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Introduction

This dissertation focuses on a prominent feature of many economic and financial time series,

namely the presence of structural instability. Researchers typically use reduced form models

whose parameters may shifts in response to changes in monetary policy rules, tax laws, regulation

and so on. As a matter of fact, both inference and forecasting are severely undermined by the

issue at hand. Hence, identification of the sources and nature of such time variation is key to

sound economic decision making.

To this end, many models have been developed in the literature: for example, parameters may

be postulated to undergo discrete or recurrent breaks and the latter may in turn be transitory

or permanent. Among them, the time-varying parameters (TVP) model that allows for smooth

time variation has become over the years the benchmark for its simplicity. Nonetheless, its appeal

strongly diminishes as the dimensionality of multivariate systems increases. This is particularly

true in forecasting applications in which very often the sample size under consideration is limited

so as to render the estimation very unprecise relative to simpler models.

The present dissertation embraces a very flexible approach, referred to as “the mixture

innovation approach”, that does not impose a priori the number and the timing of structural

breaks. Rather it encompasses both the fixed parameter model and the TVP model as special

cases. A latent indicator, indeed, plays the crucial role to determine at each point in time

whether a shift in parameters has taken place. Popularized by Giordani, Kohn and Van Dijk

(2007), Ravazzolo, Paap, Van Dijk and Franses (2007) and Giordani and Kohn (2008), this

new approach is garnering increasing attention. The practical estimation is carried out by

means of Bayesian methods that allow to circumvent typical problems with maximum likelihood

estimation and moreover take naturally into account another crucial aspect such as parametr
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uncertainty.

The first essay incorporates both model uncertainty and structural instability to predict

exchange rate movements. These are well known to be hardly predictable and the literature

has long sought a sound alternative to a no-change model. Notwithstanding, fluctuations in the

foreign exchange markets are to some degree related to movements in fundamentals but these

relationships are rather unstable and faint. The paper applies a method that endogenously

choose among all the possible combinations of candidate predictors as in Wright (2008) and

also let them exert a variable impact onto the exchange rate change by means of a “mixture

innovation approach”. Results for the US dollar vis-a-vis the Canadian dollar and the Japanese

yen at a quarterly frequency show that there exists a relevant amount of model uncertainty and

weighting predictions from all the models fares well compared to the benchmark for the out of

sample period of 1990-2008. However, the presence of structural instability needs to be carefully

modelled: the best results are obtained by keeping parameters constant or limiting the amount

of breaks. The specific approach used in the paper has the merit of capturing rare but important

changes and hence be less prone to overfitting concerns than time-varying parameters (TVP)

models.

The second essay employs the “mixture innovation approach” for inferential purposes. In

particular, the asset pricing properties and dynamics of publicly traded real estate are analyzed

and compared to general asset classes like stocks and bonds. Real estate investment trusts

(REITs) have been introduced in the United States in 1960 in order to make investment into large

scale, income producing real estate accessible to small investors and have since been considered

as an additional investment opportunity. A number of legislative interventions and the recent

boom in capitalization have changed the properties of this asset class. Following the two-stage

procedure à la Fama and MacBeth (1973), a multifactor pricing model is used to estimate,

firstly, time-varying factor sensitivities and, secondly, risk premia in a specification in which also

the conditional volatility is time-varying. The second step is performed in a pure Bayesian way,

that is exploiting the entire posterior distribution of the estimated sensitivities as proposed by

Ouysse and Kohn (2009) in order to account for parameter uncertainty. Results do not support

the view of a sudden change in public real estate pricing characteristics around the early nineties.

Yet, idiosyncratic risk shows a marked upward trend with a decreasing rate just in the last years
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while the quantity of priced market risk has risen since 2000. The time-varying multi-factor

pricing model turns out to be rejected for the asset menu under consideration.

The last essay focuses on the predictive relationship that links the term spread, measured as

the difference between the yields on long term (10-year) and short term (3-month) government

bonds, to future output growth. The former is historically considered to be a reliable harbinger of

future recessions but, on the other hand, its performance has been documented to have decreased

in the last twenty years. The aim is to include recent observations, precisely data until 2009:II,

to the overall picture. To capture these features, a plain TVP model that allows for changes in

regression parameters, conditional variances and correlations as in most macroeconomic studies

is used. The analysis is not restricted to a bivariate model but computes the marginal predictive

content of the yield spread once inflation and the short term rate are added as well. This measure

of fit at one and two years ahead is inevitably computed in-sample as the dimensionality of the

system makes a recursive approach unfeasible. The evidence confirms the findings in the previous

literature and also suggests that such predictive power has not moved much lately, apart from

a short-lived hike around the time of the recession in 2001. Furthermore, it appears more

important the contribution of inflation and the short rate.
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Exchange Rate Forecasting: Bayesian Model

Averaging and Structural Instability

Abstract

This paper addresses the topic of exchange rate forecasting by using a Bayesian Model
Averaging approach which explicitly accounts for both model and parameter uncertainty.
Wright (2008) is the first exploring this route and provides encouraging results. The novelty
here consists of adding one more ingredient, parameter instability, by means of a mixture
innovation approach [see Ravazzolo, Paap, van Dijk and Franses (2007) and Giordani and
Kohn (2008)]. Besides analyzing shortly both model uncertainty and parameter instability
in the full sample, their relative contribution is evaluated versus the benchmark driftless
random walk model for one-quarter-ahead predictions of two exchange rates. The statistical
criteria used for comparisons explore several dimensions, not only the mean of the forecast
distribution. The proposed averaging approach works well for the US dollar - Japanese yen
exchange rate, while for the US Dollar - Canadian Dollar case the performance appears to
depend on the specific time window under consideration. Overall, the best results are ob-
tained by keeping parameters constant or limiting the amount of breaks: hence, the mixture
innovation approach appears superior to the time-varying parameter (TVP) model frame-
work as a forecasting tool in the present application.
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1 Introduction

The seminal Meese and Rogoff’s paper (1983) has posed a serious challenge for any macroe-

conomic model of exchange rate determination by decreeing the primacy of the random walk

specification. This finding, termed as the “exchange rate disconnect puzzle”, plainly implies

that returns are unpredictable given current information. The countless attempts to fix it have

been mostly unsatisfactory: indeed whenever different results emerge they just hold for either a

specific sample or a particular currency.

Among the routes followed in the literature, forecast combination techniques have garnered

increasing attention recently, examples being Altavilla and de Grauwe (2010) and Della Corte

et al. (2009). Bates and Granger (1969) have been among the first ones suggesting the high

potential benefits from forecast combination. In general, as Guidolin and Na (2007) recognize, it

is well accepted in the literature that, in case of structural instability, single nonlinear models are

not likely to perform always accurately while forecast combination can provide a hedge against

nonstationarity.1 Bayesian Model Averaging offers a rigorous statistical foundation to such a

practice as each forecast is weighed by the posterior probability of the respective model.

In the present context Wright (2008) (henceforth, Wright) finds that forecasts from Bayesian

Model Averaging sometimes perform quite better than the random walk while they never do

much worse, even though it turns out that the two competing forecasts are quite close. His

analysis is here extended by introducing time-variation in the relationship between dependent

and independent variables. Even though long considered as a possible solution to the Meese-

Rogoff puzzle, the contribution offered by this kind of instability has usually been neglected, the

few exceptions being Schinasi and Swamy (1989) and Rossi (2006). To this purpose, a mixture

innovation approach as in Ravazzolo et al. (2007) and Giordani and Kohn (2008) is used: it

is very flexible in that parameters are allowed to change at each time but, crucially, they are

not forced to do so. This draft deals with one-quarter ahead predictions, exactly the horizon

for which traditional macromodel-based forecasts are mostly disappointing with respect to a
1There is a vast ongoing literature investigating forecast combination techniques and comparing relative merits:

a recent but interesting example is Stock and Watson (2005). The main alternative to Bayesian Model Averaging
in the frequentist approach is ”bagging” as developed by Inoue and Kilian (2008).
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random walk.2 The focus is mainly, but not solely, on point predictions. In fact I also look at

other important aspects like distribution forecasts, even though these are just briefly touched

upon and left for a more detailed future analysis.

Over the main evaluation sample (1990-2008), results are promising for the US dollar-

Japanese yen but not for the US dollar-Canadian dollar. Interestingly, focusing on the same

out-of-sample window as in Wright (1990-2005) the latter conclusion is partially reversed as

models with modest and rare time variation in parameters fare better than the random walk.

Hence the message is that Bayesian Model Averaging may help if carefully designed, in

particular as to how parameter instability is modelled. In fact, the best performing strategy

turns out to be averaging over the space of models with constant (in other terms, similarly to

Wright), or slightly and occasionally moving parameters. When the same models are given too

much flexibility (TVP models) the quality of the resulting predictions easily deteriorates. This

result is not new in the literature, in particular for models with a random-walk-type variation: in

a more general and systematic investigation, Stock and Watson (1996) find widespread instability

in macroeconomic variables but recognize however that TVP models often fail to exploit it as

they are outperformed by constant parameter models. In the case of floating exchange rates, the

amount of information available at quarterly frequencies hardly guarantees precise estimates of

parameters that are subject to changes over time, let alone model misspecification. Especially

when high-dimensional models receive some non-negligible prior probability, like in the proposed

approach. In short, the mixture innovation approach appears a preferable alternative to smooth

time variation in similar environments characterized by instability.

Moreover, the well estabilished result in the forecasting literature that parameter shrinkage

works is confirmed here as well. Finally, moving from statistical to more profit-based metrics

like the Hit Rate, the overall picture becomes clearly more favourable.

The remainder of the paper is organized as follows. Section 2 briefly resumes the state of the

art in the empirical exchange rate literature, Section 3 introduces the model structure, discusses
2This common view can anyway be questioned in light of recent evidence such as Molodtsova and Papell (2009)

(see next section). On the contrary, the good performance in the long horizon is a well estabilished result in the
literature.
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the prior choices and illustrates the algorithm used for posterior simulation. Section 4 present

data and results while Section 5 concludes.

2 Empirical Exchange Rate Literature3

One of the most controversial issues in international finance concerns the faint relationship

between economic fundamentals and exchange rates for advanced countries, also known as “the

exchange rate disconnect puzzle”. A vast set of theoretical models, ranging from the monetary

approach to the portfolio balance approach as well as the recent elaborate “new open macro”

frameworks, highlights the relevance of macroeconomic fundamentals such as money or output

differentials or current account balances in determining the exchange rate level. Yet, none of

them has managed to pass simple tests like out-of-sample forecasting performance. Except for

some specific circumstances, the random walk tends to outperform monetary or “fundamental”

models whatsoever in short-horizon regressions while loosing often in the long-horizon, as shown

by Mark (1995).4

Nonetheless, renewed interest has been spurred by recent contributions that have partially

rehabilitated traditional models and criticized the mainstream literature in many directions.

For instance, Engel, Mark and West (2007) (hereafter, EMW) provide both theoretical and

empirical support to traditional macro models despite their well-known out-of-sample failure in

outperforming a random walk. The main argument relies on the fact that short-run exchange rate

changes are driven mostly by changes in expectations about future fundamentals and according

to these models, under weak conditions, exchange rates behave similarly to a random walk. As

a consequence, different tools other than out of sample tests have to be used for evaluation

purposes.5

3The following section is intended to outline the recent contributions of an ever prolific literature. Most of
them are anyway only of indirect interest as they aim at explaining empirical failures of specific theoretical models,
whereas the focus in this paper is broader and more practical.

4However, the implementation in such exceptions raises some doubts about their econometric soundness and
the reliability of their results. A thorough analysis is in Neely and Sarno (2002): please refer to details therein.

5EMW list several criteria that give support to traditional rational expectation macro models but also highlight
a relatively new evidence about both the usefulness of Taylor rule based predictions for exchange rates and the
presence of a Granger causality relationship with future fundamentals.
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Clark and West (2006) instead point to the drawbacks with using the Diebold-Mariano (here-

after DM) statistics for inference in case of nested models. They show that the DM procedure is

severely undersized and has also low power: even though the MSPE difference in population is

zero, the in-sample difference is negative. The same authors adjust the statistic for this upward

shift (henceforth CW statistic) and find properly sized tests by using asimptotically normal

critical values. A bridge between EMW and Clark and West (2005) is Molodtsova and Papell

(2009) who point to the effect of model selection and inference methodology on out-of-sample

predictability. In particular, they use the CW statistic and find evidence of short term exchange

rate predictability especially when using Taylor rule models. However, the predictive power dies

completely away beyond a six month horizon.

Another explanation for the random walk outperformance refers to the presence of underlying

structural changes, in the form of simple breaks, regime switches or nonlinearities in the rela-

tionship between exchange rates and fundamentals. Structural instability characterizes indeed

most of macroeconomic and financial series and can easily produce conflicting results between

in sample and out of sample tests.6 Rossi (2006) investigates the implications of parameter in-

stability for model selection between fundamental-based and no-change models of exchange rate

determination: it emerges an unstable relationship between the exchange rate and the funda-

mentals and in some cases (Japanese Yen-US Dollar, for example) accounting for breaks delivers

better forecasts than a simple random walk. This paper shares with Rossi (2006) the intuition

that exploiting such features can be fruitful for forecasting but carries out a Bayesian rather

than a classical analysis.

A related idea is originally put forward in Sarno and Valente (2008): based on survey data

evidence of swings in expectations, they contend that traditional fundamentals do have some

predictable content but the market attaches variable weights to them over time. Using ex-post

data to select the best model at each time outperforms a random walk model for three out of five

exchange rates. Hence the authors conclude that the kinds of failures reported in the literature
6In fact Meese and Rogoff (1988) consider in-sample tests unreliable and thus prefer out-of-sample procedures.

In general, stable structural relationships are needed in order to rely on inference based on short time series,
otherwise the out-of-sample forecasting performance will always be disappointing. For a recent investigation see
also Clark and McCracken (2006).



12

need to be ascribed to weaknesses in typical model selection criteria.7

On the other hand Bacchetta, van Wincoop and Beutler (2009) challenge the role of pa-

rameter instability to explain the Meese-Rogoff puzzle. They use a fairly general reduced form

model, very similar to the one laid out in the next section, and by both estimation and model

calibration find that it is the small sample estimation bias that determines the puzzle.8

Finally, Rogoff and Stavrakeva (2008) temper any kind of optimism in recent studies by

investigating the statistical significance of such macro-model forecasts. Several key aspects are

pointed out. Firstly, unlike the Theil’s U an the Diebold-Mariano statistic, it is not guaranteed

that the new kind of tests (CW and ENC-NEW) pick the best model in the sense of minimum

MSFE. In particular, in case forecasts are biased these newer out-of-sample tests simply impose

the null that the DGP for exchange rates is a random walk. Moreover the authors test the

robustness of positive results to different forecast windows. Critically, the best results are

for some (Australia and Canada) of the “commodity currencies” and come from no structural

factors. The main message can be resumed by shortly quoting a paragraph of their introduction:

“ The euphoria has been exaggerated by misinterpreation of some newer out-of-

sample statistics for nested models, over-reliance on asymptotic out-of-sample tests

statistics and failure to check for robustness to the time period sampled.”

3 The approach: Bayesian Model Averaging and Structural In-

stability

3.1 The model

Model Averaging is a very useful tool for inference, prediction and policy analysis whenever

there exists uncertainty about the true data generating process or theoretical model, this event
7The models selected according to the their strategy are clustered over time and none of them is the best one

for long periods of time: this brings about shifts in the parameters that reconcile with evidence and explanations
advanced in much of the recent literature.

8Anyway, the possibility that parameters have a unit root as in (5) is purposely ruled out: in this case, the
puzzle would not exist at all according to their results. Furthermore, note that the objective of the present
analysis is not to discover the true data generating process but to test the short horizon predictive power of
macroeconomic variables.
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being very likely to come along in economics. As put forward by Draper (1995), conditioning

results on a specific model, as it is usually done, brings about biased results and too narrow

standard errors. In a model averaging perspective, results are instead obtained by appropriately

weighting the evidence from every model in the pool.

The idea of Bayesian Model Averaging (henceforth, BMA) traces back to Leamer (1978)

even though the number of applications to econometrics is very small. If the researcher believes

that a particular phenomenon or variable is driven by different factors or explainable in terms

of various competing models, then it is preferable in many instances to explicitly account for

this uncertainty instead of basing inference on a particular specification. Considering a set of

models M1, ...,Mn, it may be that the researcher does not know which one is the true model

but she has prior beliefs about it, represented by P (Mi). The relevant quantity becomes the

posterior probability associated to each model:

P (Mi|D) =
P (D|Mi)P (Mi)∑n

j=1 P (D|Mj)P (Mj)
(1)

where

P (D|Mi) =
∫
P (D|θ,Mi)P (θ|Mi)dθ (2)

is the marginal likelihood of the i − th model, P (θ|Mi) is the prior density of the parameter

vector in that model and P (D|θ,Mi) is the likelihood. The resulting forecast density is

f∗ =
n∑

j=1

P (Mi|D)fi (3)

where fi is the forecast density from the i− th model. Also, one can only look at point forecasts

and thus weighting them by the respective posterior model probability. The elicitation of the

parameter priors requires careful attention: in particular, improper priors are allowed only for

those parameters common to all models for the marginal likelihood not to depend on arbitrary

normalizing constants.

It is customary to allow for all possible combinations of likely explanatory variables, thus



14

considering 2m models in case of m regressors: when m is very large, for example more than

20, then the evaluation of each single models becomes unfeasible and an algorithm for searching

over the model space is needed. This could be either deterministic or stochastic.9

The most recent applications relate to cross-country growth regressions [Doppelhofer, Miller

and Sala-i-Martin (2000), Fernandez, Ley and Steel (2001), Cuaresma and Doppelhofer (2006)],

stock market prediction [i.e. Avramov (2002), Cremers (2002) and Ravazzolo, Paap, van Dijk

and Franses (2007) and Della Corte, Sarno and Tsiakas (2009)], and inflation prediction [Wright

(2009), Jacobson and Karlsson (2004), Koop and Potter (2006) and Eklund and Karlsson (2007)],

to name a few.

