
Expert Systems With Applications 209 (2022) 118177

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Customer churn prediction for web browsers
Xing Wu a,b,∗, Pan Li a, Ming Zhao c, Ying Liu d,∗∗, Rubén González Crespo e,
Enrique Herrera-Viedma f,g

a School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
b Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
c CSSC Ocean Exploration Technology Research Institute Co., Ltd., WuXi, 214000, China
d School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
e Department of Computer Science, Universidad Internacional de La Rioja, Logroño, La Rioja 26006, Spain
f Andalusian Research Institute in Data Science and Computational Intelligence, Granada 18071, Spain
g Department of Electrical and Computer Engineering, Faculty of Engineering Abdulaziz University, Jeddah 21589, Saudi Arabia

A R T I C L E I N F O

Keywords:
Churn prediction
MBST
Attention mechanism
Tree-based models
Sequence models

A B S T R A C T

In the competitive web browser market, identifying potential churners is critical to decreasing the loss of
existing customers. Churn prediction based on customer behaviors plays a vital role in customer retention
strategies. However, traditional churn prediction algorithms such as Tree-based models cannot exploit the
temporal characteristics of browser customers behaviors, while sequence models cannot explicitly extract
the information between multiple behaviors. To meet this challenge, we propose a novel model named
Multivariate Behavior Sequence Transformer (MBST) with two complementary attention mechanisms to explore
the temporal and behavioral information separately. Furthermore, a Tree-based classifier is attached for churn
prediction instead of using the multilayer perceptron. Extensive experiments on a real-world Tencent QQ
browser dataset with over 600,000 samples demonstrate that the proposed MBST achieves the F-score of
82.72% and the Area Under Curve (AUC) of 93.75%, which significantly outperforms state-of-the-art methods
in terms of churn prediction.
1. Introduction

As the most significant source of revenue, customers are the
lifeblood of the business in web browser marketplaces. In the saturated
market, however, attracting a new customer costs 5–10 times more
than keeping an existing one (Jamalian & Foukerdi, 2018). Therefore,
companies focus marketing efforts on customer retention rather than
customer acquisition. Building an effective and trustworthy customer
churn prediction model is necessary for client retention.

The accuracy of churn prediction models is particularly critical in
implementing customer retention strategies, especially in industries
with large numbers of customers. Typically, web browser applications
have a large user base, such as the Tencent QQ browser, one of the
most popular web browsers in China and has more than 89 million
users. Therefore, the prediction model’s performance is crucial since
a slight increase in accuracy can retain a large number of customers
and recover huge profits. However, it is a rather challenging problem
embodied in both data and algorithms.

∗ Corresponding author at: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China.
∗∗ Corresponding author.

E-mail addresses: xingwu@shu.edu.cn (X. Wu), indeed@shu.edu.cn (P. Li), nudtzhaoming08@163.com (M. Zhao), liuy@ucas.ac.cn (Y. Liu),
ruben.gonzalez@unir.net (R.G. Crespo), viedma@decsai.ugr.es (E. Herrera-Viedma).

From the data perspective, researchers tend to collect data in many
tasks over a long period of time to get a more thorough and detailed
grasp of patterns while enhancing algorithm performance simultane-
ously. However, new customers may churn before their long-term
behavior history is gathered. It will be difficult to collect sufficient
user behavior information before the churn prediction is made. What
is more, web browsers are prohibited from collecting users’ personal
identification information to protect privacy. Each anonymous user is
identified by their unique ID, not related to identity information like
age and sex. Only the behavior information is available (e.g., which
domain they access and how long they use the application on a specific
day). As a result, one of our main issues is how to extract more useful
information from the limited data.

In this work, observable user history data is restricted to 14 days
for timely predictions, and hybrid features are introduced as our algo-
rithm’s input for higher prediction accuracy on limited data. Specifi-
cally, hybrid features consist of two different feature categories: static
vailable online 25 July 2022
957-4174/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2022.118177
Received 16 December 2021; Received in revised form 15 June 2022; Accepted 14
 July 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:xingwu@shu.edu.cn
mailto:indeed@shu.edu.cn
mailto:nudtzhaoming08@163.com
mailto:liuy@ucas.ac.cn
mailto:ruben.gonzalez@unir.net
mailto:viedma@decsai.ugr.es
https://doi.org/10.1016/j.eswa.2022.118177
https://doi.org/10.1016/j.eswa.2022.118177
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.118177&domain=pdf

Expert Systems With Applications 209 (2022) 118177X. Wu et al.
Fig. 1. Overview of the proposed architecture.
features and dynamic features from behavior information. The former is
a set of weights assigned by users’ preferences, such as education, news,
etc. The latter are multivariate behavioral sequences whose values
change over time (e.g., the number of accessed domains and the usage
time). The hybrid features will be specifically described in Section 4.1.

From the algorithmic perspective, SVM-based, Tree-based and NN-
based methods are available for prediction tasks. The Tree-based en-
semble learning methods based on bagging or boosting, such as Ran-
dom Forests (RF) (Biau & Scornet, 2016) and Gradient Boosting De-
cision Tree (GBDT) (Friedman, 2001) have better generalization per-
formance for structured static data. They outperform SVM-based and
NN-based approaches in user profile analysis applications with static
data. However, Tree-based ensemble learning methods treat sequential
features as the same as static features, ignoring the temporal nature
of customer behavior. Previous works primarily recognize customer
dynamic behavior patterns by NN-based sequence models (Alboukaey,
Joukhadar, & Ghneim, 2020; Kristensen & Burelli, 2019; Tan et al.,
2018). However, these methods focus on modeling the temporal re-
lationships and dismiss the behavioral relationships, which is distinct
for churn prediction in web browsers (i.e., there are crucial potential
correlations between different customer behaviors). For instance, the
number of domains accessed by users is often positively correlated with
the users’ usage time. That is to say, it is of great importance to model
the temporal and behavioral correlations.

On the one hand, it is essential to investigate the combination of
static and dynamic features for mining informative knowledge with
limited data. Tree ensemble models outperform SVM-based and NN-
based approaches for structured data in many real-world applications,
whereas sequence models have better performance with dynamic data.
It is natural to employ a sequence model for dynamic data repre-
sentation and a tree ensemble model for static data representation
and aggregated feature classification. On the other hand, it is essen-
tial to model the temporal and behavioral correlations. The Trans-
former (Vaswani et al., 2017) architecture contains an attention mech-
anism to model relationships between sequences, and it has provided
quantitative breakthroughs in natural language processing (Devlin,
Chang, Lee, & Toutanova, 2018). Promising results have been ob-
tained for other tasks, including computer vision (Liu et al., 2021)
and time series forecasting (Zhou et al., 2021). This work proposes
a Transformer-based architecture to model temporal and behavioral
dependency. We are the first to apply the Transformer architecture to
churn prediction and convert it to a novel model named Multivariate
Behavior Sequence Transformer (MBST). MBST uses two complemen-
tary attention mechanisms to explore the modeling of temporal and
behavioral dependencies. Furthermore, an external Tree-based classi-
fier is attached for churn prediction instead of using the multilayer
perceptron as the classification head. An overview of our architecture
is depicted in Fig. 1, and it will be introduced in Section 3.
2

The main contributions of this study are as follows:
• We investigate the effect of different categories of data and com-
bine static and dynamic data collected from users to dig informa-
tive knowledge regarding user behavior.

• We propose the Multivariate Behavior Sequence Transformer
(MBST) with two complementary attention mechanisms and at-
tach an external Tree-based classifier leading to a higher predic-
tion accuracy.

