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Introduction

Energy is an essential input for any economic activity. At the same time, energy production has

a large impact on the environment.

For both reasons the structure and functioning of the energy sector have historically been a core

subject of economic research and are acquiring an even greater importance.

Econometric tools provide stronger basis to understand the structure of energy markets, and

add quantitative arguments that facilitate the choice of best strategies for its improvement.

Moreover, econometrics leads to robust forecasts of energy matters and their environmental

impacts.

Within energy the electricity sector is acquiring a growing importance (the fact that almost all

developed countries have decreasing energy intensities but increasing electricity intensities can

be taken as a row indicator of its raising role).

Market liberalization brought to radical and encouraging changes primarily in the power in-

dustry.

Moreover, policy measures aiming at protecting the environment have led to a stringent regu-

lation of the electricity sector.

The previous arguments have made electricity a sector evolving rapidly in terms of the struc-

ture of supply and demand, and consequently power prices and risk management.

These features of electricity markets make it necessary to use flexible modeling strategies to

investigate their functioning and dynamics.

In this thesis econometric approaches that allow for coefficients varying over time and the

adjustment mechanism being non linear are adopted. In particular, in Chapter I a Bayesian

approach and time varying parameters vector autoregressive models are used for forecasting

monthly electricity demand in Italy. The second chapter aims at investigating the degree of

efficiency in forward European electricity markets using threshold cointegration and min-max

techniques. The last chapter deals with the effects of climate change on health. It reviews re-

cent contributions grounded on quantitative analyses and provides a taxonomy of the adopted

methodologies.

I thank my colleagues at Bocconi University and at Enel S.p.A., and the coauthors of the last

chapter, Matteo Manera, Aline Chiabai, Anil Markandya for useful suggestions and comments.

I am specially indebted to my advisor, Massimiliano Marcellino, and co-advisor, Luca Sala. I
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am grateful to my friends and family for their patience. To my husband, who in the last months

put up with me without putting me down, I dedicate my thesis.
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Part I

Time Varying Parameters Bayesian

Forecasting of Electricity Demand:

the Italian Case

Abstract

Electricity demand is modeled as a time-varying parameters (TVP) vector au-

toegression with or without imposing cointegration. The paper applies Bayesian

strategies where all or a part of the parameters are allowed to vary, and compares

their forecasts performances with alternative time series models, namely a seasonal

ARIMA (SARIMA) specification and a vector error correction model (VECM). Con-

sidering Italian data, the appropriate diagnostic tests and estimation results are in

favour of non-stability of the parameters. However, the forecasts abilities of the

models do not show significant differencies when measured by RMSE and MAE,

and compared trough the Diebold Mariano statistic. On the other hand, forecast

intervals of Bayesian models show higher empirical coverage rates.
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1 Introduction

Considerable attention has been devoted to the analysis and forecast of electricity consumption

by researchers and pratictioners in the past several decades.

In early works, the estimation of electricity demand had been done by simultaneous struc-

tural equation models (e.g.Fisher and Kayser, 1962). Subsequently VAR and, since the papers

by Engle and Granger (1987) and Engle et al. (1989), ECM models had become the standard

techniques for electricity demand analyses. Further developments have relied on the use of

Johansen (1988, 1995) method for estimating the long run relationship, while some attempts

have adopted alternative approaches that increase the flexibility of the modelling strategies.

For instance, Joutz et al. (1995) have used a Bayesian specification that allows to account for

researcher’s priors, while Chang and Martinez-Chombo have introduced a time varying pa-

rameters (TVP) specification to capture the evolution of the parameters over time.

Despite the big amount of studies on electricity, a much smaller number of attemps provide

an explicit comparison of the forecasting performances of differnt models and none of them,

at least among published works and to my knowledge, refers to the Italian market. There is

therefore the need to quantify how, and to what extent, forecasts are sensible to the choice of

the modeling strategy.

In the present study BVAR approaches with time varying parameters (TVP) and that may in-

clude cointegrating relations are compared with alternative time series models, namely an uni-

variate Seasonal ARIMA (SARIMA) specification and a Vector Error Correction Model (VECM).

The first model gives flexibility and exploits all available information explicitly; the second ap-

proach is appealing for its simplicitly, and third specification has become standard practice

among researchers, and therefore both the last two provide natural benchmarks for compari-

son. By anticipating the results of this study, despite their differences, the three models do not

lead to remarkable differences for forecasting aims.

These results are obtained using monthly Italian data for the period that spans from January

1990 to February 2009. A basic electricity demand equation is used, where consumption is

regressed on industrial production, two series that account for calendar effects, proxies of the

temperature, and eleven seasonal dummies.

Althought a demand equation is considered, prices are not included among the regressors.

The main reason relies on the monthly frequency of the data and the forecasts. In the short
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run the demand of electricity and the possibility of switching to alternative energy sources

(e.g. natural gas and distillate fuel oil) are constrained by a fixed stock of using appliances

(see Silk and Jouts, 1997). Indeed, results from applied research show, on average, moderate

responsiveness of electricity consumption to changes in prices (see among others: Engle et al.,

1989; Filippini, 1999; and Fan and Hyndman, 2008, for a recent literature review.) Finally, an

indication ‘ex-post’ of the validity of omitting the prices is obtained by regressing the estimated

residuals from the SARIMA and VECM models on the logs of PUN baseload electricity prices1.

The resulting coefficient does not appear significant.

The remaining part of the paper is organized as follows: the next section analyses the main

features of the series and their integration properties; the models and estimations’ results are

presented in section 3; section 4 discusses the forcasting performance of the models, and section

5 concludes.

2 Data analysis and transformation

Electricity demand function is estimated using the logarithms of the electricity consumption

(el). As explanatory variables, the log-transformed industrial production index (ip), cooling

(CD) and heating (HD) degree days, two series that control for the calendar effect (CA) and

the leap year effect (LY ) are included in the models.2 The plots of the variables are reported

below, while more precise definitions of the series are given in the Appendix. Lower cases

stand for log-transformation of the series.

As a first step of the analysis the presence of unit roots at seasonal as well as the zero frequency

is detected. Among the procedures that have been developped, the one of OCSB (Osborn et al.

1988) and HEGY (Hylleberg et al. 1990) are employed here. The former allows to test the ad-

equacy of the double filter (1− L) (1− Ls); the latter tests whether (1− Ls) may be preferred

1Monthly averages from 2005.1 to 2009.2 are used; an MA(3) term is added to correct for residual

correlation
2The reason for using IP (instead of alternative indicators, e.g. GDP) as income variable is primary

practical: while monthly records are provided for Italian industrial production, only quarterly data are

available for GDP. Second, electricity consumption is widely known to be a good predictor of GDP (in

other words the causal link is from electricity to GDP), while the causal relationship between electricity

and IP is in both directions.
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(a) Logs of electricity demand (TWh), 1990.2 - 2009.2(b) Logs of industrial production (2000=100), 1990.2

- 2008.12

(c) Cooling degree days, 1990.2 - 2009.2 (d) Heating degree days, 1990.2 - 2009.2

Figure 1: Plot of series

to one of its components. Moreover, to investigate whether these filters lead to improved fore-

casts, the predictive performance of univariate models based on alternative transformations of

the series is considered.

The OCSB method considers the auxiliary regression:

φp (L) ∆1∆12yt =
12∑
s=1

δsds,t + π1∆12yt−1 + π2∆1yt−12 + εt (1)
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where the order p of the polinomial φp (L) is chosen such that the estimated residuals are ap-

proximately white noise. It holds that if π2 = 0 the filter ∆12 is appropriate, and if π1 = π2 = 0

the double filter ∆1∆12 is needed. Table 1 shows the estimates of (1).

Variable lags t (π2) F (π1, π2)

el 1, 12 −6.895∗∗ 23.779∗∗

ip 1, 2, 5, 10 −3.232 6.903

Table 1: OCSB method; ∗∗ denotes significance at the .05 level; ‘lags’ refers to the

lagged ∆1∆12 variables included in the auxiliary regression

The second approach involves the HEGY regression, which in case of monthly data is (see

Franses, 1991):

φ (L) ∆12yt = µ+
11∑
i=1

γiDit + tt + ψ1y1t−1 + ψ2y2t−1 + ψ3y3t−1 +

+ ψ4y3t−2 + ψ5y4t−1 + ψ6y4t−2 + ψ7y5t−1 + ψ8y5t−2 +

+ ψ9y6t−1 + ψ10y6t−2 + +ψ11y7t−1 + ψ12y7t−2 (2)

where the auxiliary regressors are appropriately defined as in Franses (1998).

The component hypothesys ψ1 = 0, ψ2 = 0, ψ3 = ψ4 = 0, ψ5 = ψ6 = 0, ψ7 = ψ8 = 0, ψ9 =

ψ10 = 0, ψ11 = ψ12 = 0 correspond to separate tests for the unit roots contained in the real val-

ued (1− L), (1 + L),
(
1 + L2

)
,
(
1 + L+ L2

)
,
(
1− L+ L2

)
,
(
1 + 31/2L+ L2

)
,
(
1− 31/2L+ L2

)
respectively.

The results of the test performed on the series el and ip are reported in Tables 2 and 3.

The results of the OCSB and HEGY tests, reported in Tables 1 - 3, suggest conflicting interpre-

tations of the type of seasonality in the series. To solve this apparent conflict Table 4 and Table

5 report the one-step ahead and multi-step ahead forecasts of the series. To evaluate the set of

forecasts the observations from 1990m1 to 2003m12 are used for the estimation and forecasts

are generated for the sample 2004m1-1204m12. The reason for choosing this sample is that the

years next to 2004 registered temperatures abnormally high or low. The RMSE is the evalu-

ation criterion. Only models that passed the tests on residuals autocorrelation are reported.
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Test t-stat F-stat

t1 -1.472

t2 -2.427*

w1 1.240

w2 5.259*

w3 2.448

w4 4.982*

w5 1.634

Table 2: HEGY method; variable el; no trend; ∗ and ∗∗ denote significance at the .10

and .05 level, respectively; critical values are reported in Franses(1991)

Test t-stat F-stat

t1 -2.963*

t2 -2.434*

w1 10.270**

w2 6.911**

w3 1.551

w4 11.224**

w5 1.523

Table 3: HEGY method; variable ip; trend; ∗ and ∗∗ denote significance at the .10 and

.05 level, respectively; critical values are reported in Franses(1991)

For the series el, the one-step ahead RMSE is smaller for the ARMA (1, 12; 1) model on the

untrasformed series; while for the multi-step ahead the same model on the differences of el has

the smallest RMSE. In contrast with the results for el, considering the series ip the model for

the variable transformed according to the HEGY test outperforms the other models on both,

one-step and multi-step ahead.

In sum, it may be concluded that a small number of imposed unit roots leads to better forecasts

for the variable el. Therefore, the (1− L) filter is used for this variable in the remaining of the
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paper. As for the variable ip the forecast evaluation and the HEGY test (in contrast with the

OCSB method) provide evidence of some seasonal unit roots. In particular, according to the

results of the HEGY test, ip should be substituted by ip∗ =
(
1− 31/2L+ L2

) (
1− L+ L2

)
ip

before analysing the cointegration between el and ip∗. However, this filter does not seem to

lead to good results in our particular case, and it appears more opportune to treat this variable

as integrated of order one at the zero frequency only.

Filter Levels ∆1 ∆12 ∆1∆12

Model arma (1, 12; 1) arma (1, 12; 1) arma (2, 1) ma (1, 12, 13)

Determ. t,d d - -

1− step .361 .390 .625 .392

h− step .375 .353 .726 .370

Table 4: Univariate models for electricity demand RMSE for 2004.1 - 2004.12; for

each filter the reported specification is the one that minimizes the BIC among those with

not significant LM of order 2; all RMSE refer to the original electricity demand series

Variable Levels ∆1 ∆1 ∆1∆12

Model ar (1, 12) arma (1, 12; 1) ma (1, 12, 13) ma (1− 5)

Determ. t,d d - -

1− step 3.342 3.205 4.223 2.526

h− step 3.601 2.377 3.817 2.051

Table 5: Univariate models for industrial production RMSE for 2004.1 - 2004.12;

for each filter the reported specification is the one that minimizes the BIC among those

with not significant LM of order 2; all RMSE refer to the original industrial production

series
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3 Modeling strategies

3.1 Preliminary methods

3.1.1 Univariate analysis

In the previous section it has been shown that the ARIMA(p = 1, 12; q = 1) specification out-

performs for modeling electricity consumption all other univariate model. Estimation results

are reported in Table 6.

3.1.2 Fixed coefficient VECM

Having assesed that series present unit roots, in this section the existence of cointegration is

checked for. In particular, the series of the electricity demand and the industrial production,

which appear to be integrated at the zero frequency, may show non-seasonal cointegration.

Adopting the method proposed in Johansen (1988), the starting point of the cointegration anal-

ysis is a VAR specification for the nx1 vector of I(1) variables Xt:

Xt = A1Xt−1 + . . .+ApXt−p + ΨDt + ut (3)

where Dt contains deterministic components, and ut, is an nx1 i.i.d. Gaussian error vector.

Equation (3) can be reparametrized as:

∆Xt = ΠXt−1 + Π1∆Xt−1 + . . .+ Πp−1∆Xt−p+1 + ΨDt + ut (4)

where Π = − (In −A1 − . . .−Ap), Πi = − (In −A1 − . . .−Ai), i = 1, . . . , p − 1, which is the

VECM representation of the original VAR system (see, among others, Charemza and Deadman,

1992). If cointegration among the variables Xt is present, model (4) includes both long-run

and short-run stationary components. The maximum likelihood method by Johansen tests

the presence of cointegration at the systems level by determining the rank of the long-run

matrix, Π. If rankΠ = r, with 0 < r < n, the matrix Π can be decomposed as Π = αβ′,

where α, is an nxr matrix of adjustment parameters and βis an nxr matrix containing the r

cointegrating relations among the variables inXt−1. The Johansen approach enables to estimate

the parameters β, and to assess the number of I(0) linear combinations among theXt variables.
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V ariable Coefficient StdError

C -0.044** 0.006

∆el(−1) -0.446** 0.057

∆el(−12) 0.108** 0.042

D1 0.023** 0.005

D2 -0.053** 0.007

D3 0.024** 0.007

D4 -0.030** 0.010

D5 0.026** 0.013

D6 0.011 0.015

D7 0.004 0.017

D8 -0.218** 0.021

D9 0.022** 0.017

D10 0.119** 0.015

D11 0.017** 0.007

RU 0.002** 0.000

LY 0.043** 0.008

HD 0.006** 0.001

CD 0.013** 0.002

MA(1) 0.488** 0.085

R2 = 0.973 LM(4) = 1.747 LM(5) = 1.4

Table 6: SARIMA model - Estimation results; ∗ and ∗∗ denote significance at the .10

and .05 level, respectively

In the present case, Xt consists in the logged electricity demand and industrial production,

while Dt includes a constant, the series that account for calendar and temperature effects and

seasonal dummies. As suggested in Johansen (1995), the dummies are orthogonalized on the

constant 1/12, in such a way that they do not generate a trending term. Since one cointegrating

relationship is found among the variables, this is included in the model that can be written in

13



Figure 2: Chow test sequence and relevant Andrews critical value

the VECM form3. The estimation results related to electricity demand equation for the whole

sample (1990.1 - 2008.12) are reported in the Table 7. Based on diagnostic checks, the estimated

specification appears satisfactory.

3.1.3 Stability analysis

Over the last seventeen years the response of electricity consumption to its determinants may

have changed in several ways (see Bertoldi and Atanasiu, 2007). For example, it is possible that

an increase in summer temperatures (captured by the series of CD) has a larger impact now

than in 1990, and this could be due to the diffusion of cooling appliances or, possibily, a change-

ment in people’s utility function. Alternatively, the adgiustement to the long-run equilibrium

may have varied over time, or it could be the case for other factors. There are different types of

tests for parameters stability (see for example Marcellino, 2002). Here, the methods of Quandt

(1960) and Nyblom (1989) are adopted. The first tests the hypothesis of parameters stability (of

the demand equation) against the alternative of a single break at unknown date. In particular,

the method of Quandt (1960) considers the maximum value of the Chow test computed recur-

3The same variables appear in both equations. HD and CD shouldn’t be very helpful to predict

industrial production. However, the estimated coefficients are so small, that they may imply little dis-

torsion.
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Variable Coefficient StdError li

ect(−1) -0.218** 0.062 0.149

∆el(−1) 0.222** 0.073 0.124

∆ip(−1) -0.194** 0.031 0.052

∆el(−2) 0.223** 0.066 0.036

∆ip(−2) -0.141** 0.029 0.018

MA12el(−1) -0.395** 0.063 0.059

MA12ip(−1) 0.081** 0.030 0.191

d1 0.016** 0.007 0.046

d2 -0.071** 0.008 0.19

d3 0.081** 0.009 0.041

d4 -0.041** 0.011 0.091

d5 0.053** 0.012 0.1

d6 -0.010 0.016 0.205

d7 -0.004 0.018 1.051

d8 -0.273** 0.019 0.990

d9 0.049** 0.022 0.14

d10 0.093** 0.022 0.433

d11 0.067** 0.019 0.722

ru 0.002** 0.000 0.223

ly 0.035** 0.008 0.176

hd 0.004** 0.001 0.783

cd 0.013** 0.002 1.336

c -0.031** 0.006 0.255

R2 = 0.973 LM(5) = 3.178 LC = 8.235

Table 7: VECM Estimation results for electricity demand equation; li and LC stand for,

respectivey, the single coefficient and the cumulative results of Nyblom statistic; ∗ and ∗∗

denote significance at the .10 and .05 level, respectively
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sively for every possible breakdate4. The tests’ sequence is reported in Figure (3.1.3) together

with the opportune critical value (Andrews, 1993). As it appears from the graph, the sequence

of Chow test lies above Andrew’s critical value at several dates, suggesting instability of the

parameters. Indeed, as it is possible that this conclusion is distorted by the presence of seasonal

dummies in the equation, the test is repeated over series previously adjustded for seasonality.

The results still reject the null, and thus confirm the ropture with the hypothesis of parameters’

constancy. Second, to better assess the nature of the instability a further method (Nyblom 1989,

Hansen 1992) that allows for breaks at unknown dates as well as random walks parameters is

adopted.

Since the interest is in the dynamics of the VECM, the test is applied to the coefficients of

I(0) variables. In practice since the model is unrestricted and it includes exogenous variables,

it is estimated through a two-step procedure (1st step: cointegrating eq. Johansen; 2nd step

OLS). The second stages are re-estimated and Nyblom tests are performed. The results for the

electricity equation are shown in Table 7. According to the above figures, the joint statistic

rejects the null of stability at the 1 percent level. Single-coefficients tests show instability due to

the impact of Summer months (june-october), HDD and CDD. The remaining variables appear

more robust over the sample.

3.2 TVP - BVARs with or without cointegration

As above seen, the results of the stability tests suggest that coefficients may vary over time.