Ravazzolo et al. (2007) allow for both model uncertainty and parameter instability, features

that have always been analyzed separately. The latter is introduced by means of a flexible

approach that lets (but not binds) the parameters change at each point in time. Fixed parameter

models and TVP models are both encompassed as special cases. Their approach has been

followed here and the resulting regression model is the following:

∆et = β0t +
m∑

j=1

sjβjtxjt−1 + εt (4)

where

βj,t = βj,t−1 + kj,tηj,t, j = 0, .,m. (5)

The latent binary random variables sj and kj,t determine the inclusion of xjt in the model

and the presence of changes in βj,t, respectively, while εt ∼ N(0, σ2) and ηj,t ∼ N(0, q2
j ). Each

predictor variable xj is included in the model with probability Pr[sj = 1] = λj and each model

is denoted by the sequence (s1, ..., sm). The regression parameter βj,t undergoes a change with

9The range of possible algorithms is very wide and so the interested reader is invited to read either Raftery
et al.(1999) or Koop (2003) for a useful survey. A general reference for applying BMA to linear regressions is
Raftery et al. (1997).
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probability Pr(kj,t = 1) = πj for j = 0, ...,m, which is independent of the dynamics up to that

time period: if kj,t = 1 the variation is then determined by ηj,t, otherwise it is null. Furthermore,

the latent indicator is uncorrelated across variables which implies that the regression parameters

are not restricted to change contemporaneously. The intercept is always included and is also

allowed to change over time: in particular, regressors have to be demeaned in order for changes

in the parameters not to influence the intercept.

3.2 Prior specification

A crucial and thoughtful step in any Bayesian estimation exercise is to elicit prior information.

When entertaining a vast number of candidate models, a detailed specification of prior uncer-

tainty is almost unfeasible and so a set of uninformative/automatic priors is advocated.

As for the model space, I follow the standard choice of a uniform prior which equally supports

all the possible models:10 the variable inclusion probabilities λ1, ..., λm, where Pr[sj = 1] = λj ,

are set equal to 0.5 for all j = 1, ..,m. As a consequence, posterior model probabilities turn out

to be proportional to marginal likelihoods. In the forecasting exercise I follow Wright in that I

also experiment with λ = 0.2 which gives greater prior support to low-dimensional models.

For the measurement error variance, a natural choice is the independent conjugate prior like

the inverted Gamma distribution. In particular, I impose it be centered close to the sample

variance of the dependent variable and have a minimal amount of tightness (in this case ν = 2).

A prior distribution for the β’s is needed to initialize the filtering recursions: a normal

distribution with mean zero is the natural candidate. As for its dispersion, I have tried several

options that imply some moderate strenght for the proposed value.11

As for the peculiar elements of the approach used in this paper, the literature lacks many

references unlike the abundant collection of works on time varying parameters. Among the

exceptions is Koop, Leon-Gonzalez and Strachan (2009) (henceforth KLS) who adapt Primiceri
10Note that the uniform distribution do put structure on features like model size: the higher the inclusion

probability of all variables, the bigger the expected model size. Here, λj = 0.5 ∀j implies an expected model size
equal to 0.5 ∗m, where m is the total number of predictive variables considered. Some might prefer to reward
more parsimonious specifications.

11An important reason why not to leave the prior variance unconstrained is expressed in footnote 17. The
reader interested in the actual hyperparameters used in the forecasting exercise can look at Tables 7 and 9.
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(2005)’s settings, currently a benchmark in the TVP literature, to the specific framework at

hand. The latter suggests using a mild informative prior about the break size that he centers on

a specific fraction of the OLS coefficient variance (in his paper such a multiplicative factor equals

0.012) in order to rule out implausible regions of the parameter space. KLS, in turn, multiplies

the same fraction by the inverse of the prior mean break-occurrence probability: in short, if

breaks are for instance believed to occur on average every two quarters, the associated prior

shock variance will be centered around two times the fraction suggested by Primiceri (2005).

I do the same here but the fraction I consider is computed on the prior variance of the initial

condition rather than the OLS slope variance.12

The probability of observing a structural break for the j − th variable, described by πj , is

distributed as a Beta random variable: its hyperparameters, cj and dj , have to be set according

to the subjective information about the duration mean between breaks. KLS impose the minimal

tightness (cj = dj = 1) while Giordani and Kohn (2008) propose a prior that favors few breaks.

The former is a more appealing choice to let the data speak in a framework in which the influence

of prior information is already relevant, but it lends itself to likely problems of overfitting that

could then bring about very poor forecasts. I have found that with such an option the algorithm

becomes unstable on some occasions for the Canadian case while it works well for the Japanese

yen. Then I have opted for a tighter prior still centered on the same value for break probabilities.

Besides, for the analysis in section 5.2, I have mainly used a moderately informative prior

implying a five percent break probability (cj = 5 and dj = 95). The reason for this is to push

(but not force) the sampler to find at least a break already in the first prediction, which takes

place at the last quarter of 1989.

A general description of prior distribution choices is provided in Table 1.
12I opt for a generic degree of dispersion that is not data-based. In cases where the model space is very

large it can be burdensome to compute asymptotic quantities for each possible specification, put aside the more
substantive and philosophical issue concerning the underpinnings of Bayesian inference.
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Table 1: Prior Distributions

Parameters Priors

βj,t0 ∼ N(µj ,Σj)

σ2 ∼ IG(ν∆e/2, s∆e/2)

q2
j ∼ IG(νj/2, sj/2)

λj ∼ Beta(aj , bj)

πj ∼ Beta(cj , dj)

3.3 Posterior Simulation

As already mentioned above, I follow Ravazzolo et al. (2007)’s procedure: a Gibbs sampler

is used in combination with the data augmentation technique by Tanner and Wong (1987) for

latent variables such as S = (s1, ..., sm), B = {βt}Tt=1 and K = {kt}Tt=1 where βt = (β0,t, ..., βm,t)

and kt = (k0,t, ..., km,t).

The complete data likelihood function is given by

p(∆e,B,K|x, θ) =
T∏

t=1

p(∆et|S, xt, βt, σ
2)

m∏
j=0

p(βjt|βjt−1, kjt, q
2
j )×

m∏
j=0

π
kjt

j (1− πj)1−kjt (6)

where ∆e = (∆e1, ...,∆eT ) and x = (x′1, ..., x
′
T ) while the first two terms on the right hand

side only entail evaluations of normal density functions.

Combining the prior and the data likelihood, one obtains the posterior density

p(θ, S,B,K|∆e, x) ∝ p(θ)p(S)p(∆e,B,K|θ, S, x) (7)

where θ = (π0, ..., πm, q
2
0, ..., q

2
m, σ

2) collects the model parameters.

The Gibbs sampler consists of the following iterative steps

1. Draw S conditional on B,K, θ,∆e and x.

2. Draw K conditional on S, θ,∆e and x.
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3. Draw B conditional on S,K, θ,∆e and x.

4. Draw θ conditional on S,B,K,∆e and x.

The first step applies the the Kuo-Mallick (1998) algorithm, a simplified version of George and

McCulloch (1993)’s. Each sj is sampled from its conditional posterior distribution, Pr(sj |∆e, x, θ, B,K, S−j),

where S−j = (s1, ..., sj−1, sj+1, ..., sm). This distribution is BernoulliB(1, p̃j) with p̃j = pj,1/(pj,1+

pj,0), where

pj,1 = λj exp{− 1
2σ2

T∑
t=1

(∆et − xtB
∗
t,j)

2}

and

pj,0 = (1− λj) exp{− 1
2σ2

T∑
t=1

(∆et − xtB
∗∗
t,j)

2}. (8)

The vector B∗t,j corresponds to the vector BSt = (β1,ts1, ..., βm,tsm)
′

with its j th entry equal to

βj,t , while for B∗∗j,t the j th entry is 0.

The efficient sampling algorithm of Gerlach et alia (2000) is used in the second step, that is

for structural breaks detection. The main advantage is in drawing kjt without conditioning on

the states βjt, as Carter and Kohn (1994) instead do: the conditional posterior density for kt,

t = 1, .., T unconditional on B is

p(kt|K−t, S, θ,∆e, x) ∝ p(∆e|K,S, θ, x)p(kt|K−t, S, θ, x)

∝ p(∆et+1,T |∆e1,t,K, S, θ, x)

p(∆et|∆e1,t−1, k1,t−1, S, θ, x)p(kt|K−t, S, θ, x). (9)

Gerlach et alia (2000) show how to evaluate the first two terms while the last one is obtained

from the prior. When Kt and βjt are higly dependent the sampler of Carter and Kohn (1994)

breaks down completely: the higher the correlation (dependence), the bigger the efficiency gain

using (9).

The third step applies the Kalman filter and smoother as in Carter and Kohn (1994) to

derive the conditional mean and variance of the latent factors.
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When a variable is not selected (i.e. sj = 0), kj,t is drawn from the prior and βj,t uncon-

ditionally from the process in (5). Finally, the parameters in θ are easily sampled as indepen-

dent conjugate priors are used and hence hyperparameters can be interpreted as pre-sample

occurences.

The main goal is to produce measures of exchange rate dynamics forecast, ∆et+h in (4) for

h ≥ 1, taking into account all features of uncertainty. The one-step ahead predictive density of

∆eT+1 at time T given the sample observations is

p(∆eT+1|∆e, x) =
∫ ∫ ∑

S

∑
K

∑
KT+1

p(∆eT+1|S, βT+1, σ
2)

p(βT+1|βT ,KT+1, q
2
0, ..., q

2
m)

m∏
j=0

π
kj,T+1

j (1− πj)1−kj,T+1p(B,K, S, θ|∆e, x)dBdθ, (10)

where the averaging also considers the possibility of breaks at T + 1 with weights given by∏m
j=0 π

kj,T+1

j (1 − πj)1−kj,T+1 .13 The draws from the sampling scheme at each step are used to

simulate the distribution in (10).

4 Empirical Analysis

4.1 Data Description

Data are quarterly and cover the period from the first quarter of 1973 until the end of 2008:

they have been collected from Datastream according to the sources specified in Wright.14 Two

major currencies are considered: the Canadian dollar and the Japanese yen, all vis-a-vis the US

dollar. The dependent variable is the quarterly change in each bilateral nominal exchange rate,

computed as end-of-period values.

As for the explanatory variables, I use a smaller set of variables (m = 11): a price level (CPI),

a monetary aggregate (M1), real GDP, the annual inflation rate, the annual money growth rate,
13The formula above considers just the simple case of h = 1. Remember that in a direct forecasting setup, at

each forecast horizon corresponds a different regression to be estimated.
14Use of quarterly data somehow contradicts the pure sense of “real-time” experiment as data are subject to

revision and, hence, to Faust, Rogers and Wright (2003)’s criticism.
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the annual growth rate in real income, a local stock market index (MSCI), the current account-

GDP ratio, the short term (3-month) interest rate and the yield spread (10-year minus 3-month

interest rates) and finally oil price.15 Current account, GDP and money aggregates have been

included upon seasonal adjustement unlike CPI inflation. For Japan, no appropriate data on the

current account have been found for the sample under investigation, hence the relative exchange

rate forecasts are based on ten potential predictors. All the x′s in (4) have been constructed

as cross-country differentials by taking the log difference of all the aforementioned variables but

interest rates and oil price. As mentioned in the previous section, they all have been demeaned

in order for the intercept to vary over time regardless of movements in slope parameters.

4.2 In Sample Analysis

Prior to investigating the forecasting performance of the BMA approach, I shortly report a full

sample (ex post) analysis. This is an interesting exercise in order to infer about the relevance of

different model specifications and the evolution of coefficients over time.16

A first step is to evaluate the selection procedure in case of no structural breaks. Tables 2

and 3 report results with an almost noninformative prior for the error term and a moderately

informative one for the coefficient variance.17 For the Us dollar-Canadian dollar exchange rate,

the number of models actually visited is big (about 763) denoting a high degree of uncertainty.

Indeed the most likely model, including only the relative money growth rate, is assigned about

two percent as posterior probability (first column in Table 2). This variable appears in most

of the top ten models and it is the only one with a posterior inclusion probability greater than

the prior probability of one half. The random walk model with drift receives adeguate support
15Wright (2008) considers a total number of fifteen variables but his simpler framework allows analytical deriva-

tion of posterior model probabilities and predictive means. In my case, a posterior simulator is needed and then
in order to keep the analysis feasible a few variables have been discarded on the basis of prevailing practice in the
literature. Finally, the spot oil price appeared in his working paper version and also in Rossi (2006) and has been
kept here.

16In more details, I ran 15,000 iterations saving every other draw and burning the first one thousands. Conver-
gence has been checked by both visual inspection of recursive plots and evaluation of Geweke’s CD statistics for
selected parameters.

17The latter choice is due to the fact that, in case of model selection for nested models, a less and less informative
prior variance of the β′s, even keeping the same stand about the noise term, increasingly favors the restricted
model, the random walk in this framework. This is likely related to the well-known Lindley’s paradox.
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(around 1.5 %) and belongs to the top part of the model ranking. Furthermore, the most visited

models are evidently low-dimensional and they never display more than three regressors.

For the US dollar-Japanese yen exchange rate, the relative term spread emerges as a relevant

predictor and outclasses the other explanatory variables. The most likely model which includes

the relative term spread and the relative annual money growth has a probability of 2.5 percent.

Again, very parsimonious specifications prevail but in this case the random walk with drift

receives much less support.

Then dynamics in the parameters is introduced. Admittedly, the prior about both the

variance in the transition equation and the break probabilities is not innocuous: yet, the influence

is reflected mostly in the size of the coefficients while their time path is preserved. Inference

about other quantities of interest (inclusion probabilities and top model ranking) appears not

to be severely affected on average. Results in Tables 4 and 5 are based on the same values as in

the case without breaks for the measurement equation variance and the initial condition of the

slope coefficients. For the other parameters, it applies what said in section 4.2.

Overall, the amount of model uncertainty eases off quite a lot and the first ranked model turns

out to be strongly favored by the sampler. Marginal inclusion probabilities change dramatically

in some cases: the examples of the short rate differential (increase) and the spread differential

(decrease) for the US dollar-Japanese yen exchange rate are telling. Similarly, for the US dollar-

Canadian dollar it is the spot oil price and the relative current account over GDP that become

relevant. In both cases the inclusion rates of price level related regressors have more than halved.

The average effect is an increased parsimony in the most selected models with respect to the

case of constant parameters.

The analysis in this section has confirmed that model uncertainty is undoubtedly important

in the context of exchange rate modelling and is furthermore affected by the amount of flexibility

each model is granted. When a fair number of traditional explanatory variables is considered,

no single model stands out as the one with exclusive support from the data.
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4.3 Out-of-Sample Forecasting Analysis

The aim of this paper is to ultimately test the forecasting performance of a flexible approach

that combines plausible characteristics of economic variables. Several out-of-sample metrics are

considered in order to assess the procedure proposed here. Recently, a surge of interest in the

literature has concerned whether to use in sample or out of sample tests for predictability: the

latter strategy is usually advocated to avoid data mining problems typical of the former approach.

Inoue and Kilian (2004) question this view arguing that both of them are susceptible to data

mining and should hence be corrected by using appropriate critical values. The BMA approach

provides a further advantage in that it overcomes such problems deriving from reporting only

“best results” by averaging over all possible combinations of explanatory variables and so data

mining is not much of a concern for the present work.

A typical tool for forecast comparison (out-of-sample predictability) is the root-mean-square-

prediction error (RMSPE) for the competing models, whose ratio is referred to as the Theil’s

U statistic: being the no-change model the null, a value less than one means that the model

under scrutiny has more predictive power. However, it is often argued that such a measure may

be misleading as it extremely penalizes single large errors while an appropriate decision rule

should balance true costs and benefits. As a consequence, several metrics are usually considered

altogether: among them, I look at the mean absolute error (MAE) and the Hit Rate. The latter

is frequently used in financial applications as a weak proxy for a pure profit-based metric and

indicates the fraction of times a given model correctly predicts the direction of change whereas

the theoretical “hit sequence” for a random walk is one half.

In any case, a proper Bayesian analysis should care not only about the mean of the predictive

distribution. In this respect, the Bayesian version of the Diebold Mariano statistic (henceforth,

DMB), as illustrated in Koop et al. (2009), is applied. It essentially computes the average

probability that the loss differential is unfavourable to the model under scrutiny: if this average

probability is less than 0.5 then the BMA strategy has higher predictive power in this case.

Moreover, Pesaran, Pettenuzzo and Timmermann (2006) point out that when the predictive

densities are non-normal, the relative RMSPE is only slightly informative and thus suggest the
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predictive Bayes factor (henceforth, PBF) for pair-wise model comparison: it is a ratio between

two different predictive likelihood (not density) functions or in other terms

BFt =
fRW (rt|...)
fBMA(rt|...)

(11)

where each f∗(rt|...) stands for the empirical probability density function derived from the simu-

lated predictive density by using a kernel estimator, the Epanechinov kernel in this case. A value

greater than one supports the predictive performance of the benchmark model: this calculation

is carried out for each observation in the recursive forecasting procedure and the average value

is finally considered.18

The forecast comparison starts from 1990:Q1 and includes two subsets: the main one, ending

in 2008:Q4, which consists of 76 out-of-sample observations and a shorter one (up to 2005:Q4)

in conformity with Wright. Results are shown in Tables 6 and 8 while Tables 7 and 9 accurately

list the prior settings of each forecasting model.

For the US dollar-Canadian dollar case, the verdict for point forecasts is mixed. The most

used indicator, the RMSE, always favor the no-change model: in the very few cases in which a

“BMA plus break” specification delivers a smaller bias, the standard deviation of the resulting

forecast errors increases to the extent that it more than offset the former gain. Mixture inno-

vation models on average perform better than models with smooth time variation. The mean

absolute error (MAE) instead tells a slightly different story as model averaging, both alone (al-

ways) and together with structural instability (in a couple of cases, namely when the variance

of the initial condition of the slopes is strongly reduced), is capable to outperform the random

walk model. Interestingly, fixed-parameter models all have a negative bias that is larger in

absolute value than the benchmark’s: it implies that their (point) forecast error distribution is

higly asymmetric with many small positive and large negative values.19 The Hit Rate, which is

regarded as a better economic criterion, is always greater than one half apart from the majority
18Alternatively, Geweke and Amisano (2009) consider the sum of log Bayes factors. In this way, one is also able

to single out the observations responsible for the final outcome.
19The comparison of relative standard deviations from the left column in Table 6 further confirms this intuition.

The ultimate proof should of course come from the plot of such error distributions.
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of TVP specifications: in this respect, it seems easier to do better than just tossing a coin.

