Xn-valued random process changes, so it is componentwise
piecewise constant with jumps. We are then interested in the distribution of interarrival
times between jumps, that is the holding times between any atom change. We will show
that the atoms change one at a time, and the holding times are exponential with parameter
λn given in (4.1.6). Once again we remark that these results on the dynamic properties of
the particle process will rely only on the transition function (4.1.5) of the neutral diffusion
model, with no further assumptions. The next theorem, which is the main result of the
chapter, formalizes the above heuristics. It will be proved by means of several lemmas in
the remainder of the section.

Theorem 4.4.1. For any arbitrary n ∈ N, let (µt,n, t ≥ 0) be the neutral diffusion model
with infinitesimal generator (4.1.3). Then, {(Xt,1, . . . , Xt,n), t ≥ 0} is a n-dimensional
particle process with sample paths in D[0,+∞)

Xn and jumps at exponential times of parameter
λn, given by (4.1.6), such that at each jump at most one coordinate at a time is updated
according to (4.1.1).

Lemma 4.4.2. (cfr. Walker et al. [193]) For any k ∈ N0, let dk(t) be (4.1.7). Then∑
k≥n

(k)n↓1
(θ + k)n↑1

dk(t) = e−λnt (4.4.2)

and ∑
k≥n−1

(k)(n−1)↓1

(θ + k)n↑1
dk(t) =

e−λn−1t − e−λnt

2(λn − λn−1)
. (4.4.3)

The following lemma provides a useful result that will be used later.

Lemma 4.4.3. Let θ > 0 and k, n ∈ N, with n ≤ k. Then

k∑
n=1

Γ(θ + k − n)
Γ(1 + k − n)

=
Γ(θ + k)
θΓ(k)

.

Proof. We have

k∑
n=1

Γ(θ + k − n)
Γ(1 + k − n)

=
Γ(θ + k)
Γ(1 + k)

k∑
n=1

(k)n↓1
(θ + k − 1)n↓1

=
Γ(θ + k)

Γ(1 + k)(θ + k − 1)k↓1

(
k−1∑
n=1

(θ + k − 1− n)(k−n)↓1(k)n↓1 + (k)k↓1

)

=
Γ(θ + k)

Γ(1 + k)(θ + k − 1)k↓1
k(θ + k − 1)(k−1)↓1 =

Γ(θ + k)
θΓ(k)

.
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We have now all the ingredients to show that the interarrival times between successive
jumps, that is single atom updates, are exponential with parameter λn. This will be proved
by means of the following three propositions. Let {µt, t ≥ 0} be a neutral diffusion model,
so that the transitions of µt are described by (4.1.5). The form of the transition function
yields that conditionally on the starting state µ0, the arrival state dµt after a time interval
t is obtained as follows. An n-sized sample (X1, . . . , Xn) is drawn from µ0, where the
sample size n is governed by a death process {Dt, t ≥ 0} starting from infinity, so that
the probability of sampling m variables from µ0 for an interval of lag t is dm(t). Then µt

is sampled from a posterior Dirichlet process, conditionally on the vector (X1, . . . , Xn).
Hence them-sized vector sampled from the starting state µ0 carriesm atoms of information
about µ0, which are taken into account when sampling µt.

We exploit these intrinsic features of the transition function (4.1.5) for computing the
probability that respectively none, one or two atoms of µ0,n among those in (X1, . . . , Xn)
drop in the interval dt. These three cases will be examined separately in Proposition 4.4.1,
4.4.2 and 4.4.3 below.

Proposition 4.4.1. Let {µt, t ≥ 0} be a neutral diffusion model with transition function
(4.1.5), and suppose the time interval [0, s] is of infinitesimal length. Then the probability
of (X0,1, . . . , X0,n) being atoms of µs is e−λns, where λn is (4.1.6).

Proof. Call n1, . . . , nn the multiplicity of X0,1, . . . , X0,n respectively in an k-sized sample
from µ0, where µ0 is given by (4.4.1). A necessary condition for X0,1, . . . , X0,n to be in the
k-sized sample from µ0, and hence possibly be atoms of µs, is that k be not smaller than n,
and that

∑
1≤i≤n ni ≤ k. Hence we have to integrate: over the random weights p1, . . . , pn

associated to the atoms X1, . . . , Xn, whose distribution is derived by the stick-breaking
procedure, also known as residual allocation model, in Lemma 4.4.1; over all possible
combinations of multiplicities of atom draws in a sample of size k, so that n1 ∈ {1, . . . , k},
n2 ∈ {1, . . . , k − n1}, and so on up to nn ∈ {1, . . . , k −

∑n
i=1 ni}, so that

∑
1≤i≤n ni ≤ k;

and over the sample size for k ≥ n. Hence we have that the probability of (X0,1, . . . , X0,n)
being atoms in µs is

P((X0,1, . . . , X0,n) ∈ Xs,∞) =
∑
k≥n

dk(s)
k∑

n1=1

k−n1∑
n2=1

· · ·
k−n1−...−nn−1∑

nn=1

(
k

n1, . . . , nn

)

×
∫

(0,1)n

n∏
i=1

(
wnii

i−1∏
j=1

(1− wj)ni
)

(1− wi)k−
Pn
h=1 nh

×
n∏
l=1

(θ + n− l)(1− wl)θ+n−l−1dw1 . . . dwn
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which simplifies to∑
k≥n

(θ)n↑1dk(s)
k∑

n1=1

k−n1∑
n2=1

· · ·
k−n1−...−nn−1∑

nn=1

(
k

n1, . . . , nn

)

×
∫

(0,1)n

n∏
i=1

wnii (1− wi)θ+k−
Pi
h=1 nh+n−i−1dw1 . . . dwn.

By solving the integrals, the previous equals∑
k≥n

(θ)n↑1dk(s)
k∑

n1=1

k−n1∑
n2=1

· · ·
k−n1−...−nn−1∑

nn=1

(
k

n1, . . . , nn

)

×
n∏
i=1

Γ(ni + 1)Γ(θ + k −
∑i

h=1 nh + n− i)
Γ(θ + k −

∑i−1
h=1 nh + n− i)

and simplifying the product with the multinomial coefficient gives∑
k≥n

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

m∑
n1=1

k−n1∑
n2=1

· · ·
k−n1−...−nn−1∑

nn=1

Γ(θ + k −
∑n

h=1 nh)
Γ(k −

∑n
h=1 nh + 1)

.

Applying Lemma 4.4.3 yields∑
k≥n

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

m∑
n1=1

· · ·
k−n1−...−nn−2∑

nn−1=1

Γ(θ + k −
∑n−1

h=1 nh)
θ Γ(k −

∑n−1
h=1 nh)

.

Take now θ′ := θ+ 1 and k′ := k− 1, so that the last ratio in the previous corresponds to
Γ(θ′+ k′−

∑
1≤h≤n−1 nh)/θΓ(k′−

∑
1≤h≤n−1 nh + 1) and apply again Lemma 4.4.3 to get

∑
k≥n

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

m∑
n1=1

· · ·
k−n1−...−nn−3∑

nn−2=1

Γ(θ′ + k′ −
∑n−2

h=1 nh)
θ θ′ Γ(k′ −

∑n−2
h=1 nh)

=
∑
k≥n

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

k∑
n1=1

· · ·
k−n1−...−nn−3∑

nn−2=1

Γ(θ + k −
∑n−2

h=1 nh)
θ(1 + θ)Γ(k −

∑n−2
h=1 nh − 1)

.

Repeat the procedure other n−2 times, taking θ′′ := θ′+1, k′′ := k′+1 and so on, yielding∑
k≥n

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

k∑
n1=1

· · ·
k−n1−...−nn−4∑

nn−3=1

Γ(θ + k −
∑n−3

h=1 nh)
θ(1 + θ)(2 + θ)Γ(k −

∑n−3
h=1 nh − 1)

...

=
∑
k≥n

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

Γ(θ + k)
θ(θ + 1) . . . (θ + n− 1)Γ(k − n+ 1)

=
∑
k≥n

(k)n↓1
(θ + k)n↑1

dk(s)

which by means of (4.4.2) gives the result.
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The following proposition gives the probability that one atom update occurs in an
infinitesimal lag.

Proposition 4.4.2. Let {µt, t ≥ 0} be a neutral diffusion model with transition function
(4.1.5), and suppose the time interval [0, s] is of infinitesimal length. The probability that
exactly n− 1 particles of the vector (X0,1, . . . , X0,n) are atoms in µs is λns+ o(s).

Proof. Consider the setting of the proof of Proposition 4.4.1. If the atom that changes
is Xj , 1 ≤ j ≤ n, in order to compute the probability of the statement it suffices to set
nj = 0 in (4.4.1), so that there are no values of X0,j in the k-sized sample from µ0 (hence
no piece of information about µ0 corresponding to the atom X0,j pass to µs). Hence the
probability that one atom drops out is

n∑
j=1

P((X0,1, . . . , X0,j−1, X0,j+1, . . . , X0,n) ∈ Xs,∞, X0,j /∈ Xs,∞)

=
n∑
j=1

∑
k≥n−1

(θ)n↑1dk(s)

×
k∑

n1=1

k−n1∑
n2=1

· · ·
k−

Pj−2
l=1 nl∑

nj−1=1

· · ·
k−

Pj−1
l=1 nl∑

nj+1=1

k−
Pn−1
l 6=j nl∑

nn=1

(
k

n1, . . . , nj−1, nj+1, . . . , nn

)

×
∫

(0,1)n

n∏
i 6=j

wnii (1− wi)θ+k−
Pi
h 6=j nh+n−i−1(1− wj)θ+k−

Pj−1
h=1 nh+n−j−1dw1 . . . dwn

Proceeding as in Proposition 4.4.1, and simplifying with the multinomial coefficient the
Gamma functions resulting from the integrals, yields

n∑
j=1

∑
k≥n−1

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

×
k∑

n1=1

k−n1∑
n2=1

· · ·
k−

Pj−2
l=1 nl∑

nj−1=1

k−
Pj−1
l=1 nl∑

nj+1=1

· · ·
k−

Pn−1
l 6=j nl∑

nn=1

Γ(θ + k −
∑n

h6=j nh)
Γ(k −

∑n
h6=j nh + 1)
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Applying n− 1 times Lemma 4.4.3 we obtain

n∑
j=1

∑
k≥n−1

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

×
k∑

n1=1

k−n1∑
n2=1

· · ·
k−

Pj−2
l=1 nl∑

nj−1=1

k−
Pj−1
l=1 nl∑

nj+1=1

· · ·
k−

Pn−2
l 6=j nl∑

nn−1=1

Γ(θ + k −
∑n−1

h6=j nh)

θΓ(k −
∑n−1

h6=j nh)

=
n∑
j=1

∑
k≥n−1

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

×
k∑

n1=1

k−n1∑
n2=1

· · ·
k−

Pj−2
l=1 nl∑

nj−1=1

k−
Pj−1
l=1 nl∑

nj+1=1

· · ·
k−

Pn−3
l 6=j nl∑

nn−2=1

Γ(θ + k −
∑n−2

h6=j nh)

θ(1 + θ)Γ(k −
∑n−2

h6=j nh − 1)

...

=
n∑
j=1

∑
k≥n−1

(θ)n↑1
Γ(k + 1)

Γ(θ + k + n)
dk(s)

Γ(θ + k)
θ(θ + 1) . . . (θ + n− 2)Γ(k − n+ 2)

= n(θ + n− 1)
∑

k≥n−1

(k)(n−1)↓1

(θ + k)n↑1
dk(s)

from which, using (4.4.3) and the definition of λn, we get λn(e−λn−1s−e−λns/λn−λn−1) =
λns+ o(s) which gives the result.

Before stating the last proposition, we need the following technical result.

Lemma 4.4.4. Let dk(s) be (4.1.7). Then

∑
k≥n−2

(k)(n−2)↓1

(θ + k)n↑1
dk(s) =

(λn−1 − λn−2)e−λns − (λn − λn−2)e−λn−1s + (λn − λn−1)e−λn−2s

4(λn − λn−1)(λn − λn−2)(λn−1 − λn−2)
.

Proof. Denote

G(t) :=
∑

k≥n−2

(k)(n−2)↓1

(θ + k)n↑1
dk(s);

from a result in Ethier and Griffiths [41], it follows that

dG(s)
ds

+ λnG(s) =
1
2

∑
k≥n−2

(k)(n−2)↓1

(θ + k)(n−1)↑1
dk(s)

and we know from Walker et al. [193] hat

∑
k≥n−2

(k)(n−2)↓1

(θ + k)(n−1)↑1
dk(s) =

e−λn−2s − e−λn−1s

2(λn−1 − λn−2)
.
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The general solution of the differential equation is

G(s) =
e−λn−2s

4(λn − λn−2)(λn−1 − λn−2)
− e−λn−1s

4(λn − λn−1)(λn−1 − λn−2)
+ Ce−λns

and using the initial condition G0 = 0 we obtain

C =
1

4(λn − λn−1)(λn − λn−2)

from which the result follows

The last proposition states that the probability of two atoms updates occurring in an
infinitesimal time lag is negligible.

Proposition 4.4.3. Let {µt, t ≥ 0} be a neutral diffusion model with transition function
(4.1.5), and suppose the time interval [0, s] is of infinitesimal length. The probability that
only n− 2 particles of the vector (X0,1, . . . , X0,n) are atoms in µs is o(s).

Proof. The event of two particles changing in [0, s] means thatX0,j , X0,h for 1 ≤ j 6= h ≤ n,
are not selected in the m-sized sample from µ0 and thus do not compare as atoms in µs.
Similarly to Proposition 4.4.2, we set nj = nh = 0, and integrate out the indices, obtaining∑
1≤j 6=h≤n

P((X0,i, i 6= j, h) ∈ Xs,∞, (X0,j , X0,h) /∈ Xs,∞)

=
n∑

1≤j 6=h≤n

∑
k≥n−1

(θ)n↑1dk(s)
∑
(∗)

(
k

n1, . . . , nj−1, nj+1, . . . , nh−1, nh+1, . . . , nn

)

×
n∏

i 6=j,h

∫ 1

0
wnii (1− wi)θ+k−

Pi
l 6=j,h nl+n−i−1(1− wj)θ+k−

Pj−1
l 6=j,h nl+n−j−1dwi

×
∫ 1

0
(1− wj)θ+k−

Pj−1
l6=h nl+n−j−1dwj

∫ 1

0
(1− wh)θ+k−

Ph−1
l6=j nl+n−h−1dwh

where (∗) denotes the set of frequencies ni for 1 ≤ i ≤ n and i 6= h, n, such that each ni

runs from 1 to k −
∑

l 6=j,h nl. Proceeding as in Proposition 4.4.1 we obtain

n(n− 1)(θ + n− 1)(θ + n− 2)
∑

k≥n−2

(k)(n−2)↓1

(θ + k)n↑1
dk(s).

By Lemma 4.4.4 the previous equals, up to a multiplicative constant,

λn(e−λn−2s − e−λn−1s) + λn−1(e−λns − e−λn−2s) + λn−2(e−λn−1s − e−λns)

= sλn(λn−1 − λn−2) + sλn−1(λn−2 − λn) + sλn−2(λn − λn−1) + o(s) = o(s)

which gives the result.
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Propositions 4.4.1, 4.4.2 and 4.4.3 imply that the interarrival times of the particle
process are governed by a Poisson process with parameter λn, and that one particle at a
time drops out of the n-dimensional time-dependent vector. Say that Yi is such particle.
Then, from Lemma 4.4.1 and the exchangeability of a sequence drawn according to (4.1.1),
it follows that for any n ∈ N, the incoming particle is a sample from

θ

θ + n− 1
ν0 +

1
θ + n− 1

∑
j 6=i

δXj . (4.4.4)

This is due to the fact that conditionally on µt, the removed particle will be replaced by
another variable in the infinite sequence from the Blackwell-MacQueen Pólya urn scheme
that characterizes µt. Integrating out µt, the incoming variable will still be from the
Blackwell-MacQueen Pólya urn scheme, but conditionally on the other n−1 particles, and
its law will be the predictive distribution (4.4.4). This completes the proof of Theorem
4.4.1.

4.5 Discussion

We have constructed a particle process which is directly derived by the properties of
neutral diffusion model. The key of the derivation is the representation of a Dirichlet
process as µn in (4.4.1), as proved in Lemma 4.4.1. Then, given n atoms (X0,1, . . . , X0,n)
of the starting state µ0 of the neutral diffusion model, we can describe a particle process
as follows. The state of the particle process remains constant until the first time t such
that one of the particles is no longer an atom of µt. The computation of the probabilities
that all n particles are still atoms of µt and that one of the n particles is no longer an
atom of µt yields the distribution of the interarrival time of the particle process until the
following renewal. When one of the particles is no longer an atom of the random measure,
not having been sampled from the starting state, it is substituted with another atom of µ0

which differs from the other n − 1, and hence is another observation from the Blackwell-
MacQueen Pólya urn scheme.

When the population size of the particle process grows to infinity, in Lemma 4.4.1 we
have that the sum of weights

∑
1≤i≤n pi tends to one, and the second term in

Pn =
n∑
i=1

piδXi +

(
1−

n∑
i=1

pi

)
P

vanishes. Then as n→∞,
Pn ⇒ P∞ a.s.-P

where P∞ is still a Dirichlet process, but unlike for finite k, the particle process now
fully characterises any instant state of the neutral diffusion model, as we have an infinite
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sequence of observations from µt, conditionally on µt, which provides full information on
the distribution. From this setting it is now trivial to derive all usual infinite population
results for the neutral diffusion model, like the weak convergence in the Skorohod space
of the process of empirical measures of the particles.
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II
Models beyond the Dirichlet process

and applications to species sampling

problems





5
On a class of random probability

measures without Gibbs structure

One of the main research areas in Bayesian nonparametrics is the proposal and study
of priors which generalize the Dirichlet process. In this chapter, by considering priors
obtained by normalizing random measures with independent increments (NRMIs) we define
a class on NRMIs, the so-called NRMIs with logarithmic singularity. This new class of
random probability measures includes as particular case the celebrated Dirichlet process
and on the other hand it does not include the normalized generalized Gamma process
recently introduced in the context of mixture models and species sampling problems. In
particular, our aim is to provide some developments for a random probability measures in
the class of NRMIs with logarithmic singularity, termed generalized Dirichlet processes,
which has been recently introduced in the literature. Such processes induce exchangeable
sequences which are characterized by a more elaborated predictive structure that those one
arising from Gibbs-type random probability measures. A natural area of application of these
random probability measures is represented by species sampling problems and, in particular,
prediction problems in genomics.

5.1 Introduction

Let {Xn, n ≥ 1} be an exchangeable sequence defined on some probability space (Ω,F ,P)
and such that each random variable (r.v.) Xn takes values in a Polish space (X, T ) with
associated Borel σ-field X . Then, by de Finetti representation theorem, there exists a
random probability measure (r.p.m.) P̃ on X with law Q such that given P̃ , a sample
X1, . . . , Xn from the exchangeable sequence is independent and identically distributed
(i.i.d.) with distribution P̃ . That is, for any n ≥ 1 and any A1, . . . , An ∈X

P(X1 ∈ A1, . . . , Xn ∈ An) =
∫
PX

n∏
i=1

P̃ (Ai)Q(dP̃ )
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where PX denotes the space of probability measures on (X,X ) endowed with its σ-field
PX generated by the weak convergence topology W which makes (PX,W) a Polish space.
Here, we focus on r.p.m.s which are almost surely discrete and with non-atomic prior guess
at the shape α0(·) := E[P̃ (·)]; by the almost sure discreteness, we expect ties in the sample,
namely that X1, . . . , Xn contain k ≤ n distinct observations X∗1 , . . . , X

∗
k with frequencies

n1, . . . , nk) such that
∑k

j=1 nj = n. Initial opinions about the sequence {Xn, n ≥ 1} are
expressed through the probability distribution Q of P̃ and updated by means of Bayes
theorem; all inferential questions related to the sequence {Xn, n ≥ 1} are the answered
on the basis on the conditional probability distribution of P̃ , given the observed sample
X1, . . . , Xn from {Xn, n ≥ 1}. This fact implies that a key problem in Bayesian nonpara-
metric inference is the definition of a prior distribution Q on the space of all probability
measures (PX,PX).

Starting from the papers by Freedman [72] and Ferguson [61], in which the celebrated
Dirichlet process has been introduced various approaches for constructing r.p.m.s, whose
distribution acts as a nonparametric prior, have been undertaken. They all aim at provid-
ing generalisations of the Dirichlet process. Among them we mention the neutral to the
right r.p.m.s due to Doksum [25], which are obtained via an exponential transformation of
an increasing process with independent increments, and the Pólya tree priors thoroughly
studied by Mauldin et al. [135] and Lavine [116], which arise by considering suitable urn
schemes on trees of nested partitions. In this chapter we focus on r.p.m.s derived by a suit-
able normalization procedure. To this end, it is worth recalling that the Dirichlet process
can be defined by normalizing the increments of a Gamma process. Indeed, the idea of con-
structing r.p.m.s by means of a normalization procedure han been exploited an developed
in a variety of contexts not closely related to Bayesian inference. See, as an early example,
Kingman [109] where a random discrete distribution generated by the stable subordinator
is considered in connection with optimal storage problems. Further examples can be found
in Ewens and Tavaré [46] and Grote and Speed [79] for population genetics; in Donnelly
and Grimett [27] and Pitman [157] for combinatorics and number theory; Pitman [153]
and Pitman and Yor [154] for excursion theory.

In particular, Kingman [109] suggested that one can construct r.p.m.s as follows. First
take the ranked points of a homogeneous Poisson process on R+, say {∆i, i ≥ 1} such that
their sum

∑
i≥1 ∆i is finite and positive a.s. Use these points to construct a sequence of

probabilities Qi = ∆i/
∑

i≥1 ∆i for i ≥ 1. Independent of this sequence choose a sequence
{Zi, i ≥ 1} to be an i.i.d. sequence of random elements of a Polish space with common
distribution, say H. A r.p.m. is then formed by

∑
i≥1QiδZi . With the exception of the

Dirichlet process and those models based on the stable law, the processes in class described
by Kingman [109] have yet to yield tractable results suitable for practical implementation
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in Bayesian nonparametric problems. Thus, the main question of interest to a Bayesian
statistician is whether there are any other processes in this class which are tractable. In
Regazzini et al. [165] the class of normalized random measures with independent incre-
ments (NRMIs) on R is formally introduced as normalization of suitably time-changed
independent increment processses and distributional results for their means are derived.
Further developments related to the class of NRMIs can be found in James [96] and Nieto-
Barajas et al. [145]. Recently, in order to both understand better the structural properties
of the NRMIs on X and go beyond the specific processes dealt with in the above men-
tioned papers, James et al. [100] provided a complete and implementable description of
the posterior distribution of a NRMI.

In Lijoi et al [119] attention is focused on a spacial case of NRMI, namely the normal-
ized inverse Gaussian process: the quantities relevan for its implementation in the context
of mixture models are derived and it is shown that such prior exhibits an interesting and
useful clustering behaviour, quite different from that of the Dirichlet process. In Lijoi et
al. [120] the normalized inverse Gaussian process is then embedded in a larger subclass
of NRMIs, namely the normalized generalized Gamma process, thus allowing for an ad-
ditional parameter which greatly influences the clustering structure. In particular, the
Dirichlet process is shown to be a limit process in distribution of the normalized gener-
alized Gamma process. By close inspection of these tractable processes, one can observe
that they all generate samples X1, . . . , Xn, for n ≥ 1, which are characterized by a system
of predictive distributions of the type

P(Xn+1 ∈ ·|X1, . . . , Xn) = g0(n, k)α0(·) + g1(n, k)
k∑
j=1

(nj − σ)δX∗j (·), (5.1.1)

where σ ∈ [0, 1) and for some weights g0 and g1. An almost surely discrete r.p.m. gener-
ating a sample as the above is termed Gibbs-type r.p.m. (see Chapter 6 for a more formal
definition of the class of Gibbs-type r.p.m.s). The class of Gibbs-type r.p.m.s has been
recently introduced and studied by Gnedin and Pitman [74], where also a characterization
of its members is provided: indeed, Gibbs-type r.p.m. are Dirichlet process mixtures when
σ = 0 and Poisson-Kingman models based on the stable subordinators when σ ∈ (0, 1)
(see Gnedin and Pitman [74], Theorem 12). Further investigations related to Bayesian
nonparametrics can be found in Ho et. al. [86] and Lijoi et al. [124]. It is to be noted
that the weights g0 and g1 in (5.1.1) depend on the distinct observed species k but not
on their frequencies n1, . . . , nk, whose conveyed information can be incorporated into the
parameters of the model. In principle one would like priors which lead to richer predictive
structures, in which the probability of sampling a new species depends explicitly on both
k and n1, . . . , nk. However, by dropping the Gibbs structure assumption, serious issues of
mathematical tractability arise.
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In this chapter, moving from the definition of NRMI on X and from a recent paper
by Von Renesse et al. [186] we define a new class of NRMIs, the so-called NRMI with
logarithmic singularity. In particular, the class of NRMIs with logarithmic singularity in-
cludes as particular case the Dirichlet process and on the other hand it does not include
the normalized generalized Gamma process. An interesting example of NRMI with loga-
rithmic singularity has been recently introduced in by Regazzini et al. [165] and further
investigated by Lijoi et al. [118], the so-called generalized Dirichlet process. In particular,
the generalized Dirichlet process was originally introduced in Regazzini et al. [165] by the
normalization of suitably time-changed independent increment process on R characterized
by the Lévy measure

ν(dv) =
(1− e−vγ)e−v

v(1− e−v)
dv v ≥ 0 (5.1.2)

with γ > 0. It can be easily checked that under the constraint γ ∈ N, the generalized
Dirichlet process corresponds to a r.p.m. obtained by the normalization of suitably time-
changed superposition of independent Gamma processes on R with increasing integer-
valued scale parameter and gives rise to a system of predictive distributions of the type

P(Xn+1 ∈ ·|X1, . . . , Xn) = w0(n, k,n)α0( · ) +
k∑
j=1

njwj(n, k,n)δX∗j (·) (5.1.3)

where the weights w0(n, k,n) and wi(n, k,n), for j = 1, . . . , k now explicitly depend on
n := (n1, . . . , nk) thus conveying the additional information provided by the frequencies n
directly into the prediction mechanism. To our knowledge, the generalized Dirichlet pro-
cess represents the first example in the literature of almost surely discrete r.p.m. which
is not of Gibbs-type and still leads to a closed form predictive structure. In this chapter,
using the characterization of the generalized Dirichlet process in terms of normalized su-
perposition of independent Gamma processes, we consider a simple way to extend the class
of generalized Dirichlet processes. In particular, our aim is to define a more flexible class
of r.p.m.s without Gibbs structure which mantains the same mathematical tractability of
generalized Dirichlet process.

Equation (5.1.2) corresponds to the Lévy measure of the negative logarithm transform
of a Beta distribution function with parameter (1, γ) which is an infinite divisible distribu-
tion function belonging to the class of generalized convolutions of mixture of Exponential
distributions introduced by Bondesson [12]). In particular, it is known that the negative
logarithm transform of a Beta distribution function with parameter (1, γ) is characterized
into the class of generalized convolutions of mixture of Exponential distributions by a
measure Qγ on (R+,R+), the so-called Thorin measure, defined by

Qγ(dt) =
∑
n≥1

1{n,n+γ}(dt). (5.1.4)



5.1. Introduction 133

In this chapter, using the characterization of the generalized Dirichlet process in terms of
normalized superposition of independent Gamma processes, we consider a simple way to
extend the class the class of generalized Dirichlet processes. In particular, our aim is to
define a more flexible example of NRMI with logarithmic singularity which mantains the
same mathematical tractability of the generalized Dirichlet process. Using the definition
and the properties of the the measure Qγ on (R+,R+) we define a more general class of
measures on (R+,R+). In particular, given γ > 0 and two further parameters θ and β

such that 0 ≤ θ ≤ γ and γ − θ − β > 0, we define a measure Q(γ,β,θ) on (R+,R+) by

Q(γ,β,θ)(dt) =
∑
n≥1

(1{n,n+γ−θ}(t) + 1{n+γ−θ−β,n+γ−β}(dt)). (5.1.5)

We provide a detailed analysis for the measure Q(γ,β,θ) and we show that it preserves all the
properties of the measure Qγ . In particular, we show that Q(γ,β,θ) is still a Thorin measure
which characterizes into the class of generalized convolutions of mixture of Exponential
distributions a new infinite divisible distribution function on R+, the so-called Gauss-
Exponential distribution function, having Lévy measure

ν(dv) =
e−v

v(1− e−v)

(
1 +

1− e−vβ − e−vθ

ev(γ−θ−β)

)
dv v ≥ 0. (5.1.6)

Thus, using the Lévy measure (5.1.6) we provide some developments of the generalized
Dirichlet process. In particular, we define a new NRMI on X characterized by the Lévy
measure (5.1.6) and we show that it represents a further example of NRMI with logarith-
mic singularity which makes more flexible the generalized Dirichlet process. By considering
the particular choice of the parameter γ ∈ N and θ ∈ N0 in (5.1.6) we then provide a com-
prehensive treatment of this new NRMI with logarithmic singularity in terms of its finite
dimensional distributions, moments, predictive distributions and posterior distributions.
As for the Gibbs-type r.p.m., a natural area of application of this new class of r.p.m. is
represented by species sampling problems and, in particular, prediction problems in ge-
nomics (see Chapter 6 for a formal introduction to the species sampling problems and
related problems in genomics).

The Lévy measure (5.1.2) first appeared in Bayesian nonparametric in Ferguson [62]
where it was used to prove some properties related to the Dirichlet process as a neutral to
the right r.p.m. In the same context of neutral to right r.p.m.s, the Lévy measure (5.1.2)
was used in Walker and Muliere [194] to prove the existence of a neutral to the right
r.p.m., the beta-Stacy process. These observations suggested to investigate the possibility
of defining a generalization of the beta-Stacy process via superposition of beta-Stacy pro-
cesses.

The chapter is structured as follows. In Section 5.2, we introduce the class of NRMIs on
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a general Polish space and we remind the posterior analysis recently developed by James
et al. [100]. In Section 5.3 we define the subclass of NRMIs with logarithmic singularity
and we show that some NRMIs known in the literature belong to this class. In Section 5.4
we provide some developments of the generalized Dirichlet process while in Secion 5.5 we
define a generalization of the beta-Stacy process via superposition of beta-Stacy processes.

5.2 Normalized random measures with independent incre-

ments (NRMIs)

This section review the class of NRMIs. In particular, our aim is to introduce the class of
NRMIs on X and to remind some results recently obtained by James et al. [100] related
to the posterior analysis.

Let (Ω,F ,P) be some probability space. Having set S := R+ × X, let S be the
smallest σ-field containing all open sest of S and introduce a mapping Ñ from Ω to the set
of non-negative counting measures on (S,S ), i.e. Ñ(ω,C) ∈ N0 ∪ {∞} for any ω ∈ Ω and
C ∈ S . Assume that ω 7→ Ñ(ω;C) is F/B(N0 ∪ {∞})-measurable for any C ∈ S where
B(N0 ∪{∞}) is the smallest σ-field containing all open sest of N0 ∪{∞}. We denote by ν
a measure on (S,S ) and by Ñ a Poisson random measure with Poisson intensity measure
ν, i.e.

i) for any C ∈ S such that ν(C) = E[Ñ(C)] < +∞

P(Ñ(C) = k) =
e−ν(C)(ν(C))k

k!
1N0(k)

ii) for any finite collection of disjoint sets, A1, . . . , Ak in S , the r.v.s Ñ(A1), . . . , Ñ(Ak)
are mutually independent

Moreover, the measure ν must satisfy the following conditions∫
(0,1)

sν(ds,X) < +∞ ν([1,+∞)) < +∞.

See Daley and Vere-Jones [22] for an exhaustive account on the theory of Poisson random
measures.

Let MX is the space of boundedly measures on (X,X ) endowed with its σ-field MX

generated by the weak convergence topology W which makes (MX,W) a Polish space.
Let µ̃ be a random element defined on (Ω,F ,P) and with values in (MX,MX) which
can be represented as a linear functional of the Poisson random measure Ñ , with Poisson
intensity measure ν, as follows

µ̃(B) =
∫

R+×B
sÑ(ds, dx) ∀B ∈X . (5.2.1)
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It can be easily seen from the properties of Ñ that µ̃ is, in the terminology of Kingman
[108], a completely random measure (CRM) on X, i.e.

i) µ̃(∅) = 0 a.s.-P;

ii) for any collection of disjoint sets in X , A1, A2, . . ., the r.v.s µ̃(A1), µ̃(A2), . . . are
mutually independent and µ̃(∪j≥1Aj) =

∑
j≥1 µ̃(Aj) holds true a.s.-P.

Let, now, Hν be the space of functions h : X → R+ such that
∫

S(1 − e−sh(x))ν(ds, dx) <
+∞. Then, µ̃ is uniquely characterized by its Laplace functional which, for any h ∈ Hν ,
is given by

E[e−
R

X h(x)µ̃(dx)] = e−
R

S(1−e−sh(x))ν(ds,dx). (5.2.2)

For a proof of such representation, see Theorem 2 in Kingman [108]. For details and further
references on CRMs see Kingman [114].

It is apparent that both the Poisson random measure Ñ and the completely random
measure µ̃ are identified by the corresponding Poisson intensity measure ν. This suggests
a simple and useful distinction of the random measures we deal with according to the
decomposition of ν. Letting H be a non-atomic σ-finite measure on X, we have

i) if ν(ds, dx) = ρ(ds)H(dx), for some measure ρ on R+, we say that the corresponding
Ñ and µ̃ are homogeneous;

ii) if ν(ds, dx) = ρ(ds|x)H(dx), where ρ : R+ × X → R+ is a kernel i.e. x 7→ ρ(C|x)
is X -measurable for any C ∈ R+ and ρ(·|x) is a σ-finite measure on R+ for any
x ∈ X, we say that the corresponding Ñ and µ̃ are non-homogeneous.

In this framework ν always admits a disintegration as in ii); this follows e.g. from Theorem
15.3.3 in Kellenberg [104]. In the sequel we suppose that H is representable as H = aα0

where α0 is a probability distribution on X
Since the aim is to define r.p.m.s by means of normalization of completely random

measures, the total mass T := µ̃(X) needs to be finite and positive, almost surely. This
happens if ν(S) = +∞ and the Laplace exponent

Ψ(λ) :=
∫

S
(1− e−λs)ν(ds, dx)

is finite for any positive λ. A proof of this fact can be found, e.g., in Regazzini et al. [165]
p. 563 and Proposition 1, respectively. Where these conditions hold true, a NRMI on X is
given by

P̃ (·) =
µ̃(·)
T
. (5.2.3)
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Note that, when X = R, this definition coincides with the one given in Regazzini et al. [165]
in terms of increasing additive processes. Indeed, it is worth remarking that an increasing
additive process can always be seen as the càdlàg distribution function induced by a
completely random measure on R. Moreover, as shown in James [97], NRMI select almost
surely discrete distributions. In order to avoid some technical difficulties, we assume T to
be a r.v. whose distribution is absolutely continuous with respect to the Lebesgue measure
on R and denote its density as fT (see Section 3 of Pitman [156] for further details).

It is worth noting that some priors that are used in Bayesian nonparametric inference
can be defined as in (5.2.3). For instance, consider the Dirichlet process with parameter
measure H = aα0. Then, as already noted by Ferguson [61], such a prior can be recovered
by considering a Gamma random measure. Other examples are, e.g., the normalized stable
process introduced by Kingman [109], the normalized inverse-Gaussian process introduced
by Lijoi et al. [119], the normalized generalized Gamma process introduced by Lijoi et al.
[120] (see also James [96]) and the generalized Dirichlet process introduced by Regazzini et
al and further investigated by Lijoi et al. [118]. It is interesting to note that the normalized
inverse Gaussian process and the normalized generalized Gamma process are derivable
from a stable subordinator by a change of measure (see Pitman [156]).

Under the usual assumption of exchangeability of the observation process, James et
al. [100] derived a representation for the posterior distribution of P̃ in terms of a mixture
with respect to the distribution of a suitable latent variable. In particular, let {Xn, n ≥ 1}
be a sequence of exchangeable r.v.s defined on (Ω,F ,P) and with values in X in such way,
given P̃ , the Xi’s are i.i.d. with distribution P̃ , i.e.

P(X1 ∈ C1, . . . , Xn ∈ Cn|P̃ ) =
n∏
i=1

P̃ (Ci). (5.2.4)

It is clear that one can always represent X1, . . . , Xn as (X∗1 , . . . , X
∗
k , π), where X∗1 , . . . , X

∗
k

denotes the distinct observations within the sample and π stands for a partition of [n] :=
{1, . . . , n} of size k recording which observations within the sample are equal. The number
of elements in the j-th set of the partition is indicated by nj , fro j = 1, . . . , k, so that∑

1≤j≤k nj = n.
We define a positive r.v. Un as follows. Let Γn be a r.v. distributed according to a

Gamma distribution function with scale parameter 1 and shape parameter n which is
independent from the total mass T . Then, set Un = Γn/T . It is immediate to show that,
for any n ≥ 1, the density function of Un is given by

fUn =
un−1

Γ(n)

∫
R+

tne−utfT (t)dt (5.2.5)

where ft is the density function of T .
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Proposition 5.2.1. (cfr. James et al. [100]) Let P̃ be a NRMI. Then, the conditional
distribution of Un, given X1, . . . , Xn, admits a density function coinciding with

f
(X1,...,Xn)
Un

(u) ∝ un−1
k∏
i=1

τni(u|X∗i )e−Ψ(u) (5.2.6)

where τni(u|X∗i ) =
∫

R+ s
nie−usρ(ds|X∗i ), for i = 1, . . . , k.

In what follows, for any pair of random elements Z and W defined on (Ω,F ,P), we use
the symbol Z(W ) to denote a random element on (Ω,F ,P) whose distribution coincides
with a regular conditional distibution of Z, given W . James et al. [100] provided the
following result concerning a posterior characterization of the completely random measure
itself.

Theorem 5.2.1. (cfr. James et al. [100]) Let P̃ be a NRMI with Poisson intensity measure
ν(ds, dx) = ρ(ds|x)H(dx). Then

µ̃(Un,X1,...,Xn) d= µ̃(Un) +
k∑
i=1

J
(Un,X1,...,Xn)
i δX∗i

where

i) µ̃(Un) is a completely random measure with Poisson intensity measure

ν(Un)(ds, dx) = e−Unsρ(ds|x)H(dx)

ii) X∗i , for i = 1, . . . , k, are the fixed points of discontinuity and the r.v.s J (Un,X1,...,Xn)
i ’s

are the corresponding jumps whose density is proportional to snie−Unsρ(ds|X∗i );

iii) µ̃(Un) and J (Un,X1,...,Xn)
i for i = 1, . . . , k are independent.

Theorem 5.2.1 shows that, given some latent variable, a posteriori µ̃ is still a completely
random measure with fixed points of discontinuity corresponding to the locations of the
observations. The previous result is essential for deriving the posterior distribution for the
class of NRMIs. In the following, by posterior distriution of P̃ , given Un, we refer to the
distribution of P̃ given the data X1, . . . , Xn and Un.

Theorem 5.2.2. (cfr. James et al. [100]) If µ̃ is a NRMI with Poisson intensity measure
ν(ds, dx) = ρ(ds|x)H(dx), then the posterior distribution of P̃ , given Un, is again a NRMI
(with fixed points of discontinuity). In particular, it coincides in distribution with the
random measure

w
µ̃(Un)

T (Un)
+ (1− w)

∑k
i=1 J

(Un,X1,...,Xn)
i δYi∑k

i=1 J
(Un,X1,...,Xn)
i
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where T (Un) = µ̃(Un)(X), w = T (Un)(T (Un) +
∑k

i=1 J
(Un,X1,...,Xn)
i )−1. The distribution of

µ̃(Un) and J (Un,X1,...,Xn)
i for i = 1, . . . , k and the distribution of Un, given X1, . . . , Xn, are

those specified in Theorem 5.2.1.

Apart from the posterior distribution, a Bayesian can be also interested in a rule for
predicting future values of the observation, given those already observed, and a sampling
scheme for generating observations governed by a NRMI.

Proposition 5.2.2. (cfr. James et al. [100]) Let P̃ be a NRMI with Poisson intensity mea-
sure ν(ds, dx) = ρ(ds|x)H(dx). Then the predictive distribution for Xn+1 given X1, . . . , Xn

coincides with

P(Xn+1 ∈ dx|X1, . . . , Xn) = w(n)H(dx) +
1
n

k∑
j=1

w
(n)
j δX∗j (dx) (5.2.7)

where, for j = 1, . . . , k

w(n) =
1
n

∫
R+

uτ1(u|x)f (X1,...,Xn)
Un

(u)du

and

w
(n)
j =

∫
R+

u
τnj+1(u|X∗j )
τnj (u|X∗j )

f
(X1,...,Xn)
Un

(u)du.

These predictive distribution have quite intuitive forms, since they consist of a linear
combination of H and o a weighted version of the empirical distribution. Note that the
prediction rule reduces to the one provided by Pitman [156] in the homogeneous case.

From the previous results on the posterior and the predictive distributions, it is appar-
ent that the use of partitions is of great help. The same can be said when facing the issue
of characterizing the marginal distribution of the vector of (exchangeable) observations
X1, . . . , Xn, for any n ≥ 1. The marginal distribution of X1, . . . , Xn can be described in
terms of the distribution of (X∗1 , . . . , X

∗
k , π), where, as before, π is a partition of [n] into

k ∈ {n} since, as was mentioned before, NRMI select discrete distributions on (X,X ) with
probability 1. Before describing the distribution of X1, . . . , Xn we introduce the following
quantity

κnj (u) =
∫

X
τnj (u|x)H(dx)

which is the cumulant of order nj of the conditional distribution of the total mass T , given
Un = u.

Proposition 5.2.3. (cfr. James et al. [100]) Let P̃ be a NRMI. Then the distribution of
(X∗1 , . . . , X

∗
k , π) coincides with

1
Γ(n)

∫
R+

un−1e−Ψ(u)

 k∏
j=1

τnj (u|X∗j )

 du

 k∏
j=1

H(dX∗i ). (5.2.8)
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Moreover, the marginal distribution of π yields the exchangeable partition probability func-
tion (EPPF) and it is given by

p
(n)
k (n1, . . . , nk) =

1
Γ(n)

∫
R+

un−1e−Ψ(u)

 k∏
j=1

κnj (u)

 du. (5.2.9)

The EPPF given by (5.2.9) was first obtained by Pitman [156]. For a concrete use of
the marginal distribution of the Xi’s, we generally need a simpler description of the dis-
tribution of X1, . . . , Xn and of the corresponding EPPF. This can be achieved by working
conditionally on the latent variable Un. As for the EPPF, a tractable form we wish to
obtain is of the kind

p
(n)
k (n1, . . . , nk) = Vn,k

k∏
i=1

Wni (5.2.10)

where Vn,k is a positive quantity not depending on the specific (n1, . . . , nk) and each Wni

is a positive number depending solely on the corresponding ni. A random partition having
such an EPPF is said to be of a Gibbs-type. See Pitman [157] for the notion of infinite and
finite Gibbs partition. However it is worth recalling that the only infinite EPPF admitting
such a representation are the EPPFs derived from a Dirichlet process and those derived
from a stable law of index σ ∈ (0, 1) (see Pitman [157]). Among them, we mention the two
parameter Poisson-Dirichlet process and the generalized Gamma class of processes.

By examining (5.2.8) an augmentation and an application of Bayes rule makes it ap-
parent that, for fixed u > 0 and π

P(X∗i ∈ dy|Un = u, π) =
τni(u|y)H(dy)

κni(u)
=: Hi,n(dy|u) (5.2.11)

for any i = 1, . . . , k. At this point we can provide a characterization of the distribution of
X, conditional on Un.

Proposition 5.2.4. (cfr. James et al. [100]) Let P̃ be a NRMI. Conditional on Un and on
the partition π, the k distinct values X∗1 , . . . , X

∗
k among the Xi’s are independent and the

distribution of X∗i ’s is given by (5.2.11), for any i = 1, . . . , k. Moreover, the conditional
distribution of the random partition π, given Un = u, coincides with

p
(n)
k (n1, . . . , nπ) =

e−Ψ(u)
∏k
i=1 κni(u)∫

R+ tne−utfT (t)dt
. (5.2.12)

Hence, conditional on Un, π is a finite Gibbs partition.

Note that in the homogeneous case the distinct observations are i.i.d. with common
distribution α0.
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5.3 NRMIs with logarithmic singularity

In this section, moving from the definition of NRMI given in Section 5.2 and from a
recent paper by Von Renesse et al. [186], our aim is to introduce the class of NRMIs with
logarithmic singularity. In particular, we show how some homogeneous NRMIs known in
the literature belong to the class of NRMIs with logarithmic singularity.

Let us start by defining a positive infinite divisible r.v. ξ̃1 characterized by the Lévy
measure ν(dv) = g(v)dv where g : (0,+∞)→ R+ is any measurable function such that

i) g > 0 such that the following condition holds true∫ +∞

1
g(v)dv < +∞

ii) there exists g0 ≥ 0 and a measurable function ζ : [0, 1]→ R such that the following
conditions hold true

g(v) =
g0

v
+ ζ(v) ∀v ∈ (0, 1]

and ∫ 1

0
|ζ(v)|dv < +∞.

Relying on the infinite divisible r.v. ξ̃1 characterized by the Lévy measure ν(dv) = g(v)dv
where g is any measurable function satisfying i) and ii), we define a CRM µ̃ on X by its
Poisson intensity measure

ν(ds, dx) = g(s)dsα(dx) (5.3.1)

where α is a finite measure on (X,X ) with a := α(X) > 0. Note that, if X = R+

and α(dx) = dx, the corresponding subordinator is in the class of subordinators with
logarithmic singularity deeply investigated in Von Renesse et al. [186]. We are now in a
position to define the class of NRMIs with logarithmic singularity.

Definition 5.3.1. Given the CRM identified by the Poisson intensity measure (5.3.1), a
NRMI with logarithmic singularity on X with parameter g is defined as

P̃g(·)
d=
µ̃(·)
µ̃(X)

.

By Definition 5.3.1, the class of NRMIs with logarithmic singularity is a subclass of
NRMIs characterized by a particular class of Lévy measure ν(dv) = g(v)dv where g is any
measurable function satisfying i) and ii). It can be easily checked that some homogeneous
NRMIs known in the literature belong to the class of NRMIs with logarithmic singularity.
In particular, if we consider a measurable function g : (0,+∞)→ R+ defined by

s 7→ e−s

s
(5.3.2)
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then the Poisson intensity measure in (5.3.1) reduces to the Poisson intensity measure of a
Gamma CRM and, hence, P̃g becomes the Dirichlet process on X introduced by Ferguson
[61]. Another remarkable example can be obtained by considering a measurable function
g : (0,+∞)→ R+ defined by

s 7→ (1− e−γs)e−s

(1− e−s)s
(5.3.3)

with γ > 0. Then, the Poisson intensity measure in (5.3.1) reduces to the Poisson intensity
measure of a generalized Gamma CRM and P̃g becomes the generalized Dirichlet process
on X with parameter γ originally introduced by Regazzini et al. [165] assuming X = R.
We observe that, if γ = 1 in (5.3.3), then µ̃ reduces to the Gamma CRM. Moreover, if
and only if γ ∈ N, then µ̃ can be seen as arising from the superposition of γ independent
Gamma CRMs with increasing integer-valued scale parameter and shape parameter α. In
particular, µ̃(A), for some A ∈X , is then distributed as the convolution of γ independent
r.v.s with parameters (j, α(A)), for j = 1, . . . , γ, i.e.

E[e−λµ̃(A)] =
γ∏
j=1

(
j

j + λ

)α(A)

λ ≥ 0.

A first treatment of the generalized Dirichlet process on R in this setup was provided by
Lijoi et al. [118].

On the othere hand, the normalized stable process with index σ ∈ (0, 1) introduced
by Kingman [109] does not belong to the class of NRMIs with logarithmic singularity, the
measurable function g : (0,+∞)→ R+ is defined by

s 7→ cs−1−σ (5.3.4)

where c is a constant. Consequently, it can be easily checked that the normalized inverse-
Gaussian process introduced by Lijoi et al. [119] and the normalized generalized Gamma
process introduced by Lijoi et al. [120] (see also James [96]) does not belong to the class of
NRMIs with logarithmic singularity. In particular, the fact that the NRMIs with logarith-
mic singularity are not of Gibbs-type follows immediately from Gnedin and Pitman [74]
and Lijoi et al. [124]: for σ = 0, the only Gibbs-type NRMI is the Dirichlet pocess, whereas
for σ > 0 the only NRMIs of Gibbs-type are normalized generalized gamma processes.

We conclude this section by providing some observations on the Lévy measure ν(dv) =
g(v)dv when g is specified by the measurable function (5.3.3). By this specification of the
measurable function g, the Lévy measure ν(dv) corresponds to the Lévy measure of the
negative logarithm transform of a Beta distribution function with parameter (1, γ) which
is a member of the class of generalized convolutions of mixtures of Exponential distribution
functions introduced by Bondesson [11]. In particular, if and only if γ ∈ N, the negative
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logarithm transform of a Beta distribution function with parameter (1, γ) reduces to a
distribution function belonging to the class of the generalized gamma convolutions due to
Thorin [180]. See [101] for an interesting account on the connections between generalized
Gamma convolutions and Bayesian nonparametrics.

The class of generalized Gamma convolutions is a large class of infinite divisible self-
decomposable distribution functions introduced by Thorin [180] and used by Thorin [181]
to prove the infinite divisibility of the log-normal distribution function. The class of gen-
eralized Gamma convolutions, which is often called the T -class in honor of Thorin, is
the smallest class of distribution functions on R+ that contains the Gamma distribution
function and is closed with respect to convolution and weak limits. The T -class is exten-
sively studied in the book by Bondesson [12] where moreover some extended versions of
the T -class are presented. Among these extended versions of the T -class, we focus on a
particular one, the so-called class of generalized convolutions of mixtures of Exponential
distributions, which is often called the T2-class.

The T2-class was first introduced by Bondesson[11] as an extension of the T -class. For
s ≥ 0, the Laplace-Stieltjes transform φ for a distribution function in the T -class satisfies
φ(0) = 1 and the relation

dφ(λ)
dλ

1
φ(λ)

= b+
∫

R+

1
t+ λ

U(dt)

where b ≥ 0 and U a non-negative measure on (R+,R+) such that the following conditions
holds true:

∫
[0,1) | log(t)|U(dt) < +∞ and

∫
[1,+∞) t

−1U(dt) < +∞. From the absolute
monotonicity of φ and d log(φ(λ))/ds, it follows that φ is the Laplace-Stieltjes transform
of an infinite divisible distribution function The same conclusion holds for

dφ(λ)
dλ

1
φ(λ)

= b+
∫

R+

1
(t+ λ)2

Q(dt). (5.3.5)

for b ≥ 0 and Q a non-negative measure on (R+,R+) satisfies the condition
∫

R+ 1/t(1 +
t)Q(dt). A distribution function on R+ with Laplace-Stieltjes transform φ satisfying equa-
tion (5.3.5) is said to belong to the T2-class.

Definition 5.3.2. A distribution function belonging to the T2-class is a probability dis-
tribution on (R+,R+) with Laplace-Stieltjes transform of the form

φ(λ) = e−bλ+
R

R+ (1/t+λ−1/t)Q(dt) λ ≥ 0

where b ≥ 0 and the non-negative Thorin measure Q on (R+,R+) satisfies the condition∫
R+ 1/t(1 + t)Q(dt).

The T2-class is closed with respect to positive translation and change of scale, convo-
lution and convolution roots. It is also closed with respect to weak limits. A distribution
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function belonging to the T2-class can be characterized in terms of the Lévy meaure and
completely monotone functions, that is real-valued functions on R+ which are non-negative
and have derivatives of all orders, alternating in sign.

