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2Dpto. Matemáticas, CC. NN. y CC. SS. aplicadas a la educación,
Universidad Catolica de Valencia “san Vicente m´ ártir”, Spain

Abstract

We have considered the analytical solutions for heat transfer in wet flat grinding,
assuming a linear and a constant heat flux profile, entering into the workpiece.
We assume as well a constant heat transfer coefficient for the coolant acting on
the workpiece surface. In order to avoid thermal damage, we provide a very fast
method for the computation of the maximum temperature, which occurs on the
workpiece surface in the stationary regime. We also provide a very rapid method
for the numerical evaluation of the transient regime duration (relaxation time). By
knowing the location of the maximum temperature and the relaxation time, we
have performed an analysis for the computation optimization of the temperature
evolution on the workpiece surface. This kind of analysis offers a very interesting
simulation tool to avoid thermal damage during the transient regime.
Keywords: flat grinding, wet grinding, thermal damage, surface temperature in
grinding.

1 Introduction

Flat grinding is an industrial machining process consisting in removing the surface
roughness of a workpiece by means of an abrasive wheel which rotates at high
speed sliding over its surface (see Figure 1). Most of the energy used in the
grinding process is converted into heat, and it is accumulated within the contact
zone between the wheel and the workpiece [1]. The high temperatures reached
can damage the quality of the workpiece, producing residual stresses and even
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 WIT Transactions on Engineering Sciences, Vol 91,
 www.witpress.com, ISSN 1743-3533 (on-line) 

© 2015 WIT Press

doi:10.2495/SECM150201

Surface and Contact Mechanics including Tribology XII  221



x

y z

ℓ – ℓ  

fv�

Grinding
Wheel 

Workpiece

Leading edge

Figure 1: Strip heat source on a semi-infinite workpiece due to friction with a
grinding wheel.

burning the surface layers of the workpiece [2]. Therefore, the determination of the
temperature field evolution inside the workpiece is of great industrial importance
[3–6]. In order to avoid thermal damage, liquid coolant is usually injected onto the
workpiece surface (wet grinding), so power generation by friction is reduced and
cooling by convection occurs.

2 Analytical approach

In flat grinding, the heat transfer inside the workpiece usually is modeled by a
strip heat source infinitely long and of 2` width (m, SI units), which moves at a
speed ~vf = vf ~i (ms−1) over a semi-infinite solid surface (see Figure 1). Taking
a coordinate system (x, y, z) fixed to the heat source, the workpiece temperature
field T (x, z, t) satisfies the convective heat equation [7, §1.7(2)]

∂T

∂t
= k

(
∂2T

∂x2
+
∂2T

∂z2

)
− vf

∂T

∂x
, (1)

where k is the thermal diffusivity (m2s−1). The convective heat equation (1) is
subjected to the initial condition

T (0, x, z) = T0, (2)

where T0 is the room temperature.
Wet grinding can be modelled assuming a constant heat transfer coefficient h

(W m−2 K−1) on the workpiece surface. Assuming as well a dimensionless heat
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flux profile f (x) within the contact area between wheel and workpiece, we have
the following boundary condition

k0
∂T

∂z
(t, x, 0) = h[T (x, 0, t)− T0]− qf(x)H(x− `)H(x+ `) (3)

where H (x) is the Heaviside function, k0 is the thermal conductivity and q (W
m−2) is a constant that takes account the amount of heat flux entering into the
workpiece.

In order to solve the problem given in (1)–(3) we can build the solution departing
from the Green function G (~r, t;~r′, t′), which in this case is interpreted as the
temperature field evaluated at (~r, t) = (x, y, z, t) in a semi-infinite body (z > 0)
in which at position ~r′ = (x′, y′, z′) an instantaneous point heat source of strength
Q (m3 K) appears at the instant t′ < t, and where the surface (z = 0) is subject to
a constant heat transfer coefficient h [7, § 14.9 (4)]

G(~r, t;~r′, t′) =
Q

4πk(t− t′)
exp

(
− (x− x′)2 + (y − y′)2

4k(t− t′)

)
(4)

×
{exp

(
− (z−z′)2

4k(t−t′)

)
+ exp

(
− (z+z′)2

4k(t−t′)

)
2
√
πk(t− t′)

− h

k0
exp

[
h

k0
(z + z′) +

h2

k2
0

k(t− t′)
]

× erfc

(
h

k0

√
k(t− t′) +

z + z′

2
√
k(t− t′)

)}
.

