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Abstract
A Lie system is a non-autonomous system of first-order ordinary differential
equations describing the integral curves of a non-autonomous vector field tak-
ing values in a finite-dimensional real Lie algebra of vector fields, a so-called
Vessiot–Guldberg Lie algebra. In this work, multisymplectic forms are applied
to the study of the reduction of Lie systems through their Lie symmetries.
By using a momentum map, we perform a reduction and reconstruction pro-
cedure of multisymplectic Lie systems, which allows us to solve the original
problem by analysing several simpler multisymplectic Lie systems. Conversely,
we study how reduced multisymplectic Lie systems allow us to retrieve the
form of the multisymplectic Lie system that gave rise to them. Our results are
illustrated with examples from physics, mathematics, and control theory.
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1. Introduction

A Lie system is a system of first-order ordinary differential equations whose general solution
can be expressed as an autonomous function depending on a generic finite family of particular
solutions and a set of constants. The autonomous function is called a superposition rule of the
Lie system. Standard examples of Lie systems are most types of Riccati equations [32] and
non-autonomous linear systems of ordinary differential equations [21, 61].

The Lie–Scheffers theorem states that a Lie system amounts to a t-dependent vector
field taking values in a finite-dimensional real Lie algebra of vector fields, a so-called
Vessiot–Guldberg Lie algebra [21]. The latter property gave rise to a number of methods
for determining superposition rules [19, 21, 61]. Meanwhile, the Lie–Scheffers theorem also
showed that being a Lie system is the exception rather than the rule [21]. Despite this, Lie
systems admit numerous relevant physical and mathematical applications, as witnessed by the
many works on the topic [2, 15, 18, 29, 34, 38, 58, 59, 61].

Recently, a lot of attention has been paid to Lie systems admitting a Vessiot–Guldberg Lie
algebra of Hamiltonian vector fields and/or Lie symmetries relative to several types of geomet-
ric structures: Poisson [15, 18, 22], symplectic [3, 4, 15, 22, 29], Dirac [15, 17], k-symplectic
[49], multisymplectic [33], Jacobi [36], Riemann [37], and others [15, 46]. Surprisingly, this
led to finding much more applications of Lie systems than in the literature dealing with mere
Lie systems [5, 15, 46]. Such structures allow for the construction of superposition rules, con-
stants of motion, and other properties of Lie systems in an algebraic manner without relying on
the solving of complicated systems of partial or ordinary differential equations [18, 19, 21, 61].
Geometric structures also explain the geometric meaning of superposition rules [4] and gave
rise to the study of more general differential equations [6] as well as physical and mathematical
problems [15, 46].

This work pioneers the analysis of the reduction of Lie systems with compatible geometric
structures [48], in particular with multisymplectic structures [33]. The reduction of multisym-
plectic Lie systems allows us to simplify the system by reducing its number of variables while
ensuring the existence of a compatible multisymplectic structure for the reduced system, which
is again a multisymplectic Lie system. This may be used, for instance, to obtain superposition
rules for the reduced multisymplectic Lie systems, which in turn can be derived through the
multisymplectic structure [33]. It should be noted that our paper presents for the first time the
use of a type of reduction procedure for Lie systems (cf [21, 48]).

More particularly, by proposing a certain type of reduction process of multisymplectic
structures, which is interesting on its own due to the very wide interest in any kind of multi-
symplectic reduction process (see [27, 60, 61] and references therein), we perform a reduction
process of the so-called multisymplectic Lie systems introduced in [33]. More specifically, our
reduction process is focused on Lie systems of locally automorphic type, i.e. they can be con-
sidered locally as Lie systems on Lie groups of a very particular but relevant type [33]. Finally,
we also describe a reconstruction procedure to recover the initial t-dependent multisymplectic
Lie system from several of its multisymplectic reductions. It is worth noting that our techniques
are illustrated by the study of relevant physical and mathematical systems that appear in the
study of quantum mechanical systems, control systems, and other topics.