Theorem 5.3.1. (cfr. Bondesson [12]) A distribution function on R+ belongs to the T2-
class if and only if it is an infinite divisible distribution function and the Lévy measure
has a completely monotone density `. In fact `(y) =

∫
R+ e−tyQ(dt).

Since `(y) is completely monotone when y`(y) is, it follows that T ⊂ T2. Another
characterization of the T2-class is in terms of Pick functions (see Donoghue [31]).

Theorem 5.3.2. (cfr. Bondesson [12]) A distribution function on R+ belongs to the T2-
class if and only if, for λ ≤ 0, its Laplace-Stieltjes transform φ is anlytic and zero-free in
C ∩ (R+)c and

=(log(φ(λ))) = arg(φ(λ)) ≥ 0 =(λ) > 0

or
=
(

1
λ

log(φ(λ))
)
≥ 0 =(λ) > 0.

A characterization of the T2-class is available in terms of the Thorin measure. This
characterization provides more information about the relation between the T -class and
the T2-class and the relations between the class of mixture of Exponential distributions
and the T2-class.

Theorem 5.3.3. (cfr. Bondesson [12]) The T -class is formed by those distributions in
the T2-class for which the measure Q on (R+,R+) has an increasing density q(·). In fact,
if U(dt) denotes the Thorin measure, then q(t) = U(t) =

∫
(0,t] U(dt).

Theorem 5.3.4. (cfr. Bondesson [12]) The class of mixture of exponential distribution is
formed by those distributions in the T2-class for which the left extremity b is zero and Q

is a measure on (R+,R+) with density q(t) such that q(t) ≤ 1.

In Chapter 9 and Chapter 10 on Bondesson [12] several examples of distribution func-
tions belonging to the T2-class are provided. In particular, the compound Poisson distri-
bution function, the non-central Chi-square distribution function, the negative logarithm
transform of a Beta distribution function and the first passage time distribution function
for random walks in continuous time. Further examples are related to the context of shot-
noise processes.

In the next proposition we define a non-negative measure Q(γ,%,β,θ) on (R+,R+) by
means of the sum of two Thorin measures characterizing the Laplace-Stieltjes transform of
the negative logarithm transform of the Beta distribution function for a specific choice of
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its parameter (see Bondesson [12]). In particular, we prove that Q(γ,%,β,θ) is still a Thorin
measure and it characterizes a Laplace-Stieltjes transform having Lévy-Khintchine repre-
sentation.

Proposition 5.3.1. Let Q(γ,%,β,θ) be a positive measure on (R+,R+) defined by

Q(γ,%β,θ)(dt) =
∑
n≥1

(1{n−1+%,n−1+γ+%−θ}(dt) + 1{n−1+γ+%−θ−β,n−1+γ+%−β}(dt))

with γ > 0, % > 0, 0 ≤ θ ≤ γ and γ − θ − β > 0. Then Q(γ,%,β,θ) is the Thorin measure
characterizing the Laplace-Stieltjes transform

φ(λ) =
Γ(γ + %− θ)Γ(γ + %− β)Γ(%+ λ)Γ(γ + %− λ− θ − β)
Γ(%)Γ(γ + %− θ − β)Γ(γ − θ + %− λ)Γ(γ − β + %− λ)

(5.3.6)

having Lévy-Khintchine representation

log(φ(λ)) =
∫

R+

(e−λv − 1)ν(dv) λ ≥ 0, v ≥ 0 (5.3.7)

where

ν(dv) =
e−v%

v(1− e−v)

(
1 +

1− e−vβ − e−vθ

ev(γ−θ−β)

)
dv. (5.3.8)

Proof. First of all we prove that Q(γ,%,β,θ) is the Thorin measure charachterizing a partic-
ular Laplace-Stieltjes transform. It can be easly cheked that

∫
R+ 1/t(1 + t)Q(dt) < +∞.

From equation (5.3.5), setting b = 0 and using the series representation of the first deriva-
tive of the Digamma function, i.e. ψ(x) = d/dx log(Γ(x)) = −C+

∑
n≥1(1/n−1/n−1−x),

where C is the Eulero’s constant, we have for λ ≥ 0

dφ(λ)
dλ

1
φ(λ)

= ψ(%+ λ)− ψ(γ + %− θ + λ) + ψ(γ + %− θ − β + λ)− ψ(γ + %− β + λ)

=
∑
n≥1

(∫ n−1+γ+%−θ

n−1+%

1
(t+ λ)2

dt+
∫ n−1+γ+%−β

n−1+γ+%−θ−β

1
(t+ λ)2

dt

)
=
∫

R+

1
(t+ λ)2

(Q(1)(dt) +Q(2)(dt))

where
Q(1)(dt) :=

∑
n≥1

1{n−1+%,n−1+γ+%−θ}(dt)

and
Q(2)(dt) :=

∑
n≥1

1{n−1+γ+%−θ−β,n−1+γ+%−β}(dt).

Under the condition γ > 0, % > 0, 0 ≤ θ ≤ γ and γ − θ − β > 0, it can be easly
checked that φ is a Laplace-Stieltjes transform, then we proved that Q(γ,%,β,θ) in is a
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Thorin measure characterizing the Laplace-Stieltjes transform φ. We now prove the Lévy-
Khintchine representation for φ. In particular, using the ralations for the Gamma function
Γ(x) = (x−1)Γ(x) and Γ(x) = x−1Γ(x+1) and the approximation given by Stirling formula
Γ(x) ∼ (2πx)1/2(x/e)x to approximate the Gamma function, we have the following

φ(λ) =
∏
i≥0

(%+ i)(γ + %− θ − β + i)(γ − θ + %+ λ+ i)(γ − β + %+ λ+ i)
(γ + %− θ + i)(γ + %− β + i)(%+ λ+ i)(γ + %+ λ− θ − β + i)

=
∏
i≥0

exp

{∫ +∞

0

(e−λv − 1)
v

(e−v(%+i)(1 + e−v(γ−θ−β) − e−v(γ−θ) − e−v(γ−β)))dv

}

= exp

{∫ +∞

0

(e−λv − 1)
v

∑
i≥0

e−v(%+i)(1 + e−v(γ−θ−β) − e−v(γ−θ) − e−v(γ−β))dv

}

= exp

{∫ +∞

0

(e−λv − 1)e−v%

v(1− e−v)

(
1 +

1− e−vβ − e−vθ

ev(γ−θ−β)

)
dv

}
.

We provide a brief discuss of the Proposition 5.3.1. The measure Q(γ,%,β,θ) defined
in (5.3.5) is the sum of two known Thorin measure characterizing the Laplace-Stieltjes
trasform of the negative logarithm transform of the Beta distribution function for a specific
choice of its parameter (see Bondesson [12]). The first one

Q(1)(dt) =
∑
n≥1

1{n−1+%,n−1+γ+%−θ}(dt)

is the Thorin measure characterizing the Laplace-Stieltjes transform

φ(1)(λ) =
Γ(γ + %− θ)Γ(%+ λ)
Γ(%)Γ(γ − θ + %+ λ)

of the distribution function of the negative logarithm transform of a Beta distribution
function with parameter (%, γ − θ), i.e. the r.v. Y (1) = − log(1 − V (1)) where V (1) is a
r.v. distributed according to a Beta distribution function with parameter (γ − θ, %). The
second one, corresponding to

Q(2)(dt) =
∑
n≥1

1{n−1+γ+%−θ−β,n−1+γ+%−β}(dt)

is the Thorin measure characterizing the Laplace-Stieltjes transform

φ(2)(λ) =
Γ(γ + %− β)Γ(γ + %+ λ− θ − β)
Γ(γ + %− θ − β)Γ(γ − β + %+ λ)

of the distribution function of the negative logarithm transform of a Beta distribution
function with parameter (γ+%−θ−β, θ), i.e. the r.v. Y (2) = − log(1−V (2)) where V (2) is



146 5. On a class of random probability measures without Gibbs structure

a r.v. distributed according to a Beta distribution function with parameter (θ, γ+%−θ−β).
In particular, by mean of the summation of Q(1) and Q(2), we obtain the Thorin measure
Q(γ,%,β,θ) which characterizes the Laplace-Stieltjes transform φ in (5.3.6). As we can see
φ in (5.3.6) is the product of the Laplace-Stieltjes transforms φ(1) and φ(2), i.e. φ is the
Laplace-Stieltjes transform of the convolution of the distribution functions of Y (1) and
Y (2) where Y (1) is independent of Y (2). Reminding that the T2-class is convolution closed
the last observation could be another way to see that Q(γ,%,β,θ) is a Thorin measure.

In the next corollary we provide some further characterization for the Thorin measure
Q(γ,%,β,θ) introduced in Proposition 5.3.1. In particular, we prove a relation with the T .

Corollary 5.3.1. The following facts hold true

i) ν in (5.3.8) is a Lévy measure generalizing the Lévy measures g(v)dv with g the
measurable function defined by (5.3.2);

ii) φ in (5.3.6) is the Laplace-Stieltjes transform of a mixture of Exponential distribution
function if and only if γ ≤ 1;

iii) φ in (5.3.6) is the Laplace-Stieltjes transform belonging to the T -class if and only if
γ ∈ N and θ ∈ N0.

Proof. As regard the point i), the proof follows from Proposition 5.3.1, especially from the
measure ν identified by (5.3.8). The measure ν is a non-negative measure, then we need
just to verify that ∫

R+

(1 ∧ v)ν(dv) < +∞.

In particular, we can factorize the above condition as follows∫ +∞

0
(1 ∧ v)

e−v%

v(1− e−v)

(
1 +

1− e−vβ − e−vθ

ev(γ−θ−β)

)
dv

=
∫ +∞

0
(1 ∧ v)

e−v%

v(1− e−v)
((1− e−v(γ−θ)) + (1− e−v(γ−β))− (1− e−v(γ−θ−β)))dv

and we know that for any a > 0 and b > 0∫ +∞

0
(1 ∧ v)

e−vb

v(1− e−v)
(1− e−va)dv < +∞.

because e−vb(1 − e−va)/v(1 − e−v)dv is a Lévy measure. It can be easly seen than the
Lévy measure ν in (5.3.8) generalizes the Lévy measure g(v)dv with g defined by (5.3.2)
and (5.3.3), respectively. Actually we can obtain the Lévy measure g(v)dv with g defined
by (5.3.3), if we set in ν one of the following conditions: θ = 0, β = 0 or β = 0 and
θ = 0. Moreover, we can obtain the Lévy measure g(v)dv with g defined by (5.3.2), setting



5.3. NRMIs with logarithmic singularity 147

the further condition γ = 1. The point ii), given the equation (5.3.5), is a straightforward
applications of Theorem 5.3.4. As regard the point iii), using the relation for the generalized
factorials Γ(a + n)/Γ(a) = (a)n↑1 = a(a + 1) · · · (a + n − 1) (in particular, (x)y↑1 stands
for the Pochhammer symbol for the ascending factorial of x of order y (see Appendix
A)) for any a ∈ C and n ∈ N0, it can be seen that if and only if γ ∈ N and θ ∈ N0, φ is
the Laplace-Stieltjes transform of a convolution of γ independent Exponential distribution
function. Actually, if and only if γ ∈ N and θ ∈ N0 we can write

φ(λ) =
(%)(γ−θ)↑1(γ + %− θ − β)θ↑1

(%+ λ)(γ−θ)↑1(γ + %− θ − β + λ)θ↑1
=

γ−1∏
j=0

j + %− β1{j≥γ−θ}
j + %− β1{j≥γ−θ} + λ

which is the convolution of γ independent Exponential distribution function, with param-
eters (j + %− β1{j≥γ−θ} + %).

As we proved, the Thorin measure Q(γ,%,β,θ) characterizes the Laplace-Stieltjes trans-
form φ which is the Laplace-Stieltjes transform of the convolution of the distribution
functions of the independent r.v.s Y (1) and Y (2) distributed according to a Beta distribu-
tion function with parameter (%, γ− θ) and (γ + %− θ− β, θ), respectively. We now define
a new distribution function, the so-called Gauss-Exponential distribution function corre-
sponding to this convolution and we provide several properties of this new distribution
function in terms of cumulative distribution function, moments and particular cases. The
definition of the Gauss-Exponential distribution function is given in terms of the Gauss
hypergeometric function 2F1 (see Appendix C).

Definition 5.3.3. A Gauss-Exponential distribution function with parameter (γ, %, β, θ)
is a distribution function having density function absolutley continuous with respect to
Lebesgue measure on R+

f(v) =
Γ(γ + %− θ)Γ(γ + %− β)
Γ(γ)Γ(%)Γ(γ + %− θ − β)

(1− e−v)γ−1(e−v)%2F1(θ, β; γ; 1− e−v)1R+(v) (5.3.9)

where γ > 0, % > 0, 0 ≤ θ ≤ γ and γ − θ − β > 0.

Using Equation 7.527.3 in Gradshteyn and Ryzhik [77] it can be proved that (5.3.9)
is a density function on R+. In particular, Figure 5.1 and Figure 5.2 show respectively
the density functions and the corresponding numerical approximation of the cumulative
distribution functions for the Gauss-Exponential distribution function for some fixed pa-
rameter γ and % and variyng parameters θ and β.

It can be seen that the Gauss-Exponential distribution function includes as particular
cases some known distribution functions
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• the Exponential distribution function with parameter % can be recovered from (5.3.9)
by setting one of the following conditions: γ = 1 and θ = 0, γ = 1 and β = 0 or
γ = 1 and β = 0 and θ = 0;

• the distribution function of the negative logarithm transform of a Beta distribution
function with parameter (γ, %) cab be recovered from (5.3.9) by setting one of the
following conditions: θ = 0, β = 0 or β = 0 and θ = 0.

Alternatively we can recover the Exponential distribution function and the distribution
function of the negative logarithm trasform of the Beta distribution function as the limit
in distribution of the Gauss-Exponential distribution function for β → −∞. In particular,
the distribution function of the negative logarithm trasform of the Beta distribution func-
tion with parameter (γ − θ, %) can be recovered from the Gauss-Exponential distribution
function with parameter taking the limit for β → −∞; the Exponential distribution func-
tion with parameter % can be recovered from the Gauss-Exponential distribution function
with parameter (γ, %, β, γ − 1) and taking the limit for β → −∞.

Proposition 5.3.2. The Laplace-Stieltjes transform of a Gauss-Exponential distribution
function with parameter (γ, %, β, θ) correspond to (5.3.6) and

d

dλ
φ(λ) = φ(λ)(ψ(%+λ)−ψ(γ+%−β+λ)+ψ(γ+%−θ−β+λ)−ψ(γ+%−θ+λ)) (5.3.10)

and for r > 1

dr

dλr
φ(λ) = φ(λ)

(
d/dλφ(λ)dr−1/dλr−1φ(λ)

(φ(λ)2)
+

d

dλ

(
dr−1/dλr−1φ(λ)

φ(λ)

))
. (5.3.11)

Proof. The constraints on the parameter of the Gauss-Exponential distribution function
implies that % + s > θ + β − γ. Then, the Laplace-Sieltjes transform (5.3.6) can be ob-
tained by a straightforward application of Equation 7.527.3 in Gradshteyn and Ryzhik [77].
Equation (5.3.10) and equation (5.3.11) can be obtained using the definition of Digamma
function.

Equation (5.3.10) and equation (5.3.11) can be used to derive the r-th moment for
a r.v. distributed according to a Gauss-Exponential distribution function. In particular,
given V is a r.v. distributed according to a Gauss-Exponential distribution function with
parameter (γ, %, β, θ), then

E[V ] = ψ(γ + %− β)− ψ(%) + ψ(γ + %− θ)− ψ(γ + %− θ − β)

and

V ar(V ) =
d

dλ
(ψ(%+ λ)− ψ(γ + %− β + λ) ψ(γ + %− θ − β + λ)− ψ(γ + %− θ + λ)|λ=0 .
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Figure 5.1: Gauss-Exponential density functions on R+ with γ = 6, % = 2 and A) θ = 1, β = 0.8
(red); θ = 1, β = 4.8 (black) B) θ = 1, β = −20 (red); θ = 1, β = −40 (black) C) θ = 2, β = 0.8
(red); θ = 2, β = 3.8 (black) D) θ = 2, β = −20 (red); θ = 2, β = −40 (black) E) θ = 3, β = 0.8
(red); θ = 3, β = 2.8 (black) F) θ = 3, β = −20 (red); θ = 3, β = −40 (black) G) θ = 4, β = 0.8
(red); θ = 4, β = 2.8 (black) H) θ = 4 β = −20 (red); θ = 4, β = −40 (black).



150 5. On a class of random probability measures without Gibbs structure

Figure 5.2: Gauss-Exponential cumulative distribution functions on R+ with γ = 6, % = 2 and
A) θ = 1, β = 0.8 (red); θ = 1, β = 4.8 (black) B) θ = 1, β = −20 (red); θ = 1, β = −40 (black)
C) θ = 2, β = 0.8 (red); θ = 2, β = 3.8 (black) D) θ = 2, β = −20 (red); θ = 2, β = −40 (black)
E) θ = 3, β = 0.8 (red); θ = 3, β = 2.8 (black) F) θ = 3, β = −20 (red); θ = 3, β = −40 (black)
G) θ = 4, β = 0.8 (red); θ = 4, β = 2.8 (black) H) θ = 4 β = −20 (red); θ = 4, β = −40 (black).
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Explicit formulae for the skewness coefficient and the kurtosis coefficient can be obtained
using equation (5.3.10) and applying recursively Equation (5.3.11). Rather than providing
an explicit formula for the skewness coefficient and the kurtosis coefficient, we provide
in Figure 5.3 some graphical results which are useful to understand the behavior for the
mean, variance, skewness and kurtosis coefficient of the Gauss-Exponential for some fixed
parameter γ and % and variyng parameter θ and β.

5.4 Some developments of a generalized Dirichlet process

In this section we use the results obtained in Section 5.3 for the Gauss-Exponential distri-
bution function in order to provide some developments of the generalized Dirichlet process
introduced by Regazzini et al. [165] and further investigated by Lijoi et al. [118].

Let us start by defining a r.v. ξ̃1 distributed according to the Gauss-Exponential dis-
tribution function with parameter (1, %, θ, β). Thus, ξ̃1 is a positive infinite divisible r.v.
characterized by the Lévy measure

ν(dv) =
e−v

v(1− e−v)

(
1 +

1− e−vβ − e−vθ

ev(γ−θ−β)

)
v ≥ 0

with % > 0, 0 ≤ θ ≤ γ and γ − θ − β > 0. Relying on ξ̃1, define now a CRM µ̃ by its
Poisson intensity measure

ν(ds, dx) =
e−s

s(1− e−s)

(
1 +

1− e−sβ − e−sθ

es(γ−θ−β)

)
dsα(dx) (5.4.1)

where α is a finite measure on X with a := α(X) > 0.

Definition 5.4.1. Given the CRM µ̃ on X identified by the Poisson intensity measure
(5.4.1), the generalized Dirichlet process on X with parameter (γ, β, θ) is defined as

P̃(γ,β,θ)(·)
d=
µ̃(·)
µ̃(X)

.

It can be easily checked that the generalized Dirichlet process on X with parameter
(γ, β, θ) is a NRMI with logarithmic singularity with parameter g where g : (0,+∞)→ R+

is defined by s 7→ e−s/s(1 − e−s)(1 + (1 − e−sβ − e−sθ/es(γ−θ−β))). In particular the
generalized Dirichlet process on X with parameter γ can be recovered by setting one of
the following conditions: θ = 0, β = 0 or θ = 0 and β = 0. If X = R+ and α(dx) = dx,
the corresponding subordinator represents a special case of the class of subordinators with
logarithmic singularity deeply investigated in Von Renesse et al.[186].

As proposed by Lijoi et al [118] for the generalized Dirichlet process with parameter
γ with γ ∈ N, also for the generalized Dirichlet process with parameter (γ, β, θ) we can
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Figure 5.3: Figures A), B), C), D) respectively the mean, variance, skewness and kurtosis coef-
ficient for the Gauss-Exponential distribution functions with γ = 1, % = 2 and variyng θ and β.
Figures E), F), G), H) respectively the mean, variance, skewness and kurtosis coefficient for the
Gauss-Exponential distribution functions with γ = 6, % = 2 and variyng θ and β.
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restrict the attention to the particular case corresponding to γ ∈ N and θ ∈ N0. Under
these assumptions, for any A ∈ X , the Laplace-Stieltjes transform of the distribution
function of µ̃(A)

E[e−λµ̃(A)] =
γ∏
j=1

(
j − β1{j>γ−θ}

j − β1{j>γ−θ} + λ

)α(A)

λ ≥ 0. (5.4.2)

Thus µ̃(A) is distributed as the convolution of two independent random elements. The
first one is the convolution of (γ− θ) independent r.v.s distributed according to a Gamma
distribution function with parameter (j, α(A)) for j = 1, . . . , (γ−θ). The second one is the
convolution of θ independent r.v.s distributed according to a Gamma distribution function
with parameter (γ − θ− β + j, α(A)) for j = 1, . . . , θ. Thus, distribution function of µ̃(A)
is a member of T because is the convolution two members of T .

In what follows for generalized Dirichlet process with parameter γ we mean the gener-
alized Dirichlet process with parameter γ with γ ∈ N and for generalized Dirichlet process
with parameter (γ, β, θ) we mean the generalized Dirichlet process with parameter (γ, β, θ)
with γ ∈ N and θ ∈ N0. From expression (5.4.2) we can clearly see the main difference
between the generalized Dirichlet process investigated by Lijoi et al. [118] and the general-
ized Dirichlet process defined by Definition 5.4.1 under the assumpion γ ∈ N and θ ∈ N0:
the generalized Dirichlet process with parameter (γ, β, θ) is a r.p.m. on X obtained by
normalization of superposed independent Gamma CRMs where the scale parameter is not
necessarily increasing integer-valued. The scale parameter is increasing integer-valued for
the first γ − θ Gamma CRMs superposed, then changes according to the parameter β.

By definition, the generalized Dirichlet process with parameter γ can be recovered
setting one of the following condition: θ = 0, β = 0 or θ = 0 and β = 0. In particular,
the Dirichlet process can be recoverd setting the further condition γ = 1. Another way
to see the Dirichlet process and the generalized Dirichlet process with parameter γ as
particular case of the generalized Dirichlet process with parameter γ, β, θ is to consider
such processes as the limit process in distribution of the generalized Dirichlet process with
parameter (γ, β, θ) for β → −∞. The generalized Dirichlet process with parameter γ − θ
can be recovered from a generalized Dirichlet process with parameter (γ, β, θ) and tak-
ing the limit for β → −∞. In particular, the Dirichlet process can be recovered from the
generalized Dirichlet process with parameter (γ−1, β, θ) and taking the limit for β → −∞.

5.4.1 Finite dimensional distributions

We now consider the finite dimensional distributions of the generalized Dirichlet process
with parameter (γ, β, θ). As for the generalized Dirichlet process with parameter γ, the
finite dimensional distributions can be derived in terms of Lauricella hypergeometric func-
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tions (see Appendix C).
First of all we establish some notation. For any vector x = (x1, . . . , xn) ∈ Rn, let

|x| :=
∑

1≤i≤n xi and for any measurable partition B1, . . . , Bn of X let αi := α(Bi) for
i = 1, . . . , n. Finally, we set the following (γ − 1)-dimensional vectors 1γ−1 := (1, . . . , 1)
and J

(θ,β)
γ−1 := (1 + β(1{γ−1>γ−θ} − 1{θ 6=0}), . . . , γ − 1 + β(1{1>γ−θ} − 1{θ 6=0})). Thus, we

have the following proposition.

Proposition 5.4.1. Let P̃(γ,β,θ) be a generalized Dirichlet process on X with parameter
(γ, β, θ). For any measurable partition B1, . . . , Bn of X, (P̃(γ,β,θ)(B1), . . . , P̃(γ,β,θ)(Bn−1))
is a r.v. admitting density function with respect to Lebesgue measure on the simplex ∆(n−1)

given by

f(P̃(γ,β,θ)(B1),...,P̃(γ,β,θ)(Bn−1))(y1, . . . , yn−1) (5.4.3)

=

∏γ
j=1(j − β1{j>γ−θ})a∏n

i=1 Γ(γαi)

n−1∏
i=1

yγαi−1
i

(
1−

n−1∑
i=1

yi

)γαn−1 ∫ +∞

0
e−y(γ−β1{θ 6=0})yγa−1

×
n−1∏
i=1

Φ(γ−1)
2 (αi1γ−1; γαi; yyiJ

(θ,β)
γ−1 )Φ(γ−1)

2

(
αn1γ−1; γαn; y

(
1−

n−1∑
i=1

yi

)
J

(θ,β)
γ−1

)
dy

× 1∆(n−1)(y1, . . . , yn−1).

In particular, the distribution of P̃(γ,β,θ)(B), for any B ∈ X has density function with
respect to the Lebesgue measure on (0, 1) given by

fP̃(γ,β,θ)(B)(y1) (5.4.4)

=

∏γ
j=1(j − β1{j>γ−θ})a

Γ(γα(B))Γ(γα(Bc))
y
γα(B)−1
1 (1− y1)γα(Bc)−1

∫ +∞

0
e−y(γ−β1{θ 6=0})yγa−1

× Φ(γ−1)
2 (α(B)1γ−1; γα(B); yy1J

(θ,β)
γ−1 )Φ(γ−1)

2 (α(Bc)1γ−1; γα(Bc); y(1− y1)J (θ,β)
γ−1 )dy

× 1∆(1)(y1).

Proof. Using the representation of the density function of the sum N of independent r.v.s
distributed according to a Gamma distribution function in terms of the limiting form Φ(N)

2

of the second Lauricella hypergeometric function (see Chapter 7 in Exton [47]) we have
for any B ∈X the density function of µ̃(B)

fµ̃(B)(x) =

∏γ
j=1(j − β1{j>γ−θ})α(B)

Γ(γα(B))
e−x(γ−β1{θ 6=0})xγα(B)−1

× Φ(γ−1)
2 (α(B)1γ−1; γα(B);xJ (θ,β)

γ−1 )1R+(x)
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and the joint density function of (µ̃(B1), . . . , µ̃(Bn)) is given by

f(µ̃(B1),...,µ̃(Bn))(x1, . . . , xn) =

∏γ
j=1(j − β1{j>γ−θ})a∏n

i=1 Γ(γαi)

× e−|x|(γ−β1{θ 6=0})
n∏
i=1

xγαi−1
i

n∏
i=1

Φ(γ−1)
2 (αi1γ−1; γαi;xiJ

(θ,β)
γ−1 )1(R+)n(x1, . . . , xn).

From the joint density function of (µ̃(B1), . . . , µ̃(Bn)) it is possible to find the transformed
normalized joint density function (P̃(γ,β,θ)(B1), . . . , P̃(γ,β,θ)(Bn−1)). This density function
is obtain first considering the following transformed joint probability distribution function

f(P̃(γ,β,θ)(B1),...,P̃(γ,β,θ)(Bn−1),µ̃(X))(y1, . . . , yn−1, y)

=

∏γ
j=1(j − β1{j>γ−θ})a∏n

i=1 Γ(γαi)
e−y(γ−β1{θ 6=0})

n−1∏
i=1

yγαi−1
i yγa−1

(
1−

n−1∑
i=1

yi

)γαn−1

×
n−1∏
i=1

Φ(γ−1)
2 (αi1γ−1; γαi; yyiJ

(θ,β)
γ−1 )

× Φ(γ−1)
2

(
αn1γ−1; γαn; y

(
1−

n−1∑
i=1

yi

)
J

(θ,β)
γ−1

)
1∆(n−1)(y1, . . . , yn−1)

and then integrating over y. Formula (5.4.4) follows from the same proof for the particular
case of n = 2.

For a fixed γ, if we set θ = 0 or β = 0, or both equal to zero, it can be sees in formula
(5.4.3) that the finite dimensional distributions are of the generalized Dirichlet process
with parameter measure γ (see Lijoi et al. [118]). In particular, if we fix γ = 1, then if we
set θ = 0 or β = 0, or both equal to zero, we recover from (5.4.3) the finite dimensional
distributions are of the Dirichlet process. Moreover, the finite dimensional distributions
of the generalized Dirichlet process with parameter γ − θ can be recoverd by the finite
dimensional distributions of the generalized Dirichlet process with parameter (γ, β, θ) and
taking the limit in distribution for β → −∞; in the same way the finite dimensional distri-
butions of the Dirichlet process can be be recoverd by the finite dimensional distributions
of the generalized Dirichlet process with parameter (γ, β, γ − 1) and taking the limit in
distribution for β → −∞.

The following corollary highlight the particular cases of the finite dimensional distribu-
tions (5.4.3) when γ = 2. In such particular case the confluent form of the fourth Lauricella
function reduces respectively to a confluent hypergeometric function 1F1 (see Appendix
C).

Corollary 5.4.1. Let P̃(γ,β,θ) be a generalized Dirichlet process on X with parameter
(2, β, θ). For any measurable partition B1, . . . , Bn of X, (P̃(γ,β,θ)(B1), . . . , P̃(γ,β,θ)(Bn−1))
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is a r.v admitting density function with respect to Lebesgue measure on the simplex ∆(n−1)

given by

f(P̃(γ,β,θ)(B1),...,P̃(γ,β,θ)(Bn−1))(y1, . . . , yn−1)

=
Γ(2a)

∏2
j=1(j − β1{j>2−θ})a

(2− β1{θ 6=0})2a
∏n
i=1 Γ(2αi)

n−1∏
i=1

y2αi−1
i

(
1−

n−1∑
i=1

yi

)2αn−1

× F (n)
A

(
2a, α1, . . . , αn; 2(α1, . . . , αn);

J
(θ,β)
1 y1

(2− β1{θ 6=0})
, . . . ,

J
(θ,β)
1 (1−

∑n−1
i=1 yi)

(2− β1{θ 6=0})

)
× 1∆(n−1)(y1, . . . , yn−1).

Proof. When γ = 2 we have that Φ(N)
2 reduces to the confluent hypergeometric function

1F1. So using the series representation of 1F1 we have

f(P̃(γ,β,θ)(B1),...,P̃(γ,β,θ)(Bn−1))(y1, . . . , yn−1)

=

∏2
j=1(j − β1{j>2−θ})a∏n

i=1 Γ(2αi)

n−1∏
i=1

y2αi−1
i (1−

n−1∑
i=1

yi)2αn−1

∫ +∞

0
e−y(2−β1{θ 6=0})y2a−1

×
n−1∏
i=1

∑
mi≥0

(αi)mi↑1(yyiJ
(θ,β)
1 )mi

mi!(2αi)mi↑1

∑
mn≥0

(αn)mn↑1(y(1−
∑n−1

i=1 yi)J
(θ,β)
1 )mn

mn!(2αn)mn↑1
dy

× 1∆(n−1)(y1, . . . , yn−1)

=

∏2
j=1(j − β1{j>2−θ})a∏n

i=1 Γ(2αi)

n−1∏
i=1

y2αi−1
i

(
1−

n−1∑
i=1

yi

)2αn−1

×
∑

(m1,...,mn)∈(N0)n

(α1)m1↑1 · · · (αn)mn↑1y
m1
1 · · · ymn−1

n−1 (1−
∑n−1

i=1 yi)
mn

m1!(2αi)mi

×
∫ +∞

0
e−y(2−β1{θ 6=0})(J (θ,β)

1 )|m|y2a−1+|m|dy1∆(n−1)(y1, . . . , yn−1)

and the proof is completed.

5.4.2 Predictive distributions and posterior characterization

The greater flexibility of the nonparametric model has to be constrained in order to incor-
porate real qualitative prior knowledge into the model. This is usually done by tuning some
moments according to one’s prior opinion. Walker and Damien [190] suggest controlling
the mean and the variance of P̃(γ,β,θ). Walker et al. [192] provided a detailed discussion
about on specification in nonparametric problems.
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The expected value of P̃(γ,β,θ) takes on the interpretetion of a prior guess at the shape
of P̃(γ,β,θ) and is a crucial quantity in terms of prior specification. Indeed, if P̃(γ,β,θ) is a
generalized Dirichlet process with parameter (γ, β, θ), then

E[P̃(γ,β,θ)(B)] =
α(B)
a

for any measurable set B (see Pitman [156]). Once setting the prior guess at the shape ϕ̃
through the chice of α, one has still four degrees of freedom in order to complete the prior
specification: the total mass a and the parameters γ, θ and β.

Proposition 5.4.2. Let P̃(γ,β,θ) be a generalized Dirichlet process on X with parameter
(γ, β, θ). If α is a non-atomic measure on (X,X ), then for any B ∈X and B1, B2 ∈X

such that C = B1 ∩B2

V ar(P̃(γ,β,θ)(B)) =
α(B)(a− α(B))

a2
Ia,γ,θ,β (5.4.5)

Cov(P̃(γ,β,θ)(B1), P̃ (B2)) =
aα(C)− α(B1)α(B2)

(a)2
Ia,γ,θ,β (5.4.6)

sk(P̃(γ,β,θ)(B)) =
a− 2α(B)

2(α(B)(a− α(B)))1/2
Ka,γ,θ,β (5.4.7)

where

Ia,γ,θ,β =
Γ(γa)a

∏γ
j=1(j − β1{j>γ−θ})a

Γ(γa+ 2)(γ − β1{θ 6=0})γa

γ∑
k=1

F
(γ−1)
D

(
γa, α∗k; γa+ 2;

J
(θ,β)
γ−1

γ − β1{θ 6=0}

)
(5.4.8)

and

Ka,γ,θ,β =
4(
∏γ
j=1(j − β1{j>γ−θ}))−a/2Γ(γa+ 2)1/2

a1/2(Γ(γa))1/2(γ − β1{θ 6=0})−γa/2(γa+ 2)
(5.4.9)

×
∑γ

k=1 F
(γ−1)
D (γa, α∗∗k ; γa+ 3; J (θ,β)

γ−1 /γ − β1{θ 6=0})

(
∑γ

k=1 F
(γ−1)
D (γa, α∗k; γa+ 2; J (θ,β)

γ−1 γ − β1{θ 6=0}))3/2

where α∗k = (a, . . . , a + 2, . . . , a) ∈ Rγ−1 with a + 2 being the (γ − k)-th element of the
vector and α∗∗k = (a, . . . , a + 3, . . . , a) ∈ Rγ−1 with a + 3 being the (γ − k)-th element of
the vector.

Proof. As regard the variance, from Proposition 1 in James et al. [99] we have

Ia,γ,θ,β = a

∫ +∞

0
ue−aΨ(u)

∫
R+

v2e−uvν(dv)du
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where Ψ stands for the Laplace exponent of the random measure at issue and ν is the Lévy
measure. Hence, in the case of a generalized Dirichlet process with parameter (γ, β, θ), one
has

Ia,γ,θ,β = a

γ∑
k=1

∫ +∞

0
u

 γ∏
j=1

j − β1{j>γ−θ}
j − β1{j>γ−θ} + u

a ∫ +∞

0
ve−v(u+k−β1{k>γ−θ})dvdu

= a

γ∑
k=1

∫ +∞

0
u

 γ∏
j=1

j − β1{j>γ−θ}
j − β1{j>γ−θ} + u

a

(u+ k − β1{k>γ−θ})−2du

= a

γ∑
k=1

(k − β1{k>γ−θ})−2E[(η(γ,θ,β)
k + ζ(γ,θ,β)

a )−2]

where η(γ,β,θ)
k is r.v. distributed according to a Gamma distribution function with parame-

ter (k−β1{k>γ−θ}, 2), for k = 1, . . . , γ and ζ(γ,β,θ)
a is the convolution of γ independent r.v.s

distributed according to a Gamma distribution function with parameter (j−β1{j>γ−θ}, a),
for j = 1, . . . , γ. Then, the density function is

f
η

(γ,β,θ)
k +ζ

(γ,β,θ)
a

(y) =

∏γ
j=1(j − β1{j>γ−θ})a(k − β1{k>γ−θ})2

Γ(γa)

×
∫ y

0
(y − x)e−(k−β1{k>γ−θ})(y−x)xγa−1e−x(γ−β1{θ 6=0})

× Φ(γ−1)
2 (α(B)1γ−1; γα(B);xJ (θ,β)

γ−1 )1R+(y)dx

=

∏γ
j=1(j − β1{j>γ−θ})a(k − β1{k>γ−θ})2

Γ(γa)
yγa+1e−y(k−β1{k>γ−θ})

×
∫ 1

0
zγa−1(1− z)e−zy(γ−k+β[1{k>γ−θ}−1{θ 6=0}])

× Φ(γ−1)
2 (α(B)1γ−1; γα(B); yzJ (θ,β)

γ−1 )1R+(y)dz.
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Hence, we have

Ia,γ,θ,β = a

γ∑
k=1

(k − β1{k>γ−θ})−2

∫ +∞

0
y−2f

η
(γ,β,θ)
k +ζ

(γ,β,θ)
a

(y)dy

=

∏γ
j=1(j − β1{j>γ−θ})a

Γ(γa)

×
γ∑
k=1

∫ 1

0
zγa−1(1− z)

∫ +∞

0
yγa−1e−[k−β1{k>γ−θ}+(γ−k+β[1{k>γ−θ}−1{θ 6=0}])z]y

× Φ(γ−1)
2 (α(B)1γ−1; γα(B); yzJ (θ,β)

γ−1 )dydz

= a

γ∏
j=1

(j − β1{j>γ−θ})a

×
γ∑
k=1

∫ 1

0

zγa−1(1− z)
[k − β1{k>γ−θ} + (γ − k + β[1{k>γ−θ} − 1{θ 6=0}])z]γa

× F (γ−1)
D

(
γa, a1γ−1; γa;

zJ
(θ,β)
γ−1

[k − β1{k>γ−θ} + (γ − k + β[1{k>γ−θ} − 1{θ 6=0}])z]

)
dz.

Because for any x ∈ [0, 1)n, a > 0 and bi > 0 for i = 1, . . . , n

F
(n)
D (a, b1, . . . , bn; a;x) =

n∏
i=1

(1− xi)−bi

then, using a change the variable z = v(k−β1{k>γ−θ})/(γ−β1{θ 6=0}−v(γ−k+β[1{k>γ−θ}−
1{θ 6=0}])) we obtain

Ia,γ,θ,β =
a
∏γ
j=1(j − β1{j>γ−θ})a

(γ − β1{θ 6=0})γa

×
γ∑
k=1

∫ 1

0
vγa−1(1− v)

(
1−

v(γ − k + β[1{k>γ−θ} − 1{θ 6=0}])
γ − β1{θ 6=0}

)−2

×
γ−1∏
j=1

(
1−

v(j − β[1{γ−j>γ−θ} − 1{θ 6=0}])
γ − β1{θ 6=0}

)−a
dv

=
a
∏γ
j=1(j − β1{j>γ−θ})a

(γ − β1{θ 6=0})γa

×
γ∑
k=1

∫ 1

0
vγa−1(1− v)

γ−1∏
j=1

(
1−

v(j − β[1{γ−j>γ−θ} − 1{θ 6=0}])
γ − β1{θ 6=0}

)−(a+21{j=γ−k})

dv

=
Γ(γa)a

∏γ
j=1(j − β1{j>γ−θ})a

Γ(γa+ 2)(γ − β1{θ 6=0})γa

×
γ∑
k=1

F
(γ−1)
D

(
γa, α∗k; γa+ 2;

J
(θ,β)
γ−1

γ − β1{θ 6=0}

)
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where α∗k = (a, . . . , a + 2, . . . , a) ∈ Rγ−1 with a + 2 being the (γ − k)-th element of the
vector. Using similar arguments to those employed for determining Ia,γ,θ,β is it possible
to prove

Ja,γ,θ,β = a

∫ +∞

0
u2e−aΨ(u)

∫
R+

v3e−uvν(dv)du =
Γ(γa)4a

∏γ
j=1(j − β1{j>γ−θ})a

Γ(γa+ 3)(γ − β1{θ 6=0})γa

×
γ∑
k=1

F
(γ−1)
D

(
γa, α∗∗k ; γa+ 3;

J
(θ,β)
γ−1

γ − β1{θ 6=0}

)

where α∗∗k = (a, . . . , a + 3, . . . , a) ∈ Rγ−1 with a + 3 being the (γ − k)-th element of the
vector. From the last equation one obtains Ka,γ,θ,β = Ja,γ,θ,β/I

3/2
a,γ,θ,β.

In Figure 5.4 and Figure 5.5 we show the values for Ia,γ,β,θ and Ka,γ,β,θ for the gen-
eralized Dirichlet process with parameter (γ, β, θ) respectivly with prior guess α(·) and
α(·)/4 for some fixed values of γ ∈ N and variyng θ ∈ N0 and β. In particular, Ia,γ,β,θ and
Ka,γ,β,θ are relevant in the context of the prior specification.

In the context of prior specification, the prior opinion on the unknown ϕ̃ is reflected
by the choice of the prior guess α0, while a, γ ∈ N, θ ∈ N and β represents degree of
belief in α0. In particular, we consider the prior variance and the prior skewness which
can be tuned acting on Ia,γ,β,θ and Ka,γ,β,θ. It is known from Lijoi et al. [118] that for the
generalized Dirichlet process with parameter γ, the prior variance and the prior skewness
decrease as a or γ ∈ N increase which means the bigger a or γ the greater is confidence in
α0. In other words, increasing a or γ ∈ N implies the constraint that more weight is given
to the prior guess α0. Such properties of the generalized Dirichlet process can be observed
in Figure 5.4 and Figure 5.5 by looking the values corresponding to β = 0. The gener-
alized Dirichlet process with parameter (γ, β, θ) extends such property of the generalized
Dirichlet process with parameter γ. In particular, for any fixed a, it is possible to chose
a parameter θ ∈ N0 and β such that increasing γ ∈ N the prior variance and the prior
skewness do not decrease. In other word, for generalized Dirichlet process with parameter
(γ, β, θ) the weight given to the prior guess α0 is not directly related to the choice of the
parameter γ ∈ N.

We now focus on another important feature of a nonparametric model which is related
to the prediction of feature values of a random quantity based on its past outcomes. We
set n := (n1, . . . , nk), n+ := (n1, . . . , nk, 1) and n+

j := (n1, . . . , nj + 1, . . . , nk). Under the
hypothesis of non-atomicity of the measure α the predictive distribution can be found by
the application of Proposition 5.2.2.

Proposition 5.4.3. Let P̃(γ,β,θ) be the generalized Dirichlet process on X with parameter
(γ, β, θ). If α is a non-atomic measure on (X,X ), then the predictive distribution, given
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Figure 5.4: Values for Ia,γ,θ,β and Ka,γ,θ,β for a generalized Dirichlet process with parameter
(γ, β, θ). Figures A), B) γ = 2, θ = 1 (red). Figures C), D) γ = 3, θ = 1 (red), θ = 2 (green).
Figures E), F) γ = 4, θ = 1 (red), θ = 2 (green), θ = 3 (cian). Figures G), H) γ = 5, θ = 1 (red),
θ = 2 (green), θ = 3 (cian), θ = 4 (magenta).
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Figure 5.5: Values for Ia,γ,θ,β and Ka,γ,θ,β for a generalized Dirichlet process with parameter
(α/4, γ, β, θ). Figures A), B) γ = 2, θ = 1 (red). Figures C), D) γ = 3, θ = 1 (red), θ = 2 (green).
Figures E), F) γ = 4, θ = 1 (red), θ = 2 (green), θ = 3 (cian). Figures G), H) γ = 5, θ = 1 (red),
θ = 2 (green), θ = 3 (cian), θ = 4 (magenta).
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X1, . . . , Xn is of the form

P(Xn+1 ∈ dx|X1, . . . , Xn) =
a

γa+ n

α(dx)
a

w(n+) +
n

γa+ n

1
n

k∑
j=1

njw(n+
j )δX∗j (dx)

where

w(n+) =

∑
rk+1 F

(γ−1)
D (γa, α∗(n+, rk+1); γa+ n+ 1; J (θ,β)

γ−1 /(γ − β1{θ 6=0}))∑
rk F

(γ−1)
D (γa, α∗(n, rk); γa+ n; J (θ,β)

γ−1 /(γ − β1{θ 6=0}))
(5.4.10)

and

w(n+
j ) =

∑
rk F

(γ−1)
D (γa, α∗(n+

j , rk); γa+ n+ 1; J (θ,β)
γ−1 /(γ − β1{θ 6=0}))∑

rk F
(γ−1)
D (γa, α∗(n, rk); γa+ n; J (θ,β)

γ−1 /(γ − β1{θ 6=0}))
. (5.4.11)

where α∗(n, rk) = (α∗1(n, rk), . . . , α∗γ−1(n, rk)) with

α∗j (n, r
k) = a+

k∑
i=1

ni1{j=ri}

for j = 1, . . . , γ − 1.

Proof. Under the hypothesis of non-atomicity of α Pitman [156] shows (see also Proposi-
tion 5.2.2) that the predictive distribution corresponding to a NRMI is of the form

P(Xn+1 ∈ ·|X1, . . . , Xn)

=
p

(k+1)
n+1 (n1, . . . , nk, 1)

np
(k)
n (n1, . . . , nk)

α(·) +
1
n

n∑
j=1

p
(k)
n+1(n1, . . . , nj + 1, . . . , nk)

np
(k)
n (n1, . . . , nk)

δX∗j (·)

where p(k)
n (n1, . . . , nk) =

∫ +∞
0 un−1e−aΨ(u)µnj (u)du and, for j = 1, . . . , k we have µnj (u) =∫

R+ v
nje−uvν(dv). Thus, for the generalized Dirichlet process with parameter (γ, β, θ), we

have

µnj (u)
∫ +∞

0
vnje−uv

γ∑
r=1

e−v(r−β1{r>γ−θ})

v
dv =

γ∑
r=1

∫ +∞

0
snj−1e−v(u+r−β1{r>γ−θ})dv

= Γ(nj)
γ∑
r=1

(u+ r − β1{r>γ−θ})−nj .
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Using rk := (r1, . . . , rk) ∈ [γ]k we have

p(k)
n (n1, . . . , nk) =

∫ +∞

0
un−1e−aΨ(u)

k∏
j=1

∫ +∞

0
vnje−uv

γ∑
r=1

e−v(r−β1{r>γ−θ})

v
dvdu

=
k∏
j=1

Γ(nj)
∑
rk

∫ +∞

0
un−1

γ∏
j=1

(
j − β1{j>γ−θ} + s

j − β1{j>γ−θ}

)−a

×
k∏
i=1

(u+ ri − β1{ri>γ−θ})
−nidu

=
k∏
j=1

Γ(nj)
∑
rk

k∏
i=1

(ri − β1{ri>γ−θ})
−ni
∫ +∞

0
un−1E[e−uVa,k ]du

= Γ(n)
k∏
j=1

Γ(nj)
∑
rk

k∏
i=1

(ri − β1{ri>γ−θ})
−niE[V −na,k ]

where Va,k =
∑γ

j=1 Yj with the Yj being independent r.v.s distributed according to
a Gamma distribution function with parameter (j − β1{j>γ−θ}, a +

∑
1≤i≤k ni1{j=ri})

for j = 1, . . . , γ. We first set α∗j (n, r
k) := a +

∑
1≤i≤k ni1{j=ri} and then we define

α∗(n, rk) := (α∗1(n, rk), . . . , α∗γ−1(n, rk)). We can express the convolution of independent
r.v.s Va,k distributed according to a Gamma distribution funcitons in terms of the confluent
form of the fourth Lauricella function. Then we have

p(k)
n (n1, . . . , nk) =

∫ +∞

0
un−1e−aΨ(u)

k∏
j=1

∫ +∞

0
vnje−uv

γ∑
r=1

e−v(r−β1{r>γ−θ})

v
dvdu

=
Γ(n)

∏k
j=1 Γ(nj)

∏γ
j=1(j − β1{j>γ−θ})a

Γ(γa+ n)

×
∑
rk

∫ +∞

0
vγa−1e−v(γ−β1{θ 6=0})Φ(γ−1)

2 (α∗(n, rk); γa+ n; vJ (θ,β)
γ−1 )dv

=
Γ(n)

∏k
j=1 Γ(nj)

∏γ
j=1(j − β1{j>γ−θ})a

(γ − β1{θ 6=0})γaΓ(γa+ n)

×
∑
rk

∫ +∞

0
zγa−1e−zΦ(γ−1)

2

(
α∗(n, rk); γa+ n;

zJ
(θ,β)
γ−1

(γ − β1{θ 6=0})

)
dz

=
Γ(γa)Γ(n)

∏k
j=1 Γ(nj)

∏γ
j=1(j − β1{j>γ−θ})a

(γ − β1{θ 6=0})γaΓ(γa+ n)

×
∑
rk

F
(γ−1)
D

(
γa, α∗(n, rk); γa+ n;

J
(θ,β)
γ−1

(γ − β1{θ 6=0})

)
.

Then the result follows immediately from the application of Proposition 5.2.2.
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It is useful to compare the predictive distributions of the generalized Dirichlet pro-
cess with parameter (γ, β, θ) with the predictive distributions of other NRMIs known in
the literature. In particular we are interested to compare the predictive distributions of
the generalized Dirichlet process with parameter (γ, β, θ) with the predictive distributions
of the generalized Dirichlet process with parameter γ, the predictive distributions of the
Dirichlet process and the predictive distributions of the class of Gibbs-type r.p.m.s.

In terms of predictive mechanism the more simple case of Gibbs-type r.p.m. is the
Dirichlet process. It is known that for the Dirichlet process the predictive distributions
are a linear combination of the prior guess α0 and a weighted empirical distribution: Xn+1

is new with probability a/(a + n) and it coincides with X∗j with probability nj/(a + n),
for j = 1, . . . , k. Therefore for the Dirichlet process, the probability allocated to previous
observations and the probability of a new observation do not depend on the number k of
the distinct observations within the sample; in particular, the weight assigned to each X∗j
depends only on the number of observations equal to X∗j . The predictive distributions of
a Gibbs-type r.p.m. are still a linear combination of the prior guess α0 and a weighted
empirical distribution: Xn+1 is new with probability g0(n, k) and and it coincides with
X∗j with probability g1(n, k)(nj − σ), for j = 1, . . . , k. Therefore for a Gibbs-type r.p.m.
the weight assigned to each X∗j depends on the number of distinct observation k and on
the number of observations equal to X∗j , while the weight assigned to a new observation
depend on the number of distinct observation k. The balancing between new and old ob-
servations takes into account the number of distinct observation k.

As regard the generalized Dirichlet process with parameter (γ, β, θ), the predictive
mechanism is more interesting and it exploits all available information in the sample
X1, . . . , Xn. The predictive distributions of the generalized Dirichlet process with param-
eter (γ, β, θ) are still a linear combination of the prior guess α0 and a weighted empirical
distribution: Xn+1 is new with probability w(n+)a/(γa+n) and and it coincides with X∗j
with probability w(n+

j )nj/(γa + n), for j = 1, . . . , k. Therefore, from equation (5.5.14)
and equation (5.5.15) we observe that both weight assigned to each X∗j and the weight
assigned to a new observation depend on the number of distinct observation k and on the
frequencies (n1, . . . , nk) of the k distinct observations X∗j . We can conclude that differently
from the Gibbs-type r.p.m.s, the predictive mechanism of the generalized Dirichlet process
with parameter (γ, β, θ) is based on a balancing between new and old observations takes
into account two elements: the number of distinct observation k and on the frequencies
(n1, . . . , nk) of the k distinct observations X∗j .