• We conduct extensive experiments to demonstrate the superiority
of our approach, and visualize the attention weights to explore the
interpretability of churn prediction.

The remainder of this paper is organized as follows. Section 2
summarizes the related work of churn prediction. Then, the MBST is
introduced in Section 3. Section 4 presents the experimental results in
detail. Finally, conclusions and future work are drawn in Section 5.

2. Related work

This section introduces the churn prediction research in various
applications based on different data types. Moreover, a comprehensive
summary of the current research state and applications are presented
for the two primary prediction approaches (Tree-based methods and
NN-based sequence models).

2.1. Churn prediction

Churn prediction is one of the most crucial stages in customer
relationship management (CRM) (Ahn, Hwang, Kim, Choi, & Kang,
2020; Arivazhagan & Sankara, 2020) hence developing an accurate and
effective client churn prediction model is key for customer retention.

In recent decades, extensive researches have been conducted on this
issue using static features, especially in industries with large numbers of
customers, such as the telecommunication (Amin et al., 2019; Lu, Lin,
Lu, & Zhang, 2012), banking (Bilal Zorić, 2016; Keramati, Ghaneei, &
Mirmohammadi, 2016), insurance (Dela Llave, López, & Angulo, 2019;
Sundarkumar & Ravi, 2015), social networking (Backiel, Verbinnen,
Baesens, & Claeskens, 2015; Farquad, Ravi, & Raju, 2014; Óskarsdóttir
et al., 2017), credit card (Keramati et al., 2016; Rajamohamed &
Manokaran, 2018), and online game industries (Milošević, Živić, &
Andjelković, 2017; Periáñez, Saas, Guitart, & Magne, 2016; Tamassia
et al., 2016).

In addition, many researchers build churn prediction models based
on the dynamic feature. Alboukaey et al. (2020) represented customer’s
activities as a multivariate time series and proposed four models to
predict daily churn, including RFM-based, statistics-based, CNN-based
models, and LSTM-based model. Óskarsdóttir, Van Calster, Baesens,
Lemahieu, and Vanthienen (2018) proposed a novel method to extract
time-series data from call networks to represent dynamic customer

behavior and use the similarity forests method together with some of

Expert Systems With Applications 209 (2022) 118177X. Wu et al.
the proposed extensions to predict churn. Leung and Chung (2020) used
trend modeling to capture the change in customer behavior, and the
results showed that data from multiple time periods helped improve
precision and recall.

However, few kinds of research focus on churn prediction in the
scenario of web browsers handling diverse data types. As a result, our
primary purpose is to make up for gaps in the field despite the fact that
data and algorithms are restricted.

2.2. Tree-based learning

The decision tree is a traditional method for classification problems,
including churn prediction (De Caigny, Coussement, & De Bock, 2018;
Nie, Rowe, Zhang, Tian, & Shi, 2011). Its superior strength is the
efficient selection of global features with the most statistical informa-
tion gain (Grabczewski & Jankowski, 2005) and high interpretability.
However, A single decision tree model tends to produce an overly
complex model with poor generalization performance, especially for
high-dimensional data (e.g., the user data of our dataset have over
100 dimensions). Therefore, ensemble learning (bagging and boosting)
based on the decision tree is a typical method to reduce the variance
for improving classification performance.

Bootstrap aggregation, also known as bagging, employs a randomly
selected portion of the training data and assigns equal weights to
each model in the ensemble voting. For example, the random forest
algorithm (Ho, 1998) combined random decision trees with bagging to
promote model variance.

Boosting is progressively forming an ensemble by training each
new model instance to emphasize the previous models’ misclassified
training instances. Boosting is more accurate than bagging in certain
instances, but it is also more prone to over-fitting the training data.
AdaBoost (Freund, Schapire, et al., 1996) is the first adaptive boosting
algorithm as it dynamically changes its parameters to the data based
on the actual performance in the current iteration. Gradient Boosting
Decision Tree (GBDT) (Friedman, 2001) identifies difficult observations
by large residuals computed in the previous iterations (Mayr, Binder,
Gefeller, & Schmid, 2014). The boosting technique that optimizes the
empirical risk using the steepest gradient descent in function space sig-
nificantly developed the statistical aspect of boosting. XGBoost (Chen
& Guestrin, 2016) is a recent ensemble decision tree approach that
dominates most recent data science competitions. According to some
studies (Ahmad, Jafar, & Aljoumaa, 2019), using the XGBoost algorithm
for churn prediction yielded the best results.

Our experimental results show that ensemble learning methods
can outperform sequence models when the representation capacity is
improved by attention and linear transformation.

2.3. Sequence modeling

Under a discrete stochastic modeling framework, Hidden Markov
Model (HMM) is an effective method to deal with sequential sig-
nals (Rabiner & Juang, 1986). However, it is a memoryless model that
does not make effective use of contextual information. Deep learning
methods have been very popular in recent years, and Recurrent Neural
Networks (RNN) provide another alternative for incorporating tempo-
ral dynamics. However, it cannot combat the vanishing or exploding
gradient problem (Medsker & Jain, 2001). Long Short-Term Memory
Model (LSTM), a variant of RNN, has become a definitive benchmark
for sequential data, not only on its ability to ameliorate the vanishing or
exploding gradient problem but also on its ability to capture long term
dependencies allowing the model to keep long term explanatory obser-
vations to make classifications and predictions in memory (Van Houdt,
Mosquera, & Nápoles, 2020). Yang, Shi, Jie, and Han (2018) proposed
a parallel LSTM framework with an attention mechanism to perform
churn prediction in a social application by utilizing dynamic user data
and achieved excellent results.
3

Recently, researches with the vanilla transformer architecture shows
significantly more parallelization than the RNN-based sequence model
in different domains. The vanilla transformer architecture is an
encoder–decoder architecture proposed by Vaswani et al. (2017). The
encoder is composed of a stack of multiple identical layers, where each
layer containing two sublayers. The first sublayer is a multi-headed self-
attention mechanism followed by residual connections, and the second
is a simple-wise fully connected feed-forward networks. The decoder
also consists of a stack of layers. The first two layers are the same
as the encoder layers, and the third is multi-head attention over the
output of the encoder stack. Its variants are used in many fields for
process sequential data, including financial, medical, transportation ap-
plications, etc. For example, Informer enhances the prediction capacity
in the long sequence time-series forecasting problem as a variant of
transformers (Zhou et al., 2021). Non-Autoregressive Spatial–Temporal
Transformer (NAST) building a bridge by a learned temporal influence
map to fill the gaps between the spatial and temporal attention so that
spatial and temporal dependencies can be processed integrally (Chen
et al., 2021).

In this work, the Transformer architecture is applied to churn
prediction for the first time, and we primarily focus on modeling
both behavioral and temporal dependencies. However, off-the-shelf
variants of Transformer architecture, which model both spatial and
temporal dependencies (Aksan, Cao, Kaufmann, & Hilliges, 2020; Pliz-
zari, Cannici, & Matteucci, 2021; Xu et al., 2020), are not suitable
for churn prediction since the semantic space of spatial (behavioral)
dimension is inconsistent (i.e., every behavioral sequence expresses
different meanings), so they cannot be transformed via the same linear
mapping layer. As a result, an affine transform block and two different
attention mechanisms are introduced to address this issue.

3. Methodology

In this section, we first provide the formal definition of the churn
prediction problem. Then the overview of the Multivariate Behavior
Sequence Transformer is presented in Section 3.2. In addition, we
will go through each of the MBST’s major components in depth. The
optimization method for our model is provided in the end.