It is worth noting that, among the specifications allowing for time variation tested in the

paper, TVP models fare decidedly worse by any metric. Instead shrinkage, that ultimately

implies controlling the amount of prior variability for the initial conditions of the β’s, again

proves quite an effective tool (look for instance at BMA-B4 vs. BMA-B2).20 Contrary to

Wright, favoring more parsimonious models by imposing λ equal to 0.2 does not necessarily pay

off in this case.

Finally, in the shorter subsample (1990:Q1 - 2005:Q4) a few specifications do beat the random

walk according to the RMSE statistic: these are namely the models allowing for (but not

imposing) time variaton at each time.21 By and large, the performance of all specifications

in Table 6 strictly improves in the sample analysed in Wright. In more general terms, Figure

2 shows that the size of forecast errors has greatly increased since 2003, irrespective of the

underlying model. This leads to think of some new factor(s) that has(have) been driving the

dynamics of the USD-CAD exchange rate ever since.22

For the US Dollar-Japanese Yen, the evidence is slightly in favor of the BMA approach.

As for point predictions, averaging over fixed-parameter models outclasses the no-change model

in terms of both RMSE and MAE: interestingly, the average bias is negative as well as in the

previous case. In general, the forecast errors generated by the benchmark model are widely

dispersed and almost all the competitors tried do better in this respect even though the in-

troduction of structural instability erodes the overperformance, particularly in the presence of

continuous time-variation. Within each subclass (constant parameter, mixture innovation and

TVP) of models there seems to exist a positive relationship between bias and standard deviation

of forecast errors.

Shrinkage in terms of model dimension, controlled by the λ parameter, seems to work unlike

the US Dollar-Canadian dollar case. A plausible conjecture is that this prior helps in focusing
20Strictly speaking, the level of shrinkage here is not directly comparable to Wright that uses a different prior

for the slope coefficients. For the sake of precision, the way time variation is modelled in the present work makes
each β a state variable for which only the initial condition has to be specified.

21They are labelled as BMA-B in Table 6. Results are not reported to save space but are available upon request.
22It might also have something to do with the status of the Canadian dollar as a “commodity currency”.

Anyway, this interesting aspect is left unexplored in this draft.
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on the very best models that happen to be exactly the most parsimonious ones. Furthermore,

the proposed mixing strategy consistently deliver better signals of future change direction in the

value of the currency, regardless of how parameters are modelled.

Restricting the out-of-sample time span to the 2005:Q4 does not affect the response even

though the overall BMA outperformance deteriorates. The relevant difference is just that the

only specification with breaks (BMA-B6) capable to beat the random walk in the longer sample

is now outperformed. Its squared forecast errors are plotted in Figure 4 together with the

benchmark’s and the best constant-parameter BMA’s. In general, the onset of the financial

cirsis exerts a dramatic effect on the size of forecast errors of every model. Unlike the USD-

CAD exchange rate, there are a couple of episodes, in the middle and late nineties, of comparable

or even greater impact.

In his final conclusion Wright recognizes two crucial aspects to keep in mind:

(Results) are all very much consistent with the idea that model and parameter uncer-

tainty are the stumbling blocks to exchange rate forecasting (given that the exchange

rate is so close to being a random walk), and that the researcher who wants to get

good out-of-sample prediction, rather than in-sample fit, should use shrinkage meth-

ods.23

As a whole, I find not dissimilar results when exactly the same sample as his is considered.

Yet, in the long out-of-sample exercise a random walk model for the US dollar-Canadian dollar

becomes difficult to improve upon.

The introduction of structural instability hardly appears beneficial. Jochmann, Koop and

Strachan (2008) come to the same conclusion with a similar approach to predict macro variables.

However, in the present study the mixture innovation approach does bring some improvements

for one currency provided that substantial prior mass is put on the occurence of few(er) rather

than continuous breaks. This finding is extremely compelling if coupled with the influential

work of Stock and Watson (1996) who report that constant parameter models often beat TVP
23Likewise Pettenuzzo and Timmermann (2005) claim that shrinkage results in better forecasting performance

with parameter and model uncertainty and also in presence of structural breaks, when these breaks are few and
their distribution reasonably precisely estimated.
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models in terms of predictions in spite of convincing evidence of instability found in their wide

analysis of US macro variables. Extending finally the focus from point to distribution forecasts,

models subject to breaks have the best scores for both currencies: in particular, for the US

dollar-Canadian dollar they are the only specifications able to beat the benchmark. All in all,

the mixture innovation approach seems to be a fruitful avenue to pursue in empirical applications

dealing with instability.

5 Conclusions

The last years have witnessed a renewed interest in the topic of exchange rate forecasting. New

models, new methods and new inference tools have partially disrupted the daunting primacy of a

no change model. For instance, Wright (2008) suggests the potential of Bayesian model averaging

as forecasts are combined in a sensible way. The present paper checks in a slightly different

framework whether the latter finding carries over to a longer sample and more importantly tests

the marginal contribution of modelling structural instability as well. The focus is on one quarter

ahead predictions, a short term horizon that is well known to be the most severe hurdle to pass

for fundamental-based models.

The results in the previous sections show that Bayesian Model Averaging is an useful tech-

nique for predicting the movements in the US dollar-Japanese yen exchange rate. Evidence for

the US dollar-Canadian dollar case is instead mixed as BMA is superior to the benchmark only

in the subsample, originally studied by Wright, ending in 2005. The final verdict depends on

which criterion informs the evaluation process, the more favourable being the Hit rate and, to

a lesser extent, the MAE.

The novelty with respect to Wright (2008) is the introduction of parameter instability in

quite a flexible way, by means of a mixture innovation model. While this approach rewards in

sample by notably reducing the amount of model uncertainty, in the out-of-sample comparison

it hardly improves upon a model averaging approach with just constant parameters. The higher

flexibility offered by this approach may be dominated by the additional amount of estimation

error/uncertainty in the parameters. Promising results are, anyway, obtained when “favouring”
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rare breaks through prior information. In this sense, the mixture innovation model appears

superior to the more commonly used TVP model, which is restrictive in that variables are

forced to undergo continuous shifts in the parameters.

Giordani and Villani (2009) offer a wider investigation of models that incorporate instabilities

for macro variables in a very similar way as here. In particular, they allow for further levels of

complexity on the grounds that outliers or decreases in variance may be mistaken for changes in

the conditional mean, particularly in application with high variability. Tight priors in my case

may be limiting this shortcoming. In this respect, I plan to also add stochastic volatility and

additive outliers.24

A further aspect worth exploring is the effect of the random walk structure imposed in the

case of variation on the predictive performance. D’Agostino, Gambetti and Giannone (2009)

point out the role that a stability constraint plays in ruling out excessively volatile behaviour

in multi-horizon forecasts, a concern that is anyway less warranted here with one-quarter ahead

forecasts.25 Finally, it could be explored a larger information set including other variables that

have recently been shown to have predictive content, such as measures of external imbalance.

Anyway, both Wright (2008) and Engel, West and Mark (2007) point out that we should

not expect exchange rates to behave quite differently from a random walk, so gains from any

procedure alternative to a simple “no-change forecast” strategy are likely to be moderate.
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Table 6: US dollar- Can. dollar – Forecast Evaluation

Theil’s U MAE Hit Rate Predictive Bayesian Bias St. Dev.
Bayes Factor DM

RW 1 2.23 0.5 1 0.0796 3.2462

BMA-NB1 1.0128 2.226 0.592 1.015 0.506 −0.108 3.287

BMA-NB2 1.008 2.212 0.579 1.012 0.5046 −0.145 3.27

BMA-NB3 1.009 2.216 0.5658 1.0108 0.5032 −0.1532 3.272

BMA-NB4 1.008 2.212 0.5658 1.0048 0.5036 −0.147 3.2699

BMA-NB5 1.0051 2.208 0.5526 1.0183 0.5032 −0.1503 3.2602

BMA-NB6 1.0028 2.207 0.5526 1.0188 0.5025 −0.119 3.2543

BMA-B1 1.0673 2.44 0.5395 1.1498 0.545 0.629 3.4082

BMA-B2 1.0036 2.2786 0.5263 1.04 0.5068 0.396 3.2349

BMA-B3 1.0086 2.29426 0.5395 1.0435 0.509 0.4737 3.2407

BMA-B4 1.0021 2.249 0.5263 1.02 0.4977 0.1967 3.2481

BMA-B5 1.0547 2.4207 0.5658 0.9895 0.5391 0.4898 3.3896

BMA-B6 1.0047 2.2216 0.5789 1.1341 0.5003 0.0286 3.266

BMA-B7 1.0073 2.2262 0.5658 0.9917 0.5004 0.009 3.2708

BMA-B8 1.0118 2.2546 0.5789 0.9909 0.5017 0.107 3.2839

BMA-BTVP1 1.2239 2.9579 0.4605 1.409 0.6077 1.8421 3.5215

BMA-BTVP2 1.1094 2.6118 0.4737 1.118 0.5546 1.1982 3.3973

BMA-BTVP3 1.0445 2.43 0.4342 1.1184 0.5362 0.8549 3.282

BMA-BTVP4 1.0551 2.4076 0.5658 1.0076 0.5248 0.5952 3.3741

Notes: The table reports the forecasting performance of the Bayesian Model Averaging approach in both
absence (NB) and presence (B) of structural breaks with several prior hyperparameters as detailed in Table

7. The Predictive Bayes Factor is computed as a ratio of predictive likelihoods, namely fRW (rt|...)
fBMA(rt|...) , where

the no-change model, denoted as RW, is the benchmark. Bias and Standard Deviation in the last two
columns are such that RMSFE ≡ [Bias]2 + [SD]2.
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Table 7: US dollar - Can. dollar – Prior hyperparameters for forecast evaluation

Inclusion Slope Residual Break State eq.
prob. coeffs variance prob. variance

BMA-NB1 λ = 0.5 β0 = 0 ν1 = 2
V (β0) = 5 s1 = ν1 ∗ 7

BMA-NB2 λ = 0.5 β0 = 0 ν1 = 2
V (β0) = 1 s1 = ν1 ∗ 7

BMA-NB3 λ = 0.5 β0 = 0 ν1 = 2
V (β0) = 0.5 s1 = ν1 ∗ 7

BMA-NB4 λ = 0.2 β0 = 0 ν1 = 2
V (β0) = 1 s1 = ν1 ∗ 7

BMA-NB5 λ = 0.2 β0 = 0 ν1 = 2
V (β0) = 0.5 s1 = ν1 ∗ 7

BMA-NB6 λ = 0.2 β0 = 0 ν1 = 2
V (β0) = 0.1 s1 = ν1 ∗ 7

BMA-B1 λ = 0.5 β0 = 0 ν1 = 2 c = 5 ν2 = 2
V (β0) = 5 s1 = ν1 ∗ 7 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B2 λ = 0.5 β0 = 0 ν1 = 2 c = 5 ν2 = 30
V (β0) = 0.5 s1 = ν1 ∗ 7 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B3 λ = 0.5 β0 = 0 ν1 = 2 c = 1 ν2 = 2
V (β0) = 0.5 s1 = ν1 ∗ 7 d = 19 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B4 λ = 0.5 β0 = 0 ν1 = 2 c = 5 ν2 = 2
V (β0) = 0.1 s1 = ν1 ∗ 7 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B5 λ = 0.5 β0 = 0 ν1 = 2 c = 1 ν2 = 2
V (β0) = 5 s1 = ν1 ∗ 7 d = 19 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B6 λ = 0.2 β0 = 0 ν1 = 2 c = 5 ν2 = 2
V (β0) = 0.1 s1 = ν1 ∗ 7 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B7 λ = 0.2 β0 = 0 ν1 = 2 c = 5 ν2 = 30
V (β0) = 0.5 s1 = ν1 ∗ 7 d = 95 s2 = ν2 ∗ 0.0012 ∗ (1/0.05) ∗ V (β0)

BMA-B8 λ = 0.2 β0 = 0 ν1 = 2 c = 5 ν2 = 30
V (β0) = 0.5 s1 = ν1 ∗ 7 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-TVP1 λ = 0.5 β0 = 0 ν1 = 2 c = 1 ν2 = 2
V (β0) = 5 s1 = ν1 ∗ 7 d = 0 s2 = ν2 ∗ 0.012 ∗ V (β0)

BMA-TVP2 λ = 0.5 β0 = 0 ν1 = 2 c = 1 ν2 = 2
V (β0) = 0.5 s1 = ν1 ∗ 7 d = 0 s2 = ν2 ∗ 0.012 ∗ V (β0)

BMA-TVP3 λ = 0.5 β0 = 0 ν1 = 2 c = 1 ν2 = 30
V (β0) = 0.5 s1 = ν1 ∗ 7 d = 0 s2 = ν2 ∗ 0.012 ∗ V (β0)

BMA-TVP4 λ = 0.5 β0 = 0 ν1 = 2 c = 1 ν2 = 2
V (β0) = 0.1 s1 = ν1 ∗ 7 d = 0 s2 = ν2 ∗ 0.012 ∗ V (β0)
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Table 8: US dollar - Jap. yen – Forecast Evaluation

Theil’s U MAE Hit Rate Predictive Bayesian Bias St. Dev.
Bayes Factor DM

RW 1 4.2607 0.5 1 −0.597 5.5718

BMA-NB1 0.9785 4.1842 0.5789 0.9838 0.4989 0.0125 5.483

BMA-NB2 0.9771 4.16 0.579 0.9568 0.4958 −0.092 5.475

BMA-NB3 0.9751 4.1478 0.566 0.964 0.495 −0.1815 5.461

BMA-NB4 0.984 4.219 0.5395 0.983 0.498 −0.097 5.513

BMA-NB5 0.9813 4.193 0.566 0.987 0.4982 −0.239 5.494

BMA-B1 1.0997 4.8905 0.5263 0.9912 0.5187 2.0964 5.7949

BMA-B2 1.0809 4.8078 0.5789 0.9344 0.5065 2.28 5.6104

BMA-B3 1.079 4.7983 0.5789 0.9366 0.5062 2.286 5.59

BMA-B4 1.0184 4.4123 0.57895 0.9822 0.4958 1.5532 5.491

BMA-B5 1.019 4.4114 0.57895 0.9173 0.4957 1.5456 5.497

BMA-B6 0.993 4.32 0.5658 0.9591 0.4966 1.051 5.46

BMA-B7 1.0496 4.63 0.5263 0.9509 0.5068 1.98 5.54

BMA-B8 1.0495 4.616 0.5526 0.9472 0.5063 1.9815 5.5375

BMA-TVP1 1.2223 5.55 0.5395 1.065 0.5534 2.9525 6.1868

BMA-TVP2 1.1569 5.11 0.5263 1.026 0.531 2.4541 6.001

Notes: The table reports the forecasting performance of the Bayesian Model Averaging approach in both
absence (NB) and presence (B) of structural breaks with several prior hyperparameters as detailed in Table

9. The Predictive Bayes Factor is computed as a ratio of predictive likelihoods, namely fRW (rt|...)
fBMA(rt|...) , where

the no-change model, denoted as RW, is the benchmark. Bias and Standard Deviation in the last two
columns are such that RMSFE ≡ [Bias]2 + [SD]2.
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Table 9: US dollar - Jap. yen – Prior hyperparameters for forecast evaluation

Inclusion Slope Residual Break State eq.
prob. coeffs variance prob. variance

BMA-NB1 λ = 0.5 β0 = 0 ν1 = 2
V (β0) = 5 s1 = ν1 ∗ 30

BMA-NB2 λ = 0.5 β0 = 0 ν1 = 2
V (β0) = 1 s1 = ν1 ∗ 30

BMA-NB3 λ = 0.5 β0 = 0 ν1 = 2
V (β0) = 0.5 s1 = ν1 ∗ 30

BMA-NB4 λ = 0.2 β0 = 0 ν1 = 2
V (β0) = 1 s1 = ν1 ∗ 30

BMA-NB5 λ = 0.2 β0 = 0 ν1 = 2
V (β0) = 0.5 s1 = ν1 ∗ 30

BMA-B1 λ = 0.5 β0 = 0 ν1 = 2 c = 5 ν2 = 2
V (β0) = 5 s1 = ν1 ∗ 30 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B2 λ = 0.5 β0 = 0 ν1 = 2 c = 5 ν2 = 2
V (β0) = 0.5 s1 = ν1 ∗ 30 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B3 λ = 0.5 β0 = 0 ν1 = 2 c = 5 ν2 = 30
V (β0) = 0.5 s1 = ν1 ∗ 30 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B4 λ = 0.5 β0 = 0 ν1 = 2 c = 5 ν2 = 2
V (β0) = 0.1 s1 = ν1 ∗ 30 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B5 λ = 0.5 β0 = 0 ν1 = 2 c = 5 ν2 = 30
V (β0) = 0.1 s1 = ν1 ∗ 30 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B6 λ = 0.2 β0 = 0 ν1 = 2 c = 5 ν2 = 2
V (β0) = 0.1 s1 = ν1 ∗ 30 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B7 λ = 0.2 β0 = 0 ν1 = 2 c = 5 ν2 = 2
V (β0) = 0.5 s1 = ν1 ∗ 30 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-B8 λ = 0.2 β0 = 0 ν1 = 2 c = 5 ν2 = 30
V (β0) = 0.5 s1 = ν1 ∗ 30 d = 95 s2 = ν2 ∗ 0.012 ∗ (1/0.05) ∗ V (β0)

BMA-TVP1 λ = 0.5 β0 = 0 ν1 = 2 c = 1 ν2 = 30
V (β0) = 5 s1 = ν1 ∗ 30 d = 0 s2 = ν2 ∗ 0.012 ∗ V (β0)

BMA-TVP2 λ = 0.5 β0 = 0 ν1 = 2 c = 1 ν2 = 30
V (β0) = 0.5 s1 = ν1 ∗ 30 d = 0 s2 = ν2 ∗ 0.012 ∗ V (β0)
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Figure 1: US Dollar vs Canadian Dollar - Forecast errors

Notes: The graph above plot the forecast errors of the no-change model
and the best specifications using the BMA approach with constant pa-
rameters and structural instability, respectively.
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Figure 2: US Dollar vs Canadian Dollar - Squared forecast errors

Notes: The graph above plot the forecast errors of the no-change model
and the best specifications using the BMA approach with constant pa-
rameters and structural instability, respectively.
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Figure 3: US Dollar vs Japanese Yen - Forecast errors

Notes: The graph above plot the forecast errors of the no-change model
and the best specifications using the BMA approach with constant pa-
rameters and structural instability, respectively.
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Figure 4: US Dollar vs Japanese Yen - Squared forecast errors

Notes: The graph above plot the forecast errors of the no-change model
and the best specifications using the BMA approach with constant pa-
rameters and structural instability, respectively.
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Bayesian Modelling of Time-Varying Prices and

Quantities of Risk: Evidence from the US REIT

Market
∗

Abstract

In this paper we analyze and compare the asset pricing properties and dynamics of

publicly traded real estate to general asset classes like stocks and bonds. We extend the

multifactor pricing model in Karolyi and Sanders (1998) with time-varying factor sensitivities

and risk premia to a Bayesian dynamic framework [see Ouysse and Kohn (2009)] and add

consumption growth among the economic variables and introduce stochastic idiosyncratic

volatility. REIT capitalization has boomed over the last decade and a legislative intervention

in 1993 is commonly considered to have made REITs more similar to stocks. Our results do

not support this view of a sudden change in public real estate pricing characteristics around

the early nineties. Yet, idiosyncratic risk shows a marked upward trend with a decreasing

rate just in the last years while the quantity of priced market risk has risen since the new

century. Our time-varying multi-factor pricing model turns out to be rejected for the asset

menu under consideration.