For construction, the generalized Dirichlet process with parameter γ proposed by Lijoi
et al. [118] and the generalized Dirichlet process with parameter (γ, β, θ) have the same
interesting predictive mechanism; the unique difference appears in the variable of the Lau-
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ricella function F
(γ−1)
D . In particular, the generalized Dirichlet process with parameter

(γ, β, θ) is characterized by a more flexible definition of such variable which involves the
two extra parameter θ ∈ N0 and β. Such difference suggest that the parameter θ ∈ N0

and β could determine a s ort of control in the reinforcement mechanism of the poste-
rior probability allocated to X∗j . It is known that a distinctive feauture of a Gibbs-type
r.p.m. different from the Dirichlet process is that the posterior probability allocation to
each X∗j is more elaborated than for the Dirichlet case; instead of increasing the weight
proportionally to the number ot ties, the probability assigned to X∗j is reinforced more
than proportionally each time a new tie has been recorded. This can be explained by the
argument that the more often X∗j is observed, the stronger is the statistical evidence in its
favor and, thus it is sensible to reallocate mass toward it. In particular, it is known that for
a Gibbs-type r.p.m. different from the Dirichlet process suth reinforcement mechanism is
controlled by the parameter σ which greatly influence the clustering behaviour: a value of
σ close to one generates a large number of clusters most of which with small size. Then, a
reinforcement mechanism driven by σ acts on the mass allocation by penalizing clusters of
small size and favouring those few groups containing a large number of elements. We con-
jecture that a reinforcement mechanism of same type above described for the Gibbs-type
r.p.m.s follows for the generalized Dirichlet process with parameter (γ, β, θ); in particular,
such reinforcement mechanism could be related to the choice of parameter γ ∈ N, θ ∈ N0

and β. A numerical example may clarify such conjecture.
To highlight the reinforcement mechanism, let the sample space be [0, 1] and let the

prior guess α0 be the Uniform distribution with a specified is such way that all the process
compared has the same mean and variance. Suppose that one has observed the samples
X(1) = (X(1)

1 , . . . , X
(1)
10 ) and X(2) = (X(2)

1 , . . . , X
(2)
40 ) such that in each sample 40% of the

observation are of type X∗1 = 0.3, 30% of the observations are of type X∗2 = 0.1, 20% of
the observations are of type X∗3 = 0.6 and 10% of the observations are of type X∗4 = 0.5.
Based on such asspumptions we compare for each sample the reinforcement mechanism for
the predictive distributions of a Dirichlet process, a normalized inverse Gaussian process,
a generalized Dirichlet process with parameter γ and a generalized Dirichlet process with
parameter specified in Table 5.1. To emphasize the reinforcement mechanism, the numer-
ical results are given in terms ratio between the posterior probability allocation and they
are displayed in Figure 5.6 and Figure 5.7 for the sample X(1) and Figure 5.8 and Figure
5.9 for the sample X(2).

From Figures 5.6, 5.7, 5.8 and 5.9 we can observe for the generalized Dirichlet process
with parameter γ a reinforcement mechanism is related to the parameter γ.

When γ increases the probability assigned to X∗j is reinforced more than proportionally
each time a new tie has been recorded. In particular, we observe that for γ = 2 the
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Figure 5.6: Ratio of posterior probability allocation for the Dirichlet process, normalized inverse-
Gaussian process, generalized Dirichlet process with parameter γ and generalized Dirichlet process
with parameter (γ, β, θ) using parameter specification of Table 5.1 and sample X(1). Figures A),
B), C), D), ratio of posterior probability allocation for cases 1)-9) in Table 5.1. Figure E), F), G),
H), ratio of posterior probability allocation for cases 10)-18) in Table 5.1.
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Figure 5.7: Ratio of posterior probability allocation for the Dirichlet process, normalized inverse-
Gaussian process, generalized Dirichlet process with parameter γ and generalized Dirichlet process
with parameter (γ, β, θ) using parameter specification of Table 5.1 and sample X(1). Figures A),
B), C), D), ratio of posterior probability allocation for cases 19)-27) in Table 5.1. Figure E), F),
G), H), ratio of posterior probability allocation for cases 28)-36) in Table 5.1.
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Figure 5.8: Ratio of posterior probability allocation for the Dirichlet process, normalized inverse-
Gaussian process, generalized Dirichlet process with parameter γ and generalized Dirichlet process
with parameter (γ, β, θ) using parameter specification of Table 5.1 and sample X(2). Figures A),
B), C), D), ratio of posterior probability allocation for cases 1)-9) in Table 5.1. Figure E), F), G),
H), ratio of posterior probability allocation for cases 10)-18) in Table 5.1.
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Figure 5.9: Ratio of posterior probability allocation for the Dirichlet process, normalized inverse-
Gaussian process, generalized Dirichlet process with parameter γ and generalized Dirichlet process
with parameter (γ, β, θ) using parameter specification of Table 5.1 and sample X(2). Figures A),
B), C), D), ratio of posterior probability allocation for cases 19)-27) in Table 5.1. Figure E), F),
G), H), ratio of posterior probability allocation for cases 28)-36) in Table 5.1.
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Case D nIG gD GD GD GD GD

a a (a, γ) (a, γ, θ, β) (a, γ, θ, β) (a, γ, θ, β) (a, γ, θ, β)

1 1.93 0.65 (1,2) (1.71,2,1,-40) - - -

2 1.93 0.65 (1,2) (1.68,2,1,-35) - - -

3 1.93 0.65 (1,2) (1.65,2,1,-30) - - -

4 1.93 0.65 (1,2) (1.62,2,1,-25) - - -

5 1.93 0.65 (1,2) (1.50,2,1,-20) - - -

6 1.93 0.65 (1,2) (1.50,2,1,-15) - - -

7 1.93 0.65 (1,2) (1.40,2,1,-10) - - -

8 1.93 0.65 (1,2) (1.24,2,1,-5) - - -

9 1.93 0.65 (1,2) (1,2,1,0) - - -

10 2.77 1.36 (1,3) (1.36,3,1,-40) (2.30,3,2,-40) - -

11 2.77 1.36 (1,3) (1.35,3,1,-35) (2.25,3,2,-35) - -

12 2.77 1.36 (1,3) (1.34,3,1,-30) (2.19,3,2,-30) - -

13 2.77 1.36 (1,3) 1.32,3,1,-25) (2.11,3,2,-25) - -

14 2.77 1.36 (1,3) (1.30,3,1,-20) (2,3,2,-20) - -

15 2.77 1.36 (1,3) (1.27,3,1,-15) (1.86,3,2,-15) - -

16 2.77 1.36 (1,3) (1.23,3,1,-10) (1.66,3,2,-10) - -

17 2.77 1.36 (1,3) (1.15,3,1,-5) (1.37,3,2,-5) - -

18 2.77 1.36 (1,3) (1,3,1,0) (1,3,2,0) - -

19 3.515 2.02 (1,4) (1.23,4,1,-40) (1.67,4,2,-40) (2.78,4,3,-40) -

20 3.515 2.02 (1,4) (1.23,4,1,-35) (1.65,4,2,-35) (2.70,4,3,-35) -

21 3.515 2.02 (1,4) (1.22,4,1,-30) (1.62,4,2,-30) (2.60,4,3,-30) -

22 3.515 2.02 (1,4) (1.21,4,1,-25) (1.59,4,2,-25) (2.48,4,3,-25) -

23 3.515 2.02 (1,4) (1.20,4,1,-20) (1.54,4,2,-20) (2.32,4,3,-20) -

24 3.515 2.02 (1,4) (1.18,4,1,-15) (1.48,4,2,-15) (2.11,4,3,-15) -

25 3.515 2.02 (1,4) (1.15,4,1,-10) (1.39,4,2,-10) (1.83,4,3,-10) -

26 3.515 2.02 (1,4) (1.10,4,1,-5) (1.24,4,2,-5) (1.44,4,3,-5) -

27 3.515 2.02 (1,4) (1,4,1,0) (1,4,2,0) (1,4,3,0) -

28 4.19 2.62 (1,5) (1.17,5,1,-40) (1.43,5,2,-40) (1.92,5,3,-40) (3.16,5,4,-40)

29 4.19 2.62 (1,5) (1.16,5,1,-35) (1.42,5,2,-35) (1.89,5,3,-35) (3.05,5,4,-35)

30 4.19 2.62 (1,5) (1.16,5,1,-30) (1.40,5,2,-30) (1.85,5,3,-30) (2.93,5,4,-30)

31 4.19 2.62 (1,5) (1.15,5,1,-25) (1.38,5,2,-25) (1.80,5,3,-25) (2.76,5,4,-25)

32 4.19 2.62 (1,5) (1.14,5,1,-20) (1.36,5,2,-20) (1.73,5,3,-20) (2.56,5,4,-20)

33 4.19 2.62 (1,5) (1.13,5,1,-15) (1.32,5,2,-15) (1.64,5,3,-15) (2.29,5,4,-15)

34 4.19 2.62 (1,5) (1.10,5,1,-10) (1.26,5,2,-10) (1.41,5,3,-10) (1.93,5,4,-10)

35 4.19 2.62 (1,5) (1.08,5,1,-5) (1.17,5,2,-5) (1.30,5,3,-5) (1.47,5,4,-5)

36 4.19 2.62 (1,5) (1,5,1,0) (1,5,2,0) (1,5,3,0) (1,5,4,0)

Table 5.1: Parameters specification for prior processes: Dirichlet (D), normalized inverse-Gausian
(nIG) generalized Dirichlet with parameter γ (gD) and generalized Dirichlet process with parameter
(γ, β, θ) (GD)

probability assigned to X∗j is reinforced almost proportionally each time a new tie has
been recorded. Increasing γ ∈ N a reinforced more than proportionally is obtained. For
the generalized Dirichlet process with parameter (γ, β, θ) we can observe the same rein-
forcement mechanism related to the choice of the parameter γ ∈ N. Nevertheless, for a
fixed parameter γ ∈ N we also observe that for the generalized Dirichlet processs with
parameter (γ, β, θ) the probability assigned to X∗j is reinforced more than proportionally
each time a new tie has been recorded and such proportionality is controlled through the
parameter θ and β. Since it is difficult to specify a priori the reinforcement rate, as sug-
gested by Lijoi et al. [120] it could be reasonable to specify for the generalized Dirichlet
process with parameter (γ, β, θ) a prior for the parameter θ and β. Thus, the strength of
the reinforcement mechanism could be controlled by the data.

These features of the generalized Dirichlet process with parameter (γ, β, θ) could make
it a valid alternative to the Gibbs-type r.p.m.s in the context of Bayesian hierarchical
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mixture modelling. Actually, we have seen that the generalized Dirichlet process with pa-
rameter (γ, β, θ) is characterized by a predictive mechanism that uses more informations
from the sample X1, . . . , Xn with respect to the predictive mechanism that characterizes
the Gibbs-type r.p.m.s. Moreover, the predictive distributions of the generalized Dirichlet
process with parameter (γ, β, θ), as the predictive distributions of the Gibbs-type r.p.m.,
are characterized by a reinforcement which can be controlled by the data through a prior
distribution on parameter θ and β.

In order to complete the description of the conditional structure of generalized Dirich-
let processes with parameter (γ, β, θ) we now derive the posterior distribution that is the
conditional distribution of P̃(γ,β,θ) given a sample X1, . . . , Xn featuring k distinct observa-
tions, denoted by X∗1 , . . . , X

∗k , with frequencies (n1, . . . , nk). By specializing the general
results for NRMIs of James et al. [100] reminded in Section 5.2, in the next proposition
we provide the desired posterior characterization of both the un-normalized CRM µ̃ with
Poisson intensity measure (5.4.1) and the generalized Dirichlet process with parameter
(γ, β, θ).

Proposition 5.4.4. Let P̃(γ,β,θ) be a generalized Dirichlet process on X with parameter
(γ, β, θ). If α is a non-atomic measure on (X,X ) then, the distribution of µ̃, given the
observations X1, . . . , Xn and suitable latent variable Un, coincides with

ξ̃(Un,X1,...,Xn) d= ξ̃(Un) +
k∑
j=1

J
(Un,X1,...,Xn)
i δX∗j

where

i) ξ̃(Un) is a CRM with Poisson intensity measure

ν(Un)(dx, dv) =
γ∑
j=1

e−v(j−β1{j>γ−θ}+Un)

v
dvα(dx) (5.4.12)

ii) X∗j are fixed points of discontinuity, for j = 1, . . . , k, and the r.v.s J (Un,X1,...,Xn)
j ’s

are the corresponding jumps which are absolutely continuous w.r.t. to the Lebesgue
measure with density

f
J

(Un,X1,...,Xn)
j

(v) ∝ vni−1
γ∑
j=1

e−v(j−β1{j>γ−θ}+Un) j = 1, . . . , k (5.4.13)

iii) the jumps J (Un,X1,...,Xn)
j , for j = 1, . . . , k, are mutually independent and independent

from ξ̃(Un).
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Moreover, the latent variable Un, given X1, . . . , Xn, is absolutely continuous w.r.t. the
Lebesgue measure with density

f
(X1,...,Xn)
Un

(u) ∝
un−1

∏k
i=1 Γ(ni)

∑γ
j=1(j − β1{i>γ−θ} + u)−ni∏γ

i=1(i− β1{i>γ−θ} + u)a
. (5.4.14)

Finally, the posterior distribution of P̃(γ,β,θ), given X1, . . . , Xn and Un, is again a NRMI
(with fixed points of discontinuity) and coincides in distribution with

w
µ̃(Un)

µ̃(Un)(X)
+ (1− w)

∑k
j=1 J

(Un,X1,...,Xn)
j δX∗j∑k

j=1 J
(Un,X1,...,Xn)
j

(5.4.15)

where w = ξ̃(Un)(X)(µ̃(Un)(X) +
∑

1≤j≤k J
(Un,X1,...,Xn)
j )−1.

Proof. Since γ ∈ N and θ ∈ N0, the Poisson intensity measure (5.4.1) of µ̃ reduces to the
following Poisson intensity measure

ν(ds, dx) =
γ∑
j=1

e−s(j−β1{j>γ−θ})

s
dsα(dx).

Now since the generalized Dirichlet process with parameter (γ, β, θ) is a NRMI and, by
hypothesis α is non-atomic, we can apply Theorem 5.2.1 we ensues the existence of a latent
variable Un, such that the distribution of µ̃, given X1, . . . , Xn and Un coincides with the
distribution of

µ̃(Un) +
k∑
j=1

J
(Un,X1,...,Xn)
j δX∗j

where µ̃(Un) is a suitably updated CRM and the J (Un,X1,...,Xn)
j ’s are absolutely continu-

ous with density expressed in the terms of the Poisson intensity measure of µ̃. It is then
straightforward to show that the Poisson intensity measure associated to µ̃(Un) is of the
form (5.4.12) and that the density of J (Un,X1,...,Xn)

j is given by (5.4.13). In order to de-
rive the density function for conditional distribution of Un, given X1, . . . , Xn we resort to
Proposition 5.2.1 and, after some algebra, we obtain (5.4.14). Given this, the characteri-
zation of the posterior distribution of P̃ in (5.4.15) follows from Theorem 5.2.2.

Despite the fact that the previous result completes the theoretical analysis of the con-
ditional structure induced by generalized Dirichlet processes with parameter (γ, β, θ), it
is also useful for practical purposes. Indeed one can devise a simulation algorithm rely-
ing on the posterior characterization of Proposition 6.3.4. By combining an inverse Lévy
measure algorithm, such as the Ferguson-Klass method (see Ferguson and Klass [64] and
Walker and Damien [191]), for simulating trajectories of ξ̃(Un) with a Metropolis-Hasting
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step for drawing samples from U
(X1,...,Xn)
n , one easily obtains realizations of the posterior

distribution of the generalized Dirichlet process with parameter (γ, β, θ).
Finally note that Proposition 6.3.4 is also important in the context of mixture mod-

eling, where inference is necessarily simulation based given the complexity of the models:
in fact, it allows to derive, in the terminology of Papaspiliopoulos and Roberts [148], con-
ditional sampling schemes, which in the case of the generalized Dirichlet process with
parameter (γ, β, θ), are simpler to implement than marginal ones.

5.5 Superposition of beta-Stacy processes

In this section we review and we provide some developments of the beta-Stacy process
whose characterization and essential properties were presented by Walker and Muliere
[194]. In particular, we use the idea of superposition of independent Gamma process in
order to provide a constructive definition of a new class of neutral to the right r.p.m.s
which includes the beta-Stacy process as particular case.

Let FR+ be the space of cumulative distribution functions on R+ endowed with the
σ-field FR+ generated by the Skorohod topology S which makes (FR+ ,S) a Polish space.
In this section we place a probability distribution on (FR+ ,FR+) by defining a process
{Ft, t ≥ 0} on R+, such that F0 = 0 a.s., {Ft, t ≥ 0} is non-decreasing a.s., right continuous
a.s. and Ft → 1 a.s. as t→ +∞ Thus, with probability 1, the sample paths of the process
{Ft, t ≥ 0} are cumulative distribution functions. The paper is restricted to cumulative
distribution functions on R+, although it is trivially extended to include cumulative dis-
tribution functions on R.

First of all we recall the definition of Lévy process. Let {Zt, t ≥ 0} be a Lévy process
such that the following holds:

i) {Zt, t ≥ 0} has non-negative independent increments;

ii) {Zt, t ≥ 0} in non-decreasing a.s.;

iii) {Zt, t ≥ 0} is right continuous a.s.;

iv) Zt → +∞ a.s. as t→ +∞;

v) Z0 = 0 a.s.

For such a process there exist at most countably many fixed points of discontinuity at
time points {tk, k ≥ 1} with jumps {Sk, k ≥ 1}, independent non-negative r.v.s. If for
all t ≥ 0 we set Xt = Zt −

∑
tk≤t Sk, then {Xt, t ≥ 0} is a non-decreasing process with

independent increments and with no fixed points of discontinuity such that for any t ≥ 0,
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the Lévy-Khintchine representation for the Laplace-Stieltjes transform of the distribution
function of Xt such that for any t ≥ 0

log(E[e−sXt ]) = −sb(t)−
∫

R+

(1− e−sv)νt(dv)

where b is non-decreasing and continuous, with b(0) = 0, and νt(·) is a Lévy measure
satisfying

i) for any Borel set B, νt(B) is continuous and non-decreasing;

ii) for any real t > 0, νt is a measure on the Borel sets of R+;

iii)
∫

R+ v(1 + v)−1νt(dv) < +∞;

iv)
∫

R+ v(1 + v)−1νt(dv)→ 0 as t→ +∞.

Since b represents a non-random component it is not considered and we assume it to be
identically zero.

Let c be a positive function, let G ∈ FR+ be right continuous and let {tk, k ≥ 1} be a
countable set of points of discontinuity of G, that is, G{tk} = G(tk)−G(t−k ) > 0 for all k.
Now put GC = G(t)−

∑
tk≤tG{tk} so that GC is continuous.

Definition 5.5.1. (cfr. Walker and Muliere [194]) {Ft, t ≥ 0} is a beta-Stacy process on
R+ with parameters c and G, if, for all t ≥ 0, Ft = 1− e−Zt, where {Zt, t ≥ 0} is a Lévy
process with Lévy measure, for v > 0, given by

νt(dv) =
1

1− e−v

∫
R+

e−vc(s)G(s,+∞)c(s)dGC(s)dv (5.5.1)

and Laplace-Stieltjes transform such that

log(E[e−sZt ]) =
∑
tk≤t

log(E[e−sSk ])−
∫

R+

(1− e−sv)νt(dv) (5.5.2)

where, for any k ∈ N, 1−e−Sk is distributed according to a Beta distribution function with
parameter (c(tk)G{tk}, c(tk)G[tk,+∞)).

Since the function G(t) → 1, as t → +∞, Ft ≤ 1 a.s. and {Ft, t ≥ 0} is a.s non-
decreasing, it follows that Ft → 1 a.s. Then it follows from Lemma 1 in Walker and
Muliere [194] that {Ft, t ≥ 0} belongs to FR+ a.s. and it is a neutral to the right r.p.m. In
addition, as the Lévy process {Zt, t ≥ 0} has non-random component, {Zt, t ≥ 0} increase
only in jumps a.s. and so {Ft, t ≥ 0} is with probability 1 a discrete member of FR+ .

According to Ferguson and Phadia [65] the fundamental result in Doksum [25] on the
posterior of a neutral to the right r.p.m. is that {Ft, t ≥ 0} conditionally given X, is also
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a neutral to the right r.p.m. for any observation of the type X = x or X > x, where X
is a sample from {Ft, t ≥ 0}. In particular, in Walker and Muliere [194] it is shown that
if {Ft, t ≥ 0} is a beta-Stacy process then {Ft, t ≥ 0} conditionally given X is a also a
beta-Stacy process and hence the conjugacy property of the beta-Stacy process.

The following remarks emphasized the relation between the beta-Stacy process and the
Dirichlet process whose characterization and properties were presented by Ferguson [61]
and Ferguson [62] and the relation between the beta-Stacy process beta process introduced
by Hjort [84].

Remark 5.5.1. (cfr. Walker and Muliere [194]) The beta-Stacy process generalizes the
Dirichlet process, which can be seen more easily if G is taken to be continuous, since, if
c(s) = c > 0 for all s ≥ 0, then (5.5.1) becomes

νt(dv) =
1

(1− e−v)
(e−vc(1−G(t)) − e−vc) (5.5.3)

the Lévy measure given in Ferguson [62] which represents the Lévy measure characterizing
the Lévy process corresponding to the Dirichlet process when viewed as a neutral to the
right r.p.m..

Remark 5.5.2. (cfr. Walker and Muliere [194]) If {At, t ≥ 0} is the beta process introduce
in Hjort [84] and for any t ≥ 0, dZt = − log(1−dAt), then Ft = 1− e−Zt is the beta-Stacy
process.

It is important to use any available prior information to center the process {Ft, t ≥ 0}
and express uncertainty in {Ft, t ≥ 0} about this centering, that is, to assign arbitrarily
E[Ft] and V ar(Ft). As suggest in Walker and Muliere [194] this prior specification can be
done by considering the first two moments of St = 1 − Ft for any t ≥ 0. Using the Lévy
representation of a beta-Stacy process, it follows

µt := − log(E[St]) =
∫ +∞

0

∫
(0,t)

e−v%sdγsdv

and

λt := − log(E[S2
t ]) =

∫ +∞

0

∫
(0,t)

(
1− e−2v

1− e−v

)
e−v%sdγsdv

where we defined

%s := c(s)G[s,+∞]

and

γs :=
∫

(0,s)
c(t)dGC(t) +

∑
sk≤s

c(sk)G{sk}.
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Note it is necessary that 0 < µt < λt < 2µt, which corresponds to E[St])2 < E[S2
t ] < E[St].

The first of these condition is satisfied when

µt =
∫

(0,t)

dγs
%s

that is, when
dγt = %tdµt.

The second condition becomes, using transformation u = 1− e−v

λt =
∫

(0,t)

(
2− 1

1 + %s

)
dµs

leading to
dλt
dµt

= 2− 1
1 + %t

and hence the solution.
In Walker and Muliere [194], the beta-Stacy process is derived as the limit in dis-

tribution of a sequence of discrete time neutral to the right r.p.m.s defined as follows.
Let G ∈ FR+ be continuous, let c be a piecewise continuous positive function and for
any fixed n ≥ 1 define two sequences of positive real numbers γ• := {γn,k, k ≥ 1} and
%• := {%n,k, k ≥ 1} where γn,k := cn,kG[(k − 1/n), k/n), %n,k := cn,kG[k/n,+∞) and
cn,k := c((k − 1/2)/n). Finally, for any fixed n ≥ 1 define the sequence of dependent
r.v.s {Yn,k, k ≥ 1} by Yn,k = Vn,k

∏
1≤i≤k−1(1 − Vn,i) where {Vn,k, k ≥ 1} is a sequence

of independent r.v.s distributed according to a Beta distribution function with parameter
(γn,k, %n,k). Then, if we set

Fn,t =
∑
k/n≤t

Yn,k t ≥ 0 (5.5.4)

it can be proved (see Walker and Muliere [194]) that {Fn,t, t ≥ 0} is a discrete time neutral
to the right r.p.m. indexed by n which converges in distribution to the beta-Stacy process
{Ft, t ≥ 0}, as n→∞. For any fixed n ≥ 1, the process {Fn,t, n ≥ 1} is usually known as
discrete time beta-Stacy process.

In general, given a sequence of time points {tk, k ≥ 1} in R+ and given two sequence of
positive real numbers γ• and %• we have the following definition of discrete time beta-Stacy
process with jumps at {tk, k ≥ 1} and parameter (γ•, %•).

Definition 5.5.2. Let {tk, k ≥ 1} be sequence of time points in R+ and let γ• and %• be
two sequences of positive real numbers. The process {Ft, t ≥ 0} is a discrete time beta-Stacy
process with jumps at {tk, k ≥ 1} and parameter (γ•, %•) if

Ft =
∑
tk≤t

Yk t ≥ 0
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and the random weights are defined by

Yk = Vk

k−1∏
i=1

(1− Vi) k ≥ 1

where {Vk, k ≥ 1} is a sequence of independent r.v.s distributed according to a Beta dis-
tribution function with parameter (γk, %k) for k ≥ 1.

From Definiton 5.5.2 we observe that the sequence of random weights {Yk, k ≥ 1} com-
pletely characterized the discrete time beta-Stacy process. In particular, using the theory
of partially exchangeable random partitions introduced by Pitman [149] (see Appendix
B), we can give an interesting characterization of the sequence {Yk, k ≥ 1} characterizing
a discrete time beta-Stacy process.

Theorem 5.5.1. Let γ•, %• be two sequences of positive real numbers and let {Yj , j ≥ 1}
be the sequence of the random weights characterizing a discrete time beta-Stacy process
with parameter (γ•, %•). Let {Πn, n ≥ 1} be a sequence of partially exchangeable random
partitions with frequncies {Nn, n ≥ 1}. Suppose that {Πn, n ≥ 1} is characterized by the
prediction rules

P(Πn+1 = n+
j |n1, . . . , nk) =

γj + nj − 1
γ1 + %1 + n− 1

j−1∏
i=1

%i +
∑k

l=i+1 nl

γi+1 + %i+1 +
∑k

l=i+1 nl − 1
(5.5.5)

and

P(Πn+1 = n+|n1, . . . , nk) =
%k

γ1 + %1 + n− 1

k−1∏
i=1

%i +
∑k

l=i+1 nl

γi+1 + %i+1 +
∑k

l=i+1 nl − 1
(5.5.6)

where n+
j := (n1, . . . , nj + 1, . . . , nk) and n+ := (n1, . . . , nk, 1). Then, the vector of fre-

quencies Nn/n converges in distribution to the sequence {Yj , j ≥ 1}.

Proof. By repeated applcation of the prediction rules (5.5.5) and (5.5.6) it can be easily
checked that the probability distribution of any sample realization having (n1, . . . , nk) as
vector of frequencies is

p
(n)
k (n1, . . . , nk) =

k∏
j=1

(γj)(nj−1)↑1(%j)(
Pk
l=j+1 nl)↑1

(γj + %j)(−1+
Pk
l=j nl)↑1

.

Nevertheless, we can write the last equation as

p
(n)
k (n1, . . . , nk) = E

 k∏
j=1

V
nj−1
j (1− Vj)

Pk
l=j+1 nl

 (5.5.7)
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where {Vj , j ≥ 0} a sequence of independent r.v.s such that V0 = 1 a.s. and each Vj is
distributed according to a Beta distribution function with parameter (γj , %j) for j ≥ 1 If
we define Yj := Vj

∏
1≤i≤j−1(1−Vi) for j ≥ 1 we can see that (5.5.7) is equal in distribution

to

p
(n)
k (n1, . . . , nk) = E

 k∏
j=1

Y
nj−1
j

(
1−

j−1∑
i=1

Yi

) .
Then, by Theorem 6 in Pitman [149] we have that {Yi, i ≥ 1} is the limit frequencie of
Nn/n as n→ +∞.

A straightforward consequence of Theorem 5.5.1 is the following characterization for
the sequence of random weights {Yj , j ≥ 1} characterizing a discrete time beta-Stacy
process.

Corollary 5.5.1. Let γ•, %• be two sequences of positive real numbers and let {Yj , j ≥ 1}
be the sequence of the random weights characterizing a discrete time beta-Stacy process
with parameter (γ•, %•). The predictive distribution of the partially exchangeable random
partition induced by {Yj , j ≥ 1} does not depend on the censored information if and only
if, for any j

%j = γj+1 + %j+1 − 1. (5.5.8)

Proof. If (5.5.8) holds, then the term between brackets in equation (5.5.5) and equation
(5.5.6) simplify to 1. Indeed equation (5.5.8) is the only condition for which the term
between brackets reduce to a constant idependent of

∑
j+1≤i≤k ni, for j = 1, . . . , k−1 and

for each choice of n1, . . . , nk.

Let us consider

q(γ•,%•) :=
k∏
j=1

(γj)(nj−1)↑1(%j)(
Pk
l=j+1 nl)↑1

(γj + %j)(−1+
Pk
l=j nl)↑1

and observe that when (5.5.8) holds, then the predictive probabilities of the partially
exchangeable random partition do not depend on the censored observations. This does
not mean that the prediction of a multinomial (exchangeable) sample from a discrete time
beta-Stacy process do not depend on the censored observation. In fact, the latter differs
from q(γ•,%•) because it is the expectation of a different functional

E

∏
j≥1

Y
nj
j

 =
∏
j≥1

(γj)(nj−1)↑1(%j)(
Pk
l=j+1 nl)↑1

(γj + %j)(−1+
Pk
l=j nl)↑1

and in this case the only distribution not depending on the censored observations is, as
we know, the Dirichlet process, for which %j = γj+1 + %j+1. Of course, an example where
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the condition (5.5.8) is met is the two-parameter GEM distribution with parameter (α, θ)
(see Pitman [149]), where %j = θ + αj = γj+1 + %j+1 − 1. In this (and only this) case,
we have that q(γ•,%•) is a symmetric function of its arguments, i.e. the partition Π is also
exchangeable. If α = 0 (one-parameter GEM distribution with parameter θ), the the pre-
dictive probabilities do not even depend on k.

It would be interesting to say more about this aspect. If we replace exchangeability
condition with Pitman’s partial exchangeability condition we see that all Beta-Stacy ran-
dom discrete distribution satisfying equation (5.5.8) have a prediction rule such that the
probability of next observing a certain category depends on how many times such a cate-
gory has been observed in the past and on how many distinct categories were observed (k).
This extend Zabell’s considerations on Johnson’s sufficientness postulate (see Zabell [198])
and the two parameter Poisson-Dirichlet distribution (see Pitman [149]). Let’s call this
property the k-Johnson’s sufficientness postulate property. In particular, it would be inter-
esting to know if the discrete time beta-Stacy process is the only class of random discrete
distribtuions arising from partially exchangeable random partitions with the k-Johnson’s
sufficientness postulate property.

5.5.1 The discrete time superposed beta-Stacy process

We define and investigate a new neutral to the right r.p.m. termed superposed beta-Stacy
process. As for the beta-Stacy process our definition is constructive and it follows along
lines the construction of a neutral to the right r.p.m. proposed by Doksum [25].

For any m ∈ N let us consider m sequences of positive real numbers (α1,•, β1,•) :=
{(α1,k, β1,k), k ≥ 1}, . . . , (αm,•, βm,•) := {(αm,k, βm,k), k ≥ 1} and m independent se-
quences of r.v.s Y1,• := {Y1,k, k ≥ 1}, . . . , Ym,• := {Ym,k, k ≥ 1} such that Yi,• is a sequence
of independent r.v.s distributed according to a Beta distribution function with parameter
(αi,k, βi,k) for i = 1, . . . ,m. Define the sequence of r.v.s {Xk|X1, . . . , Xk−1, k ≥ 1} via the
following construction

X1
d= 1−

m∏
i=1

(1− Yi,1)

X2|X1
d= (1−X1)

(
1−

m∏
i=1

(1− Yi,2)

)

... (5.5.9)

Xk|X1, . . . , Xk−1
d= (1− Fk−1)

(
1−

m∏
i=1

(1− Yi,k)

)
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where

Fk :=
k∑
j=1

Xj (5.5.10)

with the proviso X1 := X1|X0. For any k ≥ 1, the distribution function of the r.v.
Xk|X1, . . . , Xk−1 can be computed by using Theorem 7 in Springer and Thompson [176];
in particular, it can be checked that the r.v. Xk|X1, . . . , Xk−1 is distributed according
to a distribution function on (0, 1) which admits probability density function absolutely
continuous with respect to the Lebesgue measure on R2 given by

fXk|X1,...,Xk−1
(xk|x1, . . . , xk−1) =

1

1−
∑k−1

j=1 xj

m∏
i=1

Γ(αi,k + βi,k)
Γ(βi,k)

×Gn,0n,0

(
1− xk

1−
∑k−1

j=1 xj

∣∣∣∣ α1,k + β1,k − 1, . . . , αm,k + βm,k − 1
β1,k − 1, . . . , βm,k − 1

)
1(0,1)(xk)

where Gl,mp,q is the Meijer G-function (see Appendix C).
The construction (5.5.9) is similar to the construction proposed in Waker and Muliere

[194] for the discrete time beta-Stacy process and it generalizes it by nesting for any k > 0
the product of independent r.v.s distributed according to a Beta distribution function.
In particular, in Walker and Muliere [194] for any k ≥ 1 the r.v. Xk|X1, . . . , Xk−1 is
distributed according to a beta-Stacy distribution function with parameter (αk, βk, 1 −
Fk−1), i.e. for any k ≥ 1 it follows that Xk|X1, . . . , Xk−1

d= (1−Fk−1)Yk where Yk belongs
to the sequence of independent r.v.s distributed according to a Beta distribution function
with parameter (αk, βk). Obviously, the construction proposed by Walker and Muliere
[194] can be recovered from the construction (5.5.9) by setting m = 1.

It can be checked that under the construction (5.5.9), Xk < 1 − Fk−1 a.s.-P, so that
Fk < 1 a.s.-P. In particular, we can consider the following technical result for the sequence
{Fk, k ≥ 1} based on the construction (5.5.9).

Theorem 5.5.2. Let {tk, k ≥ 0} be a sequence of time points in R+ with t0 := 0 and from
construction (5.5.9) let {Ft, t ≥ 0} defined by Ft :=

∑
tk≤tXk for any t ≥ 0. If F0 = 0

and
∏
k≥1

∏
1≤i≤m βi,k/αi,k + βi,k = 0, then the sample paths of {Ft, t ≥ 0} belong to FR+

a.s.-P.

Proof. Let {Fk, k ≥ 1} be the sequence of r.v.s defined by (5.5.10). In particular, from the
construction (5.5.9) we have E[Fk] = 1 −

∏
1≤i≤m βi,k/αi,k + βi,k + (

∏
1≤i≤m βi,k/αi,k +

βi,k)E[Fk−1] such that ∏
k≥1

1− E[Fk]
1− E[Fk−1]

= 0
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which implies that E[Fk] → 1. Moreover, we have that {Fk, k ≥ 1} is a sequence of non-
negative r.v.s such that Fk ≥ 1 a.s.-P for any k ≥ 1 and {Fk, k ≥ 0} is non-decreasing
a.s.-P. This implies that Fk → 1 a.s.-P and the proof in completed.

Theorem 5.5.2 implies that the random process {Ft, t ≥ 0} is a discrete time neutral
to the right r.p.m. according to the definition given by Doksum [25]. We term the random
process {Ft, t ≥ 0} discrete time superposed beta-Stacy process. Here, the formal definition
of discrete time superposed beta-Stacy process.

Definition 5.5.3. Let {Xk|X1, . . . , Xk−1, k ≥ 1} be a sequence of r.v.s defined via con-
struction (5.5.9) and let {tk, k ≥ 0} be a sequence of time points in R+ with t0 :=
0. The random process {Ft, t ≥ 0} defined by Ft :=

∑
tk≤tXk and satisfying condi-

tions of Lemma 5.5.2 is a discrete time superposed beta-Stacy process with parameter
(m, (α1,•, β1,•), . . . , (αm,•, βm,•)) and jumps at {tk, k ≥ 0}.

From Definition 5.5.3 it follows that the discrete time superposed beta-Stacy process
includes as particular case the discrete time beta-Stacy process which can be recovered
by setting m = 1. Moreover, using some known properties for the product of independent
r.v.s distrubuted according to a Beta distribution function, further relations between the
discrete time superposed beta-Stacy process and the discrete time beta-Stacy process can
be considered. We provide two remarks: the first one provides conditions in order that a
discrete time superposed beta-Stacy process is a discrete time beta-Stacy process while the
second one provides a possible approximation of the discrete time superposed beta-Stacy
process via a discrete time beta-Stacy process.

Remark 5.5.3. From the construction (5.5.9) and by using Theorem 1 in Jambunathan
[95] it is immediate to check that a discrete time superposed beta-Stacy process with pa-
rameter (m, (α1,•, β1,•), (β2,•, α1,• + β1,•), . . . , (βm,•, αm−1,• + βm−1,•)) is a discrete time
beta-Stacy process with parameter (β1,• + · · ·+ βm,•, α1,•).

Remark 5.5.4. From the construction (5.5.9) and by using Theorem 1 in Fan [49] a dis-
crete time superposed beta-Stacy process with parameter (m, (α1,•, β1,•), . . . , (αm,•, βm,•))
can be approximated by a discrete time beta-Stacy process with parameter ((1 − S•)(S• −
T•)/(T• − S2

•), S•/(T• − S2
•)) where

S• :=
m∏
i=1

βi,•
βi,• + αi,•

and

T :=
m∏
i=1

βi,•(βi,• + 1)
(βi,• + αi,•)(βi,• + αi,• + 1)

.
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By the construction (5.5.9) and by using the integral representation in Wilks [197] for
the product of independent r.v.s distributed according to a Beta distribution functions,
it can be checked that for any s ∈ N the r.v. (X1, . . . , Xs) is distributed according to a
distribution function on the s-dimensional symplex ∆(s) which admits a probability density
function absolutely continuous with respect to the Lebesgue measure on Rs+1 given by

f(X1,...,Xs)(x1, . . . , xs) ∝
s∏
j=1

x
δ0,j−1
j (1−

∑j
l=1 xl)

βm,j−1

(1−
∑j−1

l=1 xl)
δ0,j+βm,j−1

(5.5.11)

×
∫

(0,1)m−1

m−1∏
i=1

w
αi,j
i,j (1− wi,j)δi,j−1

(
1− xjzi,j

1−
∑j−1

l=1 xl

)ci,j
dwi,j

× 1∆(s)(x1, . . . , xs)

where δi,j :=
∑

i+1≤l≤m αl,j , ci,j := −βi+1,j −αi+1,j +βi,j and zi,j := 1−
∏

1≤l≤i(1−wl,j).
In particular, from (5.5.11) it can be checked that for any k ≥ 1 the r.v.s X1, X2/(1 −
F1), . . . , Xk/(1−Fk−1) are independent and such that Xk/(1−Fk−1) d= 1−

∏
1≤i≤m(1−Yi,k)

for k = 1, . . . , s.
We now consider the following inference framework. Let {tk, k ≥ 0} be a sequence of

time points in R+ with t0 := 0 defining a partition of R+ and for any n ∈ N let T1, . . . , Tn,
with each Ti ∈ {tk, k ≥ 0}, be and random sample, possible with right censoring (with
Ti being the censoring time if applicable), from a random cumulative distribution func-
tion F on R+ governed by a discrete time superposed beta-Stacy process with parameter
(m, (α1,•, β1,•), . . . , (αm,•, βm,•)) and jumps at {tk, k ≥ 1}. The likelihood function, assum-
ing that there are no censoring times or exact observation for t > tL, is given by

L (t1, . . . , tL) ∝
L∏
i=1

tnii

1−
i∑

j=1

tj

ri

1∆(L)(t1, . . . , tL)

where nk is the number of exact observation at tk and rk is the number of censoring times
at tk with

∑
1≤i≤L ni + ri = n.

Proposition 5.5.1. Let {tk, k ≥ 0} be a sequence of time points in R+ with t0 := 0
and for any n ∈ N, let T1, . . . , Tn be random sample such that Ti ∈ {tk, k ≥ 0} pos-
sibly with right censoring, from a random cumulative distribution function {Ft, t ≥ 0}
on FR+. If {Ft, t ≥ 0} is a discrete time superposed beta-Stacy process with parame-
ter (m, (α1,•, β1,•), . . . , (αm,•, βm,•)) and jumps at {tk, k ≥ 0}, then {Ft|T1, . . . , Tn, t ≥
0} is a discrete time neutral to the right r.p.m. with jumps at {tk, k ≥ 0} defined by
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Ft|T1, . . . , Tn :=
∑

tk≤t X̃k for any k ≥ 1 and such that tor any s ∈ N

f(X̃1,...,X̃s)
(x̃1, . . . , x̃s) ∝

s∏
j=1

x̃
δ∗0,j−1

j (1−
∑j

l=1 x̃l)
β∗m,j−1

(1−
∑j−1

l=1 x̃l)
δ∗0,j+β

∗
m,j−1

(5.5.12)

×
∫

(0,1)n−1

m−1∏
i=1

w
αi,j
i,j (1− wi,j)δi,j−1

(
1− x̃jzi,j

1−
∑j−1

l=1 x̃l

)ci,j
dwi,j

× 1∆(s)(x̃1, . . . , x̃s)

where, for j = 1, . . . , s

δ∗0,j = δ0,j + nj β∗m,j = βm,j +mj

and nj is the number of exact observations at tj and mj is the sum of the number of exact
observation in {tk, k > j} and censored observation in {tk, k ≥ j}, i.e. mj =

∑
k>j nk +∑

k≥j rk.

Proof. The fact that {Ft|T1, . . . , Tn, t ≥ 0} is a discrete time neutral to the right r.p.m.
derives from Theorem 3 in Ferguson and Phadia [65]. As regard the distribution function
of the r.v. (X̃1, . . . , X̃s) it is immediate by combining the likelihood functon with the
distribution of the r.v. (X1, . . . , Xs) admitting a probability density function absolutely
continuous with respect to the Lebesgue measure on Rs+1 given by (5.5.11).

In order to complete the analysis of the discrete time superposed beta-Stacy process,
we consider the predictive probability P(Tn+1 = tk|T1, . . . , Tn).

Proposition 5.5.2. Let {tk, k ≥ 0} be a sequence of time points in R+ with t0 := 0
and for any n ∈ N, let T1, . . . , Tn be random sample such that Ti ∈ {tk, k ≥ 1}, possibly
with right censoring, from a discrete time superposed beta-Stacy process with parameter
(m, (α1,•, β1,•), . . . , (αm,•, βm,•)) and jumps at {tk, k ≥ 0}. Then

P(Tn+1 = tk|T1, . . . , Tn) = wk(nk,mk)
k−1∏
j=1

wj(nj ,mj) (5.5.13)

where

wk(nk,mk) := (nk +1)

Gm,1m+1,1

(
1
∣∣∣∣ −mk, α1,k + β1,k − 1, . . . , αm,k + βm,k − 1

β1,k − 1, . . . , βm,k − 1,−mk − nk − 2

)

Gm,1m+1,1

(
1
∣∣∣∣ −mk, α1,k + β1,k − 1, . . . , αm,k + βm,k − 1

β1,k − 1, . . . , βm,k − 1,−mk − nk − 1

) (5.5.14)
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and for j = 1, . . . , k − 1

wk(nj ,mj) :=

Gm,1m+1,1

(
1
∣∣∣∣ −mj − 1, α1,k + β1,k − 1, . . . , αm,k + βn,k − 1

β1,k − 1, . . . , βm,k − 1,−mj − nj − 2

)

Gm,1m+1,1

(
1
∣∣∣∣ −mj , α1,k + β1,k − 1, . . . , αm,k + βm,k − 1

β1,k − 1, . . . , βm,k − 1,−mj − nj − 1

) (5.5.15)

and nj is the number of exact observations at tj and mj is the sum of the number of exact
observation in {tk, k > j} and censored observation in {tk, k ≥ j}, i.e. mj =

∑
k>j nk +∑

k≥j rk.

Proof. From the construction (5.5.9) and Theorem 2 in Walker and Muliere [192] it follows
that

P(Tn+1 = tk|T1, . . . , Tn) = wk(nk,mk)
k−1∏
j=1

wj(nj ,mj)

where

wk(nk,mk) :=
E[V nk+1

k (1− Vk)mk ]
E[V nk

k (1− Vk)mk ]

and for j = 1, . . . , k − 1

wj(nj ,mj) :=
E[V nj

j (1− Vj)mj+1]

E[V nj
j (1− Vj)mj ]

with {Vk, k ≥ 1} a sequence of independent r.v.s such that Vk
d= Xk/(1 − Fk−1). In

particular, by using Theorem 7 in Springer and Thompson [176] we have that for any
p, q ∈ N and for any k ≥ 1

E[V p
k (1− Vk)q] =

m∏
i=1

Γ(αi,k + βi,k)
Γ(βi,k)

∫ 1

0
vpk(1− vk)

q

×Gm,0m,0

(
1− vk

∣∣∣∣ α1,k + β1,k − 1, . . . , αm,k + βm,k − 1
β1,k − 1, . . . , βm,k − 1

)
dvk

= Γ(p+ 1)
m∏
i=1

Γ(αi,k + βi,k)
Γ(βi,k)

×Gm,1m+1,1

(
1
∣∣∣∣ −q, α1,k + β1,k − 1, . . . , αm,k + βm,k − 1

β1,k − 1, . . . , βm,k − 1,−q − p− 1

)

where the last equation is obtained by applying equation 7.811.2 in Gradshteyn and Ryzhik
[77]. The proof is complete by replacing p and q according to Theorem 2 in Walker and
Muliere [192].
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In Walker and Muliere [194], the discrete time beta-Stacy process is characterized by
the introduction of a generalization of the Pólya urn scheme. We now provide a similar
characterization for the discrete time superposed beta-Stacy process using the so-called
neutral exchangeable urn scheme introduced by Walker and Muliere [194].

Let ι1, . . . , ιm be m different colors in an urn and let c be a positive number. At
the first draw a ball of color k is drawn with probability qk. Following the Pólya urn
scheme it is well-known that at the (n+ 1)-th draw the color k is taken with probability
pn(k|k1, . . . , kn), where

pn(k|k1, . . . , kn) =
cqk
c+ n

+

∑n
i=1 1{ki=k}

c+ n
. (5.5.16)

It is known that a sequence of r.v.s form the Pólya urn scheme is an exchangeable se-
quence. The connection between the Pólya urn scheme and the Dirichlet process is given
by Blackwell and MacQueen [10]. In particular, let F be a random cumulative distribution
function governed by a discrete time Dirichlet process with support the set {ι1, . . . , ιm}
and with total mass c and discrete location paramter G ∈ FR+ given by weights qk at ιk.
Then

pn(k|k1, . . . , kn) = E[F (ιk)|k1, . . . , kn]

where F (ιk) represents the random weight assigned to ιk. Let γk := cqk, for k = 1, . . . ,m,
and %1 := c(1− q1), so that

pn(k|k1, . . . , kn) =
γk + nk

γ1 + %1 + n
(5.5.17)

where nk =
∑

1≤i≤n 1{ki=k}.
The generalization of the Pólya urn scheme proposed in Walker and Muliere [194]

can be described as follows. Consider m Pólya urns: the first urn has the different col-
ors ι1, . . . , ιm and the parameters of the urn are c1 > 0 and the weights for each color
q1, . . . , qm. The second urn has the different colors ι2, . . . , ιm and the parameters of the
urn are c2 > 0 and q2/(1 − q1), . . . , qm/(1 − q1). Thi third urn has the different colors
ι3, . . . , ιm and parameters c3 > 0 and q3/(1 − q1 − q2), . . . , qm/(1 − q1 − q2). Continue in
this fashion up to the m-th urn, which only has the color ιm. The generalized Pólya urn
scheme is now described

i) Start at urn k = 1;

ii) sample urn k once according to Pólya urn scheme;

iii) if the color sampled is ιk then go to (iv), else k = k + 1 and go to ii);

iv) ιk is a single sample from the generalized Pólya urn scheme.
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In Walker and Muliere [194] is proved that a sequence of r.v.s from the genereralized
Pólya urn scheme is still an exchangeable sequence. Following the generalized Pólya urn
scheme it is well-known that at the (n+ 1)-th draw the color k is taken with probability
pn(k|k1, . . . , kn), where

pn(k|k1, . . . , kn) =
ck(qk/(1− q1 − · · · − qk−1)) +

∑n
i=1 1{ki=k}

ck +
∑n

i=1 1{ki=k} +
∑n

i=1 1{ki>k}
(5.5.18)

×
k−1∏
l=1

(
1−

cl(ql/(1− q1 − · · · − ql−1)) +
∑n

i=1 1{li>l}

cl +
∑n

i=1 1{li=l} +
∑n

i=1 1{li>l}

)
.

The connection between the generalized Pólya urn scheme and the discrete time beta-Stacy
process is given in Walker and Muliere [194]. In particular, let F be a random cumulative
distribution function governed by a discrete time beta-Stacy process with support the set
{ι1, . . . , ιm}. Then

pn(k|k1, . . . , kn) = E[F (ιk)|k1, . . . , kn]

where F (ιk) represents the random weight assigned to ιk. Let γk := ckqk/(1−q1−· · ·−qk−1)
and %k := ck(1− qk/(1− q1 − · · · − qk−1)) for k = 1, . . . ,m− 1, so that

pn(k|k1, . . . , kn) =
γk + nk

γk + %k + nk +mk

k−1∏
l=1

%l +ml

γl + %l + nl +ml
. (5.5.19)

Note that, if n1 +m1 = n, nk +mk = mk−1 and γk + %k = %k−1, for all k = 2, . . . ,m− 1,
i.e. there are not censored observarion, then (5.5.19) reduces to (5.5.17).

Both the Pólya urn scheme and generalized Pólya urn scheme are particular case of the
exchangeable neutral urn scheme. Briefly, the exchangeable neutral urn scheme replaces
each of the Pólya urns in the generalized Pólya urn scheme with generalized Pólya urn
themeselves. In particular, let {ι1, . . . , ιm} be m different colors and let {φ1, . . . , φm−1} be
a dummy space. Moreover, let {Vk, k ≥ 1} be a collection of independent r.v.s on (0, 1),
such that, for all γ, % > 0 E[V γ

k (1− Vk)%] exists. Then define

λk(γ, %) := Γ(γ + 1)
m∏
i=1

Γ(αi,k + βi,k)
Γ(βi,k)

×Gm,1m+1,1

(
1
∣∣∣∣ −%, α1,k + β1,k − 1, . . . , αm,k + βm,k − 1

β1,k − 1, . . . , βm,k − 1,−%− γ − 1

)
for any γ, % > 0, m ∈ N and (α1,•, β1,•), . . . , (αm,•, βm,•) sequences of positive real numbers.
Now, consider s urns indexed by 1, . . . , s, respectively, and in the urn indexed by k, for
k = 1, . . . , s − 1 puts the elements ιk and φk in the ratio λk(γk + 1, %k) to λk(γk, %k + 1)
where γk > 0, %k > 0 with %k =

∑
l>k γl. Obviously, the urn indexed by s has only the

element ιs. Then, generate a sequence {Tn, n ≥ 1} from the colours {ι1, . . . , ιs} as follows
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i) Start from urn indexed by k = 1;

ii) sample from urn indexed by k;

iii) if the color sampled is ιk then γk = γk + 1 go to (iv), else %k = %k + 1, k = k+ 1 and
go to ii);

iv) ιk is a single sample from the urn scheme.

Based on this urn scheme, at the (n + 1)-th draw the color k is taken with the following
probability

P(Tn+1 = ιk|T1, . . . , Tn) =
λk(γk +

∑n
i=1 1{Ti=ιk} + 1, %k +

∑n
i=1 1{Ti>ιk})

λk(γk +
∑n

i=1 1{Ti=ιk}, %k +
∑n

i=1 1{ki>k})

×
k−1∏
j=1

λj(γj +
∑n

i=1 1{Ti=ιj}, %l +
∑n

i=1 1{Ti>ιj} + 1)
λj(γj +

∑n
i=1 1{Ti=ιj}, %j +

∑n
i=1 1{Ti>ιj})

.

which clearly corresponds to the predictive probability (5.5.13) by setting γk = %k = 0 for
any k ≥ 1.

5.5.2 The continuous time superposed beta-Stacy process

So far, we provided a constructive definition of the discrete time superposed beta-Stacy
process. In particular, a comprehensive treatment of the discrete time superposed beta-
Stacy process has been given in terms of finite dimensional distributions, predictive distri-
butions and posterior distributions. In the next results we focus on proving the existence
of the continuous time superposed beta-Stacy process as infinitesimal weak limit of a
sequence of discrete time superposed beta-Stacy processes.