A formal derivation of (4) is given in [8, Appendix].
The derivation of the solution by using (4) follows three steps:
• Superposition in space to give temperature due to instantaneous line source,

which acts on the surface z′ = 0 parallel to the y-axis.
• Superposition in time to give temperature due to continuously-acting line

source.
• Superposition of line sources to give temperature due to a continuously

acting band source on the surface.
Following these steps and taking a constant heat flux profile in (3), that is

f(x) = 1,

the solution of (1)–(3) in dimensionless variables is [8, Eqn. 8]

T (c) (τ,X,Z) (5)

=
√
π

∫ τ

0

[
exp

(
−Z2

4u2

)
−
√
πHu eHZ+H2u2

erfc

(
Hu+

Z

2u

)]
×
[
erf

(
X + L

2u
+ u

)
− erf

(
X − L

2u
+ u

)]
du,
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where the superscript (c) denotes we are considering a constant heat flux profile,
and where we have considered the following dimensionless variables:

X =
vfx

2k
, Z =

vfz

2k
, L =

vf `

2k
, H =

2kh

vfk0
,

τ =
vf
√
t

2
√
k
, T =

πk0vf
2qk

(T − T0) .

Similarly, for a linear heat flux profile

f (x) = 1 +
x

`
,

the solution of (1)–(3) in dimensionless variables is

T (l) (τ,X,Z) (6)

=
1

L

∫ τ

0

[
exp

(
−Z2

4u2

)
−
√
πHu eHZ+H2u2

erfc

(
Hu+

Z

2u

)]
×
{√

π
(
X + L+ 2u2

) [
erf

(
X + L

2u
+ u

)
− erf

(
X − L

2u
+ u

)]

+ 2u

[
exp

(
−
(
X + L

2u
+ u

)2
)
− exp

(
−
(
X − L

2u
+ u

)2
)]}

du,

where the superscript (l) indicates we are considering a linear heat flux profile.
Performing the change of variables w = 2u2 and the limit τ → ∞, we obtain the
following expression for the stationary regime, which is given in [9, Eqns. 3.46–
47],

T (l)
wet (X,Z) (7)

= lim
τ→∞

T (l)
wet (τ,X,Z)

=
1

2L

∫ ∞
0

exp

(
−Z2

2w

)
(8)

×
{√

π

2w
(X + L+ w)

[
erfc

(
X + L+ w√

2w

)
− erfc

(
X − L+ w√

2w

)]

+ exp

(
− (X + L+ w)

2

2w

)
− exp

(
− (X − L+ w)

2

2w

)}
dw

− πH

4L

∫ ∞
0

exp

(
−Z2

2w

)
exp

(
H2w

2

)
erfc

(
Hw√

2w

)
(9)
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×
{

(X + L+ w)

[
erfc

(
X − L+ w√

2w

)
− erfc

(
X + L+ w√

2w

)]

+

√
2w

π

[
exp

(
− (X + L+ w)

2

2w

)
− exp

(
− (X − L+ w)

2

2w

)]}
dw.

From a computational point of view, the infinite upper limits of (8) and (9) can
be replaced by [9, Eqn. 3.60]

wmax = 2L−X +
Z

2
+ 10,

which, according to the change of variables performed, provides a simple formula
for the duration of the transient regime (relaxation time)

τmax (X,Z) =

√
L− X

2
+
Z

4
+ 5. (10)

However, equation (10) is a fitting formula that is not obtained from any
analytical consideration. In Section 4 we will derive some expressions for the
relaxations times and in Section 5 we will compare them to (10) numerically.

3 Maximum temperature

From a physical point of view, the maximum temperature Tmax must be reached in
the stationary regime and on the workpiece surface, Z = 0, just within the contact
zone between the grinding wheel and the workpiece Xmax ∈ (−L,L). Therefore,
we have to search the local extrema of T (X, 0) for X ∈ (−L,L), that is

∂T (X, 0)

∂X
= 0, X ∈ (−L,L) . (11)

In order to obtain the maximum temperature, from all the local extrema Xk

found in (11), we will choose the global maximum, that is

Tmax = T (Xmax, 0) = max
k

(T (Xk, 0)) .

For a constant heat flux profile, according to (5), we have

T (c) (X, 0) (12)

=
√
π

∫ ∞
0

[
1−
√
πHu eH

2u2

erfc (Hu)
]

×
[
erf

(
X + L

2u
+ u

)
− erf

(
X − L

2u
+ u

)]
du.
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According to (11) and (12), we have to evaluate numerically within the interval
X ∈ (−L,L) the following equation:

0 =

∫ ∞
0

[
1

u
−
√
πH eH

2u2

erfc (Hu)

]
(13)

×

{
exp

(
−
[
X + L

2u
+ u

]2
)
− exp

(
−
[
X − L

2u
+ u

]2
)}

du.