3.1. Problem formulation

We pose churn prediction as a classic binary classification task
where the problem becomes accurately classify a specific user 𝒙𝑖 will
terminate the service or not in the near future. Supposing a set of
𝑁 samples D = {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1, a prediction model can be defined as a
function �̂�𝑖 = 𝑓 (𝒙𝑖) where 𝑖 denotes the order number, 𝑓 (⋅) is the model
operation. �̂�𝑖 ∈ = {0, 1} is a binary value where the positive value
represents that the customer will leave in the near future.

Each 𝒙𝑖 is composed of three primitive sub-components: static fea-
tures 𝒔𝑖 and dynamic features 𝑼 𝑖. Finally, we can formulate this prob-
lem as follows:

𝑝(𝑦𝑖 = 1|𝒔𝑖,𝑼 𝑖;𝛷) (1)

where 𝛷 denotes parameters of the model, static features 𝒔𝑖 ∈ R𝑆 and
dynamic features 𝑼 𝑖 ∈ R𝐵×𝐷, 𝑆 represents the dimension of static
features, 𝐷 and 𝐵 represent the numbers of total days and behaviors
respectively.

3.2. Overview of the architecture

As shown in Fig. 1, we improve the vanilla Transformer architecture
to adapt to the churn prediction task in three ways: an affine trans-
formation, the bidirectional attention mechanism, and a Tree-based
classification head. The overall process of the Multivariate Behavior
Sequence Transformer (MBST) is described as follows.

Expert Systems With Applications 209 (2022) 118177X. Wu et al.

v
a
v
s
t
o
a
e

t
i
a
t
s
C
h
c

t
a
r
m
e
p
t
m

𝑬

w
v
e

t

𝒁

𝒁

b
e
c
a
i
b
v
i
o

𝒁

w

n
s
T
t
s
c
c
a
r
d

𝒓

w
a
s

d
h
i
o
u

Firstly, the dynamic feature is organized in two distinct orders after
affine transformation (i.e., the original version 𝑼 = [𝒖1, 𝒖2,… , 𝒖𝐵] ∈
R𝐵×𝐷 and the transpose version 𝑽 = [𝒗1, 𝒗2,… , 𝒗𝐵] ∈ R𝐷×𝐵). Each
ector of the original data version reflects the user’s daily activities,
llowing the attention mechanism to learn temporal relations. Each
ector in the transposed version indicates the number of times the
ame activity occurs on various days, allowing the attention mechanism
o learn the relations between multiple behaviors. These two versions
f the dynamic feature are concatenated with classification token and
dded with optional position encoding before they are fed into the
ncoder block.

Since the transformer encoder embeds the input and outputs it in
he same dimension, an additional vector, also called the CLASS token,
s concatenated to the original input tensor with the same dimension
s the other sequence vectors for classification. The learnable CLASS
oken embeddings (𝒖0𝑐𝑙𝑎𝑠𝑠 and 𝒗0𝑐𝑙𝑎𝑠𝑠)gather information from all the
equences using multi-headed self-attention. Except for classification,
LASS token is treated the same as input sequences, and only the
idden output from the CLASS token (𝒖𝐿𝑐𝑙𝑎𝑠𝑠 and 𝒗𝐿𝑐𝑙𝑎𝑠𝑠) are fed into the
lassification head serving as a part of the ultimate representation 𝒓.

For sequential data, the location information of the sequence is par-
icularly critical. Since Transformer architecture contains no recurrence
nd no convolution, we need to inject some information about the
elative or absolute position of the tokens in the sequence. There are
any choices to encode, and we have tried multiple ways of position

ncoding, including the learned version and the sinusoidal version of
osition encoding (Eq. (2)). Comprehensive experiments are conducted
o discuss the effects of different positional coding (see Section 4.4 for
ore details).
𝑝𝑜𝑠
2𝑖 = sin

(

𝑝𝑜𝑠∕100002𝑖∕𝑑
)

, 𝑬𝑝𝑜𝑠
2𝑖+1 = cos

(

𝑝𝑜𝑠∕100002𝑖∕𝑑
)

(2)

here 𝑝𝑜𝑠 is the position, 𝑑 is the dimension of the input sequence
ectors, and 𝑖 is the dimension. That is, each dimension of the positional
ncoding corresponds to a sinusoid.

In summary, the following equation can be used to describe these
wo stages: class token embedding and position encoding.
0
𝑢 = [𝒖0𝑐𝑙𝑎𝑠𝑠; 𝒖

0
1, 𝒖

0
2,… , 𝒖0𝐷] + 𝑬𝑝𝑜𝑠

𝑢 , 𝑬𝑝𝑜𝑠
𝑢 ∈ R𝐵×(𝐷+1) (3)

0
𝑣 = [𝒗0𝑐𝑙𝑎𝑠𝑠; 𝒗

0
1, 𝒗

0
2,… , 𝒗0𝐵] + 𝑬𝑝𝑜𝑠

𝑣 , 𝑬𝑝𝑜𝑠
𝑣 ∈ R𝐷×(𝐵+1) (4)

The embed matrices 𝒁0
𝑢 and 𝒁0

𝑣 are fed to two decoupled encoder
locks after the embedding procedure as mentioned above. These two
ncoder modules, the Temporal Encoder (TE) and the Behavioral En-
oder (BE), offer different modes of computation for modeling temporal
nd behavioral relational dependencies. The behavioral and temporal
nformation in the dynamic feature will fully interact through the
idirectional attention mechanism. Moreover, the classification head
ectors 𝒖𝐿𝑐𝑙𝑎𝑠𝑠 and 𝒗𝐿𝑐𝑙𝑎𝑠𝑠 will aggregate all valuable temporal or behav-
oral information, and they have a low dimensionality compared to the
riginal features. The equation can be described as follows:
𝑙
𝑢 = BE(𝒁 𝑙−1

𝑢), 𝒁 𝑙
𝑣 = TE(𝒁 𝑙−1

𝑣), 𝑙 = 1, 2,… , 𝐿 (5)

here 𝐿 is the encoder’s maximum number of layers.
The vanilla transformer architecture contains a vital module,

amely layer normalization, which directly estimates the normalization
tatistics from the summed inputs to the neurons within a hidden layer.
he layer normalization creates an embedding in the space of spheres
hat conforms to a conventional Gaussian distribution. The original
tatistical information of the mean and variance would be lost, which is
rucial for customer analysis. Such statistical information, for example,
ontains a customer’s average usage duration. As a result, the mean
nd variance statistics value of the original behavioral sequence 𝒗 are
etained as a part of the final representation. The equation can be
escribed as follows:

= 𝒔⊕ 𝒖𝐿 ⊕ 𝒗𝐿 ⊕ 𝝁⊕ 𝝈, 𝝁,𝝈 ∈ R𝐵 (6)
4

𝑐𝑙𝑎𝑠𝑠 𝑐𝑙𝑎𝑠𝑠
here ⊕ is the concatenation operation, 𝝁 and 𝝈 represent the mean
nd variance statistics value of the original behavioral sequence, re-
pectively.

Finally, an external Tree-based classifier is attached for churn pre-
iction instead of using the multilayer perceptron as the classification
ead. A pseudo-code version description (Algo. 1) is supplied to aid
n the explanation of the complete procedure. Except for input and
utput, subscripts denoting the order of samples are removed for better
nderstanding.