Theorem 5.5.3. For any m ∈ N, let G1, . . . , Gm be a collection of continuous functions
in FR+ and let c1, . . . , cm be a collection of piecewise continuous positive functions. there
exists a Lévy process {Zt, t ≥ 0} such that

log(E[e−φZt ]) =
∫

(0,+∞)
(e−φv − 1)νt(dv) (5.5.20)

where

νt(dv) =
dv

1− e−v

m∑
i=1

∫
(0,t)

e−vci(s)Gi[s,+∞)ci(s)Gi(ds) (5.5.21)

Proof. The proof is along lines similar to the proof of Theorem 2 in Walker and Muliere
[194] which follows the idea in Hjort [84]. For any n ∈ N and for any m ∈ N, let
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us consider m sequences of positive real numbers (α(n)
1,• , β

(n)
1,• ), . . . , (α(n)

m,•, β
(n)
m,•) such that

α
(n)
i,k := ci (k/n− 1/2n)Gi [k − 1/n, k/n) and β

(n)
i,k := ci (k/n− 1/2n)Gi [k/n,+∞) for

i = 1, . . . ,m and for any k ≥ 1. Moreover, for any n ∈ N and for any m ∈ N let us consider
m indepenent sequences of r.v.s Y (n)

1,• , . . . , Y
(n)
m,• such that Y (n)

i,• is a sequence of independent

r.v.s distributed according to a Beta distribution function with parameter (α(n)
i,k , β

(n)
i,k ) for

i = 1, . . . ,m. Based on this setup of r.v.s, for any n ∈ N let us define the random process
Z

(n)
• := {Z(n)

t , t ≥ 0} such that Z(n)
t := −

∑
k/n≤t log

(
1−X(n)

k /1− F (n)
k−1

)
with Z

(n)
0 := 0

and where {X(n)
k |X

(n)
1 , . . . , X

(n)
k−1, k ≥ 1} is a sequence of r.v.s defined via (5.5.9). Our

aim is to show that the sequence of random processes {Z(n)
• , n ≥ 1} converges weakly

(as n → +∞) to a Lévy process {Zt, t ≥ 0} having the required representation (5.5.20)
and (5.5.21). By using the ralations for the Gamma function Γ(x) = (x − 1)Γ(x) and
Γ(x) = x−1Γ(x + 1) and the by Stirling formula Γ(x) ∼ (2πx)1/2(x/e)x to approximate
the Gamma function, we have

log(E[e−φZ
(n)
t ]) = log(E[e−φ

P
k/n≤t

Pm
i=1− log(1−Y (n)

i,k )])

=
∑
k/n≤t

m∑
i=1

log
Γ(α(n)

i,k + β
(n)
i,k )Γ(β(n)

i,k + φ)

Γ(β(n)
i,k )Γ(α(n)

i,k + β
(n)
i,k + φ)

=
∑
k/n≤t

m∑
i=1

log
r−1∏
j=0

(β(n)
i,k + j)(α(n)

i,k + β
(n)
i,k + φ+ j)

(α(n)
i,k + β

(n)
i,k + j)(β(n)

i,k + φ+ j)

×
Γ(α(n)

i,k + β
(n)
i,k + r)Γ(β(n)

i,k + φ+ r)

Γ(β(n)
i,k + r)Γ(α(n)

i,k + β
(n)
i,k + φ+ r)

=
∑
k/n≤t

m∑
i=1

log
∏
j≥0

(β(n)
i,k + j)(α(n)

i,k + β
(n)
i,k + φ+ j)

(α(n)
i,k + β

(n)
i,k + j)(β(n)

i,k + φ+ j)

=
∑
k/n≤t

m∑
i=1

∫ +∞

0
(e−φv − 1)

e−β
(n)
i,k v(1− e−α

(n)
i,k v)

v(1− e−v)
dv

=
∫ +∞

0

e−φv − 1
v(1− e−v)

∑
k/n≤t

m∑
i=1

e−β
(n)
i,k v(1− e−α

(n)
i,k v)dv.

Since for i = 1, . . . ,m, as n→ +∞∑
k/n≤t

e−β
(n)
i,k v(1− e−α

(n)
i,k v)→ v

∫
(0,t)

e−vci(s)Gi[s,+∞)ci(s)Gi(ds)

then

log(E[e−φZ
(n)
t ])→

∫ +∞

0

e−φv − 1
v(1− e−v)

m∑
i=1

∫
(0,t)

e−vci(s)Gi[s,+∞)ci(s)Gi(ds)dv
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as n→ +∞. By a similar argument it can be shown, for any s ∈ N and for any 0 = t0 <

t1 < · · · < ts < +∞, that

log(E[e−
Ps
j=1 φZ

(n)[tj−1,tj
)])→

s∑
j=1

∫
(0,+∞)

(e−vφj − 1)ν[tj−1,tj)(dv)

which ensures the convergence of the finite dimensional distributions of {Z(n)
• , n ≥ 1}. The

thightness of the sequence {Z(n)
• , n ≥ 1} follows by the same arguments used in Theorem

2 in Walker and Muliere [194].

Corollary 5.5.2. For any m ∈ N, let G1, . . . , Gm be a collection of continuous functions in
FR+ and c1, . . . , cm be a collection of piecewise continuous positive functions. Let {Y1,t, t ≥
1}, . . . , {Ym,t, t ≥ 1} be m independent sequences of r.v.s such that Yi,• is a sequence
of independent r.v.s distributed according to a Beta distribution function with parameter
(dαi,t, βi,t) with dαi,t = ci(t)dG(t) and βi,t = ci(t)Gi[t,+∞) for i = 1, . . . ,m. If {Ft, t ≥ 0}
is a random process defined by Ft = 1 − e−Zt and with F0 := 0, then at the infinitesimal
level

dFt|Ft
d= (1− Ft)

(
1−

m∏
i=1

(1− Yi,t)

)
(5.5.22)

and {Ft, t ≥ 0} belongs to FR+ a.s.-P.

Proof. For any n ∈ N and for any m ∈ N, let (α(n)
1,• , β

(n)
1,• ), . . . , (α(n)

m,•, β
(n)
m,•) be m sequences

of positive real numbers and let Y (n)
1,• , . . . , Y

(n)
m,• be m independent sequences of r.v.s such

that Y (n)
i,• is a sequence of independent r.v.s distributed according to a Beta distribution

function with parameter (α(n)
i,k , β

(n)
i,k ) for i = 1, . . . ,m. Based on this setup of r.v., for any

n ∈ N let us define the discrete time superposed beta-Stacy process F (n)
• := {F (n)

t , t ≥ 0}
such that

F
(n)
t :=

∑
k/n≤t

X
(n)
k

with F
(n)
0 := 0 and where {X(n)

k |X
(n)
1 , . . . , X

(n)
k−1, k ≥ 1} is a sequence of r.v.s defined via

(5.5.9). Since we have

− log(1− F (n)
t ) = −

∑
k/n≤t

log

(
m∏
i=1

(1− Yi,k)

)
= −

∑
k/n≤t

log

(
1−

X
(n)
k

1− F (n)
k−1

)
= Z

(n)
t

then F
(n)
t = 1− e−Z

(n)
t . Clearly

F (n)

[
k − 1
n

,
k

n

)
| F (n)

[
0,
k − 1
n

)
d=
(

1− F (n)

[
0,
k − 1
n

))(
1−

k∏
i=1

(1− Yi,k)

)
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and also {F (n)
• , n ≥ 1} converges weakly to {Ft, t ≥ 0}. The fact that {Ft, t ≥ 0} belongs to

FR+ a.s.-P follows from the fact that
∫

(0,+∞Gi(ds)Gi[s,+∞) = +∞ for i = 1, . . . ,m.

Corollary 5.5.2 completes the proof of the existence of a continuous time version of the
discrete time superposed beta-Stacy process. In particular, Corollary 5.5.2 implies that
the random process Ft, t ≥ 0 is a neutral to the right r.p.m. according to the definition
given by Doksum [25]. We term the random process {Ft, t ≥ 0} superposed beta-Stacy
process.

Let c be a positive function, G ∈ FR+ be right continuous and {tk, k ≥ 0} be the
countable set of points of discontinuity of G, i.e G{tk} = G(tk)−G(t−k ) > 0 for any k ≥ 0.
We set Gc := G(t) −

∑
tk≤tG{tk} so that Gc is a continuous function. Here, the formal

definition of superposed beta-Stacy process.

Definition 5.5.4. The random process {Ft, t ≥ 0} is a superposed beta-Stacy process
on R+ with parameter (m, (c1, G1), . . . , (cm, Gm)) if for all t ≥ 0, Ft = 1 − e−Zt, where
{Zt, t ≥ 0} is a Lévy process with Lévy measure for v > 0

νt(dv) =
dv

1− e−v

n∑
i=1

∫
(0,t)

e−vci(s)Gi[s,+∞)ci(s)Gci (ds) (5.5.23)

and moment generating function given by

log(E[e−φZt ]) =
∑
tk≤t

log(E[eφ
Pm
i=1 log(1−Yi,k)])−

∫
(0,+∞)

(1− e−φv)νt(dv) (5.5.24)

where the Y1,•, . . . , Ym,• are m independent sequences of r.v.s such that Yi,• is a sequence
of independent r.v.s distributed according to a Beta distribution function with parameter
(ci(tk)Gi{tk}, ci(tk)Gi[tk,+∞)).

From Definition 5.5.4 it follows that the superposed beta-Stacy process includes as
particular case the beta-Stacy process which can be recovered by setting m = 1. In partic-
ular, let us consider a superposed beta-Stacy process {Ft, t ≥ 0} on R+ with parameters
(m, (c1, G1), . . . , (cm, Gm)) such that Gi is continuous and ci is constant for i = 1, . . . ,m.
Under these assumptions, (5.5.23) becomes

vt(dv) =
dv

v(1− e−v)

m∑
i=1

e−vci(evciGi(t) − 1)

which generalizes the Lévy measure of a Dirichlet process on R+ with parameter cG. See
Ferguson [62] for more details.

We conclude this section by considering the posterior distribution of a superposed
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beta-Stacy process given a set of possibly right censored observations. Extending the re-
sult in Doksum [25] in the case of inclusively and exclusively right censored observations,
Ferguson and Phadia [65] (see also Ferguson [62]) achieved a representation of the pos-
terior distribution of a neutral to the right r.p.m. given a set of possibly right censored
observations. We now apply results in Ferguson and Phadia [65] in order to obtain a
characterization of the posterior distribution of a superposed beta-Stacy process given a
set of possibly right censored observations. Let {Ft, t ≥ 0} be a superposed beta-Stacy
process on R+ with parameter (m, (c1, G1), . . . , (cm, Gm)). The prior distribution for the
Lévy process {Zt, t ≥ 0} such that for any t ≥ 0, Ft = 1− e−Zt is characterized by the set
of fixed points of discontinuity {tk, k ≥ 0} with t0 = 0, the associated probability density
functions {ftk , k ≥ 1} for the jumps and the Lévy measure (5.5.23). If T is a random
sample possibly right censored from {Ft, t ≥ 0}, then

i) given T > t ∈ {tk, k ≥ 0}, the posterior parameters are {{tk, k ≥ 0} and

f∗tk(v) =

{
κe−vftk(v) if tk ≤ t
ftk(v) if tk > t

ii) given T = t ∈ {tk, k ≥ 0}, posterior parameters are {{tk, k ≥ 0} and

f∗tk(v) =


κe−vftk(v) if tk < t

κ(1− e−v)ftk(v) if tk = t

ftk(v) if tk > t

iii) given T = t /∈ {tk, k ≥ 0}, posterior parameters are {{tk, k ≥ 0} ∪ {t} and

f∗tk(v) =

{
κe−vftk(v) if tk ≤ t
ftk(v) if tk > t

where κ is the appropriate normalizing constant and the posterior Lévy measure is
given by

v∗t (dv) =
dv

1− e−v

n∑
i=1

∫
(0,t)

e−v(ci(s)Gi[s,+∞)+1{t≥s})ci(s)Gci (ds)



6
On Bayesian nonparametric inference

in species sampling problems

In this chapter we investigate a class of random probability measures, termed generalized
Dirichlet processes, which has been recently introduced in the literature and further in-
vestigated in Chapter 5. Such processes induce exchangeable random partitions which are
characterized by a more elaborate clustering structure than those arising from Gibbs-type
random probability measures. A natural area of application of these random probability
measures is represented by species sampling problems and, in particular, prediction prob-
lems in genomics. To this end we study both the distribution of the number of distinct
species present in a sample and the distribution of the number of new species conditionally
on an observed sample. Some developments on the conditional distributions and the corre-
sponding Bayesian nonparametric estimators recently obtainied for the class of Gibbs-type
random probability measures are also provided.

6.1 Introduction

Let {Xn, n ≥ 1} be an exchangeable sequence defined on some probability space (Ω,F ,P)
and such that each random variable (r.v.) Xn takes values in a Polish space (X, T ) with
associated Borel σ-field X . Then, by de Finetti’s representation theorem, there exists a
random probability measure (r.p.m.) P̃ on X with law Q such that given P̃ , a sample
X1, . . . , Xn from the exchangeable sequence is independent and identically distributed
(i.i.d.) with distribution P̃ . That is, for every n ≥ 1 and any A1, . . . , An ∈X

P(X1 ∈ A1, . . . , Xn ∈ An) =
∫
PX

n∏
i=1

P̃ (Ai)Q(dP̃ ) (6.1.1)

where PX denotes the space of all probability measures on (X,X ) with associated Borel
σ-field PX, generated by the weak convergence topology.
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In this chapter, we focus on r.p.m.s which are almost surely discrete and with non-
atomic prior guess at the shape α0(·) := E[P̃ (·)]. By the almost sure discreteness, we
expect ties in the sample, namely that X1, . . . , Xn contain Kn ≤ n distinct observations
X∗1 , . . . , X

∗
Kn

with frequencies NKn = (N1, . . . , NKn) such that
∑

1≤j≤kNj = n. By in-
tegrating (6.1.1) with respect to all samples of size n with Kn = k distinct observations
having frequencies (n1, . . . , nk), one obtains the joint distribution of Kn and NKn

P({Kn = k} ∩ {NKn = (n1, . . . , nKn)}) = p
(n)
k (n1, . . . , nk) (6.1.2)

which is known as exchangeable partition probability function (EPPF), a fundamental
concept introduced in Pitman [149] (see Appendix B), which uniquely determines the
probability law of an exchangeable random partition. Almost sure discrete r.p.m.s and the
exchangeable random partitions they induce have always played an important role in a
variety of research areas such as population genetics, machine learning, Bayesian nonpara-
metrics, combinatorics, excursion theory and statistical physics. In particular, in Bayesian
nonparametric inference the use of random partitions dates back to the seminal work of
Lo [128]: his approach consists in exploiting a discrete r.p.m. as a basic building block
in hierarchical mixture models. In this way the discrete r.p.m. induces an exchangeable
random partition for the latent variables providing an effective tool for inference on the
clustering structure of the observations. See, e.g, Lo [129], James [96], Ishwaran and James
[91] and Lijoi et al. [120] for extensions in various directions.

An early and well-known model which describes the grouping of n objects into k dis-
tinct classes is due to Ewens [43] and leads to the Ewens’ sampling formula. The basic
assumption is that individuals are sequentially sampled from an infinite set of different
species and the proportion p̃i with which the i-th species is presented in the population
is random. Then, if {Wk, k ≥ 1} is a sequence of i.i.d. r.v.s distributed according to a
Beta distribution function with parameter (1, θ), the random proportion are defined as
p̃1 = W1 and p̃j = Wj

∏
1≤k≤j−1(1 −Wk) per j ≥ 2. Now, if X1, . . . , Xn is a sample of

n individuals drawn from the population, set Mn := (M1,n, . . . ,Mn,n) where Mj,n is the
number of species represented j times in the sample of size n. Hence, the distribution of
Mn is supported by all those vectors mn = (m1,n, . . . ,mn,n) for which

∑
1≤i≤n imi = n.

The Ewens sampling formula provides the probability distribution of the r.v. Mn and it
coincides with

P(Mn = mn) =
n!

(θ)n↑1

n∏
j=1

θmj,n

jmj,nmj,n!

fro θ > 0 and for any (m1,n, . . . ,mn,n) such that
∑

1≤i≤n imi,n = n. Obviously, to the
distribution of Mn there corresponds a distribution of the vector (Kn, NKn). Such a corre-
spondence is one to one and, conditional on Kn, the distribution of NKn is supported on
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the set DKn,n := {(n1, . . . , nKn) ∈ [n]Kn :
∑

1≤j≤Kn nj = n}. In particular, to the Ewens
sampling formula there corresponds the probability distribution

p
(n)
k (n1, . . . , nk) =

θk

(θ)n↑1

k∏
j=1

(nj − 1)! (6.1.3)

for any k ∈ [n] and (n1, . . . , nk) ∈ Dk,n. As described in Antoniak [2], equation (6.1.3)
corresponds to the EPPF induced by a sample X1, . . . , Xn from a Dirichlet process (see
Ferguson [61]) and it has found many interesting applications, for instance, in Bayesian
nonparametrics and in population genetics. See Antoniak [2] and Pitman [157] for exhaus-
tive accounts on the Ewens sampling formula.

Since the introduction of the Dirichlet process, other classes of almost surely discrete
r.p.m.s have been proposed in the literature. Among them we mention species sampling
models introduced by Pitman [151], stick-breaking r.p.m.s introduced by Ishwaran and
James [90], normalized random measures with independent increments (NRMI) intro-
duced by Regazzini et al. [165] and Poisson-Kingman models introduced by Pitman [156].
Within these classes, all specific r.p.m.s, which enjoy sufficient mathematical tractability,
represent valid alternatives to the Dirichlet process: the most notable are the two param-
eter Poisson-Dirichlet process (see Pitman [149] and Pitman [151]) and the normalized
generalized Gamma process (see Pitman [156], James [96] and Lijoi et al. [120]); both
recover the normalized stable process introduced by Kingman [109] and the Dirichlet pro-
cess as limiting cases and the latter also contains the normalized inverse Gaussian process
introduced by Lijoi et al. [119]. By close inspection of these tractable processes, one can
observe that they all generate samples X1, . . . , Xn, for n ≥ 1, which are characterized by
a system of predictive distributions of the type

P(Xn+1 ∈ ·|X1, . . . , Xn) = g0(n, k)α0(·) + g1(n, k)
k∑
j=1

(nj − σ)δX∗j (·), (6.1.4)

where σ ∈ [0, 1). An almost surely discrete r.p.m. generating a sample as the above is
termed Gibbs-type r.p.m. The class of Gibbs-type r.p.m.s has been recently introduced
and studied by Gnedin and Pitman [74], where also a characterization of its members
is provided: indeed, Gibbs-type r.p.m. are Dirichlet process mixtures when σ = 0 and
Poisson-Kingman models based on the stable subordinators when σ ∈ (0, 1) (see Gnedin
and Pitman [74], Theorem 12). Further investigations related to Bayesian nonparametrics
can be found in Ho et al. [86] and Lijoi et al. [124].

Motivated by species sampling problems and, in particular, by their renewed interest
related to applications in genomics, in Lijoi et al. [123] and Lijoi et al. [125] properties of
samples generated by Gibbs-type r.p.m.s have been analyzed. In particular, given a sam-
ple X1, . . . , Xn consisting in a collection of j distinct species with labels X∗1 , . . . , X

∗
j with
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frequencies (n1, . . . , nj), interest is in the distributional properties of an additional sample
of size m and, especially, in the distribution of the new distinct species. The concrete
motivation for this study is provided by the straightforward applicability of the results
to inference in genetic experiments. As a matter of fact, an important setting of applica-
tion is related to gene detection in expressed sequence tags (EST) experiments. ESTs are
produced by sequencing randomly selected cDNA clones from a cDNA library. Given an
initial EST dataset of size n, one is interested in the prediction of the outcomes of further
sampling from the library. For instance, interest lies in the estimation of the number of
new unique genes in a possible additional sample of size m: nonparametric frequentist es-
timators, however, yield completely unstable estimates when m > 2n. See Mao [133] for a
discussion of this phenomenon. In contrast, for the corresponding Bayesian nonparametric
estimators proposed in in Lijoi et al. [123] and Lijoi et al. [125], and based on Gibbs parti-
tions, the relative dimension of m with respect to n is not an issue. Indeed, it is shown that
the EPPF, whenever analytically available, yields straightforward and coherent answers
to this and other related problems.

In Lijoi et al. [123] and Lijoi et al. [125] Bayesian estimators for species sampling prob-
lems have been derived under the hypothesis that the exchangeable sequence is governed
by a Gibbs-type prior. It is to be noted that the number of distinct species in the given
sample Kn turns out to be a sufficient statistic for prediction of the number of new distinct
species (and other interesting quantities) to be observed in a future sample (see Lijoi et
al. [125]). This implies that the information arising from the frequencies (n1, . . . , nj) has
to be incorporated into the parameters of the model, since, otherwise, prediction of new
species would not depend at all on n1, . . . , nj . For instance, if the species are exchangeable
with a two parameter Poisson-Dirichlet prior, then, given a sample of size n, the (n+1)-th
observation is a new species with probability (θ+σj)/(θ+n), where θ > −σ and σ ∈ [0, 1).
Such a probability depends on the distinct observed species j but not on their frequencies
n1, . . . , nj , whose conveyed information can be summarized through the selection of θ and
σ. In principle one would like priors which lead to richer predictive structures, in which the
probability of sampling a new species depends explicitly on both Kn and NKn . However,
by dropping the Gibbs structure assumption, serious issues of mathematical tractability
arise.

In this chapter we provide some developments on the conditional distributions and the
corresponding Bayesian nonparametric estimators recently obtained in Lijoi et al. [123]
and Lijoi et al. [125] for discrete nonparametric priors which induce Gibbs-type random
partitions. In particular, we focus on the two parameter Poisson-Dirichlet process and
greatly simplify the expressions of relevant estimators in species sampling problems so
that they can be easily evaluated for any sizes of n and m. Moreover, in order to asso-
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ciate a measure of uncertainty to the estimates, we study the asymptotic behaviour of the
number of new species conditionally on the observed sample: such an asymptotic results,
which is also of independent interest, allow to derive asymptotic highest posterior density
intervals for the estimates of interest. In order to sample from the limiting r.v., we develop
a suitable simulation scheme. Finally we illustrate the implementation of the proposed
methodology by the analysis of 5 genomic dataset.

On the other hand, we consider a class of r.p.m.s which is not of Gibbs-type, and show
that one can still derive analytic expressions for the quantities of interest. In pursuing this
goal we will repeatedly encounter Lauricella multiple hypergeometric functions (see Ap-
pendix C) and partial Bell polynomials (see Appendix A), thus highlighting the interplay
between Bayesian nonparametrics and exchangeable random partitions on one side and
the theory of special functions on the other. Other examples of this close connection can
be found in Regazzini [163], Lijoi and Regazzini [126] where functionals of the Dirichlet
process are considered. As an interesting by-product of our analysis, we also obtain a gen-
eralization of the Chu-Vandermonde convolution formula involving the fourth Lauricella
hypergeometric function. The specific class we consider is represented by the generalized
Dirichlet process introduced in Regazzini et al. [165] and further investigated in Lijoi et
al. [118]. In particular, the generalized Dirichlet process is a NRMI obtained by normal-
ization of superposed independent Gamma processes with increasing integer-valued scale
parameter and gives rise to a system of predictive distributions of the type

P(Xn+1 ∈ ·|X1, . . . , Xn) = w0(n, k,n)α0(·) +
k∑
j=1

njwj(n, k,n)δX∗j (·) (6.1.5)

where n := (n1, . . . , nk) and the weights w0(n, k,n) and wi(n, k,n), for j = 1, . . . , k now
explicitly depend on n thus conveying the additional information provided by the frequen-
cies n1, . . . , nk directly into the prediction mechanism. To our knowledge, the generalized
Dirichlet process represents the first example in the literature of almost surely discrete
r.p.m. which is not of Gibbs-type and still leads to a closed form predictive structure.

The chapter is structured as follows. In Section 6.2 we remind the definition of Gibbs-
type r.p.m. and we provide some developments on the conditional distributions and the
corresponding Bayesian nonparametric estimators obtainied in Lijoi et al. [123] and Lijoi
et al. [125]. In Section 6.3 we provide distributional results related to the prior and pos-
terior probability distribution of discovering a certain number of new species in a sample
generated by a generalized Dirichlet process. In Section 6.4 we investigate some conditional
structures that emerge when the observations are sampled from exchangeable sequences
governed by a general homogeneous NRMIs.
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6.2 Gibbs-type random probability measures

In this section we remind the definition of Gibbs-type r.p.m. and some results related
to conditional distributions and Bayesian nonparametric estimators recently obtainied in
Lijoi et al. [123] and Lijoi et al. [125]. Developments of these results are presented for
the two parameter Poisson Dirichlet process and for the normalized generalized Gamma
process.

A random partition of the set of natural numbers N is defined as a consistent sequence
Π := {Πn, n ≥ 1} of random elements, with Πn taking values in the set of all the partitions
of [n] := {1, . . . , n} into some number of disjoint blocks. Consistency implies that each
Πn is obtained from Πn+1 by discarding, from the latter, the integer n + 1. A random
partition Π is exchangeable if, for each n, the probability distribution of Πn is invariant
under all permutations of (1, . . . , n). Let {p(n)

k , n ≥ 1} be a sequence of function such that
p

(n)
k : Dk,n → R+ satisfies the properties

i) p
(1)
1 (1) = 1;

ii) for any (n1, . . . , nk) ∈ Dk,n with n ≥ 1 and k ∈ [n]

p
(n)
k (n1, . . . , nk) = p

(n)
k (nσ(1), . . . , nσ(k))

where σ is an arbitrary permutation of the indices (1, . . . , k);

iii) for any (n1, . . . , nk) ∈ Dk,n with n ≥ 1 and k ∈ [n] the following addition rule holds
true

p
(n)
k (n1, . . . , nk) =

k∑
j=1

p
(n+1)
k (n1, . . . , nj + 1, . . . , nk) + p

(n+1)
k+1 (n1, . . . , nk, 1).

Then, p(n)
k is an EPPF. In particular, the EPPF uniquely determines the probability law

of an exchangeable random partition according to the equality

P(Πn = {A1, . . . , Ak}) = p
(n)
k (|A1|, . . . , |Ak|) n ≥ 1, k ≤ n

where |A| stands for the cardinality of the set A. As already seen in equation (6.1.2),
for any given sample X1, . . . , Xn from an exchangeable sequence of r.v.s {Xn, n ≥ 1}
governed by an almost sure discrete r.p.m., marginalization with respect to the labels
yields the EPPF of the associated exchangeable random partition. The EPPF (6.1.3)
associated to the celebrated Ewens sampling formula, represents a particular case of a
more geneneral EPPF which is associated to the so-called Pitman’s sampling formula
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(see Pitman [149]). In particular, to the Pitman’s sampling formula there corresponds the
probability distribution

p
(n)
k (n1, . . . , nk) =

∏k−1
i=1 (θ + iσ)

(θ + 1)(n−1)↑1

k∏
j=1

(1− σ)(nj−1)↑1 (6.2.1)

where θ > −σ and σ ∈ (0, 1) or σ < 0 and θ = ν|σ| for some positive ν. It can be easily
checked that if we set σ = 0 in (6.2.1) we recover (6.1.3). In particular, (6.2.1) corresponds
to the EPPF induced by a sample X1, . . . , Xn from a two parameter Poisson-Dirichlet
process as described in Pitman [149] (see also Pitman and Yor [154]). A further interesting
example of EPPF arises from the normalization of a generalized Gamma process, as defined
in Brix [13], and leads to

p
(n)
k (n1, . . . , nk) =

σk−1eβ
∏k
j=1(1− σ)(nj−1)↑1

Γ(n)

n−1∑
i=1

(
n− 1
i

)
(−1)iβi/σΓ

(
k − i

σ
;β
)

(6.2.2)
where β > 0 and Γ(a;x) :=

∫ +∞
x sa−1e−sds is, for any x > 0, the incomplete Gamma

function. See James [96] and Pitman [156] and Lijoi et al. [120] for an applcation of the
corresponding random discrete distribution in the context of mixture modelling.

The examples we have briefly illustrated so far share a common structure. Indeed,
one may note that each EPPF in (6.1.3), (6.2.1) and (6.2.2) arises as a product of two
factors: the first one depends only on (n, k) and the second one depends on the frequencies
(n1, . . . , nk) via the product

∏
1≤j≤k(1−σ)(nj−1)↑1. This structure is the main ingredient for

defining a general family of exchangeable random partitions, namely Gibbs-type random
partitions.

Definition 6.2.1. (cfr. Gnedin and Pitman [74]) An exchangeable random partition Π of
the set of natural numbers is said to be of Gibbs form if, for all 1 ≤ k ≤ n and for any
(n1, . . . , nk) in Dk,n, the EPPF of Π can be represented as

p
(n)
k (n1, . . . , nk) = Vn,k

k∏
j=1

(1− σ)(nj−1)↑1 (6.2.3)

for some σ ∈ [0, 1) and some set of non-negative weights {Vn,k : n ≥ 1, 1 ≤ k ≤ n}
satisfying the recursion Vn,k = Vn+1,k+1 + (n− σk)Vn+1,k with V1,1 = 1.

Recall that, according to Pitman [151], a species sampling model is an almost surely
discrete r.p.m. P̃ (·) =

∑
i≥1 w̃iδXi(·) such that the masses w̃i’s are independent from

the locations Xi’s, which are i.i.d. from a non-atomic distribution α0. Then, one can
define Gibbs-type r.p.m.s as the class of species sampling models which induces Gibbs-
type random partition, i.e. the EPPF corresponding to a sample of size n generated by a
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Gibbs-type r.p.m. is of the form (6.2.3). It then follows that the predictive distributions
associated with a Gibbs-type r.p.m. are of the form (6.1.4) with weights of the form

g0(n, k) :=
Vn+1,k+1

Vn,k
, g1(n, k) :=

Vn+1,k

Vn,k
.

Before reminding the distributional results for samples drawn from Gibbs-type prior, we
introduce some useful notation to be used throughout the paper. Consider a population
which is composed of an (ideally) infinite number of species. Let X(1:n)

Kn
:= X1, . . . , Xn

be a sample of n individuals drawn from the population, where Kn is the number of
distinct species detected among the n observations in the sample. We call this sample
the “basic sample”. We consider the vector (Kn, NKn) where NKn = (N1,n, . . . , NKn,n)
is the vector of frequencies with which each distinct species is observed; in particular,
conditional on Kn = j, is supported by all vectors (n1, . . . , nKn) of positive integers such
that

∑
1≤i≤Kn ni = s. We denotes with X(1:Kn) := X∗1 , . . . , X

∗
Kn

the distinct observa-
tions within the “basic sample”. We study distributional properties of the partition of
the set of integers {n + 1, . . . , n + m}, given [n] has been partitioned into j classes with
repective frequencies (n1, . . . , nj). A few quantities, analogous to those describing the par-
tition structure of [n], need to be introduced in advance. We let K(n)

m = Kn+m − Kn

stands for the number of new partition sets C1, . . . , CK(n)
m

generated by the additional

“second sample” X
(2:m)

K
(n)
m

:= Xn+1, . . . , Xn+m. We call this sample the “second sample”.

Furthermore, if C := ∪
1≤i≤K(n)

m
Ci whenever K(n)

m ≥ 1 and C ≡ ∅ if K(n)
m = 0, we set

K
(n)
m := ]({Xn+1, . . . , Xn+m} ∩ C) as the number of observations belonging to the new

clusters Ci. It is obvious that L(n)
m ∈ {0, 1, . . . ,m} and that m − L

(n)
m observations be-

long to the sets defining the partiton of the original n observations. According to this, if
S
L

(n)
m

= (S
1,L

(n)
m
, . . . , S

K
(n)
m ,L

(n)
m

) then the distribution of S
L

(n)
m

, conditional on L
(n)
m = s, is

supported by all vectors s := (s1, . . . , sK(n)
m

) of positive integers such that
∑

1≤i≤K(n)
m
si = s.

The remaining m−L(n)
m observations are allocated to the old Kn groups with the vector of

non-negative frequencies Rn = (R1, . . . , RKn) such that
∑

1≤i≤Kn Ri = m−L(n)
m . Through-

out we also assume that all random quantities are defined on a common space (Ω,F ,P).
In a Bayesian framework, the probabilty distribution of Kn has been interpreted by

Lijoi et al. [123] as the prior distribution on the number of species to be observed in the
“basic sample”. In particular, for a Gibbs-type r.p.m, the probability distribution of Kn

was derived in Gnedin and Pitman [74] and it corresponds to

P(Kn = k) =
Vn,k
σk

C (n, k;σ). (6.2.4)

where C (s, k;σ) is C (s, k;σ)(−1)s−kC(s, k;σ) (see Appendix A). Next, a further sample
of m individuals, the “second sample”, is selected thus giving rise to the “enlarged sample”
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of size n+m. If one knows the number of sepecies observed in the “basic sample” and the
frequency with which each species has been recorded, it would be interesting to determine

P1) the probability distribution, and the expected value, of the number of new species
in the “second sample” conditionally on the “basic sample”;

P2) the probability of discovering a new species at the (n + m + 1)-th draw, without
actually observing the “second sample”.

Evaluating the probability in P1) is equivalent to determining P(K(n)
m = k|X(1,n)

Kn
) for any

j = 0, 1, . . . ,m and for any k = 1, 2, . . . , n, which can be interpreted as the “posterior”
probability distribution of the number of species to be observed in a sample of size m.
The determination of the probability in P2) corresponds to estimating the probability
P(K(n+m)

1 = 1|X(1,n)
Kn

, X
(2:m)

K
(n)
m

) without observing the “second sample”. This automatically
provides a solution to the important problem of determining the sample size such that the
probability of discovering a new species falls below a give threshold.

Proposition 6.2.1. (cfr. Lijoi et al. [125]) Suppose that Π = Πn, n ≥ 1 is a Gibbs-type
random partition with weights Vn,k and parameter [0, 1). Then, the joint distribution of
K

(n)
m , K(n)

m and S
L

(n)
m

, given Kn and NKn, is of the form

P(K(n)
m = k, L(n)

m = s, S
L

(n)
m

= s|Kn = j,NKn = n) (6.2.5)

= P(K(n)
m = k, L(n)

m = s, S
L

(n)
m

= s|Kn = j)

=
Vn+m,j+k

Vn,j

(
m

s

)
(n− jσ)(m−s)↑1

k∏
i=1

(1− σ)(si−1)↑1

Hence, the number Kn of partition sets in the basic n sample is sufficient for predicting:
i) the number of sets into which {n+ 1, . . . , n+m} is partitioned, ii) the number of points
from the subsequent m sample that belong to the new sets of the partition of [n+m] and
iii) the frequencies in each of these new groups.

By marginalizing the conditional distribution in (6.2.5) with respect to S
L

(n)
m

and, then,

with respect to K(n)
m one obtains the conditional distribution for the number of new groups

and the number of observations belonging to these new groups and the distribution of L(n)
m ,

respectively.

Corollary 6.2.1. (cfr. Lijoi et al. [125]) The joint distribution of K(n)
m and L

(n)
m , given

Kn, can be expressed as

P(K(n)
m , L(n)

m = s|Kn = j) =
Vn+m,j+k

Vn,j

(
m

s

)
(n− jσ)(m−s)↑1

C (s, k;σ)
σk

(6.2.6)
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for k ≤ s = 0, . . . ,m and the conditional distribution of L(n)
m is of the form

P(L(n)
m = s|Kn = j) =

(
m

s

)
(n− jσ)(m−s)↑1

s∑
k=0

Vn+m,j+k

Vn,j

C (s, k;σ)
σk

(6.2.7)

for s = 0, . . . ,m.

From (6.2.6) and (6.2.7) one can also deduce other explicit forms for conditional dis-
tributions of interests. For example, the distribution of the number of observations in the
“second sample” which lie in new partition sets, given the number of groups present in
the “basic sample” and the number of new clusters K(n)

m , is of the form

P(L(n)
m = s|K(n)

m = k,Kn = j) =

(
m
s

)
(n− jσ)(m−s)↑1C (s, k;σ)
C (m, k;σ,−n+ jσ)

(6.2.8)

for s = k, . . . ,m, where C (n, k;σ, γ) is C (n, k;σ, γ) := (−1)n−kC(n, k;σ, γ) (see Appendix
A). It is worth noting that the previous expression does not depend on the particular
Gibbs prior it is derived from: interestingly, Gibbs-type random partitions share the same
conditional structures once K(n)

m and Kn are fixed. This finding is reminiscent of a result
in Gnedin and Pitman [74] where the authors show that Kn is sufficient for Gibbs-type
random partition of the first n integers meaning that the conditional distribution of the
partition on [n] given Kn does not depend on the weights Vn,k. On the other hand, the
conditional distribution of K(n)

m , given L
(n)
m and Kn, is of the form

P(K(n)
m = k|L(n)

m = s,Kn = j) =
Vn+m,j+kC (s, k;σ)/σk∑s
l=0 Vn+m,j+lC (s, l;σ)/σl

(6.2.9)

for any k ∈ [s]. Moreover, evaluating the probability in P1) for a Gibbs-type r.p.m. can be
obtained by marginalizing the conditional distribution in (6.2.5) with respect to L(n)

m and
S
L

(n)
m

. In particular, the Bayes estimator, under quadratic loss function, for the expected
number of new cluster, proposed by Lijoi et al. [123], is easily recovered from (6.2.5) as

E[K(n)
m |Kn = j] =

m∑
k=0

k
Vn+m,j+k

Vn,j

C (m, k;σ,−n+ jσ)
σk

(6.2.10)

Often iterest relies also in determining an estimator for the number of observations in the
“second sample” that will belong to new species. For instance, in genomic applications
this can be seen as a better measure of redundancy of a certain library. For this purpose,
one can resort to (6.2.5) and the corresponding Bayes estimator is given by

E[L(n)
m |Kn = j] =

m∑
s=0

s

(
m

s

)
(n− jσ)(n− jσ)(m−s)↑1

s∑
k=0

Vn+m,j+k

Vn,j

C (s, k;σ)
σk

(6.2.11)
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Then E[L(n)
m |Kn = j]/m is the expected proportion of genes in the new sample which do not

coincide with previously observed ones. The expression in (6.2.11) admints a noteworthy
simplification as outlined in the following proposition: indeed, the Bayes estimator is m
times the probability that the (n + 1)-th draw yields a new cluster, given that j distinct
clusters are generated by the first n observations.

Proposition 6.2.2. (cfr. Lijoi et al. [125]) For any j ∈ [n] and m ≥ 1 one has

E[L(n)
m |Kn = j] = m

Vn+1,j+1

Vn,j
(6.2.12)

Turning to the evaluation of the probability in P2) for a Gibbs-type r.p.m., a Bayesian
nonparametric estimator for the probability of discovering a new species at the (n+m+1)-
th draw, given the “basic sample” has been provided by Lijoi et al. [123]. If we suppose,
for the moment, that we have observed both the “basic sample” and the “second sample”,
the discovery probability is given by

P(K(n+m)
1 = 1|K(n)

m = k, L(n)
m = s, S

L
(n)
m

= s,Kn = j,NKn = n)

and by virtue of the highlited sufficiency of the number of distinct species, the discovery
probability is also equal to P(K(n+m)

1 = 1|K(n)
m = k,Kn = j). However, our estimate is

obtained without observing the outcome of the “second sample” and, hence, we have to
estimate the random probability

D(n,j)
m := P(K(n+m)

1 = 1|K(n)
m ,Kn = j) (6.2.13)

where the randomness in the above expression is due to the randomness of K(n)
m . Baysian

inference on (6.2.13) is based on the posterior distribution provided in Corollary (6.2.1).
Thus, the Bayesian estimator of (6.2.13), with respect to a quadratic loss function, is given
by its expected value with respect to the posterior distribution of the number of species.
This represents a Bayesian counterpart to the celebrated Good-Toulmin estimator. In
other word we provide a Bayesian nonparametric estimator for

Un+m =
∑
i≥1

pi1{0}(Ni,n+m)

where Ni,n+m represents the number of population units from the i-th species in the
“enlarged sample” of size n+m. In particular, we have the following proposition.

Proposition 6.2.3. (cfr. Lijoi et al. [123]) Suppose that Π = Πn, n ≥ 1 is a Gibbs-type
random partition with weights Vn,k and parameter [0, 1). Then the Bayes estimate, under
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squared loss function, of the probability of observing a new species at the (n + m + 1)-th
draw, conditional on the “basic sample” with j distinct species, is given by

D̂(n,j)
m =

m∑
k=0

Vn+m+1,j+k+1

Vn,j

C (m, k;σ,−n+ jσ)
σk

(6.2.14)

All the quantities described up to now, depend on the analysis of the conditional
structure of a Gibbs-type random partition. Investigation of the conditional structure for
the sequence of blocks {Kn, n ≥ 1} is pursued in Gnedin and Pitman [74] where the
authors do consider the conditional distribution of the number of groups in the partition
of [n], given the number of blocks in which [n+m] is partitioned.

Example 6.2.1. The Dirichlet process is a Gibbs-type r.p.m. with σ = 0. In particular,
let α be a non-atomic measure on (X,X ) such that θ := α(X) > 0 and let X1, . . . , Xn be
a sample of size n from an exchangeable {Xn, n ≥ 1} governed by a Dirichlet process. The
EPPF induced by the sample X1, . . . , Xn is known to be of the form (6.1.3) and the prior
distribution of the number of distinct species within a sample of size n, due to Ewens [43]
and Antoniak [2], is obtained by letting σ → 0 in (6.2.4), which yields

P(Kn = k) =
θk

(θ)n↑1
|s(n, k)| (6.2.15)

where |s(n, k)| := limσ→0 C (n, k, σ)/σk stands for the signless or absolute Stirling number
of the first kind (see Appendix A). Moreover, the posterior distribution of the number of
distinct species to be observed in the additional sample becomes

P(K(n)
m = j|Kn = j) =

(θ)k(θ)n↑1
(θ)(n+m)↑1

m∑
l=j

(
m

l

)
|s(l, k)|(n)(m−l)↑1 (6.2.16)

for any k = 0, 1, . . . ,m. Finally, the Bayesian estimator of the discovery probability reduces
to

D̂(n,j)
m =

θ

(θ + n)(m+1)↑1

m∑
k=0

θk
m∑
l=k

(
m

l

)
|s(l, k)|(n)(m−l)↑1. (6.2.17)

Interestingly (6.2.16) and (6.2.15) solely depend on the sample size: prediction does not
depend on Kn and NKn and so all this information has to be summarized by the parameter
a. This, which is a characterizing property of the Dirichlet process (see Zabell [198]),
represents a severe limitation for predictive purposes.

We are going to consider an important quantity which describes the partition struc-
ture of observations generating new groups in a further sampling procedure, conditional
on the partition generated by the first n observations. In particular, there is a sort of
reproducibility of the Gibbs structure as established by the following proposition.
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Proposition 6.2.4. (cfr. Lijoi et al. [125]) Let Π = {Πn, n ≥ 1} be a Gibbs-type ex-
changeable random partition whose EPPF is characterized by the set of weights {Vn,k :
k = 1, . . . , n;n ≥ 1} and by the parameter σ ∈ (0, 1). Then

P(K(n)
m = k, S

L
(n)
m

= s|L(n)
m = s,Kn = j,NKn = n) (6.2.18)

=
Vn+m,j+k∑s

i=0 Vn+m,j+iC (s, i;σ)/σi

k∏
i=1

(1− σ)(si−1)↑1

for any s ∈ [m], k ∈ [s], j ∈ [n], (n1, . . . , nj) ∈ Dj,n and (s1, . . . , sk) ∈ Dk,s. Consequently
the partition of the observations which belong to the new partition sets is, conditional on the
“basic sample” of size n, a finite Gibbs-type random partition with weights {Vn,k(m,n, j) :
s = 1, . . . ,m; k = 1, . . . , s} defined by

Vs,k(m,n, j) =
Vn+m,j+k∑s

i=0 Vn+m,j+iC (s, i;σ)/σi
(6.2.19)

and with parameter σ ∈ [0, 1).

Note from (6.2.18), again, that

P(K(n)
m = k, S

L
(n)
m

= s|L(n)
m = s,Kn = j,NKn = n)

= P(K(n)
m = k, S

L
(n)
m

= s|L(n)
m = s,Kn = j)

The finiteness of the random partition described by (6.2.18) is obvious, since it takes values
on the space of all partitions of [s], with 1 ≤ s ≤ m. Moreover, the particular structure
featured by the conditional distribution in (6.2.18) motivates the following definition.

Definition 6.2.2. (cfr. Lijoi et al. [125]) The conditional probability distribution

p̃
(s)
k (s1, . . . , sk;m,n, j) := P(K(n)

m = k, S
L

(n)
m

= s|L(n)
m = s,Kn = j) (6.2.20)

with 1 ≤ s ≤ m and 1 ≤ k ≤ s, is termed conditional EPPF.

Hence, the probability distribution in (6.2.18) is a conditional EPPF giving rise to a
finite Gibbs-type random partition. Even if the structure of p̃(s)

k (s1, . . . , sk;m,n, j) is quite
general, one might wonder whether it is possible to provide more information about its
Vs,k(m,n, j) weights in some particular cases. For example, it would be interesting to as-
certain when Vs,k(m,n, j) does not depend on m and n, so that p̃(s)

k (s1, . . . , sk;m,n, j) =
p̃

(s)
k (s1, . . . , sk; j), which means that the conditional EPPF is that corresponding to an

infinite Gibbs partition.
Having the conditional EPPF p̃

(s)
k at hand, one can compute some other interesting
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conditional distributions in a straightforward way. For example, if one combines the ex-
pression for p̃(s)

k with Corollary 6.2.1 it is immediate to check that

P(S
L

(n)
m

= s|K(n)
m = k, L(n)

m = s,Kn = j) =
σk

C (s, k;σ)

k∏
i=1

(1− σ)(si−1)↑1

in an expression for the conditional distribution of detecting a particular configuration
(s1, . . . , sk) for the observations belonging to the new partition sets, given the number of
new sets, the number of observations falling into these sets and the “basic sample”.

All the sampling formulae we have deduced so far have important applications in
Bayesian nonparametrics and in population genetics. In Bayesian nonparametric, random
discrete priors are commonly employed in order to define a clustering structure either at the
level of the observations or at the level of a latent variables in a complex hierarchical model.
In particular, any EPPF corresponds to some random discrete prior and it represents,
together with all the expressions for the conditional distributions we have obtained, a useful
tool for specifying prior opinions on the clustering of the data. In population genetics, the
concept of conditional EPPF can be seen as follows. Given a sample of size n containing j
distinct species with absolute frequencies n1, . . . , nj , a new sample of size m is to be drawn.
Given that s of the m observations contribute to generating newly observed species, i.e.
they belong to new distinct clusters, one might be interested in evaluating the probability
that the s observations are grouped into k clusters with respective frequencies s1, . . . , sk.
The answer of such a question is provided by a conditional EPPF. The other distributions,
discussed previously, provided a wide range of sampling formulae which answer similar type
of problems. In the following subsection we focus attention on some noteworthy particular
cases of Gibbs-type r.p.m.s, namely the two parameter Poisson-Dirichlet process and the
normalized generalized Gamma process.

6.2.1 The two parameter Poisson-Dirichlet process

We start this section by introducing the two parameter Poisson-Dirichlet process (see Pit-
man [149] and Pitman and Yor [154]). Among the various possible definitions, a simple and
intuitive one follows from the so-called stick-breaking construction. For a pair of parame-
ters (σ, θ) such that σ ∈ (0, 1) and θ > −σ, let {Vk, k ≥ 1} denote a sequence of indepen-
dent r.v.s, with Vk distributed according to a Beta distribution function with parameter
(θ + kσ, 1 − σ). Define the stick-breaking weights as p̃1 = V1, p̃j = Vj

∏
1≤i≤j−1(1 − p̃i)

and suppose {Yn, n ≥ 1} is a sequence of i.i.d. r.v.s, which are independent of the p̃i’s and
whose common probability distribution α0 is non-atomic. If δa is the point mass at a, the
discrete r.p.m. P̃(σ,θ) =

∑
j≥1 p̃j δYj is a Poisson-Dirichlet process with parameter (σ, θ).

See Pitman [157] for a detailed account on general theoretical aspects and, e.g., Ishwaran
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and James [90], Navarrete et al. [144] , Jara et al. [102] for applications in Bayesian non-
parametrics.

As shown in Pitman [149], the EPPF induced by a sample X1, . . . , Xn from a Poisson-
Dirichlet process with parameter (σ, θ) is given by (6.2.1). Then, basing upon Proposition
(6.2.1), one has

P(K(n)
m = k, L(n)

m = s, S
L

(n)
m

= s|Kn = j) (6.2.21)

=
∏k−1
i=0 (θ + jσ + iσ)

(θ + n)m↑1

(
m

s

)
(n− jσ)(m−s)↑1

k∏
i=1

(1− σ)(si−1)↑1

and it is possible to derive explicit expressions for all the sampling formulae set forth. In
particular, the evaluation of the probability in P1) for the Poisson-Dirichlet process with
parameter (σ, θ), can be obtained by marginalizing the conditional distribution in (6.2.21)
with respect to L(n)

m and S
L

(n)
m

. Here we provide an alternative derivation of (6.2.22).

Proposition 6.2.5. Under the Poisson-Dirichlet process with parameter (σ, θ), one has

P(K(n)
m = k|Kn = j) =

(θ + 1)(n−1)↑1

(θ + 1)(n+m−1)↑1

∏j+k−1
i=j (θ + iσ)

σk
C (m, k;σ,−n+ jσ) (6.2.22)

Proof. An important result proved in Pitman [151] concerns the representation of the
posterior distribution of P̃σ,θ, given a sample X1, . . . , Xn of data governed by P̃(σ,θ). Indeed,
if the observations Xi are, conditional on P̃(σ,θ), i.i.d. from P̃(σ,θ) and the sample X1, . . . , Xn

contains j ≤ n distinct values X∗1 , . . . , X
∗
j , then

P̃σ,θ|X1, . . . , Xn
d=

j∑
i=1

wiδX∗i + wj+1P̃σ,θ+jσ (6.2.23)

where (w1, . . . , wj) is distributed according to a j-variate Dirichlet distribution with pa-
rameters (n1 − σ, . . . , nj − σ, θ + jσ), ni = ]{r : Xr = X∗i } is the frequency of X∗i in
the sample and wj+1 = 1 −

∑
1≤i≤j wi. In order to derive (6.2.22), we will make use of

the posterior representation given in (6.2.23), and to the distributional properties of Ki,
for any i. Indeed, from (6.2.23) one notes that, given w a r.v. distributed according to
a Beta distribution function with parameter (θ + jσ, n − jσ), an observation Xn+i, with
i = 1, . . . ,m, does not coincide with any of the Kn = j distinct species observed in the
“basic sample” with probability w. Consequently

P(K(n)
m = k|Kn = j)

=
Γ(θ + n)

Γ(θ + jσ)Γ(n− jσ)

∫ 1

0
P(K(n)

m = k|Kn = j, w)wθ+jσ−1(1− w)n−jσ−1dw
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In order to have K(n)
m = k, at least k of the m data Xn+1, . . . , Xn+m must be allocated to

the k new distinct species not observed among the Kn = j species of the “basic sample”.
Hence we have

P(K(n)
m = k|Kn = j, w) =

m∑
i=k

(
m

i

)
wi(1− w)m−iP(Ki = k)

where it is to be noted that Ki is, now, the number of distinct species among the i

observations generated by a Poisson-Dirichlet process with parameter (σ, θ + jσ). Such a
probability distribution has been derived in Pitman [155] (see also Pitman, [157]) and in
this case yields

P(Ki = k) =
∏k−1
l=1 (θ + jσ + lσ)

σk (θ + jσ + 1)(i−1)↑1
C (i, k;σ) i = k, . . . ,m

Summing up the previous considerations we obtain (6.2.22) by noting that

P(K(n)
m = k|Kn = j) =

(θ/σ + j)k↑1
(θ + n)m↑1

m∑
i=k

(
m

i

)
C (i, k;σ)(n− jσ)i↑1

=
(θ/σ + j)k↑1
(θ + n)m↑1

C (m, k;σ,−n+ jσ)

where the second equality follows from (2.56) in Charalambides [17].