Similarly, from (6), we can get the stationary regime on the workpiece surface
for a linear heat flux profile, obtaining

T (l) (X, 0) (14)

=
1

L

∫ ∞
0

[
1−
√
πH u eH

2u2

erfc (Hu)
]

×
{√

π
(
X + L+ 2u2

) [
erf

(
X + L

2u
+ u

)
− erf

(
X − L

2u
+ u

)]

− 2u

[
exp

(
−
[
X + L

2u
+ u

]2
)
− exp

(
−
[
X − L

2u
+ u

]2
)]}

du,

and the equation we have to solve numerically within the interval X ∈ (−L,L) in
order to get the maximum temperature is

0 =

∫ ∞
0

[
1−
√
πH u eH

2u2

erfc (Hu)
]

(15)

×
{√

π

[
erf

(
X + L

2u
+ u

)
− erf

(
X − L

2u
+ u

)]

− 2L

u
exp

(
−
[
X − L

2u
+ u

]2
)}

du.

4 Relaxation time

The stationary regime is asymptotically reached at t→∞, i.e.

lim
τ→∞

∂T (τ,X,Z)

∂τ
= 0. (16)

In order to avoid thermal damage, the most important point is the location of
the maximum temperature. Therefore, for estimating how rapidly the stationary
regime is reached (i.e. the relaxation time of the transient regime), we can solve
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the following equation for τ̄ ∈ (0,∞):

∂T (τ̄ , X, 0)

∂τ

∣∣∣∣
X=Xmax

= η ≈ 0. (17)

For a constant heat flux profile, according to (5), equation (17) is written as

η =
√
π

[
erf

(
X + L

2τ̄
+ τ̄

)
− erf

(
X − L

2τ̄
+ τ̄

)]∣∣∣∣
X=Xmax

(18)

×
[
1−
√
πHτ̄ eH

2τ̄2

erfc (Hτ̄)
]
.

Let us solve (18) approximately. On the one hand, according to the asymptotic
expansion given in the literature [10, Eqn. 7.1.23] for the erfc function, we have

1−
√
πHτ̄ eH

2τ̄2

erfc (Hτ̄) ≈ 1

2H2τ̄2
, τ̄ →∞. (19)

In the other hand, expanding the Taylor series of the error function up to the first
order, we have

√
π

[
erf

(
X + L

2τ̄
+ τ̄

)
− erf

(
X − L

2τ̄
+ τ̄

)]
≈ 2L

τ̄
e−τ̄

2

, τ̄ →∞. (20)

Substituting (19) and (20) in (18), we get the following approximated equation

τ̄3eτ̄
2

≈ L

H2η
. (21)

By using the Lambert W function [11], (21) can be solved explicitly, obtaining
the following approximated expression for the relaxation time, considering a
constant heat flux profile in the wet case

τ̄ (c) ≈

√√√√3

2
W

(
2

3

[
L

H2η

]2/3
)
. (22)

The approximation given in (22) can be used as the starting iteration point for
the numerical evaluation of (18). Notice that (22) do not depend on Xmax, so we
do not have to compute (13) if we want an estimation of the relaxation time for a
constant heat flux profile.
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Considering now a linear heat flux profile, equation (17) is written as

η =
1

L

[
1−
√
πHτ̄ eH

2τ̄2

erfc (Hτ̄)
]

(23)

×
{√

π
(
X + L+ 2τ̄2

) [
erf

(
X + L

2τ̄
+ τ̄

)
− erf

(
X − L

2τ̄
+ τ̄

)]

− 2τ̄

[
exp

(
−
[
X + L

2τ̄
+ τ̄

]2
)
− exp

(
−
[
X − L

2τ̄
+ τ̄

]2
)]}∣∣∣∣∣

X=Xmax

.

In order to solve (23) approximately, we can expand the Taylor series of the
e−x

2

function up to first order, so we can write

exp

(
−
[
X + L

2τ̄
+ τ̄

]2
)
− exp

(
−
[
X − L

2τ̄
+ τ̄

]2
)
≈ 2Le−τ̄

2

, τ̄ →∞.

(24)
Now, substituting (19), (20) and (24) in (23), we arrive at

τ̄3eτ̄
2

≈ X + L

H2η

∣∣∣∣
X=Xmax

,

that can be solved explicitly as

τ̄ (l) ≈

√√√√3

2
W

(
2

3

[
X + L

H2η

]2/3
)∣∣∣∣∣∣

X=Xmax

. (25)

As aforementioned, (25) can be used as the starting iteration point for the
numerical evaluation of (23). Notice that the relaxation time τ̄ can be defined for
each point X on the workpiece surface and depends on the tolerance parameter η

τ̄ = τ̄ (X, η) .

The computation of the relaxation time is quite useful for the numerical
evaluation of the surface temperature in the stationary regime T (X, 0), because,
according to (17), the temperature field hardly evolves over time when η � 1, so

T (X, 0) ≈ T (τ̄ (X, η) , X, 0) , η � 1. (26)

Notice that the numerical evaluation of the right hand of (26) side is simpler
because involves a definite integral, instead of the improper integral of the left
hand side.
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5 Numerical results

For the numerical simulation, we have used a VT20 titanium alloy [12] as
workpiece, whose thermal properties values are:

k0 = 13 W m−1K−1, k = 4.23× 10−6 m2 s.

