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Considering the function 𝑥
𝑥 as a real function of real variable, what is its minimum value? Surprisingly, the minimum value is

reached for a negative value of 𝑥. Furthermore, considering the function 𝑓
𝛽
(𝑥) = 𝑥

−𝛽𝑥, 𝛽 ∈ R and 𝑥 > 0, two different expressions
in closed form for the inverse function 𝑓−1

𝛽
can be obtained. Also, two different series expansions for the indefinite integral of 𝑓

𝛽

and 𝑓−1
𝛽

are derived. The latter does not seem to be found in the literature.

1. Introduction

Let us consider the following real function of real variable,
𝑓 : R → R:

𝑦 = 𝑓 (𝑥) = 𝑥
𝑥

= exp (𝑥 log𝑥) , (1)

and let us pose the following questions.

(1) What is the minimum value of 𝑓(𝑥)?
(2) Can its inverse function be expressed in closed form?
(3) Is its indefinite integral known?

The function 𝑓(𝑥) is termed as self-exponential function
in [1, Section 26:14] and coupled exponential function in [2,
Equation 01.20], using in the latter the notation 𝑓(𝑥) =

cxt(𝑥). Probably, the most well-known property of 𝑓(𝑥) is
just its great growth rate. In fact, the rate of increase of 𝑓(𝑥)
as 𝑥 → ∞ is greater than the exponential function or the
factorial function [3, Chapter I. section 5]

𝑥
𝑥

≻ 𝑥! ≻ 𝑒
𝑥

. (2)

Regarding the domain of 𝑓(𝑥), in [1, Section 26:14], 𝑓(𝑥)
is only defined as a real function for positive values of 𝑥, and
[2, p. 10] states that, for arguments less than zero, 𝑓(𝑥) is

complex except for negative integers. However, [4] says that,
for 𝑥 < 0, 𝑓(𝑥) is only defined if 𝑥 can be written as −𝑝/𝑞,
where 𝑝 and 𝑞 are positive integers and 𝑞 is odd. We will use
this fact later on in order to answer the first question.

This paper is organized such that each section is devoted
to each of the questions raised above.

2. Minimum Value

The usual way to answer the first question is just to solve the
equation 𝑓󸀠(𝑥) = 0; that is,

exp (𝑥 log𝑥) (log𝑥 + 1) = 0, (3)

so

𝑥 =

1

𝑒

. (4)

Since

𝑓
󸀠󸀠

(

1

𝑒

) = 𝑒
1−𝑒
−1

> 0, (5)

then (4) is a local minimum. Moreover, since there are no
more local extrema and 𝑓 is a smooth function, (4) is the
global minimum; thus,

min𝑓 (𝑥) = 𝑓(

1

𝑒

) = 𝑒
−1/𝑒

≈ 0.692201. (6)
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Nonetheless, this reasoning fails, because it does not take
into account negative values of𝑥.Therefore, we need to define
first the domain of 𝑓(𝑥) for negative values of 𝑥. Despite the
fact that this is essentially done in [4], in order to answer the
first question, we provide the following derivation.

2.1. Domain of 𝑓(𝑥). Let us consider first the case 𝑥 = 0,
where the function 𝑓(𝑥) does not exist. However, applying
L’Hôpital’s rule, the following limit is finite:

lim
𝑥→0

+

𝑥
𝑥

= 1. (7)

Nevertheless, the right derivative of 𝑓(𝑥) at 𝑥 = 0 is
infinite:

lim
𝑥→0

+

𝑓
󸀠

(𝑥) = lim
𝑥→0

+

𝑥
𝑥

(log𝑥 + 1) = −∞. (8)

For 𝑥 ̸= 0, we may rewrite 𝑓(𝑥) by using the signum
function sgn(𝑥) as

𝑓 (𝑥) = exp (𝑥 log (sgn (𝑥) |𝑥|))

= |𝑥|
𝑥 exp (𝑥 log (sgn𝑥)) .