Based on (6.2.22), the estimators of interest can be derived. The most significant
one is the expected number of new species Ê(n,j)

m := E[K(n)
m |Kn = j] which represents a

Bayesian nonparametric analog of the Good-Toulmin estimator (see Good and Toulmin
[76]). Moreover, evaluating the probability in P2) interpreted as the probability that the
(n+m+ 1)-th observation will yield a new species, without observing the m intermediate
records, is given by

D̂(n,j)
m =

(θ + 1)(n−1)↑1

(θ + 1)(n+m)↑1

m∑
k=0

∏j+k
i=j (θ + iσ)

σk
C (m, k;σ,−n+ jσ). (6.2.24)

Finally, we consider the sample coverage which is the proportion of species represented in
a “basic sample” of size n. In particular, for the Poisson-Dirichlet process with parameter
(σ, θ), the sample coverage is given by

Ĉ
(n,j)
1 = 1− θ + jσ

θ + n
.

which represents an alternative to the frequentist Turing estimator (see Good, [75]). Hence,
the estimated sample coverage after n+m draws is given by Ĉ(n,j)

m = 1− D̂(n,j)
m . The ad-

vantage of the formulae yielding Ê
(n,j)
m and D̂

(n,j)
m is that they are explicit and can be
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exactly evaluated. There are, however, situations of practical interest where the size of the
additional sample of interest is very large and the computational burden for evaluating
(6.2.22) and (6.2.24) becomes heavy. This happens, for instance, in genomic applications
where one has to deal with relevant portions of cDNA libraries which typically consist of
millions of genes. Our first aim is the achievement of a considerable simplification of the
two above mentioned estimators. Moreover, since (6.2.22) is still required for determining
the corresponding highest posterior density (HPD) intervals, we will study the asymptotics
of K(n)

m , given Kn, as m → +∞: this allows one to use the distribution of the limiting
random quantity in order to approximate the HPD intervals.

The first important result concerns the moments of K(n)
m , given Kn, which will be ex-

pressed in terms of non-central Stirling numbers of the second kind S(n, k; r) (see Appendix
A). Such moments allow to derive simplified expressions for the estimators of interest.

Proposition 6.2.6. Under the Poisson-Dirichlet process with parameter (σ, θ), one has

E[(K(n)
m )r|Kn = j] =

r∑
ν=0

(−1)r−ν
(
j +

θ

σ

)
ν↑1

S

(
r, ν;

θ

σ
+ j

)
(θ + n+ νσ)m↑1

(θ + n)m↑1
(6.2.25)

In particular, a Bayesian nonparametric estimator of K(n)
m coincides with

Ê(n,j)
m =

(
j +

θ

σ

)(
(θ + n+ σ)m↑1

(θ + n)m↑1
− 1
)
, (6.2.26)

the discovery probability is equal to

D̂(n,j)
m =

θ + jσ

θ + n

(θ + n+ σ)m↑1
(θ + n+ 1)m↑1

(6.2.27)

and the sample coverage after n+m draws is given by

Ĉ(n,j)
m = 1− θ + jσ

θ + n

(θ + n+ σ)m↑1
(θ + n+ 1)m↑1

. (6.2.28)

Proof. Indeed, one has

E[(K(n)
m )r|Kn = j, w] =

m∑
i=0

(
m

i

)
wi(1− w)m−iE[Kr

i ]

where the unconditional moment E[Kr
i ] is evaluated with respect to the P̃(σ,θ+jσ) prior.

Such an expression is already available from Pitman [151] and Yamato and Sibuya [189]
and it is given by

E[Kr
i ] =

r∑
ν=0

(−1)r−ν
(

1 +
θ + jσ

σ

)
ν↑1

S

(
r, ν;

θ + jσ

σ

)
(θ + jσ + νσ + 1)(i−1)↑1

(θ + 1)(i−1)↑1
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Hence, one has

E[(K(n)
m )r|Kn = j]

=
Γ(θ + n)

Γ(θ + jσ)Γ(n− jσ)

∫ 1

0
wθ+jσ−1(1− w)n−jσ−1E[(K(n)

m )r|Kn = j, w]dw

=
Γ(θ + n)

Γ(θ + jσ)Γ(n− jσ)

r∑
ν=0

(−1)r−ν
(

1 +
θ + jσ

σ

)
ν↑1

S

(
r, ν;

θ + jσ

σ

)

×
m∑
i=0

(
m

i

)
(θ + jσ + νσ + 1)i−1

(θ + 1)(i−1)↑1

∫ 1

0
wθ+jσ+i−1(1− w)n−jσ+m−i−1dw

=
1

(θ + n)m↑1

r∑
ν=0

(−1)r−ν
(

1 +
θ + jσ

σ

)
ν↑1

S

(
r, ν;

θ + jσ

σ

)
θ + jσ

θ + jσ + νσ

×
m∑
i=0

(
m

i

)
(θ + jσ + νσ)i↑1(n− jσ)(m−i)↑1

=
1

(θ + n)m↑1

r∑
ν=0

(−1)r−ν
(
θ

σ
+ j

)
ν↑1

S

(
r, ν;

θ + jσ

σ

)
(θ + n+ νσ)m↑1

where the last equality follows by an application of the Chu-Vandermonde formula. The
expression for the discovery probability in (6.2.27) is obtained by inserting (6.2.26) into
Equation 9 of Lijoi et al. [121] and some simple algebra.

These formulae greatly simplify those employed in Lijoi et al. [123] and can be evaluated
for any choice of n and m. Note also that the estimator in (6.2.26) admits an interesting
probabilistic interpretation. Indeed, one has that

Ê(n,j)
m = P(Xn+1 = new|Kn = j)Eσ,θ+n[Km]

where Eσ,θ+n[Km] stands for the unconditional expected number of distinct species, among
m observations, with respect to the probability distribution of a Poisson-Dirichlet process
with parameter (σ, θ + n). Moments of any order of the unconditional distribution, i.e.
E[Kr

n], have been determined by Pitman [151] and Yamato and Sibuya [189] and are
recovered from (6.2.25) by setting n = j = 0.

The formulae outlined in Proposition 6.2.6 provide point estimators for quantities
of inteest in species sampling problems. Besides them, one would also like to determine
HPD intervals since they provide a measure of uncertainty related to the point estimates.
However, this can be by no means an easy task, especially for large values of m. In order
to overcome this drawback, we analyze the asymptotic behaviour of K(n)

m , for fixed n and
as m → +∞, and use the appropriate quantiles of the limiting r.v. to obtain an HPD
interval. Results of this type for the unconditional distribution are already known and
have been determined by Pitman [152] and Pitman [155]. See also Pitman [157]. In order
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to recall Pitman’s result, let fσ be the density function of a positive σ-stable r.v. and Yq

be, for any q ≥ 0, a positive r.v. with density function

fYq(y) =
Γ(qσ + 1)
σΓ(q + 1)

yq−1−1/σ fσ(y−1/σ). (6.2.29)

One, then, has that Kn/n
σ → Yθ/σ almost surely, as n → ∞. As we shall now see,

conditioning on the outcome of a “basic sample” leads to a different limiting result.

Proposition 6.2.7. Under the Poisson-Dirichlet process with parameter (σ, θ), condi-
tional on Kn = j one has

K
(n)
m

mσ
→ Zn,j a.s. (6.2.30)

and in the p-th mean, for any p > 0, where Zn,j
d= Bj+θ/σ, n/σ−j Y(θ+n)/σ, Ba,b is a r.v.

distributed according to a Beta distribution function with parameter (a, b) and the r.v.s
Bj+θ/σ, n/σ−j and Y(θ+n)/σ are independent. Moreover,

E [(Zn,j)r] =
(
j +

θ

σ

)
r↑1

Γ(θ + n)
Γ(θ + n+ rσ)

(6.2.31)

Proof. The proof strategy is as follows: we first adopt a technique similar to the one
suggested in Theorem 3.8 in Pitman [157] for the unconditional case in order to establish
that K(n)

m /mσ converges a.s. and in the p-th mean for any p > 0. Then, we determine
the moments of the limiting r.v. and show that the limiting r.v. is characterized by its
moments. Let us start by computing the likelihood ratio

M
(n)
σ,θ,m :=

dP(n)
σ,θ

dP(n)
σ,0

∣∣∣∣
F

(n)
m

=
q

(n)
σ,θ (K(n)

m )

q
(n)
σ,0 (K(n)

m )

where F
(n)
m = σ(Xn+1, . . . , Xn+m), P(n)

σ,θ is the conditional probability distribution of a
Poisson-Dirichlet process with parameter (σ, θ) given Kn and, by virtue Proposition 1 in
Lijoi, Prünster and Walker [125], q(n)

σ,θ (k) = σKn(θ/σ + Kn)k↑1/(θ + n)m for any integer

k ≥ 1 and q
(n)
σ,θ (0) := 1/(θ + n)m↑1. Hence {(M (n)

σ,θ,m,F
(n)
m ),m ≥ 1} is a P(n)

σ,0-martingale.

By a martingale convergence theorem (see Billingsley [8]), M (n)
σ,θ,m has a P(n)

σ,0 almost sure

limit, say M (n)
σ,θ , as m→ +∞. Convergence holds in the p-th mean as well, for any p > 0.

One clearly has that E(n)
σ,0 [M (n)

σ,θ ] = 1, where E(n)
σ,0 denotes the expected value with respect

to P(n)
σ,0 . It can be easily seen that

M
(n)
σ,θ,m ∼

Γ(θ + n)Γ(Kn)
Γ(n)Γ(θ/σ +Kn)

(
K

(n)
m

mσ

)θ/σ
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as m→∞. Hence (K(n)
m /mσ)θ/σ converges P(n)

σ,0-a.s. to a r.v., say Zn,j such that

E(n)
σ,0 [Zθ/σn,j ] =

Γ(n)Γ(θ/σ +Kn)
Γ(θ + n)Γ(Kn)

.

In order to identify the distribution of the limiting r.v. Zn,j with respect to the P(n)
σ,θ , we

consider the asymptotic behaviour of E[(K(n)
m )r|Kn = j] as m → +∞, for any r ≥ 1.

Letting m→ +∞ in (6.2.25) of Proposition 6.2.6, use the Stirling formula to obtain

1
mrσ

E[(K(n)
m )r|Kn]→

(
Kn +

θ

σ

)
r↑1

Γ(θ + n)
Γ(θ + n+ rσ)

=: µ(n)
r . (6.2.32)

Such a moment sequence clearly arises by taking Zn,j
d= Bj+θ/σ, n/σ−j Y(θ+n)/σ, with the r.v.

Bj+θ/σ,n/σ−j is independent from the r.v. Y(θ+n)/σ, which has density (6.2.29). Hence, we
are left with showing that the distribution of Zn,j is uniquely characterized by the moment
sequence {µ(n)

r , r ≥ 1}. In order to establish this, one can evaluate the characteristic
function of Zn,j which, at any t ∈ R, coincides with

Φ(t) =
Γ(θ + n/σ)

Γ(Kn + θ/σ)Γ(n/σ −Kn)
Γ(θ + n+ 1)

Γ(θ + n/σ + 1)

×
∫ +∞

0
eitz zKn+θ/σ−1

∫ +∞

z
w(w − z)n/σ−Kn−1 gσ(w)dwdz

=
σ Γ(θ + n)

Γ(Kn + θ/σ)Γ(n/σ −Kn)

×
∫ +∞

0
w gσ(w)

∫ w

0
eitz zKn+θ/σ−1(w − z)n/σ−Kn−1dzdw

=
Γ(θ + n+ 1)

Γ(θ + n/σ + 1)

∑
r≥0

(it)r

r!
(Kn + θ/σ)r↑1
(θ + n/σ)r↑1

∫ +∞

0
wθ+n/σ+rgσ(w)dw

=
∑
r≥0

(it)r

r!
(Kn + θ/σ)r↑1
(θ + n/σ)r↑1

Γ(θ + n+ 1)
Γ(θ + n/σ + 1)

Γ(θ + n/σ + r + 1)
Γ(θ + n+ 1 + rσ)

=
∑
r≥0

(it)r

r!
µ(n)
r

and the conclusion follows.

It is worth stressing that the limiting r.v. in the conditional case is the same as in
the unconditional case but with updated parameters and a rescaling induced by a r.v.
distributed according to a Beta distribution function. The density of Zn,j in (6.2.30) can
be formally represented as

fZn,j (z) =
Γ(θ + n)

Γ(θ/σ + j)Γ(n/σ − j)
zθ/σ+j−1

∫ +∞

z
v−1/σ(v − z)n/σ−j−1fσ(v−1/σ)dv.
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When σ = 1/2, the density f1/2 is known explicitly and the previous expression can be
simplified to

fZn,j (z) =
Γ(θ + n)4n+θ−1 zθ+k/2−1

π1/2Γ(k + 2θ)Γ(2n− k)

2n−k−1∑
j=0

(
2n− k − 1

j

)
(−z)j/2 Γ

(
n− k − 1 + j

2
; z
)
.

Nonetheless, even in the latter case one cannot easily determine the quantiles of Zn,j we
need to use in order to determine HPD intervals. Hence, we resort to a simulation algorithm
for generating values of Zn,j and use the output to evaluate quantiles. The demanding part
of this simulation is drawing samples from the probability distribution of Yq. Note that
the sampling strategy we are going to outline is also useful in the unconditional case,
where the same tractability issue in deriving properties of Yq is to be faced. The basic idea
consists in setting Wq = Y

−1/σ
q so that Wq has density function given by

fWq(w) =
σΓ(qσ)

Γ(q)
w−qσfσ(w) =

σ

Γ(q)
fσ(w)

∫ +∞

0
uqσ−1 e−uwdu

Via augmentation, one then has

f(Uq ,Wq)(u,w) =
σ

Γ(q)
fσ(w) uqσ−1 e−uw = fUq(u)fσ(w|u)

where f(u) is the density function of a r.v. Uq such that Uσq is distributed according to a
Gamma distribution function with parameter (q, 1) and

fσ(w|u) = fσ(w) e−uw+uσ .

This means that, conditional on Uq, Wq is a positive tempered-stable r.v. according to the
terminology adopted in Rosinski [169]. In order to draw samples from a tempered stable
r.v., a convenient strategy is to resort to the series representation derived in Rosinski [169],
which, in our case, yields

Wq|Uq
d=
∞∑
i=1

min{(aiΓ(1− σ))−1/σ , ei v
1/σ
i } (6.2.33)

where {ei, i ≥ 1} is a sequence of i.i.d. r.v.s such that ei is distributed according to
an Exponential distribution function with parameter Uq, {vi, i ≥ 1} is a sequence of
i.i.d. r.v.s such that vi is distributed according to a Uniform distribution function on
(0, 1) and a1 > a2 > · · · are the arrival times of a Poisson process with unit intensity.
Other possibilities for simulating from a tempered stable r.v. are the inverse Lévy measure
method as described in Ferguson and Klass [64] and a compound Poisson approximation
scheme proposed in Cont and Tankov [20].

Summarizing the above considerations, an algorithm for simulating from the limiting
r.v. Zn,j

d= Bj+θ/σ,n/σ−j Y(θ+n)/σ is as follows:
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1) Generate B from a Beta distribution with parameter (j + θ/σ, n/σ − j);

2) in order to sample from Y(θ+n)/σ:

2.a) generate X from a Gamma distribution with parameter ((θ + n)/σ, 1) and set
U = X1/σ;

2.b) for a given truncation N and U sampled in step 2.a, generate the sequences
{ei, i ≥ 1} and {vi, i ≥ 1} and take ai =

∑
1≤j≤i ξj , for i = 1, . . . , N ;

2.c) compute W according to (6.2.33) and set Y = W−σ.

3) Take Z = BY .

Note that, in order to establish whether a chosen truncation threshold N for the series
in step 2.b) is large enough, one can compare the sample moments with the simple exact
moments of Zn,j given in (6.2.31).

We conclude the subsection devoted to the two parameter Poisson-Dirichlet process
by showing some results for the factorial moments of the distribution of Kn and the
distribution of K(n)

m |Kn. In particular, the results for the factorial moments of Kn were
provided by Yamato and Sibuya [189]. We extend these results to the distribution of
K

(n)
m |Kn.

Proposition 6.2.8. (cfr. Yamato and Sibuya [189]) Under the Poisson-Dirichlet process
with parameter (σ, θ), the r-th descending factorial moment of Kn is

E[(Kn)r↓1] =
(
θ

σ

)
r↑1

r∑
j=0

(−1)r−j
(
r

j

)
(θ + jσ)n↑1

θn↑1

Corollary 6.2.2. (cfr. Yamato and Sibuya [189]) Under the Poisson-Dirichlet process
with parameter (σ, θ), the r-th moment of Kn is

E[Kr
n] =

r∑
j=0

(−1)r−j
(

1 +
θ

σ

)
R

(
r, j,

θ

σ

)
(θ + jσ + 1)(n−1)↑1

(θ + 1)(n−1)↑1

where R(r, j, θ/σ) is the unique function satisfying
r∑
j=0

(y)j↓1R
(
r, j,

θ

σ

)
=
(
y +

θ

σ

)r
for any y.

Proposition 6.2.9. (cfr. Yamato and Sibuya [189]) Under the Poisson-Dirichlet process
with parameter (σ, θ), the r-th ascending factorial moment of Kn is

E[(Kn)r↑1] =
r∑
j=0

(−1)r−j
(
r

j

)(
θ

α

)
j↑1

(
θ

α

)
(r−j)↑1

(θ + jα)n↑1
θn↑1
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Before extending the results in Yamato and Sibuya [189] to the distribution of K(n)
m |Kn,

let us consider the following lemma.

Lemma 6.2.1. For any n ≥ 0, k > 0 the following identity holds true

C(n+ 1, k;σ, r) = (σk + r − n)C(n, k;σ, r) + σC(n, k − 1;σ, r) (6.2.34)

Proof. By the Chu-Vandermonde equation we can express the non-central generalized
factorial coefficient in terms of generalized factorial coefficient

C(n+ 1, k;σ, r) =
n+1∑
s=k

(
n+ 1
s

)
C(s, k;σ)(r)(n+1−s)↓1

and using the following important recurrence in the Pascal triangle (see Comtet [19])(
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
k, n ≥ 1

we obtain
n+1∑
s=k

(
n+ 1
s

)
C(s, k;σ)(r)(n+1−s)↓1 (6.2.35)

=
n+1∑
s=k

(
n

s− 1

)
C(s, k;σ)(r)(n+1−s)↓1 +

n+1∑
s=k

(
n

s

)
C(s, k;σ)(r)(n+1−s)↓1

As regard the first factor in the sum in (6.2.35) we have

n+1∑
s=k

(
n

s− 1

)
C(s, k;σ)(r)(n+1−s)↓1

=
n∑

s=k−1

(
n

s

)
C(s+ 1, k;σ)(r)(n−s)↓1

=
n∑

s=k−1

(
n

s

)
((σk − s)C(s, k;σ) + σC(s, k − 1;σ))(r)(n−s)↓1

= −
n∑
s=k

(
n

s

)
sC(s, k;σ)(r)(n−s)↓1 + σkC(n, k;σ, r) + σC(n, k − 1;σ, r)

As regard the second factor in the sum in (6.2.35) we have

n+1∑
s=k

(
n

s

)
C(s, k;σ)(r)(n+1−s)↓1 =

n∑
s=k

(−r − n+ s)
(
n

s

)
C(s, k;σ)(r)(n−s)↓1

= (−r − n)C(n, k;σ, r) +
n∑
s=k

s

(
n

s

)
C(s, k;σ)(r)(n−s)↓1



216 6. On Bayesian nonparametric inference in species sampling problems

Then, we have

C(n+ 1, k;σ, r) = σkC(n, k;σ, r) + σC(n, k − 1;σ, r) + (r − n)C(n, k;σ, r)

= (σk + r − n)C(n, k;σ, r) + σC(n, k − 1;σ, r)

Using Lemma 6.2.10, the following results extend to the distribution of K(n)
m |Kn Propo-

sition 6.2.8, Corollary 6.2.2 and Proposition 6.2.9, respectively. In particular, we provide
an alternative proof for (6.2.25).

Proposition 6.2.10. Under the Poisson-Dirichlet process with parameter (σ, θ), the r-th
descending factorial moment of K(n)

m |Kn = j is

E[(K(n)
m )r↓1|Kn = j] =

(
j +

θ

σ

)
r↑1

r∑
l=0

(−1)r−l
(
r

l

)
(θ + n+ lσ)m↑1

(θ + n)m↑1

Proof. Using the definition of r-th descending factorial moment of Km||Kn = j we have

E[(K(n)
m )r↓1|Kn = j] =

m+1∑
k=0

(k)r↓1
(θ + 1)(n−1)↑1

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m)↑1
C (m+ 1, k;σ,−n+ jσ)

and by using Lemma 6.2.9 we obtain

m+1∑
k=0

(k)r↓1
(θ + 1)(n−1)↑1(−1)(m+1−k)

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m)↑1
(6.2.36)

× ((σk − n+ jσ −m)C(m, k;σ,−n+ jσ) + σC(m, k − 1;σ,−n+ jσ))

As regard the first factor in (6.2.36) we have

m+1∑
k=0

(k)r↓1
(θ + 1)(n−1)↑1(−1)(m+1−k)

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m)↑1

× (σk − n+ jσ −m)C(m, k;σ,−n+ jσ)

= −
m+1∑
k=0

(k)r↓1
(θ + 1)(n−1)↑1

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m)↑1
(σk − n+ jσ −m)C (m, k;σ,−n+ jσ)

= −
m∑
k=0

(k)r↓1
(θ + 1)(n−1)↑1

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m)↑1
(σk − n+ jσ −m)C (m, k;σ,−n+ jσ)

= − 1
(θ +m+ n)

m∑
k=0

(k)r↓1
(θ + 1)(n−1)↑1

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m−1)↑1

× (σk − n+ jσ −m)C (m, k;σ,−n+ jσ)
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As regard the second factor in (6.2.36) we have

m+1∑
k=0

(k)r↓1
(θ + 1)(n−1)↑1(−1)(m+1−k)

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m)↑1
σC(m, k − 1;σ,−n+ jσ)

=
m+1∑
k=1

(k)r↓1
(θ + 1)(n−1)↑1

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m)↑1
σC (m, k − 1;σ,−n+ jσ)

=
m∑
k=0

(k + 1)r↓1
(θ + 1)(n−1)↑1

∏j+k
i=j (θ + iσ)

σk(θ + 1)(n+m)↑1
C (m, k;σ,−n+ jσ)

=
1

(θ + n+m)

m∑
k=0

(k + 1)r↓1(θ + (j + k)σ)

×
(θ + 1)(n−1)↑1

∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m−1)↑1
C (m, k;σ,−n+ jσ)

Then, we have

E[(K(n)
m )r↓1|Kn = j] =

1
(θ + n+m)

m∑
k=0

(θ + 1)(n−1)↑1
∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m−1)↑1

× (−(k)r↓1(σk − n+ jσ −m) + (k + 1)r↓1(θ + (j + k)σ))

=
1

(θ + n+m)

m∑
k=0

(θ + 1)(n−1)↑1
∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m−1)↑1

× (k)(r−1)↓1(−(k − r + 1)(σk − n+ jσ −m) + (k + 1)(θ + (j + k)σ))

=
1

(θ + n+m)

m∑
k=0

(θ + 1)(n−1)↑1
∏j+k−1
i=j (θ + iσ)

σk(θ + 1)(n+m−1)↑1

× (k)(r−1)↓1((k − r + 1)(m+ n+ rσ + θ) + r(σ(−1 + j + r) + θ))

In particular, we obtain the following recurrence relation for the r-th descending factorial
moment of K(n)

m |Kn = j

E[(K(n)
m+1)r↓1|Kn = j] (6.2.37)

= (1 +
rσ

(θ + n+m)
)E[(K(n)

m )r↓1|Kn = j] +
r(σ(−1 + j + r) + θ)

(θ + n+m)
E[(K(n)

m )(r−1)↓1|Kn = j]

Then, using the recurrence relation (6.2.37) the result follows by simple induction on m

and on r.

Corollary 6.2.3. Under the Poisson-Dirichlet process with parameter (σ, θ), the r-th mo-
ment of K(n)

m |Kn = j is

E[(K(n)
m )r|Kn = j] =

r∑
i=0

(−1)r−i
(
j +

θ

σ

)
i↑1
R

(
r, i,

θ

σ
+ j

)
(θ + n+ iσ)m↑1

(θ + n)m↑1
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where R(r, i, θ/σ + j) is the unique function satisfying

r∑
i=0

(y)j↓1R
(
r, i,

θ

σ
+ j

)
=
(
y +

θ

σ
+ j

)r
for any y.

Proof. Using the (r, l)-th Stirling number of the second kind S(r, l) we can write

E[(K(n)
m )r|Kn = j] =

r∑
l=0

S(r, l)E[(Km)l↓1|Kn = j]

and by Proposition 6.2.10 we have

E[(K(n)
m )r|Kn = j]

=
r∑
l=0

S(r, l)
(
j +

θ

σ

)
l↑1

l∑
i=0

(−1)l−i
(
l

i

)
(θ + n+ iσ)m↑1

(θ + n)m↑1

=
r∑
i=0

(
j +

θ

σ

)
i↑1

(−1)r−i
(θ + n+ iσ)m↑1

(θ + n)m↑1

r∑
l=i

(
l

i

)
S(r, l)

(
j + i+

θ

σ

)
l−i↑1

(−1)r+l

=
r∑
i=0

(−1)r−i
(
j +

θ

σ

)
i↑1
T

(
r, i,

θ

σ
+ j

)
(θ + n+ iσ)m↑1

(θ + n)m↑1

where

T

(
r, i,

θ

σ
+ j

)
=

r∑
l=i

(
l

i

)
S(r, l)

(
j + i+

θ

σ

)
l−i↑1

(−1)r+l

For any y

r∑
i=0

(y)i↓1T
(
r, i,

θ

σ
+ j

)
=

r∑
l=0

(
l∑

i=0

(
l

i

)
(y)i↓1

(
θ

σ
+ j + l − 1

)
(l−i)↓1

)
S(r, l)(−1)r+l

=
r∑
l=0

(
y +

θ

σ
+ j + l − 1

)
l↓1

(−1)lS(r, l)(−1)r

which is equal to
∑

0≤l≤r(−y − θ/σ − j)l↓1S(r, l)(−1)r = (−y − θ/σ − j)r(−1)r = (y +
θ/σ + j)r. Then, for any y

r∑
i=0

(y)i↓1T
(
r, i,

θ

σ
+ j

)
=
(
y +

θ

σ
+ j

)r
Then, T (r, i, θ/σ + j) corresponds to the function R(r, i, λ) with λ = θ/σ + j introduced
by Carlitz [14] (or non-central Stirling number of the second kind). The result follows by
substitution.
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Proposition 6.2.11. Under the Poisson-Dirichlet process with parameter (σ, θ), the r-th
ascending factorial moment of K(n)

m |Kn = j is

E[(Km)r↑1|Kn = j] =
r∑
i=0

(−1)r−i
(
j +

θ

σ

)
i↑1

(
r

i

)(
θ

σ
+ j

)
(r−i)↓1

(θ + n+ iσ)m↑1
(θ + n)m↑1

Proof. Using the (r, l)-th signless Stirling number of the first kind |s(r, l)| we can write

E[(Km)r↑1|Kn = j] =
r∑
l=0

|s(r, l)|E[(K(n)
m )l|Kn = j]

and by Corollary 6.2.3 we have

E[(Km)r↑1|Kn = j] =
r∑
l=0

|s(r, l)|
l∑

i=0

(−1)l−i
(
j +

θ

σ

)
i↑1
R

(
l, i,

θ

σ
+ j

)
(θ + n+ iσ)m↑1

(θ + n)m↑1

=
r∑
i=0

r∑
l=i

|s(r, l)|(−1)l−i
(
j +

θ

σ

)
i↑1
R

(
l, i,

θ

σ
+ j

)
(θ + n+ iσ)m↑1

(θ + n)m↑1

=
r∑
i=0

(−1)r−i
(
j +

θ

σ

)
i↑1
I

(
r, i,

θ

σ
+ j

)
(θ + n+ iσ)m↑1

(θ + n)m↑1

where

I

(
r, i,

θ

σ
+ j

)
=

r∑
l=i

s(r, l)R
(
l, i,

θ

σ
+ j

)
For any µ

r∑
i=0

I

(
r, i,

θ

σ
+ j

)
(µ)i↓1 =

r∑
l=0

(
l∑

i=0

R(l, i,
θ

σ
+ j)(µ)i↓1

)
s(r, l)

which is equal to
∑

0≤l≤r(θ/σ + j + µ)ls(r, l) = (θ/σ + j + µ)r↓1. Then, for any µ

r∑
i=0

I

(
r, i,

θ

σ
+ j

)
(µ)i↓1 =

(
θ

σ
+ j + µ

)
r↓1

Since then θ/σ + j 6= 0, then I(r, i, θ/σ + j) =
(
r
i

)
(θ/σ + j)(r−i)↓1.

6.2.2 The normalized generalized Gamma process

We start this section by introducing the normalized generalized Gamma process (see Pit-
man [156], James [96] and Lijoi et al. [120]). Consider a generalized Gamma CRM (see
Brix [13]) which is characterized by the Poisson intensity measure

ν(ds, dx) =
σ

Γ(1− σ)
s−1−σe−τsα(dx) (6.2.38)
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where σ ∈ (0, 1) and τ > 0. Let us denote this CRM by µ̃(σ,τ). Note that if τ = 0, then µ̃(σ,0)

coincides with the σ-stable CRM, whereas if σ → 0 the Gamma CRM is obtained. If α in
(6.2.38) is a non-atomic finite measure on (X,X ), we have 0 < µ̃(σ,τ)(X) < +∞ a.s. and
we define the normalized generalized Gamma process with parameter (σ, τ) as the NRMI
P̃(σ,τ)(·) := µ̃(σ,τ)(·)/µ̃(σ,τ)(X). See Pitman [156] for a discussion on its representation as
Poisson-Kingman model. The special case of σ = 1/2, corresponding to the normalized
inverse Gaussian process, has been recently examined in Lijoi et al [119] who also provided
an expression for the family of the finite dimensional distributions of P̃(σ,τ).

As shown in Lijoi et al. [120] (see also Pitman [156] and James [96]), the EPPF induced
by a sample X1, . . . , Xn from a normalized generalized Gamma process with parameter
(σ, τ) is given by (6.2.2) where β = τσ/σ. Then, basing upon Proposition (6.2.1), one has

P(K(n)
m = k, L(n)

m = s, S
L

(n)
m

= s|Kn = j) =
σk
∑n+m−1

i=1

(
n+m−1

i

)
(−1)iβi/σΓ(j + k − i/σ;β)

(n)m↑1
∑n−1

i=1

(
n−1
i

)
(−1)iβi/σΓ(j − i/σ;β)

(6.2.39)

×
(
m

s

)
(n− jσ)(m−s)↑1

k∏
i=1

(1− σ)(si−1)↑1

and it is possible to derive explicit expressions for all the sampling formulae set forth. In
particular, the evaluation of the probability in P1) for the normalized generalized Gamma
process with parameter (σ, τ), can be obtained by marginalizing the conditional distribu-
tion in (6.2.39) with respect to L(n)

m and S
L

(n)
m

P(K(n)
m = k|Kn = j) =

∑n+m−1
i=0

(
n+m−1

i

)
(−1)iβi/σΓ(k + j − i/σ;β)

(n)m↑1
∑n−1

i=0

(
n−1
i

)
(−1)iβi/σΓ(j − i/σ;β)

C (m, k;σ,−n+ jσ)

(6.2.40)
Based on (6.2.39), the estimators of interest can be derived. The most significant one is the
expected number of new species Ê(n,j)

m which represents a Bayesian nonparametric analog
of the Good-Toulmin estimator (see Good and Toulmin [76])

Ê(n,j)
m =

m∑
k=0

∑n+m−1
i=0

(
n+m−1

i

)
(−1)iβi/σΓ(k + j − i/σ;β)

(n)m↑1
∑n−1

i=0

(
n−1
i

)
(−1)iβi/σΓ(j − i/σ;β)

C (m, k;σ,−n+ jσ) (6.2.41)

Moreover, evaluating the probability in P2) interpreted as the probability that the (n+m+
1)-th observation will yield a new species, without observing the m intermediate records,
is given by

D̂(n,j)
m =

m∑
k=0

∑n+m
i=0

(
n+m
i

)
(−1)iβi/σΓ(k + j + 1− i/σ;β)

(n+ 1)m↑1
∑n−1

i=0

(
n−1
i

)
(−1)iβi/σΓ(j − i/σ;β)

C (m, k;σ,−n+ jσ) (6.2.42)

And in particular the estimated sample coverage after n + m draws is given by Ĉ
(n,j)
m =

1 − D̂
(n,j)
m . We conclude the subsection devoted to the normalized generalized Gamma
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process by showing some results for the factorial moments of the distribution of Kn and
the distribution of K(n)

m |Kn. In particular, using similar arguments to those used for the
two parameter Poisson-Dirichlet process and using the theory of Fox H-functions and
Meijer G-functions (see Appendix C), we show that is still possibile to obtain expression
for the factorial moments of the distribution of Kn and the distribution of K(n)

m |Kn = j

for the normalized generalized Gamma process.

Proposition 6.2.12. Under the normalized generalized Gamma process with parameter
(σ, τ), the r-th descending factorial moment of Kn is

E[(Kn)r↓1] =
eβ

σΓ(n)

r∑
j=0

(−1)r−j
(
r

j

)

×
n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σH3,0

2,3

[
β

∣∣∣∣∣ (1, 1), (σj − i, σ)
(0, 1), (r − i/σ, 1), (σj − i+ n, σ)

]
Proof. By the definition of r-th descending factorial moment of Kn we have

E[(Kn)r↓1] =
n∑
k=1

(k)r↓1
eβC (n, k;σ)

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ

(
k − i

σ
;β
)

and using the integral representation of Mellin-Barnes-type for the incomplete Gamma
function Γ(x, y) = 1/2πi

∮
L Γ(t+ x)Γ(t)/Γ(t+ 1)z−tdt we obtain

eβ

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

n∑
k=1

(k)r↓1C (n, k;σ)
1

2πi

∮
L

Γ(t+ k − i/σ)Γ(t)β−t

Γ(t+ 1)
dt

We now define Φ(r, n + 1) :=
∑

1≤k≤n+1(k)r↓1C (n + 1, k;σ)Γ (t+ k − i/σ) and using the
triangolar recurrence equation (A.3.14) for the non-central generalized factorial coefficient
with r = 0, i.e.

C(n+ 1, k; s) = (sk − n)C(n, k; s) + sC(n, k − 1; s)

we obtain

Φ(r, n+ 1)

=
n+1∑
k=1

(k)r↓1(−1)n+1−k((σk − n)C(n, k;σ) + σC(n, k − 1;σ))Γ
(
t+ k − i

σ

)

−
n∑
k=1

(k)r↓1(σk − n)C (n, k;σ)Γ
(
t+ k − i

σ

)

+
n+1∑
k=1

(k)r↓1σG (n, k − 1;σ)Γ
(
t+ k − i

σ

)
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= −
n∑
k=1

(k)r↓1(σk − n)C (n, k;σ)Γ
(
t+ k − i

σ

)

+
n∑
k=1

(k + 1)r↓1σC (n, k;σ)
(
t+ k − i

σ

)
Γ
(
t+ k − i

σ

)

=
n∑
k=1

(
−(k)r↓1(σk − n) + σ(k + 1)r↓1

(
t+ k − i

σ

))
C (n, k;σ)Γ

(
t+ k − i

σ

)

=
n∑
k=1

((k)(r−1)↓1(−i(1 + k) + (−r + 1 + k)n+ σt+ σk(r + t)))

× C (n, k;σ)Γ
(
t+ k − i

σ

)
=

n∑
k=1

(k)(r)↓1(−i+ n+ σ(r + t))C (n, k;σ)Γ
(
t+ k − i

σ

)

+
n∑
k=1

(k)(r−1)↓1(−ir + σt+ σ(r − 1)(r + t))C (n, k;σ)Γ
(
t+ k − i

σ

)

In particular, we obtain the following recurrence relation

Φ(r, n+ 1) = (−i+n+ σ(r+ t))Φ(r, n) + (−ir+ σt+ σ(r− 1)(r+ t))Φ(r− 1, n) (6.2.43)

Then, using the recurrence relation (6.2.39) the result follows by simple induction on n

and on r. In particular, we obtain

Φ(r, n+ 1) = Γ
(
r − i

σ
+ t

) r∑
j=0

(−1)r−j
(
r

j

)
(−i+ σ(j + t))(n+1)↑1

Then

E[(Kn)r↓1] =
eβ

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

× 1
2πi

∮
L

Γ(t)Γ(r − i/σ + t)β−t

Γ(t+ 1)

r∑
j=0

(−1)r−j
(
r

j

)
(−i+ σ(j + t))n↑1dt

=
eβ

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

r∑
j=0

(−1)r−j
(
r

j

)
× 1

2πi

∮
L

Γ(t)Γ(r − i/σ + t)Γ(−i+ σ(j + t) + n)
Γ(t+ 1)Γ(−i+ σ(j + t))

β−tdt

and the result follows by the definition of Fox-H function.
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Corollary 6.2.4. Under the normalized generalized Gamma process with parameter (σ, τ),
the r-th moment of Kn is

E[(Kn)r] =
eβ

Γ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

×
r∑
j=0

(−1)r−j
1

2πi

∮
L

Γ(t)Γ(1 + j − i/σ + t)Γ(−i+ n+ σ(j + t))
Γ(t+ 1)Γ(1− i+ σ(j + t))

β−tR

(
r, j, t− i

σ

)
dt

where R(r, j, t− i/j) is the unique function satisfying

r∑
j=0

(y)j↓1R
(
r, j, t− i

σ

)
=
(
y + t− i

σ

)r
for any y.

Proof. Using the (r, l)-th Stirling number of the second kind S(r, l) we can write

E[(Kn)r] =
r∑
l=0

S(r, l)E[(Km)l↓1]

and by Proposition 6.2.12 we have

E[(Kn)r] =
eβ

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

×
r∑
l=0

S(r, l)
l∑

j=0

(−1)l−j
(
l

j

)
1

2πi

∮
L

Γ(t)Γ(l − i/σ + t)Γ(−i+ σ(j + t) + n)
Γ(t+ 1)Γ(−i+ σ(j + t))

β−tdt

We focus on

r∑
l=0

S(r, l)Γ
(
l − i

σ
+ t

) l∑
j=0

(−1)l−j
(
l

j

)
(−i+ σ(j + t))(n)↑1

= Γ
(
t− i

σ

)
(σt− i)n↑1

r∑
l=0

S(r, l)
(σt− i)l↑σ
σl(σt− i)n↑1

l∑
j=0

(−1)l−j
(
l

j

)
(−i+ σ(j + t))n↑1

= Γ
(
t− i

σ

)
(σt− i)n↑1

r∑
l=0

S(r, l)
(
t− i

σ

)
l↑1

l∑
j=0

(−1)l−j
(
l

j

)
(−i+ σ(j + t))n↑1

(σt− i)n↑1

= Γ
(
t− i

σ

)
(σt− i)n↑1

r∑
j=0

(−1)r−j
(

1 + t− i

σ

)
j↑1

× T
(
r, j, t− i

σ

)
(1− i+ σ(j + t))(n−1)↑1

(1 + σt− i)(n−1)↑1
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where T (r, j, t− i/σ) =
∑

j≤l≤r (t− i/σ + j)(l−j)↑1 S(r, l)(−1)r+l
(
l
j

)
. For any y

r∑
j=0

(y)j↓1T
(
r, j, t− i

σ

)
=

r∑
l=0

 l∑
j=0

(
l

j

)
(y)j↓1

(
t− i

σ
+ l − 1

)
(l−j)↓1

S(r, l)(−1)r+l

=
r∑
l=0

(
y + t− i

σ
+ l − 1

)
l↓1

(−1)lS(r, l)(−1)r

=
r∑
l=0

(
−y − t+

i

σ

)
l↓1
S(r, l)(−1)r

=
(
−y − t+

i

σ

)r
(−1)r =

(
y + t− i

σ

)r

Then, we have

r∑
j=0

(y)j↓1T
(
r, j, t− i

σ

)
=
(
y + t− i

σ

)r

and T (r, j, t − i/σ) corresponds to the function R(r, j, λ) with λ = t − i/σ, introduced
by Carlitz [14] (or non-central Stirling number of the second kind). The result follows by
substitution.

Proposition 6.2.13. Under the normalized generalized Gamma process with parameter
(σ, τ), the r-th ascending factorial moment of Kn is

E[(Kn)r↑1] =
eβ

σΓ(n)

r∑
j=0

(−1)r−j
(
r

j

) n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

×H3,1
3,5

[
β

∣∣∣∣∣ (1, 1), (σj − i, σ), (1− i/σ, 1)
(0, 1), (j − i/σ, 1), (σj − i+ n, σ), (1 + i/σ − r + j, 1)

]

Proof. Using the (r, l)-th signless Stirling number of the first kind |s(r, l)| we can write

E[(Kn)r↑1] =
r∑
l=0

|s(r, l)|E[(Kn)l]
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and by Corollary 6.2.4 we have

E[(Kn)r↑1] =
eβ

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

r∑
l=0

|s(r, l)|
l∑

j=0

(−1)l−j

× 1
2πi

∮
L

Γ(t)Γ(1 + j − i/σ + t)Γ(−i+ n+ σ(j + t))
Γ(t+ 1)Γ(1− i+ σ(j + t))

β−tR

(
l, j, t− i

σ

)
dt

=
eβ

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

× 1
2πi

∮
L

Γ(t)β−t

Γ(t+ 1)

r∑
l=0

|s(r, l)|
l∑

j=0

(−1)l−jΓ
(

1 + j − i

σ
+ t

)

× (1− i+ σ(j + t))(n−1)↑1R

(
l, j, t− i

σ

)
dt

=
r∑
l=0

|s(r, l)|
l∑

j=0

(−1)l−jΓ
(

1 + j − i

σ
+ t

)

× (1− i+ σ(j + t))(n−1)↑1R

(
l, j, t− i

σ

)
= Γ

(
1− i

σ
+ t

)
(σt− i+ 1)(n−1)↑1

r∑
l=0

|s(r, l)|
l∑

j=0

(−1)l−j
(

1− i

σ
+ t

)
j↑1

×
(1− i+ σ(j + t))(n−1)↑1

(1− i+ σt)(n−1)↑1
R

(
l, j, t− i

σ

)
= Γ

(
1− i

σ
+ t

)
(σt− i+ 1)(n−1)↑1

×
r∑
j=0

(−1)r−j
(
t− i

σ

)
j↑1

I

(
r, j, t− i

σ

)
(σt− i+ jσ)n↑1

(σt− i)n↑1

where I (r, j, t− i/σ7) =
∑

j≤l≤r s(r, l)R
(
l, j, t− i

σ

)
. For any µ

r∑
j=0

I

(
r, j, t− i

σ

)
(µ)j↓1 =

r∑
l=0

 l∑
j=0

R

(
l, j, t− i

σ

)
(µ)j↓1

 s(r, l)

=
r∑
l=0

(
t− i

σ
+ µ

)l
s(r, l) =

(
t− i

σ
+ µ

)
r↓1

Then, for any µ
r∑
j=0

I

(
r, j, t− i

σ

)
(µ)j↓1 =

(
t− i

σ
+ µ

)
r↓1

Therefore, if t− i/σ 6= 0, then

I(r, j, t− i/σ) =
(
r

j

)
(t− i/σ)(r−j)↓1
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If t− i/σ = 0, I(r, j, t− i/σ) = 1 if j = r and I(r, j, t− i/σ) = 0 se j 6= r. Then, we have

E[(Kn)r↑1] =
eβ

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

r∑
j=0

(−1)r−j
(
r

j

)

× 1
2πi

∮
L

Γ(t)Γ(t− i/σ + j)(σt− i+ jσ)n↑1(t− i/σ)(r−j)↓1

Γ(t+ 1)
β−tdt

=
eβ

σΓ(n)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σ

r∑
j=0

(
r

j

)

× 1
2πi

∮
L

Γ(t)Γ(t− i/σ + j)(σt− i+ jσ)n↑1(−t+ i/σ)(r−j)↑1

Γ(t+ 1)
β−tdt

and the result follows by the definiton of Fox-H function.

Proposition 6.2.14. Under the normalized generalized Gamma process with parameter
(σ, τ), the r-th descending factorial moment of K(n)

m |Kn = j is

E[(K(n)
m )r↓1|Kn = j] =

(
Γ(n+m)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ

(
j − i

σ
;β
))−1

× Γ(n)
n+m−1∑
i=0

(
n+m− 1

i

)
(−1)iβi/σ

r∑
s=0

(−1)r−s
(
r

s

)

×H3,0
2,3

[
β

∣∣∣∣∣ (1, 1), (σj − i+ n, σ)
(0, 1), (r + j − i/σ, 1), (σj − i+ n+m,σ)

]

Proof. By the definition of r-th descending factorial moment of K(n)
m |Kn = j we have

E[(K(n)
m )r↓1|Kn = j]

=
m∑
k=0

(k)r↓1
Γ(n)

∑n+m−1
i=0

(
n+m−1

i

)
(−1)iβi/σΓ(k + j − i/σ;β)

Γ(n+m)
∑n−1

i=0

(
n−1
i

)
(−1)iβi/σΓ(j − i/σ;β)

C (m, k;σ,−n+ jσ)

and using the integral representation of Mellin-Barnes-type for the incomplete Gamma
function we obtain(

Γ(n+m)
n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ(j − i

σ
;β)

)−1

Γ(n)
n+m−1∑
i=0

(
n+m− 1

i

)
(−1)iβi/σ

×
m∑
k=0

(k)r↓1C (m, k;σ,−n+ jσ)
1

2πi

∮
L

Γ(t+ k + j − i/σ)Γ(t)β−t

Γ(t+ 1)
dt

We focus on Φ̃(r,m+1) :=
∑

0≤k≤m+1(k)r↓1C (m+1, k;σ,−n+jσ)Γ (t+ k + j − i/σ) and
using the triangolar recurrence equation for the non-central generalized factorial coefficient
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we obtain

Φ̃(r,m+ 1) = −
m∑
k=0

(k)r↓1(σk − n+ jσ −m)C (m, k;σ,−n+ jσ)Γ
(
t+ k + j − i

σ

)

+
m+1∑
k=0

(k)r↓1σC (n, k − 1;σ,−n+ jσ)Γ
(
t+ k + j − i

σ

)

= −
m∑
k=0

(k)r↓1(σk − n+ jσ −m)C (m, k;σ,−n+ jσ)Γ
(
t+ k + j − i

σ

)

+
m∑
k=0

(k + 1)r↓1σC (m, k;σ,−n+ jσ)
(
t+ k + j − i

σ

)
Γ
(
t+ k + j − i

σ

)

=
m∑
k=0

(−(k)r↓1(σk − n+ jσ −m) + σ(k + 1)r↓1

(
t+ k + j − i

σ

)
)

× C (m, k;σ,−n+ jσ)Γ
(
t+ k + j − i

σ

)
=

m∑
k=0

((k)(r)↓1(−i+m+ n+ σ(r + t))C (m, k;σ,−n+ jσ)Γ
(
t+ k + j − i

σ

)

+
m∑
k=0

((k)(r−1)↓1r(−i+ σ(−1 + j + r + t))

× C (m, k;σ,−n+ jσ)Γ
(
t+ k + j − i

σ

)

In particular, we obtain the following recurrence relation

Φ̃(r,m+1) = (−i+m+n+σ(r+t))Φ̃(r,m)+r(−i+σ(−1+j+r+t))Φ̃(r−1,m) (6.2.44)

Then, using recurrence relation (6.2.44) the result follows by induction on m and on r. In
particular, we have

Φ̃(r,m+ 1) = Γ
(
r + j − i

σ
+ t

) r∑
s=0

(−1)r−s
(
r

s

)
(−i+ n+ σ(s+ t))(m+1)↑1
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Then

E[(K(n)
m )r↓1|Kn = j] =

(
Γ(n+m)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ

(
j − i

σ
;β
))−1

× Γ(n)
n+m−1∑
i=0

(
n+m− 1

i

)
(−1)iβi/σ

×
r∑
s=0

(−1)r−s
(
r

s

)
1

2πi

∮
L

Γ (r + j − i/σ + t) Γ(−i+ n+ σ(s+ t) +m)Γ(t)β−t

Γ(t+ 1)Γ(−i+ n+ σ(s+ t))
dt

=

(
Γ(n+m)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ

(
j − i

σ
;β
))−1

× Γ(n)
n+m−1∑
i=0

(
n+m− 1

i

)
(−1)iβi/σ

r∑
s=0

(−1)r−s
(
r

s

)
× 1

2πi

∮
L

Γ (r + j − i/σ + t) Γ(−i+ n+ σ(s+ t) +m)Γ(t)β−t

Γ(t+ 1)Γ(−i+ n+ σ(s+ t))
dt

and the result follows by the definition of Fox-H function

Corollary 6.2.5. Under the normalized generalized Gamma process with parameter (σ, τ),
the r-th moment of K(n)

m |Kn = j is

E[(K(n)
m )r|Kn = j] =

(
Γ(n+m)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ

(
j − i

σ
;β
))−1

× Γ(n)
n+m−1∑
i=0

(
n+m− 1

i

)
(−1)iβi/σ

σt− i+ n

j + t− i/σ

×
r∑
s=0

(−1)r−s
1

2πi

∮
L

Γ(−i+ n+m+ σ(s+ t))Γ(1 + j + t− i/σ + s)Γ(t)
Γ(t+ 1)Γ(1− i+ n+ σ(s+ t))

× β−tR
(
r, s, j + t− i

σ

)
dt

where R(r, s, j + t− i/σ) is the unique function satisfying

r∑
s=0

(y)s↓1R
(
r, s, j + t− i

σ

)
=
(
y + j + t− i

σ

)r
for any y.

Proof. Using the (r, l)-th Stirling number of the second kind S(r, l) we can write

E[(K(n)
m )r|Kn = j] =

r∑
l=0

S(r, l)E[(K(n)
m )l↓1|Kn = j]
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and by Proposition 6.2.14 we have

E[(K(n)
m )r|Kn = j] =

(
Γ(n+m)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ

(
j − i

σ
;β
))−1

× Γ(n)
r∑
l=0

S(r, l)
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(
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i

)
(−1)iβi/σ

l∑
s=0

(−1)l−s
(
l

s

)
× 1

2πi

∮
L

Γ (l + j − i/σ + t) Γ(−i+ n+ σ(s+ t) +m)Γ(t)β−t

Γ(t+ 1)Γ(−i+ n+ σ(s+ t))
dt

We focus on

r∑
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S(r, l)Γ
(
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σ
+ t
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(−1)l−s
(
l

s
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σ
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S(r, l)
(σ(t+ j)− i)l↑σ
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×
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s=0

(−1)l−s
(
l

s
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(
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σ

)
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(
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σ
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×
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(−1)l−s
(
l

s

)
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(
j + t− i

σ
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(1 + σt− i+ n)(m−1)↑1

where T (r, s, j + t− i/σ) =
∑

s≤l≤r (j + t− i/σ + s)(l−s)↑1 S(r, l)(−1)r+l
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l
s

)
. For any y
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=
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=
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(
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σ
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)
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(−1)lS(r, l)(−1)r
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Then, we have

r∑
s=0

(y)s↓1T
(
r, s, t− i

σ

)
=
(
y + t− i

σ

)r

and T (r, s, j+t−i/σ) corresponds to the function R(r, s, λ) with λ = j+t−i/σ, introduced
by Carlitz [14] (or non-central Stirling number of the second kind). The result follows by
substitution.