The structure of the paper goes as follows. Section 2 presents the basic theory of Lie systems,
including the Lie–Scheffers theorem, and some results on automorphic Lie systems. It also
offers a review on multisymplectic structures and the notion of multisymplectic Lie system [33]
is presented. The last part of this section is devoted to a survey of the notions of unimodular
Lie algebras and unimodular Lie groups.
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In section 3 we review some results on locally automorphic Lie systems and give a proce-
dure to find some of their invariants. We also work out two examples to better illustrate these
concepts. The first is the so-called generalised Darboux–Brioschi–Halphen system, which
appears in the study of triply orthogonal surfaces and vacuum Einstein equations for hyper-
Kähler Bianchi-IX metrics [23, 24, 35]. Additionally, it also occurs when reducing the self-dual
Yang–Mills equations corresponding to an infinite-dimensional gauge group of diffeomor-
phisms of a three-dimensional sphere [23]. The second example is a first-order control system
on R5 with two controls [53, 58].

Section 4 devises a new reduction procedure for multisymplectic Lie systems. We begin by
working out a couple of introductory examples: the Schwarz equation and dissipative quan-
tum harmonic oscillators. Having studied some examples, we develop a multisymplectic Lie
systems reduction theory. These results are applied to the control system introduced in the
previous section and to quantum harmonic oscillators with a spin-magnetic term.

A reconstruction procedure for multisymplectic Lie systems is developed in section 5. This
reconstruction is achieved by combining several different reductions in an appropriate way and
allows us to recover the initial multisymplectic Lie system. This procedure is applied to the
example of quantum harmonic oscillators with a spin-magnetic term introduced in the previous
section.

2. Some basic concepts and notations

Let us assume some general statements to hold throughout the work unless otherwise explicitly
stated. All mathematical objects are smooth, real, and globally defined. This allows us to avoid
non-relevant technical problems while stressing the main ideas of our theory. Hereafter, N will
represent an n-dimensional connected manifold. All manifolds are considered connected. The
sum over crossed repeated indices is understood.

2.1. Generalised distributions and t-dependent vector fields

Consider a Lie algebra V with a Lie bracket [·, ·]. Given two subsets A,B ⊂ V , we denote
by [A,B] the linear subspace generated by the Lie brackets between elements of A and B.
Meanwhile, Lie(B) stands for the smallest Lie subalgebra of V containing B.

A Stefan–Sussmann (or generalised) distribution on a manifold N is a correspondence D
associating each x ∈ N with a linear subspace Dx ⊂ TxN. The dimension of Dx is called the
rank ofD at x. It is said thatD is regular at x ∈ N when its rank is constant on a neighbourhood
of x. Meanwhile, the generalised distribution D is called regular when its rank is constant on
the whole N. Regular generalised distributions are called distributions. A vector field Y ∈ X(N)
takes values in D, let us write it Y ∈ D, when Yx ∈ Dx for all x ∈ N.

We write X(N) for the C∞(N)-module of vector fields on N. Meanwhile, Ω(N) and Ωk(N)
stand for the C∞(N)-modules of differential forms and differential k-forms on N, respec-
tively. A set V ⊂ X(N) of vector fields on N allows us to define a generalised distribution
DV on N mapping each x ∈ N to the linear span of all the values of its vector fields at x, i.e.
DV

x = span{Xx|X ∈ V}.
A t-dependent vector field on N is a mapping X : (t, x) ∈ R× N �→ X(t, x) ∈ TN so that

τN ◦ X = π2, where π2 : (t, x) ∈ R× N �→ x ∈ N and τN : TN → N is the canonical tangent
bundle projection. A t-dependent vector field X on N amounts to a t-parameterised family of
vector fields {Xt}t∈R on N, with Xt : x ∈ N �→ X(t, x) ∈ TN [21]. This enables us to relate t-
dependent vector fields to the following geometric structures.
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An integral curve of X is a curve γ : R→ N satisfying that

dγ
dt

(t) = X(t, γ(t)), ∀ t ∈ R. (2.1)

Hence, γ̃ : t ∈ R �→ (t, γ(t)) ∈ R× N becomes an integral curve of the autonomisation X̃ of X,
namely the vector field X̃ = ∂/∂t + X on R× N [1, 21]. On the contrary, if γ̃ : R→ R× N
is an integral curve of the autonomisation X̃ and a section of the bundle π1 : (t, x) ∈ R× N �→
t ∈ R, then γ = π2 ◦ γ̃ is an integral curve of X. Note that γ̃ is a section of the bundle π1 if, and
only if, π1 ◦ γ̃ = IdR. It is worth noting, for clarity, that σ(t) = (t + 1, γ(t + 1)), where γ(t) is
a solution to (2.1), is not a section of π1, but it is an integral curve of X̃.