Algorithm 1 the Framework of MBST
Input: User static data 𝒔𝑖 and dynamic data 𝑼 𝑖
Output: Customer churn prediction result �̂�𝑖 (probability of churn-
ing)

1: Compute the mean and standard deviation of each behavior
sequence of dynamic data 𝑼 𝑖 as 𝝁 and 𝝈.

2: Feed dynamic data 𝑼 𝑖 into the affine transformation block for
adjusting the scale of each behavior vector.

3: Transpose the dynamic feature matrix as 𝑽 𝑖 = 𝑼𝑇
𝑖 .

4: Concatenate the classification token and add the position encoding
to original version of feature matrix as 𝒁0

𝑢 = [𝒖0𝑐𝑙𝑎𝑠𝑠; 𝒖
1, 𝒖2,⋯ , 𝒖𝐷] +

𝑬𝑝𝑜𝑠
𝑢 .

5: Concatenate the classification token and add the position en-
coding to transposed version of feature matrix as 𝒁0

𝑣 =
[𝒗0𝑐𝑙𝑎𝑠𝑠; 𝒗

1, 𝒗2,⋯ , 𝒗𝐵] + 𝑬𝑝𝑜𝑠
𝑣 .

6: Apply multi-layer behavioral and temporal attention mechanisms
to 𝒁0

𝑢 and 𝒁0
𝑣 for extracting different dependency information,

respectively.
7: Aggregate all extracted feature as 𝒓 = 𝒔⊕ 𝒖𝐿𝑐𝑙𝑎𝑠𝑠 ⊕ 𝒗𝐿𝑐𝑙𝑎𝑠𝑠 ⊕ 𝝁⊕ 𝝈.
8: Feed the ultimate representation 𝒓 into the Tree-based XGBoost

classifier.
9: return �̂�𝑖

3.3. Learnable affine transformation

Neural networks are notoriously sensitive to scale, and layer nor-
malization (Ba, Kiros, & Hinton, 2016) is the critical algorithm for
convergence in the Transformer architecture. In our application sce-
nario, however, the feature values representing various actions on the
same day vary greatly (e.g., a user spends 500 min on the browser in a
day, but the number of domains viewed is only 30). Moreover, there are
behavioral features that are binary values rather than continuous values
(e.g., whether the user has installed other browsers on a given day).
Therefore, in the temporal encoder, if the layer normalization is applied
to the behavioral features 𝒖, the individual feature values will affect
the mean and variance of the standardization procedure, (i.e., some
features will dominate the model while some are completely ignored
resulting in a large bias in the model). To make layer normalization
more effective, we introduce a learnable affine transformation:

Aff ine(𝑿) = Diag(𝜆1, 𝜆2,… , 𝜆𝑛)𝑿 + 𝑩 (7)

where 𝜆1, 𝜆2,… , 𝜆𝑛 and 𝑩 are learnable parameters, 𝑿 can be the
multivariate behavioral sequence and all elements in each column of
the matrix 𝑩 have only one shared value.

Because some features may dominate the objective function, pre-
venting the estimator from learning from other features as expected,
the affine transformation is applied to scale the different behavioral
sequences at the beginning, making layer normalization more effective.

In summary, this operation has several advantages. First, it can
compensate for the lack of layer normalization. Second, as opposed to
batch normalization, the operator does not depend on batch statistics.
Last but not least, This module allows us to resize different behavioral
features in a learnable way instead of pre-processing the data and act

as an abstract feature selection process.

Expert Systems With Applications 209 (2022) 118177X. Wu et al.
Fig. 2. Attention mechanisms.
3.4. Bidirectional attention mechanism

According to the computational paradigm of the attention mecha-
nism, the input data consists of multiple vectors and the correlation is
computed with linear mapping and dot product operation. For example,
the natural language processing task’s input is sequence vectors, and
each vector represents a word. The relationship between words can be
computed by the attention mechanism. Thus, the bidirectional attention
mechanism is proposed for learning both temporal and behavioral
relationships. When the original dynamic data version is fed into the
encoder, each vector reflects the user’s activities throughout the day,
allowing the attention mechanism to learn temporal relations. Each
vector in the transposed version indicates the number of times the spe-
cific action occurs on various days, allowing the attention mechanism
to discover the correlation between multiple behaviors.

This work applies two decoupled but complementary encoder blocks
to implement the bidirectional attention mechanism. In both of them,
we use the scaled dot-product attention (Fig. 2(a)), requiring 𝑞𝑢𝑒𝑟𝑦
𝑸, 𝑘𝑒𝑦 𝑲 and 𝑣𝑎𝑙𝑢𝑒 �̄� of dimension 𝑑. If the 𝑞𝑢𝑒𝑟𝑦 and the 𝑘𝑒𝑦 are
similar (i.e., high attention weight), then the corresponding 𝑣𝑎𝑙𝑢𝑒 is
relevant. We compute the dot products of the 𝑞𝑢𝑒𝑟𝑦 with all 𝑘𝑒𝑦𝑠, and
the result of the attention operation is the weighted sum of the 𝑣𝑎𝑙𝑢𝑒
�̄� . The softmax function has incredibly small gradients because the dot
products expand in magnitude as 𝑑 increases. To counteract the effect,
the dot products are scaled by 1

√

𝑑
:

Attention(𝑸,𝑲 , �̄�) = sof tmax

(

𝑸𝑲𝑇
√

𝑑

)

�̄� (8)

In the temporal encoder block (Fig. 3(a)), we divide the input
sequence vector according to the time dimension, (i.e., each element of
the same input sequence (𝒖1, 𝒖2,… , 𝒖𝐷) represents different behaviors).
We use a multi-head attention mechanism (Fig. 2(b)) to enable the
model to attend to information from several representation subspaces
simultaneously, and the temporal attention can be expressed as follows:

TemporalAttention(𝑿) = Concat(head1,… ,headh)𝑾 𝑂

where, headi = Attention
(

𝑿𝑾 𝑄
𝑖 , 𝑿𝑾 𝐾

𝑖 ,𝑿𝑾 𝑉
𝑖

) (9)

In the behavioral encoder block (Fig. 3(b)), the input sequence
vectors are divided based on the behavioral dimension (i.e., each se-
quence represents a kind of behavior). Each element of the same input
sequence (𝒗1, 𝒗2,… , 𝒗𝐵) represents a distinct moment in time. Because
they are in different semantic spaces, they cannot share the same linear
mapping layer as the vanilla attention mechanism. Empirically, the
dot product of the sequence itself is enough to affect the attention
weight. For example, the number of domains accessed by users is often
positively correlated with the users’ usage time (i.e., the dot product
5

Fig. 3. Temporal and behavioral encoder blocks.

value of such two sequence vectors can be high). Moreover, we find that
increasing the number of attention heads (Fig. 2(c)) in the behavioral
encoder does not improve performance. Therefore, we drop the linear
mapping in attention and get the weights directly through the dot
product, and the behavioral attention can be expressed as follows:

BehavioralAttention(𝑿) = Sof tmax

(

𝑿𝑿𝑇
√

𝑑

)

𝑿 (10)

In addition to attention sub-layers, both two categories of encoders
contain a fully connected feed-forward network, which is applied to
each sequence separately and identically. These consist of two linear
transformations with a ReLU activation in between:

FFN(𝒙) = ReLU
(

𝒙𝑾 1 + 𝒃1
)

𝑾 2 + 𝒃2 (11)

where the linear transformations are the same across different posi-
tions. It is noteworthy that the embedding representation output by the
attention module should be transposed to adapt to the sharing of linear
layer parameters in the behavioral encoder.