Proposition 6.2.15. Under the normalized generalized Gamma process with parameter
(σ, τ), the r-th ascending factorial moment of K(n)

m |Kn = j is

E[(K(n)
m )r↑1|Kn = j] =

(
Γ(n+m)

n−1∑
i=0

(
n− 1
i

)
(−1)iβi/σΓ
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σ
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r
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×H3,1
3,5

[
β

∣∣∣∣∣ (1, 1), (σs− i+ n, σ), (1 + j − i/σ, 1)
(0, 1), (j + s− i/σ, 1), (σs− i+ n+m,σ), (1 + j + i/σ − r + s, 1)

]

Proof. Using the (r, l)-th signless Stirling number of the first kind |s(r, l)| we can write

E[(K(n)
m )r↑1|Kn = j] =

r∑
l=0

|s(r, l)|E[(K(n)
m )l|Kn = j]
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and by Corollary 6.2.5 we have

E[(K(n)
m )r↑1|Kn = j] =

(
Γ(n+m)
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i
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=
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and we focus on
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where I (r, s, j + t− i/σ) =
∑

s≤l≤r s(r, l)R (l, s, j + t− i/σ). For any µ
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(
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Then, for any µ
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σ
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(
j + t− i

σ
+ µ
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Therefore, if j + t− i/σ 6= 0, then

I(r, s, j + t− i/σ) =
(
r

s

)
(j + t− i/σ)(r−s)↓1

If j + t − i/σ = 0, I(r, s, j + t − i/σ) = 1 if s = r and I(r, s, j + t − i/σ) = 0 se s 6= r.
Then, we have

E[(K(n)
m )r↑1|Kn = j] =

(
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i=0

(
n− 1
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)
(−1)iβi/σΓ
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× 1

2πi

∮
L
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=
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(
j − i

σ
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−t
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and the result follows by the definiton of Fox-H function.

6.2.3 Applications to genomics

We now show how to use the results obtained in Subsection 6.2.1 for the two parametero
Poisson-Dirichlet processs by applying them to 5 real EST datasets. As briefly mentioned
in the Introduction, EST data arise by sequencing cDNA libraries consisting of millions of
genes and one of the main quantities of interest is the number of distinct genes. Typically,
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due to cost constraints, only a small portion of the cDNA has been sequenced and, given
this “basic sample”, estimation of the number of new genes K(n)

m to appear in a hypo-
thetical additional sample is required. Based on such estimates, geneticists have to decide
whether it is worth to proceed with sequencing and, in the affirmative case, also the size of
the additional sample. Here, we consider: (a) a tomato-flower cDNA library (Quackenbush
et al. [159]), previously analyzed in Mao and Lindsay [134], Mao [132] and Lijoi et al. [123];
two cDNA libraries of the amitochondriate protist Mastigamoeba balamuthi (see Susko
and Roger [177]): (b) the first is non-normalized, whereas (c) the second is normalized,
i.e. it undergoes a normalization protocol which aims at making the frequencies of genes
in the library more uniform so to increase the discovery rate; two Naegleria gruberi cDNA
libraries prepared from cells grown under different culture conditions, (d) aerobic and (e)
anaerobic (see Susko and Roger [177]).

In order to implement the Poisson-Dirichlet process with parameter (σ, θ), the first
issue to face is represented by the specification of its parameters. The first possibility
is to adopt an empirical Bayes approach. Since the “basic sample” consists of n observa-
tions featuring Kn distinct species with corresponding frequencies (N1, . . . , NKn), the joint
distribution of Kn and (N1, . . . , NKn) is given by (6.2.1). See Quintana [160] for an investi-
gation of the connection between random partition models and Bayesian nonparametrics.
The empirical Bayes rule then suggests to fix (σ, θ) so to maximize (6.2.1) corresponding
to the observed sample (k, n1, . . . , nk), i.e.

(σ̂, θ̂) = arg max
(σ,θ)

∏k−1
i=1 (θ + iσ)

(θ + 1)(n−1)↑1

k∏
j=1

(1− σ)(nj−1)↑1. (6.2.45)

An alternative way of eliciting (σ, θ) is by placing a prior distributions on it. Such an ap-
proach is useful when one is interested in testing the compatibility of clustering structures
among different populations (Lijoi, Mena and Prünster [122]). However, in terms of esti-
mates there are typically no relevant differences given the posterior distribution of (σ, θ)
is highly concentrated. Hence, in order to keep the exposition as simple as possible, in
the sequel we focus on the Poisson-Dirichlet process with parameter (σ, θ) with empirical
Bayes prior specification. The extension to the case of priors on (σ, θ) is straightforward.

The computation of the estimators for the number of new genes (6.2.26), for the
discovery probability (6.2.27) and for the sample coverage (6.2.28) is immediate. For
each of the 5 EST datasets, the corresponding estimates for additional samples of size
m ∈ {n, 10n, 100n} are reported in Table 6.1 below together with the corresponding val-
ues n and j of the “basic sample” and the empirical Bayes specifications of (σ, θ).

The use of Proposition 6.2.7 is slightly more delicate. Here, we show it only for the
estimator of the number of new genes; for the estimators of the discovery probability and
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Library n j σ̂ θ̂ m Ê
(n,j)
m D̂

(n,j)
m Ĉ

(n,j)
m

n 1281 0.447 0.553

(a) 2586 1825 0.612 741.0 10n 8432 0.240 0.760

100n 40890 0.103 0.897

n 346 0.452 0.548

(b) 715 460 0.770 46.0 10n 2634 0.307 0.693

100n 16799 0.185 0.815

n 180 0.456 0.544

(c) 363 248 0.700 57.0 10n 1280 0.278 0.722

100n 7205 0.144 0.856

n 307 0.290 0.710

(d) 959 473 0.670 46.3 10n 2085 0.166 0.834

100n 11031 0.080 0.920

n 440 0.412 0.588

(e) 969 631 0.660 155.5 10n 2994 0.236 0.764

100n 15673 0.111 0.889

Table 6.1: Analysis of the 5 EST datasets. Size of the “basic sample” n, number of distinct genes j
in the “basic sample” and empirical Bayes specifications for (σ, θ). Exact estimators for the number
of new genes rounded to the nearest integer, for the discovery probability D̂(n,j)

m and the coverage
Ĉ

(n,j)
m for sizes of the additional sample m ∈ {n, 2n, 3n}.

the coverage one can proceed along the same lines. In order to combine the point estimate
for K(n)

m with an asymptotic 95% HPD interval, one can simulate from the limiting r.v. Zn,j
and determine the 95% HPD interval, (z1, z2), for Zn,j . Then, given that the normalizing
rate function for K(n)

m in Proposition 6.2.7, is mσ, one obtains an asymptotic 95% HPD
interval for K(n)

m as (z1m
σ, z2m

σ). Table 6.2 below reports both exact and simulated
mean and variance of the limiting r.v. Zn,j associated to each of the 5 EST datasets as
well as the simulated 95% and 99% HPD intervals. The sampled values are obtained by
generating 2000 random variates according to the algorithm devised in Subsection 6.2.1
with truncation of the series in (6.2.33) given by N = 3× 107. In fact, it is very important
to get accurate samples from Zn,j : a small bias could heavily affect the asymptotic HPD
intervals for K(n)

m , (z1m
σ, z2m

σ), since a large mσ would amplify the bias. It should be
emphasized that it is sufficient to run the simulation of Zn,j only once in order to obtain
the HPD intervals for any choice of the additional sample size m. Hence, it seems definitely
worth pursuing a high precision, which can be easily verified by comparing exact moments
in (6.2.31) with the sampled ones.

Library E[Zn,j ] Var(Zn,j) Z̄n,j S2 95% HPD 99% HPD

(a) 21.222 0.098 21.251 0.096 (20.62 , 21.83) (20.46 , 22.02)

(b) 3.142 0.011 3.176 0.012 (2.95 , 3.37) (2.89 , 3.44)

(c) 4.804 0.043 4.823 0.044 (4.43 , 5.24) (4.28 , 5.36)

(d) 5.279 0.039 5.304 0.039 (4.93 , 5.69) (4.78 , 5.82)

(e) 8.400 0.054 8.419 0.054 (7.97 , 8.88) (7.80 , 8.98)

Table 6.2: Characteristics of the limiting r.v. Zn,j for the 5 cDNA libraries: exact mean E[Zn,j ],
exact variance Var[Zn,j ], sample mean Z̄n,j , sample variance S2, sample 95% and 99% HPD inter-
vals.
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Library m Ê
(n,j)
m rate mσ rate rσ,θ,n(m)

mσE[Zn,j ] Asym. 95% HPD rσ,θ,nE[Zn,j ] Asym. 95% HPD

n 1281 2602 (2528 , 2677) 1281 (1244 , 1318)

(a) 10n 8432 10649 (10347 , 10956) 8432 (8192 , 8675)

n = 2586 100n 40890 43583 (42345 , 44838) 40890 (39728 , 42067)

n 346 495 (465 , 531) 346 (325 , 371)

(b) 10n 2634 2917 (2739 , 3129) 2634 (2473 , 2825)

n = 715 100n 16799 17179 (16130 , 18427) 16799 (15774 , 18020)

n 180 298 (274 , 324) 180 (166 , 196)

(c) 10n 1280 1491 (1375 , 1625) 1280 (1181 , 1396)

n = 363 100n 7205 7474 (6893 , 8146) 7205 (6644 , 7852)

n 307 525 (491 , 566) 307 (287 , 331)

(d) 10n 2085 2457 (2295 , 2648) 2085 (1947 , 2247)

n = 959 100n 11031 11492 (10735 ,12387) 11031 (10304 , 11889)

n 440 786 (745 , 831) 440 (417 , 465)

(e) 10n 2994 3591 (3407 , 3797) 2994 (2841 , 3166)

n = 969 100n 15673 16414 (15572 , 17355) 15672 (14869 , 16571)

Table 6.3: Exact estimates of the number of new genes K(n)
m and its asymptotic approximation

f(m)E[Zn,j ], with rate functions f(m) = mσ and f(m) = r(σ,θ,n). The size m of the additional
sample varies in {n, 10n, 100n}. The asymptotic 95% HPD intervals are evaluated for both rate
functions, mσ and r(σ,θ,n)(m). All values are rounded to the nearest integer.

Having the asymptotic 95% HPD intervals for Zn,j at hand, the candidate approximate
95% HPD intervals for K(n)

m are (z1m
σ, z2m

σ). As apparent from Table 6.3, the HPD
constructed through such a procedure is not centered on and, in most cases, does not even
include the estimated number of new genes E[K(n)

m |Kn = j]. Indeed, if one looks at the
exact estimator for K(n)

m given in (6.2.26), it is clearly much smaller than its asymptotic
approximation mσE[Zn,j ]. This is due to the fact that, when θ and n are moderately large
and not overwhelmingly smaller than m, a finer normalization constant is to be used for
approximating K(n)

m : by close inspection of the derivation of the moments of the limiting
r.v. Zn,j in (6.2.32), one sees that an equivalent, though less rough, normalization rate is
given by

r(σ,θ,n)(m) := (θ + n+m)σ − (θ + n)σ.

Obviously, in terms of asymptotics, r(σ,θ,n)(m)/mσ → 1 as m→∞, but, importantly, as far
as approximations of K(n)

m for finite m are concerned, it overcomes the above mentioned
problems. In fact, we have that, for any m, E[K(n)

m |Kn = j] ≈ r(σ,θ,n)(m)E[Zn,j ] and
the asymptotic HPD interval (r(σ,θ,n)(m) z1, rσ,θ,n(m)z2) is approximately centered on the
following estimator E[K(n)

m |Kn = j], as desired. Table 6.3 displays, for the 5 datasets, the
exact estimator for K(n)

m , its asymptotic approximation and the 95% asymptotic HPD
intervals using both mσ and r(σ,θ,n)(m) as rate functions for sizes of the additional sample
m ∈ {n, 10n, 100n}.

For the Tomato flower library we have that, even for m = 100n = 258600, the
asymptotic approximation of the number of new genes with mσ is about 6.6% larger
than the asymptotic approximation with r(σ,θ,n)(m), which coincides with the exactly es-
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Library m Ê
(n,j)
m Exact 95% HPD Asym. 95% HPD Asym. 99% HPD

n 1281 (1221 , 1341) (1244 , 1318) (1234 , 1329)

(a) 2n 2354 (2263 , 2449) (2287 , 2422) (2269 , 2442)

n = 2586 3n 3305 (3181 , 3434) (3211 , 3400) (3186 , 3430)

n 346 (312 , 382) (325 , 371) (318 , 379)

(b) 2n 654 (599 , 711) (614 , 701) (601 , 716)

n = 715 3n 939 (865 , 1015) (881 , 1007) (863 , 1028)

n 180 (156 , 206) (166 , 196) (160 , 201)

(c) 2n 336 (299 , 375) (310 , 366) (299 , 375)

n = 363 3n 477 (428 , 528) (440 , 520) (425 , 533)

n 307 (271 , 345) (287 , 331) (278 , 338)

(d) 2n 566 (510 , 624) (529 , 610) (513 , 624)

n = 959 3n 798 (725 , 873) (746 , 861) (723 , 880)

n 440 (402 , 478) (417 , 465) (408 , 470)

(e) 2n 812 (753 , 873) (771 , 859) (755 , 869)

n = 969 3n 1146 (1069 , 1225) (1088 , 1212) (1065 , 1226)

Table 6.4: Exact estimates of the number of new genes and corresponding exact 95% HPD
intervals and asymptotic 95% and 99% HPD intervals with rate function r(σ,θ,n)(m) for sizes of
the additional sample m ∈ {n, 2n, 3n}. All values are rounded to the nearest integer.

timated number. Hence, for finite sample size approximation is definitely necessary to use
r(σ,θ,n)(m) as rate function.

We now move on to comparing the asymptotic HPD intervals obtained with the rate
function r(σ,θ,n)(m) with the exact HPD intervals determined using the probability distri-
bution in (6.2.23). Hence, we consider m ∈ {n, 2n, 3n}, because otherwise the computa-
tional burden involved in (6.2.23) would become too heavy. Table 6.4 reports, for the 5
datasets, the exact estimator for K(n)

m , the exact 95% HPD and both the 95% and 99%
asymptotic HPD intervals. The table shows that the length of the asymptotic 95% HPD
intervals is shorter than the exact one, although the difference is not big.

Indeed, such a finding is not surprising in the species sampling context. Obviously, the
variability of K(n)

m increases as m increases. However, the variability of K(n)
m /r(σ,θ,n)(m),

which can be interpreted as an average variability over the additional sample of size m,
is necessarily decreasing as m increases, since the more distinct species are collected the
lower the probability of detecting additional new ones will become. Hence, if we approx-
imate K(n)

m /r(σ,θ,n)(m) by its asymptotic r.v. Zn,j , we will necessarily underestimate its
variability which is reflected on the length of the HPD intervals. Nonetheless the possibility
of resorting to the asymptotic HPD intervals is extremely useful from a practical point of
view: i) the HPD intervals of Zn,j automatically yield HPD intervals of K(n)

m for any choice
of m, whereas the exact HPD intervals have to be recomputed for any m of interest and
cannot even be calculated for large m; ii) the fact that the length of the asymptotic HPD
intervals is always shorter than the exact length (and not oscillating), allows to interpret
it a “lower bound” on the length of the exact ones and, moreover, the underestimation
will decrease as m increases.

Given such a “lower bound”, it would be also of interest to have an “upper bound” on
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the length of the exact HPD. Indeed, if one considers the asymptotic 99% HPD intervals,
by Proposition 6.2.7, there exists a m̄ such that for any m > m̄ the asymptotic 99% HPD
interval for K(n)

m covers the exact 95% HPD interval. Hence, for sufficiently large m, the
asymptotic 99% HPD interval acts as “upper bound” for the exact one. Although the
determination of such a m suitable for any choice of parameters and “basic sample” is not
possible, one can proceed empirically. From Table 6.4, where the 99% asymptotic HPD
intervals are reported as well, one sees that for the Masingamoeba and Naegleria libraries
the asymptotic 99% HPD interval covers the exact 95% HPD interval already starting from
m = 3n. As for the Tomato flower library, whose distinctive feature with respect to the
other libraries is represented by a larger “basic sample”, such a covering is not yet achieved
for m = 3n but it is very close to happen. Hence, by the combination of the asymptotic
95% and 99% HPD intervals, we obtain a useful device for assessing uncertainty of species
richness estimates. Figure 1 below shows, for the Naegleria anaerobic cDNA library, how
the 95% and 99% asymptotic HPD intervals provide an envelope around the exact HPD
interval from m ≈ 2500 onwards. Given the two asymptotic HPD are quite close, we thus
achieve a satisfactorily accurate estimate of the uncertainty.

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500
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(n,j ) 

Figure 6.1: Exact estimator Ê(n,j)
m and corresponding exact 95% HPD intervals and asymptotic

95% and 99% HPD intervals for the Naegleria anaerobic library.

In this subsection we applied the results obtained in Substection 6.2.1 whose greatly
simplified the implementation of the two parameter Poisson-Dirichlet model for species
sampling problems, which is now possible in a straightforward way for any sizes of the basic
and the additional sample. This allows its full exploitation in genomics problems, where
prediction over large unobserved portions of cDNA libraries is required. In particular, the
estimators for the number of new genes, the discovery rate and the sample coverage are
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completely explicit. Moreover, the conditional asymptotic result concerning the number of
new species yields also measures of uncertainty of the estimates in the form of asymptotic
HPD intervals, which can be readily used as approximate HPD intervals. Given that the
95% asymptotic HPD interval is always included in the 95% exact HPD interval and that,
for sufficiently large m, the 99% asymptotic HPD covers the exact 95% HPD interval, the
combination of the 95% and 99% asymptotic HPD intervals provides a simple and valuable
measure of uncertainty.

6.3 The generalized Dirichlet process

In this section our aim is to provide solutions to the species sampling problems P1) and P2)
when the observed samples are from an exchangeable sequence governed by the generalized
Dirichlet process.

The generalized Dirichlet process has been recently introduced in the literature by
Regazzini et al. [165] and further investigated by Lijoi et al. [118]. See Chapter 5 for some
developments of the generalized Dirichlet process and its characterization in the general
class of r.p.m. with logarithmic singularity. In particular, consider a generalized Gamma
CRM characterized by the Poisson intensity measure

ν(ds, dx) =
(1− e−γs)e−s

(1− e−s)s
dsα(dx) (6.3.1)

where γ > 0. Let us denote this CRM by µ̃γ . If α in (6.3.1) is a non-atomic nfinite
measure on (X,X ), we have 0 < µ̃γ(X) < +∞ a.s. and the generalized Dirichlet process
with parameter γ is defined as the NRMI P̃γ(·) := µ̃γ(·)/µ̃(X). Note that if γ = 1, the
intensity in (6.3.1) reduces to the intensity of a Gamma CRM and, hence, P̃γ becomes a
simple Dirichlet process. The fact that the generalized Dirichlet process is not of Gibbs-
type follows immediately from Gnedin and Pitman [74] and Lijoi et al. [124]: for σ = 0,
the only Gibbs-type NRMI is the Dirichlet pocess, whereas for σ > 0 the only NRMIs of
Gibbs-type are normalized generalized gamma processes.

As observed in Regazzini et al. [165] if and only if γ ∈ N, µ̃γ can be seen as arising
from the superposition of γ independent Gamma CRMs with increasing integer-valued
scale parameter and shape parameter α. In particular, µ̃γ(A), for some A ∈ X , is then
distributed as the convolution of γ independent r.v.s with parameters (l, α(A)), for l =
1, . . . , γ, i.e.

E[e−λP̃γ(A)] =
γ∏
l=1

(
l

l + λ

)α(A)

λ ≥ 0. (6.3.2)

In the following we always assume γ ∈ N, since this allows to establish the link with
Lauricella multiple hypergeometric functions: it is well-known that convolutions of Gamma
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distribution functions can be represented in terms of Lauricella functions. Moreover, we
assume throughout α to be a non-atomic measure, which is tantamount to requiring the
prior guess at the shape α0(·) = E[P̃γ(·)] to be non-atomic given that α0(·) = α(·)/θ. A
first treatment of the generalized Dirichlet process in this setup was provided in Lijoi et
al. [118], where its finite-dimensional distributions, moments and linear functionals were
studied. Moreover, its EPPF, interpretable as the joint distribution of the number of
species and their frequencies according to (6.1.2), is given by

p
(n)
k (n1, . . . , nk) =

(γ!)θ(θ)k
∏k
j=1 Γ(nj)

γγθ(γθ)n↑1
F(k, n,n, θ, γ) (6.3.3)

with
F(k, n,n, θ, γ) :=

∑
rk

F
(γ−1)
D

(
γθ, α∗(n, rk); γθ + n;

Jγ−1

γ

)
(6.3.4)

where the sum is over the set rk := (r1, . . . , rk) ∈ [γ]k and F (γ−1)
D is for the fourth Lauricella

multiple hypergeometric function. The vectors appearing in the arguments of F (γ−1)
D are

defined as α∗(n, rk) := (α∗1(n, rk), . . . , α∗γ−1(n, rk)) with α∗l (n, r
k) := θ+

∑
1≤i≤k ni1{l=ri}

for l = 1, . . . , γ − 1 and Jγ−1 := (1, . . . , γ − 1). By setting γ = 1, from (6.3.3) one recovers
(6.1.3). The predictive distributions associated with P̃γ are then of the form (6.1.5) with

w0(n, k,n) =
θF(k + 1, n+ 1,n+, θ, γ)
(γθ + n)F(k, n,n, θ, γ)

(6.3.5)

wj(n, k,n) =
F(k, n+ 1,n+

j , θ, γ)
(γθ + n)F(k, n,n, θ, γ)

(6.3.6)

where we have set n+ := (n1, . . . , nk, 1) and n+
i := (n1, . . . , ni+ 1, . . . , nk) for i = 1, . . . , k.

Before proceeding, a comparison of the predictive structures of Gibbs-type r.p.m.s and
the generalized Dirichlet process is in order. In the Gibbs case, the predictive distributions
(6.1.4) are a linear combination of the prior guess α0 and a weighted empirical distribution.
So Xn+1 is new with probability g0(n, k), whereas it coincides with X∗j with probability
g1(n, k)(nj − σ), for j = 1, . . . , k. Therefore, the weight assigned to each X∗j depends on
the number of distinct observations k and on the number of observations equal to X∗j ,
while the weight assigned to a new observation depends solely on the number of distinct
observations k as well as the balancing between new and old observations. As already
noted, in the limiting case of the Dirichlet process, the dependence on k disappears. The
predictive distributions associated with a generalized Dirichlet process are characterized
by a more elaborate structure, which exploits all available information in the sample
X1, . . . , Xn. Its predictive distributions are still a linear combination of the prior guess α0

and a weighted empirical distribution, but now Xn+1 is new with probability w0(n, k,n)
and coincides with X∗j with probability njwj(n, k,n), for j = 1, . . . , k. Therefore, from
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(6.3.5) and (6.3.6), we observe that both the weight assigned to each X∗j and the weight
assigned to a new observation depend on the number of distinct observations k as well as
on their frequencies n. Moreover, the balance between new and old observations depends
on k and n. As pointed out in the Introduction, in principle one would like to work with
r.p.m.s, whose predictive structure makes use of all the information contained in the sample
as it happens for the generalized Dirichlet process. The fact that it represents, at least
to the authors knowledge, the only r.p.m. not of Gibbs-type, which admits closed form
expressions for the EPPF and the predictive distributions, makes it even more appealing.
In light of the above considerations, it is worth looking for a solution to the problems P1)
and P2) described in Section 6.2 for the generalized Dirichlet process case.

The first aim is to derive the distribution of the number of distinct species Kn. To
this end we resort to the definition of the (n, k)-th partial Bell polynomial associated with
a non-negative weight sequence w• := {wi, i ≥ 0}. This allows us to obtain the desired
distribution in terms of an Eulero-type integral.

Proposition 6.3.1. Let {Xn, n ≥ 1} be an exchangeable sequence governed by a general-
ized Dirichlet process with parameter γ ∈ N. Then

P(Kn = k) =
((γ)!)θ(θ)k

γγθΓ(n)

∫ 1

0

zγθ−1(1− z)n−1∏γ−1
l=1 (1− zl/γ)θ

Bn,k(w•(z, γ))dz (6.3.7)

where by convention
∏

1≤l≤0(1− zl/γ)a = 1 and Bn,k(w•(z, γ)) is the (n, k)-th partial Bell
polynomial with weight sequence

w•(z, γ) = (• − 1)!

(
γ−1∑
l=1

(1− zl/γ)−• + 1

)
(6.3.8)

with the proviso
∑

1≤l≤0(γ − zl)−• = 0 or, equivalently, with exponential generating func-
tion given by w(t, z, γ) = − log(1− t)−

∑
1≤l≤γ−1 log(1 + γt/(zl − γ)).

Proof. For any n ≥ 1 and for any k = 1, . . . , n, we need to compute the following proba-
bility

P(Kn = k) =
1
k!

∑
(n1,...,nk)∈Dk,n

(
n

n1, . . . , nk

)(γ!)θ(θ)k
∏k
j=1 Γ(nj)

γγθ(γθ)n↑1
F(k, n,n, θ, γ),

where we recall that Dk,n{(n1, . . . , nk) ∈ [n]k :
∑

1≤i≤k ni = n}. Using a known Eulero-
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type integral representation for the function F
(γ−1)
D (see Appendix C) we obtain

((γ)!)θ(θ)k

γγθΓ(n)

∫ 1

0

zγθ−1(1− z)n−1∏γ−1
l=1 (1− zl/γ)θ

1
k!

∑
rk

∑
(n1,...,nk)∈Dk,n

(
n

n1, . . . , nk

)

×
k∏
j=1

Γ(nj)
γ−1∏
l=1

(
1− zl

γ

)−Pk
i=1 ni1{l=ri}

dz

=
((γ)!)θ(θ)k

γγθΓ(n)

∫ 1

0

zγθ−1(1− z)n−1∏γ−1
l=1 (1− zl/γ)θ

1
k!

∑
rk

∑
(n1,...,nk)∈Dk,n

(
n

n1, . . . , nk

)

×
k∏
j=1

Γ(nj)
γ−1∏
l=1

(
1− zl

γ

)−Pk
i=1 ni1{l=ri}

dz

=
((γ)!)θ(θ)k

γγθΓ(n)

∫ 1

0

zγθ−1(1− z)n−1∏γ−1
l=1 (1− zl/γ)θ

1
k!

∑
(n1,...,nk)∈Dk,n

(
n

n1, . . . , nk

)

×
k∏
j=1

Γ(nj)

(
γ−1∑
l=1

(
1− zl

γ

)−nj
+ 1

)
dz

=
((γ)!)θ(θ)k

γγθΓ(n)

∫ 1

0

zγθ−1(1− z)n−1∏γ−1
l=1 (1− zl/γ)θ

× n!
k!

∑
(n1,...,nk)∈Dk,n

k∏
j=1

1
nj

(
γ−1∑
l=1

(
1− zl

γ

)−nj
+ 1

)
dz.

Then, it can be easly checked that

n!
k!

∑
(n1,...,nk)∈Dk,n

k∏
j=1

1
nj

(
γ−1∑
l=1

(
1− zl

γ

)−nj
+ 1

)

corresponds to the (n, k)-th partial Bell polynomial associated to the weight sequence
w•(z, γ) given by w•(z, γ) = (•− 1)!

(∑
1≤l≤γ−1(1− zl/γ)−• + 1

)
, which is characterized

by the exponential generating function w(t, z, γ) = − log(1−t)−
∑

1≤l≤γ−1 log(1+γt/(zl−
γ)).

Observe that the distribution of the number of distinct species Kn in (6.3.7) can be
represented as

P(Kn = k) =
∫ 1

0
P(Kn = k|z)ηn(z)dz

where ηn(z) is a density on (0, 1) and P(Kn = k|Zn) ∝ θkBn,k(w•(Zn, γ)). It is interesting
to see how to recover the distribution of Kn in the Dirichlet case. If γ = 1, the weight
sequence (6.3.8) does not depend on z anymore, since it simplifies to w• = (• − 1)! which
is characterized by the exponential generating function w(t) = − log(1 − t). Now, it is
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well-known (see, e.g., Pitman [157]) that the (n, k)-th partial Bell polynomial with weight
sequence w• = (• − 1)! reduces to the signless Stirling number of the first kind |s(n, k)|.
Consequently, we have P(Kn = k|z) ∝ θk|s(n, k)| not depending on z and (6.3.7) becomes
P(Kn = k) = (θ)k(Γ(n))−1|s(n, k)|

∫ 1
0 z

θ−1(1 − z)n−1dz. Hence, the mixing variable Zn
is a r.v. distributed according to a Beta distribution function with parameter (θ, n) and,
by noting that (Γ(n))−1Γ(θ)Γ(n)/Γ(θ + n) = (θ)n↑1, one obtains the distribution of Kn

when X1, . . . , Xn are sampled from a Dirichlet process. Turning back to the general case
(6.3.7), where the conditional distribution of Kn given Zn is of the form P(Kn = k|Zn) ∝
θkBn,k(w•(Zn, γ)), we note that such a conditional distribution is induced by a finite
Gibbs partition. By finite Gibbs partition we mean a random partition of the integers [n]
admitting EPPF of product form p

(n)
k (n1, . . . , nk) = V ∗n,k

∏
1≤j≤kWnj but which does not

satisfy the addition rule for random partiton. See Pitman [157] an exhaustive account.
The fact that P(Kn = k|Zn) arises from a finite Gibbs partition is easily seen in the proof
of Proposition 6.3.1, which allows to write the conditional EPPF as

p
(n)
k (n1, . . . , nk|Zn) = V ∗n,k

k∏
j=1

Γ(nj)

(
γ−1∑
l=1

(
1− Zn l

γ

)−nj
+ 1

)
.

However, such an EPPF cannot correspond to an infinite exchangeable random partition
and, a fortiori not to an infinite exchangeable random partition of Gibbs-type, since by
Lemma 2 in Gnedin ane Pitman [74], the terms in the product would necessarily have to be
of form (1−σ)nj↑1. This is tantamount of saying that an exchangeable sequence governed by
a generalized Dirichlet process cannot be represented as mixture of exchangeable sequences
directed by Gibbs-type priors. This is a desirable feature given we would like to have
predictions more flexible than those arising from Gibbs-type priors, though, of course,
it also implies that we loose the mathematical tractability of exchangeable Gibbs-type
partitions.

As for the evaluation of (6.3.7), it is important to remark that, for fixed n and k,
Bn,k(w•) is a polynomial of degree n in the variable (1− zi/γ), for i = 1, . . . , γ− 1, with a
particular set of coefficients specified according to the coefficients of the (n, k)-th partial
Bell polynomial Bn,k(w•). Therefore, (6.3.7) can be easily evaluated using the Eulero-
type integral representation of the fourth-type Lauricella multiple hypergeometric function
F

(γ−1)
D . For instance, if γ = 2, F (1)

D corresponds to the Gauss hypergeometric function 2F1

and (6.3.7) reduces to a weighted linear combination of Gauss hypergeometric functions.
Before passing to the study of distributional properties of conditional samples, we

establish an auxiliary result, which is the key for the derivation of the following results and,
moreover, is of independent interest. Indeed, it generalizes the well-known multivariate
Chu-Vandermonde convolution formula (see Charalambides [17] and Charalambides [16])
and appears to be a new combinatorial identity involving fourth-type Lauricella multiple
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hypergeometric functions F (γ−1)
D . Recall that Dk,n = {(n1, . . . , nk) ∈ [n]k :

∑
1≤i≤k ni = n}

and define D(0)
k,n = {(n1, . . . , nk) ∈ ({0} ∪ [n])k :

∑
1≤i≤k ni = n}.

Lemma 6.3.1. For any r ≥ 1, k ≥ 1 and ai > 0, with i = 1, . . . k,

∑
(r1,...,rk)∈D(0)

k,r

(
r

r1, . . . , rk

) k∏
i=1

wrii (ai)(ni+ri−1)↑1 (6.3.9)

= wrk(n+
k∑
i=1

ai − k)r↑1
k∏
i=1

(ai)ni−1 F
(k−1)
D (−r,a;n+

k∑
i=1

ai − k;W )

where (n1, . . . , nk) ∈ Dk,n, wi ∈ R+ for i = 1, . . . , k, a := (n1 +a1−1, . . . , nk−1−ak−1−1)
and W := (wk − w1/wk, . . . , wk − wk−1/wk).

Proof. First, we use the integral representation for the Gamma function, i.e. Γ(x) :=∫ +∞
0 exp{−t}tx−1dt, together with the Multinomial theorem. In particular, we have

∑
(r1,...,rk)∈D(0)

k,r

(
r

r1, . . . , rk

) k∏
i=1

wrii (ai)(ni+ri−1),↑1

=
∑

(r1,...,rk)∈D(0)
k,r

(
r

r1, . . . , rk

)∏k
i=1w

riΓ(ni + ri + ai − 1)∏k
i=1 Γ(ai)

=
1∏k

i=1 Γ(ai)

∫
(R+)k

e−
Pk
i=1 ui

(
k∑
i=1

wiui

)r k∏
i=1

uni+ai−2
i du1 · · · duk.

By the change of variable yi = ui, for i = 1, . . . , k − 1, and yk =
∑

1≤i≤k ui, we obtain

1∏k
i=1 Γ(ai)

∫ +∞

0
e−yk

∫
B(yk)

(
k−1∑
i=1

wiyi + wk

(
yk −

k−1∑
i=1

yi

))r

×
k−1∏
i=1

yni+ai−2
i

(
yk −

k−1∑
i=1

yi

)nk+ak−2

dy1 · · · dyk

where B(yk) = {(y1, . . . , yk−1) : yi ≥ 0,
∑

1≤i≤k−1 yi ≤ yk}. A further change of variables
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to (z1, . . . , zk−1, zk) = (y1/yk, . . . , yk−1/yk, yk) yields

1∏k
i=1 Γ(ai)

∫ +∞

0
e−zkzr+n+

Pk
i=1 ai−k−1

k

∫
∆(k−1)

(
k−1∑
i=1

wizi + wk

(
1−

k−1∑
i=1

zi

))r

×
k−1∏
i=1

zni+ai−2
i

(
1−

k−1∑
i=1

zi

)nk+ak−2

dz1 · · · dzk

=
wrk Γ(n+ r +

∑k
i=1 ai − k)∏k

i=1 Γ(ai)

∫
∆(k−1)

(
1−

k−1∑
i=1

zi

(
wk − wi
wk

))r

×
k−1∏
i=1

zni+ai−2
i

(
1−

k−1∑
i=1

zi

)nk+ak−2

dz1 · · · dzk−1.

Finally, the integral on ∆(k−1) can be evaluated using an Eulero-type integral representa-
tion of the fourth Lauricella hypergeometric function F

(γ−1)
D (see Appendix C).

Note that by setting wi = 1 and ai = 1, for i = 1, . . . , k, in (6.3.9), one obtains the
Chu-Vandermonde convolution formula∑

(r1,...,rj)∈D
(0)
j,r

(
n1 + r1 − 1

r1

)
· · ·
(
nj + rj − 1

rj

)
=
(
n+ r − 1

r

)
. (6.3.10)

Moreover, if only wi = 1, for i = 1, . . . , k, one recovers the extension provided in Lijoi
et al. [125]. In the following corollary we consider (6.3.9) for k = 2 and we provide an
alternative proof for it. For a general k ≥ 1 the proof follows by simple induction.

Corollary 6.3.1. For any r ≥ 1 and a1 > 0, a2 > 0

r∑
r1=0

(
r

r1

)
wr11 w

r−r1
2 (a1)r1↑1(a2)(r−r1)↑1 = 2F1

(
−r, a1; a1 + a2;w2 −

w1

w2

)
wr2(a1 + a2)r↑1

(6.3.11)

Proof. Let us consider the following two known properties for the Gauss hypergeometric
function 2F1

2F1(a, b; b− n; z) = (1− z)−a−n
n∑
k=0

(−n)k↑1(b− a− n)k↑1zk

(b− n)k↑1k!
n ∈ N (6.3.12)

and

2F1(a, b; b− n; z) =
(−1)n(a)n↑1

(1− b)↑1
(1− z)−a−n2F1(−n, b− a− n; 1− a− n; 1− z) (6.3.13)
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Using equation (6.3.12), we have

2F1(a, b; b− n; z) = (1− z)−a−n2F1(b− n− a,−n; b− n; z)

= (1− z)−a−n
n∑
k=0

(−n)k↑1(b− a− n)k↑1zk

(b− n)k↑1k!

which implies

2F1(b− n− a,−n; b− n; z) =
n∑
k=0

(−n)k↑1(b− a− n)k↑1zk

(b− n)k↑1k!
n ∈ N

Then, if we set n = r, b = 1− a2, a = −a2 − r+ 1− a1, k = r1 and z = w1/w2, we obtain
the relations

2F1

(
a1,−r;−a2 − r + 1;

w1

w2

)
=

r∑
r1=0

(−r)r1↑1(a1)r1↑1
(
w1
w2

)r1
(1− a2 − r)r1↑1r1!

=
r∑

r1=0

(−r)r1↑1
r1!

(a1)r1↑1
(1− a2 − r)r1↑1

(
w1

w2

)r1
=

r∑
r1=0

(−1)r1(−r)r1↑1
r1!

(a1)r1↑1
(−1)r1(1− a2 − r)r1↑1

(
w1

w2

)r1
=

r∑
r1=0

(
r

r1

)
(a1)r1↑1

(a2 + r − r1)r1↑1

(
w1

w2

)r1
i.e.,

r∑
r1=0

(
r

r1

)
wr11 w

r−r1
2 (a1)r1↑1(a2)(r−r1)↑1 = 2F1

(
a1,−r;−a2 − r + 1;

w1

w2

)
wr2(a2)r↑1

Then, if we prove that

2F1

(
a1,−r;−a2 − r + 1;

w1

w2

)
(a2)r↑1 = 2F1

(
−r, a1; a1 + a2;w2 −

w1

w2

)
(a1 + a2)r↑1

Using equation (6.3.13)

2F1(a, b; b− n; z) = (1− z)−a−n2F1(b− n− a,−n; b− n; z)

=
(−1)n(a)n↑1

(1− b)↑1
(1− z)−a−n2F1(−n, b− a− n; 1− a− n; 1− z)

which implies

2F1(b− n− a,−n; b− n; z) =
(−1)n(a)n↑1

(1− b)↑1
2F1(−n, b− a− n; 1− a− n; 1− z)
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Then, if we set n = r, b = 1− a2, a = −a2 − r+ 1− a1, k = r1 and z = w1/w2, we obtain
the relations

2F1(a1,−r; 1− a2 − r;w1/w2) =
(−1)r(−a2 − a1 − r + 1)r↑1

(a2)↑1
2F1

(
−r, a1; a1 + a2; 1− w1

w2

)
=

(a1 + a2)r↑1
(a2)↑1

2F1

(
−r, a1; a1 + a2;w2 −

w1

w2

)
and the proof is completed.

The multivariate version of (6.3.11) can be obtained by inductive reasoning from
(6.3.11). In particular, we have the following corollary.

Corollary 6.3.2. For any q ≥ 1, j ≥ 1 let Dj,q := {(q1, . . . , qj) ∈ {1, . . . , q}j :
∑

1≤i≤j qi =
q} and let w1, . . . , wj ∈ R+ and a1, . . . , aj > 0. Then

∑
(q1,...,qj)∈Dj,q

(
q

q1, . . . , qj

) j∏
i=1

wqii (ai)qi↑1 (6.3.14)

= wqj (a)q↑1F
(j−1)
D

(
−q, a1, . . . , aj−1, a;

wj − w1

wj
, . . . ,

wj − wj−1

wj

)

where a :=
∑

1≤i≤j ai.

Proof. Using Equation (6.3.11), the proof follows by inductive reasoning. Suppose the
identity holds true for j − 1, i.e.

∑
(q1,...,qj−1)∈Dj−1,q

(
q

q1, . . . , qj−1

) j−1∏
i=1

wqii (ai)qi↑1

=
∑

(q1,...,qj−1)∈Dj,q

q!
q1! · · · qj−1!

w
qj−1

j−1 (aj−1)qj−1↑1

j−2∏
i=1

wqii (ai)qi↑1

= wqj−1(a− aj)q↑1F
(j−2)
D

(
−q, a1, . . . , aj−2, a− aj ;

wj−1 − w1

wj−1
, . . . ,

wj−1 − wj−2

wj−1

)
and we show it holds for j as well. Observe that

∑
(q1,...,qj)∈Dj,q

q!
q1! · · · qj !

j∏
i=1

wqii (ai)qi↑1

=
q∑

qj=0

q!
qj !(q − qj)!

w
qj
j (aj)qj↑1

∑
(q1,...,qj−1)∈Dj−1,q−qj

(q − qj)!
q1! · · · qj−1!

j−1∏
i=1

wqii (ai)qi↑1.
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Then

∑
(q1,...,qj)∈Dj,q

q!
q1! · · · qj !

j∏
i=1

wqii (ai)qi↑1

=
q∑

qj=0

q!
qj !(q − qj)!

w
qj
j (aj−1)qj↑1w

q−qj
j−1 (a− aj)(q−qj)↑1

× F (j−2)
D

(
−q + qj , a1, . . . , aj−2, a− aj ;

wj−1 − w1

wj−1
, . . . ,

wj−1 − wj−2

wj−1

)

=
Γ(a− aj)

Γ(a1) · · ·Γ(aj−1)

∫
∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

×
q∑

qj=0

q!
qj !(q − qj)!

w
qj
j (aj)qj↑1w

q−qj
j−1 (a− aj)(q−qj)↑1

×

(
1−

j−2∑
i=1

zi
wj−1 − wi
wj−1

)q−qj
dz1 · · · dzj−2

=
Γ(a− aj)

Γ(a1) · · ·Γ(aj−1)

∫
∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

×

(
1−

j−2∑
i=1

zi
wj − wi
wj

−

(
1−

j−2∑
i=1

zi

)
wj − wj−1

wj

)q

×
q∑

qj=0

q!
qj !(q − qj)!

w
q−qj
j (aj)qj↑1

 −wj∑j−2
i=1 zi

wj−wi
wj

+
(

1−
∑j−2

i=1 zi

)
wj−wj−1

wj
− 1

qj

× (a− aj)(q−qj)↑1dz1 · · · dzj−2

Then, by applying (6.3.11), we obtain from the last equation

Γ(a− aj)
Γ(a1) · · ·Γ(aj−1)

wqj (a)q↑1

×
∫

∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

×

(
1−

j−2∑
i=1

zi
wj − wi
wj

−

(
1−

j−2∑
i=1

zi

)
wj − wj−1

wj

)q

× 2F1

−q, aj ; a;

∑j−2
i=1 zi

wj−wi
wj

+
(

1−
∑j−2

i=1 zi

)
wj−wj−1

wj∑j−2
i=1 zi

wj−wi
wj

+
(

1−
∑j−2

i=1 zi

)
wj−wj−1

wj
− 1

 dz1 · · · dzj−2
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=
Γ(a− aj)

Γ(a1) · · ·Γ(aj−1)
wqj (a)q↑1

×
∫

∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

× 2F1

(
−q, a− aj ; a;

j−2∑
i=1

zi
wj − wi
wj

+

(
1−

j−2∑
i=1

zi

)
wj − wj−1

wj

)
dz1 · · · dzj−2

Since a− aj > 0 and

1 > max

{
0,<

(
j−2∑
i=1

zi
wj − wi
wj

+ (wj − wj−1)

(
1−

j−2∑
i=1

zi

))}
then we can apply equation 7.621.4 in Gradshteyn and Ryzhik [77] and we obtain

1
Γ(a1) · · ·Γ(aj−1)

wqj (a)q↑1

∫ +∞

0
e−zj−1z

a−aj−1
j−1

×
∫

∆(j−2)

j−2∏
i=1

zai−1
i

(
1−

j−2∑
i=1

zi

)aj−1−1

× 1F1

(
−q; a; zj−1

(
j−2∑
i=1

zi
wj − wi
wj

+

(
1−

j−2∑
i=1

zi

)
wj − wj−1

wj

))
dz1 · · · dzj−2dzj−1

using the change of variable yi = zizj−1 per i = 1, . . . , j − 2 and yj−1 = zj−1 we have

1
Γ(a1) · · ·Γ(aj−1)

wqj (a)q↑1

∫ +∞

0
e−yj−1

×
∫
B(yj)

j−2∏
i=1

yai−1
i

(
yj−1 −

j−2∑
i=1

yi

)aj−1−1

× 1F1

(
−q; a;

j−2∑
i=1

yi
wj − wi
wj

+

(
yj−1 −

j−2∑
i=1

yi

)
wj − wj−1

wj

)
dy1 · · · dyj−1

where

B(yj) =

{
(y1, . . . , yj−1) : yi ≥ 0,

j−1∑
i=1

yi ≤ yj

}
and using the change of variable ui = yi per i = 1, . . . , j − 2 e uj−1 = yj−1 −

∑
1≤i≤j−2 yi

we have

1
Γ(a1) · · ·Γ(aj−1)

wqj (a)q↑1

∫
(R+)j−1

e−
Pj−1
i=1 ui

j−1∏
i=1

uai−1
i

× 1F1

(
−q; a;

j−1∑
i=1

ui
wj − wi
wj

)
du1 · · · duj−1
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Now, relying on Proposition 6.3.1 and Lemma 6.3.1, we are able to provide a solution
to the problem P1) and to the problem P2) for the generalized Dirichlet process.

Proposition 6.3.2. Let {Xn, n ≥ 1} be an exchangeable sequence governed by a general-
ized Dirichlet process with parameter γ ∈ N. Then

P(K(n)
m = j|X(1,n)

Kn
) =

θj(γθ)n↑1
Γ(n+m)F(k, n,n, θ, γ)

m∑
s=j

(
m

s

)
(n)(m−s)↑1 (6.3.15)

×
∑
rk

∫ 1

0

zγθ−1(1− z)n+m−1Bs,j(w•(z, γ))F (k−1)
D (−(m− s),nk−1;n;W )∏γ−1

l=1 (1− zl/γ)θ+
Pk
i=1 ni1{l=ri}+(m−s)1{l=rk}

dz

where nk−1 := (n1, . . . nk−1) and W := (wk − w1/wk, . . . , wk − wk−1/wk) with wi :=∏
1≤l≤γ−1(1 − zl/γ)−1{l=ri}. This also implies that (Kn, NKn) is sufficient for predicting

the number of new distinct species K(n)
m .

Proof. Given the sample X
(1,n)
Kn

with k distinct species and frequencies n, we need to
compute

P(K(n)
m = j|X(1,n)

Kn
) (6.3.16)

=
∑

π∈Pm,k+j

p
(n+m)
k+j (n1 +m1(π), . . . , nk +mk(π),mk+1(π), . . . ,mk+j(π))

p
(n)
k (n1, . . . , nk)

,

where Pm,k+j denotes the set of all partitions on m observations into q ≤ m classes, with
q ∈ {j, . . . , j + k} i.e. j observations are new species and q − j ≤ k coincide with some of
those already observed in X(1,n)

Kn
. We first focus on the numerator of (6.3.16). In particular,

we have

∑
π∈Pm,k+j

p
(n+m)
k+j (n1 +m1(π), . . . , nk +mk(π),mk+1(π), . . . ,mk+j(π))

=
∑

π∈Pm,k+j

∑
rk+j

(γ!)θθk+j
∏k+j
i=1 Γ((ni +mi(π))1{i≤k} +mi(π)1{k<i≤k+j})

γγθ(γθ)(m+n)↑1

× F (γ−1)
D

(
γθ, α∗(n + m, rk+j); γθ + n+m;

Jγ−1

γ

)

where α∗(n + m, rk+j) := (α∗1(n + m, rk+j), . . . , α∗γ−1(n + m, rk+j)) having set, for l =
1, . . . , γ−1, α∗l (n + m, rk+j) := θ+

∑
1≤i≤k+j((ni+mi(π))1{i≤k}+mi(π)1{k<i≤k+j})1{l=ri}.
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Then, using an Eulero-type integral representation for the function F
(γ−1)
D , we get∑

π∈Pm,k+j

p
(n+m)
k+j (n1 +m1(π), . . . , nk +mk(π),mk+1(π), . . . ,mk+j(π))

=
(γ!)θθk+j

γγθΓ(n+m)

∑
rk+j

m∑
s=j

(
m

s

)
1
j!

∑
(mk+1,...,mk+j)∈Dj,s

(
s

mk+1, . . . ,mk+j

) j∏
i=1

Γ(mk+i)

×
∑

(m1,...,mk)∈D(0)
k,m−s

(
m− s

m1, . . . ,mk

) k∏
i=1

Γ(ni +mi)
∫ 1

0

zγθ−1(1− z)n+m−1∏γ−1
l=1 (1− zl/γ)α

∗
l (n+m,rk+j)

dz

(6.3.17)

=
(γ!)θθk+j

γγθΓ(n+m)

∑
rk+j

m∑
s=j

(
m

s

)
1
j!

∑
(mk+1,...,mk+j)∈Dj,s

(
s

mk+1, . . . ,mk+j

) j∏
i=1

Γ(mk+i)

×
∫ 1

0

zγθ−1(1− z)n+m−1∏γ−1
l=1 (1− zl/γ)θ+

Pk+j
i=1 (ni1{i≤k}+mi1{k<i≤k+j})1{l=ri}

×
∑

(m1,...,mk)∈D(0)
k,m−s

(
m− s

m1, . . . ,mk

) k∏
i=1

γ−1∏
l=1

(
1− zl

γ

)−mi1{l=ri}
Γ(ni +mi)dz

and by Lemma 6.3.1 we obtain

(γ!)θθk+j

γγθΓ(n+m)

∑
rk+j

m∑
s=j

(
m

s

)
1
j!

∑
(mk+1,...,mk+j)∈Dj,s

(
s

mk+1, . . . ,mk+j

) j∏
i=1

Γ(mk+i)

×
∫ 1

0

zγθ−1(1− z)n+m−1∏γ−1
l=1 (1− zl/γ)θ+

Pk+j
i=1 (ni1{i≤k}+mi1{k<i≤k+j})1{l=ri}

×
γ−1∏
l=1

(
1− zl

γ

)−(m−s)1{l=rk}
(n)(m−s)↑1

k∏
i=1

Γ(ni)F
(γ−1)
D (−(m− s),nk−1;n;W )dz

where nk−1 = (n1, . . . , nk−1) and W = (wk − w1/wk, . . . , wk − wk−1/wk) with wi =∏
1≤i≤γ−1(1 − zl/γ)1{l=ri} . The sum with respect the set Dj,s in (6.3.17) can now be

computed using an approach similar to the one used for proving Proposition 6.3.1. This
allows to write (6.3.17) as

(γ!)θθk+j

γγθΓ(n+m)

∑
rk

m∑
s=j

(
m

s

)∫ 1

0

zγθ−1(1− z)n+m−1∏γ−1
l=1 (1− zl/γ)θ+

Pk
i=1 ni1{l=ri}

× s!
j!

∑
(mk+1,...,mk+j)∈Dj,s

j∏
i=1

1
mk+i

(
γ−1∑
l=1

(
1− zl

γ

)−mk+i

+ 1

)

×
γ−1∏
l=1

(
1− zl

γ

)−(m−s)1{l=rk}
(n)(m−s)↑1

k∏
i=1

Γ(ni)F
(γ−1)
D (−(m− s),nk−1;n;W )dz
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where

s!
j!