Here, (4) is replaced by:

∆Yt = BtXt + Et (5)

Bt = [A1t,Ωt] (6)

Xt =
(

∆Y
′
t−1, Zt

)′

(7)

where the evolution path of the parameters is defined as:

4As suggested in Hansen (2001) the top and bottom .15 of dates’ series is discarded
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β̃t = Fβ̃t−1 + ηt (8)

β̃t = βt − β̄0 (9)

βt = vec
(
B

′
t

)
(10)

The regressors’ vector Xt has size (kX1), where k is given by the number of equations times

lags plus the rows’ number of Zt. The adopted approach is to treat (5) as a simple VAR model

for ∆Yt, possibly augmented with the inclusion of the disequilibrium term (previously esti-

mated using classical techniques) as an additional regressor in a Bayesian VAR framework (see

Alvarez and Ballabriga, 1995; and Amisano and Serati, 1999). The vector Zt includes the sea-

sonal dummies, the correctors for calendar effects, the series HD and CD and may include the

cointegrating vector.

Equations (5) and (8) consitute the measurement and state equations of a state-space represen-

tation, wich is the standard framework for estimating TVP models.

The error terms of the m observed yt and the K unobserved βt components are assumed i.i.d.

normal distributed, with E
(
ηtε

′
t

)
= 05. The parameters evolve as a random walk. The prior

for the initial state of the time-varying coefficients is Normal. The inverse variance-covariance

matrices of both, the measurement and the state, equations are assumed to follow the Wishart

distribution (conjugate priors). The matrix F in (8) is set to be the identity matrix, that is the

parameters follow a random walk6.

The sample is split in two parts. The first set of observations are used to calibrate the parame-

ters of the prior distributions. In particular, the mean and the variance of B0 are chosen to be

the OLS point estimates on the initial subsample and their variances. The degrees of freedom,

νn and νβ , of the Wishart distributions are set to be, respectively, 6 and 100 plus the dimen-

sion of each matrix7. The parameter νβ is chosen in such a way to shrink the distribution of

5Here the var-cov matrix is assumed to be block-diagonal. Refer among others to Cogley and Sargent

(2001) and Amisano and Federico (2004) for examples of non block diagonal forms.
6Note that in model (5) - (8) the only source of variability are model’s coefficients, while the variance

and covariance matrix of the shocks is assumed constant over time (see Primiceri, 2005; and Cogley et

al. 2008 for a different approach on this point).
7The degrees of freedom exceed the dimension of the Wishart for both, the measurement and the

state, equations and therefore the inverse Wishart are proper.
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µ0 µOLS

Σ0 ΣOLS

νn m+6

νβ K+100

kn 10

kβ 106

Table 8: Hyperparameters

the parameters. The scale matrices are chosen to be diagonal matrices, labeled Sn = knIt and

Sβ = kβIz for the precision matrices of the measurement and state equations. Table 8 summa-

rize the hyperparameter of the model.

The posterior distributions of the parameters are obtained by performing the Kalman filter (for-

ward recursion) and the smoothing techniques of Carter and Kohn (1994) (backward recursion

that allows to reconstruct the in sample evolution path of the βs by using the complete set of the

information). The final estimates of the states for the electricity demand equation are reported

in table 9 and table10. Selected time-varying coefficients are reported in Figures 3 and 4.

3.2.1 BVAR models with coefficients partly varying and partly constant

The need to estimate a large number of parameters can worsen the performance (particularly

out-of-sample) of TVP-BVAR models in some empirical applications. In order to reduce the

dimension of paremeters space, equation (5) can be replaced by:

∆Yt = BtXt + ΓWt + εt (11)

where impacts of the variables in Wt are assuned constant over time.8 In practice, only the

coefficients with hightest evidence of instability are ellowed to vary: i.e. Xt includes the lagged

dependent variables, D7, D8, the HD and CD, and the adjustements to the equilibrium term.

8Alternatively, estimation strategies proposed to tighten the dimension of parameters matrix could be

used (see among others, Canova and Ciccarelli, 2004; and Canova, 2007; and Sims et al., 2006).
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Variable Coefficient Std.Error

ect(−1) -0.495** 0.126

∆el(−1) -0.012 0.167

∆ip(−1) -0.148** 0.066

∆el(−2) 0.129 0.124

∆ip(−2) -0.087* 0.048

MA12el(−1) -0.178* 0.105

MA12ip(−1) 0.030 0.037

d1 0.031** 0.013

d2 -0.040** 0.015

d3 0.075** 0.016

d4 -0.006 0.019

d5 0.062** 0.016

d6 0.024 0.023

d7 0.035 0.023

d8 -0.213** 0.031

d9 0.082** 0.045

d10 0.176** 0.044

d11 0.084** 0.037

ru 0.001 0.004

ly 0.036** 0.013

hd 0.008** 0.004

cd 0.015** 0.006

const -0.050** 0.012

Table 9: BECM Final estimates of the states, BT , and square roots of the corresponding

variances for the electricity demand equation; ∗ and ∗∗ denote significance at the .10 and

.05 level, respectively
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Variable Coefficient Std.Error

∆el(−1) -0.207 0.198

∆ip(−1) -0.096* 0.054

∆el(−2) -0.003 0.147

∆ip(−2) -0.022** 0.011

MA12el(−1) -0.263** 0.131

MA12ip(−1) 0.021 0.051

d1 0.017 0.021

d2 -0.067** 0.024

d3 0.054** 0.025

d4 -0.047 0.031

d5 0.055* 0.030

d6 0.016 0.037

d7 0.013 0.035

d8 -0.248* 0.044

d9 0.083 0.054

d10 0.124** 0.054

d11 0.047 0.045

ru 0.002 0.005

ly 0.005 0.026

hd 0.010** 0.005

cd 0.018** 0.009

c -0.070** 0.023

Table 10: BVAR Final estimates of the states, BT , and square roots of the corresponding

variances for the electricity demand equation; ∗ and ∗∗ denote significance at the .10 and

.05 level, respectively
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Figure 3: Evolution path of Cooling degree days’(CD) impact on electricity demand

growth. TVP BEC model

Figure 4: Evolution path of the constant term in the electricity consumption eq of the

TVP BECM
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As in the unrestricted case, (11) is estimated through the multimove Gibbs sampling technique,

a particular variant of MCMC algorithm that allows to draw from the conditional posterior

distribution instead of the high dimensional joint posterior of the parameters. In the case in

which the parameters are partly constant and partly varying, Gibbs sampling is carried out in

four steps, sampling firstly from the posterior of the time-varying parameter, Bt, and in turn

from the posterior of the fixed coefficients, Γ, and finally of the precision matrices, Hε and Hη,

conditional on the observed data and the rest of parameters. The final estimates are silmilar to

those reported in Table 9 and Table 10, and therefore are not reported.

4 Predictive ability comparison

The models presented in the previous section are now compared based on their predictive

ability. The performances are measured by the Root Mean Squared Error (RMSE) and the Mean

Absolute Error (MAE) computed over recursive samples. Relative comparison of forecasts is

based on the Diebold Mariano statistic. 9

The forecasts are made as follows: the first set of forecasts are based on the models estimated

through data biginning in January 1990 and ending in December 1999. Using this sample, dy-

namic predictions are made for the following twelve months. Then the estimation period is

extended up to January 2000, and predictions are generated for the next months up to Jan-

uary 2001. This process of adding one year of observatios, re-estimating, and forecasting up to

twelve months ahead is repeated until January 2008 has been added to the estimation period .

Using this set forecasts, prediction errors are then computed and evaluated in two ways. In

tables 11 and 12 the performance of one-month, two-month up to twelve-month ahead predic-

tions is reported. Looking at tables’ results, imposing a bayesian prior on the parameters and

of allowing them (or a few of them) to vary over time does not seem to lead to a remarkable

advantages.10

From the figures in Tables 11 and 12 it appears that for one up to two months ahead the univari-

ate model has the largest forecasting accuracy. As the number of forecasted months increases

the SARIMA performs badly, whereas forecasts by VECM and by TVP BVAR models are sim-

9The parameters of the TVP-BVAR are considered constant for the forecasting period.
10These conclusion are not general; however the latter result is somehow supportive of the evidence

found by Joutz et al.(1995) using fixed coefficients BVAR for USA data.
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ilar, but slightly more accurate in case of VECM. This difference in accuracy diminishes for

ten-month up to twelve-month forecasts. To restrict some of the parameters of the TVP BVAR

model to be constant over time does not improve model’s performance; in fact this leads to

slightly worse forecasts.

To conclude about the relative comparison of forecast accuracies the Diebold Mariano statistic

is used. Being di the loss function associated to model i the DM statistic assesses whether the

loss differential between the two competitive models differs from zero. The test is given by:

S = d/ (2fd(0)/T ).5 (12)

where d is the average of loss function differentials and fd(0) is an estimate of loss differentials’

asymptotic variance. The comparison of the VECM vs the BECM and the VECM vs the BVAR

model based on the DM statistic are presented in Table 13. The Figures are obtained when the

loss function is the RMSE; when the MAE is used the results are very similar and then are not

reported.

As expected, the results do not lead to the rejection, at conventional levels, of the hypothesis of

equal prediction errors.

Tables 11-13 provide absolute and relative measurements of forecasts accuracy that are based

on a large number of repetitions and statistically meaningful. However, economic losses due to

various forecasts errors are could not be easy interpretable by comparing statistical measures

(e.g. RMSE) or through statistical tests. To give a more immediate view of the costs/benefits

associates to the various models, the forecasts in GWh and errors as percentages of the actual

values for the years 2007-2009 11 are reported in Table 14.

Now I consider the last three years and calculate what forecast errors would be made by us-

ing the various models to forecast in December the demand over the next year. The results

show that the VTP-BECM, which allows for both evolving parameters and adjustment toward

the long-run lead level, leads to better economic decisions. For instance, forecasting the de-

mand in 2008 through the TVP-BECM instead of the VECM would eliminate 90% of the error

11Yearly forecasts are obtained as sum of monthly figures.
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m SARIMA VECM TVP-BECM TVP-BVAR PartTVP-BECM PartTVP-BVAR

1 0.009 0.017 0.026 0.017 0.030 0.017

2 0.015 0.021 0.022 0.021 0.031 0.024

3 0.024 0.023 0.028 0.024 0.037 0.026

4 0.018 0.023 0.032 0.028 0.040 0.029

5 0.030 0.022 0.039 0.032 0.041 0.033

6 0.035 0.024 0.033 0.034 0.041 0.032

7 0.041 0.024 0.041 0.038 0.053 0.037

8 0.051 0.025 0.043 0.039 0.052 0.038

9 0.054 0.028 0.047 0.039 0.053 0.042

10 0.051 0.029 0.043 0.039 0.059 0.043

11 0.061 0.031 0.052 0.039 0.061 0.043

12 0.066 0.033 0.043 0.037 0.054 0.041

Table 11: RMSE for electricity demand - Dynamic forecasts over the period I : 2000.1−

2000.12...XCV III : 2008.2 − 2009.2, when the parameter are estimated for I : 1990.1 −

1999.12...XCV III : 1990.1− 2008.1
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m SARIMA VECM TVP-BECM TVP-BVAR PartTVP-BECM PartTVP-BVAR

1 0.008 0.014 0.019 0.013 0.021 0.013

2 0.012 0.016 0.016 0.016 0.024 0.018

3 0.018 0.019 0.021 0.020 0.029 0.021

4 0.017 0.019 0.026 0.022 0.032 0.023

5 0.027 0.019 0.030 0.026 0.032 0.027

6 0.032 0.020 0.025 0.028 0.034 0.026

7 0.038 0.020 0.035 0.031 0.043 0.028

8 0.049 0.020 0.037 0.032 0.040 0.033

9 0.053 0.021 0.039 0.032 0.041 0.035

10 0.045 0.022 0.036 0.032 0.049 0.036

11 0.049 0.023 0.045 0.032 0.050 0.036

12 0.052 0.023 0.037 0.030 0.043 0.033

Table 12: MAE for electricity demand- see tab:RMSE

with relevant consequences (e.g. for plant management, stock policy, price policies and bud-

get preparation and control). Moreover, the difference in the errors gets larger for 2008 and

2009 because more flexibility allows to better capture the changes in the economic scenario.

However, none of the models is able to capture the deep shift of demand in 2009

In what precedes point forecasts have been the object of the analysis. Additional interesting in-

formation can be gained from the evaluation of forecast intervals and corresponding empirical

coverage rates. A series of 90% forecast intervals (5% and 95% forecast quantiles) are calculated

using recursive samples in the same fashion as above described. Then the frequency at which

the actual growth rates of demand are contained in the forecast intervals is calculated. In case

of the VECM, the distribution of the errors and therefore forecast intervals are obtained by per-

forming the bootstrap over the residual sample; for the Bayesian models they can be derived

from the posterior simulation of parameters and variances. In all cases, TVP Bayesian models

have higher coverage rates than the classical VECM. The reason relies on the fact that bayesian

forecast intervals intrinsecally incorporate parameters’ uncertanty. In particular, BECMs with

all or part of the coefficients varying display coverage rates close to the desired 90%; TVP-
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m VECM vs TVP-BVAR VECM vs TVP-BECM VECM vs PartTVP-BVAR

1 0.427 -0.920 -0.728

2 0.211 0.013 -1.717

3 -0.081 -0.538 -1.372

4 -1.254 -1.169 -1.752

5 -2.409 -1.769 -5.054

6 -1.505 -1.083 -1.296

7 -2.582 -2.792 -1.959

8 -2.313 -3.453 -5.956

9 -1.619 -3.631 -3.332

10 -1.750 -2.912 -1.330

11 -1.327 -6.263 -1.523

12 -1.097 -2.471 -1.425

Table 13: DM for electricity demand when the loss function is the RMSE - see tab:RMSE

VECM TVP-BECM TVP-BVAR PartTVP-BECM PartTVP-BVAR

2007

Forecast 344.528 335.750 332.792 331.846 333.548

Prc error 1.4% -1.2% -2.1% -2.4% -1.9%

2008

Forecast 347.461 338.700 337.041 340.718 349.871

Prc error 2.4% -0.2% -0.7% 0.4% 3.1%

2009

Forecast 337.598 331.263 334.770 334.512 341.244

Prc error 6.5% 4.5% 5.7% 5.6% 7.7%

Table 14: Demand forecasts for 2007.1:2007.12, 2008.1:2008.12 and 2008.1:2008.12 (TWh),

and corresponding percentage errors
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VECM TVP-BECM TVP-BVAR PartTVP-BECM PartTVP-BVAR

n=1 81% 88% 95% 87% 95%

Table 15: Empirical coverage rates electricity demand growth 90% forecast intervals

BVARs are somehow overcovering, while forecast intervals of the VECM contain the actual

growth rates of demand 81% of times only (Table 15).

5 Conclusion

This paper analyses alternative models for forecasting electricity demand. These are a SARIMA

specification, a VECM and TVP BVAR models that may or may not include the cointegrating

vector among the regressors. The latter specifications seem very appealing, as i) they use all the

researcher’s information about the coefficients, and ii) they account for possible changes in the

parameters over time. Stability analyses show that paramenters vary over time and that they

evolve as random walks. Despite this evidence, TVP VARs/TVP BECMs and VECMs show

similar forecasting perfomances (as measured by RMSE and MAE). Indeed, to restrict some of

the coefficients to be constant over the sample does not improve out-of-sample results. The

same evidence is reached when evaluating models’ relative forecasting performances by the

Diebold-Mariano statistic. In particular, let alone the SARIMA model (which could be prefer-

able for 1-2-step ahead forecasts only) it is not possible to find a model that works clearly better

than the others at small, intermediate or large horizons. However, the fixed coefficient VECM

performs slightly better for 3-month up to 12-month ahead forecasts, but the differential be-

tween the VECM and the TVP-BVAR model tends to reduce for 10-12 step ahead forecasts. For

further research, I plan a) to extend the sources of time variability to the variance-covariance

matrices of the shocks, and b) to apply a strategy alternative to the one already adopted in the

present study to tighten parameters’ dimension.
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6 Appendix

Datails of the examined series. Electricity demand data are provided by Terna. Series of the

Italian industrial production are published monthly by ISTAT. Also, the two vectors accounting

for calendar effects are by ISTAT. The source of the data on Heating and Cooling Degree Days

is Bloomberg, and the two series are defined as:

CDD = max (0, t− 18)

HDD = max (0, 18− t)

where t is the average daily temperature.
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Part II

Three-regime Threshold Error

Correction Models and the Law of

One Price: the Case of European

Electricity Markets

Abstract

In this paper threshold error correction models (TVECMs) and min-max (MM)

models are applied to examine the integration of European electricity markets. The

relationships among EEX, APX, APX-UK and Powernext forward prices are as-

sessed allowing for the possibility that the convergence in prices may not always be

operational. Indeed, interdependences may occur only when the spread in prices

between two markets makes it profitable to invest in cross-border contracts. As a

main result, allowing for non-linear adjustment dynamics improves the accuracy

of the model.
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1 Introduction

Along with the liberalization of power industry and the introduction of competition, electricity

has become a tradable good. In Europe, the reorganization of the electricity market dates back

to the 90s, and the process has been driven by the adoption of two European directives that

introduced common rules for cross-country transactions to favour the creation of a common

power market (Directive 96/92/EC and Directive 2003/54/EC).

As storage of electricity is not economically feasible, cross border exchanges are needed to cope

with unbalance of internal consumption and production capacity ensuring the match between

demand and supply. Moreover, non-storability gives rise to an increased need for risk manage-

ment and futures and forward trading.

Efficiency in European spot and forward1 markets should lead prices to move together in the

long run. However, cointegration may not always be operational. This problem may be negli-

gible for spot markets, where in absence of grid congestions neighboring countries’ prices are

identical.2 In contrast, heterogeneity of risks and the possibility that future spot prices differ

across markets may prevent transactions when the spread in forward prices is too low. There-

fore, the difference in prices may need to be sufficiently large for cross-border forward contracts

being exchanged, leading to interdependences in prices and adjustment mechanisms. This fea-

ture can give rise to a three-regime process, in which it exists a band of non-adjustment, while

a pull toward the equilibrium is operational from each outer region.

Moreover, it can be noted that forward contracts are mainly used as hedging instruments and

thus cross-border financial contracts are traded only when the physical exchanges of power are

also possible. In practice, due to transmission losses and regulation limits, trading is used only

between countries that are neighboring or in the same regional market.

Several contributions have dealt with the integration of European prices. However, the ma-

jority of them have considered spot markets (an exception is Bunn and Gianfreda, 2009) and

linear modelling (see among others Bosco et al., 2009). A non linear model approach based

on regime-switching VAR models is introduced by Haldrup and Nielsen (2009) to model spot

prices in the Nordic Power market.

1In what follows I will use ’forward’ to mean both forward and future markets.
2In fact, neutral bounds may be associated with transaction and transportation costs related to cross-

border spot transactions.
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In this paper the relationship between cross-country forward markets is considered. Future

spot prices expectations may differ across markets due to diversified production technologies

and various degrees of market power coupled with limited transmission capacities. To examine

whether a long-run convergence in derivative markets exists, while allowing for the possibility

that cointegration may not always hold, TVECMs are used and compared to the results of an

MM approach. The empirical findings support the existence of a neutral band inside cointe-

grated regions. This feature of cross-hedging needs to be considered when it is evaluated to

what extent prices adjust to the common equilibrium.