(9)

Now, for 𝑥 ̸= 0 and 𝑛 ∈ Z, we have

log (sgn𝑥) = {

0, 𝑥 > 0

𝑖𝜋 + 𝑖2𝜋 (𝑛 − 1) , 𝑥 < 0

= 𝑖𝜋 (2𝑛 − 1) 𝜃 (−𝑥) ,

(10)

where 𝜃(𝑥) is the Heaviside function. Therefore, by applying
Euler’s formula 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃, we obtain

𝑓 (𝑥)

= |𝑥|
𝑥 exp (𝑖𝜋 (2𝑛 − 1) 𝜃 (−𝑥) 𝑥)

= {

|𝑥|
𝑥

, 𝑥 > 0

|𝑥|
𝑥

[cos (𝜋 (2𝑛 − 1) 𝑥) + 𝑖 sin (𝜋 (2𝑛 − 1) 𝑥)] , 𝑥 < 0.

(11)

Since 𝑓(𝑥) is a real function, the complex part of (11) has
to be zero. For 𝑥 > 0, 𝑓(𝑥) is never complex, and for 𝑥 < 0

the complex part of 𝑓(𝑥) is zero when

sin (𝜋 (2𝑛 − 1) 𝑥) = 0 󳨀→ 𝑥 = −

𝑚

2𝑛 − 1

< 0, 𝑛,𝑚 ∈ Z
+

.

(12)

Therefore, substituting (12) into (11), the function 𝑓(𝑥) is
given by

𝑓 (𝑥) =

{

{

{

𝑥
𝑥

, 𝑥 > 0

(−1)
𝑚

|𝑥|
𝑥

, 𝑥 = −

𝑚

2𝑛 − 1

< 0, 𝑛,𝑚 ∈ Z+

(13)

and its domain is

Dom𝑓 = R
+

∪ {𝑥 = −

𝑚

2𝑛 − 1

, 𝑛,𝑚 ∈ Z+} . (14)

Notice that, despite the fact we have considered the log(𝑥)
function as a multivalued function in (10), 𝑓(𝑥) is a single-
valued function in (13), because we are considering 𝑓(𝑥) as a
real function. Figure 1 shows the plot of 𝑓(𝑥). According to
(13), for 𝑥 < 0, the plot of 𝑓(𝑥) lies on the following curves:

𝑔
±
(𝑥) = ± |𝑥|

𝑥

= ± exp (𝑥 log (−𝑥)) , (15)

with a numerable infinite number of points. Notice that + and
− signs in (15) occur for 𝑚 even and odd positive integers in
(13), respectively.

2.2. Minimum Value of 𝑓(𝑥). In order to calculate the
minimum value of 𝑓(𝑥), for 𝑥 < 0, let us solve the equation
𝑔
󸀠

±
(𝑥) = 0; that is,

± exp (𝑥 log (−𝑥)) [log (−𝑥) + 1] = 0. (16)

Thus,

𝑥 = −

1

𝑒

. (17)

Notice that

𝑔
󸀠󸀠

±
(

−1

𝑒

) = ∓𝑒
1+𝑒
−1

. (18)

So, 𝑔
+
(𝑥) has a maximum and 𝑔

−
(𝑥) has a minimum in

(17), which agrees with Figure 1. However, −1/𝑒 ∉ Dom𝑓,
so we have to get the best rational approximation −𝑝/𝑞 to
−1/𝑒 in such a way that −𝑝/𝑞 ∈ Dom𝑓. Moreover, since
the minimum lies on the 𝑔

−
(𝑥) curve, 𝑝 and 𝑞 must be both

odd positive integers. In order to do so, let us consider the
sequence

𝑎
𝑘
(𝑥
0
) = −

⌊10
𝑘 󵄨󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨
⌋ + ⌊10

𝑘 󵄨󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨
⌋ (mod 2) + 1

10
𝑘
− 1

,

𝑥
0
∈ R, 𝑘 ∈ N,

(19)

where ⌊𝑥⌋ denotes the floor function. Notice that the numer-
ator and the denominator of (19) are both odd, so 𝑎

𝑘
(𝑥) =

−𝑝/𝑞 irreducible, with 𝑝, 𝑞 being odd positive integers.
Therefore, 𝑎

𝑘
(𝑥
0
) is a sequence of rational numbers for which

𝑓(𝑎
𝑘
(𝑥
0
)) lies on the curve 𝑔

−
(𝑥). Also, 𝑎

𝑘
(𝑥
0
) is a monotonic

decreasing sequence that satisfies

lim
𝑘→∞

𝑎
𝑘
(𝑥
0
) = −

󵄨
󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨
. (20)

Defining now the rational number, 𝑟 ∈ Q,

𝑟 = min
𝑘∈N

{𝑎
𝑘
(

−1

𝑒

)} . (21)

Then, the minimum value of 𝑓(𝑥) is

min
𝑥∈Dom𝑓

𝑓 (𝑥) = 𝑓 (𝑟) ≈ −1.44467, (22)

which is different from (6), as aforementioned.
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Figure 1: Plot of 𝑥𝑥 as a real function of real variable.