Also, we have used the following values for the grinding regime:

vf = 0.53 m s−1, 2` = 2.663× 10−3 m, q = 5.89× 107 W m−2,

h = 2.729× 105 W m−2 K−1, T0 = 300 K.

The following Table shows the maximum temperature rise ∆Tmax with respect
to room temperature T0 and its location within the friction zone, calculated
according to the equations given in Section 3.

Friction profile xmax/` ∆Tmax [K]

Constant −0.973 177.6

Linear 0.690 237.3

The following Table shows the relaxation times calculated according to the
approximated formulae and the exact values given in Section 4, taking as tolerance
parameter η = 10−3. Also, the relaxation time given by Sauer in (10) for
X = Xmax and Z = 0 is provided. Notice that the initial guess given in the
first column of the Table differs less than one order of magnitude with respect to
the exact value.

Friction profile t̄ [ms] (approx.) t̄ [ms] (exact) t̄ [ms] (Sauer)

Constant 1.539 5.998 7.769

Linear 1.600 1.658 3.795

Figure 2 shows the temperature time evolution on the workpiece surface,
considering a constant heat flux profile. For the transient regime (t < ∞) we
have computed (5), setting Z = 0. For the stationary regime (t → ∞) we have
computed the approximation given in (27). The evolution is so rapid that we have
taken the different graphs exponentially spaced over time. Notice that the plot
of the stationary regime, t → ∞, is overlapped with the two last graphs, which
corresponds to the values of the relaxations times (exact and Sauer) given in the
previous Table.
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Figure 2: Time evolution of the surface temperature in wet grinding for a constant
heat flux profile.

Figure 3 shows the temperature time evolution on the workpiece surface,
considering a linear heat flux profile. For the transient regime (t < ∞) we
have computed (6), setting Z = 0. For the stationary regime (t → ∞) we
have computed the approximation given in (27). Notice that now the graphs
corresponding to the relaxations times do not overlap with the stationary regime
at the trailing edge. This is because the relaxation time depends on the position
X and for a linear heat flux profile, the maximum temperature is located far from
the trailing edge, Xmax > 0, just the opposite than for a constant heat flux profile,
where Xmax ≈ −L.
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Figure 3: Time evolution of the surface temperature in wet grinding for a linear
heat flux profile.
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Figure 4 shows the relaxation time as a function of the position within the
contact zone for different values of the tolerance parameter η. It has been plotted
only the case of a linear heat flux profile, equation (4) forX ∈ (−L,L). It is worth
noting that the numerical root finding of (23) is very fast (≈ 1 s for the computation
of Figure 4). The behavior of the relaxation time is qualitatively similar for the
constant case, as well as the computation time. As it can be seen, the relaxation
time is a decreasing function from the trailing edge to the leading edge. This is so,
because of the motion of the heat source. Also, the relaxation time given by Sauer
is overestimated, because a naked eye can not see any difference in the temperature
graphs below an error of one percent, i.e. η < 10−2.
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Figure 4: Relaxation time as a function of the position within the friction zone.

Since the greater relaxation time is on the trailing edge, X = −L, according to
(26), the temperature in the stationary regime for the wet case can be approximated
as

T (X, 0) ≈ T (τ̄ (−L, η) , X, 0) , η = 10−3. (27)

By using the above approximation, we get around a 10% reduction in the
computation time for both heat flux profiles considered, i.e. constant and linear.

6 Conclusions

In Section 2, we have considered the analytical solutions of the time-dependant
temperature field inside the workpiece in wet grinding, both with a linear heat flux
profile as with a constant one within the contact zone between the wheel and the
workpiece. We can find these solutions in the literature, except for the case of the
transient regime considering a linear heat flux profile, i.e. (6).

Also, in Section 3, we have provided a set of equations for searching the
maximum temperature in the different cases considered. It turns out that the
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root finding in these equations provides a very rapid method for the numerical
evaluation of the maximum temperature. According to authors’ knowledge, the
equation for the linear case (15) is not given in the literature.

In order to know how rapid the stationary regime is reached, we have proposed
in Section 4 a method to calculate the relaxation times for the cases considered. It
turns out that the root finding that involves this method is computed very rapidly.
We have compared numerically the proposed relaxation times with the fitting
formula given by Sauer (10), and we have concluded that the latter overestimates
them.

In order to speed up the computation of the temperature field on the workpiece
surface in the stationary regime, we have used the approximation given in (27),
for which we need to compute the relaxation time at the trailing edge of the heat
source. Moreover, instead of computing the expression given by Sauer (7) for a
linear heat flux profile, we have used (6), because involves only one integration.
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