∗This is a joint paper with Massimo Guidolin (Manchester Business School, MAGF, and Federal Reserve Bank
of St. Louis) and Francesco Ravazzolo (Norges Bank, Research Department). I acknowledge financial support
from the Marie Curie Early Stage Training Programme.
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1 Introduction

REITS (Real Estate Investment Trusts), estabilished in the United States in 1960, constitutes

a way to invest into large scale, income producing real estate. They have a unique structure:

among the requirements to meet, at least 75% of their assets has to be invested in real estate and

at least 90% of their taxable earnings have to be paid out as dividends. These specific features

have attracted the attention of academics and practitioners on publicly traded real estate as an

additional investment opportunity to more traditional options.
1

A popular view, for instance,

depicts them as similar to defensive and small cap stocks.

The aim of this paper is, indeed, to analyze the nature and similarity of securitized real estate

to other kinds of financial assets within an asset pricing model. Since Chan, Hendershott and

Sanders (1990), multibeta models including predetermined macroeconomic factors (inflation,

term spread, risk spread, stock capitalization, industrial production among others) have been

shown to explain a significant proportion of variation in equity real estate investment trusts

(EREIT) returns. Based on previous evidence, Karolyi and Sanders (1998) allow for time-

varying risk premiums and betas in a similar framework to Ferson and Harvey (1991) and they

find that both stock market and term structure risk premiums are important. Hence, they

conclude that REITs are an hybrid of stocks and bonds in terms of their risk exposure and that

changes in the prices of economic risks are more important than changes in the betas to explain

the predictable variation in REIT returns.

We extend their analysis with recent observations to see whether and how REITs’ charac-

teristics have evolved. The market has indeed undergone a remarkable development in the early

nineties, the main trigger being the Revenue Reconciliation Act of 1993 aimed at promoting

large scale investments of institutional investors. It suffices here to recall that the total market

capitalization of the equity REIT sector has increased from about $ 10 bn before the legislative

intevention to over $ 300 bn at the end of 2005.
2

1Among others, Fugazza, Guidolin and Nicodano (2009) analyze the ex-post welfare gains of a buy-and-hold
strategy when enlarging the asset menu with public real estate and exploiting predictability while Fugazza,
Guidolin and Nicodano (2007) focus on the ex-ante benefits from long-run invesing in European real estate.

2As an effect of the recent turmoil in the financial markets, the total capitalization at the end of 2008 has
fallen to $ 191,651 bn. Also the total number of REITS has decreased, notably by a 30 %. Additional figures are
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The recent literature has investigated the consequences of this structural transformation

in different directions. For example, Glasgock, Lu and So (2000) argue that the legislative

intervention in 1993 in the U.S. may be a watershed that has made securitized real estate more

similar to stocks and less to bonds. On the other hand, Clayton and Mackinnon (2003) find

that REIT returns have become more linked to unsecuritized real estate.
3

With respect to Karolyi and Sanders (1998), we add a further risk variable, consumption

growth, based on Ling and Naranjo (1996) and introduce some methodological changes. As

for the latter, we model both factor sensitivities and idiosyncratic volatility as latent stochastic

processes within a Bayesian framework by means of the “mixture innovation” approach as in

Giordani and Kohn (2008). Furthemore, we estimate the sequence of risk premiums following

the novel approach by Ouysse and Kohn (2009) to consistently overcome the problems with gen-

erated regressors: we show that this approach helps reduce the extent of variations in estimated

risk premiums.

In short, we do not find evidence of a sudden shift in public real estate characteristics around

the early nineties. Yet, we do find evidence of different kinds of changes: idiosyncratic risk shows

a marked upward trend with a decreasing rate just in the last years while market risk appears to

have risen starting from the new century and not before, exactly when bonds portfolios comove

less with the stock market.

When comparing REITs with other asset classes, we do not observe any strong and convincing

similarity with small capitalization stocks. Within the same class of securitized real estate,

some heterogeneity is evident between Mortgage and Equity REITs. In more general terms, our

multibeta model proves disappointing as the implied mispricing error results significant.

The remainder of the paper is organized as follows. Section 2 outlines the theoretical model

we entertain while Section 3 presents our approach. Section 4 describes the variables used in the

analysis. Section 5 reports the main results. The concluding section summarizes our findings

and outlines further extensions and checks.

available from NAREIT (National Association of Real Estate Investment Trusts).
3In short, the presence of both a wider analyst following and more sophisticated investors are believed to be

the main forces that make prices better reflect property market fundamentals.
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2 The Multifactor model

Multifactor models have been used to explain variation in REIT returns. While Titman and

Warga (1986) extract the relevant factors, Chan et al. (1990) identify the same factors as in

Chen, Roll and Ross (1986): term and default risk premiums, expected inflation, unexpected

inflation and changes in industrial production. They find that REITs resemble small capitaliza-

tion stocks and that the bond market premiums are important to explain the average variation

in REIT returns.

The former result is also found by Liu and Mei (1992) who address time variation in risk

premiums in a multifactor latent-variable model with four forecasting variables: yield on one-

month Treasury bills, the yield spread between AAA bonds and Treasury bills, the dividend

yield on an equally weighted stock portfolio and the capitalization rate on equity REITs. The

last one proves to be a relevant explanatory variable for both REIT and small cap stocks. Ling

and Naranjo (1996) consider time-varying risk premiums with an approach similar to Chan

et al. (1990) and find that bond market risk premiums become insignificant after including

consumption, whose risk premium instead turns out to be relevant.

Our multibeta model is based on Karolyi and Sanders (1998) and Ferson and Harvey (1991)

who relate return predictability to variation in the expected compensation for risk. They posit a

linear relationship between returns and a set of macroeconomic factors (namely the stock market

return, the default spread, the term spread, unexpected inflation and changes in industrial

production) which is subject to variation over time:

ri,t = βi0,t +

k∑

j=1

βij,tFj,t + ǫit. (1)

In the conditional version of Ross’a (1976) APT or Merton’s (1973) ICAPM, the expected

return on asset i from time t−1 to t is related to its factor betas and the associated risk

premiums:
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E(ri,t|Zt−1) = λ0(Zt−1) +

k∑

j=1

λj(Zt−1)βij,t−1 (2)

where both the betas and risk premiums are conditional on the information publicly available

at time t-1, denoted by Zt−1. In the following, we follow Ferson and Harvey (1991) and depart

from Karolyi and Sanders (1998) in that our dependent variables are returns in excess of the

risk-free rate proxied by the 1-month T-bill.
4

We believe this specification to be more consistent

with the mainstream theoretical models.

3 Methodology

Our goal is to investigate the main determinants of REITs returns and consequently trace the

differences with respect to competing assets like stocks and bonds by means of the multifactor

model presented at the end of the previous section.

Karolyi and Sanders (1998) use a two-stage procedure à la Fama and MacBeth (1973) in

order to estimate time varying factor sensitivities and risk premiums: the former are obtained

through an OLS rolling window over the previous 60 months and then the latter from the

cross-section of returns on the estimated betas.

We adopt instead a Bayesian approach and implement some modifications in the model and

the estimation procedure. As for the first pass, we specify a state space model of the following

form

ri,t = βi0,t +

m∑

j=1

βij,tFj,t + σitǫit

βijt = βij,t−1 + k1ij,tηij,t j = 0, .,m, (3)

ln(σ2
it) = ln(σ2

it−1) + k2i,tη2i,t

where ǫit ∼ N(0, 1), ηi,t = (ηi0,t, ..., ηim,t, η2i,t) ∼ N(0, Qi) with Qi a diagonal matrix and

4The same transformation applies also to the market return, as customary.
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elements q2
i,0, ..., q

2
i,m, q2

2i. Stochastic variations in betas and log variance are introduced and

modelled through a mixture innovation approach as in Ravazzolo, Paap, van Dijk and Franses

(2007) and Giordani and Kohn (2008). The latent binary random variables k∗ij,t indicate the

presence of changes in βij,t and ln(σ2
it) and are not correlated among one another and across time.

This specification is very flexible as it allows for both constant and time varying parameters.

We follow Giordani and Kohn (2008) who suggest being quite informative about the size of

breaks (Q) for these to be actually found and avoiding diffuse priors on the break frequency

as well.
5

The modelling of stochastic betas is believed to be crucial in order to get reliable

estimates: as Jostova and Philipov (2005) point out, OLS betas capture the average level of

systematic risk but they do not track very well the time pattern especially when betas are very

persistent. Indeeed the latter is very likely to be the case from both a theoretical and empirical

point of view.
6

Stochastic volatiliy has also become a popular feature in the empirical literature:

the presence (and the modelling) of time variation in the conditional second moment is a further

element that may render “old style” OLS betas not useful.

In the second pass we estimate the following cross-sections

ri,t = λ0,t +

k∑

j=1

λj,tβij,t|t−1 + eit (4)

where eit ∼ N(0, σ2
it) and βij,t|t−1 measures the expected sensitivity of asset i to factor j. The

latter is constructed carefully: in our framework, it is obtained by taking the lagged value from

the updating step of the Kalman filter and simulating the occurence of future breaks and the

shock magnitude from the appropriate posteriors.

The novelty is that the second pass is performed similarly to Ouysse and Kohn (2009)

to overcome the notorious error-in-variables problem that plagues traditional studies in small

5Details about the algorithm and priors are provided in the Appendix.
6Stochastic betas are also crucial ingredients of conditional asset pricing models that have been found to solve

typical anomalies associated with unconditional models: the main argument is that the latter neglect the dynamics
in (systematic) risk and, hence, are misspecified. Jostova and Philipov (2005) find that in the typical Fama and
MacBeth’s style exercise the CAPM is rejected with rolling OLS beta estimates while the opposite verdict emerges
when they allow for stochastic variation (in an AR(1) process) in the betas. Ang and Chen (2007) show that
the persistence in the betas help explain the book-to-market effect in the cross section of stock returns. Anyway
other empirical studies provide conflicting results and a detailed review is beyond the scope of this paper.
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samples. The estimated factor sensitivities from the first pass are likely to be biased and the

Bayesian approach provides an elegant way to take into account estimation uncertainty by

averaging over parameter draws. In particular, we use the full posterior distribution of the

factor sensitivities: for each draw of the betas at a given time t for all the portfolios considered,

corresponding values for the risk premia are drawn from the relevant posterior distribution.
7

Then for each time t we end up with an empirical distribution of a given large number of draws

of λj,t on which to base our inference on. Here and in the following regressions we make our

priors as less infuent as possible in order to let the data speak.

The cross section regression decomposes returns at each time period in a component related

to risk, represented by
∑m

j=1
λj,tβij,t|t−1, and a residual λ0,t + eit. According to any multifac-

tor model, return predictability should be solely due to risk-related components: Karolyi and

Sanders (1998) explore the validity of this condition for all the portfolios under analysis and

check how much of the predictable return variation is actually captured by the model at hand.

In detail, firstly each return is regressed onto a set of instrumental variables that proxy avail-

able information at time t−1, Zt−1, and the variance of the resulting fitted values computed,

V ar(P (rit|Zt−1)). Then, for each asset i a time series of risk exposures,
∑m

j=1
λj,tβij,t|t−1, is

derived and regressed onto the instrumental variables to compute the sample variance of fitted

values, V ar(P (
∑m

j=1
λj,tβij,t|t−1)|Zt−1). Instead the predictable component not captured by the

model is the sample variance of the fitted values from the regression of the residuals uit on the

instruments, V ar(P (rit − (
∑m

j=1
λj,tβij,t|t−1))|Zt−1). The resulting variance ratios

V R1 =
V ar(P (

∑m
j=1

λj,tβij,t−1)|Zt−1)

V ar(P (rit|Zt−1))

V R2 =
V ar(P (rit −

∑m
j=1

λj,tβij,t|t−1|Zt−1))

V ar(P (rit|Zt−1))
(5)

7Details about the exact form of the posterior distributions are provided in the Appendix. An alternative
route would be to use mean or median estimates of the betas in a “traditional” regression at each time t : the
estimation uncertainty would still be ignored, though. We experimented with this approach as well: see section
5.4.
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should equal one and zero respectively if our asset pricing model is correct.
8

We carry out the

same test procedure but we are consistent with the approach put forward for the second pass in

(4). Basically, we compute VR1 and VR2 for each pair of λj,t and βij,t|t−1 from their posterior

distribution: consequently, we have an empirical distribution for our quantities of interest.

Finally, the predictable variation of returns due to the multiple-beta model is decomposed

into the components due to each economic variable: we compute V ar(P (λj,tβij,t|t−1)|Zt−1) for

each factor k and relate it to V ar(P (
∑m

j=1
λj,tβij,t|t−1)|Zt−1). The sum of these components

should not equal that of the combination because of the covariance among risk prices and betas.

4 Data Description

The variables used in our analysis are listed in Table 1: they belong to three main categories. The

first one, Portfolio Returns, includes several asset classes like stocks and bonds. The Stocks are

publicly traded firms listed on the NYSE, AMEX and Nasdaq which are sorted into industry and

decile portfolios by their four-digit SIC code and market capitalization, respectively. The bonds

are high-yield corporate bonds, intermediate-term and long-term government bonds. REIT

return indices are tax-qualified equity REITs.

The economic variables, instead, are the standard proxies for the risk factors potentially

priced in asset returns like, for example, the excess market portfolio return and the default

premium. Here we add consumption growth to the set of variables considered by Karolyi and

Sanders (1998). Finally, the instrumental variables approximately represent the information set

investors have when making portfolio decisions.

We use monthly observations for a sample ranging from 1983:01 to 2008:07. Actually we

estimate the model over a longer sample starting in 1979:12 but we restrict the analysis to the

shorter one. The reason is twofold: firstly, we want to represent a situation in which investors

start with a weak prior belief of return unpredictability but have also some observations available

to learn from; secondly, we want to be consistent with Karolyi and Sanders (1998) as for the

8Ferson and Harvey (1991) claim that this is too strong a condition to be met by any model. Therefore it
cannot be interpreted too strictly.
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initial date.

5 Results

5.1 Descriptive statistics

A quick glance at the first two sample moments in Table 2 suggests interesting considerations:

first, we do not observe any size premium unlike conventional beliefs while sharp differences

within the REITs’ category are evident. In particular, NAREIT Mortgage and NAREIT Hybrid

(NARMTG and NARHYB, respectively, in Table 1) have almost a null excess return along with

a standard deviation sensibly higher than other REITs. Equity REITs are usually depicted as

defensive stock: they indeed have first and second sample moments almost identical to Utilities.

In short, this superficial comparisons reinforce the common belief that securitized real estate

is a hybrid of stocks and bonds while it cannot tell us much about changes in characteristics

over the last few years. Looking at all the columns of the same Table, we can only notice that

the market for public real estate has undergone a radical change in the early nineties that has

manifested itself in first moments while second moments have jumped upward more recently.

5.2 Idiosyncratic Risk

We firstly comment on the path of the residual variance for each group of assets from the

estimation output of (4): Figures 1-3 report the median of the posterior distribution of each σ2
it

together with its 50% credibility interval.
9

As for REITs, we basically observe in Figure 3 a slight upward trend that seems to stabilize

in the last part of the sample, more precisely starting from the second half of 1998: there is

no evidence of one-time shift but instead of a continuous increase in idyosincratic risk which

reaches levels more similar to those of small stocks rather than bonds.
10

Mortage and Hybrid

9As already specified in the previous section, we opted for a tight prior on the break occurence which favours
rare changes. Inference is anyway unaffected in this case by using looser priors. The influence of the initial
conditions completely disappears as a signal of convergence of the algorithm.

10Even though our priors are very supportive of rare changes of small magnitude, note that the algorithm is
flexible enough to accomodate both continuous and discrete shifts. Furthermore, the use of smoothing algorithms
make final estimates much less jagged as evident in the graphs.
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(investing both in equity and mortgages) REITs, the most volatile in our sample, show also a

bounce in the middle of 2007 which can be thought of as coincident with the onset of the current

financial crisis. Ooi, Wang and Webb (2009) compute measures of idiosyncratic volatility of the

average REIT stock from 1990 to 2005 using the three-factor model of Fama and French (1993)

and find that it displays an asymmetric (counter)cyclical behaviour as idiosyncratic volatility

slightly decreases in good times but it readily jumps in bad times. More importantly, the authors

note a downward trend that can be explained in light of the impressive increase in the average

size of REITs after 1990. As remarked above, we get an exactly opposite conclusion. Even

though our approaches are similar up to this stage, they nevertheless differ in some respects

that are potentially crucial: the pricing model (we use a multifactor model not including SMB

and HML), the time variation in both systematic and idiosyncratic risk (we impose a special

kind of persistent process while they leave it unmodelled), the sample (we start from 1983)

and the focus (sector-level versus firm-level).
11

On the other hand, we both conclude that the

variance of returns is strongly dominated by idiosyncratic risk.