3. Inverse Function

About the second question, a closed form expression for
the inverse function does not seem to be found in the
usual literature (see [2, Chapter 2]). However, by using
the Lambert 𝑊 function [5], 𝑓(𝑥) is very easily inverted.
The Lambert 𝑊 function is defined as the inverse func-
tion of 𝑥𝑒𝑥 and it is implemented in MATHEMATICA by
the commands ProductLog or LambertW. The Lambert 𝑊
function is a multivalued function that presents, for real
arguments, two branches: 𝑊

0
(𝑥) (principal branch) and

𝑊
−1
(𝑥). Figure 2 shows the plot of both branches.
Let us consider now on a littlemore general function than

(1), but, for simplicity, only for positive arguments; that is,

𝑓
𝛽
(𝑥) = 𝑦 = 𝑥

−𝛽𝑥

, 𝛽 ∈ R, 𝑥 > 0. (23)

Figure 3 shows the plot of 𝑓
𝛽
(𝑥) for different values of 𝛽.

It is easy to prove that

𝑓
𝛽
(1) = 1,

lim
𝑥→0

+

𝑓
𝛽
(𝑥) = 1,

𝑓
󸀠

𝛽
(𝑥) = 0 ←→ 𝑥 =

1

𝑒

, 𝛽 ̸= 0,

(24)

lim
𝑥→0

+

𝑓
󸀠

𝛽
(𝑥) =

{
{

{
{

{

+∞, 𝛽 > 0,

0, 𝛽 = 0,

−∞, 𝛽 < 0,

(25)

which agrees with Figure 3.
Solving (23), we have

−

log𝑦
𝛽

= 𝑥 log𝑥

= 𝑒
log𝑥 log𝑥.

(26)

Applying now the Lambert 𝑊 function and taking into
account (26), we obtain

𝑊(−

log𝑦
𝛽

) = log𝑥

= −

log𝑦
𝛽𝑥

,

(27)
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Figure 2: Branches of the Lambert𝑊 function for real arguments.
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Figure 3: Plot of 𝑥−𝛽𝑥 for different values of 𝛽.

and thus

𝑓
−1

𝛽
(𝑥) = exp(𝑊(−

log𝑥
𝛽

)) (28)

=

− log𝑥/𝛽
𝑊(− log𝑥/𝛽)

. (29)

According to Figure 3, notice that, depending on the
value of 𝑥, 𝑓−1

𝛽
(𝑥) sometimes is a double-valued function, so

we have two real values of the Lambert 𝑊 function in (29),
that is, 𝑊

0
(𝑥) and 𝑊

−1
(𝑥). In this latter case, we have used

the notation 𝑊
−1,0

(𝑥). Also, from Figure 3, we can see that
𝑓
−1

𝛽
(𝑥) is a single-valued function for 𝑥 > 1 when 𝛽 < 0 and
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for 𝑥 ∈ (0, 1) when 𝛽 > 0. Therefore, taking into account (24)
and Figure 3, we can consider the following cases.

(i) Consider 𝛽 < 0,

𝑓
−1

𝛽
(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

− log𝑥/𝛽
𝑊
−1,0

(− log𝑥/𝛽)
, 𝑥 ≤ 𝑥 ≤ 1,

− log𝑥/𝛽
𝑊
0
(− log𝑥/𝛽)

, 𝑥 > 1.

(30)

(ii) Consider 𝛽 > 0,

𝑓
−1

𝛽
(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

− log𝑥/𝛽
𝑊
−1,0

(− log𝑥/𝛽)
, 1 ≤ 𝑥 ≤ 𝑥,

− log𝑥/𝛽
𝑊
0
(− log𝑥/𝛽)

, 0 < 𝑥 < 1,

(31)

where we have defined

𝑥 = 𝑓
𝛽
(

1

𝑒

) = 𝑒
𝛽/𝑒

. (32)

By setting 𝛽 = −1, in (30), we obtain the inverse function
of (1)

𝑓
−1

(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

log𝑥
𝑊
−1,0

(log𝑥)
, 𝑒
−1/𝑒

≤ 𝑥 ≤ 1,

log𝑥
𝑊
0
(log𝑥)

, 𝑥 > 1.