Every t-dependent vector field X on a manifold N gives rise to a unique system (2.1) on N
describing its integral curves. Conversely, a system (2.1) describes the integral curves γ̃ : t ∈
R �→ (t, γ(t)) ∈ R× N of the autonomisation of a unique t-dependent vector field X on N. This
allows us to use X to identify both a t-dependent vector field on N and its associated system
(2.1). This identification will simplify the terminology of our paper without leading to any
misunderstanding.

Definition 2.1. The smallest Lie algebra of a t-dependent vector field X on N is the small-
est (in the sense of inclusion) Lie algebra over the reals, VX, including the vector fields
{Xt}t∈R, namely VX = Lie({Xt}t∈R). The associated distribution of X, denoted by DVX

, is the
generalised distribution on N spanned by the elements of the Lie algebra of vector fields VX.

It can only be ensured that the rank of DVX
is constant on the connected components of

an open and dense subset of N, where DVX
becomes regular, involutive, and integrable (see

[22]). The most relevant instance for us is when VX is a finite-dimensional Lie algebra and,
therefore, the generalised distribution DVX

becomes integrable on the whole N in the sense of
Stefan–Sussmann (see [54, p 63] for details).

2.2. Lie systems

Let us survey some fundamental notions in the theory of Lie systems to be used hereafter (see
[21] for details).

Definition 2.2. A superposition rule depending on m particular solutions for a system X
in N is a function Φ : Nm × N → N, x = Φ(x(1), . . . , x(m); λ), so that the general solution, x(t),
of X can be written as x(t) = Φ(x(1)(t), . . . , x(m)(t); λ), where x(1)(t), . . . , x(m)(t) is any generic
family of particular solutions of X and λ is a point in N that is related to the initial conditions.
A Lie system is a non-autonomous system of first-order ordinary differential equations that
admits a superposition rule.

The Lie–Scheffers theorem [19, 47] states the conditions that ensure that a system X
possesses a superposition rule:

Theorem 2.3. A system X on N possesses a superposition rule if, and only if, X =∑r
α=1 bα(t)Xα, for a family X1, . . . , Xr of vector fields on N spanning an r-dimensional Lie

algebra and a set b1(t), . . . , br(t) of t-dependent functions.

In other words, X possesses a superposition rule if, and only if, dim VX < ∞. Then, a Lie
system can always be written as X =

∑r
α=1 bα(t)Xα, where X1, . . . , Xr span a Lie algebra V

that may strictly contain VX. Then, V is called a Vessiot–Guldberg Lie algebra of X. It should
be noted that V may not be univocally defined for a system X, while VX is always characterised
by X [21].
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Previous comments allow us to hereafter denote a Lie system as a triple (N, X, V), where N
is a manifold and V is a Vessiot–Guldberg Lie algebra of a t-dependent vector field, X, on N.

Let us show how the integration of a Lie system on a manifold can be reduced to integrate
one of its Vessiot–Guldberg Lie algebras to a Lie group action and to know a particular solution
of a Lie system on a Lie group of a very specific type, a so-called automorphic Lie system
[18, 60]. With this aim, let us recall some basic results regarding Lie group actions.

Let ϕ : D ⊂ G × N → N be a local (left) Lie group action and define ϕx : g ∈ DG ⊂ G �→
ϕ(g, x) ∈ N so that DG = {g ∈ G|(g, x) ∈ D} [57]. For every ξ ∈ TeG, we set the fundamental
vector field ξN ∈ X(N) to be ξN(x) = Teϕx(ξ). Let us denote by ξL and ξR the respective invari-
ant vector fields associated with ξ ∈ TeG. Hence, there are linear isomorphisms ξ ∈ TeG �→
ξL ∈ XL(G) and ξ ∈ TeG �→ ξR ∈ XR(G), whereXL(G) andXR(G) are the linear spaces of left-
and right-invariant vector fields on G. The space g = TeG inherits a Lie algebra structure from
XL(G) via the identification given by the linear isomorphism ξ ∈ TeG �→ ξL ∈ XL(G). Then
(cf [44, ch 20]),

(a) The map ϕ̂ : g→ X(N), ξ �→ ξN, is a Lie algebra antihomomorphism (the infinitesimal
generator of ϕ).