In summary, two encoder modules, temporal and behavioral en-
coder, are proposed using different attention mechanisms to handle
different dependencies. In the temporal encoder, the multi-headed
attention mechanism in the vanilla Transformer is used to analyze
the relationship between times. In the behavioral encoder, the linear
mapping is abandoned, and the dot product is used directly to calculate
the similarity between behavioral sequences to decrease the parameters

Expert Systems With Applications 209 (2022) 118177X. Wu et al.
Fig. 4. Two optimization stages.
and achieve better performance. The combination of these two mod-
ules enables a bidirectional attention mechanism that can model both
temporal and behavioral dependencies.

3.5. Multiple classification heads

The Tree-based methods’ computational paradigm is non-
differentiable. Thus they cannot update the encoders’ weight through
gradient propagation. The multilayer perceptron is vastly over-
parametrized and not applicable for structured user data. To train the
encoders and maximize the use of aggregated feature information for
classification, two different classification heads (Fig. 4) are used to
achieve respective goals.

For training the network, as tree methods are non-differentiable
functions, we use the multilayer perceptron (MLP) to implement back-
propagation which follows a standard tower pattern in which the
bottom of the network is most comprehensive, and each hidden layer
is followed by a batch normalization layer and LeakyReLU activation
function:

LeakyReLU(𝑥) = max(0, 𝑥) + 𝑠 × min(0, 𝑥) (12)

where 𝑠 controls the angle of the negative slope. In contrast to the
Rectified Linear Unit (ReLU) activation function, it assigns a non-zero
slope to all negative values to retain some information.

The XGBoost algorithm is attached as the classification head to
maximize the use of aggregated feature information. The gradient
boosted decision tree is used as its base estimator.

There are several reasons why we use the Tree-based method in-
stead of the multilayer perceptrons:

1. The multilayer perceptron is vastly over parametrized, and the
lack of appropriate inductive bias often causes them to fail to
find optimal solutions.

2. The ensemble Tree-based learning method is representationally
efficient for decision manifolds with approximately hyperplane
boundaries.

3. The XGBoost algorithm adds a regularization term to regulate
the complexity of the model and avoid overfitting

In summary, the XGBoost algorithm is independent of the data
magnitude, minimizes the loss function with fewer parameters, and
thus has better generalization performance for classifying the aggre-
gated feature. On the other hand, a multilayer perceptron is nec-
essary for training the network since the existing optimizer cannot
back-propagate the gradient for Tree-based classifiers.
6

3.6. Optimization

The optimization loss function for network training can be formu-
lated as:

𝑙(�̂�𝑖, 𝑦𝑖) =
∑

−𝑦𝑖 log �̂�𝑖 −
(

1 − 𝑦𝑖
)

log
(

1 − �̂�𝑖
)

(13)

where 𝑦𝑖 represents the ground-truth churn label and �̂�𝑖 is the predicted
churn label for the user.

In order to train the tree model, L1 regular penalty and L2 regular
penalty are used to control the complexity of the base classifier. The
optimization loss function can be formulated as:

(𝜙) =
∑

𝑖
𝑙
(

�̂�𝑖, 𝑦𝑖
)

+
∑

𝑘
𝛺
(

𝑓𝑘
)

𝑤ℎ𝑒𝑟𝑒 𝛺(𝑓) = 𝛼𝑇 + 1
2
𝜆‖𝑤‖

2 (14)

where 𝛼 and 𝜆 denote the coefficients of the L1 regularization penalty
and the L2 regularization penalty, 𝑇 denotes the number of leaf nodes
in the tree, and ‖𝑤‖

2 is the L2 penalty of leaf scores.

4. Experiments

4.1. Dataset

Detailed experiments are conducted on the Tencent QQ dataset
to prove the proposed method’s effectiveness. This real-world dataset
contains anonymous data from more than 600,000 users, including the
user behavior data from November 29 to December 19, 2016. Following
that, we will take a closer look at the QQ browser and the dataset.

QQ Browser delivers not only desktop but also mobile online brows-
ing services. It ranks top 2 on the desktop browser and top 5 on mobile
web browsers in China, with 303 million monthly active users from
Jun 2018 to Jun 2019. Thus the retention of these users is the prime
concern, and churn prediction enables important insights and action
cues on retention.

There are two types of data in the dataset: static data and dynamic
data. The static data are tags labeled according to users’ browsing
history in terms of interests, videos, games, etc. The interest category
tag contains dozens of sub-categorical tags, as demonstrated in Table 1.
The tags are assigned different weights according to the user’s browsing
preferences. For example, if the weights of a user’s entertainment tag
and education tag are 80 and 5, respectively, this user prefers enter-
tainment to education. The dynamic data consists of multiple behavior
sequences with a sampling period of one day, including usage time,
the number of different domains visited, launch time of the browser
and related applications. The observable time is limited to 14 days.
After preprocessing, including feature selection and outlier processing,

Expert Systems With Applications 209 (2022) 118177X. Wu et al.

s
r
p
A
r
p
l
e
h
l
T
o
H
a
f

𝜂

t

i
m
i
t
L
r

p

Table 1
The description of static data.

Interest category Tag

Comprehensive news
News Military news

Financial news

⋯ ⋯

Comprehensive education
Education Preschool education

Vocational education

28 static features and 22 different dynamic behavior sequences are
preserved, as shown in Table 2 for prediction.

In the end, it is crucial to determine whether or not a user is a
churner. After the professional discussions with domain experts, we
identified the following selection criteria to distinguish active users
and churners to address this problem. Users who do not utilize the
browser in 20 days are defined as churners, and those who use the
browser for more than seven days are defined as active users. Other
users who employ the browser for less than seven days are excluded.
To summarize, the dataset’s customer churn rate reaches 34.93%.

4.2. Experiment setup

Training details. Our experiments are all performed on a work-
tation with Nvidia RTX 3090 GPU. Twenty percent of samples are
eserved for testing. Experiments follow default settings for some hy-
erparameters of all involved models, such as AdamW weight decay,
damW 𝛽1 parameter, etc. Grid searches are conducted for other pa-
ameters like learning rate and batch size to find the best-performing
arameter within a specific range. The implementation of the MBST fol-
ows this set, in which the number of temporal and behavioral attention
ncoder layers is set to 3. In the encoder block, the number of multi-
eads is set to 2, and the number of neurons in the fully connected
ayer is 32. The multilayer perceptron heads have five layers in total.
able 3 summarizes the considered default values and the meaning
f each parameter. While training, we choose AdamW (Loshchilov &
utter, 2017) as the optimizer and set the batch size to 512. We use
cosine learning rate decay strategy according to (He et al., 2019) as

ollows:

𝑡 =
1
2

(

1 + cos
(𝑡𝜋
𝑇

))

𝜂 (15)

where 𝜂𝑡 is the learning rate at batch 𝑡, the initial learning rate 𝜂 is set
o 0.01 in our experiments, and 𝑇 is the total number of batches.
Baseline approaches. We compare our proposed model with var-

ous Tree-based methods and sequence models to assess the perfor-
ance. Tree-based models include Random Forest (RF), Adaptive Boost-

ng (AdaBoost), Gradient Boosting Decision Tree (GBDT), and Ex-
reme Gradient Boosting (XGBoost). Recurrent Neural Networks (RNN),
ong Short-Term Memory Model (LSTM), and the vanilla Transformer
epresent various state-of-the-art sequence models.
Evaluation metrics. In order to evaluate the churn prediction

erformance of our model, we adopt four metrics described as follows:

• Log Loss: The Log Loss is the most crucial classification metric
based on probabilities. The Log Loss represents how close the
forecast probability is to the actual/true number. Minimizing
the Log Loss is the same as increasing the classifier’s accuracy.
Eq. (13) describes the specific formula of log loss.