2 Cross Integration in European Electricity Markets

As a part of the liberalization process, various national markets were opened up to cross-border

trading by the creation of regional power systems. Besides the establishment of the Nord Pool 3,

an agreement between France, Belgium and the Netherlands in 2006 conducted to the creation

of a coordinate trading system (TLC - Trilateral Market Coupling); similarly in July 2007 an

Iberian electricity market (MIBEL) was created by Spain and Portugal. Another initiative was

the creation in October 2008 of a central Auction Office (EMCC) to operate market coupling

between Germany and Denmark. While Nord Pool is a single power exchange, the countries

in TLC, MIBEL and EMCC have separate markets, but with harmonized design and simplified

cross-border exchanges. The creation of regional markets is seen as an intermediate step to the

building of the Internal Electricity Market (IEM) as foreseen by the directive 96/92/EC.

The sources of electricity production are rather diversified across countries. For example, in

Germany fossil fuelled power plants constitute the price setting technology. In contrast, the

electricity production in France is dominated by nuclear energy, which amounts approximately

to 78% of total production. Per capita consumption is very heterogeneous across countries ei-

ther.

When price differentials exist, there are transmissions of energy across countries, when the

power grid transmission capacity is adequate to support the flow of electricity. From what

stated above, there appear various reasons why the ”law of one price” may not be always op-

erational across European power markets:

3Nord Pool includes Norway, Sweden, Finland and Denmark and partly Germany, and operates since

early 90s
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The first intuition is that the ”law of one price” could not apply in presence of bottlenecks:

physical transmission of electricity across countries is bound by capacity constraints. There-

fore, in separated power exchanges (where markets participants trade day ahead power con-

tracts) different prices may prevail depending upon regional demand and supply conditions

(see Haldrup and Nielsen, 2009).

Analysing the derivative markets, where long-term contracts are traded to manage the risk of

future price levels, it can be observed that the higher the correlation between two markets,

the more effective cross-hedging strategies will be. Since sources of production and degrees of

market concentration differ across countries, forward prices incorporate different cost expecta-

tions 4. Therefore, foreign forward contracts represent an indirect hedging instrument, and the

spread in two countries forward prices needs to be far enough from the equilibrium to induce

investors to trade cross-border contracts to hedge risk.

Finally, an open question is whether overall European prices tend to converge, or insufficient

networks coupled with market inefficiencies prevent the ’law of one price’ to prevail across

European countries.

Focusing on the forward market, the main aim of the present paper is to provide an answer to

the last question, while controlling for the fact that convergence in prices is possible only for

sufficiently large spreads among prices. To this extent, the existence of non-linear cointegration

allowing for the possibility of a band of non-adjustment is tested.

3 The econometric framework

In the present paper, three-regime vector error correction models are the basic tool used to

model a situation in which the series may or may not be cointegrated depending on how far

from the equilibrium relationship they are.

The idea of threshold cointegration has been introduced by the seminal paper of Balke and

Fomby (1997). They assume that the cointegrating relationship, instead of being a linear func-

tion, follows a threshold autoregressive (TAR) process. The estimation procedure relies on the

single equation Engle-Granger approach. Moreover, they use a two-step approach in which

4Given the non storability of electricity, future prices are related to fundamental expectations of future

spot prices applying a forward premium that is a function of the variance and skewness of current spot

prices(see Redl et al., 2009 and Bessembinder and Lemmon, 2002)
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cointegration and threshold behaviour are tested separately.

The model has attracted considerable attention (see Lo and Zivot, 2001 for a literature review).

A relevant extension of the literature is provided by Hansen and Seo (2002) that propose sys-

tem estimation and testing methods of the complete multivariate threshold model. Theirs is a

two-regime model defined on the equilibrium term being above or below the threshold. In the

present study, their settings are modified to allow, coherently with the Balke and Fomby (1997)

analysis, for a band of non-adjustment. Finally, a similar threshold cointergration could orig-

inate from the integrated min-max (MM) process introduced by Granger and Hyung (2006).

Here I consider a partly linearised version of the model and adapt it to the problem at stake.

3.1 The threshold cointegration Balke and Fomby (1997) model

Let x1,t and x2,t be two I(1) series that originate a cointegrated system with the error correction

term given by:

x1,t + βx2,t = zt (1)

Balke and Fomby (1997) define the residuals of the above relation as:

zt = ρ(i)zt−1 + εt (2)

where ρ equals 1 if r1 < zt−1 ≤ r2 and |ρ| < 1 if zt−1 ≤ r1 or zt−1 > r2.

Since the β does not vary according to the regimes, the above model can be equivalently ex-

pressed in VECM form:

∆x1,t = µ
(i)
1 + λ

(i)
1 zt−1 +

p−1∑
j=1

δ̄1,j∆xt−j + ζx1,t

∆x2,t = µ
(i)
2 + λ

(i)
2 zt−1 +

p−1∑
j=1

δ̄2,j∆xt−j + ζx2,t (3)

where

µ(i)
m =


µm,1 if zt−1 ≤ r1

0 if r1 < zt−1 ≤ r2

µm,2 if zt−1 > r2
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λ(i)
m =


λm,1 if zt−1 ≤ r1

0 if r1 < zt−1 ≤ r2

λm,2 if zt−1 > r2

with xt = (x1,t, x2,t) and m = 1, 2. Estimates of the model are obtained using conditional

least squares. The support for the threshold variables is defined as [zL, zU ], where zL ans zU

are respectively the lower and the upper values that the threshold can take, and are such that

π0 ≤ P (zt−1 ≤ zL) and P (zt−1 ≤ zU ) ≤ 1− π0. In empirical applications setting π0 between .05

and .15 has resulted to be opportune.

3.2 The threshold cointegration Hansen and Seo (2002) VECM

Differntly from Balke and Fomby (1997), Hansen and Seo (2002) consider a p-dimentional I(1)

time series xt that is cointegrated with still only one p×1 cointegrating vector β. The extension

of (3) to a multivatiare system takes the form:

∆xt = A
′
1Xt−1(β)d1,t(β, γ) +A

′
2Xt−1(β)d2,t(β, γ) + et (4)

where

d1,t(β, γ) = 1(zt−1(β) ≤ γ)

d2,t(β, γ) = 1(zt−1(β) > γ) (5)

and Xt−1 = (1 zt−1(β) ∆xt−1 . . . ∆xt−p+1)′.

To estimate 4 they propose to firstly execute a grid-search over the two dimensional space

(β, γ). The empirical support for the threshold γ is defined as described above. The search

region for the β is given by [βL, βU ] and is constructed over a large inteval of β (such as the

asymptotic normal approximation). Parameters estimates are obtained by constrained maxi-

mum likelihood estimation. In practice:

i) Letting fixed (β, γ) for each possible value of their supports, the conditional MLE of (A1, A2,Σ)

is obtained;

ii) The estimates of β and γ are obtained as those that minimize the negative likelihood of the

model;
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iii) (Â1, Â2, Σ̂) are the estimated values corresponding to the β̂ and γ̂.

In specification (5) one price adjustment process applies if the deviations from the long-term

equilibrium are below a threshold (regime 1) and another applies if the opposite is true (regime

2). Such a specification excludes the possibility of a ”band of non-adjustment” of smaller de-

viations from a long-term equilibrium inside a regime of adjustment to bigger deviations. In

this paper a more meaningful specification for the problem in question is implemented. The

settings of Hansen and Seo (2002) are slightly modified by substituting 5 with:

d1,t(β, γ) = 1(|zt−1(β)| ≤ γ)

d2,t(β, γ) = 1(|zt−1(β)| > γ) (6)

In (6) it is assumed, in line with the three-regime model of Balke and Fomby (1997), that one

regime holds when absolute deviations from the long-term equilibrium are smaller than the

threshold (regime 1) and another for errors that are larger in absolute values(regime 2). The

model in (4) and (6) is a restricted version of a general three-regime threshold model, where

γ1 = −γ2 so that no asymmetric price transmission is possible in (6), and the same price reac-

tion occurs regardless of whether spread in prices is positive or negative5.

To test the existence of threshold cointegration instead of linear cointegration I use the multi-

variate procedure proposed by HS. Given γ and β the VECM and TVECM are linear. As the

former model is a special case of the latter, a LM-like statistic that is robust to heteroskedasticity

can be used. Formally, the test statistic can be expressed as:

LM(β, γ) = vec
(
Â1(β, γ)− Â2(β, γ)

)′ (
V̂1(β, γ) + V̂2(β, γ)

)−1

×vec
(
Â1(β, γ)− Â2(β, γ)

)
(7)

where vec is the vec operator, Âi(β, γ) are parameters estimates and V̂i(β, γ) the corresponding

Eicker-White covariance matrices. The LM statistic 7 is evaluated at point estimates obtained

under H0. Let the null estimate of β being β̃. The threshold γ is not defined under the null of

5In fact, the advantage of easy interpretable results from a two-threshold error correction model is

weakened by the fact that un to my knowledge no adequate econometric test for the significance of two

thresholds has been developed (see Hansen and Seo, 2002)
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linearity, therefore the proposed statistic is:

SupLM = supLM(β̃, γ) (8)

where the sup is with respect to γ, the search region is [γL, γU ] and β̃ is the linear VECM esti-

mate of β.

To obtain the critical values and the p-values corresponding to the estimated statistic the resid-

ual bootstrap is applied. The parameters’ estimates and the residuals series obtained under

the null (linear VECM) are used for initializating the algorithm. The bootstrap distribution is

calculated by randomly drowing from the residuals and creating new vector series xb. The

statistic supLM is calculated on each simulated sample and stored. The bootstrap p-value is

the percentage of simulated statististics that exceed the actual statistic.

3.3 The MM process

The integrated Min-Max process is given by the bivariate system:

x1,t+1 = max (x1,t + a, x2,t + b) + ε1,t+1 (9)

x2,t+1 = min (x1,t + c, x2,t + d) + ε2,t+1 (10)

As it is shown by Granger and Hyung (2006) the two series above may be cointegrated even if

they are two non-linearly integrated processes. Moreover, a− d < 0 is a sufficient condition for

an equillibrium to exist. If instead of using a max-min pair, the min operator is linearized the

same sufficient condition holds. Assuming that the cointegration equation is given and equal

to [1,−1] and definying zt = x1,t−x2,t the partially linearized model constitute a VECM system

having:

∆x1,t+1 = max (a, b− zt) + ε1,t+1 (11)

∆x2,t+1 = d+ ε2,t+1 (12)

and gives rise to:

• Region(I): if zt ≥ b− a then zt+1 = a− d+ zt + ηt+1, so that zt is I(1) in this region
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• Region(II): if zt < b− a then zt+1 = b− d+ ηt+1, so that zt is I(0).

Granger and Hyung (2006) apply the above process to analyse one risky interest rate and one

risk-free rate, and their spread. While the latter is always positive, the equilibrium term be-

tween cross-country electricity prices may be positive in some periods and negative in others,

which leads to opposite minimizing and maximizing behaviours. To take this fact explicitly

into account (11)-(12) can be modified as:

∆x1,t+1 = min (a+, b+ − zt) 1 (zt > 0) +max (a−, b− − zt)1 (zt ≤ 0) + ε1,t+1

∆x2,t+1 = d+ ε2,t+1 (13)

By subtracting ∆yt+1 from ∆xt+1 and using min(−X,−Y ) = −max(X,Y ), it is obtained that:

∆zt+1 = ((a+ − d+)−max (0, zt − b+ + a+)) 1 (zt > 0) +

+ ((a− − d−) +max (0, b− − a− − zt)) 1 (zt ≤ 0) (13)

The adjustment mechanisms in 3.3 is illustrated in Figure 1 in the Appendix.

4 Data analysis

The data used in this paper are (logs of) baseload week-ahead electricity prices for the power

exchange of the United Kingdom (UK), Germany (GE), France (FR) and the Netherlands (NE);

the observations are daily records. The data set covers the period June 2005 - September 2009;

for Germany the sample period starts in September 2007. The data series are displayed in

Figure 3 and are reported in the Appendix.

As it can be noted, typical features of electricity prices include pronounced volatility and

spikes. In this paper I do not try to average out abrupt changes, since extreme movements

can contribute to make threshold models opportune to analyze electricity prices.

ADF test statistics 6 document that the log-transformed series are I(1) at the 5% level, except

for French prices, where the null of unit root is not-rejected at the 1% level only. It should be

noted, however, that the performed ADF tests do not allow for threshold behavior. The results

are reported in Table 1.7

6The lag order in the auxiliary regression has been chosen by minimizing the BIC.
7Others find different results on the long memory properties of electricity prices (e.g. Haldrup and

Nielsen, 2009 find prices in the Nord Pool being fractionally integrated).
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The visual inspection of the series can give useful information about series patterns. Figure 4

in the Appendix reports the scatter plots for each couple of log-prices.

To conclude the analysis of the data, the correlations between prices in pairs are reported.

Since the figures Table 2 may have problems of spurious correlation, the correlations are calcu-

lated also for growth rates (Table 3).

The highest correlation in grow rates is between GE and FR. However, these are simple deter-

ministic statistics and fuller interpretation requires the models to be estimated below.

5 Empirical Results

The plots in Figure 4 above show two main features:

1. The largest amount of points can be observed around a line at approximately 45◦ slope;

2. Some observations are spread elsewhere in the graphs.

Based on the first remark, a VECM seems to be a reasonable tool for analyzing the dynamics of

the series and estimating the long run relationship between the prices. Efficiency in the market

would imply the slope of the equilibrium relationship to be one. Whether the estimated slope

of the equilibrium relationship is not significantly different from that theoretical value can then

be tested.

The second observation suggests that a TVECM may be a more appropriate tool in that it allows

for the possibility that the speeds of adjustment toward the equilibrium (or the existence of a

Variable UK GE NE FR

ADF -2.569 2.638 -2.737 -3.343*

Table 1: ADF test statistic - case with intercept; the relevant critical values are -2.868

and -3.447 at the 5% and 1% levels, respectively; ∗ denotes significance at the 5% level

but not at the 1%.
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UK GE NE FR

UK 1.000

GE .856 1.000

NE .847 .933 1.000

FR .821 .928 .872 1.000

Table 2: Correlations

UK GE NE FR

UK 1.000

GE .100 1.000

NE .115 .236 1.000

FR .215 .635 .189 1.000

Table 3: Growth rates correlations

cointegrating relationship) differ for data points close to the 45◦ line and observations spread

farther away in the graph.

In what follows the estimates of VECM and TVECM are reported. For each pair of prices the

integration level between the markets can be evaluated; moreover the results can be compared

across different pairs.

For all estimations, the Eicker-White heteroskedasticity robust standard errors are reported

in brackets, and the lag order has been fixed at one. In the TVECM the cointegrating vector

is the threshold variable that determines the switch from the non-adjustment regime to the

cointegrated one and viceversa. The inaction corridor is defined symmetrically and spans be-

tween −γ and +γ. In practice, it is likely that country A’s investors undertake cross-border

forward trading with country B only when the ratio beetween the two (weighted) prices is

large enough to exceed the differences in risks.8 Formally, let FA and FB be the two forward

prices, |log
(
FA/F

β
B

)
| ≤ γ defines region 1 (neutral state), and |log

(
FA/F

β
B

)
| > γ the other

8For a more complete description of cross-hedging of electricity see among others Woo et al. (2001).
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one. So one gets that the inaction region is defined as:

FA/F
β
B ≥ exp(−γ)iflog

(
FA/F

β
B

)
< 0

FA/F
β
B ≤ exp(γ)iflog

(
FA/F

β
B

)
> 0 (14)

(15)

For the threshold models, the two dimensional grid search is performed as described above and

the number of grid points for both, β and γ, parameters is set to 300. The non linear estimates of

the cointegrating and the threshold coefficients, (β̂, γ̂) are obtained by minimizing the Negative

Log-likelihood. For all estimated model, in Figure 6 in the Appendix the equilibrium terms are

reported by splitting data points in regime 1 and in regime 2.

5.1 The UK -France

Electricity forward contracts are traded in the financial markets and generally do not imply

physical exchanges. Nevertheless, the cross-border hedging stragies are eventually influenced

by the possibility of physical exchanges of energy. Therefore the existence of a direct intercon-

nection between the British and French power markets may matters for the results. Table 4

reports the estimates of the models.

The estimate of the threshold is γ̂ = .351 (i.e. .704 and 1.420 define the bounds for the ratio

of the weighted prices). The estimated cointegrated coefficients are β̃ = 1.158 and β̂ = 1.059

for the VECM and TVECM, respectively. The latter value is numerically close to 1. Whether

β̃ significantly differs from 1 can be tested (Johansen, 1995). The equilibrium term is inside

the bounds the 91% of times, and outside the ’non-adjustment’ corridor in the remaining 9%

of cases. These percentages are expected as the prices difference should be virtually null in

absence of events s.a. relevant maintenance operations or new regulated prices in a market.

How the observations switch from one regime to the other (due to the equilibrium relationship

in absolute values being below or above γ̂) is shown in Figure 6. Outside the bounds the ad-

justment coefficient of the first equation (UK) is significant. In the remaining cases the loadings

are insignificant or numerically very small. Indeed, the wald test for the equality of adjustment

coefficients reject the null. The Wald test for the dynamic component is insignificant.
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V ECM TV ECM

β 1.158 (0.076) 1.059

γ 0.351

REGIME1 90.5prc REGIME2 9.5prc

Equation1

λ -0.045 (0.013) -0.024 (0.014) -0.141 (0.041)

µ -0.023 (0.007) -0.001 (0.002) -0.057 (0.020)

δ1 0.053 (0.047) 0.037 (0.056) 0.198 (0.066)

δ2 0.004 (0.031) 0.020 (0.034) -0.012 (0.074)

Equation2

λ 0.075 (0.019) 0.054 (0.018) 0.067 (0.043)

µ 0.037 (0.009) 0.009 (0.003) -0.022 (0.017)

δ1 0.101 (0.039) 0.069 (0.037) 0.267 (0.113)

δ2 -0.019 (0.036) -0.029 (0.032) 0.096 (0.140)

WDyn 7.230 [.124]

WECM 8.861 [.012]

NLogL -4916.009 -4938.312

AIC -4900.009 -4906.312

BIC -4892.246 -4890.786

Table 4: U-F estimates; the Eicker - White S.E. are reported in round brackets; p-values

for the Wald tests are in square brackets

5.2 Germany - The Netherlands

As UK and France, Germany and the Netherlands are interconnected markets, whith a volume

of exchanges that largely exceeds the previous case. The results for this couple of (log-)prices

is reported in Table 5.