(33)

Curiously, (33) is just the closed expression given in [6]
for the following power tower:

𝑔 (𝑥) = 𝑥
(1/𝑥)
(1/𝑥)

⋅⋅⋅

, (34)

which converges if and only if

𝑒
−1/𝑒

≤ 𝑥 ≤ 𝑒
𝑒

. (35)

In order to see this, consider the power tower

ℎ (𝑥) = 𝑥
𝑥
𝑥

⋅⋅⋅

, (36)

which converges if and only if [7, 8]

𝑒
−𝑒

≤ 𝑥 ≤ 𝑒
1/𝑒

. (37)

Taking in (36) the logarithm of both sides and plugging
back the ℎ(𝑥) function definition, we obtain

log ℎ = 𝑥
𝑥
𝑥

⋅⋅⋅

log𝑥 = ℎ log𝑥. (38)

Performing now the change of variables ℎ = 𝑒
−𝑢, we get

𝑢𝑒
𝑢

= − log𝑥. (39)

Now, by using the principal branch of Lambert 𝑊

function, we can solve, for ℎ(𝑥),

ℎ (𝑥) =

−𝑊
0
(− log𝑥)
log𝑥

, (40)

but, from (34) and (40), we arrive at (33):

𝑔 (𝑥) =

1

ℎ (1/𝑥)

=

log𝑥
𝑊
0
(log𝑥)

, (41)

which, according to (37), converges if and only if

𝑒
−𝑒

≤

1

𝑥

≤ 𝑒
1/𝑒

, (42)

that is, the interval given in (35).
In [2, Equation 02.03], 𝑓−1(𝑥) is termed as coupled root

function. Since the latter reference is unaware of the closed
expression (33), it performs numerically the following limit
[2, Equation 02.07]:

lim
𝑥→∞

𝑓
−1

(𝑥)

log𝑥
= 0, (43)

in order to show that 𝑓−1(𝑥) goes to infinity at a lower rate
than logarithms. In fact, (43) is quite easily proved applying
(33) and the property

lim
𝑥→∞

𝑥𝑒
𝑥

= ∞ 󳨀→ lim
𝑥→∞

𝑊
0
(𝑥) = ∞, (44)

so that

lim
𝑥→∞

𝑓
−1

(𝑥)

log𝑥
= lim
𝑥→∞

1

𝑊
0
(log𝑥)

= 0. (45)

4. Indefinite Integral

4.1. Indefinite Integral of 𝑓−1
𝛽
. For 𝛽 < 0, according to (30), let

us calculate

∫

𝑧

1

𝑓
−1

𝛽
(𝑥) 𝑑𝑥 = ∫

𝑧

1

− log𝑥/𝛽
𝑊
0
(− log𝑥/𝛽)

𝑑𝑥, 𝑧 > 1. (46)

Performing the change of variables𝑢 = − log𝑥/𝛽, we have

∫

𝑧

1

𝑓
−1

𝛽
(𝑥) 𝑑𝑥 = −𝛽∫

− log 𝑧/𝛽

0

𝑢𝑒
−𝛽𝑢

𝑊
0
(𝑢)

𝑑𝑢, (47)

and expanding the exponential function 𝑒
−𝛽𝑢, in (47), we

obtain

∫

𝑧

1

𝑓
−1

𝛽
(𝑥) 𝑑𝑥 =

∞

∑

𝑛=0

(−𝛽)
𝑛+1

𝑛!

∫

− log 𝑧/𝛽

0

𝑢
𝑛+1

𝑊
0
(𝑢)

𝑑𝑢. (48)

Performing now the change of variables 𝑊
0
(𝑢) = 𝑠 (i.e.,

𝑢 = 𝑠𝑒
𝑠), we get

∫

𝑧

1

𝑓
−1

𝛽
(𝑥) 𝑑𝑥 =

∞

∑

𝑛=0

(−𝛽)
𝑛+1

𝑛!