• F-score: The F-score is computed by dividing the number of true
positive results by the total number of positive results, including
those incorrectly recognized. The recall is the number of genuine
positive findings divided by the total number of samples that
should have been detected as positive. To measure performance,
we utilize a balanced F-score (F1 score), the harmonic mean of
7

accuracy and recall.
Fig. 5. Comparison results (AUC) across different data.

Fig. 6. Comparison results (F-score) across different data.

• AUC: Area Under the ROC Curve (AUC) measures the entire area
underneath the receiver operating characteristic (ROC) curve,
measuring how accurately the model can distinguish between two
things. This score gives an overall performance metric across all
potential classification thresholds.

• P-value of Delong Test: Delong Test (DeLong, DeLong, & Clarke-
Pearson, 1988) is a nonparametric approach to analyzing areas
under correlated ROC curves using the theory of generalized
U-statistics to generate an estimated covariance matrix. The ex-
periments follow the implementation by Sun and Xu (2014) to
compare the ROC curves of all comparative and ablation trial
models with our proposed model.

4.3. Main results

In Table 4, we compare MBST with various models and MBST
substantially outperforms state-of-the-art methods in Log Loss, F-score,
AUC and 𝑝-value of the Delong Test. All methods use the same dynamic
and static data as input for a fair comparison. It is worth noting
that tree-based models cannot directly deal with sequence data, and
sequence models cannot directly deal with static data. As a result,
the sequence data is flattened for tree-based methods and a MLP is

Expert Systems With Applications 209 (2022) 118177X. Wu et al.

U

f
a
M
d
d
a
h

b
s
s
v
f

Table 2
The description of dynamic data.

Numerical data Categorical data

Number of direct launches (QB desktop shortcuts) Whether to start Kingsoft AntiVirus
Number of direct launches (navigation shortcuts) Whether to start 360 Total Security
Number of direct launches (QB start menu shortcut) Whether to start Sogou Browser
Number of launches through QQ Whether to start 360 Extreme Browser
Number of domain names visited Whether to start Cheetah Browser
⋯ ⋯
Usage time (s) Whether to start 360 Security Browser
Table 3
Main considered parameters and related default values.

Description Parameter Value

Batch size 𝑇 512
Number of epochs 𝑁𝑒 100
Learning rate 𝜂 0.01
AdamW 𝛽1 parameter 𝛽1 0.9
AdamW 𝛽2 parameter 𝛽2 0.999
AdamW 𝜀 parameter 𝜀 10−8

AdamW weight decay 𝜔 0.01
LeakeyReLU negative slope 𝑠 0.01
XGBoost learning rate 𝜂 0.3
Maximum depth of the tree 𝑑 6
XGBoost L1 penalty 𝛼 1
XGBoost L2 penalty 𝜆 1

Table 4
Comparison results across different models.

Model Model type Log loss F-score AUC 𝑃 -value

RF Tree 0.6767 0.8015 0.9187 4.953e−15
AdaBoost Tree 0.6764 0.7766 0.9064 6.755e−34
GBDT Tree 0.3323 0.7963 0.9204 1.196e−18
XGBoost Tree 0.3320 0.7964 0.9213 1.454e−25
RNN Sequence 0.3175 0.8085 0.9253 3.699e−11
LSTM Sequence 0.3116 0.8124 0.9278 1.277e−21
Transformer Sequence 0.3116 0.8119 0.9278 3.009e−14
MBST Tree & Sequence 0.2904 0.8272 0.9375 −

employed to take static data input for sequence models. Experimen-
tal results show that traditional Tree-based learning algorithms have
shown competitive performance. The experimental results of RF and
AdaBoost on Log Loss are not good because they do not use the
corresponding log-likelihood loss as the optimization objective function
but classify the nodes based on information gain and use voting to
decide the classification result. The advantages of the Transformer
for long-term dependency modeling are not well exploited in short
sequences, and the result is that the Transformer achieves almost the
same performance as the LSTM. Our MBST takes advantage of both
Tree-based and sequence models based on deep learning and improves
the vanilla Transformer’s attention mechanism to understand more
relational dependencies. As a result, the proposed approach MBST
achieves the Log Loss of 0.2904, the F-score of 82.72% and the Area

nder Curve (AUC) of 93.75%.
In Figs. 5 and 6, we conduct comparative experiments across dif-

erent data types to prove the efficiency of data and the advantages of
ggregated representation 𝒓 (Eq. (6)) obtained by the fusion module of
BST. We can find that the effect of using only dynamic and static

ata is insufficient, and the simultaneous use of dynamic and static
ata can significantly enhance the model performance. In addition, the
ggregated feature representation embedded by MBST is better than the
ybrid feature.

The receiver operating characteristic (ROC) curve of such four Tree-
ased models based on different data types is described in Fig. 7. It
hows the robustness of proposed methods under different threshold
ettings by the evidence that the model outperforms the others at
arious thresholds based on aggregated representation obtained by the
usion module of MBST.
8

Table 5
Important components for MBST.

Aff. T.E. B.E. Stat. Cls. Log Loss F-score AUC 𝑃 -value

% ! ! ! MLP 0.3109 0.8142 0.9283 2.177e−4
! % ! ! MLP 0.3081 0.8150 0.9292 1.327e−2
! ! % ! MLP 0.3123 0.8145 0.9279 3.207e−3
! ! ! % MLP 0.3120 0.8145 0.9282 4.782e−4
! ! ! ! MLP 0.3084 0.8165 0.9297 3.631e−2
! ! ! ! RF 0.6733 0.8070 0.9212 4.127e−3
! ! ! ! AdaBoost 0.6752 0.7933 0.9145 3.449e−5
! ! ! ! GBDT 0.3193 0.8054 0.9254 2.164e−2
! ! ! ! XGboost 0.2904 0.8272 0.9375 −

Table 6
Different version of position encoding for MBST.

Module P.E. Log loss F-score AUC

Sinusoidal 0.3107 0.8148 0.9291
Temporal encoder Learnable 0.3084 0.8165 0.9297

None 0.3101 0.8160 0.9287

Sinusoidal 0.3112 0.8161 0.9286
Behavioral encoder Learnable 0.3099 0.8119 0.9286

None 0.3084 0.8165 0.9297

4.4. Ablation studies

Extensive ablation experiments are conducted to demonstrate the
indispensability of each module. Table 5 demonstrates different model
variants as adding or removing essential components, including Affine
Transformation (Aff.), Temporal Encoder (T.E.), Behavioral Encoder
(B.E.), efficient statistic (Stat.). The impact of the behavioral encoder
on the model performance has exceeded the temporal encoder of
the vanilla Transformer, which also proves the effectiveness of our
proposed component. Experiments with other Tree-based methods are
conducted to demonstrate the importance of the classification heads
(Cls.). The experimental results show that the classifier used in MBST
stands out among all tree classifiers and that the aggregation feature
improves the performance of any integrated tree classifiers.