The estimated threshold value is γ̂ = .248 (i.e. .780 and 1.281 are the bounds for FGE/F
β̂
NE),

which is lower than the .35 estimated in case of UK and France. This seems to reflect the higher

level of interconnection of the between Germany and the Netherlands than for UK- France.
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V ECM TV ECM

β 0.944 (0.032) 0.968

γ 0.248

REGIME1 94.85prc REGIME2 5.1prc

Equation1

λ -0.085 (0.049) -0.045 (0.076) -0.001 (0.043)

µ 0.016 (0.010) 0.007 (0.008) -0.041 (0.017)

δ1 0.003 (0.056) 0.122 (0.048) -0.134 (0.093)

δ2 0.042 (0.044) 0.003 (0.042) -14.362 (2.446)

Equation2

λ 0.290 (0.086) 0.135 (0.036) 0.534 (0.101)

µ -0.052 (0.016) -0.010 (0.004) -0.084 (0.025)

δ1 -0.096 (0.081) 0.132 (0.050) -0.502 (0.142)

δ2 0.014 (0.043) -0.033 (0.031) 1.980 (1.983)

WDyn 104.725 [.000]

WDyn 13.948 [.001]

NLogL -2647.111 -2702.121

AIC -2631.046 -2670.121

BIC -2625.617 -2625.618

Table 5: G-N estimates; the Eicker - White S.E. are reported in round brackets; p-values

for the Wald tests are in square brackets

The estimated cointegrating vector is β̂ = .968, and in the linear case, β̃=.944. Similar to the

Uk - France case, over the 94% of times the two prices are close, while in the remaining 5%

of cases the error toward the equilibrium exceeds the bounds. The adjustment coefficients are

either small or non significant in Regime 1. In the second regime the loading of the Neder-

lands equation gets larger. Strangely one dymanic parameter of the first equation becomes

very large. However, the dymanic part of the TVECM is imprecisely estimated, because of the

small number of observations in the second regime.
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5.3 Germany - France

Germany and France are well interconnected markets and the volume of exchanges between

these platforms lead to significant links between the two markets. Table G-F reports the esti-

mates.

V ECM TV ECM

β 0.887 (0.057) 0.982

γ 0.244

REGIME1 94.99prc REGIME2 5.02prc

Equation 1

λ -0.103 (0.071) 0.023 (0.044) -0.641 (0.181)

µ 0.041 (0.030) 0.001 (0.003) -0.165 (0.047)

δ1 -0.086 (0.077) 0.024 (0.061) 0.528 (0.299)

δ2 0.139 (0.077) 0.119 (0.073) -0.577 (0.298)

Equation 2

λ 0.046 (0.062) 0.117 (0.048) -0.235 (0.148)

µ -0.018 (0.003) -0.003 (0.003) -0.053 (0.047)

δ1 0.160 (0.082) 0.087 (0.052) 0.722 (0.291)

δ2 -0.031 (0.073) 0.087 (0.054) -0.705 (0.293)

WDyn 14.478 [.006]

WECM 15.673 [.000]

NLogL -2737.046 -2782.333

AIC -2721.046 -2750.333

BIC -2715.461 -2739.163

Table 6: G-F estimates; the Eicker - White S.E. are reported in round brackets; p-values

for the Wald tests are in square brackets

The point estimates of the cointegrating coefficients are β̃ = .887 (which is not statistically

different from 1) in case of the linear model, and β̂ = .981 for the threshold one. The threshold

γ̂ = .244 is numerically close to the one estimated for the Germany - Netherlands case and
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exp(±̂γ) = .7831 and 1.276. Non-adjustment state dominates the pooled data set (|zt−1| ≤ γ̂ 95

% of times). In the first regime the loading of the France equation is significant. In contrast, in

regime 2 only Germany appears to adjust toward the equilibrium. Moreover in that regime the

loading of the second equation, although not signficant at the 5% level, is negative. I would

have expected it to be positive. When log(FGE)− βlog(FFR) is large one would expect FFR to

rise. By omitting the threshold and estimating a VECM the loadings are not significant.

5.4 The UK - The Netherlands

The value β̃ is significantly larger than 1, and β̂=1.30. The estimated threshold is γ̂ = .988,

which is mutch larger than estimated threshold for the previous pairs of prices. Despite the

large threshold, the first regime holds 24% of times only. In regime 1, point estimates of the

loading and the constant term of the first equation are strangely large, while they are insignif-

icant for the second equation. In the second regime loadings and intercepts are significant but

small. The Wald statistics suggest significant differences between the coefficients in the two

states.

5.5 The Netherlands - France

In this case, the estimated γ is very small, which may be what leads the first state to hold 7%

of times. Moreover, loadings estimates suggest that the adjustment toward the equilibrium

applies only inside the bounds, which contrasts with the expectations.

5.6 The UK - Germany

For these two markets, the estimated γ is big and β̃ and β̂ are far from one. In regime 1 the

loadings and the intercepts of the second equation are significant but the point estimates are

very small. In the second regime the adjustment is not significant in case of the UK equations

while it is significant and big for Germany. Wald tests do not evidence asymmetries neither in

the dynamic nor in the error correction coefficients.

Overall the estimated models appear to be appropriate for capturing the integration across EU

prices and the possible non-linearities in the adjustment process. The evidence found using the
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V ECM TV ECM

β 1.221 (0.084) 1.300

γ .988

REGIME1 23.62prc REGIME2 76.38prc

Equation1

λ -0.058 (0.017) -0.392 (0.102) -0.053 (0.018)

µ -0.049 (0.015) -0.360 (0.094) -0.064 (0.022)

δ1 0.074 (0.049) 0.244 (0.090) 0.034 (0.057)

δ2 0.013 (0.040) -0.137 (0.099) 0.047 (0.037)

Equation2

λ 0.070 (0.019) 0.077 (0.060) 0.098 (0.030)

µ 0.059 (0.015) 0.077 (0.055) 0.116 (0.036)

δ1 0.082 (0.052) 0.083 (0.042) 0.079 (0.077)

δ2 -0.053 (0.063) -0.343 (0.135) 0.049 (0.036)

WDyn 11.553 [.021]

WECM 11.178 [.003]

NLogL -4037.665 -4065.967

AIC -4021.665 -4033.967

BIC -4014.610 -4019.855

Table 7: U-N estimates;the Eicker - White S.E. are reported in round brackets; p-values

for the Wald tests are in square brackets

threshold models suggests that week ahead forward markets are more integrated in case the

considered markets are neighbouring markets. When compared based on the AIC and the BIC,

the threshodl model exibits a better performance than the VECM for all the considered pairs of

prices.
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V ECM TV ECM

β 0.913 (0.058) 0.957

γ 0.074

REGIME1 7.174 prc REGIME2 92.82prc

Equation1

λ -0.080 (0.024) -0.107 (0.200) -0.068 (0.026)

µ 0.032 (0.010) 0.019 (0.010) 0.014 (0.006)

δ1 -0.032 (0.029) -0.029 (0.062) -0.054 (0.033)

δ2 0.120 (0.039) 0.453 (0.111) 0.089 (0.041)

Equation2

λ 0.069 (0.023) 1.351 (0.566) 0.051 (0.021)

µ -0.028 (0.010) -0.072 (0.029) -0.011 (0.006)

δ1 0.007 (0.048) 0.008 (0.212) 0.010 (0.040)

δ2 -0.010 (0.038) 0.265 (0.236) -0.020 (0.033)

WDyn 13.516 [.009]

WECM 7.108 [.028]

NLogL -4742.967 -4771.906

AIC -4726.967 -4739.906

BIC -4729.309 -4724.592

Table 8: N-F estimates; the Eicker - White S.E. are reported in round brackets; p-values

for the Wald tests are in square brackets

6 Testing for threshold

The hypothesis of linear VECM against the threshold one is tested using the multivariate su-

pLM statistic of Hansen and Seo (2002) as above described.

The results of the test statistics are reported in the table 10 that follows. The empirical distri-

bution of the statistic is obtained by residual bootstrap, and the number of simulations is set to

5000. The figures show that the supLM statistic is significant at the 10% level only for Germany

- France, The Netherlands - France and The Uk - Germany pairs of prices.
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V ECM TV ECM

β 1.350 (.093) 1.252

γ 1.049

REGIME1 93.62prc REGIME2 6.38prc

Equation1

λ -0.040 (0.015) -0.022 (0.017) 0.129 (0.132)

µ -0.049 (0.018) -0.020 (0.014) 0.201 (0.166)

δ1 -0.002 (0.014) -0.009 (0.015) 0.011 (0.324)

δ2 0.038 (0.041) 0.070 (0.054) -0.046 (0.074)

Equation2

λ 0.095 (0.029) 0.072 (0.034) 0.433 (0.203)

µ 0.114 (0.034) 0.061 (0.027) 0.460 (0.234)

δ1 0.064 (0.049) 0.034 (0.046) 1.364 (0.856)

δ2 0.023 (0.051) 0.081 (0.041) -0.035 (0.165)

WDyn 6.472 [.167]

WECM 4.107 [.128]

NLogL -2752.992 -2775.507

AIC -2736.992 -2743.507

BIC -2731.499 -2732.520

Table 9: U-G estimates; the Eicker - White S.E. are reported in round brackets; p-values

for the Wald tests are in square brackets

UK-FR GE-NE GE-FR UK-NE NE-FR UK-GE

supLM 17.470 15.537 18.755 18.296 22.289 16.851

crit− val 21.197 19.280 19.462 20.556 21.233 18.054

p− val .191 .235 .065 .114 .034 .082

Table 10: supLM
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7 Robustness of the results: evidence from the MM

model

In this section, it is verified whether the evidence found through Hansen and Seo’s model

is consistent with the results of an alternative approach, Granger and Hyung’s LinMM model,

which considers explicitly the minimizing and maximizing behaviors of economic agents. More-

over, I modify the specification proposed by the authors to take into account the opposite min-

imizing and maximizing behaviors that the agents will show when the equilibrium is positive

or negative. The model is defined in (13) with zt = xt − βyt, but with β estimated instead of

being fixed at one9. Coherently with this framework, in case of positive zt the system gives rise

to two regions:

• RIp. zt+1 is a RW with drift a+ − d+ if zt < b+ − a+ and

• RIIp. zt+1 is stationary if zt > b+ − a+.

For negative zt, two other regions arise:

• RIn. zt+1 is a RW with drift a− − d− if zt > b− − a− and

• RIIn. zt+1 is I(0) if zt < b− − a−.

Overall, the system gives rise to an inaction band for small (weighted) differences between

prices inside an upper and a lower cointegrated regions. Differently from the estimated TVECM,

the LinMM is specified in such a way to allow for the thresholds and drifts to vary when the

equilibrium term is positive or negative. Tables 11-16 summarize the estimates of the long-run

coefficients for all pairs of prices.

The evidence found shows that the drift terms, a+−d+ (a−−d−),in general are close to zero but

negative (positive) in case zt > 0 (zt < 0). This implies that if zt is in the neutral state it tends

to stay there unless the error term is sufficiently large to bring the process outside the bounds.

9The two-step approach of Engle and Granger is used for estimating β. Note that the estimated

equilibrium terms differ from those obtained in the TVECM case by ML.
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linMMmodel

zt > 0 zt ≤ 0

zt > b− a .9% zt < b− a .4%

a -0.004 (0.003) 0.004 (0.003)

b 0.677 (0.050) -0.727 (0.073)

d 0.013 (0.003) -0.011 (0.003)

NLogL -4908.577

AIC -4897.577

BIC -4896.367

Table 11: Linearized MM model estimates - UF

linMMmodel

zt > 0 zt ≤ 0

zt > b− a 2.2% zt < b− a .0%

a 0.010 (0.005) 0.000 (0.006)

b 0.348 (0.039) -0.964 (0.334)

d 0.011 (0.002) -0.016 (0.003)

NLogL -2603.229

AIC -2592.229

BIC -2591.019

Table 12: Linearized MM model estimates - GN

Indeed, the percentages of observations in the cointegrated regimes (i.e. such that zt > b− a in

case zt is positive and zt < b− a for negative zt) are much lower than those estimated through

the previous model.

The figures reported in Tables 11 - 16 support the assumption of symmetric thresholds (b-a) for

UK-FR and NE-FR pairs. Point estimates of the bound for zt > 0 in case of GE-NE and GE-

FR are close to TVECM estimates. For UK-NE and UK-GE point estimates of b in the positive

and negative cases, respectively, are very large. These may be imprecise estimates and reflect
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linMMmodel

zt > 0 zt ≤ 0

zt > b− a 2.2% zt < b− a 1.1%

a 0.023 (0.008) -0.007 (0.009)

b 0.235 (0.033) -0.416 (0.065)

d 0.005 (0.002) -0.009 (0.004)

NLogL -2767.100

AIC -2756.100

BIC -2754.889

Table 13: Linearized MM model estimates - GF

linMMmodel

zt > 0 zt ≤ 0

zt > b− a 2.6% zt < b− a .0%

a 0.002 (0.004) -0.063 (0.026)

b 0.507 (0.031) -2.895 (0.370)

d 0.005 (0.002) -0.009 (0.003)

NLogL -4044.501

AIC -4033.501

BIC -4032.290

Table 14: Linearized MM model estimates - UN

problems of convergence. Overall, results of the Lin MM model suggest the existence of a

neutral regime. However, based on model’s estimates, cointegration is rarely active.

8 Conclusion

In this paper I have proposed to use bivariate TVECMs for analysing the convergences in pairs

of forward prices across British, German, Dutch and French electricity markets. The use of
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linMMmodel

zt > 0 zt ≤ 0

zt > b− a 1% zt < b− a .4%

a -0.006 (0.003) 0.003 (0.003)

b 0.738 (0.053) -0.648 (0.050)

d 0.007 (0.002) -0.006 (0.003)

NLogL -4731.530

AIC -4720.530

BIC -4719.320

Table 15: Linearized MM model estimates - NF

linMMmodel

zt > 0 zt ≤ 0

zt > b− a .0% zt < b− a .0%

a 0.004 (0.019) 0.001 (0.003)

b 3.389 (0.466) -0.577 (0.072)

d 0.012 (0.004) -0.009 (0.004)

NLogL -2742.931

AIC -2731.931

BIC -2730.720

Table 16: Linearized MM model estimates - UG

threshold models is motivated by the expectation that adjustments toward the equilibrium

may operate only when the (weighted) differences in prices exceed possible transaction costs

and differences in the expected risks associated with different hedging strategies. When the

domestic market of one country is affected by some shocks (e.g. unforseen plants’ stops or

new regulations of prices being approved), the prices may depart from the equilibrium level.

This deviations may make it convenient investing in cross-border forward contracts (in gen-

eral coupled with investments in hedging instruments against the variability of transportation
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costs). This practice can induce interdependencies in prices and adjustment mechanisms. From

the empirical analysis using TVECMs à la Hansen and Seo it appears that conditioning on the

absolute values of the errors toward the equilibrium helps to capture the dynamics of cross-

border forward trading, and it contributes to examine price convergences appropriately. Out

of the six couples of prices analysed, the estimates support the theoretical assumption in four

cases, i.e. for the dynamics of the UK - France, Germany - the Netherlands, Germany - France

and the Uk - Germany prices. However, the SupLM statistic for the existence of a threshold

is significant in three cases only, namely Germany - France, the Netherlands - France and the

UK - Germany. The evidence found using the LinMM model of Granger and Hyung confirms

the existence of a band of non-adjustment. In fact, the percentages of data points in the cointe-

grated regimes are much smaller than for the TVECM (and null in one out of six cases), which

suggests that cointegration is rarely active. When compared based on the Akaike Information

Criteria, TVECMs perform better than the VECMs and the LinMMs in all but the GF case. For

further research I would like to allow for the possibility of asymmetric thresholds also in the

TVECM à la Hansen and Seo and for the chance that the thresholds vary over the seasons.
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9 Appendix

9.1 Small sample performance

Monte Carlo simulation experiments are performed to verify the convergence of algorithms for

the TVECM and the LinMM model for n = 250 and 1000 replications.

9.1.1 Small sample performance of TVECM

The data generating process is:

equation ∆xt =

 −.2
+.3

 (x1,t − β0x2,t) 1 (x1,t − β0x2,t > γ0) + et

with et i.i.d. Normal(0, I2). The cointegrating coefficient, β0, and the threshold value, γ0, are

set at 1. The results are reported in Table 17. The results show that β has an approximately

n=250 MEAN RMSE MAE Percentiles

5 25 50 75 95

β − β0 .003 .058 .039 -0.088 -0.023 0.001 0.029 0.102

γ − γ0 -.117 .790 .610 -1.000 -0.775 -0.319 0.197 1.689

Table 17: Distribution of estimators - The estimators β̂ and γ̂ are unrestricted esti-

mators obtained as described in Section 2.

symmetric and unbiased distribution; in contrast, the estimator of γ has an asymmetric and

quite inaccurate distribution. Overall the results confirm convergence of the algorithm.

9.1.2 Small sample performance of LinMM model

To simulate a Lin MM model the following process is generated:

∆x1,t+1 = min(.02,−zt + .6)− .06∆x1,t + .2x2,t1(zt > 0) +

+max(−.2,−zt − .9)− .02∆x1,t + .04∆x2,t + u1,t+1

∆x2,t+1 = .02 + u2,t+1 (16)
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Table 18 reports simulations results. The estimators tend to converge to the true values but

n=250 MEAN RMSE MAE Percentiles

5 25 50 75 95

x1,t − x2,t > 0

a+ − a+
0 0.037 0.190 0.150 -0.259 -0.085 0.027 0.159 0.367

b+ − b+0 0.010 0.171 0.171 -0.264 -0.108 0.006 0.123 0.287

d+ − d+
0 0.002 0.127 0.101 -0.210 -0.083 -0.001 0.091 0.211

x1,t − x2,t ≤ 0

a− − a−0 -0.024 0.172 0.134 -0.316 -0.130 -0.014 0.089 0.244

b− − b−0 -0.009 0.134 0.105 -0.228 -0.099 -0.012 0.077 0.206

d− − d−0 0.002 0.097 0.077 -0.163 -0.062 0.003 0.065 0.164

Table 18: Distribution of estimators - The estimators are obtained by setting the

cointegrating coefficient at -1.

their distributions are quite dispersed.

9.2 Stability analysis

To ascertain that estimation results are not specific of the considered samples, recursive estima-

tion of the coefficients is performed. Estimates are found to be stable over time. The estimated

loadings in regime 1 and regime 2 for the UK and GE pair are reported in Figure 2.10

9.3 Heteroskedasticity analysis

A visual inspection of Figure 3 suggests that data series are characterized by volatility varying

over time. It is interesting to analyse whether different levels of volatility are associated with

different regimes. If so by estimating separately the variances for each regime, ARCH effects

should decrease11. Consider the TVECM in (4) and let e1 and e2 be the estimated residuals

10The remaining cases are not reported for the sake of space and are available upon request.
11This does not affects coefficients estimates since a ML estimates under assumption that resides are

i.i.d. have been performed
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UK-FR GE-NE GE-FR UK-NE NE-FR UK-GE

ARCH(5)-E -* *- ** ** ** -*

ARCH(5)-E1 -* ** – – – -*

ARCH(5)-E2 – – – -* -* –

Table 19: Heteroscedasticity

corresponding to the two regimes.

Table 19 summarizes the results. In all cases, resides of linear VECM exhibit ARCH(5) effects in

at least one equation. For the GE-FR pair ARCH(5) effects disappear by splitting the regimes.

For the remaining pairs, evidence of autoregressive heteroscedasticity is found in the ”stan-

dard” state (regime 1 in case of GE-NE and UK-GE, and regime 2 for UK-NE and NE-FR).