A different picture emerges for the size decile and most of the industry portfolios (see Fig-

ures 1-2): they all experience an increase in the residual volatility around 2000 which is then

reabsorbed in two-three years. The very few exceptions are the energy industry whose idiosyn-

cratic risk does not seem to fall and the telecom industry that instead does not experience any

substantial increase over the sample.
12

An interesting result stands out if we look within the category of size-sorted portfolios as

the differences in the amount of (total) volatility are magnified in the conditional estimates: our

11We conjecture that the different stucture we impose in the time varying models may be the relevant aspect but
we leave a careful examination for future drafts. As a robustness check we have estimated also a GARCH(1,1)
model for each asset and our result of an upward is strongly confirmed. Moreover, Ooi et al. (2009) find
idiosyncratic volatility to be actually priced in the cross-section of REITs’ returns, even after including typical
anomalies like size and momentum effects.

12Our evidence is confirmed by a handful of recent papers investigating the supposed “idiosyncratic volatility
puzzle” pointed by Campbell, Lettau, Malkiel and Xu (2001). They report a positive trend in idiosyncratic
volatility during the 1962 and the 1997 period while the aggregate market and industry volatilities remained
roughly constant. Brandt, Brav, Graham and Kumar (2008) and Zhang (2008) note that the trend has strongly
reverted from 2001 onwards to start climbing up again since 2007: it means that the long-lasting rising volatility
was merely an episode that calls for a sound economic explanation. The actual break is located by Brandt, Brav,
Graham and Kumar (2008) around mid-late 2000 as it also appears in our graphs, while Zhang (2008) reports
very similar results for the same sectors we consider. All in all, it is reassuring that different, even though not
contrasting, approaches deliver the same message.
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macroeconomic factors seem to explain considerably well the largest cap portfolios.

It has to be borne in mind that the focus in this section is just on unexplained variance and

not total variance: our measures of idiosyncratic risk intrinsecally depend on the set of chosen

factors. The path we find for public real estate can also be interpreted as a signal of worsened

fit of our regression model or emergence of new relevant omitted economic variables.

5.3 Factor sensitivities

For our purposes, it is interesting to examine the pattern of estimated betas in (4). Figures 4-11

report the sequence of median βit’s for each economic variable but we focus mainly on factor

sensitivities for REITs.
13

What we call here β0, usually referred to as α, represents a measure of the risk-adjusted

excess return implied by the model at hand: therefore an accurate investigation of its dynamic

properties is of primary interest.
14

It has predominantly a negative sign and varies smoothly

but zero is always included within the 90% posterior bands, particularly after 2000.
15

It also

displays a gentle decline in the last two years approximately.

The sensitivity to the stock market return factor (VW) is estimated very precisely. We notice

that REITs show an unpward jump around 2000. Size decile portfolios exhibit a beta about

unity while REITs’ one wander close to one half. On the contrary, government bonds display a

downward trend leading the coefficient very close to zero.

The sensitivity to the default premium (PREM) for securitized real estate has a positive

sign and shows a cyclical pattern with a recent declining trend after a bounce at the outset of

the new millenium, spiking in 2001: only in the last part of our sample (after 2000) the 90%

credible interval contains zero. Small cap portfolios offer a similar picture even though in a less

13The graphs also include the 90% Bayesian credible intervals. As we want to draw comparisons, we collect the
plots of all the portfolio betas for each economic variable.

14Our specification follows the prevalent approach of considering excess returns on the left hand side and,
consequently, an immediate theoretical restriction to test is whether β0 is null on average and/or at each time t.
Karolyi and Sanders (1998), on the other hand, opt for raw realized returns and cannot provide a plain economic
interpretation for the intercept.

15Actually, for mortgage REITs the zero is most of the time outside our posterior bands and there is evidence
of negative risk-adjusted excess returns. Besides, mortgage and hybrid REITs exhibit greater values for the
intercept: this could be taken as a signal that our multifactor model does not correctly price such subcategories
of public real estate.
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sharp way.

As for the relation between REITs returns and changes in the term structure (DSLOPE),

we observe that the degree of uncertainty increases sistematically in the late nineties. The sign

of the coefficient is positive for Mortgage REITs and negative for Equity and Composite REITs:

intuitively, mortgages are tied up with long term rates which on the other hand affects also the

value of long term lease contracts, this time negatively through discounting.

REIT returns have a negative linear relationship with changes in the level of economic activity

(IPGRW) in a similar way to small cap stocks and some industry portfolios (namely, Utilities).

Finally, for unexpected inflation (UI), consumption growth (CONSUM) and the real interest

rate factor (REALTB) the sentivities do not appear to be significant once we take into account

measures of parameter and estimation uncertainty.

We can conclude that the most interesting findings here is that real estate has been experi-

encing an increasing comovement with the stock market return as a whole in the last years and

that there exists some sort of heterogeneity between the different REIT portfolios.

5.4 Risk premiums

Once the first pass is run as in (3), we estimate the risk premiums from (4) following the approach

outlined in section 3. The estimates are evidently characterized by a great deal of uncertainty:

the bands tend to widen simultaneously in some specific moments such as the second half of

1987 and the period between the late nineties and the beginning of the twenty-first century.
16

It is interesting to analyze how the (median) λj,t are distributed over time. Table 3 reports

means, 5th and 95th percentiles for the full sample and two subsamples (1983:01-1992:12 and

1998:01-2007:12). The amount of variation in risk premiums is quite evident from this table as

well: empirical distributions are very dispersed, especially for the market risk premium (VW).

When looking at subsamples, premiums are found to be more volatile in the last ten years

(1998:01-2007:12): the neater example is PREM which exhibits severe fluctuations during the

16The 90% posterior credible sets basically always contain zero except for the price of market risk which appears
to be estimated more precisely. In order to save space we do not report graphs in this draft but they are available
upon request. Anyway, it has to be borne in mind that estimates of risk premiums are well known to be very
noisy and subject to some drawbacks.
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first years of the new century.

To test for the significance of the average risk premiums, numerical standard errors are

reported.
17

In the full sample, only ZBETA (the intercept or also λ0 as we refer to in the

formulas) results significant with CONSUM as a borderline case. Breaking down the entire

sample provides useful insights: DSLOPE and REALTB are significant until 1992:12. The stock

market risk premium (VW) turns out not to be priced on average all over the sample and

particularly in the second subsample.
18,19

As a further check, a Bayesian variant of the Fama-MacBeth’s statistic is also computed. In

particular, for each draw i of the risk premiums (λj,t) we compute the average over time (λ̂i
j) in

order to finally obtain an empirical distribution of our quantity of interest. Table (4) confirms

previous findings for the full sample while DSLOPE e REALTB are not significant anymore in

the second subsample considering the 5th and the 95th percentiles. According to the “Bayesian”

statistic, at least 97.5% percent of the posterior distribution of the stock market risk factor has

positive values in the period 1983:01-1992:12 whereas in the full sample this probability is greater

than 95% but less than 97.5%. Anyway the two metrics do convey an important message: there

exists a non-zero pricing error (captured by ZBETA). Interestingly, it emerges only after the

early nineties and is more precisely estimated since then until 1997 if we compare the percentile

in each section of Table (4).

As already mentioned in section 3, the second pass has been performed following Ouysse

17The t-ratios la Famma-MacBeth (1973) assume the absence of autocorrelation over time in the (median) risk
premiums while it is mildy present, even though only in the very first lags actually. Regardless of the way we
compute standard errors, note that this kind of inference implicitly embraces a frequentist perspective.

18Ooi et al. (2009) estimate for each month a cross-section with explanatory variables like beta, size, book-
to-market equity ratio, past return and idiosyncratic risk for only REITs. They similarly find that the market
beta is not priced in their sample and their result is robust to several specifications. More importantly, when
the market beta is the only independent variable (a model not too dissimilar from ours given that the other risk
factors have a negligible impact on the test asset returns) the average intercept is strongly significant. We note
anyway that our analysis has a larger scope and looks at other assets as well.

19As many studies in empirical finance fail to find a systematic relationship between returns and market betas,
part of the recent literature advocates conditional approaches in which the researcher distinguishes across market
conditions. The main argument is that, when using realized rather than expected returns, negative premium
estimates are very likely to be driven by market crashes. See Koch and Westheide (2008) and references therein
for more details. Related to our focus, Conover et al. (2000) find that the lack of significance of the market
risk premium for equity REITs vanishes when using a dual-beta model. In bull months, the beta is positive and
significantly related to EREIT returns: it implies that at good times, the riskier (in terms of beta) a stock is the
higher its expected return.
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and Kohn (2009) in order to avoid what frequentists call the generated-regressor problem.
20

We

also tried the simpler and traditional approach of using plain (median, in our case) betas from

the first pass rather than the full posterior distribution at each time t.21 While there are no

sharp differences in terms of uncertainty sorrounding each λj at time t, the picture is somewhat

different for the empirical distribution of the λ̂j ’s.
22

The increased dispersion in the estimates is

striking: in particular, the extent of fluctuations in PREM and RealTB is impressive compared

to Table 3. Given that such degrees of variation are higly suspect, we prefer Ouysse and Kohn

(2009) when balacing complexity and reliability.

5.5 Decomposing predictable variation

The multifactor model we employ states that the predictable variation in asset returns should

be fully captured by the component related to risk. Information publicly available at each time

t is proxied by a set of instrumental variables listed in Table 1 plus a dummy variable for the

month of January to account for the January effect. Following Karolyi and Sanders (1998), we

compute the two statistics in (5): anyway, we implement the same approach that informs the

second pass estimation, as explained in section 3, and finally normalize them to one.

Results in Table 6 confirm our previous evidence that the multifactor model falls short of

capturing adequately the variation in expected returns. Anyway, our approach (consistent with

Ferson and Harvey (1991)) is doomed to deliver less compelling results that Karolyi and Sanders’

as they treat λ0, a zero-beta portfolio which turns out to play on average an important role in

the cross-section of returns, as a risk-related component that enters VR1. In our framework,

instead, it has to belong to the residual part: in fact our values of VR2 are always high and

sometimes comparable to VR1’s.

Among the CRSP size portfolios, the model works better for medium and large cap portfolios.

Real estate portfolios have values for VR1 which are very similar to those of small cap stocks

20Alternatively, from a Bayesian point of view the factor betas are random variable themselves and we would
ignore estimation uncertainty otherwise.

21To save space we skip graphs while Table 5 reports the main results.
22We note that closed form solutions are available for λj,t with this approach: hence, posterior credible intervals

are easily obtained. Instead, with the Ouysse and Kohn (2009) approach, simulations are needed.
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and some industry portfolios but higher than those of government bonds.

The last step consists of breaking down the model-implied risk related predictable variation of

returns into its economic constituents. We unsurprinsingly find that he biggest role for stocks is

played by the stock market portfolio return while the overall picture is more balanced for REITs

as also the default premium (PREM) contributes in an important way. The considerations

in section 5.3 apply here as well: in particular, note the different importance of industrial

production growth for mortgage and equity REITs.

6 Robustness checks

6.1 Risk premiums without REITs

In addition we have repeated the same computations as in section 5.4 in absence of real estate

returns to verify whether their inclusion is at the heart of our model empirical rejection (see

Table 7). A couple of interesting considerations are at effect: 1) the degree of uncertainty (in

other terms, the dispersion of the posterior distribution) is smaller now; 2) more importantly,

in the full sample VW also becomes significant even though as a borderline case considering

the numerical standard error and most of the large (in absolute terms) estimates have now

disappeared.
23

According to the Bayesian version of the Fama-MacBeth’s statistics (see Table 8), as before

there is more than 95% but less than 97.5% probability that the market risk premium is positive

in the full sample. The same holds for the first subsample while before the evidence was stronger.

As for the intercept (ZBETA), it still remains significant in the long sample while this is not

anymore the case in both subsamples according to convenional levels of uncertainty (confidence

or credibility in classical or Bayesian jargon, respectively).

To sum up, even when we restrict the attention to stocks and bonds, our multifactor model is

not supported by the data that instead seem to favour the simpler CAPM-style specification.
24

23Further findings are: a) consumption growth is significant only in the first subsample and displays a negative
sign; 4) finally, in the second subsample only PREM and DSLOPE (the latter with a negative sign) turns out to
be significant while in the complete specification this was the case just for consumption growth.

24Properly speaking, even a CAPM-related one factor model is going to be to be rejected by the data as our
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The only notable difference is that now the strength of evidence for significant mispricing (or

absence of relevant factors) is weaker: this is clearer in the 1998-2008 period.

6.2 Informative priors

Finally we have experimented with an informative prior in the second pass in order to put

some structure (constraints) in the distribution and moments of the risk premiums. These

are postulated to be normally distributed with zero mean and variance such that there is 95%

probability that annualized premia are in absolute term smaller than the maximum return

observed in the sample for all the assets.
25

A striking finding is the remarkable reduction in the variability of the estimated premia with

respect to the baseline case.
26

Interestingly, the stock market risk premium is significant in the

whole and first sample. So, this further check confirms our conclusions at the end of the previous

subsection (6.1).

7 Conclusions

In this work we aim to analyze and compare publicly traded real estate with general asset

classes like stocks and bonds by using a multifactor pricing model inspired by Karolyi and

Sanders (1998). Yet, we do not focus only on the “relative” degree of predictability but we also

examine other aspects of securitized real estate. As in most of the recent empirical literature, we

model the evolution of both sensitivities to risk factors and idiosyncratic risk as latent stochastic

variables: in particular, we use the mixture innovation approach, proposed by Ravazzolo et

al. (2007) and Giordani-Kohn (2008), capable to capture structural shifts. We prefer such a

feature as capitalization has boomed over the last decade and a legislative intervention in 1993

is considered to have made REITs more similar to stocks.

Our results do not support the idea of a sudden change in public real estate characteristics

around the early nineties. On the contrary, idiosyncratic risk shows a marked upward trend

estimates of λ0 seem to suggest.
25A complete description of prior distributions and hyperparameters used are in the Appendix.
26For the sake of brevity, we do not report tables but they are available from the authors.
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with a decreasing rate just in the last years and market risk appears to have risen only since the

new century when also bonds portfolios comove less with the stock market. When comparing

REITs with other asset classes, we do not observe any strong similarity with small capitalization

stocks. Within the same class of securitized real estate, some heterogeneity is evident between

Mortgage and Equity REITs.

There is evidence of mispricing, though: our measure (λ0) results significant regardless of the

metric or test we use. A natural check is to leave out public real estate and assess the validity

of our model for stocks and bonds only. A preliminary analysis suggests that the multibeta

specification does not even pass this test. Recent works in the empirical asset pricing literature

points to an important role played by idiosyncratic risk, usually neglected. On the other hand,

some important economic risk variable may be missing. However, we note that the bulk of

evidence for such a mispricing dates back to the early nineties and not in the very last part of

the sample.

On the methodological side, we apply the novel approach of Ouysse and Kohn (2009) for the

estimation of risk premiums in a coherent Bayesian framework. Integrating the uncertainty in

the estimation of the factor sensitivities seems to be a sensible strategy in the present context.
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8 Appendix

As specified in section 3 we use a Bayesian variant of the two step procedure à la Fama - MacBeth

(1973). Here we present each step in detail.

8.1 First pass

For each asset, the model in (1) is

rt = β0,t +

m∑

j=1

βij,tFj,t + σitǫit

βijt = βij,t−1 + kij,tηij,t j = 0, ., n,

ln(σ2
it) = ln(σ2

it−1) + k2i,tη2i,t

where ǫit ∼ N(0, 1), ηi,t = (ηi0,t, ..., ηim,t, η2i,t) ∼ N(0, Qi) with Qi a diagonal matrix and

elements q2
i0, ..., q

2
im, q2

2i, and kit = (ki0,t, ..., kim,t, k2i,t)
′
is a ((m + 2) × 1) vector of unobserved

uncorrelated 0/1 processes with Pr[kijt = 1] = πij for j = 0, .,m + 1.

The model parameters are the structural break probabilities πi = (πi0, ..., πim, π2i)
′

and

the vector of variances of the break magnitude q2
i = (q2

i0, ..., q
2
im, q2

2i). They are collected in a

(2(m + 1) × 1) vector θi = (πi0, ..., πim, π2i, q
2
i0, ..., q

2
im, q2

2i)
′
.

Independent conjugate priors are used to ease posterior simulation. For the break probability

we take Beta distributions

πij ∼ Beta(aj , bj) (6)

where the hyperparameters aj and bj reflect the prior belief about the occurence of breaks. For

the variance parameters the inverted Gamma-2 prior is chosen

q2
ij ∼ IG(νj , δj) (7)

where νj expresses the strenght of our prior mean.

For posterior simulation we run the Gibbs sampler in combination with the data augmen-
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tation technique by Tanner and Wong (1987). The latent variables B = {βt}
T
t=1

, R =
{
σ2

t

}T

t=1

and K = {kt}
T
t=1

are simulated alongside the model parameters θ.

The complete data likelihood function is given by

p(r,B,K,R|θ, F ) =

T∏

t=1

p(rt|Ft, βt, σ
2
t )

m∏

j=0

p(βjt|βjt−1, kjt, q
2
j ) ×

p(σ2
t |σ

2
t−1, k2t, q

2
2) × (8)

k∏

j=0

π
kjt

j (1 − πj)
1−kjtπk2t

2
(1 − π2)

1−k2t

Combining the prior and the data likelihood, we obtain the posterior density

p(θ,B,K,R|r, F ) ∝ p(θ)p(r,B,K,R|θ, F ) (9)

Defining Kβ = {k0t, ..., kmt}
T
t=1

and Kσ = {k2t}
T
t=1

, the sampling scheme consists of the

following iterative steps:

1. Draw Kβ conditional on R,Kσ , θ, and r.

2. Draw B conditional on R,K, θ and r.

3. Draw Kσ conditional on B,Kβ, θ, and r.

4. Draw R conditional on B,K, θ and r.

5. Draw θ conditional on B,K and r.

The fisrt step applies the efficient sampling algorithm of Gerlach et alia (2000), the main

advantage being drawing kjt without conditioning on the states βjt, as Carter and Kohn (1994)
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instead do: the conditional posterior density for kβ,t, t = 1, .., T unconditional on B is

p(kβ,t|Kβ,−t,Kσ , R, θ, r) ∝ p(r|Kβ,Kσ, R, θ)p(kt|Kβ,−t, θ)

∝ p(rt+1,T |r1,t,K,R, θ)

p(rt|r1,t−1, kβ,1,t−1, R, θ, x)p(kβ,t|Kβ,−t, θ). (10)

Gerlach et alia (2000) show how to evaluate the first two terms while the last one is obtained

from the prior. When Kβ,t and βjt are higly dependent the sampler of Carter and Kohn (1994)

breaks down completely: the higher the correlation (dependence), the bigger the efficiency gain.