In Table 6, we test the impact of different position encoding. We
add the sinusoidal version (Eq. (2)) and the learned version of position
encoding to the temporal and behavioral encoder and test the perfor-
mance, respectively. The empirical results show that learnable encoding
is optimal for the temporal encoder, while adding any position encod-
ing will reduce the performance of the behavioral encoder. The analysis
is as follows: in processing temporal sequences, the model needs to
learn fewer parameters because the input length is short and fixed, so
the self-learning method is better than the sinusoidal version method;
in processing behavior sequences, the sequences are divided accord-
ing to different behaviors. Therefore, unlike the temporal sequences,
which are strictly sequential, the location relationships between the
behavioral sequences are not as important.

In Fig. 8, we explore the effect of the multiple heads number on
the effect. In the temporal encoder, it can be observed that the model
improves in both AUC and F-score when the number of attention
heads increases, and the performance is best when the number of

Expert Systems With Applications 209 (2022) 118177X. Wu et al.

a
o
d
b
p
A
o
c
a

Fig. 7. The receiver operating characteristic (ROC) curve.
Fig. 8. The effect of heads number.
ttention heads reaches the maximum (i.e., equal to the dimensionality
f a single time series), which illustrates the heterogeneity between
ifferent behavioral relationships in a single time series. While in the
ehavioral encoder, we observe an objective pattern, where the model’s
erformance decreases as the number of attention heads increases.
lthough the performance on a metric is excellent when the number
f attention heads is maximized, more heads tend to mean multiply
omputation, so we use attention heads of 2 and 1 for the temporal
nd behavioral encoders, respectively, in our practical experiments.
9

4.5. Visualization and discussion

We compute the attention weights obtained by each encoder layer
and present them in a heat map after average pooling. The attention
weight distribution of the behavioral and temporal encoders is shown in
Figs. 9 and 10 respectively. The first row (column) represents a class to-
ken sequence in the heat map, and the other rows (columns) represent
behavior sequences or time sequences. The attention weight varies with
the brightness of the color in the cell. In the heat map of the behavioral

Expert Systems With Applications 209 (2022) 118177X. Wu et al.
Fig. 9. Distribution of attention weights in the behavioral encoder.

Fig. 10. Distribution of attention weights in the temporal encoder.

encoder, the attention weight matrix is symmetric because we drop the
linear mapper. We find that the correlation between the second 2nd and
the 14th sequence is high, representing the number of websites visited
and the total use time in one day, respectively. In the heat map of the
temporal encoder, counter-intuitively, the value of the attention weight
matrix on the diagonal is not high. Each sequence is highly correlated
with the sequence of the last three days. Intuitively, if a user has no
record in the last few days, it is highly likely to become a churner.
We know from the heatmap that the last days of data are given more
attention, which indicates that the model captures this pattern well.

5. Conclusion and future work

This paper introduces the Multivariate Behavior Sequence Trans-
former, a new churn prediction model (MBST). The model enhances the
prediction by two orthogonal but complementary attention mechanisms
and combines the Tree-based learning method and sequence model.
A comparison to state-of-the-art methods demonstrates the superiority
of our methodology. In addition, extensive ablation experiments are
carried out to demonstrate each component’s indispensability. The
depiction of attention weights aids the model’s interpretability.

From the data perspective, MBST can combine static and dynamic
data to obtain a comprehensive representation and improve the per-
formance of downstream tasks. Data is the soul of both customer
10
management and machine learning, and introducing more data from
managerial insights is a key way to improve prediction performance.

From the algorithmic perspective, MBST draws on both the learning
capability of the tree ensemble model for structured data and the
learning capability of the sequence model for time series. However, it
is not yet a universal model so far. The attention mechanism is highly
customizable to the extent that its application is limited. Furthermore,
because the MBST focus on the classification problem of short time
series, the model cannot perform well when dealing with large time
series due to the squared computational complexity of the attention
mechanism, long time step input memory bottleneck, etc. As a result,
we aim to make MBST applicable to more scenarios in the future.

CRediT authorship contribution statement

Xing Wu: Conceptualization, Methodology, Funding acquisition,
Project administration, Supervision, Writing – review & editing. Pan
Li: Writing – original draft, Data curation, Software, Implementation,
Investigation, Formal analysis, Visualization. Ming Zhao: Supervision,
Writing – review & editing. Ying Liu: Supervision, Writing – review
& editing. Rubén González Crespo: Supervision, Writing – review &
editing. Enrique Herrera-Viedma: Supervision, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (Grant No. 62172267), the National Key R&D Program of
China (Grant No. 2019YFE0190500), the Natural Science Foundation
of Shanghai, China (Grant No. 20ZR1420400), the State Key Program
of National Natural Science Foundation of China (Grant No. 61936001).

References

Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom
using machine learning in big data platform. Journal of Big Data, 6(1), 1–24.

Ahn, J., Hwang, J., Kim, D., Choi, H., & Kang, S. (2020). A survey on churn analysis
in various business domains. IEEE Access, 8, 220816–220839.

Aksan, E., Cao, P., Kaufmann, M., & Hilliges, O. (2020). A spatio-temporal transformer
for 3D human motion prediction. arXiv preprint arXiv:2004.08692.

Alboukaey, N., Joukhadar, A., & Ghneim, N. (2020). Dynamic behavior based churn
prediction in mobile telecom. Expert Systems with Applications, 162, Article 113779.

Amin, A., Shah, B., Khattak, A. M., Moreira, F. J. L., Ali, G., Rocha, A., et al. (2019).
Cross-company customer churn prediction in telecommunication: a comparison of
data transformation methods. International Journal of Information Management, 46,
304–319.

Arivazhagan, B., & Sankara, S. (2020). Customer churn prediction model using
regression with Bayesian boosting technique in data mining. Ijaema. Com, 12(V),
1096–1103.

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Backiel, A., Verbinnen, Y., Baesens, B., & Claeskens, G. (2015). Combining local and
social network classifiers to improve churn prediction. In Proceedings of the 2015
IEEE/ACM international conference on advances in social networks analysis and mining
2015 (pp. 651–658). ACM.

Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197–227.
Bilal Zorić, A. (2016). Predicting customer churn in banking industry using neural

networks. Interdisciplinary Description of Complex Systems: INDECS, 14(2), 116–124.
Chen, K., Chen, G., Xu, D., Zhang, L., Huang, Y., & Knoll, A. (2021). NAST:

Non-autoregressive spatial-temporal transformer for time series forecasting. arXiv
preprint arXiv:2102.05624.

http://refhub.elsevier.com/S0957-4174(22)01343-4/sb1
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb1
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb1
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb2
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb2
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb2
http://arxiv.org/abs/2004.08692
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb4
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb4
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb4
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb5
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb5
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb5
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb5
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb5
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb5
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb5
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb6
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb6
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb6
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb6
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb6
http://arxiv.org/abs/1607.06450
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb8
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb8
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb8
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb8
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb8
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb8
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb8
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb9
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb10
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb10
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb10
http://arxiv.org/abs/2102.05624

Expert Systems With Applications 209 (2022) 118177X. Wu et al.

D

D

F

F

F

G

H

H

J

K

K

L

L

L

L

M

M

M

N

Ó

Ó

P

P

R

R

S

S

T

T

V

V

X

Y

Z

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In: Proceedings
of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data
Mining (pp. 785–794).

De Caigny, A., Coussement, K., & De Bock, K. W. (2018). A new hybrid classification
algorithm for customer churn prediction based on logistic regression and decision
trees. European Journal of Operational Research, 269(2), 760–772.