∫

𝛼

0

𝑠
𝑛

(𝑠 + 1) 𝑒
(𝑛+2)𝑠

𝑑𝑠, (49)

where we have set

𝛼 := 𝑊
0
(−

log 𝑧
𝛽

) . (50)
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The integral given in (49) can be expressed in terms of
the lower incomplete gamma function [9, Equation 8.2.1].
Consider

𝛾 (𝑎, 𝑧) := ∫

𝑧

0

𝑡
𝑎−1

𝑒
−𝑡

𝑑𝑡, Re 𝑎 > 0; (51)

thus, performing the change of variables −𝑡 = 𝑘𝑠, we get

∫

𝑎

0

𝑠
𝑚

𝑒
𝑘𝑠

𝑑𝑠 = (−𝑘)
−1−𝑚

∫

−𝑘𝑎

0

𝑡
𝑚

𝑒
−𝑡

𝑑𝑡

= (−𝑘)
−1−𝑚

𝛾 (𝑚 + 1, −𝑘𝑎) .

(52)

Therefore, applying (52) in (49), we obtain

∫

𝑧

1

𝑓
−1

𝛽
(𝑥) 𝑑𝑥

=

∞

∑

𝑛=0

𝛽
𝑛+1

𝑛! (𝑛 + 2)
𝑛+1

× {𝛾 (𝑛 + 1, − (𝑛 + 2) 𝛼) −

𝛾 (𝑛 + 2, − (𝑛 + 2) 𝛼)

𝑛 + 2

} .

(53)

Applying now the property [9, Equation 8.8.1]

𝛾 (𝑎 + 1, 𝑧) = 𝑎𝛾 (𝑎, 𝑧) − 𝑧
𝑎

𝑒
−𝑧

, (54)

we may rewrite (53) as

∫

𝑧

1

𝑓
−1

𝛽
(𝑥) 𝑑𝑥

=

∞

∑

𝑛=0

𝛽
𝑛+1

𝑛!

{

𝛾 (𝑛 + 1, − (𝑛 + 2) 𝛼)

(𝑛 + 2)
𝑛+2

+

(−𝛼)
𝑛+1

𝑛 + 2

𝑒
(𝑛+2)𝛼

} .

(55)

In order to compute the lower incomplete gamma func-
tion given in (55), we may use [1, Equation 45:4:1]

𝛾 (𝑛, 𝑥) = (𝑛 − 1)! [1 − 𝑒
𝑛−1

(𝑥) 𝑒
−𝑥

] , (56)

where 𝑒
𝑛
(𝑥) is the exponential polynomial and it is given by

the power-series expansion of the exponential function by
truncation after the 𝑛th term [1, Equation 26:12:2]:

𝑒
𝑛
(𝑥) =

𝑛

∑

𝑘=0

𝑥
𝑘

𝑘!

. (57)

Therefore, we finally obtain

∫

𝑧

1

𝑓
−1

𝛽
(𝑥) 𝑑𝑥

=

∞

∑

𝑛=0

𝛽
𝑛+1

𝑛 + 2

× {

1

(𝑛 + 2)
𝑛+1

+ (

(−𝛼)
𝑛+1

𝑛!

−

𝑒
𝑛
(− (𝑛 + 2) 𝛼)

(𝑛 + 2)
𝑛+1

) 𝑒
(𝑛+2)𝛼

} ,

(58)

where 𝛼 = 𝑊
0
(− log 𝑧/𝛽), 𝑧 > 1 and 𝛽 < 0.

Notice as well that, for 𝛽 > 0, according to (31), we have
to calculate

∫

1

𝑧

𝑓
−1

𝛽
(𝑥) 𝑑𝑥 = ∫

1

𝑧

− log𝑥/𝛽
𝑊
0
(− log𝑥/𝛽)

𝑑𝑥, 𝑧 ∈ (0, 1) , (59)

but, according to (58), we have

∫

1

𝑧

𝑓
−1

𝛽
(𝑥) 𝑑𝑥

= −

∞

∑

𝑛=0

𝛽
𝑛+1

𝑛 + 2

× {

1

(𝑛 + 2)
𝑛+1

+ (

(−𝛼)
𝑛+1

𝑛!

−

𝑒
𝑛
(− (𝑛 + 2) 𝛼)

(𝑛 + 2)
𝑛+1

) 𝑒
(𝑛+2)𝛼

} ,

(60)

where 𝛼 = 𝑊
0
(− log 𝑧/𝛽), 𝑧 ∈ (0, 1) and 𝛽 > 0.