∑
(mk+1,...,mk+j)∈Dj,s

j∏
i=1

1
mk+i

(
γ−1∑
l=1

(
1− zl

γ

)−mk+i

+ 1

)
corresponds to the (s, j)-th partial Bell polynomial with weight sequence w•(z, γ) given
by (6.3.8). Then, we obtain

((γ)!)θθk+j

γγθΓ(n+m)

∑
rk

m∑
s=j

(
m

s

)∫ 1

0

zγθ−1(1− z)n+m−1Bs,j(w•(z, γ))∏γ−1
l=1 (1− zl/γ)a+

Pk
i=1 ni1{l=ri}

×
γ−1∏
l=1

(
1− zl

γ

)−(m−s)1{l=rk}
(n)(m−s)↑1

k∏
i=1

Γ(ni)F
(γ−1)
D (−(m− s),nk−1;n;W )dz

and the proof is completed by dividing the expression by the EPPF of the generalized
Dirichlet process with parameter γ ∈ N, which corresponds to the denominator in (6.3.16).

It is important to remark that, for the generalized Dirichlet process, the conditional
distribution of the number of new distinct species exhibits the desired dependence on both
Kn and NKn . This is in contrast to Gibbs-type r.p.m.s, where we have dependence solely on
Kn and not even on Kn in the Dirichlet case. Hence, although the distribution in (6.3.15)
is quite complicated, such a property makes the generalized Dirichlet process appealing
for practical purposes. Moreover, having (6.3.15) at hand, the computation of the Bayes
estimate of K(n)

m , given the “basic sample”, namely E[K(n)
m |Kn = k], is straightforward.

With reference to problem P2), we now derive a Bayesian estimator of the probability
of discovering a new species at the (n+m+ 1)-th draw, given an initial observed sample
of size n with k distinct species and frequencies n. The unobserved sample of size m will
feature K(n)

m ∈ {0, 1, . . . ,m} new species. Among the m observations L(n)
m ∈ {K(n)

m , . . . ,m}
will belong to theK(n)

m new species with frequenciesM
K

(n)
m

= (MKn+1, . . . ,MKn+K
(n)
m

) such

that Mi ≥ 1, for i = Kn + 1, . . . ,Kn + K
(n)
m , and

∑
Kn+1≤i≤Kn+K

(n)
m
Mi = L

(n)
m ; clearly,

if K(n)
m = 0 also L(n)

m = 0. Moreover, m− L(n)
m observations will belong to species already

observed in the “basic sample” and their frequencies can be characterized by the vector
MKn = (M1, . . . ,MKn), where

∑
1≤i≤KnMi = m − L(n)

m and Mi ≥ 0, for i = 1, . . . ,Kn.
Note that Mi = 0 means that the i-th species of the “basic sample” has not been observed
and clearly, if L(n)

m = m, then MKn = (0, . . . , 0). Our aim is to estimate

P(Kn+m
1 = 1|X(1,n)

Kn
, X

(2,m)

K
(n)
m

), (6.3.18)

where X(1,n)
Kn

is observed and X(2,m)

K
(n)
m

not. Considering the sufficiency of the r.v. (Kn, NKn),
(6.3.18) reduces to estimating the random probability

P(Kn+m
1 = 1|Kn = k,Nk = n,K(n)

m ,MKn ,MK
(n)
m

) (6.3.19)
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where the randomness is due to the unobserved (K(n)
m ,MKn ,MK

(n)
m

). The next result pro-
vides a solution to this problem.

Proposition 6.3.3. Let {Xn, n ≥ 1} be an exchangeable sequence governed by a general-
ized Dirichlet process with parameter γ ∈ N. Then, the Bayes estimate, with respect to a
squared loss function, of the probability of observing a new species at the (n + m + 1)-th
draw, conditional on an initial sample of size n with k distinct species and frequencies n,
is given by

D̂(n,k,n)
m =

m∑
j=0

θj+1(γθ + n)−1(γθ)n↑1(γθ)(n+m+1)↑1

F(k, n,n, a, γ)Γ(n+m+ 1)(γθ)(n+m)↑1

m∑
s=j

(
m

s

)
(n)(m−s)↑1 (6.3.20)

×
∑
rk+1

∫ 1

0

zγθ−1(1− z)n+m−1Bs,j(w•(z, γ))F (k−1)
D (−(m− s),nk−1;n;W )∏γ−1

l=1 (1− zl/γ)θ+
Pk+1
i=1 (ni1{i≤k}+1{i>k})+(m−s)1{l=rk}

dz

where nk−1 := (n1, . . . nk−1) and W := (wk − w1/wk, . . . , wk − wk−1/wk) with wi :=∏
1≤l≤γ−1(1− zl/γ)−1{l=ri}.

Proof. The Bayes estimator of the random probability (6.3.19), with respect to a squared
loss function, is given by its expected value with respect to the distribution of the r.v.
(K(n)

m ,MKn ,MK
(n)
m

) given X
(1,n)
Kn

. In particular, we have

D̂(n,k,n)
m =

m∑
j=0

m∑
s=j

(
m

s

)
1
j!

∑
(mk+1,...,mk+j)∈Dj,s

(
s

mk+1, . . . ,mk+j

)

×
∑

(m1,...,mk)∈D(0)
k,m−s

(
m− s

m1, . . . ,mk

)

× P(Kn+m
1 = 1|Kn = k,NKn = n,K(n)

m = j,MKn = mk,MK
(n)
m

= mj)

× P(K(n)
m = j,MKn = mk,MK

(n)
m

= mj |Kn = k,NKn = n).

Note that in each summand the first factor is the one step prediction and the second factor
is P(K(n)

m = j,MKn = mk,MK
(n)
m

= mj |Kn = k,NKn = n), a distribution we have derived
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in the proof of Proposition 6.3.2. Hence, we obtain

D̂(n,k,n)
m =

m∑
j=0

θj(γθ)n↑1
(γθ)n+m↑1

∏k
i=1 Γ(ni)

m∑
s=j

(
m

s

)
1
j!

×
∑

(mk+1,...,mk+j)∈Dj,s

(
s

mk+1, . . . ,mk+j

)

×
∑

(m1,...,mk)∈D(0)
k,m−s

(
m− s

m1, . . . ,mk

)
w0(n+m, k + j,n + m)

×
F(k + j, n+m,n + m, a, γ)

∏j
i=1 Γ(mk+i)

∏k
i=1 Γ(ni +mi)

F(k, n,n, θ, γ)

=
m∑
j=0

θj+1(γθ + n)−1(γθ)n↑1
F(k, n,n, θ, γ)(γθ)n+m↑1

∏k
i=1 Γ(ni)

×
m∑
s=j

(
m

s

)
1
j!

∑
(mk+1,...,mk+j)∈Dj,s

(
s

mk+1, . . . ,mk+j

) j∏
i=1

Γ(mk+i)

×
∑

(m1,...,mk)∈D(0)
k,m−s

(
m− s

m1, . . . ,mk

) k∏
i=1

Γ(ni +mi)

× F(k + j + 1, n+m+ 1, (n + m)+, θ, γ).

Using the same arguments exploited in the proof of Proposition 6.3.2 we obtain

D̂(n,k,n)
m =

m∑
j=0

θj+1(γθ + n)−1(γθ)n↑1(γθ)(n+m+1)↑1

F(k, n,n, θ, γ)Γ(n+m+ 1)(γθ)(n+m)↑1
∏k
i=1 Γ(ni)

×
∑
rk+1

m∑
s=j

(
m

s

)∫ 1

0

zγθ−1(1− z)n+mBs,j(w•(z, γ))∏γ−1
l=1 (1− zl/γ)θ+

Pk+1
i=1 (ni1{i≤k}+1{i>k})1{l=ri}

×
γ−1∏
l=1

(
1− zl

γ

)−(m−s)1{l=rk}
(n)(m−s)↑1

k∏
i=1

Γ(ni)F
(γ−1)
D (−(m− s),nk−1;n;W )dz.

Suitable simplifications yield then the estimator in (6.3.20).

The Bayes estimator in (6.3.20), together with E[K(n)
m |(Kn, NKn)], represent the new

Bayesian counterparts to the celebrated Good-Toulmin estimator (see Good and Toulmin[76])
and represent alternatives to Bayesian estimators derived from Gibbs-type r.p.m.s. With
respect to the latter, these estimators have the advantage of incorporating all the infor-
mation conveyed by the sample at the cost of a higher computational complexity.

In order to complete the description of the conditional structure of generalized Dirichlet
processes we now derive the posterior distribution that is the conditional distribution of P̃γ
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given a sample X1, . . . , Xn featuring Kn distinct observations, denoted by X∗1 , . . . , X
∗
Kn

,
with frequencies NKn . For any pair of random elements Z and W defined on (Ω,F ,P),
we use the symbol Z(W ) to denote a random element on (Ω,F ,P) whose distribution co-
incides with a regular conditional distribution of Z, given W . By specializing the general
results for NRMIs of James et al. [100], in the next proposition we provide the desired
posterior characterization of both the un-normalized CRM µ̃ with intensity (6.3.1) and
the generalized Dirichlet process P̃γ(·) := µ̃(·)/µ̃(X). In particular, the result is a special
case of Proposition 6.3.4.

Proposition 6.3.4. Let P̃γ be a generalized Dirichlet process with parameter γ ∈ N. Then,
the distribution of ξ̃, given the observations X1, . . . , Xn and suitable latent variable Un,
coincides with

µ̃(Un,X1,...,Xn) d= µ̃(Un) +
Kn∑
j=1

J
(Un,X1,...,Xn)
i δX∗j

where

i) µ̃(Un) is a CRM with intensity measure

ν(Un)(dx, dv) =
γ∑
l=1

e−v(l+Un)

v
dvα(dx); (6.3.21)

ii) X∗j are fixed points of discontinuity, for j = 1, . . . ,Kn, and the r.v.s J (Un,X1,...,Xn)
j ’s

are the corresponding jumps which are absolutely continuous with respect to the
Lebesgue measure with density

f
J

(Un,X1,...,Xn)
j

(v) ∝ vni−1
γ∑
l=1

e−v(l+Un) j = 1, . . . ,Kn; (6.3.22)

iii) the jumps J (Un,X1,...,Xn)
j , for j = 1, . . . ,Kn, are mutually independent and indepen-

dent from µ̃(Un).

Moreover, the latent variable Un, given X1, . . . , Xn, is absolutely continuous with respect
to the Lebesgue measure with density

f
U

(X1,...,Xn)
n

(u) ∝ un−1
γ∏
l=1

(l + u)−a
Kn∏
j=1

Γ(nj)(ζ(nj , 1 + u)− ζ(nj , 1 + γ + u)) (6.3.23)

where ζ(x, y) stands for the generalized Riemann Zeta function (or Herwitz function) with
parameters x and y.
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Finally, the posterior distribution of P̃γ, given X1, . . . , Xn and Un, is again a NRMI
(with fixed points of discontinuity) and coincides in distribution with

w
µ̃(Un)

µ̃(Un)(X)
+ (1− w)

∑Kn
j=1 J

(Un,X1,...,Xn)
j δX∗j∑Kn

j=1 J
(Un,X1,...,Xn)
j

(6.3.24)

where w = µ̃(Un)(X)[µ̃(Un)(X) +
∑

1≤j≤Kn J
(Un,X1,...,Xn)
j ]−1.

Proof. Since γ ∈ N the intensity measure (6.3.1) of µ̃ reduces to

ν(dv, dx) =
γ∑
l=1

e−vl

v
dvα(dx).

Now since the generalized Dirichlet process is a NRMI and, by hypothesis α is non-atomic,
we can apply Theorem 5.2.1 we ensues the existence of a latent variable Un, such that
the distribution of µ̃, given X1, . . . , Xn and Un coincides with the distribution of µ̃(Un) +∑

1≤j≤Kn J
(Un,X1,...,Xn)
j δX∗j where µ̃(Un) is a suitably updated CRM and the J (Un,X1,...,Xn)

j ’s
are absolutely continuous with density expressed in the terms of the intensity measure of
µ̃. It is then straightforward to show that the intensity measure associated to µ̃(Un) is
of the form (6.3.21) and that the density of J (Un,X1,...,Xn)

j is given by (6.3.22). In order
to derive the density function for conditional distribution of Un, given X1, . . . , Xn we
resort to to Proposition 5.2.1 and, after some algebra, we obtain (6.3.23). Given this, the
characterization of the posterior distribution of P̃γ in (6.3.24) follows from from Theorem
5.2.2.

Despite the fact that the previous result completes the theoretical analysis of the con-
ditional structure induced by generalized Dirichlet processes, it is also useful for practical
purposes. Indeed, large values of the parameter γ combined with large additional sam-
ples m, make the numerical computation of the distributions and estimators derived in
Propositions cumbersome. If this is the case, then one can devise a simulation algorithm
relying on the posterior characterization of Proposition 6.3.4. By combining an inverse
Lévy measure algorithm, such as the Ferguson-Klass method (see Ferguson and Klass [64]
and Walker and Damien [190]), for simulating trajectories of µ̃(Un) with a Metropolis-
Hasting step for drawing samples from UX1,...,Xn

n , one easily obtains realizations of the
posterior distribution of the generalized Dirichlet process. Then one can sample a new
value Xn+1, update the posterior according to Proposition 6.3.4 and sample a realization
of the posterior given (X,Xn+1). Proceeding along these lines up to step m one obtains a
realization of the additional sample Xn+1, . . . , Xn+m. By repeating the procedure N times,
one obtains a collection of future scenarios {(X(i)

n+1, . . . , X
(i)
n+m), i = 1, . . . , N} which can
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be used in order to evaluate the quantities of interest. For instance, if j(i) is the num-
ber of new distinct species observed in X

(i)
n+1, . . . , X

(i)
n+m, E[K(n)

m |Kn] can be evaluated as
1/N

∑
1≤i≤N j

(i)
m . Finally note that Proposition 6.3.4 is also important in the context of

mixture modeling, where inference is necessarily simulation based given the complexity of
the models: in fact, it allows to derive, in the terminology of Papaspiliopoulos and Roberts
[148], conditional sampling schemes, which in the case of the generalized Dirichlet process,
are simpler to implement than marginal ones.

6.4 NRMIs in species sampling problems

We conclude this chapter by investigating some conditional structures that emerge when
the observations are sampled from exchangeable sequences governed by a general homo-
geneous NRMIs.

The EPPF of the associated exchangeable random partition is known to be

p
(n)
k (n1, . . . , nk) =

1
Γ(n)

∫
R+

un−1e−Ψ(u)
k∏
j=1

κnj (u)du (6.4.1)

where

κnj (u) =
∫

X×R+

vnje−uvρ(dv)α(dx) j = 1, . . . , k

The issue we address consists in evaluating, conditionally on an exchangeable random
partition with EPPF (6.4.1), the probability of sampling in m draws a certain number of
observations yielding new partition groups with specified frequencies.

Proposition 6.4.1. Let {Xn, n ≥ 1} be an exchangeable sequence of r.v.s governed by
an homogeneous NRMI on X with Poisson intensity measure ν(ds, dx) = ρ(ds)α(dx). If
X

(1:n)
Kn

and X
(2:m)

K
(n)
m

are two sample from {Xn, n ≥ 1}, then the joint distribution of K(n)
m ,

L
(n)
m and S

L
(n)
m

, given Kn and NKn, is of the form

P(K(n)
m = k, L(n)

m = s, S
L

(n)
m

= s|Kn = j,NKn = n) (6.4.2)

=
(
m

s

)
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)ιm−s(u)
∏k
i=1 κsi(u)du

Γ(n+m)
∫

R+ un−1e−Ψ(u)
∏j
i=1 κni(u)du

where we defined

ιm−s(u) :=
∫

(X×R+)j

(
j∑
i=1

vi

)m−s j∏
i=1

vnii e−uviρ(dvi)α(dx)
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Proof. Let Λ
m−L(n)

m
= (Λ

1,m−L(n)
m
, . . . ,Λ

Kn,m−L(n)
m

) be the vector of non-negative integers
denoting the number of new observations in each of the j groups into which the first n
observations are partitioned. If we define the set

D
(0)
j,m−s :=

{
(λ1, . . . , λj) ∈ {0, . . . ,m− s}j ,

j∑
i=1

λi = m− s

}
then,

P(K(n)
m = k, L(n)

m = s, S
L

(n)
m

= s|Kn = j,NKn = n)

=
(
m

s

) ∑
(λ1,...,λj)∈D

(0)
j,m−s

(
m− s
λ1 · · ·λj

)
1
k!

(
s

s1 · · · sk

)

×
Γ(n)

∫
R+ u

n+m−1eΨ(u)
∏j
i=1 κni+λi(u)

∏k
i=1 κsi(u)du

Γ(n+m)
∫

R+ un−1eΨ(u)
∏j
i=1 κni(u)du

In particular, using the expression for κni+λi(u) at the numerator of the last equation, we
obtain∑
(λ1,...,λj)∈D

(0)
j,m−s

(
m− s
λ1 · · ·λj

) j∏
i=1

κni+λi(u)

=
∑

(λ1,...,λj)∈D
(0)
j,m−s

(
m− s
λ1 · · ·λj

) j∏
i=1

∫
X×R+

vni+λie−uvρ(dv)α(dx)

For any integral in the product, we consider the change of variable v = si for i = 1, . . . , j,
then the last equation can be written as

∑
(λ1,...,λj)∈D

(0)
j,m−s

(
m− s
λ1 · · ·λj

)∫
(X×R+)j

j∏
i=1

vni+λii e−uviρ(dvi)α(dx)

and for the Multinomial theorem we obtain∫
(X×R+)j

(
j∑
i=1

vi

)m−s j∏
i=1

vnii e−uviρ(dvi)α(dx)

Then, the result can be obtained by substitution.

By marginalizing the conditional distribution in (6.4.2) with respect to S
L

(n)
m

and,

then, with respect to K(n)
m one obtains the conditional distribution for the number of new

groups and the number of observations belonging to these new groups and the distribution
of L(n)

m , respectively. In particular, the solution to the problem P1) can be obtained by
marginalizing the conditional distribution in (6.4.2) with respect to (L(n)

m , S
L

(n)
m

).
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Corollary 6.4.1. Let {Xn, n ≥ 1} be an exchangeable sequence of r.v.s governed by an
homogeneous NRMI on X with Poisson intensity measure ν(ds, dx) = ρ(ds)α(dx). If X(1:n)

Kn

and X(2:m)

K
(n)
m

are two sample from {Xn, n ≥ 1}, then the joint distribution of K(n)
m and L(n)

m ,
given Kn and NKn, is of the form

P(K(n)
m = k, L(n)

m = s|Kn = j,NKn = n) (6.4.3)

=
(
m

s

)
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)Bs,k(κ•(u))ιm−s(u)du

Γ(n+m)
∫

R+ un−1e−Ψ(u)
∏j
i=1 κni(u)du

for k ≤ s = 0, . . . ,m where Bs,k(w•(u)) is the (s, k)-th partial Bell polynomial with weight
sequence w•(u) = κ•(u). The distribution of K(n)

m , conditionally given Kn and NKn, and
the distribution of L(n)

m , given Kn and NKn, is of the form

P(K(n)
m = k|Kn = j,NKn = n) (6.4.4)

=
m∑
s=k

(
m

s

)
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)Bs,k(w•(u))ιm−s(u)du

Γ(n+m)
∫

R+ un−1e−Ψ(u)
∏j
i=1 κni(u)du

and

P(L(n)
m = s|Kn = j,NKn = n) =

(
m

s

)
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)Bs(w•(u))ιm−s(u)du

Γ(n+m)
∫

R+ un−1e−Ψ(u)(
∏j
i=1 κni(u))du

(6.4.5)

where Bs(w•(u)) =
∑

0≤k≤sBs,k(w•(u)).

Proof. If we define

D
(1)
k,s :=

{
(s1, . . . , sk) ∈ [s]k,

k∑
i=1

si = s

}
then we obtain

P(K(n)
m = k, L(n)

m = s|Kn = j,NKn = n)

=
∑

(s1,...,sk)∈D(1)
k,s

(
m

s

)
1
k!

(
s

s1 · · · sk

)
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)ιm−s(u)
∏k
i=1 κsi(u)du

Γ(n+m)
∫

R+ un−1e−Ψ(u)
∏j
i=1 κni(u)du

=
(
m

s

)
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)Bs,k(w•(u))ιm−s(u)du

Γ(n+m)
∫

R+ un−1e−Ψ(u)
∏j
i=1 κni(u)du

where

Bs,k(w•(u)) =
s!
k!

∑
(s1,...,sk)∈D(1)

k,s

k∏
i=1

κsi(u)
si!
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is the (s, k)-th partial Bell polynomial with weight sequence w•(u) = κ•(u). Equation
(6.4.4) and equation (6.4.5) can be easily obtained from equation (6.4.3) summing over s
and k, respectively.

Bayes estimator, under quadratic loss function, for the expected number of new clusters
can be easily recoverd from equation (6.4.4) and equation (6.4.5). In particular, we have

E[K(n)
m |Kn = j,NKn = n] (6.4.6)

=
m∑
k=0

k

m∑
s=k

(
m

s

)
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)Bs,k(w•(u))ιm−s(u)du

Γ(n+m)
∫

R+ un−1e−Ψ(u)
∏j
i=1 κni(u)du

Often, interest relies also in determining an estimator for the number of observations in
the subsequent m sample that will belong to the new species. For this purpose, one can
resort ro (6.4.5) and the corresponding Bayes estimator is given by

E[L(n)
m |Kn = j,NKn = n] =

m∑
s=0

s

(
m

s

)
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)Bs(w•(u))ιm−s(u)du

Γ(n+m)
∫

R+ un−1e−Ψ(u)
∏j
i=1 κni(u)du

(6.4.7)

In particular, E[L(n)
m |Kn = j]/m is the expected proportion of genes in the new sample

which do not coincide with previously observed ones.
Turning to the problem ii), we now derive a Bayesian nonparametric estimator for

the probability of discovering a new species at the (n+m+ 1)-th draw, given the “basic
sample” X

(1:n)
Kn

. If we suppose, for the moment, that we have observed both the basic
sample and the second sample, the discovery probability is given by

P(K(n+m)
1 = 1|K(n)

m = k, L(n)
m = s, S

L
(n)
m

= s,Kn = j,NKn = n)

However, our estimate is obtained without observing the outcome of the “second sample”
and, hence, we have to estimate the random probability

D(n:j)
m := P(K(n+m)

1 = 1|K(n)
m , L(n)

m , S
L

(n)
m
,Kn = j,NKn = n) (6.4.8)

where the randomness in the above expression is due to the randomness of (K(n)
m , L

(n)
m , S

L
(n)
m

).
Baysian inference on (6.4.8) is based on the posterior distribution provided in Corollary
(6.4.1). Thus, the bayesian estimator of (6.4.8), with respect to a quadratic loss function,
is given by its expected value with respect to the posterior distribution of the number of
species. This represents a Bayesian counterpart to the celebrated Good-Toulmin estimator.
In other word we provide a Bayesian nonparametric estimator for

Un+m =
∑
i≥1

pi1{0}(Ni,n+m)
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Proposition 6.4.2. Let {Xn, n ≥ 1} be an exchangeable sequence of r.v.s governed by
an homogeneous NRMI on X with intensity measure ν(ds, dx) = ρ(ds)α(dx). The Bayes
estimate, under quadratic loss function, of the probability of observing a new species at the
(n+m+ 1)-th draw, given the X(1,n)

Kn
, is given by

D̂(n:j)
m =

(
(n+m)Γ(n+m)

∫
R+

un−1
2 e−Ψ(u2)(

j∏
i=1

κni(u2))du2

)−1

(6.4.9)

× Γ(n)
∫

(R+)2

τ1(u1)(u2
1u2)n+m−1e−Ψ(u2)−(j+k)Ψ(u1)ι∗m−s(u1, u2)Bs,k(w•(u1, u2))du2du1

where

ι∗m−s(u1, u2) :=
∫

(X×(R+)2)j

(
j∑
i=1

v2,iv1,i

)m−s

×
j∏
i=1

(v2,iv1,i)nie−u2,iv2,i−u1,iv1,iρ(dv2,i)ρ(dv1,i)α(dx)

and where Bs,k(w•(u1, u2)) is the (s, k)-th partial Bell polynomial with weight sequence
w•(u1, u2) = τ•(u1)κ•(u2).

Proof. Let us first considere P̃ an homogeneous NRMI. Undere this assumption, to find the
Bayes estimate, under quadratic loss function, of the probability of observing a new species
at the (n+m+1)-th draw, conditional on the X(1,n)

Kn
we can use arguments similar to those

one used in Proposition 6.4.1. In particular, let Λ
m−L(n)

m
= (Λ

1,m−L(n)
m
, . . . ,Λ

Kn,m−L(n)
m

) be
the vector of non-negative integers denoting the number of new observations in each of
the j groups into which the first n observations are partitioned. Let D(0)

j,m−s and D
(1)
k,s be

the sets defined in Proposition 6.4.1 and Corollary 6.4.1, respectively. Then

D̂(n:j)
m =

m∑
k=0

m∑
s=k

(
m

s

) ∑
(λ1,...,λj)∈D

(0)
j,m−s

(
m− s
λ1 · · ·λj

)
1
k!

∑
(s1,...,sk)∈A(1)

k,s

(
s

s1 · · · sk

)

× P(K(n+m)
1 = 1|K(n)

m = k, L(n)
m = s, S

L
(n)
m

= s,Kn = j,NKn = n)

× P(K(n)
m = k, L(n)

m = s, S
L

(n)
m

= s|Kn = j,NKn = n)

where in each summand the first factor is the one step prediction which characterized a
NRMI and which corresponds to (see James et. al [100])

1
n+m

∫
R+

uτ1(u)f
(X

(1,n)
Kn

,X
(2,m)

K
(m)
n

)

Un
(u)du

where

f
(X

(1,n)
Kn

,X
(2,m)

K
(m)
n

)

Un
(u) ∝ un+m−1

Kn∏
i=1

τni+λi(u)
K

(m)
n∏
i=1

τsi(u)e−Ψ(u)
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and the second factor is given by equation (6.4.2). Then, we obtain

m∑
k=0

m∑
s=k

(
m

s

) ∑
(λ1,...,λj)∈D

(0)
j,m−s

(
m− s
λ1 · · ·λj

)
1
k!

∑
(s1,...,sk)∈A(1)

k,s

(
s

s1 · · · sk

)

×
Γ(n)

∫
R+ u

n+m−1e−Ψ(u)(
∏j
i=1 κni+λi(u)

∏k
i=1 κsi(u))du

Γ(n+m)
∫

R+ un−1e−Ψ(u)(
∏j
i=1 κni(u))du

× 1
n+m

∫
R+

uτ1(u)f
(X

(1,n)
Kn

,X
(2,m)

K
(m)
n

)

Un
(u)du

which is proportional to

m∑
k=0

m∑
s=k

(
m

s

) ∑
(λ1,...,λj)∈D

(0)
j,m−s

(
m− s
λ1 · · ·λj

)
1
k!

∑
(s1,...,sk)∈A(1)

k,s

(
s

s1 · · · sk

)

×
Γ(n)

∫
R+ u

n+m−1
2 e−Ψ(u2)(

∏j
i=1 κni+λi(u2)

∏k
i=1 κsi(u2))du2

(n+m)Γ(n+m)
∫

R+ u
n−1
2 e−Ψ(u2)(

∏j
i=1 κni(u2))du2

×
∫

R+

u1τ1(u1)un+m−1
1

j∏
i=1

τni+λi(u1)
k∏
i=1

τsi(u1)e−Ψ(u1)du1

where for the first integral we used the change of variable u = u2 and for the second
integral we used the change of variable u = u1. As regard the sum on D(0)

j,m−s we can solve
it by using the definition of τni+λi(u1) and κni+λi(u2). In particular we have

∑
(λ1,...,λj)∈D

(0)
j,m−s

(
m− s
λ1 · · ·λj

) j∏
i=1

τni+λi(u1)κni+λi(u2)

=
∑

(λ1,...,λj)∈D
(0)
j,m−s

(
m− s
λ1 · · ·λj

) j∏
i=1

∫
X×(R+)2

(v2v1)ni+λie−u2v2−u1v1ρ(dv2)ρ(dv1)α(dx)

For any integral in the product, we consider the change of variable v1 = v1,i and v2 = v2,i,
for i = 1, . . . , j, then the last equation can be written as

∑
(λ1,...,λj)∈D

(0)
j,m−s

(
m− s
λ1 · · ·λj

)∫
(X×(R+)2)j

j∏
i=1

(v2,iv1,i)ni+λie−u2,iv2,i−u1,iv1,iρ(dv2,i)ρ(dv1,i)α(dx)

and for the Multinomial theorem, we obtain

∫
(X×(R+)2)j

(
j∑
i=1

v2,iv1,i

)m−s j∏
i=1

(v2,iv1,i)nie−u2,iv2,i−u1,iv1,iρ(dv2,i)ρ(dv1,i)α(dx)
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As regard the sum on D
(1)
k,s we have

1
k!

∑
(s1,...,sk)∈D(1)

k,s

(
s

s1 · · · sk

) k∏
i=1

τsi(u1)κsi(u2)

which corresponds to the (s, k)-th partial Bell polynomial with weight sequence w•(u1, u2) =
τ•(u1)κ•(u2).

We are now going to consider an importan quantity which describes the partition
structure of the observations generating new groups in a further sampling procedure,
conditional on the partition generated by the first n observations.

Proposition 6.4.3. Let {Xn, n ≥ 1} be an exchangeable sequence of r.v.s governed by a
NRMI on X with intensity measure ν(ds, dx) = ρ(ds)α(dx). If X(1:n)

Kn
and X

(2:m)

K
(n)
m

are two

samples from {Xn, n ≥ 1}, then the joint distribution of K(n)
m and S

L
(n)
m

, given L
(n)
m , Kn

and NKn, is of the form

P(K(n)
m = k, S

L
(n)
m

= s|L(n)
m = s,Kn = j,NKn = n) (6.4.10)

=
1
k!

(
s

s1 · · · sk

)∫
R+ u

n+m−1e−Ψ(u)
∏k
i=1 κsi(u)ιm−s(u)du∫

R+ un+m−1e−Ψ(u)Bs(w•(u))ιm−s(u)du

for any s ∈ [m], k ∈ [s], j ∈ [n], (n1, . . . , nj) ∈ ∆n,j and (s1, . . . , sk) ∈ ∆s,k. Consequentely
the partition of the observations which belongs to the new partition set is, conditional on
the basic sample of size n and conditional on Un+m a finite Gibbs-type random partition

P(K(n)
m = k, S

L
(n)
m

= s|L(n)
m = s,Kn = j,NKn = n, Un+m = u) (6.4.11)

=
1
k!

(
s

s1 · · · sk

)
Γ(n+m)e−Ψ(u)ιm−s(u)

∏k
i=1 κsi(u)∫

R+ tn+meutfT (t)dt
∫

R+ un+m−1e−Ψ(u)Bs(w•(u))ιm−s(u)du

Proof. This is straightforward and follows from taking the ratio between (6.4.2) and
(6.4.5).

The finiteness of the random partition described by (6.4.11) is obvious, since it takes
values on the space of all partitions of [s] with 1 ≤ s ≤ m. Moreover, the partition structure
featured by the conditional distribution in (6.4.11) motivates the following definition.

Definition 6.4.1. The conditional probability distribution

p̃
(s)
k (s1, . . . , sk;m,n, j,n) := P(K(n)

m = k, S
L

(n)
m

= s|L(n)
m = s,Kn = j,NKn = n) (6.4.12)

with 1 ≤ s ≤ m and 1 ≤ k ≤ s, is termed conditional EPPF.
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This appendix reviews some definitions and results in the field of the enumerative combina-
torics. In particular, after introducing the preliminary notations, we remind the definition
of composite structure and the definition of central and non-central Stirling number and
central and non-central generalized factorial coefficient.

A.1 Notation

For any n ∈ N and any arbitrary x let (x)n↓1 be the factorial of x of order n, that is

(x)n↓1 := x(x− 1) · · · (x− n+ 1) =
n−1∏
i=0

(x− i)

with (x)0↓1 := 1 and for x 6= −r, r = 1, . . . , n

(x)−n↓1 =
1

(x+ n)(x+ n− 1) · · · (x+ 1)
.

In addition to the notation (x)n↓1 of the factorial of x of order n, we consider the notation
(x)n↑1 which denotes the relation of the factorials to the powers. The factorial (x)n↓1 is
called descending (or falling) in distinction to the ascending (or rising) factorial of x of
order n, which for n ∈ N is defined by

(x)n↑1 := x(x+ 1) · · · (x+ n− 1) =
n−1∏
i=0

(x+ i).

A distinct notation is unnecessary since both factorials can be expressed by the same
notation, only the argument being different. In particular, this product, with the adopted
notation, equals

(x)n↑1 = (−1)n(−x)n↓1.
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The generalized factorial of x of order n and increment α, denoted by (x)n↓α, is defined
for any n ∈ N and any arbitrary real x and α by

(x)n↓α := x(x− α) · · · (x− αn+ α) =
n−1∏
i=0

(x− αi)

with (x)0↓α := 1 and for x 6= −rα, r = 1, . . . , n

(x)−n↓α =
1

(x+ nα)(x+ nα− α) · · · (x+ α)
.

In additional to the notation (x)n↓α of the generalized factorial of x of order n and incr-
rement α, we consider the notation (x)n↑α which denotes the relation of the factorials to
the powers. The generalized factorial (x)n↓α is called descending (or falling) in distinction
to the ascending (or rising) generalized factorial of x of order n and increment α, which
for any n ∈ N is defined by

(x)n↑α := x(x+ α) · · · (x+ nα− α) =
n−1∏
i=0

(x+ iα).

Note that the generalized factorial of x of order n and increment α, (x)n↓α, may be
expressed as a factorial of x of order n and scale parameter s

(x)n↓α = s−n(sx)n↓1

with s = 1/α.
Another equally important function is the binomial coefficient of x of order n which is

defined for any n ∈ N and any arbitrary x by(
x

n

)
:=

(x)n↓1
n!

with
(
x
0

)
:= 1. The generalized binomial coefficient of x of order n and increment a which

is defined for any n ∈ N and any arbitrary x and a by(
x

n

)
a

:=
(x)n↓a
n!

with
(
x
0

)
a

:= 1.

A.2 Composite structures

Let v• := {vi, i ≥ 1} and w• := {wi, i ≥ 1} be two sequences of non-negative integers. Let
V be some species of combinatorial structures (see Bergeron et al. [6] and Bergeron et al.
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[5]), so for each finite set Fn with |Fn| = n elements there is some construction of a set
V (Fn) of V -structures on Fn, such that the number of V -structures on a set of n elements
is |V (Fn)| = vn. For instance V (Fn) might be Fn × Fn, or FFnn , or permutations from Fn

to Fn, or rooted trees labeled Fn, corresponding to the sequences vn = n2, or nn, of n!, or
nn−1 respectively.

Let W be another species of combinatorial structures, such that the number of W -
structures on a set of j elements is wj . Let (V ◦W )(Fn) denote the composite structure
on Fn defined as the set of all ways to partition Fn into blocks {A1, . . . , Ak} for some
1 ≤ k ≤ n, assign this collection of blocks a V -structure, and assign each block Ai a W -
structure. Then, for each set Fn with n elements, the number of such composite structures
is evidently

|(V ◦W )(Fn)| = Bn(v•, w•) :=
n∑
k=1

vkBn,k

where, denoting by Pk[n] the set of partition s of the set [n] := {1, . . . , n}

Bn,k(w•) :=
∑

{A1,...,Ak}∈Pk[n]

k∏
i=1

w|Ai|

is the number of ways to partition Fn into k blocks and assign each block a W -structure.
The sum Bn,k(w•) is a polynomial in variables w1, . . . , wn−k+1, known as the (n, k)-th

partial Bell polynomial (see Comtet [19]). For a partition πn of n into k parts with mj

parts equal to j for 1 ≤ j ≤ n, the coefficient of
∏
j w

mj
j in Bn,k(w•) is the number of

partitions Πn of the set [n] corresponding to πn. That is to say,∏
j

w
mj
j

Bn,k(w•) =
n!∏

j(j!)
mjmj !

with
∑

j jmj = n and
∑

jmj = k.
Here, we provide an alternative and more formal definition of a partial Bell polynomial

in terms of its associated exponential generating function. Given a sequence of real numbers
w• := {wi, i ≥ 1} we define the exponential generating function of this sequence as the
formal power series

w(t) =
∑
k≥0

wk
tk

k!
. (A.2.1)

The power series is said to be formal since questions concerning convergence are never
asked. We only wish to evaluate it, and its derivatives, at t = 0, i.e.,

wk =
dk

dtk
w(t)

∣∣∣∣
t=0

. (A.2.2)
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Since (A.2.2) is the defining relationship for coefficients of a Taylor series, (A.2.1) is some-
times referred to as a formal Taylor series and wk is the k-th Taylor coefficient of w(t).

Exponential generating functions are used extensively in combinatorics and closesly
associated with them are the so-called partial Bell polynomials. These are polynomials
in an infinite number of variables, these variables are actually the coefficients w• of an
undetermined exponential generating function

w(t) =
∑
k≥1

wk
tk

k!
(A.2.3)

where we assume w0 = w(0) = 0. In particular, we have the following formal definitio of
partial Bell polynomials.

Definition A.2.1. Let w• be a sequence of real numbers. Then the (n, k)-th partial Bell
polynomial Bn,k(w•) is defined by the expansion

exw(t) =
∑
n≥0

∑
k≥0

Bn,k(w•)xk
tn

n!

where w(t) is the exponential generating function of the sequence w• and w0 = w(0) = 0.

From Definition A.2.1 it is possible to isolate Bn,k(w•) by differentiating the appropriate
number of times and then setting x = t = 0, i.e.

Bn,k(w•) =
∂n

∂tn
1
k!

∂k

∂xk
exw(t)

∣∣∣∣
x=0,t=0

or
Bn,k(w•) =

1
k!

dn

dtn
wk(t)

∣∣∣∣
t=0

for any n ∈ N0 and k ∈ N0. This shows that Bn,k(w•) corresponds to the n-th Taylor
coefficient of (1/k!)wk(t) or, more precisely, wk(t)/k! =

∑
n≥0Bn,k(w•)t

n/n!. By setting
k = 0 one gets B0,0 = 1 and Bn,0 = 0, for any n ∈ N, whereas for k = 1 one has Bn,1 = wn

for all n ∈ N0. Also, since w0 = 0, one has

1
k!
wk(t) =

1
k!

(
w1t+ w2

t2

2!
+ · · ·

)k
= wk1

tk

k!
+ · · · (A.2.4)

so that Bn,k(w•) = 0 whenever k > n and Bn,n(w•) = wn1 for all n ∈ N0. By expanding
(A.2.4) and examining the coefficient of tn/n!, one obtains the following explicit expression
for Bn,k(w•)

Bn,k(w•) =
∑

i1,i2,...≥0
i1+i2+···=k

i1+2i2+3i3+···=n

n!
i1!i2! · · · (1!)i1(2!)i2 · · ·

wi11 w
i2
2 · · · . (A.2.5)
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Note that, if the variable ws occurs in Bn,k(w•), then the summation conditions imply that,
for some i1 ≥ 0, i2 ≥ 0, . . . , is ≥ 1, . . ., we have s−1 ≤ i2 +2i3 + · · ·+(s−1)is+ · · · = n−k,
giving s ≤ n − k + 1. Thus Bn,k(w•) = Bn,k(w1, . . . , wn−k+1) meaning Bn,k(w•) depends
at most on the variable w1, . . . , wn−k+1 and no others. Moreover, it is easy to see that
Bn,k(w•) is homogeneous of degree k and it can be shown by a combinatorial argument
that all of the coefficients are actually integers. In Table A.1 we provide some partial Bell
polynomials for 1 ≤ k ≤ n ≤ 5. In general, partial Bell polynomials can be computed

n Bn,1(w•) Bn,2(w•) Bn,3(w•) Bn,4(w•) Bn,5(w•)

1 w1 - - - -

2 w2 w2
1 - - -

3 w3 3w1w2 w3
1 - -

4 w4 4w1w3 + 3w2
1 6w2

1w2 w4
1 -

5 w5 5w1w4 + 10w2w3 10w2
1w3 + 15w1w

2
2 10w3

1w2 w5
1

Table A.1: Some partial Bell polynomilas

using (A.2.5). Alternatively, one can resort to the recurrence relation

Bn,k(w•) =
n−k+1∑
m=1

(
n

m

)
wmBn−m,k−1(w•).

Finally, we give the definition of Bell polynomial which is a particular type of partition
polynomial. The partition polynomials have been introduced by Bell [3] and they are mul-
tivariable polynomials that are defined by a sum extended over all partitons of their index.
These polynomials have found many applications in combinatorics, probability theory and
statistics, as well as in number theory.

Definition A.2.2. Let w• be a sequence of real numbers. Then the Bell polynomial
Bn(x,w•) is a polynomial in x defined by

Bn(x,w•) =
n∑
k=0

xkBn,k(w•).

The Bell polynomials can also be thounght of as generated by the expansion

exw(t) =
∑
n≥0

Bn(x)
tn

n!
.

Note that since Bn,n(w•) = wn1 we have deg Bn(x) = n for all n if w1 6= 0 and deg
Bn(x) < n for all n ∈ N if w1 = 0. It is always true that deg B0(x) = 0 since B0(x) = 1
for every w(t).

Before giving some specific examples, we shall introduce a little more notation. It
is sometimes convenient to write Bn,k(w(t)) for Bn,k(w•) and Bn(x,w(t)) for Bn(x,w•),
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where as always w(t) is defined by (A.2.3). When this is done it is important to remember
that Bn,k(w(t)) is not a function of t but of w•. Moving from the definition of partial Bell
polynomial in term of its exponential generating function, we now consider some of the
most well known instances of partial Bell polynomials Bn,k(w(t)) and their associated Bell
polynomials Bn(x,w(t)):

i) the standard polynomials xn = Bn(x, t);

ii) the falling factorials (x)n↓1 = Bn(x, log(1 + t))

(x)n↓1 = x(x− 1) · · · (x− n+ 1) =
n∑
k=0

s(n, k)xk

where the numbers s(n, k) := Bn,k(log(1 + t)) are the Stirling numbers of the first
kind;

iii) the rising factorials (x)n↑1 = Bn(x,− log(1− t))

(x)n↑1 = x(x+ 1) · · · (x+ n− 1) =
n∑
k=0

|s(n, k)|xk

so that |s(n, k)| = Bn,k(− log(1 − t)). In particular |s(n, k)| are called the signless
Stirling numbers of the first kind and

|s(n, k)| = ]{permutations of the set [n] with k cycles}

where the last equality corresponds to the representation of a permutation of the set
[n] as the product of cycles permutations acting on the blocks of some partition of
the set [n];

n |sn,1| |sn,2| |sn,3| |sn,4| |sn,5|
1 1 - - - -

2 1 1 - - -

3 2 3 1 - -

4 6 11 6 1 -

5 24 50 35 10 1

Table A.2: Some signless Stirling numbers of the first kind

iv) the exponential polynomials φn(x) := Bn(x, et − 1)

φn(x) =
n∑
k=0

S(n, k)xk

where the numbers S(n, k) := Bn,k(et − 1) are called the Stirling numbers of the
second kind and

S(n, k) = ]{partitions of the set [n] into k blocks}
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n Sn,1 Sn,2 Sn,3 Sn,4 Sn,5

1 1 - - - -

2 1 1 - - -

3 1 3 1 - -

4 1 7 6 1 -

5 1 15 25 10 1

Table A.3: Some Stirling numbers of the second kind

In particular, related to the Stirling numbers of the second kind are the Bell numbers
which are defined by Bn := φn(1) =

∑
0≤k≤n S(n, k) and they count the number of

distinct partitions of a set with n elements;

v) the Laguerre polynomials Ln(x) := Bn(x, t/(t− 1))

Ln(x) =
n∑
k=0

L(n, k)xk

where the numbers L(n, k) = Bn,k(t/(t− 1)) are called the Lah numbers which are
given by

L(n, k) = (−1)n
n!
k!

(
n− 1
k − 1

)
vi) the Abel polynomials An(x) := Bn(x, 1,−2a, (3a)2, . . . , (−ka)k−1, . . .)

An(x) = x(x− na)n−1

where a is a fixed constant.

A.3 Stirling numbers and generalized factorial coefficients

We provide exact definitions of central generalized factorial coefficients and non-central
generalized factorial coefficients. For further details and pointers to the literature see
Charalambides and Singh [15], Charalambides [16] and Charalambides [17].

Consider the falling factorial of x of order n

(x)n↓1 = x(x− 1) · · · (x− n+ 1) n ∈ N (A.3.1)

with (x)0↓1 = 1. Clearly, this is a polynomial of x of degree n. Executing the multiplications
and arranging the terms in ascending order of powers of x we get

(x)n↓1 =
n∑
k=0

s(n, k)xk n ∈ N0. (A.3.2)
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Inversely, the n-th power of x may be expressed in the form of a polynomial of the factorials
of x of degree n. In particular, using (A.3.1), we get successively the expressions

x0 = (x)0↓1

x1 = (x)1↓1

x2 = (x)1↓1 + (x)2↓1

x3 = (x)1↓1 + 3(x)2↓1 + (x)3↓1

and generally

xn =
n∑
k=0

S(n, k)(x)n↓1 n ∈ N0. (A.3.3)

Clearly, s(0, 0) = S(0, 0) = 1, s(n, 0) = S(n, 0) = 0, for any n ∈ N and s(n, k) = S(n, k) =
0 for k > n. Further, replacing in (A.3.2) x by −x, and since (x)n↑1 = (−1)n(−x)n↓1, we
deduce the expression

(x)n↑1 =
n∑
k=0

|s(n, k)|xk n ∈ N0 (A.3.4)

where

|s(n, k)| = (−1)n−ks(n, k).

Note that |s(n, k)|, according to (A.3.4), as a sum of products of n − k positive integers
from the set [n−1], is a positive integer. Based on expansion (A.3.2), (A.3.3) and (A.3.4),
the following definition is introduced.

Definition A.3.1. (cfr. Charalambides [17]) The coefficients s(n, k) and S(n, k) in the
expansions of factorials into powers and of powers into factorials are called Stirling num-
bers of the first and second kind, respectively. The coefficient |s(n, k)| in the expansion of
rising factorials into powers in the signless or absolute Stirling number of the first kind.

An interesting and useful extension of the Stirling numbers, in combinatorics and dis-
crete probability, is provided by the coefficients of the expansions of non-central factorials
into powers and of powers into non-central factorials. Specifically, let

(x− r)n↓1 =
n∑
k=0

s(n, k; r)xk n ∈ N0 (A.3.5)

and

xn =
n∑
k=0

S(n, k; r)(x− r)k↓1 n ∈ N0.
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Clearly, s(0, 0; r) = S(0, 0; r) = 1, s(n, 0; r) = (−r)n↓1, S(n, 0; r) = rn for any n ∈ N,
and s(n, k; r) = S(n, k; r) = 0 for k > n. Further, replacing x by −x in (A.3.5) and since
(x+ r)n↑1 = (−1)n(−x+ r)n↓1, we deduce the expression

(x+ r)n↑1 =
n∑
k=0

|s(n, k; r))|xk n ∈ N0 (A.3.6)

where the coefficient

|s(n, k; r)| = (−1)n−ks(n, k; r) k ∈ N0, n ∈ N0

for r > 0, as a sum of products of positive numbers, is positive. Then, the following
definition is introduced.

Definition A.3.2. (cfr. Charalambides [17]) The coefficients s(n, k; r) and S(n, k; r) in
the expansions of non-central factorials into powers and of powers into non-central fac-
torials are called non-central Stirling numbers of the first and second kind, respectively.
The coefficient |s(n, k; r)| for r > 0, in the expansion of non-central rising factorials into
powers in the non-central signless or absolute Stirling number of the first kind.

Notice that for r = 0, the non-central Stirling numbers reduce to the corresponding
(central) Stirling numbers. For r 6= 0, these numbers may be expressed in terms of the
corresponding central Stirling numbers. Specifically, expanding the non-central ascending
factorial of x of order n, (x + r)n↑1 into powers of u = x + r, using (A.3.4), and then
expanding the powers of u = x + r into powers of x, using the Binomial theorem, we
deduce the expansion

(x+ r)n↑1 =
n∑
j=0

|s(n, j)|(x+ r)j =
n∑
j=0

|s(n, j)|
j∑

k=0

(
j

k

)
xkrj−k

=
n∑
k=0

 n∑
j=k

(
j

k

)
rj−k|s(n, j)|

xk

which, compared to (A.3.6), yields the expression

|s(n, k; r)| =
n∑
j=k

(
j

k

)
rj−k|s(n, j)|

Also, expanding the non-central ascending factorial of x of order n, (x + r)n↑1, into as-
cending factorials of x, using Vardermonde formula

(x+ t)n↓1 =
n∑
r=0

(t)r↓1(x)(n−r)↓1 t ∈ R, x ∈ R (A.3.7)
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and then expanding the ascending factorials of x into powers of x, using (A.3.4), we get
the expansion

(x+ r)n↑1 =
n∑
j=0

(
n

j

)
(x)j↑1(r)(n−j−1)↑1

=
n∑
j=0

(
n

j

)
(r)(n−j−1)↑1

j∑
k=0

|s(j, k)|xk =
n∑
k=0

 n∑
j=k

(
n

j

)
(r)(n−j−1)↑1|s(j, k)|

xk

which, compared to (A.3.6), implies the expression

|s(n, k; r)| =
n∑
j=k

(
n

j

)
(r)(n−j−1)↑1|s(j, k)|.

Similarly,

S(n, k; r) =
n∑
j=k

(
j

k

)
(r)(j−k)↓1S(n, j)

and

S(n, k; r) =
n∑
j=k

(
j

k

)
rn−jS(n, j).

The non-central Stirling numbers retain almost all the properties of the (central) Stirling
numbers. In particular, the properties of the (central) Stirling numbers, whenever needed,
are deduced by setting te non-centrality parameter equal to zero.

Consider the generalized factorial of x of order n and scale parameter s

(sx)n↓1 = sx(sx− 1) · · · (sx− n+ 1) n ∈ N

with (sx)0↓1 = 1, where s a real number. It can be expressed as a polynomial of factorials
of x of degree n. Specifically, we successively get the expressions

(sx)0↓1 = 1

(sx)1↓1 = s(x)1↓1

(sx)2↓1 = s2(x)2↓1 + (s)2↓1(x)1↓1

(sx)3↓1 = s3(x)3↓1 + 3s(s)2↓1(x)2↓1 + (s)3↓1(x)1↓1

and generally

(sx)n↓1 =
n∑
k=0

C(n, k; s)(x)k↓1 n ∈ N0. (A.3.8)
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In particular, for s = −1 and introducing the coefficient L(n, k) = C(n, k;−1) we deduce
the expression

(−x)n↓1 =
n∑
k=0

L(n, k)(x)k↓1 n ∈ N0. (A.3.9)

Further, since (−x)n↓1 = (−1)n(x)n↑1 and setting |L(n, k)| = (−1)nL(n, k), we get

(x)n↑1 =
n∑
k=0

|L(n, k)|(x)k↓1 n ∈ N0. (A.3.10)

Based on expansions (A.3.8), (A.3.9) and (A.3.10), the following definition is introduced.

Definition A.3.3. (cfr. Charalambides [17]) The coefficient C(n, k; s) of the k-th order
factorial of x in the expansion of the n-th order generalized factorial of x, with scale
parameter s, is called the generalized factorial coefficient. In particular, the coefficient
L(n, k) = C(n, k;−1) and |L(n, k)| = (−1)nL(n, k) are called Lah and signless or absoluted
Lah numbers, respectively

n C(n, 1; s) C(n, 2; s) C(n, 3; s) C(n, 4; s) C(n, 5; s)

1 (s)1↓1 - - - -

2 (s)2↓1 s2 - - -

3 (s)3↓1 3(s)2↓1s s3 - -

4 (s)4↓1 7(s)3↓1s + 3(s)2↓1s 6(s)2↓1s
2 s4 -

5 (s)5↓1 15(s)4↓1s + 20(s)3↓1s 25(s)3↓1s
2 + 15(s)2↓1s

2 10(s)2↓1s
3 s5

Table A.4: Some generalized factorial coefficients C(n, k; s)

A useful extension of the generalized factorial coefficients is provided by the coeffi-
cients of the expansion of the non-central generalized factorials into (usual) factorials.
Specifically, let

(sx+ r)n↓1 =
n∑
k=0

C(n, k; s, r)(x)k↓1 n ∈ N0. (A.3.11)

In particular, for s = −1 and introducing L(n, k; r) = C(n, k;−1, r), we get

(−x+ r)n↓1 =
n∑
k=0

L(n, k; r)(x)k↓1 n ∈ N0.