These findings suggest two considerations: i) ARCH effects may disappear from the ’extreme’

regime because a few observations are found in this regime; ii) observations that follow in

regime 2 are concentrated in a short time frame (see Figure 6).
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Figure 1: ∆zt+1 on zt with (a+, b+, d+; a−, b−, d−) = (.02, .6,−.02;−.02,−.6, .02)

61



(a) Equation1 Regime1 (b) Equation2 Regime1

(c) Equation1 Regime2 (d) Equation2 Regime2

Figure 2: Recursive coefficients estimates - UK-GE pair
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(a) United Kingdom (b) Germany

(c) Netherlands (d) France

Figure 3: Week ahead baseload electricity prices
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(a) Germany - France, 2007.9 - 2009.9 (b) Germany - Netherlands, 2007.9 - 2009.9

(c) United Kingdom - France, 2005.6 - 2009.9 (d) Netherlands - France, 2005.6 - 2009.9

(e) United Kingdom - Netherlands, 2005.6 - 2009.9 (f) United Kingdom - Germany, 2007.9 - 2009.9

Figure 4: Scatter Plots of series
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(a) eq United Kingdom - France (b) eq Germany - Netherlands

(c) eq Germany - France (d) eq UK - Netherlands

(e) eq Netherlands - France (f) eq UK - Germany

Figure 5: Equilibrium term by regime
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Part III

The Health Effects of Climate

Change: a Survey of Recent

Quantitative Research

joint with Matteo Manera, Aline Chiabai and Anil Markandya.1

Abstract

In recent years there has been a large scientific and public debate on climate

change and its direct as well as indirect effects on human health. According to

World Health Organization (WHO, 2006), some 2.5 million people die every year

from non-infectious diseases directly attributable to environmental factors such as

air pollution, stressful conditions in the workplace, exposure to chemicals and to

environmental factors. Changes in climatic conditions and climate variability can

also affect human health via changes in biological and ecological processes that

influence the transmission of several infectious diseases (WHO, 2003). In the past

fifteen years a large amount of research on the effects of climate changes on human

health has addressed two fundamental questions (WHO, 2003). First, can historical

data be of some help in revealing how short-run or long-run climate variations af-

fect the occurrence of infectious diseases? Second, is it possible to build more accu-

rate statistical models which are capable of predicting the future effects of different

climate conditions on the transmissibility of particularly dangerous infectious dis-

eases? The primary goal of this paper is to review the most relevant contributions

which have directly tackled those questions, both with respect to the effects of cli-

mate changes on the diffusion of non-infectious and infectious diseases. Specific

1In particular, Section 3 has been entirely written by myself and it has been the object of minor

revisions by my coauthors; Section 2 has been developed jointly by myself and Matteo Manera; the

Introduction and the Conclusion of the paper have been redacted by myself and completed by the other

authors.
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attention will be drawn on the methodological aspects of each study, which will be

classified according to the type of statistical model considered. Additional aspects

such as characteristics of the dependent and independent variables, number and

type of countries investigated, data frequency, temporal period and robustness of

the empirical findings are examined.
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1. Introduction. Some facts and opinions on the relationship between 

climate change and health 

 

In recent years there has been a large scientific and public debate on climate change and its direct as 

well as indirect effects on human health. 

According to World Health Organization (WHO, 2006), some 2.5 million people die every year 

from non-infectious diseases directly attributable to environmental factors such as air pollution, 

extreme weather events, stressful conditions in the workplace, exposure to chemicals such as lead, 

and exposure to environmental tobacco smoke. 

In particular, lead exposure has been estimated to account for 2% of the ischaemic heart disease 

burden and 3% of the cerebrovascular disease burden (WHO, 2003). Exposure to outdoor air 

pollution accounted for approximately 2% of the global cardiopulmonary disease burden (WHO, 

2003). In the US, about 12% of the ischaemic heart disease burden has been related to occupation, 

for the age group 20-69 years. This estimate has been based on the specific risk factors of job 

control, noise, shift work and environmental tobacco smoke at work (Steenland et al., 2003). In 

Finland, it has been estimated that occupational risks account for 17% of the deaths from ischaemic 

heart disease, and 11% of those from stroke (Nurminen and Karjalainen, 2001). In Denmark, the 

occurrence of cardiovascular diseases is related to the type of occupation. Specifically, a reduction 

of 16% (22%) in the cardiovascular disease burden can be attributable to men (women) with non-

sedentary occupations (Olsen and Kristensen, 1991).Changes in climatic conditions and climate 

variability represent a further factor which can affect human health directly or indirectly via 

changes in biological and ecological processes that influence the transmission of several infectious 

diseases (WHO, 2003). Direct effects on human health include, for example, thermal stresses due to 

increased frequency and intensity heat waves (cardiovascular and respiratory diseases, heat 

exhaustion), and deaths and injuries due to extreme weather events. Indirect effects include 
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malnutrition, food-, water- and vector-borne diseases, together with increased morbidity due to the 

combined effect of exposure to high temperature and air pollution. 

Empirical evidence suggests that malaria varies seasonally in highly endemic areas and is probably 

the vector-borne disease more sensitive to long-run climate changes. For example, the comparison 

of monthly climate and malaria data in highland Kakamega, Western Kenya, highlights a close 

association between malaria transmission and monthly maximum temperature anomalies over the 

years 1997-2000 (Githeko and Ndegwa, 2001). The effects of soil moisture to determine the causal 

links between weather and malaria transmission has been studied by Patz et al. (1998). For the most 

common mosquito species Anopheles gambiae, the soil moisture predicts up to 45% and 56% of the 

variability of human biting rate and entomological inoculation rate, respectively. The link between 

malaria and extreme climatic events has long been the subject of study on the Indian subcontinent 

as well as in various other countries. Early in the twentieth century, the Punjab region experienced 

periodic epidemics of malaria. Excessive monsoon rainfall and the resultant high humidity were 

clearly identified as major factors in the occurrence of malaria epidemics. More recently, time-

series analyses have shown that the risk of a malaria epidemic increased approximately five-fold 

during the year following an El Niño year in Indian region (Bouma and van der Kaay, 1994). 

Furthermore, a strong correlation is found between both annual rainfall and the number of rainy 

days and the incidence of malaria in most districts of Rajasthan and in some districts in Gujarat 

(Akhtar and McMichael, 1996). The relationship between reported malaria cases and El Niño has 

been documented for Venezuela, where, during the whole twentieth century, malaria rates increased 

on average by over one-third in the year immediately following an El Niño year (Bouma and Dye, 

1997). 

However, it is widely acknowledged that climate changes are only one of many important factors 

influencing the incidence of infectious diseases and that their effects are very unlikely to be 

independent of socio-demographic factors (e.g. human migrations, transportation, nutrition), or of 

environmental influences (e.g. deforestation, agricultural development, water projects, 

urbanization). In particular, it has been estimated that about 42% of the global malaria burden, or 

half a million deaths annually, could be prevented by environmental management, although this 
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proportion varies significantly across different regions: it is 36% in the Eastern Mediterranean 

Region; 40% in the Western Pacific Region; 42% in sub-Saharan Africa; 42% in the South-East 

Asia Region; 50% in the European Region; 64% in the Region of the Americas (WHO, 2006). 

Nevertheless, in the past fifteen years a large amount of research on the effects of climate changes 

on human health has addressed two fundamental questions (WHO, 2003). First, can historical data 

be of some help in revealing how short-run or long-run climate variations affect the occurrence of 

infectious diseases? Second, is it possible to build more accurate statistical models which are 

capable to predict the future effects of different climate conditions on the transmissibility of 

particularly dangerous infectious diseases? 

The primary goal of this work is to review the most relevant contributions which have directly 

tackled those questions, with respect to the effects of climate changes on the diffusion of non-

infectious and infectious diseases. Specific attention will be drawn on the methodological aspects of 

each study, which will be classified according to the specific problem in question, as well as the 

type of statistical model considered.1  

As far as the specific problem addressed by each study is concerned, we refer to: 

• Primary studies, which analyze the direct effects of rising temperatures on the burden of 

diseases; 

• Secondary studies, which consider socio-economic effects of temperatures growth 

including Integrated Assessment Models (IAMs), General Equilibrium Models (GEMs) and 

Global Trade Analysis Project Models (GTAP); 

• Comparative Risk Assessments (CRA), which integrate climate models for projecting 

future climate changes and “primary studies” for estimating the effects on health. 

                                                 
1 Additional aspects such as characteristics of the dependent and independent variables, number and type of countries 
investigated, data frequency, temporal period spanned by the analysis, and robustness of the empirical findings are 
examined. 



 72

In terms of the type of statistical model which each of the surveyed study is based on, the following 

broad classes emerge: 

• Stationary and non-stationary time series models, such as ARMAX (Auto Regressive 

Moving Average with exogenous variables) models, ECM (Error Correction Models), 

possibly with seasonal components; 

• Non-parametric forecasting models, such as single and double exponential smoothing, 

Holt-Winters methods (additive, no seasonal, multiplicative); 

• Panel data and spatial models, such as fixed and random effects models, dynamic panel 

data models, spatial lag and spatial error models. 

The paper is organized as follows. Section 2 presents a taxonomy of the most popular classes of 

statistical models used to analyze the relationship between climate variations and the diffusion of 

non-infectious and infectious diseases. In Section 3 a significant number of quantitative 

contributions are discussed in detail, with particular emphasis on the specific problem addressed, as 

well as the type of statistical model adopted. Section 4 contains some conclusions.  

 

2. Statistical models for the relationship between climate change and 

health: a taxonomy 

 

Statistical models are important tools for analysing the complex relationship between climate 

changes and human health, since they allow researchers to link crucial climate variables (such as 

temperature and precipitations) at global or regional levels to the occurrence of the disease under 

scrutiny (WHO, 2003). 

In this section, we briefly describe the basic specification for each class of models. We start with 

univariate models for stationary and non-stationary time series, such as ARMAX with exogenous 
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variables, and ECM. The concepts of deterministic and stochastic trends are revisited, as well as the 

implications of cointegration and seasonality. We then present the most popular single-equation 

exponential smoothing methods for predicting the future values of a time-series. Finally, we 

consider the basic models for static and dynamic panel data, as well as for spatial statistics. 

 

2.1. Models for stationary and non-stationary time series 

 

In applied statistics, the standard model that takes into account the random nature and time 

correlations of the variable under study (e.g. the occurrence of a particular disease), Yt, t=1,…,T, is 

the Auto Regressive Moving Average (ARMA) model (see, among others, Lütkepohl and Krätzig, 

2004). It is composed of two parts: the autoregressive component and the moving average 

component. The autoregressive (AR) model of order p, AR(p), can be written as: 

 

0 1 1 ....t t t p t p tY Y Yα α α ε− − −= + + + +  (1)

 

where 0α  is a constant and tε , t=p+1, …, T, are the error terms, generally assumed to be 

independent and identically-distributed normal random variables, with E(εt)=0 and Var(εt)=σ2, for 

any t (i.e. white noise errors). The parameters pααα ,.....,, 21  are referred to as the AR coefficients. 

The moving average (MA) models can be interpreted as the representation of a time series which is 

generated by passing a white noise process through a non recursive linear filter. The notation 

MA(q) refers to the moving average model of order q: 
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0 1 1 ....t t t q t qY θ ε θ ε θ ε− −= + + + +  (2)

 

A linear model for Yt based on both past values (1) and innovation values (2) is known as an Auto 

Regressive Moving Average (ARMA). The notation ARMA(p,q) refers to p autoregressive terms 

and q  moving average terms: 

 

0
1 1

p q

t i t i j t j t
i j

Y Yα α θ ε ε− −
= =

= + + +∑ ∑  (3a)

 

or 

 

( ) ( )0t tL Y Lα α θ ε= +  (3b)

 

where α(L) and θ(L) are polynomials in the lag operator L of order p and q, respectively. 

In order to describe the relationship between the occurrence of a specific disease and climatic 

variables more accurately, an Auto Regressive Moving Average model with eXogenous variables 

(ARMAX) can be used. The notation ARMAX(p,q,b) refers to a model with p autoregressive terms, 

q moving average terms and b exogenous variables. This model nests the AR(p) and MA(q) models, 

and linear combinations of b  explanatory variables, Xr,t-sr, r=1,…,b, sr=0,…,wr. An ARMA(p,q,b) 

model can be written as: 
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1

0 1, 1 1, 1 , ,
1 1 1 0 0

...
p q w wb

t i t i j t j s t s b sb b t sb t
i j s sb

Y Y X Xα α θ ε δ δ ε− − − −
= = = =

= + + + + + +∑ ∑ ∑ ∑  (4)

 

A number of variations of ARMA models are commonly used in statistics, according to whether the 

series Yt and Xr,t are integrated or exhibit seasonalities. We explain the concept of integration below. 

It is well known that classical statistical inference is based on the concept of stationarity. A time 

series Yt, t=1,…,T, is said to be (weakly) stationary if E(Yt) and Var(Yt) are constant for any t and 

finite, and Cov(Yt, Yt-k)=Cov(Ys, Ys-k), for t different from s (what matters is only k, not the time 

location). At the same time, it is widely acknowledged that most economic, social-demographic, 

environmental and climatic time series are non-stationary, since they contain trends (deterministic 

and/or stochastic). 

The simplest example of a non-stationary time series with a stochastic trend is the Random Walk 

(RW), i.e. the AR(p) model (1) with p=1 and α1=1. If Yt follows a RW, then Yt is said to be 

integrated of order 1, or I(1), since we have to apply the difference operator Δ once to Yt (ΔYt=Yt-

Yt-1) in order to obtain a transformed series which is integrated of order 0, or I(0), i.e. a stationary 

time series. In general, a time series Yt is I(d) if we have to apply d times the difference operator to 

make it stationary, i.e. ΔdYt is I(0). In general, the order of integration d of most economic,     

social-demographic, environmental and climatic variables is taken to be an integer equal to 0, 1 or 

2. 

The classical distributions which are at the basis of many statistical tests (i.e. t, F, chi-square, etc.) 

are no longer valid if the series are I(d), d = 1, 2. At this stage, two questions arise. First, is it 

possible to test for the order of integration d of a time series? Second, is it possible to use statistical 

inference with integrated series? 
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The answer to the first question is given by the tests for the order of integration of a time series 

(also known as unit-root tests), the most popular of which is the Augmented Dickey-Fuller (ADF)  

t-test on the null hypothesis ρ = 0 (i.e. d is at least equal to 1) against the alternative hypothesis ρ < 

0 (i.e. d = 0) in the regression model: 

 

ΔYt = ρYt-1 + Σi πi ΔYt-i+vt (5)

 

t = 1,…,T and i = 1,…,p. The ADF test follows a special distribution, known as Dickey-Fuller 

distribution. The ADF test can be iterated to test any order of integration (on Δdyt), if d is an 

integer. 

The answer to the second question is positive, provided the variables are cointegrated. If Yt is I(1) 

and Xt is I(1), Yt and Xt are said to be cointegrated if a linear combination cYYt + cXXt is stationary, 

i.e. I(0) for given values of cY and cX. Thus there is an equilibrium relationship. 

A simple test for cointegration applies ADF to the residuals εt of the regression of Yt on Xt, that is 

Yt = cXXt + εt. Since the residuals are defined as the linear combination between Yt and Xt with 

weights cY=1 and cX given by the OLS coefficient of Xt, if the residuals are I(0) then Yt and Xt are 

cointegrated. 

The relationship between two variables Yt and Xt, both I(1) and cointegrated, can be represented via 

an Error Correction Model (ECM), with possible asymmetric terms: 

 

1 1
0 0

qs

t i t i j t j t t t
i j

Y X X ECT ECT uδ α α λ λ+ + − − + + − −
− − − −

= =

Δ = + Δ + Δ + + +∑ ∑  (6)
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where ΔXt = Xt-Xt-1; ΔX+ = ΔX if ΔX≥0 and ΔX+=0 otherwise; ΔX-=ΔX if ΔX<0 and ΔX-=0 

otherwise; ECTt are the residuals from the cointegrating regression of Yt on Xt; ECT+=ECT if 

ECT≥0 and ECT+=0 otherwise; ECT-=ECT if ECT<0 and ECT-=0 otherwise. Parameters α+ and α- 

are the short-run marginal effects, while parameters λ+ and λ- are the speeds of adjustment of Yt 

from t-1 to t to the equilibrium, once a disequilibrium has occurred in t-1. 

Many economic, socio-demographic, environmental and climatic variables exhibit seasonal 

behaviour. As in the case of trends, the time series literature distinguishes between deterministic 

and stochastic seasonality. A non-stationary time series Yt, observed at S equally spaced time 

intervals per year, is said to be seasonally integrated of order d, or SI(d), if ΔS
dYt is a stationary and 

invertible ARMA process of the type described by equations (3) (Ghysels et al., 2003). The simplest 

seasonal model for non-stationary variables is the seasonal random walk (SRW): Yt = Yt-S+εt. The 

SRW model can be generalized to the seasonal integrated ARMA (SARIMA) model: 

 

( ) ( )d
S t tL Y Lα θ εΔ =  (7)

 

where the polynomials α(L) and θ(L) in the lag operator L have all roots outside the unit circle, i.e., 

the AR part of equation (7) is stationary, while the MA part of equation (7) is invertible. An 

alternative way to model seasonality is via seasonal dummy variables, according to the following 

basic specification: 

 

1

S

t s st t
s

Y Dγ ε
=

= +∑  (8)
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where Dst is the seasonal dummy variable which takes the value of 1 when t falls in season s. The 

interpretation of this approach is that seasonality is essentially a deterministic phenomenon, so that 

the time series of interest is stationary around seasonally varying means. In empirical applications, 

equation (8) is typically combined with specifications (4) and (6) in order to build up more general 

and flexible models, which can also be used to produce out-of-sample forecasts of Yt. 

 

 

 

 

2.2. Non-parametric forecasting models 

 

Exponential smoothing is a method of adaptive forecasting, which is useful in cases where the 

number of observations on which to base the forecasts is limited. The basic idea underlying 

exponential smoothing is that forecasts adjust on the basis of past forecast errors (Mills, 2003). If Yt, 

t=1,...,T, is the time series to be forecasted and Yt
* is the smoothed series, Yt

* is calculated according 

to the following recursive model: 

 

Yt
* = αYt + (1-α)Yt-1

* (9) 

 

where 0<α≤1 is the smoothing factor. The smaller is α, the smoother is Yt. Model (9) is referred to 

as single smoothing, and is appropriate for stationary, non-seasonal time series. By repeated 

substitutions in (9), Yt
* can be written as a weighted average of past values of Yt, where the weights 
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(1-α)t decline exponentially with time. The out-of-sample forecasts from single smoothing are 

constant for all observations and are given by: YT+h
* = YT, for all h>0. 

The method known as double smoothing applies single smoothing twice and is appropriate for time 

series which are non-stationary for the presence of a linear deterministic trend. The model is given 

by the following two recursive equations: 

 

Yt
* = αYt + (1-α)Yt-1

* 

Yt
**= αYt

* + (1-α)Yt
** 

(10) 

 

where Yt
** is the double smoothed series. Forecasts from double smoothing are calculated as: 

 

YT+h
** = 2YT

*-YT
** + α(YT

*-YT
**)h/(1-α) (11) 

Equation (11) suggests that YT+h
** lies on a linear trend with intercept 2YT

*-YT
** and slope α(YT

*-

YT
**)/(1-α). 