Dela Llave, M. A., López, F. A., & Angulo, A. (2019). The impact of geographical
factors on churn prediction: an application to an insurance company in madrid’s
urban area. Scandinavian Actuarial Journal, 2019(3), 188–203.

eLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the
areas under two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics, 837–845.

evlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:
1810.04805.

arquad, M. A. H., Ravi, V., & Raju, S. B. (2014). Churn prediction using comprehensi-
ble support vector machine: An analytical CRM application. Applied Soft Computing,
19, 31–40.

reund, Y., Schapire, R. E., et al. (1996). Experiments with a new boosting algorithm.
In Icml, vol. 96 (pp. 148–156). Citeseer.

riedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
The Annals of Statistics, 1189–1232.

rabczewski, K., & Jankowski, N. (2005). Feature selection with decision tree criterion.
In Fifth international conference on hybrid intelligent systems (HIS’05) (pp. 6–pp). IEEE.

e, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., & Li, M. (2019). Bag of tricks for image
classification with convolutional neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 558–567).

o, T. K. (1998). The random subspace method for constructing decision forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.

amalian, E., & Foukerdi, R. (2018). A hybrid data mining method for customer churn
prediction. Engineering, Technology & Applied Science Research, 8(3), 2991–2997.

eramati, A., Ghaneei, H., & Mirmohammadi, S. M. (2016). Developing a prediction
model for customer churn from electronic banking services using data mining.
Financial Innovation, 2(1), 10.

ristensen, J. T., & Burelli, P. (2019). Combining sequential and aggregated data for
churn prediction in casual freemium games. In 2019 IEEE conference on games (CoG)
(pp. 1–8). IEEE.

eung, H. C., & Chung, W. (2020). A dynamic classification approach to churn
prediction in banking industry.

iu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). Swin transformer:
Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.
14030.

oshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101.

u, N., Lin, H., Lu, J., & Zhang, G. (2012). A customer churn prediction model in
telecom industry using boosting. IEEE Transactions on Industrial Informatics, 10(2),
1659–1665.

ayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014). The evolution of boosting
algorithms. Methods of Information in Medicine, 53(06), 419–427.

edsker, L. R., & Jain, L. (2001). Recurrent neural networks. Design and Applications,
5, 64–67.
11
ilošević, M., Živić, N., & Andjelković, I. (2017). Early churn prediction with
personalized targeting in mobile social games. Expert Systems with Applications, 83,
326–332.

ie, G., Rowe, W., Zhang, L., Tian, Y., & Shi, Y. (2011). Credit card churn forecasting
by logistic regression and decision tree. Expert Systems with Applications, 38(12),
15273–15285.

skarsdóttir, M., Bravo, C., Verbeke, W., Sarraute, C., Baesens, B., & Vanthienen, J.
(2017). Social network analytics for churn prediction in telco: Model building,
evaluation and network architecture. Expert Systems with Applications, 85, 204–220.

skarsdóttir, M., Van Calster, T., Baesens, B., Lemahieu, W., & Vanthienen, J. (2018).
Time series for early churn detection: Using similarity based classification for
dynamic networks. Expert Systems with Applications, 106, 55–65.

eriáñez, A., Saas, A., Guitart, A., & Magne, C. (2016). Churn prediction in mobile
social games: Towards a complete assessment using survival ensembles. In 2016
IEEE international conference on data science and advanced analytics (DSAA) (pp.
564–573). IEEE.

lizzari, C., Cannici, M., & Matteucci, M. (2021). Spatial temporal transformer network
for skeleton-based action recognition. In Pattern recognition. ICPR international
workshops and challenges: virtual event, january 10–15, 2021, proceedings, part III
(pp. 694–701). Springer.

abiner, L., & Juang, B. (1986). An introduction to hidden Markov models. Ieee Assp
Magazine, 3(1), 4–16.

ajamohamed, R., & Manokaran, J. (2018). Improved credit card churn prediction
based on rough clustering and supervised learning techniques. Cluster Computing,
21(1), 65–77.

un, X., & Xu, W. (2014). Fast implementation of delong’s algorithm for comparing
the areas under correlated receiver operating characteristic curves. IEEE Signal
Processing Letters, 21(11), 1389–1393.

undarkumar, G. G., & Ravi, V. (2015). A novel hybrid undersampling method for
mining unbalanced datasets in banking and insurance. Engineering Applications of
Artificial Intelligence, 37, 368–377.

amassia, M., Raffe, W., Sifa, R., Drachen, A., Zambetta, F., & Hitchens, M. (2016).
Predicting player churn in destiny: A hidden markov models approach to predicting
player departure in a major online game. In 2016 IEEE conference on computational
intelligence and games (CIG) (pp. 1–8). IEEE.

an, F., Wei, Z., He, J., Wu, X., Peng, B., Liu, H., et al. (2018). A blended deep learning
approach for predicting user intended actions. In 2018 IEEE international conference
on data mining (ICDM) (pp. 487–496). IEEE.

an Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review on the long short-term
memory model.. Artificial Intelligence Review, 53(8), 5929–5955.

aswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. In Advances in neural information processing systems
(pp. 5998–6008).

u, M., Dai, W., Liu, C., Gao, X., Lin, W., Qi, G.-J., et al. (2020). Spatial-temporal
transformer networks for traffic flow forecasting. arXiv preprint arXiv:2001.02908.

ang, C., Shi, X., Jie, L., & Han, J. (2018). I know you’ll be back: Interpretable new user
clustering and churn prediction on a mobile social application. In Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery & data mining
(pp. 914–922).

hou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., et al. (2021). Informer: Beyond
efficient transformer for long sequence time-series forecasting. In Proceedings of
AAAI .

http://refhub.elsevier.com/S0957-4174(22)01343-4/sb13
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb13
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb13
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb13
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb13
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb14
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb14
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb14
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb14
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb14
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb15
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb15
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb15
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb15
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb15
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb17
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb17
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb17
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb17
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb17
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb18
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb18
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb18
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb19
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb19
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb19
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb20
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb20
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb20
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb22
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb22
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb22
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb23
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb23
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb23
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb24
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb24
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb24
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb24
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb24
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb25
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb25
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb25
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb25
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb25
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb26
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb26
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb26
http://arxiv.org/abs/2103.14030
http://arxiv.org/abs/2103.14030
http://arxiv.org/abs/2103.14030
http://arxiv.org/abs/1711.05101
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb29
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb29
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb29
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb29
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb29
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb30
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb30
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb30
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb31
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb31
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb31
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb32
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb32
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb32
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb32
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb32
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb33
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb33
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb33
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb33
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb33
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb34
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb34
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb34
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb34
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb34
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb35
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb35
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb35
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb35
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb35
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb36
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb36
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb36
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb36
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb36
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb36
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb36
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb37
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb37
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb37
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb37
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb37
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb37
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb37
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb38
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb38
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb38
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb39
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb39
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb39
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb39
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb39
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb40
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb40
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb40
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb40
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb40
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb41
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb41
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb41
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb41
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb41
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb42
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb42
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb42
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb42
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb42
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb42
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb42
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb43
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb43
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb43
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb43
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb43
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb44
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb44
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb44
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb45
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb45
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb45
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb45
http://refhub.elsevier.com/S0957-4174(22)01343-4/sb45
http://arxiv.org/abs/2001.02908

	Customer churn prediction for web browsers
	Introduction
	Related work
	Churn prediction
	Tree-based learning
	Sequence modeling

	Methodology
	Problem formulation
	Overview of the architecture
	Learnable affine transformation
	Bidirectional attention mechanism
	Multiple classification heads
	Optimization

	Experiments
	Dataset
	Experiment setup
	Main results
	Ablation studies
	Visualization and discussion

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