4.2. Indefinite Integral of 𝑓
𝛽
. The indefinite integral

∫𝑥
𝑥

𝑑𝑥 (61)

cannot be expressed in terms of a finite number of elementary
functions [10]. Moreover, closed expression for (61) in the
usual literature does not seem to be found. However, it can
be expressed in closed form by using the upper incomplete
gamma function [9, Equation 8.2.1]:

Γ (𝑎, 𝑧) := ∫

∞

𝑧

𝑡
𝑎−1

𝑒
−𝑡

𝑑𝑡, Re 𝑎 > 0. (62)

Notice that if 𝑧 = 0 and 𝑎 = 𝑛 is a positive integer, then
we recover the usual gamma function:

Γ (𝑛, 0) = Γ (𝑛) = (𝑛 − 1)!, 𝑛 ∈ Z
+

. (63)

We can generalize (61), calculating the integral

∫

𝑧

0

𝑓
𝛽
(𝑥) 𝑑𝑥 = ∫

𝑧

0

exp (−𝛽𝑥 log𝑥) 𝑑𝑥,

𝑧 > 0, 𝛽 ∈ R.

(64)

Expanding in power-series the exponential function
given in (64) and integrating term by term, we get

∫

𝑧

0

𝑓
𝛽
(𝑥) 𝑑𝑥 =

∞

∑

𝑛=0

(−𝛽)
𝑛

𝑛!

∫

𝑧

0

(𝑥 log𝑥)𝑛 𝑑𝑥. (65)

Performing now the change of variables 𝑥𝑛+1 = 𝑒
−𝑡, we

obtain

∫

𝑧

0

𝑓
𝛽
(𝑥) 𝑑𝑥

=

∞

∑

𝑛=0

(−𝛽)
𝑛

(−1)
𝑛+1

(𝑛 + 1)! (𝑛 + 1)
𝑛
∫

−(𝑛+1) log 𝑧

∞

𝑒
−𝑡

𝑡
𝑛

𝑑𝑡

=

∞

∑

𝑛=1

𝛽
𝑛−1

𝑛!𝑛
𝑛−1

∫

∞

−𝑛 log 𝑧
𝑒
−𝑡

𝑡
𝑛−1

𝑑𝑡.

(66)
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By using now the definition of the upper incomplete
gamma function (62), we arrive at

∫

𝑧

0

𝑥
−𝛽𝑥

𝑑𝑥 =

∞

∑

𝑛=1

𝛽
𝑛−1

(𝑛 − 1)!𝑛
𝑛
Γ (𝑛, −𝑛 log 𝑧) . (67)

In [11, Lemma 10.6], we find a similar expression for the
indefinite integral of the power tower

∫𝑥
𝑥
𝑥

⋅⋅⋅

𝑑𝑥 =

∞

∑

𝑛=1

(−1)
𝑛−1

𝑛
𝑛−2

(𝑛 − 1)!

Γ (𝑛, − log𝑥) . (68)

Taking 𝑧 = 1 in (67) and using (63), we recover the
expression given by [12, Equation 3.342]:

∫

1

0

𝑥
−𝛽𝑥

𝑑𝑥 =

∞

∑

𝑛=1

𝛽
𝑛−1

𝑛
𝑛
. (69)

Moreover, taking 𝛽 = ±1, in (69), we recover the
expressions given for the sophomore’s dream [13, pp. 4, 44],
discovered in 1697 by Johann Bernoulli, as follows:

∫

1

0

𝑥
∓𝑥

𝑑𝑥 =

∞

∑

𝑛=1

(±1)
𝑛−1

𝑛
𝑛

. (70)

In order to compute the upper incomplete gamma func-
tion given in (67), we may use [1, Equation 45:4:2]:

Γ (𝑛, 𝑥) = (𝑛 − 1)!𝑒
−𝑥

𝑒
𝑛−1

(𝑥) , (71)

where 𝑒
𝑛
(𝑥) is the exponential polynomial (57). Therefore,

(67) can be rewritten as

∫

𝑧

0

𝑥
−𝛽𝑥

𝑑𝑥 =

1

𝛽

∞

∑

𝑛=1

(

𝛽𝑧

𝑛

)

𝑛

𝑒
𝑛−1

(−𝑛 log 𝑧) . (72)

Let us now proceed to give another expression for the
indefinite integral of 𝑓

𝛽
by using the results given in (58) and

(60). First, let us consider the cases 𝛽 < 0 and 𝑧 > 1, splitting
(64) into two summands, as follows:

∫

𝑧

0

𝑥
−𝛽𝑥

𝑑𝑥 = ∫

1

0

𝑥
−𝛽𝑥

𝑑𝑥 + ∫

𝑧

1

𝑥
−𝛽𝑥

𝑑𝑥

=

∞

∑

𝑛=1

𝛽
𝑛−1

𝑛
𝑛

+ ∫

𝑧

1

𝑥
−𝛽𝑥

𝑑𝑥,

(73)

where the first integral in (73) has been substituted by (69)
and the second integral can be computed by knowing that
𝑓
𝛽
(𝑥) is an increasing function for 𝑥 > 1 when 𝛽 < 0.
Indeed, according to Figure 4, we have

𝑧 × 𝑧
−𝛽𝑧

= 1 + ∫

𝑧

1

𝑓
𝛽
(𝑥) 𝑑𝑥 + ∫

𝑧
−𝛽𝑧

1

𝑓
−1

𝛽
(𝑥) 𝑑𝑥. (74)
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𝛽
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)

x

z−𝛽z

z

Figure 4: Scheme for the integration of 𝑓
𝛽
(𝑥), 𝛽 < 0, beyond 𝑧 > 1.

So, from (73) and (74) and taking into account (58), we get

∫

𝑧

0

𝑥
−𝛽𝑥

𝑑𝑥

= 𝑧
1−𝛽𝑧

− 1 +

∞

∑

𝑛=1

𝛽
𝑛−1

𝑛
𝑛

−

∞

∑

𝑛=0

𝛽
𝑛+1

𝑛 + 2

{

1

(𝑛 + 2)
𝑛+1

+(

(−𝛼)
𝑛+1

𝑛!

−

𝑒
𝑛
(− (𝑛 + 2) 𝛼)

(𝑛 + 2)
𝑛+1

) 𝑒
(𝑛+2)𝛼

} .

(75)

Since the following series is a telescoping series:

∞

∑

𝑛=0

(

𝛽
𝑛

(𝑛 + 1)
𝑛+1

−

𝛽
𝑛+1

(𝑛 + 2)
𝑛+2

) = 1, (76)

we can simplify (75), obtaining

∫

𝑧

0

𝑥
−𝛽𝑥

𝑑𝑥 = 𝑧
1−𝛽𝑧

− 𝑒
𝛼

∞

∑

𝑛=0

(𝛽𝑒
𝛼

)
𝑛+1

𝑛 + 2

{

(−𝛼)
𝑛+1

𝑛!

−

𝑒
𝑛
(− (𝑛 + 2) 𝛼)

(𝑛 + 2)
𝑛+1

} ,

(77)

where 𝛼 = 𝑊
0
(𝑧 log 𝑧), 𝑧 > 1 and 𝛽 < 0.
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Figure 5: Scheme for the integration of 𝑓
𝛽
(𝑥), 𝛽 > 0, for 𝑧 > 1.

For the case of 𝛽 > 0, according to Figure 5, we have

∫

𝑧

1

𝑥
−𝛽𝑥

𝑑𝑥 = ∫

1

𝑧
−𝛽𝑧

𝑓
−1

𝛽
(𝑥) 𝑑𝑥 − (1 − 𝑧

−𝛽𝑧

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

+ (𝑧 − 1) 𝑧
−𝛽𝑧

.

(78)

Therefore, substituting (78) in (73) and taking into
account (60) and (76), we arrive again at (77), but for 𝛽 > 0.
Moreover, the range 𝑧 > 1 can be extended up to the point
where 𝑓

𝛽
is a monotonic increasing or decreasing function.

So, according to (24), we can say that 𝑧 > 1/𝑒.Then, collecting
all these results, we can conclude that

∫

𝑧

0

𝑥
−𝛽𝑥

𝑑𝑥 = 𝑧
1−𝛽𝑧

− 𝑒
𝛼

∞

∑

𝑛=0

(𝛽𝑒
𝛼

)
𝑛+1

𝑛 + 2

{

(−𝛼)
𝑛+1

𝑛!

−

𝑒
𝑛
(− (𝑛 + 2) 𝛼)

(𝑛 + 2)
𝑛+1

} ,

(79)

where 𝛼 = 𝑊
0
(𝑧 log 𝑧), 𝑧 > 1/𝑒, and 𝛽 > 0.
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