A method which is suitable for a time series with a linear trend and additive seasonal variations is 

the so-called additive Holt-Winters. The smoothed series is given by: 

 

Yt+h
* = a + bh + ct+h (12) 

 

where a and b are the permanent component and trend parameters, while cT+h represent the additive 

seasonal factors. The coefficients are specified according to the following expressions: 
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a(t) = α(Yt-ct(t-s))+(1-α)(a(t-1)+b(t-1)) 

b(t) = β(a(t)-a(t-1))+1-βb(t-1) 

ct(t) = γ(Yt-a(t+1))-γct(t-s) 

(13) 

 

where α, β and γ are the smoothing parameters and s is the seasonal frequency. Forecasts are 

computed as: 

YT+h
* = a(T) + b(T)h + cT+h-s (14) 

 

If Yt is a time series characterized by the presence of a linear trend and multiplicative seasonal 

variability, the multiplicative Holt-Winters model is typically applied. In this case, the smoothed 

series is given by the following modified version of (12): 

 

Yt+h
* = (a + bh)ct+h (15) 

 

the evolution of the coefficients a, b and ct being given by slightly modified versions of equations 

(13).  
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2.3. Panel data and spatial models 

 

Many economic, socio-demographic, environmental and climatic variables are observed through 

time (t=1,...,T) and across “individuals” (i=1,...,N), where the notion of “individual” used in the 

present context is broad enough to embrace real individuals, households, countries, geographical 

areas, firms, economic sectors, etc. A variable observed through time and across individuals, Yit, is 

said to have a panel data structure (Baltagi, 2001). 

Modern econometrics and statistics distinguish between two broad classes of static models for panel 

data, fixed effect and random effects models. Although both approaches share the same idea of 

taking into account one major feature of panel data, namely individual heterogeneity, they provide 

radically different ways of modelling individual variability. The fixed effects model assumes that 

individual heterogeneity can be represented via individual-specific constants, as: 

 

2

K

it i r rit it
r

Y X uα β
=

= + +∑  (16) 

 

where uit is a classical error term. This model is appropriate if individual heterogeneity is 

systematically distributed among individuals, i.e. the sample of data is non-random. Since 

individual heterogeneity is represented by the additional regressors αi, correlation between 

explanatory variables Xit and individual heterogeneity is allowed for in the fixed effects model. On 

the contrary, the random effects model assumes that individual heterogeneity is randomly 

distributed among individuals, hence it has to be represented as a classical random normal variable 

µi, which contributes to a composite error term, vit: 
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2

K
it r rit itr

Y X vα β
=

= + +∑ , it i itv uμ= +  (17) 

 

OLS is consistent for the parameters βr, r = 2,…,K, of model (16), while GLS is consistent for the 

parameters in model (17). Since individual heterogeneity is part of the model error term in equation 

(17), correlation between individual heterogeneity and the explanatory variables Xit would lead to 

inconsistent estimates. 

In applied statistics the autocorrelated structure of many time series variables is widely 

acknowledged. The simplest way to allow for data autocorrelation is to extend model (17) to 

include the lagged dependent variable as an additional regressor (dynamic panel data models). 

Unfortunately, the lagged dependent variable is correlated with the composite error term vit, leading 

to inconsistency of the LS estimators. This inconsistency is still present if the variables involved in 

model (17) are transformed in first differences, in order to eliminate the random effects μi: 

 

1
2

K

it it r rit it
r

Y Y X uγ β−
=

Δ = Δ + +∑  (18) 

 

Equation (18) is typically estimated with instrumental variables techniques (e.g. Anderson-Hsiao 

and Arellano-Bond estimators). 

When sample data have a natural location component, two problems arise, namely spatial 

heterogeneity and spatial dependence (see Anselin, 1988; for an introduction to spatial econometric 

models see, among others, Cattaneo, 2008 and Cattaneo et al., 2010). Spatial heterogeneity (SH) 

refers to the fact that many phenomena lead to structural instability over space, in the form of 

different response functions or systematically varying parameters. SH induces familiar problems 

such as heteroskedastic random coefficient variation and switching regressions. Spatial dependence 
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(SD) occurs when sample data observations exhibit correlation with reference to points or location 

in space. Formally, one observation associated with a location i depends on other observations at 

locations j, j ≠ i, that is Yi = f (Yj ), i=1,…, N; j ≠ i. In general, the dependence is among several 

observations, as the index i can take on any value from i=1,...,N. 

Two reasons are commonly given to explain SD. First, data collection of observations associated 

with spatial units might reflect measurement errors. Second, the spatial dimension of socio-

demographic, economic or regional activities (e.g. environment and climatic variables) may be an 

important aspect of a modelling problem. 

In spatial data analysis the spatial structure of the observations is made explicit by means of spatial 

weight matrices. The elements of the weight matrix are non-stochastic and exogenous to the model 

and derived from alternative criteria, such as contiguity (neighbouring units should exhibit a higher 

degree of spatial dependence than units located far apart), Cartesian space (physical distance 

matters), non-geographic factors (economic/social proximity). 

The presence of spatial correlation between the units of observations can be detected by means of 

tests which capture the extent to which values similarity matches with locations similarity. In this 

context, positive spatial correlation exists if likewise values tend to cluster in space; negative 

correlation exists if the locations are surrounded by neighbour with dissimilar values; zero spatial 

correlation implies that it is not possible to identify a specific spatial pattern of values. This 

situation is also described as spatial randomness, as values observed at a location do not depend on 

values observed at neighbouring locations. 

A fairly general spatial econometric model contains both a spatial lagged dependent variable and a 

spatially autocorrelated error term, and can be written, using matrix notation, as: 

 

1Y W Y X Uρ β= + +  

2U W U Eλ= +  
(19) 
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2(0, )NE N Iσ  

 

However, model (19) is rarely used in practice, because there are problems of identification 

whenever W1 equals W2. If W2=0 in specification (19), the so-called spatial lag (SL) model is 

obtained, whereas the spatial error (SE) model originates when W1=0 in (19). The SL model is 

appropriate when the focus of interest is the assessment of the existence and strength of spatial 

interactions, whose existence is directly derived from an economic model. SD in the SE model is 

referred to nuisance dependence. This model is appropriate when the concern is with correcting for 

the potentially biasing influence of the spatial autocorrelation, due to the use of spatial data, 

irrespective of whether the model is spatial or not. 

The reduced form of the SL model is: 

 

1 1
1 1( ) ( )N NY I W X I W Eρ β ρ− −= − + −  (20) 

 

where ( ) 1
1NI Wρ −−  is a full matrix, which induces error terms in all locations. The estimation 

method of the SL model is 2SLS or ML. The spatial lag term W1Y in equation (19) yields a measure 

of spatial dependence that controls for the effect of the included exogenous variables. It indicates 

the effects of spatial autocorrelation after controlling for other variables. On the contrary, OLS is 

unbiased for the SE specification, although it is an inefficient estimator, since it ignores the specific 

variance structure for the errors. 
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3. Modelling the relationship between climate change and health. 

What does the literature say?  

 

3.1. Quantitative studies 

 

3.1.1. Primary studies 

Time series models have been used extensively for predicting the evolution pattern of diseases, and 

more specifically to assess the relationship between environmental exposure and mortality or 

morbidity over long time periods. These predictions are a necessary step for quantifying potential 

impact of climate on health and the related costs. In the field of climate based Early Warning 

Systems (EWS), which are used to predict the occurrence of epidemics of infectious diseases, 

Chaves and Pascual (2007) review and compare linear and non-linear models for forecasting 

seasonal time series of diseases. Using American cutaneous leishmaniasis, as an example, the 

models are evaluated based on the predictive R2 for forecasting the data “out-of-fit”. Seasonal 

autoregressive models that incorporate climatic covariates are found to provide the best forecasting 

performance. Additionally, a bootstrapping experiment shows that the relationship of the disease 

time series with the climatic covariates is strong and consistent for the seasonal autoregressive 

(SAR) modeling approach. While the autoregressive part of the model is not significant, the 

exogenous forcing due to climate is always statistically significant. Prediction accuracy can vary 

from 50% to over 80% for diseases burdens at time scales of one year or shorter. 

A different strategy for predicting the pattern of diseases is given by Medina et al. (2007), who 

investigate the dynamics of diarrhea, acute respiratory infection (ARI), and malaria in Niono, Mali. 

The authors observe that these disease time-series often i) suffer from non-stationarity; ii) exhibit 

large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of 

forecasting methods. To accommodate these characteristics they suggest using a non-parametric 
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technique, the multiplicative Holt-Winters method (MHW). This is a recursive method that can be 

described as follows: i) based on past information and pseudo-parameters initialization the MHW 

produces point forecasts (the method also decompose the time series into level, trend (rate of 

change), seasonal, and approximately serially uncorrelated residual TS components); ii) point 

forecasts are recursively revised through residuals bootstrap to produce median forecasts and their 

95% confidence interval bounds; iii) these median forecasts and contemporaneous time-series 

information is used by the MHW program to update the forecasts and prediction interval bounds. 

Step i) also decompose the time series (TS) into level, trend (rate of change), seasonal, and 

approximately serially uncorrelated residual TS components. 

Using longitudinal data from 01/1996 to 06/2004 the authors find that the MHW produces 

reasonably accurate median 2- and 3-month horizon forecasts for the considered non-stationary 

time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 

4 age categories = 24 time-series forecasts) have mean absolute percentage errors about 25%. In 

their experiments the MAPE is smaller for the forecasts of monthly consultation rates for malaria 

and ARI, while the accuracy decreases for diarrhea’s consultation rates.  

Other time series approaches have been used to explore the issue of extreme climatic events’ 

impacts. Curriero et al. (2002) perform time series analyses to estimate the temperature-mortality 

association for eleven eastern US cities from 1973 to 1994. By using log-linear models for time 

series data the authors find the following evidences: i) current and recent days’ temperature are the 

weather factor most strongly predictive of mortality; ii) it appears to exist a threshold temperature 

below which mortality tends to decrease as temperatures increases form the coldest days, and above 

which mortality risk increases as temperature increases; iii) a strong association exists between 

mortality associated to extreme temperatures and latitude. 

Shakoor et al. (2006) use time-series models to analyze mortality due to thermal stresses during heat 

waves compared to total mortality occurring throughout the whole summer, to understand what 

fraction of the total impact is attributable to temperature extremes. In the same context, Keatinge et 

al. (2000) estimate the heat-related mortality due to climate change in Europe, using time-series 

data and taking into account the threshold temperature where mortality is lowest. The findings 
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suggest that European population have adapted to average summer temperatures, and might adapt to 

future higher temperatures with only a minor increase in heat-related deaths. These studies suggest 

that the process of acclimatization should be taken into account when assessing the impact of heat 

waves and increased temperatures. 

Finally we mention Rodó et al. (2002) who present a time-series analysis of the relationship 

between El Niño/Southern Oscillation (ENSO) and the prevalence of cholera in Bangladesh using 

mortality data recorded on a monthly period from 1893 to 1940. Singular spectrum analysis (SSA) 

is used to capture discontinuous dynamics and trends. The technique allows to decompose the 

irregular dynamics of the time series and to isolate the inter-annual variability of the data. Their 

findings suggest that ENSO is responsible for more than 70% of the dynamics of the disease, this 

relationship being discontinuous in time.  

 

3.1.2. Secondary studies 

Cross-section and panel data models 

A subject that is contiguous but relevant for the impact of climate on health and its ethical 

implications is the relationship between pollution and income. Rupasingha et al. (2004) use and 

extended spatial econometric analysis to investigate whether it exists an inverse-U relationship 

between various pollution indicators and county per capita GDP in the US (the so-called 

environmental Kuznets curve, EKC). The authors emphasize that the EKC is conditional on various 

structural features (e.g. technology, education, political practices) of each locality. Moreover, they 

expand the analysis including ethnic diversity among the covariates and by controlling for spatial 

dependence. Their initial results support the existence of the EKC relationship. The inclusion of 

spatial autocorrelation is found to raise the turning point of the curve. Another result is that more 

ethical diverse counties are more polluted. Finally, incorporating a cubic term for income, they find 

that the toxicity index eventually increases again as income continues to rise. 
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Salomon and Murray (2002) analyze the patterns of diseases and mortality rates in the framework 

of the literature on epidemiologic transition (Omran, 1971). The authors provide a cause-of-death 

analysis for WHO data on mortality by age and sex and recorded cause by 1950 to 2002, and use 

models for compositional data. Specific causes of death are modeled as a function of the overall 

level of mortality and the income per capita. The findings suggest that considerable variations in 

cause-of-death patterns across countries and over time are coupled with empirical regularities. 

Indeed, as mortality levels declines the composition of the causes changes. The effects of mortality 

declines are more noticeable for children and young adults (with a shift from Group 1 diseases - 

infectious and parasitic diseases, respiratory infections, maternal conditions, etc. - to Group 2 

diseases - diabetes, endocrine disorders, etc. - and Group 3 - injuries - in proportions that vary 

according to age and sex). In older adults, the composition of mortality remains stable while deaths 

shift to older ages. Moreover, in many societies, “protracted and polarized” epidemiologic 

transitions reflect heterogeneity of the social strata.  

General equilibrium models 

General Equilibrium models have been used to estimate the welfare costs (or benefits) of health 

impacts of climate variables.  

Martens (1998a) conducts first a meta-analysis of aggregated effects of a change in temperature on 

mortality for total, cardiovascular and respiratory mortality. Second, he combines these effects with 

projections of changes in baseline climate conditions of 20 cities, according to climate change 

scenarios of three General Circulation Models (GCMs). The author finds that for most of the cities 

included, global climate change is likely to lead to a reduction in mortality rates due to decreasing 

winter mortality. This effect is most pronounced for cardiovascular mortality in elderly people in 

cities which experience temperate or cold climates at present. 

Similar to Martens (1998a), Tol (2002) consider GCM (General Circulation Models) based studies’ 

results to estimate (and evaluate in monetary terms) the impacts of climate change for a wide range 

of market and non-market sectors (agriculture, forestry, water, energy, costal zones and ecosystems, 

as well as mortality due to vector-borne diseases, heat stress and cold stress). The author estimates 
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that small increases in temperatures would bring some benefits (mainly for the developed world). 

The conclusion on the global impact of climate change depends crucially on the weights used to 

aggregate the regional values. Using the simple sum the benefits amount to 2% of GDP. 

Considering globally averaged prices to value non-markets goods the impact is a 3% reduction of 

global income. According to equity (ratio of global to regional per capita income) - weighted results 

the world impact is null. Global impacts become negative beyond 1°C increase in temperatures. 

Bosello et al. (2006) make use of the General Equilibrium Model (GTAP) in an unconventional 

approach in order to analyse how health impacts would affect the general economy. Their aim is to 

estimate the indirect costs on the economic system derived from the health effects as a result of an 

increase of one degree Celsius in global mean temperature. They estimate the impact on labour 

productivity and health care expenditures for both the public system and private households, as well 

as the impacts on GDP. Six health outcomes are considered (cardiovascular disease, respiratory 

disease, diarrhoea, malaria, dengue and schistosomiasis). The impacts on health are taken from 

different studies (Tol, 2002; Martin and Lefebvre, 1995; Morita et al., 1994) that estimate the 

change in mortality due to an increase of one degree in the global mean temperature. Using data of 

GTAP model of Hertel and Tsigas (2002) and IMAGE team (2001) (see the paper and the 

references therein for a more accurate description) the authors find an increase in mortality and 

morbidity due to respiratory illness, malaria, dengue fever and diarrhoea, with increased costs of 

illness. In contrast, they evidence a decrease in cardiovascular diseases and schistosomiasis, which 

dominate the overall impact, leading to a negative trend in the additional expenditure for health care 

in all countries. 

Although the results of Bosello et al. (2006) go on the same direction (but with stronger evidence) 

as the conclusions of earlier papers (e.g. Martens, 1998a; and Tol, 2002), they are controversial. 

Indeed, Ackerman and Stanton (2006) challenge Bosello et al. (2006), Martens (1998b) and Tol 

(2002). The authors argue that Bosello et al. (2006) results are biased due to the omission of 

extreme weather events and human adaptation to gradual temperatures changes. The main concern 

is about the use of average temperatures instead of increased variability in local temperatures, 

which results in an increase of the frequency of extreme hot or cold. Another important issue to be 



 90

considered in this context is related to the population expected to support heat- and cold-related 

stresses. In Bosello et al. (2006), as well as in Tol (2002), heat stresses are assumed to impact the 

urban population only, while cold-related diseases are expected to occur in both the rural and urban 

population. This assumption might have a strong influence on final results and needs therefore to be 

further analyzed, especially when considering countries with large rural population (De Dube et al., 

2005). 

As seen above Bosello et al. (2006) and Ackerman and Stanton (2006) find contrasting evidence, 

which is partly related to whether or not extreme climatic events are considered. This suggests that 

what projected changes in temperatures are considered has a big impact on the results. A review of 

main findings of the economic literature on climate effects is given as a part of the research of Stern 

(2007). Also an advance in this field of research and modeling is given by the author (see next 

section for a review on the Stern Report). 

 

3.1.3. Comparative risk analyses 

Using comparative risks assessments (CRA), which integrate climate models and the evaluation of 

the health effects of rising temperatures, Ezzati et al. (2003) estimate the potential gains that would 

derive from combined preventive measures. The authors provide an estimation of the joint effects of 

20 selected leading risk factors in 14 epidemiological sub-regions (as a proxy of the world). Among 

the major risk factors they include environmental risks (such as unsafe water, sanitation and 

hygiene) that are correlated with the climate. As a tool for the estimation they define the potential 

impact factor (PIF) as the reduction in population diseases burden or mortality that would occur if 

the current exposures to multiple risk factors were reduced to an alternative exposures distribution 

(see the article for a formal definition of the PIF). They find that globally 47% of premature deaths 

and 39% of total disease burden in 2000 resulted from the joint effects of the considered risk 

factors. Their results suggest that joint actions would result in a massive reduction of death due to 

the burden of diseases. Moreover, they find evidence that reducing multiple major risk factors 

would decrease some of the differences between regions.  
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McMichael et al. (WHO, 2003) provide projections of relative risk attributable to climate change 

under alternative exposure scenarios, using global climate models and comparative risk assessment. 

The results are presented for broad WHO geographical regions, and include malaria, diarrhea, 

malnutrition and heat-related stresses. The study presents some limitations which should be 

investigated in future research in order to estimate the burden of disease. The issue of improved 

access to water and sanitation systems is not considered, nor is the level of economic development, 

although these are important factors influencing the population vulnerability. A second limitation is 

that the correlation between different health outcomes is not evaluated. This is particularly 

important for malnutrition which is strictly related to occurrence of other diseases. Finally, the 

model for malaria relates climate variables to geographical areas at risk (and population), instead of 

disease incidence, and estimates the impacts related to changes in the average temperature while not 

accounting for climate variability. 