The latent process for the betas is estimated by means of the forward-backward algorithm

of Carter and Kohn (1994).

Kσ and R are drawn in the same way as Kβ and B. To do so we follow Kim, Shepard

and Chib (1998) and approximate the log of a χ2
(1) distribution by means of a mixture of

seven normals. In each iteration of the Gibb sampler we simulate a component of the mixture

distribution in order to get a conditional linear state space model for ln(σ2
t ).

Finally, the vector of parameters θ is easily sampled as we use conjugate priors.

We use a burn-in period of 1000 and draw 5000 observations storing every other of them to

simulate the posterior distributions of parameters and latent variables. The resulting autocor-

relations of the draw are very low.

8.2 Second pass

To estimate the cross section in (4) at each time t and for each draw of Bt|t−1 = (β1,t|t−1, ..., βN,t|t−1)

where each βj,t|t−1 is a (m × 1) vector and N is the total number of assets, we use natural con-

jugate priors. In particular,

p(λ, σ2
) = p(λ|σ2

) ∗ p(σ2
) (11)

where

(λ|σ2
) ∼ N(λ, σ2V ) (12)
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and

(σ2
) ∼ IG(

ν

2
s2,

1

2
ν) (13)

Combining them with the data likelihood we obtain a joint posterior density with convenient

analytical form. The resulting marginal posterior distributions are

(λ|r) ∼ t(λ, s2V , ν) (14)

(σ2|r) ∼ IG(
ν

2
s2,

1

2
ν) (15)

with

E(λ|r) = λ (16)

var(λ|r) =
νs2

ν − 2
V (17)

E(σ2|r) =
νs2

ν − 2
(18)

var(σ2|r) =
(νs2

)
2

(ν − 2)2(
ν
2
− 2)

(19)

where

V = (V −1
+ (X ′X)

−1
)
−1

(20)

λ = (V −1
+ (X ′X)

−1
)
−1

(V −1λ + (X ′X)
−1λ̂) (21)

ν = ν + N (22)

and λ̂ is the OLS estimate.
27

Results are presented with two different sets of priors. In the former case we are noninfor-

mative (ν = 0 and V −1
= 0) and use the well known Jeffreys’ prior while in the latter case we

impose some prior information. In more detail, we opted for a small amount of strength (ν = 5)

supporting a prior view for premiums with zero mean and standard deviation equal to a twelfth

27Intermediate steps to derive the marginal posterior distributions have been skipped. Interested readers can
refer to Koop (2003) for more details.
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of the maximum absolute return observed in the sample. Finally, the prior residual variance

is centered at about 10, a value that appeared in the higher range of the maximum likelihood

estimates.
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Table 1: Economic and Instrumental Variables

PORTFOLIO DEFINITION

Portfolio Returns

NoDur Food, Tobacco, Textiles, Apparel, Leather, Toys

Durbl Cars, TV’s, Furniture, Household Appliances

Manuf Machinery, Trucks, Planes, Chemicals, Off Furn, Paper, Com Printing

Enrgy Oil, Gas, and Coal Extraction and Products

HiTec Computers, Software, and Electronic Equipment

Telcm Telephone and Television Transmission

Shops Wholesale, Retail, and Some Services (Laundries, Repair Shops)

Hlth Healthcare, Medical Equipment, and Drugs

Utils Utilities

Other Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment, Finance

Q1 − Q10Size Ten value-weighted portfolios of NYSE,

DecilePort Amex and Nasdaq stocks

LTG Long-term government bonds

BAAC Corporate bonds (Baa quality rating)

ITG Intermediate-term government bonds

NAREIT National Association of Real Estate

Equity Investment Trusts, all securities

NAREQ NAREIT-NYSE, Amex and NMS tax qualified equity trusts only

NARMTG NAREIT-Mortgages only

NARHY B NAREIT-Hybrid equity/mortgage trusts

DJWILREIT Dow Jones Wilshire US REIT Total Return Index

Economic Variables

V W Value-weighted NYSE, Amex and Nasdaq return less 1m Tbill return

PREM Monthly yield of Baa corporate bonds less long govt bonds

DSLOPE Change in the difference between monthly yield of interm-govt bonds and

1m Tbill yield

UI Unexpected inflation rate from an ARIMA (0,1,1) model of

CPI inflation, s.unad.

IPGRW Monthly growth rate of s.a., real, industrial production

CONSUM Monthly growth rate of total, s.a., real, personal

consumption expenditure index

REALTB One month Tbill return less CPI infl.

Instrumental Variables

V W (−1) Value-weighted NYSE, Amex and Nasdaq return less 1m Tbill return

HBIT (−1) Interm govt bond less 1m Tbill return

JUNK(−1) Yield spread Baa-Aaa

DIV (−1) Monthly dividend yield on S&P’s 500 index

TBILL(−1) 1 Month Tbill return
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Table 2: Descriptive Statistics for portfolio returns, economic variables and instrumental vari-

ables in three different time windows.

1983:01-1992:12 1983:01-1997:12 1983:01-2008:07

Mean St. Dev. Mean St. Dev. Mean St. Dev.

NoDur 1.33 5.05 1.22 4.56 0.83 4.24

Durbl 0.62 6.22 0.72 5.53 0.42 5.96

Manuf 0.75 5.27 0.91 4.68 0.76 4.61

Enrgy 0.70 4.90 0.82 4.46 0.90 5.10

HiTec 0.16 6.09 0.69 5.91 0.58 7.28

Telcm 1.01 4.72 1.03 4.39 0.53 5.16

Shops 1.06 5.99 0.90 5.32 0.66 5.11

Hlth 0.97 5.46 1.07 5.13 0.73 4.75

Utils 0.76 3.48 0.73 3.38 0.64 3.91

Other 0.75 5.15 0.97 4.67 0.61 4.77

CAP1RET 0.21 5.51 0.48 5.05 0.62 5.79

CAP2RET 0.44 5.65 0.62 5.15 0.65 6.03

CAP3RET 0.67 5.53 0.78 5.11 0.71 5.59

CAP4RET 0.66 5.58 0.76 5.07 0.64 5.45

CAP5RET 0.79 5.41 0.87 4.91 0.73 5.30

CAP6RET 0.78 5.12 0.85 4.63 0.68 4.88

CAP7RET 0.77 5.04 0.89 4.50 0.76 4.74

CAP8RET 0.77 5.01 0.82 4.45 0.70 4.81

CAP9RET 0.82 4.82 0.92 4.31 0.74 4.34

CAP10RET 0.80 4.41 0.95 4.03 0.59 4.21

LTGOVB 0.29 1.31 0.27 1.22 0.22 1.16

BAACORPB 0.58 1.58 0.52 1.56 0.41 1.57

INTGOVB 0.23 0.83 0.20 0.77 0.17 0.73

NAREIT 0.16 3.12 0.46 3.12 0.48 3.70

NAREQ 0.55 3.33 0.73 3.31 0.67 3.80

NARMTG -0.36 3.54 0.11 3.85 0.04 5.61

NARHYB -0.04 3.91 0.30 3.60 0.03 5.25

DJWILREIT 0.27 3.39 0.51 3.46 0.57 3.94

VW 0.71 4.53 0.85 4.07 0.60 4.25

PREM 2.06 0.41 1.93 0.41 2.09 0.52

DSLOPE 0.01 0.78 -0.01 0.71 -0.00 0.62

UI 0.00 0.24 0.01 0.22 0.01 0.29

IP 0.26 0.58 0.32 0.54 0.25 0.53

CONSUM 0.29 0.15 0.25 0.15 0.23 0.17

REALTB 0.25 0.24 0.22 0.23 0.14 0.31

XVW 0.71 4.53 0.85 4.07 0.60 4.25

HBIT 2.03 1.06 1.90 1.02 1.53 1.09

JUNK 0.95 0.37 0.70 0.48 0.55 0.50

DIV 3.63 0.58 3.23 0.77 2.55 1.02

TBILL 6.78 1.82 6.00 1.95 4.94 2.24

Notes: The definition of the portfolio returns, economic variables and instrumental variables
listed above is in Table 1.
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Figure 1: Conditional variance of the ten industry, the long and the intermediate government

bond portfolios.
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Figure 2: Conditional variance for the ten decile capitalization and the High-Yield corporate

bond portfolios.
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Figure 3: Conditional variance for the five real estate portfolios.
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Figure 4: Sensitivity to the intercept – Posterior Medians plus the 90% Bayesian confidence intervals.
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Figure 5: Sensitivity to VW – Posterior Medians plus the 90% Bayesian confidence intervals.
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Figure 6: Sensitivity to PREM – Posterior Medians plus the 90% Bayesian confidence intervals.
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Figure 7: Sensitivity to DSLOPE – Posterior Medians plus the 90% Bayesian confidence intervals.
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Figure 8: Sensitivity to UI – Posterior Medians plus the 90% Bayesian confidence intervals.
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Figure 9: Sensitivity to IP – Posterior Medians plus the 90% Bayesian confidence intervals.
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Figure 10: Sensitivity to CONSUM – Posterior Medians plus the 90% Bayesian confidence intervals.
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Figure 11: Sensitivity to REALTB – Posterior Medians plus the 90% Bayesian confidence intervals.
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Table 3: Average Risk Premiums à la Ouysse and Kohn (2009)

Period ZBeta V W Prem DSlope UI IP Consum RealT b

1983:01-2008:07 0.374 0.232 0.02 -0.15 -0.01 0.06 0.06 -0.01

5th Perc. −2.88 −7.14 −2.67 −3.73 −1.28 −2.79 −0.74 −1.24

95th Perc. 4.02 7.15 2.89 3.86 1.17 3.55 0.86 1.11

Std. error 0.12 0.26 0.11 0.14 0.044 0.11 0.03 0.05

Num. Std. error 0.15 0.23 0.14 0.14 0.03 0.18 0.04 0.06

1983:01-1992:12 0.26 0.39 -0.16 -0.51 -0.07 -0.17 -0.014 0.09

5th Perc. −2.78 −6.71 −1.735 −4.07 −0.78 −2.35 −0.64 −0.70

95th Perc. 3.72 8.17 1.61 2.95 0.65 2.245 0.58 0.87

Std. error 0.18 0.46 0.10 0.2 0.043 0.13 0.03 0.04

Num. Std. error 0.2 0.27 0.12 0.23 0.04 0.04 0.048 0.04

1998:01-2008:07 0.42 -0.08 0.15 0.01 0.04 0.34 0.13 -0.09

5th Perc. −3.03 −8.43 −3.88 −3.72 −1.51 −3.08 −0.92 −1.58

95th Perc. 4.09 7.15 4.36 3.73 1.69 3.93 1.06 1.82

Std. error 0.2 0.42 0.23 0.22 0.09 0.21 0.05 0.11

Num. Std. error 0.3 0.43 0.3 0.19 0.054 0.37 0.07 0.11

Notes: The definition of the economic risk variables is in Table 1. The model being estimated is the linear regression in (4).
We report average values together with the 5th and the 95th percentiles of the median risk premiums for the entire sample and
two subperiods, respectively. The standard errors for the average of the risk premiums over time under the assumption of no
autocorrelation and the numerical standard errors are also reported.
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Table 4: Average Risk Premiums - Bayesian version of the Fama-MacBeth (1973) statistic

Period ZBeta V W Prem DSlope UI IP Consum RealT b

1983:01-2008:07 0.376 0.232 0.013 -0.155 -0.007 0.0606 0.058 -0.005

2.5th Perc. 0.13 −0.02 −0.22 −0.5 −0.16 −0.21 −0.08 −0.19

5th Perc. 0.17 0.02 −0.183 −0.452 −0.133 −0.172 −0.067 −0.154

95th Perc. 0.579 0.436 0.224 0.162 0.116 0.262 0.182 0.126

97.5th Perc. 0.62 0.48 0.27 0.24 0.14 0.30 0.21 0.15

1983:01-1992:12 0.258 0.398 -0.162 -0.514 -0.07 -0.16 -0.017 0.091

2.5th Perc. −0.17 0.03 −0.53 −1.10 −0.32 −0.59 −0.24 −0.19

5th Perc. −0.09 0.09 −0.48 −1.003 −0.29 −0.53 −0.20 −0.16

95th Perc. 0.59 0.7 0.16 0.007 0.134 0.16 0.175 0.33

97.5th Perc. 0.67 0.78 0.24 0.11 0.18 0.23 0.21 0.38

1998:01-2008:07 0.42 -0.075 0.145 -0.002 0.043 0.336 0.127 -0.083

2.5th Perc. 0.02 −0.55 −0.3 −0.57 −0.21 −0.12 −0.12 −0.34

5th Perc. 0.082 −0.47 −0.228 −0.47 −0.17 −0.037 −0.086 −0.302

95th Perc. 0.786 0.285 0.54 0.539 0.238 0.71 0.354 0.12

97.5th Perc. 0.86 0.35 0.62 0.65 0.27 0.77 0.41 0.17

Notes: The definition of the economic risk variables is in Table 1. The model being estimated is the linear regression in (4).
We construct a time series of estimated risk premiums for each iteration i and compute accordingly the average risk premiums:
as a result, a posterior distribution is easily obtained. We report its median values together with the 2.5th, 5th, 95th and the
97.5th percentiles.
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Table 5: Average Risk Premiums - Median Betas

Period ZBeta V W Prem DSlope UI IP Consum RealT b

1983:01-2008:07 0.43 0.18 0.01 -0.29 -0.03 0.14 0.15 0.14

5th Perc. −3.55 −7.42 −5.44 −5.61 −2.51 −3.95 −2.26 −2.93

95th Perc. 4.96 7.48 6.16 5.37 2.28 4.97 2.95 3.42

Std. error 0.15 0.29 0.20 0.19 0.085 0.15 0.1 0.12

1983:01-1992:12 0.3 0.40 -0.52 -0.92 -0.10 -0.13 -0.02 0.38

5th Perc. −3.91 −7.47 −5.16 −6.59 −2.54 −3.91 −2.12 −3.83

95th Perc. 5.37 9.14 3.59 4.12 2.41 3.5 2.39 3.71

Std. error 0.26 0.51 0.25 0.3 0.13 0.20 0.12 0.21

1998:01-2008:07 0.48 -0.17 0.36 0.03 -0.01 0.5 0.29 -0.015

5th Perc. −3.5 −9.246 −6.08 −4.72 −3.29 −4.13 −2.83 −2.35

95th Perc. 4.88 7.48 7.83 5.47 2.56 6.0 3.93 3.28

Std. error 0.22 0.45 0.39 0.30 0.14 0.27 0.18 0.19

Notes: The definition of the economic risk variables is in Table 1. The model being estimated is the linear regression in (4).
We report average values together with the 5th and the 95th percentiles of the median risk premiums for the entire sample and
two subperiods, respectively, obtained by using the median betas from the fist pass as regressors. The standard errors for the
average of the risk premiums over time are also reported.
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Table 6: Decomposition of the predictable variation of monthly portfolio returns (1983:01 - 2008:07) by economic risk variables.

VR1 VR2 VW PREM DSLOPE UI IPGRW CONSUM REALTB Int Eff

NoDur 0.48 0.52 0.79 0.02 0.01 0.03 0.12 0.02 0.07 -0.21

Durbl 0.58 0.42 0.74 0.06 0.01 0.02 0.02 0.01 0.03 0.02

Manuf 0.67 0.33 1.35 0.02 0.03 0.07 0.03 0.02 0.03 -0.63

Enrgy 0.54 0.46 0.77 0.03 0.05 0.07 0.15 0.02 0.06 -0.32

HiTec 0.77 0.23 0.85 0.03 0.07 0.01 0.01 0.01 0.02 -0.05

Telcm 0.43 0.57 0.64 0.07 0.04 0.02 0.02 0.02 0.05 0.00

Shops 0.73 0.27 0.67 0.10 0.02 0.01 0.03 0.01 0.02 0.06

Hlth 0.60 0.40 0.80 0.03 0.05 0.02 0.17 0.02 0.24 -0.51

Utils 0.22 0.78 0.70 0.07 0.10 0.06 0.03 0.06 0.14 -0.53

Other 0.52 0.48 0.92 0.01 0.00 0.02 0.02 0.03 0.02 -0.08

CAP1RET 0.53 0.47 0.45 0.05 0.02 0.01 0.01 0.01 0.04 0.32

CAP2RET 0.66 0.34 0.74 0.04 0.00 0.01 0.01 0.01 0.02 0.11

CAP3RET 0.73 0.27 0.83 0.03 0.01 0.01 0.01 0.01 0.02 0.02

CAP4RET 0.71 0.29 0.93 0.06 0.00 0.02 0.01 0.01 0.01 -0.10

CAP5RET 0.73 0.27 0.93 0.06 0.00 0.02 0.01 0.02 0.02 -0.12

CAP6RET 0.71 0.29 0.84 0.07 0.00 0.02 0.01 0.02 0.02 -0.03

CAP7RET 0.71 0.29 0.88 0.02 0.01 0.04 0.02 0.02 0.04 -0.08

CAP8RET 0.67 0.33 0.93 0.02 0.01 0.01 0.02 0.03 0.03 -0.10

CAP9RET 0.60 0.40 1.04 0.01 0.01 0.03 0.04 0.01 0.06 -0.25

CAP10RET 0.65 0.35 0.92 0.09 0.06 0.03 0.04 0.06 0.07 -0.39

LTGOVB 0.29 0.71 0.05 0.42 0.30 0.09 0.19 0.08 0.21 -0.67

HYC 0.50 0.50 0.03 0.05 0.02 0.22 0.43 0.10 0.18 -0.42

INTGOVB 0.40 0.60 0.03 0.64 0.23 0.48 0.14 0.24 0.50 -1.73

NAREIT 0.48 0.52 0.36 0.25 0.05 0.05 0.08 0.05 0.04 -0.07

NAREQ 0.53 0.47 0.26 0.19 0.09 0.03 0.01 0.03 0.03 0.18

NARMTG 0.53 0.47 0.19 0.19 0.13 0.02 0.27 0.02 0.02 0.00

NARHYB 0.43 0.57 0.30 0.19 0.06 0.04 0.17 0.02 0.04 -0.01

DJWILREIT 0.47 0.53 0.47 0.21 0.07 0.05 0.01 0.05 0.04 -0.08

Notes: The first two ratios are defined in (5). VR1 denotes the ratio of the variance of the multifactor model’s predicted returns
from the economic premiums and the asset’s betas relative to the variance of the expected returns from a linear regression on the
instrumental variables. VR2 denotes instead the ratio of the variance of the predictable part of a return that is not explained by the
multifactor model relative to the variance of the expected returns. The other ratios are computed as explained at the end of section 3.
The variable “Int Eff” reflects the fact that the total predictable variation in the set of economic risk variables is different than sum
of the predictable variation due to each of the variables individually.
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Table 7: Average Risk Premiums à la Ouysse and Kohn (2009) without REITs