Since (−t+ r)n↓1 = (−1)n(t− r + n− 1)n↓1 this expression may be written as

(x− r)n↑1 =
n∑
k=0

|L(n, k; r)|(x)k↓1 n ∈ N0

where |L(n, k; r)| = (−1)nL(n, k; r). Then the following definition is introduced
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Definition A.3.4. (cfr. Charalambides [17]) The coefficient C(n, k; s, r) of the k-th or-
der factorial of x in the expansion of the n-th order non-central generalized factorial of
x, with scale parameter s and non-centrality parameter r, is called the non-central gen-
eralized factorial coefficient. In particular, the coefficient L(n, k; r) = C(n, k;−1, r) and
|L(n, k; r)| = (−1)nL(n, k; r) are called non-central Lah and non-central signless or abso-
lute Lah numbers, respectively.

Clearly, this definition implies C(0, 0; s, r) = 1, C(n, 0; s, r) = (r)n↓1 for n ∈ N and
C(n, k; s, r) = 0 for k > n. Further, expansion (A.3.11) entails that the non-central gen-
eralized factorial coefficients are differences of non-central generalized factorials. Finally,
note that for r = 0, the non-central generalized factorial coefficients reduces to the central
generalized factorial coefficients. For r 6= 0, these coefficients may be expressed in terms of
the central generalized factorial coefficients. Specifically, expanding the non-central gen-
eralized factorial (sx + sρ)n↓1 = (s(x + ρ))n↓1 into factorials of u = x + ρ, using (A.3.8),
and then expanding the factorials of u = x + ρ into factorials of t, using Vandermonde’s
formula we get the expression

(sx+ sρ)n↓1 =
n∑
j=0

C(n, j; s)(x+ ρ)j↓1 =
n∑
j=0

C(n, j; s)
j∑

k=0

(
j

k

)
(x)k↓1(ρ)(j−k)↓1

=
n∑
k=0

 n∑
j=k

(
j

k

)
(ρ)(j−k)↓1C(n, j; s)

 (x)k↓1

which, compared to (A.3.11), yelds the expression

C(n, k; s, sρ) =
n∑
j=k

(
j

k

)
(ρ)(j−k)↓1C(n, j; s).

Also, expanding the non-central generalized factorials (sx + r)n↓1 into generalized facto-
rials (sx)j↓1, j = 0, . . . , n, using Vandermonde’s formula (A.3.7), and then expanding the
generalized factorials (sx)j↓1, j = 0, . . . , n, into factorials of x, using (A.3.8), we deduce
the expansion

(sx+ r)n↓1 =
n∑
j=0

(
n

j

)
(sx)j↓1(r)(n−j)↓1 =

n∑
j=0

(
n

j

)
(r)(n−j)↓1

j∑
k=0

C(j, k; s)(x)k↓1

=
n∑
k=0

 n∑
j=k

(
n

j

)
(r)(n−j)↓1C(j, k; s)

 (x)j↓1

which, compared to (A.3.11), implies the expression

C(n, k; s, r) =
n∑
j=k

(
n

j

)
(r)(n−j)↓1C(j, k; s).
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The non-central generalized factorial coefficient C(n, k; s, ρs − r) is a polynomial in s of
degree n. Specifically, the following theorem is derived

Theorem A.3.1. (cfr. Charalambides [17]) The non-central generalized factorial coeffi-
cient C(n, k; s, ρs− r) is a polynomial in s of degree n, the coefficient of the general term
of which being a product of non-central Stirling numbers of the first and second kind

C(n, k; s, ρs− r) =
n∑
j=k

s(n, j; r)S(j, k; ρ)sj . (A.3.12)

In general, an explicit expression of the non-central genealized factorial coefficient
can be given. The non-central generalized factorial coefficient C(n, k; s, r), k = 0, . . . , n,
n ∈ N0, is given by the sum

C(n, k; s, r) =
1
k!

k∑
j=0

(−1)k−j
(
k

j

)
(sj + r)n↓1.

Expression of the generalized factorial coefficient C(n, k; s) as multiple sums over all com-
positions as well as over all partitions of n into k parts are given in the following theorem.

Theorem A.3.2. (cfr. Charalambides [17]) The generalized factorial coefficient C(n, k; s),
k = 0, . . . , n, n ∈ N0, is given by

C(n, k; s) =
n!
k!

∑(
s

j1

)(
s

j2

)
· · ·
(
s

jk

)
where the summation is extended over all compositions on n into k parts, that is over all
positive integer solutions of the equation j1 + j2 + · · ·+ jk = n. Alternatively,

C(n, k; s) =
∑ n!

k1!k2! · · · kn!

(
s

1

)k1
(
s

2

)k2

· · ·
(
s

n

)kn
where the summation is extended over all partitions of n into k parts, that is over all
non-negative integer solutions of the equations

k1 + 2k2 + · · ·+ nkn = n, k1 + k2 + · · ·+ kn = k.

Limiting expressions as s → 0 and s → +∞ and an orthogonality relation for the
non-central generalized factorial coefficient are deduced in the following theorems.

Theorem A.3.3. (cfr. Charalambides [17]) Let C(n, k; s, r) be the non-central generalized
factorial coefficient. Then

lim
s→0

s−kC(n, k; s, r) = s(n, k;−r) (A.3.13)
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and
lim

s→+∞
s−nC(n, k; s, ρ) = S(n, k; ρ)

where s(n, k; r) and S(n, k; ρ) are the non-central Stirling numbers of the first and the
second kind, respectively.

Theorem A.3.4. (cfr. Charalambides [17]) The non-central generalized factorial coeffi-
cients C(n, k; s, r), k = 0, . . . , n, n ∈ N0, satisfy the relation

n∑
j=k

C(n, j; s1, r1)C(j, k; s2, r2) = C(n, k; s1s2, s1r2 + r1).

In particular, they satisfy the orthogonality relation

n∑
j=k

C(n, j; s, r)C(j, k; s−1,−rs−1) = δn,k

where δn,k = 1, if k = n and δn,k = 0, if k 6= n is the Knonecker delta.

A triangular recurrence relation for the non-central generalized factorial coefficients is
derived in the following theorem.

Theorem A.3.5. (cfr. Charalambides [17]) The non-central generalized factorial coeffi-
cients C(n, k; s, r), k = 0, . . . , n, n ∈ N0, satisfy the triangular recurrence relation

C(n+ 1, k; s, r) = (sk + r − n)C(n, k; s, r) + sC(n, k − 1; s, r) (A.3.14)

for k = 1, . . . , n+ 1, n ∈ N0, with initial conditions

C(0, 0; s, r) = 1, C(n, 0; s, r) = (r)↓1, n ∈ N, C(n, k; s, r) = 0, k > n.

In the following theorem a vertical recurrence relation for the generalized factorial
coefficients is deduced.

Theorem A.3.6. (cfr. Charalambides [17]) The generalized factorial coefficients C(n, k; s),
k = 0, . . . , n, n ∈ N0,with C(0, 0; s) = 1, satisfy the vertical recurrence relation

C(n+ 1, k + 1; s) =
n∑
j=k

(
n

j

)
(s)(n−j+1)↓1C(j, k; s).

In general, the generalized factorial coefficients C(n, k; s) can be tabulated by using re-
currence relation (A.3.14) for r = 0, and its initial conditions. The non-central generalized
factorial coefficients C(n, k; s, r), k = 0, . . . , n, n ∈ N0, are defined as the coefficients of the
factorials in the expansion of the non-central generalized factorial, with scale parameter s
and non-centrality parameter r.
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Appendix

This appendix reviews some definitions and some results on the field of the random par-
titons. In particular, after introducing some preliminar concepts we remind the definition
of partially exchangeable random partition.

B.1 Partially exchangeable random partitions

For any n ∈ N, a partiton of [n] is an unordered collection of disjoint non-empty subsets
of [n], say {A1, . . . , Ak}, with ∪1≤i≤kAi = [n]. The Ai are called classes of the partition.
Given a partition {A1, . . . , Ak} on [n] for m < n the restriction of {A1, . . . , Ak} to [m] is
the partiton of [m] whose classes are the non-empty members of {A1 ∩ [m], . . . , Ak ∩ [m]}.
Let Pk[n] denote the set of partitions of the set [n] into k blocks, and let P[n] := ∪nk=1Pk[n],
the set of all partitions of [n]. To be definite, the blocks Ai of a partition of [n] are assumed
to be listed in order of appearance, meaning the order of their least elements, except if
otherwise specified. The sequence (|A1|, . . . , |Ak|) of sizes of blocks of a partition of [n]
defines a composition of [n], that is a sequence of positive integers with sum n. Let Cn
denote the set of all compositions of n. An integer composition is an element of ∪n≥1Cn.

A random partition of [n] is a r.v. Πn taking values in P[n]. A random partiton of N is
a sequence Π := {Πn, n ≥ 1} of random partiton of [n] defined on a common probability
space, such that for m < n, the restriction of Πn to [m] is Πm. Permutation of [n] act in a
natural way on partions of [n] and on distributions of a random partiton of of [n]. Following
Kingman [113] and Aldous [1], Πn is exchangeable if the distribution of Πn is invariant
under the action of all such permutations. And Π is exchangeable if Πn is exchangeable
for every n.

The multiset {|A1|, . . . , |Ak|} of unordered sizes of blocks of a partition Πn of [n] defines
a partition of n, customarily encoded by one of the following:

i) the composition of n defined by the decreasing arrangement of block sizes of Πn, say
(n↓1, . . . , n

↓
k) where n↓i is the size of the i-th largest block Πn and k is the number of
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blocks of the partition of [n];

ii) the infinite decreasing sequence of non-negative integers {n↓i , i ≥ 1} defined by ap-
pending an infinite string of zeros to (n↓1, . . . , n

↓
k), so n↓i is the size of the i-th largest

block of the partiton of [n] if k ≥ i, and 0 otherwise;

iii) the non-negative integer counts (mj , 1 ≤ j ≤ n), where mj := {i : n↓i = j} for
j = 1, . . . , n, i.e. the number of blocks of the partiton of [n] of size j, with∑

j

mj = k,
∑
j

jmj = n.

Thus the set Pn of all partitions of n is bijectively identified with each of the following
three sets of sequences of non-negative integers

n⋃
k=1

(nj)1≤j≤k : n1 ≥ n2 ≥ · · · ≥ nk ≥ 1,
∑
j

nj = n


or (nj)1≤j≤∞ : n1 ≥ n2 ≥ · · · ≥ 0,

∑
j

nj = n


or {

(mi)1≤i≤n :
∑
i

imi = n

}
where mi =

∑
j 1{nj=i}. Arandom partition of n is a r.v. πn taking values in the set of

all partitions of n. In Kingman [111] and in Kingman [112], moving from application in
genetics, the concept of partiton structure has been developed. In particular, a partition
stucture is a sequence of distributions {Pi, i ≥ 1} for {πi, i ≥ 1} which is consistent in
the following sense: if n objects are partitioned into classes with sizes given by πn, and
an object is delated uniformly at random, independently of πn, the partition of the n− 1
remaning objects has class sizes distributed according to Pn−1. As shown by Kingman
[112], {Pn, n ≥ 1} is a partiton structure if and only if there exists an exchangeable
random partiton Π of N, such that {Pn, n ≥ 1} is the distribution of the partiton of n
induced by the class sizes of Πn.

For a sequence of r.v.s {Xi, i ≥ 1}, let Π(X1, X2, . . .) be the random partition of N
defined by the eqivalence classes for the random equivalence relation i ∼ j ⇔ Xi = Xj .
According to Kingman’s representation theorem every exchangeable random partiton Π
of N has the same distribution as Π(X1, X2, . . .) where {Xi, i ≥ 1} are conditionally i.i.d.
according to P∞ given some random probability distribution P∞. The distribution Pn of
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the class sizes of Πn is determined by the joint distribution of the sizes of the ranked atoms
of P∞, denoted

P ↓1 ≥ P
↓
2 ≥ · · · ≥ 0

where P ↓i = 0 if P∞ has fewer thatn i atoms. Moreover such P ↓i can be recovered from Π
as

P ↓i = lim
n→+∞

N↓i
n

a.s., i ≥ 1 (B.1.1)

where N↓i is the size of the i-th largest class in Πn.
The joint distribution of the limiting ranked proportions P ↓i turns out to be rather

complicated, even for the simplest partition structures, such as those corresponding to the
Ewens’s sampling formula, when the joint distribution of the P ↓i is the Poisson-Dirichlet
distribution (see Ignatov [89], Watterson [195] and Kingman [110]). The expression for the
distribution Pn on the partiton of [n] in terms of the joint distribution of the P ↓i , given
by formulae (2.10) and (5.1) in Kingman [112], involves infinite sums of exptectations of
products of the P ↓i , which is not easy to evaluate. It is known (see Donelly [26], Ewens [44],
Hoppe [87] and Hoppe [88]) that in the case corresponding to the Ewens’ sampling formula,
there is a much simpler description of the joint distribution of the sequence {Pi, i ≥ 1},
obtained by presenting the ranked sequence {P ↓i , i ≥ 1} in the random order in which the
corresponding classes appear in the random partiton Π. In other word, write

Π = {Ai, i ≥ 1}

where Ai is the random subset of N defined as the i-th class of of Π to appear.That is to
say A1 is the class containing 1, A2 is the class containing the first element of N ∩ A c

1 ,
and so on. For convenience, let Ai = ∅ if Π has fewer than i classes. Then, Pi is defined
to be the long run relative frequency of Ai

Pi = lim
n→+∞

](Ai ∩ [n])
n

a.s., i ≥ 1. (B.1.2)

The P ↓i are obtained by ranking the Pi, and the existence of either collection of limits
(B.1.1) or (B.1.2) follows easily from the other. See Lemma 11.8 in Aldous [1], which
implies also that if

∑
i P
↓
i = 1, then Pi, i ≥ 1 is a sized biased random permutation of the

ranked sequence P ↓i , i ≥ 1 as studied by Donelly and Joyce [28] and by Pitman [151].
Pitman [149] provide a generalization of the Kingman’s representation theorem. In

particular the starting point is the definition of partially exchangeable random partition.

Definition B.1.1. (cfr. Pitman [149]) Let N∗ := ∪k≥1Nk, the set of finite sequences of
positive integers. Call a random partition Πn of [n] partially exchangeable if for every
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partition {A1, . . . , Ak} of [n] where A1, . . . , Ak are in order of appearance, i.e. 1 ∈ A1, and
for each 2 ≤ i ≤ k the first element of Nn ∩ (A1 ∪ . . . ,∪Ai−1)c belongs to Ai

P(Πn = {A1, . . . , Ak}) = p
(n)
k (|A1|, . . . , |Ak|) (B.1.3)

for some function p(n)
k (n1, . . . , nk) defined for (n1, . . . , nk) ∈ N∗ with

∑
1≤i≤k ni = n. Then

call p(n)
k (n1, . . . , nk) a partially exchangeable partition probability function (PEPPF).

As particular case of Definition B.1.1 we recover the definition of exchangeable random
partition. In particular a random partition of [n] (or of N) is exchangeable if and only if it
is partially exchangeable with PEPPF p

(n)
k (n1, . . . , nk) which is a symmetric function of

its arguments, i.e.

p
(n)
k (n1, . . . , nk) = p

(n)
k (nσ(1), . . . , nσ(k))

for every permutation σ of [k], k = 2, 3, . . .. When Π is exchangeable, call the symmet-
ric PEPF derived from Π an exchangeable partition probability function (EPPF). The
main results given by Pitman [149] is the following representation theorem which gener-
alizes to the partially exchangeable random partitions the representation the Kingman’s
representation theorem. (see also[1]).

Theorem B.1.1. (cfr. Pitman [149]) Let Π = {Ai, i ≥ 1} be a random partition of N
with Ai the i-th class of Π to appear. Let Πn be the restriction of Π to [n]. The following
conditions are equivalent

i) Π is partially exchangeable;

ii) there is a sequence of r.v.’s {Pi, i ≥ 1} with Pi ≥ 0 and
∑

i Pi ≤ 1 such that the
conditional distribution of Π given the whole sequence {Pi, i ≥ 1} is as follows: for
any n ∈ N, conditionally given {Pi, i ≥ 1} and Πn = {A1, . . . , Ak}, where the Ai

are in order of appearence, Πn+1 is an extension of Πn in which n + 1 attaches to
class Ai with probability Pi for 1 ≤ i ≤ k and forms a new class with probability
1−

∑
1≤j≤k Pj.

If Π is partially exchangeable then Pi in (ii) are a.s. unique and equal to almost sure
limiting relative frequencies of the classes Ai as in (B.1.2).

Theorem B.1.1 provides a characterization for partially exchangeable random parti-
tions. In particular, a random partition of N is partially exchangeable if and only if it
admits such relative frequencies {Pi, i ≥ 1} and shares this conditional distribution given
the {Pi, i ≥ 1}. The following corollary is an immediate consequence of Theorem B.1.1
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Corollary B.1.1. (cfr. Pitman [149]) The formula

p
(n)
k (n1, . . . , nk) = E

( k∏
i=1

Pni−1
i

)
k−1∏
i=1

1−
i∑

j=1

Pj

 (B.1.4)

sets up a one to one correspondence between PEPPF p
(n)
k : N∗ → [0, 1] and the joint

distributions for a sequence of r.v.’s {Pi, i ≥ 1} with Pi ≥ 0 and
∑

i Pi ≤ 1.

From Theorem B.1.1 all exchangeable random partitions Π of N share a common
conditional distribution given {Pi, i ≥ 1} defined in ii) of Theorem B.1.1; moreover a ran-
dom partition of N is partially exchangeable if and only if it admits relative frequencies
{Pi, i ≥ 1} and shares this conditional distribution given the {Pi, i ≥ 1}. Corollary B.1.1
emphasizes the correspondence between {Pi, i ≥ 1} and p(n)

k (n1, . . . , nk): given the PEPPF
p(n1, . . . , nk) of a partially exchangeable random partition Π of N, the Pi are recovered
as the limiting relative frequencies of the classes of Π in order of appearance. And given
a distribution for {Pi, i ≥ 1}, a partially exchangeable random partition is created by ii)
of Theorem B.1.1. The following corollary underlines the connection between partially ex-
changeable random partitions and exchangeable random partitions. See also Pitman [151]
for a version of the following corollary based on the theory of random discrete distribution
{Pi, i ≥ 1} invariant under size-biased random permutation.

Corollary B.1.2. (cfr. Pitman [149]) Let {Pi, i ≥ 1} be a sequence of r.v.s such that
Pi ≥ 0 and

∑
i Pi ≤ 1 a.s. The following statements are equivalent:

i) there exists an exchangeable random partition Π of N whose sequence of limiting
relative frequencies of classes, in order of appearance, has the same distribution as
{Pi, i ≥ 1};

ii) for each k ≥ 2 the function p
(n)
k : Nk → [0, 1] defined by (B.1.4) is a symmetric

function of (n1, . . . , nk);

iii) fore each k ≥ 2 the measure Gk on Rk defined by

Gk(dp1, . . . , dpk) = P(P1 ∈ dp1, . . . , Pk ∈ dpk)
k−1∏
i=1

1−
i∑

j=1

pj


is symmetric with respect to permutation of the coordinates in Rk.

Then p
(n)
k (n1, . . . , nk) defined by (B.1.4) is the EPPF of Π.
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Let (M1, . . . ,Mn) be a r.v. where Mj is the number of classes of Πn of size j. Then,
for any vector of non-negative integer counts (m1, . . . ,mn)

Pn(m1, . . . ,mn) := P((M1, . . . ,Mn) = (m1, . . . ,mn)) = ](m1, . . . ,mn)p̃(n)
k (m1, . . . ,mn)

(B.1.5)

where
](m1, . . . ,mn) :=

n!∏n
j=1(j!)mjmj !

where p̃(n)
k (m1, . . . ,mn) is the common value of the symmetric function p

(n)
k (n1, . . . , nk)

for all n1, . . . , nk with
∑

1≤i≤k ni = n and mj = ]{i : ni = j} for 1 ≤ j ≤ n. Remind that
N∗ := ∪k≥1Nk and define the set

Dk,n :=

{
(n1, . . . , nk) ∈ N∗ :

k∑
i=1

= n

}
.

It follows from Definition B.1.1 and from (B.1.3) a one to one correspondence between
the distribution of a partially exchangeable random partition Πn of [n], and non-negative
functions p(n)

k : Dk,n → [0, 1] such that∑
(n1,...,nk)∈Dk,n

](n1, . . . , nk)p
(n)
k (n1, . . . , nk) = 1

where
](n1, . . . , nk) :=

n!

nk(nk − nk−1) · · · (nk + · · ·+ n1)
∏k
i=1(ni − 1)!

is the number of partitions of [n] whose class sizes in order of appearance are given by
(n1, . . . , nk. Let (N1, . . . , Nk) be the random element of Dk,n representing the class sizes
of Πn in order of appearance. Then (N1, . . . , Nk) is sufficient statisitc for distributions of
partially exchangeable random partition Πn. In other words, Πn is partially exchangeable
if and only if, given (N1, . . . , Nk) = (n1, . . . , nk) for every (n1, . . . , nk) ∈ Dk,n the parti-
tion Πn is uniformly distributed over the number of partitions of [n] whose class sizes in
order of appearance given by (n1, . . . , nk. The corresponding description of exchangeable
random partitions on [n] with (N1, . . . , Nk) replaced by the decresing rearrangement of
(N1, . . . , Nk) which encodes the induced partiton of n is given by Aldous [1]. In particular,
the distribution of (N1, . . . , Nk) for a partially exchangeable random partiton Πn is related
to the PEPPF of Πn by

P((N1, . . . , Nk) = (n1, . . . , nk)) = ](n1, . . . , nk)p
(n)
k (n1, . . . , nk).

Assuming Πn is a partially exchangeable random partition, it can be seen that Πn is
echangeable if and only if (N1, . . . , Nk) is a size-biased random ordering of the partition
of n (see Pitman [151]).
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Proposition B.1.1. (cfr. Pitman [149]) For 1 ≤ m ≤ n let Πm be the restriction to
[m] of a partially exchangeable partition of [n] with PEPPF p

(n)
k (n1, . . . , nk) defined for

(n1, . . . , nk) ∈ Dk,n. Then

i) Πm is partially exchangeable, with PEPPF p
(m)
k (n1, . . . , nk) defined for (n1, . . . , nk) ∈

Dk,n by repeated application for m = n− 1, n− 2, . . . , 1 of the consistency relation:

p
(m)
k (n1, . . . , nk) =

k+1∑
j=1

p(nj+) (B.1.6)

where

p(nj+) :=


p

(m+1)
k (n1, . . . , nj−1, nj + 1, nj+1, . . . , nk) 1 ≤ j ≤ k

p
(m+1)
k+1 (n1, . . . , nk, 1) j = k + 1

i.e. nj+ is derived from (n1, . . . , nk) ∈ Dk,m by incrementing nj by 1 if 1 ≤ j ≤ k,
and by appending a 1 to (n1, . . . , nk) ad place k + 1 if j = k + 1;

ii) (N1, . . . , Nn) is a Markov chain with transition probabilities

P(Nm+1 = nj+|(N1, . . . , Nk) = (n1, . . . , nk)) =
p(nj+)

p
(m)
k (n1, . . . , nk)

j = 1, . . . , k + 1

for p :
⋃n
m=1Dk,m → [0, 1] defined as in i).

In the exchangeable case, the EPPF and the distribution of the correspondig partition
of n are related by (B.1.5). The above consistency relation then becomes the expression
in terms of EPPF of Kingman’s notion of consistency of partition of n.

Corollary B.1.3. (cfr. Pitman [149]) A function p : Dk,n → [0,+∞) is a PEPPF if and
only if p : ∪1≤m≤nDk,m → [0,+∞) defined by repeated application of (B.1.6) is such that
p(1) = 1.

To conclude the review on partially exchangeable random partition we remind two
simple constructions that is easily seen to yield the most general partially exchangeable
partition of [n] and of N, respectively. Let A1, . . . ,AKn denote the random subset of [n]
defined by the classes of Πn in order of appearance. Let N1, the size of A1, have distribution

P(N1 = n1) = P (n1) 1 ≤ n1 ≤ n

where P is some arbitrary probability distribution on [n]. Given N1 = n1, let A1 consist of
1 and a uniformly distributed random subset of n1−1 elements of {2, . . . , n}. Inductively:
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given that A1, . . . ,Ai have been defined, withNj = nj for 1 ≤ j ≤ i, such that
∑

1≤j≤i nj <

n, let Ni+1 have distribution

P(Ni+1 = ni+1|A1, . . . ,Ai) = P (ni+1|n1, . . . , ni)

where P is some arbitrary probability distribution on [1−
∑

1≤j≤i nj ]. And given A1, . . . ,Ai

and Ni+1 = ni+1, let Ai+1 comprise the first element of [n]∩ (∪1≤j≤iAj)c together with a
uniformly distributed random subset of ni+1−1 elements of the remaning n−

∑
1≤j≤i nj−1

elements of [n]. The random partition Πn so constructed is partially exchangeable, with
PEPPF

p
(n)
k (n1, . . . , nk) = (](n1, . . . , nk))−1P (n1)P (n2|n1) · · ·P (nk|n1, . . . , nk−1).

The corresponding construction yielding to the most general partially exchangeable par-
tition of N is the following. Given an arbitrary joint distribution for a sequence of r.v.s
{Wi, i ≥ 1} with values Wi ∈ [0, 1], define a random partition Π of N into random subsets
A1,A2, . . . as follows. Let

{Xn,i, n ≥ 1, i ≥ 1}

be indicator variables that are conditionally independent given {Wi, i ≥ 1} with

P(Xn,i = 1|W1,W2, . . .) = Wi.

Let A1 = {1}∪n ∈ N : Xn,1 = 1. Inductively: for i ≥ 1 let Ci = N∩ (A1∪· · ·∪Ai)c. Given
Ci is non-empty (or, what is the same,

∏
1≤j≤i(1−Wj) > 0), let

Ai+1 = {min{Ci}} ∪ {n ∈ Ci : Xn,i+1 = 1}.

It is easily seen directly that Π is partially exchangeable. By construction the Ai are
in order of appearance with limiting frequencies Pi = Wi

∏
1≤j≤i−1(1−Wj), by repeated

application of the law of large numbers. It can be also be seen directly that the conditional
distribution of Π given {Pi, i ≥ 1} is as in ii) of Theorem B.1.1. So the most general
possible distribution for a partially exchangeable partition of N can be obtained by the
above construction. As an easy consequence of this construction, there is the followin
corollary of Theorem B.1.1

Corollary B.1.4. (cfr. Pitman [149]) Let Π = {Ai, i ≥ 1} be a partially exchangeable
partition on N, Pi the almost sure limit as n → +∞ of ](Ai ∩ [n])/n. For any i ∈ N0,
given {Pi, i ≥ 1} and {(](Ai ∩ [1]), . . . , ](Ai ∩ [n])), i ≥ 1} with

∑
1≤j≤i ](Aj ∩ [n]) < n,

the r.v. ](Ai+1∩ [n])−1 is distributed according to a Binomial distribution with parameter
(n−

∑
1≤j≤i(](Aj ∩ [n])− 1,Wi+1) where Wi+1 = Pi+1/(1−

∑
1≤j≤i Pj).
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Appendix

This appendix reviews some definitions and some results in the field of the special func-
tions. In particular, we remind the definition of Lauricella hypergeometric function and
the definition of Fox H-function and Meijer G-function.

C.1 Multiple hypergeometric function

The topic of multiple hypergeometric functions was first approached, in a systematic way,
by Lauricella [117] at the end of the 19th century. See for example, Exton [47]. He pro-
ceeded to define and study four important functions which bear his name and have both
multiple series and integral representations. The Lauricella hypergeometric functions have
the following multiple series representations

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn) (C.1.1)

:=
∑

(m1,...,mn)∈(N0)n

(a)(m1+···+mn)↑1(b1)m1↑1 · · · (bn)mn↑1x
m1
1 · · ·xmnn

(c1)m1↑1 · · · (cn)mn↑1m1! · · ·mn!

F
(n)
B (a1, . . . , an, b1, . . . , bn; c;x1, . . . , xn) (C.1.2)

:=
∑

(m1,...,mn)∈(N0)n

(a1)m1↑1 · · · (an)mn↑1(b1)m1↑1 · · · (bn)mn↑1x
m1
1 · · ·xmnn

(c)(m1+···+mn)↑1m1! · · ·mn!

F
(n)
C (a, b; c1, . . . , cn;x1, . . . , xn) (C.1.3)

:=
∑

(m1,...,mn)∈(N0)n

(a)(m1+···+mn)↑1(b)(m1+···+mn)↑1x
m1
1 · · ·xmnn

(c1)m1↑1 · · · (cn)mn↑1m1! · · ·mn!
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F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn) (C.1.4)

:=
∑

(m1,...,mn)∈(N0)n

(a)(m1+···+mn)↑1(b1)m1↑1 · · · (bn)mn↑1x
m1
1 · · ·xmnn

(c)(m1+···+mn)↑1m1! · · ·mn!
.

If n, the number of variables, is made equal to two, these four function reduce to the
Appell hypergeometric functions F2, F3, F4 and F1 respectively. If n is made equal to
one, all four functions become the Gauss hypergeometric function 2F1 which has been the
starting point in the definition of F (n)

A , F (n)
B , F (n)

C and F
(n)
D . In particular, if we consider

the product on n Gauss hypergeometric function

n∏
i=1

2F1(ai, bi; ci, xi) =
n∏
i=1

∑
mi≥0

(ai)mi↑1(bi)mi↑1
(ci)mi↑1(1)mi↑1

xmii

Then F
(n)
A can be obtained under the condition a1 = a and

ai = a+
i−1∑
j=1

mj i = 2, . . . , n

F
(n)
B can be obtained under the condition c1 = c and

ci = c+
i−1∑
j=1

mj i = 2, . . . , n

with m0 = 0, F (n)
C can be obtained under the condition a1 = a, b1 = b and

ai = a+
i−1∑
j=1

mj i = 2, . . . , n

and

bi = b+
i−1∑
j=1

mj i = 2, . . . , n

F
(n)
D can be obtained under the conditions a1 = a, c1 = c and

ai = a+
i−1∑
j=1

mj i = 2, . . . , n

and

bi = b+
i−1∑
j=1

mj i = 2, . . . , n.
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Many other multiple hypergeometric functions exist, as Lauricella [117] himself indicated.
He in fact conjectured the existence of fourteen triple hypergeometric functions including
F

(3)
A , F (3)

B , F (3)
C and F

(3)
D , all of which are complete and of the second order.

A number of limiting forms of F (n)
A , F (n)

B , F (n)
C and F (n)

D exists which may be obtained.
We thus have the following limiting functions

Ψ(n)
2 (a; c1, . . . , cn;x1, . . . , xn) := lim

ε→0
F

(n)
A

(
a,

1
ε
, . . . ,

1
ε

; c1, . . . , cn; εx1, . . . , εxn

)
=

∑
(m1,...,mn)∈(N0)n

(a)(m1+···+mn)↑1x
m1
1 · · ·xmnn

(c1)m1↑1 · · · (cn)mn↑1m1! · · ·mn!

Φ(n)
2 (b1, . . . , bn; c;x1, . . . , xn) := lim

ε→0
F

(n)
D

(
1
ε
, b1, . . . , bn; c; εx1, . . . , εxn

)
=

∑
(m1,...,mn)∈(N0)n

(b1)m1↑1 · · · (bn)mn↑1x
m1
1 · · ·xmnn

(c)(m1+···+mn)↑1m1! · · ·mn!

We now remind some integral representations of the Lauricella hypergeometric functions
and in particular we consider integral representations of Eulero-type and integral repre-
sentations of Laplace-type. The single and multiple integrals of Eulero-type

Γ(p)Γ(q)
Γ(p+ q)

=
∫ 1

0
up−1(1− u)q−1 (C.1.5)

and

Γ(p1) · · ·Γ(pn)Γ(r)
Γ(p1 + · · ·+ pn + r)

=
∫

∆(n)

up1−1
1 · · ·upn−1

n (1− u1 − · · · − un)r−1du1 · · · dun (C.1.6)

where ∆(n) is the n-dimensional simplex. Integral (C.1.5) and integral (C.1.6), together
with the binomial expansion, readily yield multiple integral representations of the functions
F

(n)
A , F (n)

B and F
(n)
D . For the function F

(n)
A

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

=
Γ(c1) · · ·Γ(cn)

Γ(b1) · · ·Γ(bn)Γ(c1 − b1) · · ·Γ(cn − bn)

×
∫

(0,1)n

n∏
i=1

ubi−1
i (1− ui)ci−bi−1

(
1−

n∑
i=1

uixi

)−a
du1 · · · dun

where <(b1), . . . ,<(bn) are positive and <(c1 − b1), . . . ,<(cn − bn) are positvie. For the
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function F
(n)
B

F
(n)
B (a1, . . . , an, b1, . . . , bn; c;x1, . . . , xn)

=
Γ(c)

Γ(a1) · · ·Γ(an)Γ(c− a1 − · · · − an)

×
∫

∆(n)

n∏
i=1

uai−1
i (1− uixi)−bi

(
1−

n∑
i=1

ui

)c−a1−···−an−1

du1 · · · dun

where <(b1), . . . ,<(bn) are positive and <(c− a1− · · ·− an) is positive. A similar multiple
integral for the function F

(n)
D is now given in which the range of integration is still ∆(n)

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn)

=
Γ(c)

Γ(b1) · · ·Γ(bn)Γ(c− b1 − · · · − bn)

×
∫

∆(n)

n∏
i=1

ubi−1
i

(
1−

n∑
i=1

ui

)c−b1−···−bn−1(
1−

n∑
i=1

uixi

)−a
du1 · · · dun

where <(b1), . . . ,<(bn) are positive and <(c− b1 − · · · − bn) is positive. Furthermore, the
function F

(n)
D may also be represented by means of a single integral

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn) =

Γ(a)
Γ(a)Γ(c− a)

∫ 1

0
ua−1(1− u)c−a−1

n∏
i=1

(1− uxi)−bidu

where <(a) is positive and <(c− a) is positive. No simple integral formula of Eulero-type
with an elementary integrand has been obtained for the function F

(n)
C which, in many

ways, is an exceptional function.
If we consider the integral representation of the Gamma function we have

(a)m↑1 =
1

Γ(a)

∫ +∞

0
e−tta+m−1dt (C.1.7)

where <(a) is positive and m ∈ N0. In particular, if we apply (C.1.7) to the series rep-
resentations of the Lauricella hypergeometric functions (C.1.1) to (C.1.4), many different
examples of integrals of Laplace-type may be obtained. These are of use, for example,
in deducing recurrence relations for the Lauricella hypergeometric functions in a simple
faschion. We now consider a few of more interesting examples. These results may all read-
ily be established by the simple techniques of interchanging the order of summation and
integration. In particular, we have

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn) =

1
Γ(a)

∫ +∞

0
e−tta−1

n∏
i=1

1F1(bi; ci;xit)dt



C.1. Multiple hypergeometric function 289

where <(a) is positive,

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

=
1

Γ(b1) · · ·Γ(bn)

∫
(R+)n

e−
Pn
i=1 ti

n∏
i=1

tbi−1
i Ψ(n)

2 (a; c1, . . . , cn;x1t1, . . . , xntn)dt1 · · · dtn

where <(b1), . . . ,<(bn) are positive,

F
(n)
B (a1, . . . , an, b1, . . . , bn; c;x1, . . . , xn)

=
1

Γ(a1) · · ·Γ(an)

∫
(R+)n

e−
Pn
i=1 ti

n∏
i=1

tai−1
i Φ(n)

2 (b1, . . . , bn; c;x1t1, . . . , xntn)dt1 · · · dtn

where <(a1), . . . ,<(an) are positive,

F
(n)
B (a1, . . . , an, b1, . . . , bn; c;x1, . . . , xn)

=
1

Γ(a1) · · ·Γ(an)Γ(b1) · · ·Γ(bn)

∫
(R+)2n

e−
Pn
i=1 si−ti

n∏
i=1

saii t
bi−1
i

× 0F1

(
−; c;

n∑
i=1

xisiti

)
ds1 · · · dsndt1 · · · dtn

where <(a1), . . . ,<(an) are positive and <(b1), . . . ,<(bn) are positive. In particular, we
have the following interesting special cases

F
(n)
B

(
a1

2
, . . . ,

an
2
, a1 +

1
2
, . . . , an +

1
2

; c;x1, . . . , xn

)
=

1
Γ(a1) · · ·Γ(an)

∫
(R+)n

e−
Pn
i=1 ti

n∏
i=1

tai−1
i 0F1

(
−; c;

x1t
2
1

4
+ · · ·+ xntn

4

)
dt1 · · · dtn

where <(a1), . . . ,<(an) are positive,

F
(n)
C (a, b; c1, . . . , cn;x1, . . . , xn) (C.1.8)

=
1

Γ(a)Γ(b)

∫ +∞

0

∫ +∞

0
e−s−tsa−1tb−1

n∏
i=1

0F1(−; c1;xist)dsdt

where <(a) is positive and <(b) is positive. In particular, Equation (C.1.8) also has a
special case worth mentioning, namely

F
(n)
C

(
a

2
, a+

1
2

; c1, . . . , cn;x1, . . . , xn

)
=

1
Γ(a)

∫ +∞

0
essa−1

n∏
i=1

0F1

(
−; ci;

s2xi
4

)
ds
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where <(a) is positive. Finally the function F
(n)
D has the interesting multiple Laplace

integral representation

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn)

=
1

Γ(b1) · · ·Γ(bn)

∫
(R+)n

e−
Pn
i=1 ti

n∏
i=1

tbi−1
i 1F1

(
a; c;

n∑
i=1

xiti

)
dt1 · · · dtn

where <(b1), . . . ,<(bn) are positive, and the single integral representation

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn) =

1
Γ(a)

∫ +∞

0
e−tta−1Φ(n)

2 (b1, . . . , bn; c;x1t1, . . . , xntn)dt

where <(a) is positive. Integral representation of Laplace-type for the Lauricella hyper-
geometric function can be employed in the discussion of special Fourier transforms and
Laplace transforms. Furthermre, they arise frequently in applications involving multiple
hypergeometric functions.

Various interesting relations may be obtained as simple consequences of the integral
representaion (C.1.5) and (C.1.6). In particular

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

=
Γ(d)

Γ(a)Γ(a− d)

∫ 1

0
ua−1(1− u)d−a−1F

(n)
A (d, b1, . . . , bn; c1, . . . , cn;ux1, . . . , uxn)du

where <(a) and <(d− a) are positive, and |x1|+ · · ·+ |xn| < 1,

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

=
Γ(c)

Γ(d)Γ(c− d)

∫ 1

0
ud−1(1− u)c−d−1F

(n)
D (a, b1, . . . , bn; d;ux1, . . . , uxn)du

where <(d) and <(c − d) are positive and the moduli of the variables x1, . . . , xn all less
than unity. Moreover, we have

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

=
Γ(d1) · · ·Γ(dn)

Γ(b1) · · ·Γ(bn)Γ(d1 − b1) · · ·Γ(dn − bn)

×
∫

(0,1)n

n∏
i=1

ubi−1
i (1− ui)di−bi−1F

(n)
A (a, d1, . . . , dn; c1, . . . , cn;u1x1, . . . , unxn)du1 · · · dun

where <(b1), . . . ,<(bn) are positive and <(d1 − b1), . . . ,<(dn − bn) are positive and the
sum of the moduli of the variables is less than unity,

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

=
Γ(c1) · · ·Γ(cn)

Γ(d1) · · ·Γ(dn)Γ(c1 − d1) · · ·Γ(cn − dn)

×
∫

(0,1)n

n∏
i=1

udi−1
i (1− ui)ci−di−1F

(n)
A (a, b1, . . . , bn; d1, . . . , dn;u1x1, . . . , unxn)du1 · · · dun
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where <(d1), . . . ,<(dn) are positive and <(c1 − d1), . . . ,<(cn − dn) are positive and the
sum of the moduli of the variables is less than unity. A multiple integral relation involving
the function F

(n)
D is

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn)

=
Γ(d1) · · ·Γ(dn)

Γ(b1) · · ·Γ(bn)Γ(d1 − b1) · · ·Γ(dn − bn)

×
∫

(0,1)n

n∏
i=1

ubi−1
i (1− ui)di−bi−1F

(n)
D (a, d1, . . . , dn; c;u1x1, . . . , unxn)du1 · · · dun

where <(b1), . . . ,<(bn) are positive and <(d1 − b1), . . . ,<(dn − bn) are positive and the
moduli of the variables are less than unity. Moreover, we give four integral relations which
result from (C.1.6)

F
(n)
A (a, b1, . . . , bn; c1, . . . , cn;x1, . . . , xn)

=
Γ(d)

Γ(b1) · · ·Γ(bn)Γ(d− b1 − · · · − bn)

×
∫

∆(n)

n∏
i=1

ubi−1
i

(
1−

n∑
i=1

ui

)d−b1−···−bn−1

F
(n)
C (a, d; c1, . . . , cn;u1x1, . . . , unxn)du1 · · · dun

where <(b1), . . . ,<(bn) are positive and <(d− b1− · · · − bn) is positive and the sum of the
moduli of the square roots of the variables is less than unity,

F
(n)
B (a1, . . . , an, b1, . . . , bn; c;x1, . . . , xn)

=
Γ(c)

Γ(d1) · · ·Γ(dn)Γ(c− d1 − · · · − dn)

×
∫

∆(n)

n∏
i=1

udi−1
i 2F1(ai, bi; di;uixi)

(
1−

n∑
i=1

ui

)c−d1−···−dn−1

du1 · · · dun

where <(d1), . . . ,<(dn) are positive and <(c− d1− · · · − dn) is positive and the moduli of
the variables are less than unity,

F
(n)
B (a1, . . . , an, b1, . . . , bn; c;x1, . . . , xn)

=
Γ(d)

Γ(b1) · · ·Γ(bn)Γ(d− b1 − · · · − bn − 1)

×
∫

∆(n)

n∏
i=1

ubi−1
i

(
1−

n∑
i=1

ui

)d−b1−···−bn−1

F
(n)
D (d, a1, . . . , an; c;u1x1, . . . , unxn)du1 · · · dun

where <(b1), . . . ,<(bn) are positive and <(d− b1 − · · · − bn) is positive and the moduli of
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the variables are less than unity,

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn)

=
Γ(c)

Γ(d1) · · ·Γ(dn)Γ(c− d1 − · · · − dn)

×
∫

∆(n)

n∏
i=1

udii

(
1−

n∑
i=1

ui

)c−d1−···−dn−1

F
(n)
A (a, b1, . . . , bn; d1, . . . , dn;u1x1, . . . , unxn)du1 · · · dun.

C.2 Fox H-function and Meijer G-function

For integers m, n, p, q such that 0 ≤ m ≤ q, 0 ≤ n ≤ p for ai, bj ∈ C and for αi, βj ∈ R+

(i = 1, . . . , p and j = 1, . . . , q), the H-function Hm,n
p,q (z) (see Fox [71]) is defined via a

Mellin-Barnes-type integral in the form

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣∣(a1, α1), . . . , (ap, αp)
(b1, β1), . . . , (bn, βn)

]
:=

1
2πi

∮
L
Hm,np,q (s)z−sds (C.2.1)

where

Hm,np,q (s) :=
1

2πi

∮
L

∏m
j=1 Γ(bj − βjs)

∏n
i=1 Γ(1− ai − ais)∏p

i=n+1 Γ(ai + αis)
∏q
j=m+1 Γ(1− bj − βjs)

.

Here

z−s = e−s(log(|z|)+i arg z) z 6= 0, i =
√
−1

where log(|z|) represents the natural logarithm of |z| and arg z is not necessarily the
principar value. An empty product in (C.2.1), if it occours, is taken to be one, and the
poles

bj,l =
−bj − l
βj

j = 1, . . . ,m, l ≥ 0 (C.2.2)

of the Gamma functions Γ(bj + βjs) and the poles

ai,k =
1− ai + k

αi
i = 1, . . . , n, k ≥ 0 (C.2.3)

of the Gamma functions Γ(1− ai − αis) do not coincide

αi(bj + l) 6= βj(ai − k − 1) i = 1, . . . , n, j = 1, . . . ,m, k, l ≥ 0.

L in (C.2.1) is the infinite contour which separates all the poles bj,l in (C.2.2) to the left
and all the poles ai,k in (C.2.3) to the right of L, an has one of the following forms:

i) L = L−∞ is a left loop situated in a horizontal strip starting at the point −∞+ iϕ1

and terminating at the point −∞+ iϕ2 with −∞ < ϕ1 < ϕ2 < +∞;
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ii) L = L+∞ is a right loop situated in a horizontal strip starting at the point +∞+iϕ1

and terminating at the point +∞+ iϕ2 with −∞ < ϕ1 < ϕ2 < +∞;

iii) L = Liγ∞ is a contour starting at the point γ − i∞ and terminating at the poing
γ + i∞, where γ ∈ R.

In particular, the properties of the H-function Hm.n
p,q (z) depend on the numbers a∗, ∆, δ,

µ, a∗1 and a∗2 which are expressed via m, n, p, q, ai, αi (i = 1, . . . , p) and bj , βj (j = 1, . . . , q)
by the following relations

a∗ :=
n∑
i=1

αi −
p∑

i=n+1

+
m∑
j=1

βj −
q∑

j=m+1

βj (C.2.4)

∆ :=
q∑
j=1

βj −
p∑
i=1

αi (C.2.5)

δ :=
q∏
i=1

α−αii

q∏
j=1

β
βj
j (C.2.6)

µ :=
q∑
j=1

bj −
p∑
i=1

ai +
p− q

2
(C.2.7)

a∗1 :=
m∑
j=1

βj −
p∑

i=n+1

αi (C.2.8)

a∗2 :=
∑
i=1n

αi −
q∑

j=m+1

βj (C.2.9)

a∗1 + a∗2 = a∗ (C.2.10)

a∗1 − a∗2 = ∆ (C.2.11)

ξ :=
m∑
j=1

bj −
q∑

j=m+1

bj +
n∑
i=1

ai −
p∑

i=n+1

ai (C.2.12)

c∗ := m+ n− p+ q

2
. (C.2.13)

An empty sum in (C.2.4), (C.2.5), (C.2.7), (C.2.8), (C.2.9), (C.2.12) and an empty product
in (C.2.6), if they occour, are taker to be zero and one, respectively. The conditions for
the existence of the H-function follow by virtue ot these relations.
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Theorem C.2.1. (crf. Kilbas and Saigo [107]) Let a∗, ∆, δ and µ be given in (C.2.4),
(C.2.5), (C.2.6) and (C.2.7). Then the H-function Hm,n

p,q (z) defined by (C.2.1) makes sense
in the following cases

L = L−∞, ∆ > 0, z 6= 0 (C.2.14)

L = L−∞, ∆ = 0, 0 < |z| ≤ δ (C.2.15)

L = L−∞, ∆ = 0, z = δ, <(µ) < −1 (C.2.16)

L = L+∞, ∆ < 0, z 6= 0 (C.2.17)

L = L+∞, ∆ = 0, |z| > 0 (C.2.18)

L = L+∞, ∆ = 0, |z| = δ, <(µ) < −1 (C.2.19)

L = Liγ∞, a
∗ > 0, | arg z| < a∗π

2
, z 6= 0 (C.2.20)

L = Liγ∞, a
∗ = 0, ∆γ + <(µ) < −1, arg z = 0, z 6= 0. (C.2.21)

Refer to Kilbas and Saigo [107] and to Yakubovich and Luchko [187] for a detailed
discussion about H-function and in particular for further conditions of existence of the
H-functions.

For integers m, n, p, q such that 0 ≤ m ≤ q, 0 ≤ n ≤ p for ai, bj ∈ C and for αi, βj ∈ R+

(i = 1, . . . , p and j = 1, . . . , q), the G-function Gm,np,q (z) (see Meijer [136], Meijer [137] and
Meijer [138]) is defined via a Mellin-Barnes-type integral in the form

Gm,np,q (z) = Gm,np,q

[
z

∣∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
:=

1
2πi

∮
L
Gm,np,q z

−sds

where

Gm,np,q :=
1

2πi

∮
L

∏m
j=1 Γ(bj + s)

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(aj + s)
∏q
j=m+1 Γ(1− bj − s)

where the contour of integration L is set up to lie between the poles of Γ(ai + s) and the
poles of Γ(bj + s). The G-function is defined uner the following hypothesis:

i) 0 ≤ m ≤ q, 0 ≤ n ≤ p and p ≤ q − 1

ii) z 6= 0

iii) no couple of bj for j = 1, . . . ,m differs by an integer or a zero;

iv) the parameter ai ∈ C and bj ∈ C are so that no pole of Γ(bj + s) for j = 1, . . . ,m
coincide with any pole of Γ(ai + s) for i = 1, . . . , n;

v) ai − bj 6= 1, . . . for i = 1, . . . , n and j = 1, . . . ,m;
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vi) if p = q, then the definition makes sense only for |z| > 1.

Refer to Erdélyi et al. [37] for a more thorough discussion of the G-functions and in par-
ticular for further conditions of existence of the G-functions

Both H-functions and G-functions are very general functions whose special cases cover
most of the mathematical functions such as the trigonometric functions, Bessel func-
tions and generalized hypergeometric functions. Comparison between the definition of
H-function and the definition of G-function, reveals that any G-function is an H-function,
but not vive versa. In particular, when αi = βj for i = 1, . . . , p and j = 1, . . . , q, then

Hm,n
p,q

[
z

∣∣∣∣∣(a1, 1), . . . , (ap, 1)
(b1, 1), . . . , (bn, 1)

]
= Gm,np,q

[
z

∣∣∣∣∣a1, . . . , ap

b1, . . . , bq

]
.

The following list shows how it is possible to express some mathametical functions in terms
of the H-function

ez = H1,0
0,1

[
−z

∣∣∣∣∣ ·(0, 1)

]
∀z (C.2.22)

cos(z) =
1√
π
H1,0

0,2

[
z2

4

∣∣∣∣∣ ·
(0, 1), (1/2, 1)

]
∀z (C.2.23)

sin(z) =
2√
π
H1,0

0,2

[
z2

4

∣∣∣∣∣ ·
(0, 1), (−1/2, 1)

]
z ≥ 0 (C.2.24)

log(1 + z) = H1,0
1,2

[
z2

4

∣∣∣∣∣(1, 1), (1, 1)
(1, 1), (0, 1)

]
|z| < 1 (C.2.25)

Γ(x, z) = H2,0
1,2

[
z

∣∣∣∣∣ (1, 1)
(0, 1), (x, 1)

]
∀z (C.2.26)

Kη(z) =
1
2

(x
2

)−a
= H1,0

0,2

[
z2

2

∣∣∣∣∣ ·
(a− η/2, 1), (a+ η/2, 1)

]
∀z (C.2.27)

pFq(a1, . . . , ap; b1, . . . , b1; z) =
∏p
i=1 Γ(ai)∏q
j=1 Γ(bj)

× (C.2.28)

×H1,p
p,q+1

[
−z

∣∣∣∣∣ (1− a1, 1), . . . , (1− ap, 1)
(0, 1), (1− b1, 1), . . . , (1− bq, 1)

]
p ≤ q, 0 ≤ |z| ≤ 1

where the last two equations corresponds to the modified Bessel function of the third kind
and to the generalized hypergeometric function, respectively Refer to Kilbas and Saigo
[107] for a more exhaustive list of relationships between the H-functions and some other
mathematical functions.
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