In the same field of research as Ezzati et al. (2003), Kovats et al. (2005) use comparative risk 

assessment (CRA) techniques to quantify the avoidable deaths and diseases.2 The authors consider 

the WHO 2004 estimates and remark that to generate consistent estimates the models need to 

incorporate: geographical variation in the vulnerability to climate; future changes in the disease 

rates due to factors other than climate (e.g. decreases rates of infectious diseases due to 

technological advances); assumptions on a country’s ability to control a disease such as malaria, 

dengue fever or diarrheal disease; uncertainties around the exposure-response relationship. 

Moreover, they claim that even controlling for the above mentioned (potentially positive or 

negative) issues, no model can take into account the possibility of irreversibility or plausible low 

                                                 
2 The comparative risk assessment approach has been developed in the late 90s by the WHO with aim of estimating the 
contribution of that different public health factors make to the global burden of diseases. The CRA is based on the 
following data for each risk factor: i) the current and predicted risk distribution of the risk factor; ii) the exposure-
response relationship of the associated disease; iii) the total burden of diseases (e.g. DALYs) lost to the various diseases 
associated with the risk factor. The proportion of the total burden of a disease that is attributable to e specific risk factor 
is called Impact Fraction and is defined as:  
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probability events with potentially high impact on human health. As a main consequence, threshold 

health effects to regulate “tolerable” amount of climate change cannot be identified. 

Finally, Hijioka et al. (2002) relate water-borne diseases with temperature in 14 world regions, 

showing that the disease incidence tends to increase with temperature. They use multiple regression 

analysis and include the effect of water supply and sanitation coverage, annual average temperature 

and per capita GDP, taking into account different IPCC climate scenarios. The results show large 

regional differences in the impacts. 

 

 

 

3.2. Focus: quantitative studies of the relationship between climate change and 

malaria 

 

3.2.1. Time series studies 

Various time series studies explore the relationship between average temperatures, mid-night 

temperatures, temperatures in conjunction with rainfall rates, as well as November and December 

temperatures on malaria. In particular, Freeman and Bradley (1996), Freeman (1995), Tulu (1996), 

Loevinsohn (1994), Bouma et al. (1996) find a significant impact of climate on malaria in 

Zimbabwe, the Debre Zeit sector of Ethiopia, Rwanda, and the Northwest Frontier Province in 

Pakistan, respectively. December temperatures coupled with humidity are used by Bouma et al. 

(1996) to predict incidence rates of malaria in Pakistan. Other studies consider temperature and 

deforestation in Tanzania (Matola et al., 1987) and Kenya (Malakooti et al., 1997). According to the 

latter study forest clearing has been the cause for increases in malaria transmission. Kenya is 

considered also by Patz et al. (1998). The main findings of the article are that soil moisture 
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correlates with the human-biting rate of mosquito vectors with a two-week delay. Also soil moisture 

and entomological inoculation rate3 are related, with infective parasites taking a six-week time to 

develop. 

It has been hypothesized that increasing temperatures could be part of the reason why malaria can 

now survive at higher altitudes. Many other confounding factors, however, could be causing the 

increase in malaria in these areas (Patz and Lindsay, 1999). The dynamics of the geographical 

spread of malaria are analyzed by Pascual et al. (2006). The authors focus on the most important 

malaria species for humans, Plasmodium falciparum and Plasmodium vivax, whose range is limited 

at high altitudes by low temperatures. They investigate whether global warming could drive the 

geographical spread of the disease and produce an increase in incidence at higher-altitude sites. 

They use data for four high-altitude sites in East Africa in from 1950 to 2006. A nonparametric 

analysis that decomposes the variability in the data into different components is performed and 

reveals that the dominant signal in three of the sites and the subdominant signal in the fourth one 

correspond to a warming trend. To assess the biological significance of this trend, the authors drive 

a dynamical model for the population dynamics of the mosquito vector with the temperature time 

series and the corresponding detrended versions. This approach suggests that the observed 

temperature changes would be significantly amplified by the mosquito population dynamics with a 

difference in the biological response at least one order of magnitude larger than that in the 

environmental variable. By using parametric models they also find the existence of significant 

(linear) trends. 

Shanks et al. (2002) investigate whether the reemergence of malaria in Western Kenya could be 

attributed to changes in meteorological conditions. The existence of trends in a continuous 30-year 

monthly malaria incidence dataset (1966–1995) is tested for. Malaria incidence increased 

significantly (p=0.0133) during the 1966–1995 period. In contrast, no aspect of climate is found to 

have changed significantly-neither the temperature extremes (maximum and minimum) nor the 

periods when meteorological data were transformed into months when malaria transmission is 

possible. Therefore, the authors conclude that climate changes have not caused the highland malaria 
                                                 
3Entomological inoculation rate is the product of the human-biting rate and the proportion of female mosquitoes 
carrying infective parasites in their salivary glands ready to be delivered to the next host. 
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resurgence in western Kenya. Moreover they suggest that two other factors may have influenced the 

increase in malaria hospitalizations: an increase in malaria severity indicated by an increased case-

fatality rate (from 1.3% in the 1960s to 6% in the 1990s) that is most likely linked to chloroquine 

resistance. Secondly, travel to and from the Lake Victoria region by a minority of the tea estate 

workers also exerts an upward influence on malaria transmission in Kericho, Kenya, since such 

travel increases the numbers of workers asymptomatically carrying gametocytes, which infect.  

3.2.2. Cross-section and panel data analyses 

The spatial variation of malaria is analyzed by Kazembe et al. (2006), who examine malaria-related 

hospital admissions and in-hospital mortalities among children in Africa. The authors apply spatial 

regression models to quantify the spatial variation of the two outcomes. Using pediatric ward 

register data from Zomba district, Malawi, between 2002 and 2003, as a case study, they develop 

two spatial models. The first is a Poisson model applied to analyze hospitalization and minimum 

mortality rates, with age and sex as covariates. The second is a logistic model applied to individual 

level data to analyze case-fatality rate, adjusting for individual covariates. The results show that 

rates of hospital admission and in-hospital mortality decrease with age. Case fatality rate is 

associated with distance from the hospital, age, wet season, and increases if the patient is referred to 

the hospital from the primary health facilities. Furthermore, death rates are high on the first day, 

followed by relatively low rates as the length of hospital stay increases. The outcomes show 

substantial spatial heterogeneity, which may be attributable to the varying determinants of malaria 

risk, health services availability and accessibility, and health seeking behavior. Moreover, the 

increased risk of mortality of referred children may imply inadequate care being available. The 

authors suggest that reducing the burden of malaria requires integrated strategies that encompass 

availability of adequate care at primary facilities, introduce home or community case management 

and encouraging early referral. Those interventions would be needed to interrupt malaria 

transmission. 

In a subsequent article, Kazembe (2007), the author extends the analysis of Kazembe et al. (2006) 

to profile spatial variation of malaria risk and analyze possible association of disease risk with 

environmental factors at sub-district level in northern Malawi. Using the same data on malaria 



 95

incidence the author compares Bayesian Poisson regression models assuming different spatial 

structures. For each model he adjusts for environmental covariates initially identified through 

bivariate non-spatial models. The model with both spatially structured and unstructured 

heterogeneity is shown to provide the best fit, based on models comparison criteria. Malaria 

incidence appears to be associated with altitude, precipitation and soil water holding capacity. The 

risk increases with altitude (relative risk (RR): 1.092, 95% interval: 1.020, 1.169) and precipitation 

(RR: 1.031, 95% interval: 0.950, 1.120). At medium level of soil water holding capacity relative to 

low level, the risk is reduced (RR: 0.521, 95% interval: 0.298, 0.912), while at high level of soil 

water holding capacity relative to low level the risk is raised (RR: 1.649, 95% interval: 1.041, 

2.612). Compared to the commonly used standardized incidence ratios, the model-based approach 

appears to provide homogenous and easy to interpret risk estimates. Generally, the smoothed 

estimates show less spatial variation in risk, with slightly higher estimates of malaria risk (RR > 1) 

in low-lying areas mostly situated along the lakeshore regions, in particular in Karonga and 

Nkhatabay districts, and low risk (RR < 1) in high-lying areas along Nyika plateau and Vwaza 

highlands. The results suggest that the spatial variation in malaria risk in the region is a combination 

of various environmental factors, both observed and unobserved. The results also identify what are 

the areas of increased risk, where further epidemiological investigations could be carried out.  

Another interesting study in this context is the one of Bhattacharya et al. (2006) who project malaria 

transmission in new geographical regions in India. According to this study malaria is expected to 

move from central regions towards South Westerns and Northern Regions by 2050. Some studies 

about malaria also project a shift in the duration of transmission windows which might increase or 

decrease according to the different climatic conditions of a region (Bhattacharya et al., 2006; 

Dhiman et al., 2008). 

Lindsay and Martens (1998) consider the progressive rise in the incidence of malaria over the last 

decades in African highlands. The phenomenon is largely a consequence of agroforestry 

development, and is exacerbated by scarce health resources. Moreover, in these areas where the 

pattern of malaria is unstable, epidemic may be precipitated by relative subtle climate changes and 

therefore requires special monitoring. The authors use mathematical models to identify epidemic-
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prone regions in highlands Africa, and to quantify the difference expected to occur as a 

consequence of projected global climate change. To make estimates about the areas that are 

vulnerable to epidemic outbreaks of malaria, they use data and models from Geographic 

Information Systems (GIS) (computerized mapping systems) and Remotely Sensed (RS) imagery 

data from earth-orbiting satellites. Correlations among variables are found. However, the authors 

observe that since correlation doesn’t imply causality these results are not conclusive and require 

further investigation. To model the dynamics in highlands malaria in relation to climate change they 

use an integrated system, scenario-based approach (Integrated Assessment Models, see among 

others, Martens, 1998b and Stern, 2007). Evidence is found that the direct influence of climate may 

contribute to malaria risk. However, this effect cannot be claimed to be the be the most important 

determinant of malaria transmission. The effects of temperature on mosquito development, feeding 

frequency, longevity and incubation period are estimated. The model is linked to baseline 

climatology data from 1931 to 1960 and uses integrated techniques to generate climate scenarios. 

Their findings suggest that is not possible to prove that any single factor has caused the outbreaks in 

African highland. Projected climate changes are likely to modify the epidemics in the regions: 260–

320 million more people are projected to be affected by malaria by 2080 as a consequence of new 

transmission zones.4 

 

3.2.3. General equilibrium models 

Martens (1998a) proposes a system-oriented analysis, based of scenarios of projected temperatures, 

and that considers joint effects (rather then phenomena in isolation) to assess the future impacts of 

climate change. In his analysis he considers the effects of climate change on vector-borne diseases, 

on thermal-related mortality, and the effects of increasing ultra-violet levels due to ozone depletion 

on skin cancer. Considering malaria the author defines the basic reproduction rate in an area (R0) as 
                                                 
4 The study of Lindsay and Martens (1998) as well as Shanks et al. (2002) and Pascual et al. (2006) analyze the 
(re)emergence of malaria in regions once free of this disease risks. These contribution add to a vast literature on the 
epidemics of malaria. This includes: studies of the highlands of Kenya, Madagascar, Burundi and Irian Jaya, Indonesia 
(Kigotho 1997; Khaemba et al., 1994; Fontaine et al., 1961; de Zulueta, 1994; Fontenielle et al., 1990; Mouchet et al., 
1997; Marimbu et al., 1993; Anthony et al., 1992; Bangs et al., 1995). Other analyses include the study of Freeman 
(1994) and Woube (1997) on epidemics in Manyuchi dam, Zimbabwe and Ethiopia, respectively.  
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the vector capacity multiplied by the duration of the infectious period in humans. The factors that 

are involved in the calculation of (R0) include: the mosquitoes/people ratio, the number of mosquito 

bites per person per day, the probability that an infected mosquito infects a human, the chances that 

a mosquito becomes infected during a blood meal, the incubation period, and the daily survival 

probability of the mosquito. Indirect factors that affect the ones that are listed above include: the 

availability of breeding sites which is related to precipitation, human population density, human 

population migration, the feeding habits of the mosquitoes, the presence of other animals on which 

the mosquitoes feed, human exposure which can be affected by the use of bednets or other 

interventions, temperature the immunological and nutritional status of the population, the 

effectiveness of medical treatment, natural enemies of the mosquitoes, and control efforts. This 

model is further complicated by algorithms that predict changing genetic adaptations in the parasite 

and vector that lead to resistance. Based on this approach, evidence is found that the number of 

people in developing countries likely to be at risk of malaria infection will increase by 5-15% 

because of climate change, depending on which the Global Circulation Model (GCM) and climate 

change scenario is used. The areas that are expected to have the most increase in malaria 

transmission are ones at the fringes of transmission. Unless they are able to use effective control 

strategies, these regions have low levels of immunity and are likely to experience epidemics 

(Martens, 1998a). 

In general, there is considerable uncertainty about the magnitude of the overall impact of malaria. 

While some models project a net increase in the population exposed to malaria (and in the incidence 

rate) due to climate change (Martens et al., 1995), others have found only minor changes in malaria 

distribution (WHO, 2003 - McMichael et al.). This uncertainty is due to the complex dynamics 

underlying the transmission of this vector and to other important factors such as the socio-

demographic and environmental factors which are playing a substantial role in the transmission 

mechanism. 
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3.3. General studies 

 

The previous section has concentrated on recent quantitative contributions on the relationship 

between climate and health. Since this issue involves many disciplines and view points, however, 

more extensive outlooks become necessary, as they provide a framework for understanding the 

interactions between climate and health in a broader perspective. A summary of the main reports 

and of the specific findings and methods therein is presented below.  

 

3.3.1. The economics of climate change 

The Stern Report (2007) is a key reference giving a complete framework of the economics of 

climate change. The book reviews scientific and geological basis of the studies on climate change’s 

impacts. For example, it lists the possible impacts associate to 1°, 2° up to 5°C of temperatures 

increases. Restricting to the effects for health, these include a larger (and increasing exponentially 

with temperatures) number of deaths caused by diseases such as malaria, diarrhea and malnutrition 

at lower latitudes (Africa); and a reduction in winter deaths at higher latitudes (Northern Europe, 

USA). The author considers the ethical implications of the disproportionate distributions of impacts 

across regions and populations, and provides a series of policy indications. For the problem at stake, 

the chapter that concerns the economic analyses of climate change costs is specifically relevant.  

The measurement of costs of climate (measured on income/consumption, health and environment 

dimensions) is a challenging task. The main reasons being that this kind of analyses involves the 

use of variables and projections that are highly uncertain (however, according to the author, 

omitting some of uncertain but potentially most damaging impacts have caused some early attempts 

to underestimate the costs of climate change). Moreover, the effects can be seen only over several 

decades and with a long-time delay. Based on a review of the studies of the costs of climate 

warming, the author concludes that the Integrated Assessment Models (IAM) constitute a valid 

methodological foundation; however first-round IAM studies consider the effects of climate at 
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temperatures that are now likely to be exceeded. The mixed evidence found by different authors 

crucially relies on what increase in temperature is considered. Indeed, there is a common evidence 

that the warming above 3-4°C would reduce global welfare, and that and temperatures increases of 

5-6°C can be estimated to be equivalent to a 5%-10% reduction in global GDP in the “no-climate-

change” scenario. 

In the methodological framework of IAM, Stern estimates the BAU (business as usual) costs of 

climate: he estimates the costs to be equivalent of a per-capita reduction of income of 5% at 

minimum. This proportion could increase to 11% by considering the direct effects on environment 

and health (“non-market” impacts).5 In case it turns out to be true that the responsiveness of climate 

system to gas emissions is larger than what previously thought, the costs would increase even more. 

Finally there is a noticeable disproportion in the distribution of the burden of climate change impact 

among developing and rich countries. As regards health, the major impacts are expected in 

countries such as Sub-Saharan Africa and Asia, which are already facing a considerable burden of 

disease. Developing countries are actually tackling with more constraints. On the one hand they are 

expected to face high population growth with increased risk of poor housing, hunger and infectious 

diseases due to poor water and sanitation systems. On the other hand, their adaptive capacity is 

limited in terms of financial and infrastructural resources, health care system, poor health status of 

the population and poor capacity of collecting and analyzing data. Additional problems are related 

to income inequalities, migration and conflicts. As stated in the last IPCC report (IPCC, 2007), 

priorities for research should include the development of methods to provide more quantitative 

assessments of climate change impacts in low- and middle-income countries. 

 

                                                 
5 The total damage evaluated in terms of loss of life caused by climate change is estimated to range from US$ 6 billion 
to US$ 88 billion (1990 dollar prices) (IPCC, 2007). In terms of disability adjusted life years (DALYs) the loss has been 
estimated around 5.5 million in year 2000 (Lancet and the University College London Institute for Global Health 
Commission, 2009). 
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3.3.2. Managing the health effects of climate change 

Managing the Health Effects of Climate Change is a wide multidisciplinary overview of the major 

threats - both direct and indirect - to global health from climate change, carried on by Lancet and 

University College London Institute for Global Health Commission (2009). Effects of predicted 

climate change are described by the authors and actions to be undertaken are discussed.  

The starting point of the analysis is that during this century, earth’s average surface temperature 

rises are likely to exceed the safe threshold of 2°C above preindustrial average temperatures. Rises 

will be greater at higher latitudes, with medium-risk scenarios predicting 2–3°C rises by 2090 and 

4–5°C rises in northern Canada, Greenland, and Siberia. 

Health effects of the predicted climate change will cause vector-borne diseases to expand their 

reach and death tolls, especially among elderly people, moreover the indirect effects of climate 

change on water, food security, and extreme climatic events are likely to have the biggest effect on 

global health. 

An integrated and multidisciplinary approach to reduce the adverse health effects of climate change 

requires at least three levels of action. First, policies must be adopted to reduce carbon emissions 

and to increase carbon biosequestration, and thereby slow down global warming and eventually 

stabilize temperatures. Second, further research is needed to understand clearly the links between 

climate change and disease occurrence. Third, appropriate public health systems should be put into 

place to deal with adverse outcomes in terms of efficient and cost-effective adaptation measures at 

local, and national levels. 

The UCL Lancet Commission considers what the main obstacles to effective adaptation might be, 

focusing on six aspects that connect climate change to adverse health outcomes: changing patterns 

of disease and mortality, food, water and sanitation, shelter and human settlements, extreme events, 

and population and migration. Each is considered in relation to five key challenges to form a policy 

response framework: informational, poverty and equity-related, technological, sociopolitical, and 

institutional. 
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Our capacity to respond to the negative health effects of climate change relies on the generation of 

reliable, relevant, and up-to-date information. Strengthening informational, technological, and 

scientific capacity within developing countries is crucial for the success of a new public health 

movement. This capacity building will help to keep vulnerability to a minimum and build resilience 

in local, regional, and national infrastructures. 

Few comprehensive assessments on the effect of climate change on health have been completed in 

low-income and middle-income countries, and none in Africa. The report endorses the 2008 World 

Health Assembly recommendations for full documentation of the risks to health and differences in 

vulnerability within and between populations; development of health protection strategies; 

identification of health co-benefits of actions to reduce greenhouse gas emissions; development of 

ways to support decisions and systems to predict the effect of climate change; and estimation of the 

financial costs of action and inaction. Policy responses to the public health implications of climate 

change will have to be formulated in conditions of uncertainty, which will exist about the scale and 

timing of the effects, as well as their nature, location, and intensity. 