Period ZBeta V W Prem DSlope UI IP Consum RealT b

1983:01-2008:07 0.33 0.25 0.07 -0.1 -0.036 0.01 -0.01 0.016

5th Perc. −2.6 −4.52 −1.84 −5.88 −1.56 −3.32 −0.82 −1.59

95th Perc. 3.4 4.05 1.96 5.25 1.42 3.66 0.88 1.74

Std. error 0.11 0.16 0.071 0.20 0.05 0.13 0.03 0.064

Num. Std. error 0.11 0.12 0.035 0.20 0.048 0.15 0.04 0.06

1983:01-1992:12 0.23 0.37 0.01 0.14 -0.04 -0.25 -0.05 0.04

5th Perc. −2.55 −4.51 −1.51 −6.31 −0.89 −2.49 −0.79 −0.816

95th Perc. 3.24 4.73 1.65 5.24 0.82 1.97 0.61 0.81

Std. error 0.16875 0.28398 0.10487 0.34861 0.054761 0.12379 0.036246 0.048185

Num. Std. error 0.18 0.17 0.06 0.36 0.04 0.13 0.023 0.03

1998:01-2008:07 0.21871 0.14934 0.1184 -0.43416 -0.085451 0.076009 0.028043 0.038609

5th Perc. −3.03 −4.715 −2.80 −5.31 −1.72 −5.12 −0.86 −2.65

95th Perc. 3.78 3.98 2.72 3.68 2.07 5.2 1.08 2.60

Std. error 0.18 0.24 0.13 0.28 0.11 0.26 0.06 0.14

Num. Std. error 0.14 0.26 0.036 0.204 0.1 0.27 0.09 0.15

Notes: The definition of the economic risk variables is in Table 1. The model being estimated is the linear regression in (4).
We report average values together with the 5th and the 95th percentiles of the median risk premiums for the entire sample and
two subperiods, respectively. The standard errors for the average of the risk premiums over time under the assumption of no
autocorrelation and the numerical standard errors are also reported.
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Table 8: Average Risk Premiums - Bayesian version of the Fama-MacBeth (1973) statistic without REITs

Period ZBeta V W Prem DSlope UI IP Consum RealT b

1983:01-2008:07 0.33 0.26 0.07 -0.097 -0.04 0.01 -0.01 0.017

2.5th Perc. 0.036 −0.025 −0.23 −0.57 −0.22 −0.32 −0.18 −0.16

5th Perc. 0.082 0.024 −0.18 −0.49 −0.18 −0.27 −0.15 −0.135

95th Perc. 0.56 0.49 0.31 0.3 0.09 0.284 0.125 0.18

97.5th Perc. 0.61 0.54 0.37 0.11 0.37 0.33 0.15 0.21

1983:01-1992:12 0.23 0.37 0.01 0.16 -0.04 -0.26 -0.05 0.04

2.5th Perc. −0.22 −0.027 −0.404 −0.624 −0.31 −0.70 −0.29 −0.25

5th Perc. −0.17 0.044 −0.316 −0.5 −0.26 −0.63 −0.246 −0.21

95th Perc. 0.59 0.72 0.35 0.76 0.16 0.12 0.13 0.325

97.5th Perc. 0.66 0.79 0.43 0.9 0.19 0.2 0.17 0.38

1998:01-2008:07 0.21 0.16 0.117 -0.44 -0.085 0.08 0.028 0.038

2.5th Perc. −0.28 −0.39 −0.48 −1.22 −0.4 −0.597 −0.29 −0.3

5th Perc. −0.2 −0.29 −0.38 −1.08 −0.34 −0.47 −0.23 −0.23

95th Perc. 0.635 0.6 0.62 0.21 0.15 0.63 0.29 0.32

97.5th Perc. 0.703 0.69 0.72 0.33 0.18 0.73 0.36 0.39

Notes: The definition of the economic risk variables is in Table 1. The model being estimated is the linear regression in (4).
We construct a time series of estimated risk premiums for each iteration i and compute accordingly the average risk premiums:
as a result, a posterior distribution is easily obtained. We report its median values together with the 2.5th, 5th, 95th and the
97.5th percentiles.
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A Bayesian investigation of the predictive power of

the yield spread for economic activity

Abstract

The term structure of interest rates is considered to vary with the business cycle and,
hence, to contain useful information to predict measures of economic activity. In particu-
lar, many empirical studies look at the yield spread, the difference between the yields on
long-term and short-term Treasury securities, and find that it helps forecast output growth
especially at short-medium horizons. Yet, this predictive power is documented to have de-
clined since the mid-eighties. The present work aims to analyze its time varying nature for
the United States in light of the recent economic events. To this end, I follow Benati and
Goodhart (2008) and derive a measure of (in-sample) marginal predictive power at horizons
of four and eight quarters from bivariate and fourvariate time-varying VARs. The evidence
confirms the findings in the previous literature and also suggests that such predictive power
has not changed much lately, apart from a short-lived hike around the time of the recession
in 2001. Furthermore, it appears to be more important the contribution of inflation and the
short rate.
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1 Introduction

The yield curve is considered to be a reliable predictor of both inflation and output over time.

Notwithstanding, a leading theoretical framework is still missing. Indeed, Wheelock and Wohar

(2009) start a recent survey of the literature from a telling quotation of Benati and Goodhart

(2008) about the predictive power of the yield spread: a “stylized fact in search of a theory”.1

Absent a dominant model to refer to, it comes very natural to snoop the entire yield curve in

search for a good predictor.

In particular the term spread, measured as the difference between the yields on long-term and

short-term Treasury securities, has always received much attention. It is widely recognized that

its predictive content for output growth has diminished in the nineties: yet, none of the studies

in the literature has explictly modelled the time variation in the forecasting equation parameters.

The only exception is Benati and Goodhart (2008) (henceforth BG) who estimate, among other

things, a time varying parameter VAR with stochastic volatility for output growth, inflation,

short rate and term spread. Their aim is to assess the marginal contribution of the yield spread

and discriminate between the two main candidate explanations (the monetary policy-based one

and Harvey’s real yield curve’s) for such predictive power.

Needless to say, all the literature predates the current economic crisis. Therefore, I reconsider

the main aspects in light of the more recent events. For instance, the yield curve inversion in

August 2006 was correctly foretelling an upcoming recession but, at that time, most reinforced

their beliefs about the actual forecast breakdown. So an interesting question to ask is whether

the signal in the yield spread is back. To this end, I use a very similar approach to BG, i.e. a

time-varying parameters VAR with stochastic volatility and correlations.2

1As the authors remark, much of the empirical literature has not tried to discriminate between the main
competing explanations. Empirical and theoretical approaches essentially sway in that the former analyze the
nominal yield curve while the latter the real one. Other differences involve the fact that policymakers are tipically
postulated to care about measures of output gap rather than its plain level. For a brief review please see the next
section.

2For a lightening and thoughtful analysis on how to model instability see Cogley (2005). It is worth noting that
reasonable alternative models may opt for a finite-state Markov representation (more generally, hidden Markov
models) whereas here parameters and conditional second moments are forced to move continuously. Furthermore,
in most applications with regime switching evidence is found in favour of more than two regimes which on the
other hand lack straight economic interpreation.
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Likewise, it is important to understand the determinants of its behaviour over time. Firstly,

I analyze the robustness of the results when other variables are also taken into account. For

instance, in line with some previous papers (notably BG and An, Piazzesi and Wei (2006)) I

include the short rate on both theoretical and empirical grounds. In a nutshell, I compute a

measure of marginal contribution of the yield spread based on the difference between the fit for

output growth of a fourvariate VAR and a trivariate VAR (in other terms, a restricted fourvariate

VAR), both specifications including inflation as well. The scope of the search can be further

extended by analyzing yield factors other than slope like level and curvature, whether estimated

or retrieved as in Mumtaz and Surico (2009). The new candidate variables or measures can be

evaluated on a one-by-one basis or, more elegantly, in a framework that endogenously account

for model uncertainty and variable selection.3

BG notice that the marginal predictive power markedly increases in periods of higher uncer-

tainty about the monetary policy regime, when risk premia plausibly play some role. De Pace

(2009) directly explores the link between the fall in the leading properties of the term spread

and the variation in inflation risk. The author estimates the marginal processes of both long

term yield bonds and the yield spread on the ground that the former’s volatility proxies for

inflation risk while the latter incorporates information on inflation expectations: the evidence

shows the importance of breaks that have brought about a decrease in conditional variances.In

this respect, I intend to explore the role of uncertainty by including the default premium as

measured by the BAA-AAA spread. For example, a tentative analysis could be based on the

correlation exhibited by the default premium and the measure of marginal contribution.

To summarize, the results show that the predictive power of the yield spread at the horizon

of 4 quarters has peaked in the mid-eighties and has since decreased as reported in many studies

and that, apart from a very short-lived episode related to the recession of 2001, it has remained

low up to the second quarter of 2009. The 8-quarter ahead predictive power, instead, is very

low and shows no sign of significant variation.
3An example of the latter approach is Koop, Jochmann and Strachan (forthcoming) who in turn apply the

stochastic search variable selection method, an automatic model selectiond device, to reduce over-parameterization
problems.
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The remainder of the paper is organized as follows. Section 2 briefly resumes the literature,

Section 3 describes the data and Section 4 presents the model structure, discusses the prior

choices and illustrates the algorithm used for posterior simulation. Section 5 presents the results

while Section 6 concludes.

2 Literature Review

Why does the yield spread contain information about future output growth? Surprisingly, few

papers have addressed this question. Estrella (2004) [see also Estrella and Trubin (2006)] points

out that the relationship with output and inflation is not structural but reflect monetary policy

decisions, in other words the reaction function. There are two polar scenarios: if the monetary

authority reacts only to output fluctuations and focuses just on changes in the interest rate, the

yield curve is the optimal predictor whereas such predictive power disappears in case reactions

to both inflation and output approaches infinity. In between the two cases, information in the

yield curve can be combined with other data.

Alternatively, according to an explanation firstly stated by Harvey (1988), it is the real

term structure that is linked to measures of future economic activity through intertemporal

consumption smoothing. Bordo and Haubrich (2004, 2008) find that inflation persistence is key

to forecasting success because of the role played by expectations. Low persistence acts as a noise

in the nominal term spread on the ground that real shocks usually do not equally impact on

both ends of the yield curve.

Several authors recognize a remarkable reduction in the forecast uncertainty shown by naive

models in the last period of macroeconomic stability whereas D’Agostino, Giannone and Surico

(2007) add that there is also a significant decline in the forecasting gain of sophisticated models,

in particular the ones exploiting large information datasets.4 The main reason is the presence of
4Giannone, Lenza and Reichlin (2008) offer many insights about the causes of the Great Moderation. They

contend the majority view supporting the “good luck” hypothesis for output. In a large scale model, instead,
are changes in propagation that seem to be the main mechanism at work: for the problem at hand, correlations
between GDP and other variables have dropped causing a decline in both the sample variability and predictability.
Similar is the message in Benati and Surico (2009) who warns that in typical structural VARs’ exercises “good
policy” may be easily mistaken for “good luck”.
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changes in dynamic correlations between variables rather than in the autocorrelations of output

and inflation: apart from the Phillips curve case, the authors document a breakdown in the

relationship between the yield-curve and output growth.5

Estrella, Rodrigues and Schich (2003) analize the stability of the predictive content of the

yield curve for Germany and United States: for U.S. they find weak evidence of a break around

September 1983 with a one-year horizon while the evidence disappears as the horizon increases.

Giacomini and Rossi (2006) build on Estrella et al. (2003) for output growth forecasting and

favour of the concept of forecast breakdown. It encompasses the issue of coefficient stability

along with, say, forecast error distributions: the focus becomes now the reliability of a given

model for forecasting or, in other terms, the comparison of fitted errors and the out-of-sample

forecast errors according to a quadratic loss function. Forecast breakdown appears to be robust

to the different tests employed and strictly related to monetary policy changes. In particular,

it increases during both the Burns-Miller and Volker periods whereas the Greenspan era has

seen this relationship stabilizing. The authors report an explanation that relies on the role of

the decreased volatility of output growth in making in-sample and out-of-sample losses closer.

Results are anyway not at odds with the dominant literature attributing the great bulk of

predictability to the pre-1984 period as the stabilization during the Greenspan era, following

the high surprise losses in the first Volker period, implies a reduced forecasting ability with

respect to the early sample.6

Some works have recently decomposed this quantity in its two theoretical constituents,

namely the expectation component and the term premium component, on the ground that

it is the former one that very likely foretells future movements in economic activity. The first

paper in this context is Hamilton and Kim (2002). Then Favero, Kaminska and Soderstrom

(2005) who, on the contrary, use a real-time VAR to compute short term rate expectations. In

both cases a lower term premium turns out to predict slower GDP growth.
5A clear message is that inference based on a long sample is basically influenced by the overperfomance before

1985. D’Agostino et al. (2007) also confirm Stock and Watson (2003) in that univariate models of real activity
show little changes over this two periods.

6The authors explicitly assert that “detection of a forecast breakdown does not necessariily mean that the
model should be discarded. Rather, it means that the model’s future performance will likely not be consistent
with its past performance”.
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At times in which the term premium is small and the yield curve is relatively flat, small

changes in expectations may reduce the accuracy of recession forecasts. This is borne out by

the evidence in Rosenberg and Maurer (2008) who apply the Kim and Wright (2005) measure

and comment that the term premium follows a longer trend with a decline since 1984 while the

expectation component mimics very well the dynamics of the term spread. As for in-sample fit,

the authors report a better performance for the model featuring the two components separately

even though the term premium does not result significant.7 The out-of-sample results do not

differ much. Rudebusch, Sack and Swanson (2007) instead find that the coefficient on the term

premium is negative and marginally statistically significant: a decline in the term premium is

associated with future growth. These sorts of exercises are, however, limited by the fact that

term premia cannot be estimated very precisely and theoretical models do not provide a clear

guidance as to the relationship between yields and economic activity. The main difficulty is how

to correctly extract the two unobservable components: many alternatives are available but none

of them appears superior to the others.8 As a matter of fact, Kim and Orphanides (2007) use

survey forecasts as a proxy for market’s expectations of future short term rates.

Finally, Ang Piazzesi and Wei (2006) challenge the conventional practice of using the yield-

spread for GDP forecasts and show that the short rate is the dominant source of information in

a term structure with no-arbitrage restrictions.9 Typical unrestricted OLS regressions instead

tend to erroneously emphasize the role of the term spread as they do not efficiently capture the

information in the cross-section of yields. On the other hand, Zhu and Rahman (2009) estimate

a regime switching macro-finance model based on a dynamic Nelson-Siegel setup without no-

arbitrage restrictions and the impulse responses suggest that future levels of capacity utilization

are more sensitive to slope factor shocks rather than level factor shocks, which are found to be

highly correlated with long yields.
7In other terms, when using the yield spread alone one is essentially imposing the restriction of equality

in coefficients. Assuming the decomposition is carried out not too imprecisely, the evidence suggests that the
restriction does not hold.

8A brilliant coverage is available in Rudebusch, Sack and Swanson (2007).
9The short rate is found to be highly correlated with the Expectations Hypothesis (EH) spread, in a similar

vein to Rosenberg and Maurer (2008).
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3 Data

The data are quarterly and cover the period from 1953 to the second quarter of 2009 but the first

ten years of observations are used for prior calibration. In short, I consider four variables: real

GDP growth (percentage variation over the previous quarter), CPI inflation rate (annualized

variation with respect to the last month of the previous quarter), the short term rate (the

3-month Treasury bill rate, secondary market) and the yield spread computed as the 10-year

government bonds’ yield minus the 3-month Treasury bill rate. I finally consider the default

spread, measured as the yield spread between BAA and AAA rated corporate bonds. The source

is FRED, the database maintained by the Federal Reserve Bank of St. Louis.

The four series are plotted together in Figure 1 for the actual sample under consideration

in the next section, that is from 1963:I to 2009:II. There is visual evidence of changing char-

acteristics in the processes governing the evolution of these variables. Firstly it is apparent

the decrease in variability shown by both output growth and inflation in the second half of the

sample, this phenomenon being referred to in the literature as the “Great Moderation”. The

short term interst rate has inverted its upward trend since then, while the yield spread shows

an increased range of variability from the late seventies. Finally, note the tremendous effect the

onset of the financial crisis has exerted on output growth and inflation, notably, and on interest

rates, to a lesser extent. The use of a multivariate model with time-varying parameters seems

then appropriate to capture these features of the data.

4 A TVP-VAR with Stochastic Volatility

4.1 The empirical model

In line with the current prevailing literature in macroeconometrics, a time-varying parameters

VAR(p) model is used:

Yt = B0,t +B1,tYt−1 + ...+Bp,tYt−p + ut ≡ X
′
tθt + ut (1)



100

where Yt is a vector that collects the observed endogenous variables.10 For consistency with

similar works and, more importantly, for computational feasibility the lag order is set to two

(p = 2).11 As for the VAR’s reduced form innovations in (1), ut ∼ N(0,Ωt) where Ωt is factored

as

Ωt = A−1
t ΣtΣ

′
t(A
−1
t )

′
(2)

with Σt and At defined as12

Σt ≡



σ1,t 0 · · · 0

0 σ2,t · · · 0

· · · · · · · · · · · ·

0 0 · · · σN,t


, At ≡



1 0 · · · 0

α21,t 1 · · · 0

· · · · · · · · · · · ·

αN1,t αN2,t · · · 1


. (3)

It follows that

Yt = X
′
tθt +A−1

t Σtεt (4)

where εt ∼ N(0, In).

The time-varying parameters, collected in the vector θt, evolve in the following way:

p(θt|θt−1, Q) = I(θt)f(θt|θt−1, Q) (5)

with I(θt) being an indicator function acting as a reflecting barrier in case of unstable draws.13

On the other hand, f(θt|θt−1, Q) is characterized by the following law of motion
10The setup is here described in general terms whereas in the following a range of several specifications, from

univariate to fourvariate autoregressive models, is estimated.
11Most, if not all, of the modelling assumptions in this part are made according to common practice in the

literature. In the sequel, only deviations from it will be remarked and justified.
12The structure of At is also an identification scheme. Whenever the short term rate is involved, it is ordered

as last in the system so as to single out the monetary policy shock. However, this aspect is not of primary interest
for the present analysis.

13The stability constraint is imposed for both theoretical and practical reasons. As for the latter, by this way
it is possible to apply frequency domain techniques at each point in time and derive measures of persistence and
predictability. Anyway, for more reflections on the use of such a constraint see section 5.
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θt = θt−1 + ηt (6)

with ηt ∼ N(0, Q). In turn, the σi,t’s evolve according to geometric random walks

lnσi,t = lnσi,t−1 + νi,t (7)

with νi,t ∼ N(0, σ2
i ). The final set of time-varying parameters, the free elements of the

matrix At, has equivalent dynamics:

αt = αt−1 + ζt (8)

Finally, all the innovations are assumed to be jointly normally distributed with the following

variance covariance matrix:

V = V ar





εt

ηt

ζt

νt




=



IN 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W


(9)

where Q,S and W are positive definite matrices. The restrictions on V are aimed at making

the model as more parsimonious as possible given the already high dimensionality imposed.14

4.2 Priors

Priors choices are here outlined. Their calibration is mostly based on the first ten years of data,

using observations from 1953:I to 1962:IV.

The initial condition for the slope parameters is normally distributed with mean and variance

related to the OLS point estimates of a time invariant VAR estimated on the initial subsample,
14As Primiceri (2005) notes, the independence between blocks of innovations is anyway not a necessary restric-

tion for the entire approach to work.
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θ0 = N(θOLS , 4 ∗ V (θOLS)). (10)

The diagonal elements in the matrix Σt are treated as states and are assumed to follow a

geometric random walk. As for their initial values, the usual log-normal distribution is assumed

f(lnσi0) = N(lnσ̄i, 1) (11)

where σ̄i equals the square root of the i-th diagonal element of the lower triangular matrix

derived from the Choleski decomposition of the presample residual variance. Cogley and Sargent

(2005) and BG use a variance of 10 which implies a dramatic variability around the prior mean

but they model the log variance rather than the log volatility as a state. In this respect, I follow

Primiceri (2005).15

The prior distribution for the off-diagonal elements of the lower diagonal matrixAt is assumed

to be normal,

f(α0) = N(ᾱ, 10 ∗ In∗(n−1)/2) (12)

where ᾱ also is obtained from the Choleski decomposition of the presample residual variance,

by imposing appropriate restrictions on the elements of the latter.

The model parameters, instead, are all supposed to have an inverse-Wishart distribution:

Q ∼ IW (k2
Q ∗ 40 ∗ V (BOLS), 40) (13)

W ∼ IW (k2
W ∗ 40 ∗ In, 40) (14)

S1 ∼ IW (k2
S ∗ 2 ∗ 10 ∗ I1, 2) (15)

S2 ∼ IW (k2
S ∗ 3 ∗ 10 ∗ I1, 3) (16)

S3 ∼ IW (k2
S ∗ 4 ∗ 10 ∗ I1, 4) (17)

15Furthermore, a unit variance for the log volatility seems reasonable for what such a value implies for the
associated prior belief on the volatility itself. Recall that the latter can be equivalently considered as a log-normal
random variable whose moments are severely affected by our choices about ln(σi0): unlike posterior medians, it
will be surely reflected in the width of posterior bands.
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where S1, S2 and S3 denote the three blocks of S and kQ = kW = 0.01 while kS = 0.1. These

priors are diffuse or at most weekly informative. The structure of S outlined above refers to the

case of a fourvariate VAR but it can be easily generalized.

4.3 The MCMC algorithm

The Gibbs sampling algorithm is used along the lines of Primiceri (2005) in order to simulate

the posterior distribution of the hyperparameters and the states. Here follows a very coincise

summary of all the steps:

• Initializing hyperparameters and states;

• Sampling the vector θT conditional on the data and all the remaining states and hyperpa-

rameters;

• Sampling the time-varying elements of the matrix AT conditional on the data and all the

remaining states and hyperparameters;

• Sampling the diagonal elements of the matrix ΣT conditional on the data and all the

remaining states and hyperparameters;

• Sampling the non-zero elements in V from their respective conditional posteriors

where xt denotes the entire history of the vector (matrix) x up to time t, T being the sample

length. Algorithms and simulations in each step are quite standard but any interested reader

can refer to Primiceri (2005) for a detailed description of the posterior simulator. The stability

constraint is imposed after drawing the vector θT and the reference is Cogley and Sargent (2005).

Under certain regularity conditions, by iterating the previous steps for a sufficient number

of times one can treat the resulting draws as taken from the joint posterior distribution. In

this paper, I use a burn-in period of 5000 iterations to converge to the ergodic distribution and

retain every other draw of the subsequent 30,000 iterations in order to reduce the autocorrelation

across draws. Hence, the inference is based on 15,000 draws. Convergence has been checked by

means of the Geweke’s CD statistic and the Inefficiency Factor.
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5 Empirical evidence

I have estimated the model outlined in section (4) for both the bivariate (output growth and

yield spread) and the fourvariate case (output growth, inflation, yield spread and the short term

rate). The lag order has been set to p=2 consistently with most of the literature. As in BG

and Cogley and Sargent (2005), a stability constraint is imposed on the system at each point

in time. This is represented by an indicator function I(θT ) =
∏T
s=1 I(θs) that takes value one

when the roots of the associated VAR polynomial are outside the unit circle.16

The estimates from the VAR are of little interest per se, especially because the focus is

on multi-period forecastability. Anyway, some information can be obtained by glancing at the

patterns exhibited from volatilities and parameters. Focusing on the bivariate case, Figure 2

confirms the presence of decreased residual variability for output growth from the second half of

the eighties. For the yield spread there is a spike in the early eighties, instead, which coincides

with the Volcker’s “monetarist experiment”.17

On the contrary, parameters do not move much, rather they appear to be flat over the entire

sample (see Figures 3 and 4).18 The yield spread affects output growth two period-ahead: the

sign of the coefficient is positive as expected but its value has decreased over the last decade.

On the other hand, GDP growth is negatively correlated with future yield spread, which also

displays a lot of inertia.

Ultimately, the aim of the paper is to ascertain whether the predictive power of the yield

spread is material, has changed and, finally, how. To this end, BG use spectral techniques to

measure model fit and predictability at 1, 4 and 8 periods ahead.19 I have, instead, followed
16The stability condition is actually checked by rewriting the VAR specification in (1) in its companion form

and verifying all the eigenvalues are less than one in absolute value. Cogley and Sargent (2005) explain how
such procedure works and how the relative priors and posteriors are modified with respect to the unconstrained
version. Alternatively, Koop and Potter (2008) suggest to impose the reflecting barrier and use the single-move
rather than the multi-move sampling of the vector θT . The former is decidedly more inefficent but a rejection of
a single θt does not imply the rejection of the entire θT , thus being preferable to multi-move sampling in such a
circumstance.

17The patterns for both output growth and yield spread are confirmed in a fourvariate VAR that includes
inflation and the short rate as well (Figure 5).

18I have found this evidence to be robust to various changes in prior’s hyperparameters. For example, even
ignoring the reflecting barrier as in Primiceri (2005) delivers the same results.

19The concepts of fit and predictability inevitably coincide here. As for the technical aspects, inference on
predictability is entirely based on a multivariate definition of persistence measured by the normalized specturm
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Cogley, Primiceri and Sargent (forthcoming) (henceforth CPS) who look at a different measure

of persistence that is claimed to be more precise than the previous one. Such a statistic is still

the ratio of conditional to unconditional variance but the two terms are related to the concept of

total variation of future variables at a given horizon due to past and future shocks, respectively.20

In more detail, consider the companion form of the VAR

zt+1 = µt + Γtzt + εz,t+1 (18)

where the vector zt contains current and lagged values of Yt, the vector µt contains the

VAR intercepts and the matrix Γt instead includes the autoregressive parameters. CPS use

this representation for multi-step forecasting assuming that all the parameters remain constant

over time from that moment onwards.21 Hence the j -period ahead forecast error variance is

approximated by

vart(ẑt+1) ≈
j−1∑
h=0

(Γht )var(εz,t+1)(Γht )
′

(19)

while the unconditional variance of ẑt+1 is obtained as the limit of the conditional variance

as the forecast horizon j increases,

var(ẑt+1) ≈
+∞∑
h=0

(Γht )var(εz,t+1)(Γht )
′
. (20)

Under the anticipated-utility approximation, this is also the unconditional variance of ẑt+s

for s > 1. The final measure of predictability is obtained as one minus the fraction of the total

variation due to future shocks or, given that future shocks account for the forecast error, as one

minus the ratio of the conditional variance to the unconditional variance,

at frequency zero as typically done in the literature. The only drawback is that stability has to be imposed in the
system at each time t in order to apply frequency domain methods.

20Even Cogley, Primiceri and Sargent (forthcoming) anyway use the reflecting barrier on the parameter vector.
Remember that incercepts are left free to wander, though, as they do not influence the stability of the VAR
representation.

21They note that such an approximation is common in the literature on bounded rationality and learning.
Furthermore, they report in other papers of theirs that it approximates well the mean of Bayesian predictive
densities.
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R2
j,t = 1− vart(eπ ẑt+1)

var(eπ ẑt+1)
≈ 1−

eπ[
∑j−1

h=0(Γht )var(εz,t+1)(Γht )
′
]e

′
π

eπ[
∑+∞

h=0(Γht )var(εz,t+1)(Γht )′ ]e′
π

(21)

where eπ is a selection vector. This R2
j,t is analogous to the R2 statistic for j -step ahead

forecasts and must lie between zero and one. The focus is here only on the predictability of 4

and 8 quarters ahead output growth as these are the horizons of major interest to policymakers.

In the following, the analysis is based on the fourvariate specification.22 Figure 6 shows

the median and the interquartile range of the four periods ahead R2
j,t for output growth. Pre-

dictability reaches its peak at about 60% in the very early eighties, then declines and stabilizes

at about 20% in the following decade. Only from 2000 on it increases again with occasional

sharp hikes, among which the first quarter of 2009.

These graphs anyway draw a picture based on the contribution of all the variables included

in the multivariate specification while the aim is to gauge the marginal contribution of the yield

spread. Following BG, this is done by computing for each horizon of interest the marginal

R2
j,t as the difference between the R2

j,t’s of the fourvariate VAR and the R2
j,t of the trivariate

VAR without the yield spread. It has to be said at the outset that such quantity is inherently

stochastic and some values are drawn that are negative. Negative values are, in any case, to

be interpreted as sign of unpredictability. At h = 4 (see Figure 8), the term spread appears to

add some forecasting power in the eighties. After falling in the nineties its predictive content

starts increasing again around 2001 and 2002 but then vanishes lately.23 At h = 8 (see Figure

9) almost a flat line, close to zero, is instead obtained suggesting that there is no additional

information.

It can be checked to what extent the amount of predictability, as captured by the marginal
22The reason is twofold. Firstly, as argued by BG, it is important to investigate “whether the spread contains

information which is not already encoded in other macroeconomic variables, first and foremost measures of the
monetary policy stance..”, while the extant literature has not gone beyond the bivariate case. Secondly, jumping
to the discussion about the marginal predictive power, Figures 11 and 12 show a dramatic amount of uncertainty
that obscures the clear pattern exhibited by the median of the posterior distributions of the marginal R2

j,t. This
pattern is also evident from Figures 13 and 14 that plot the joint posterior distribution of the marginal R2

j,t at
selected points in time.

23For the sake of clarity, these statements are based on the median of the posterior distribution of each marginal
R2

j,t. Please note that as made clear also in BG, it is very unlikely to reject the hypothesis that such a statistic
is insignificant in almost all the sample. Nonetheless, it remain interesting to further investigate on the episodes
in which predictability seems to be stronger.
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R2
t , has changed over time. The assessment is based on scatter plots of the distribution of

the four quarters ahead marginal R2 at selected points in time. In particular I have compared

three-quarter moving averages computed at the peak (1981:I), at a moment of constant low

predictability (1997:II) and finally in the last “available” quarter (2009:I), respectively. In the

subplots of Figure 10 most of the points lie under the 45-degree line which gives further support

to the view that predictability was higher during the early eighties.24

The evidence so far is in favour of that strand of literature stating that the yield spread

does not convey additional information to predict future fluctuations in output once the short

term rate is taken into account. There are times, on the other hand, when the predictive

content evidently increases and it would be interesting to investigate in more detail why and

what drives the evidence. In this respect BG note a striking coincidence with periods in which

the uncertainty about the future monetary policy stance is high but no formal analysis is there

attempted. Others, instead, point to the role of inflation expectations that are a fundamental

component of term premia and then look at the variance of long term rates.

A similar, yet not identical, route is here suggested. On the premise that uncertainty (or

equivalently risk aversion) may impact on the relationships linking economic variables, it could

be tentatively explored whether a proxy like the default spread helps explain the (in sample)

perfomance of the yield spread, for instance by computing a simple measure of correlation

between the default spread (BAA-AAA) and the marginal R2
t . A more rigorous approach would

entail augmenting the previous fourvariate VAR with this new variable. While this is appealing

on principle, the practical implementation raises problems in terms of dimensionality of the

entire system making the estimation particularly intensive from a computational point of view.

6 Conclusions

In the present work I investigate the predictive power of the yield spread for a measure of eco-

nomic activity, namely GDP growth. Even in the absence of a dominant theoretical framework,
24As remarked above when commenting on Figure 11, each marginal R2

t sometimes happens to take negative
values as a consequence of its stochastic nature. This is of course reflected also in the scatter plots of Figure 10.
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empirical papers addressing this topic abound. This work adds to the strand of the literature

focusing particularly on the time varying nature of this predictive relationships.

A wide consensus points to a breakdown started in coincidence with the “Great Modera-

tion” period but the last recession prompts to a reconsideration or, at the very least, to a new

and updated assessment. This is done within a multivariate approach that allows for smooth

variation in parameters, conditional variances and correlations. The evidence suggests that the

predictive power still remains low lately and that the peak has been reached in the early eighties.

Overall the yield spread seems not to convey a significant signal once inflation and the short

term interest rate are also considered.

Furthermore, an interesting question is whether the inclusion of the default premium (the

difference between BAA and AAA rated bond yields) affects the performance of the yield spread.

A first step in this direction could be to compute the plain correlation between the former and

the measured marginal contribution of the latter. A more detailed analysis is anyway left for

future research.

Finally, it has to be said that a proper way of dealing with all the aspects related to forecasting

entails embracing a real time approach, whereas all the evidence here (and BG) is conditioned

on the full sample.25 However, a recursive approach of the same kind as explained in section 4.2

would impose enormous costs in terms of computational time as to make the analysis unfeasible.

25Some methods have been recently developed in Bayesian statistics for this purpose: they are a class of
Sequential Monte Carlo (SMC) methods.
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Figure 1: Plot of the series (1963:I-2009:II)

Table 1: Unconditional Correlation matrix (1963:I-2009:II)

GDP growth Inflation Yield spread Short rate
GDP growth 1.00

Inflation −0.0818 1.00

Yield spread 0.0205 −0.3776 1.00

Short rate −0.0277 0.6075 −0.4198 1.00
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Figure 2: Stochastic volatilities - bivariate VAR

Notes: The graph shows the median, the 16th and the 84th percentiles
of the posterior distribution of the stochastic volatilies in the bivariate
VAR.

Figure 3: Time varying parameters - bivariate VAR

Notes: The graphs shows the median, the 16th and the 84th percentiles
of the posterior distribution of the time-varying parameters in the OUT-
PUT GROWTH equation.
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Figure 4: Time varying parameters - bivariate VAR

Notes: The graphs shows the median, the 16th and the 84th per-
centiles of the posterior distribution of the time-varying parameters in
the YIELD SPREAD equation.
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Figure 5: Stochastic volatilities - fourvariate VAR

Notes: The graph shows the median, the 16th and the 84th percentiles
of the posterior distribution of the stochastic volatilies in the fourvariate
VAR.
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Figure 6: Overall R2 at h = 4 periods ahead - fourvariate VAR

Notes: The graph shows the median and the interquartile range of
the output growth’s overall R2

t computed from the fourvariate model in
section 4.

Figure 7: Overall R2 at h = 8 periods ahead - fourvariate VAR

Notes: The graph shows the median and the interquartile range of
the output growth’s overall R2

t computed from the fourvariate model in
section 4.
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Figure 8: Marginal R2 at h = 4 periods ahead - fourvariate VAR

Notes: The graph shows the median and the interquartile range of the
marginal R2

t computed as the difference between the fourvariate and the
trivariate models in section 4 to assess the marginal predictive content
of the yield spread.

Figure 9: Marginal R2 at h = 8 periods ahead - fourvariate VAR

Notes: The graph shows the median and the interquartile range of the
marginal R2

t computed as the difference between the fourvariate and the
trivariate models in section 4 to assess the marginal predictive content
of the yield spread.

.
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Figure 10: Joint distributions of the marginal R2, h = 4 periods ahead - bivariate VAR
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Figure 11: Marginal R2 at h = 4 periods ahead - bivariate VAR

Notes: The graph shows the median and the interquartile range of the
marginal R2

t computed as the difference between the bivariate and the
univariate models in section 4 to assess the marginal predictive content
of the yield spread.

Figure 12: Marginal R2 at h = 8 periods ahead - bivariate VAR

Notes: The graph shows the median and the interquartile range of the
marginal R2

t computed as the difference between the bivariate and the
univariate models in section 4 to assess the marginal predictive content
of the yield spread.
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Figure 13: Joint distributions of the marginal R2, h = 4 periods ahead - bivariate VAR

Figure 14: Joint distributions of the marginal R2, h = 8 periods ahead - bivariate VAR
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