A key challenge is to improve surveillance and primary health information systems in the poorest 

countries, and to share the knowledge and adaptation strategies of local communities on a wide 

scale. Essential data need to include region-specific projections of changes in health-related 

exposures, projections of health outcomes under different future emissions and adaptation 

scenarios, crop yields, food prices, measures of household food security, local hydrological and 

climate data, estimates of the vulnerability of human settlements (e.g., in urban slums or 

communities close to coastal areas), risk factors, and response options for extreme climatic events, 

vulnerability to migration as a result of sea-level changes or storms, and key health, nutrition, and 

demographic indicators by country and locality. 

In the view of the commission the key factors to management of health effects of climate change 

will be: reduction of poverty and inequity in health; incentives for the development of new 

technologies and application of existing technologies in developing countries; change in lifestyle; 

improved coordination and accountability of global governance; increase advocacy to reduce 

climate change trough public health awareness. 
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3.3.3. Developing diseases and Early Warning Systems 

Early Warning Systems (EWS) related to infectious diseases are discussed in the World Health 

Organization’s paper by Kuhn et al. (2005). 

This WHO report presents a framework for developing disease EWS. It then reviews the degree to 

which individual infectious diseases are sensitive to climate variability in order to identify those 

diseases for which climate-informed predictions offer the greatest potential for disease control. The 

report highlights that many of the most important infectious diseases, and particularly those 

transmitted by insects, are highly sensitive to climate variations.  

Subsequent sections review the current state of development of EWS for specific diseases and 

underline some of the most important requirements for converting them into operational decision-

support systems. 

Considerable research is currently being conducted to elucidate linkages between climate and 

epidemics. Of the 14 diseases meeting the defined criteria for potential for climate-informed EWS, 

few (African trypanosomiasis, leishmaniasis and yellow fever) are not associated with some sort of 

EWS research or development activity. For West Nile virus, an operational and effective warning 

system has been developed which relies solely on detection of viral activity and it remains unclear 

whether the addition of climatic predictors would improve the predictive accuracy or lead-time. For 

the remaining diseases (cholera, malaria, meningitis, dengue, Japanese encephalitis, St Louis 

encephalitis, Rift Valley Fever, Murray Valley encephalitis, Ross River virus and influenza), 

research projects have demonstrated a temporal link between climatic factors and variations in 

disease rates. In some of these cases the power of climatic predictors to predict epidemics has been 

tested.  

The research reviewed in this report demonstrates that climate information can be used to improve 

epidemic prediction, and therefore has the potential to improve disease control. In order to make 

full use of this resource, however, it is necessary to carry out further operational development. The 
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true value of climate-based early warning systems will come when they are fully integrated as one 

component in well-supported systems for infectious disease surveillance and response. The report 

concludes that a number of steps could be taken to begin to address these issues. These include: 

- Maintaining and strengthening disease surveillance systems for monitoring the incidence of 

epidemic diseases;  

- Clarifying definitions of terminology and methods for assessing predictive accuracy;  

- Testing for non-climatic influences (e.g. population immunity, migration rates and drug 

resistance) on disease fluctuations is dependent on the availability of appropriate data; 

- Distinguishing underlying trends from interannual variability should help to avoid disease 

variations being attributed incorrectly to climate. More important, in practical terms, 

incorporating the data available for non-climatic variables should lead to greater accuracy in 

predictive models. 

 

3.3.4. Evaluating the risks to human health related to climate change 

The 2003 report entitled “Climate Change and Human Health – Risk and Responses”, prepared 

jointly by the WHO, the World Meteorological Organization and the UNDP, provides a 

comprehensive update, including quantitative estimates of the total health impacts of climate 

change and identifies the steps necessary to further scientific investigation and to develop strategies 

and policies to help societies adapt to climate change. 

Monitoring and surveillance systems, in many parts of the world, currently are unable to provide 

data on climate-sensitive diseases that are sufficiently standardized and reliable to allow 

comparisons over long time periods or between locations. Current research gaps include the need 

for more standardized surveillance of climate-sensitive health states, especially in developing 

countries. The assessment of climate change impacts on human health depends strongly on the 
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availability of reliable health data to be linked with climate data, requiring measurements at local 

level which are often not feasible in developing countries. 

Methods and tools for monitoring the effects of climate change on human health and for predicting 

future effects are discussed in several parts of the book.  

Predicting modeling approaches are classified into several categories including:  

- Statistical based models – empirical models incorporating a range of meteorological 

variables have been developed to describe the climatic constraints (the bioclimate envelope) 

for various vector-borne diseases (CLIMEX; DIMEX; GCMs); 

- Process-based (mathematical) models – process-based approach is important in climate 

change studies as some anticipated climate conditions have never occurred before and 

cannot be empirically based (i.e. MIASMA); 

- Landscape-based models – climate influences the habitat of pathogens and diseases vectors. 

There is a potential in combining climate-based models with the various environmental 

factors that can be measured by ground-based or remote sensing, including satellite data; 

- Predictive models for early warning systems (EWS). 

Exposure to climate change is estimated by predicting changes in global climate conditions for 

specific locations. In the current models all the population is considered as exposed. The risk of 

suffering health impacts also will be affected by sociodemographic conditions and other factors 

(e.g. environmental conditions and ecological influences) affecting vulnerability. Such variations 

are considered in the calculations of relative risk for each disease. The choice of the modeling 

approach depends on the availability of high resolution data on health states and the possibility of 

estimating results that comply with the framework of the overall Comparative Risk assessment. 

Distinction is made between epidemiological methods and health impact assessment methods. 

Current epidemiological research methods are best able to deal with the health impacts of short-

term (daily, weekly, monthly) variability, which require only a few years of continuous health data. 
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In contrast, health impact assessment methods address the application of epidemiological functions 

to a population to estimate the burden of disease. Attributable burdens can only be estimated for 

those weather-disease relationships for which epidemiological studies have been conducted. The 

available evidence indicates that weather-disease relationships are highly context specific and vary 

between populations; therefore such models need to be derived from site specific data. 

A detailed methodology for the quantification of the health impacts of climate change at national 

and local levels is provided by Campbell-Lendrum and Woodruff (2007), including the following 

steps: identification of climate scenarios, measurement of population exposure, quantification of the 

linkage between climate variables and specific health outcomes, combination of climate projections 

and quantitative health models, estimation of the health impacts in the absence of climate change 

and estimation of the climate attributable factor for each disease. 

In general predictive modeling need for a multidisciplinary integrated assessment, integration 

between sectors, integration across the regions and the assessment of adaptation. 

A broad range of data is needed to monitor climate effects on health. Where possible monitoring 

systems should assemble data on all components required for statistical analysis (including 

assessment of health modification) or process-based biological models. Relevant measurements fall 

into the following broad classes: 

- Meteorology: various meteorological factor influence heath processes. Temperature, relative 

humidity, rainfall and wind speed are the most important parameters; 

- Health markers: one way to address the complex causality of most health outcomes is to 

select indicators that are highly sensitive to climate changes, but relatively insensitive to 

other influences. The data requirements for attributing and measuring impacts may be quite 

different, depending on health issue and region. For studies of direct effects of health and 

cold the essential requirements is daily series of counts of death and mobility divided by age 

and cause, but where the intention is to look at health effects resulting from complex 

ecological processes, such as infectious diseases transmitted through food water or vectors, 

the data requirement become more complex; 
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- Other explanatory factors: monitoring will need to measure not just climate and health. The 

principal categories of modifying factors that must be considered are the following: age 

structure of population at risk; underlying rate of disease; level of socio economic 

development and existing infrastructures (water and sanitation); environmental conditions, 

quality of health care; specific disease control measures. 

 

3.3.5. Modifiable environmental risk factors 

Of specific interest is the study on modifiable environmental risk factors (Prüss-Üstün and 

Corválan, 2006) again published by the World Health Organization. The analysis is conducted with 

reference to 85 categories of diseases and is quantified in terms of “disability adjusted life years” 

(DAILY)s. The effects of risk factors’ reductions are evaluated in terms of reductions in diseases 

and related costs of the health–care system.  

The definition of environmental factors includes man-made climate changes, pollution etc. and all 

the related behavioral and socio-economical consequences. For each environmental risk factor the 

“attributable fraction” of disease is defined. The “attributable fraction” is the decline in disease or 

injury that would be achieved in a given population by reducing the risk (see note 1 of the previous 

section for a formal definition). When calculating the disease burden attributable to an 

environmental risk factor the analyses consider how much disease burden would decrease by 

reducing risk to an achievable level. The environmental fraction is a mean value and it is not 

necessarily applicable to an individual countries. The analysis uses data from the Comparative Risk 

Assessment (CRA) (WHO, 2002) and estimates for specific environmental factors not covered by 

the CRA. 

The authors estimate that 24% of the global disease burden and 23% of all deaths can be attributed 

to environmental factors. Among children 0–14 years of age, the proportion of deaths attributed to 

the environment is as high as 36%. There are large regional differences in the environmental 

contribution to various disease conditions – due to differences in environmental exposures and 

access to health care across the regions. For example, although 25% of all deaths in developing 
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regions are attributable to environmental causes, only 17% of deaths are attributed to such causes in 

developed regions. Moreover it is worth noting that this is a conservative estimate because there is 

as yet no evidence for many diseases. Also, in many cases, the causal pathway between 

environmental hazard and disease outcome is complex. Some attempts are made to capture such 

indirect health effects. For instance, malnutrition associated with waterborne diseases is quantified. 

But in other cases, disease burden is not quantifiable even though the health impacts are readily 

apparent. For instance, the disease burden associated with changed, damaged or depleted 

ecosystems in general is not quantifiable. 

Diseases with the largest absolute burden attributable to modifiable environmental factors includes: 

diarrhea; lower respiratory infections; ‘other’ unintentional injuries; and malaria. 

• Diarrhea. An estimated 94% of the diarrheal burden of disease is attributable to 

environment, and associated with risk factors such as unsafe drinking-water and poor 

sanitation and hygiene; 

• Lower respiratory infections. These are associated with indoor air pollution related largely 

to household solid fuel use and possibly to second-hand tobacco smoke, as well as to 

outdoor air pollution. In developing countries an estimated 42% (95% confidence interval: 

32 -47%) of such infections are attributable to environmental causes. In developed countries, 

this rate is about halved to 20% (15-25%); 

• ‘Other’ unintentional injuries. These include injuries arising from workplace hazards, 

radiation and industrial accidents; 44% of such injuries are attributable to environmental 

factors; 

• Malaria. The proportion of malaria attributable to modifiable environmental factors is 42%, 

or half a million deaths annually. Policies and practices regarding land use, deforestation, 

water resource management, settlement siting and modified house design, e.g. improved 

drainage could prevent almost half of malaria incidence. The fraction amenable to 

environmental management, however, varies slightly depending on the region.  
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The large disproportions across regions and populations of the burden of diseases attributable to 

environmental factors give rise to ethical considerations and the need for policy measures. Public 

preventive health strategies are economically competitive with more traditional curative health-

sector interventions. As an example, phasing out leaded gasoline can be mentioned. Indeed, 

estimates report that mental retardation is 30 times higher in regions where leaded gasoline is still 

being used. The authors recommend that policy regulations should include reducing the disease 

burden due to environmental risk factors as a way to eradicate extreme poverty and promote 

equality. 

 

4. Conclusions 

 

This paper has focused on the critical evaluation of recent quantitative assessments of health risks 

associated with climate change. The main contribution of our paper is to offer an integrated vision 

of the main scientific conclusions on the effects of climate change on human health, which are 

supported by the use of formal qualitative analyses. 

In this respect, the journal articles surveyed in this paper have been classified according to: i) the 

statistical models adopted, which have been identified in the broad classes of time-series models, 

cross-section and panel analyses, equilibrium models and various other techniques; ii) the specific 

problems addressed, which have been referred to as primary studies, secondary studies and 

comparative risk assessments. 

As far as more extensive reports on this subject are concerned, this specific classification has been 

found difficult to apply, since several contributions of this kind compare analyses of different types 

and methods. Therefore, we have chosen to avoid any predetermined classification, and to 

concentrate on the relevant findings of each outlook. 
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Climate change is already affecting human health, livelihoods, safety, and society and the 

expectation is that these effects will become greater. The climate impact is still difficult to assess 

with great accuracy because it results from a complex interplay of factors. It is challenging to 

isolate the human impact of climate change definitively from other factors such as natural 

variability, population growth, land use and governance. In several areas, the base of scientific 

evidence is still not sufficient to make definitive estimates with great precision on the human 

impacts of climate change. However, data and models do exist which form a robust starting point 

for making estimates and projections that can inform public debate, policy-making and future 

research. Climate change aggravates existing problems, e.g. seasonal rainfall leading to floods or 

water scarcity during extended droughts. Climate change acts as a multiplier of these existing risks.  

For example, as the international community struggles to reduce hunger-related deaths, a warmer, 

less predictable climate threatens to further compromise agricultural production in the least 

developed countries, thereby increasing the risk of malnutrition and hunger. Think of a region 

suffering from water scarcity. That scarcity reduces the amount of arable land and thereby 

aggravates food security. The reduced crop production results in loss of income for farmers and 

may bring malnutrition. Health issues arise that could further diminish economic activity as family 

members become too weak to work. 

The definition of “being seriously affected” by climate change includes someone in need of 

immediate assistance in the context of a weather-related disaster or whose livelihood is significantly 

compromised. This condition can be temporary, where people have lost their homes or been injured 

in weather-related disasters, or permanent, where people are living with severe water scarcity, are 

hungry or suffering from diseases such as diarrhea and malaria. Below we give the current best 

estimates of the level of impact of climate on health and likely trends in those impacts. 

An estimated 325 million people are seriously affected by climate change every year. This estimate 

is derived by attributing a 40% proportion of the increase in the number of weather-related disasters 

from 1980 to current climate change and a 4% proportion of the total seriously affected by 

environmental degradation based on negative health outcomes. 



 110

Gradual environmental degradation due to climate change has also affected long-term water quality 

and quantity in some parts of the world, and triggered increases in hunger, insect-borne diseases 

such as malaria, other health problems such as diarrhea and respiratory illnesses. It is a contributing 

factor to poverty, and forces people from their homes, sometimes permanently. 

Intuitively, if someone is affected by water scarcity, poverty or displacement, this also translates 

into health outcomes and food insecurity. Typically, climate change today mostly affects areas 

already seriously suffering under the above mentioned factors. Likewise, health outcomes and food 

insecurity lead to displacement and poverty which might result in competition for scarce resources 

and strains on mostly already limited government capacity to deal with deteriorating conditions and 

might ultimately lead to conflict. Therefore health outcomes and food security are taken as the basis 

for all climate change related impacts. Using this approach, the update of WHO Global Burden of 

Disease study shows that long term consequences of climate change affect over 235 million people 

today. 

Global warming is expected to increasingly impact food security, water availability and quality, and 

exact a toll on public health, spurring chronic disease, malaria prevalence, and cardiovascular and 

respiratory diseases. 

Current weather conditions heavily impact the health of poor people in developing nations, and 

climate change has a multiplying effect. A changing climate further affects the essential ingredients 

of maintaining good health: clean air and water, sufficient food and adequate shelter. A warmer and 

more variable climate leads to higher levels of some air pollutants and increases transmission of 

diseases through unclean water and contaminated food. It compromises agricultural production in 

some of the least developed countries, and it increases the hazards of weather-related disasters. 

Therefore global warming, together with the changes in food and water supplies it causes, can 

indirectly spurs increases in such diseases as malnutrition, diarrhea, cardiovascular and respiratory 

diseases, and water borne and insect-transmitted diseases. This is especially worrisome because a 

massive number of people are already impacted by these diseases - for example upwards of 250 

million malaria cases are recorded each year and over 900 million people are hungry today. Also, 
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there is an inter-relationship among these health outcomes. For example malnutrition is linked with 

malaria and diarrhea which can cause significant weight loss in affected children when 

accompanied with food scarcity. Malaria and diarrhea can be both cause and effect of malnutrition. 

Malnutrition is the biggest burden in terms of deaths. Climate change is projected to cause over 

150,000 deaths annually and almost 45 million people are estimated to be malnourished because of 

climate change, especially due to reduced food supply and decreased income from agriculture, 

livestock and fisheries. Climate change-related diarrhea incidences are projected to amount to over 

180 million cases annually, resulting in almost 95,000 fatalities, particularly due to sanitation issues 

linked to water quality and quantity. Climate change-triggered malaria outbreaks are estimated to 

affect over 10 million people and kill approximately 55,000. Malaria is expected to increase as an 

effect of increased transmission windows in some regions and because a shift in transmission to 

new areas is expected. 

Over 90% of malaria and diarrhea deaths are borne by children aged 5 years or younger, mostly in 

developing countries. Other severely affected population groups include women, the elderly and 

people living in small islands developing states and other coastal regions, mega-cities or 

mountainous areas. These groups are the most affected due to social factors like gender 

discrimination, which can restrict women’s access to health care, and age-based susceptibility as 

children and elderly often have weaker immune systems. Additionally, people living in certain 

geographic areas are more affected due factors such as high exposure to storms along coastlines, 

inadequate urban planning etc. Almost half the health burden occurs in the population dense 

Southeast Asia region with high child and adult mortality, followed by losses in Africa (23%) and 

the Eastern Mediterranean region. Overall, the per capita mortality rate from vector borne diseases 

(diseases like malaria that are transmitted by insects) is almost 300 times greater in developing 

nations than in developed regions (14%). 

The pressure for increased precision in estimates presents a rallying cry for investment in research 

on the social implications of climate change. Three areas which require additional research have 

been identified: 
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- The attribution of weather-related disasters to climate change, as no consensus estimate of 

the global attribution has yet been made; 

- Estimate of economic losses today, as the current models are forward looking; 

- Regional analysis, as the understanding of the human impact at regional level is often very 

limited but also crucial to guide effective adaptation interventions. 
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Part IV

Conclusion

In this Thesis I have dealt with econometric models for electricity demand, power prices and

the effects of climate change on health. In the first two chapters I have tried to find out what

approach is more suitable for analyzing electricity markets, and to quantify how the use of

sophisticated methods can enhance the results. The third chapter reviews recent quantitative

contributions on the health effects of climate change and provides a taxonomy of the adopted

methodologies. The empirical results of the first Chapter have shown that using Bayesian tech-

niques and allowing the coefficients to evolve over time improve the in-sample analysis of

Italian electricity demand, but it does not increase the accuracy of out-of-sample forecasts. In

Chapter II it has been shown that adopting non-linear model based on threshold cointegra-

tion is opportune for investigating the integration of European forward markets. Chapter 3

has evidenced that data and models do exist; however there is a lack of consensus about the

attribution of weather-related disasters to climate change, the economic costs (benefits) of cli-

mate change, the assessments of effects at regional level. Further research can be suggested by

these results. For the analysis of the electricity system it can consist in investigating whether a

further extension of models’ flexibility can improve their forecasting performances. As for the

analysis of the climate change effects on health my study can provide the basis for developing

new investigation methods.
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