(b) For every x ∈ N, the right-invariant vector field ξR and the fundamental vector field ξN

are ϕx-related [44, p 182], namely Tgϕx(ξR(g)) = ξN(ϕx(g)) for every g ∈ G.

In general, an antihomomorphism g→ X(N) is called a (left) Lie algebra action, and, when
g is finite-dimensional, it can be integrated to a Lie group action. More precisely:

Theorem 2.4. Let g be a finite-dimensional Lie algebra, and let G be a Lie group with Lie
algebra g. Given a Lie algebra morphism ϕ̂ : g→ X(N), there exists a local Lie group action
ϕ : G × N → N whose infinitesimal generator is ϕ̂. If G is connected and simply connected
and the vector fields ϕ̂(g) are complete, then ϕ becomes a global Lie group action.

The proof of these results, and other related facts, can be found, for instance, in [57, p 58]
and [9, p 207]. This Lie group action is the device that relates the Lie system on N to a Lie
system on G:

Theorem 2.5. Let (N, X, V) be a Lie system given by X =
∑r

α=1 bα(t)Xα, where X1, . . . , Xr

is a basis of the Vessiot–Guldberg Lie algebra V and b1(t), . . . , br(t) are arbitrary t-dependent
functions. Let G be a Lie group whose Lie algebra is isomorphic to V, and let ϕ : DG ∈ G ×
N → N be a local Lie group action as given by theorem 2.4. If XR

α is the right-invariant vector
field on G related to the vector field Xα through ϕ, with α = 1, . . . , r, then

(a) The triple (G, X G, V G), where

XG(t, g) =
r∑

α=1

bα(t)XR
α (g), ∀ g ∈ G, ∀ t ∈ R, (2.2)

and VG = XR(G), is a Lie system on G.
(b) For every x0 ∈ N and t ∈ R, the vector field XG

t is ϕx0 -related with Xt; namely, the t-
dependent vector fields XG and X are ϕx0 -related.

(c) If g(t) is the integral curve of XG with g(0) = e, and x0 ∈ N, then x(t) = ϕ(g(t), x0) is the
integral curve of X with x(0) = x0.

The proof of this result is almost immediate: the vector fields XR
α span the Lie algebraXR(G),

the t-dependent vector field XG is ϕx0 -related with X, and this implies that ϕx0 maps integral
curves of XG to integral curves of X (see [18, 21] for details).
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Hence, knowing the explicit form of ϕ allows us to obtain the solutions to X via a single
particular solution to (2.2). The other way around, the general solution of X determines the
integral curve of (2.2) with g(0) = e using an algebraic system of equations determined by ϕ.

Lie systems (2.2) are frequently called automorphic Lie systems [8, 60]. Due to their spe-
cific structure, automorphic Lie systems possess invariant differential forms with respect to
their evolution (see [33] for details). From now on, we say that the automorphic Lie system
(G, XG,XR(G)) is the automorphic Lie system related to (N, X, V).

The automorphic Lie system related to a t-dependent right-invariant vector field (2.2) is
invariant relative to right multiplications Rg : g′ ∈ G → g′g ∈ G. Then, if g1(t) is the particular
solution to the system XG with an initial condition g1(0) ∈ G, then Rgg1(t) is the particular
solution of XG with the initial condition g1(0)g. Consequently, the general solution to XG can
be brought into the form g(t) = ΦG(g1(t); g) :=Rgg1(t), which leads to the definition of the
superposition rule ΦG : (g1; g) ∈ G × G �→ Rgg1 ∈ G, which depends on a unique particular
solution [21].

2.3. Multisymplectic manifolds and Lie systems

This section reviews the fundamental properties of multisymplectic manifolds to be used
hereafter (see [13, 14, 25] for details).

A differential k-form ω on N is called one-nondegenerate if, and only if, the vector bundle
morphism

ω�: TN → Λk−1T∗N
Xp �→ ιXpωp,

where Xp ∈ TpN and ιXpωp stands for an inner contraction, is injective. If this is the case, the
induced morphism of C∞(N)-modules ω̂ : X(N) → Ωk−1(N), X �→ ιXω, is also injective.

Definition 2.6. A multisymplectic k-form on an n-dimensional manifold N is a one-
nondegenerate and closed differential k-form Θ ∈ Ωk(N). A multisymplectic manifold of
degree k is a pair (N,Θ), where Θ is a multisymplectic k-form on N.

The multisymplectic two-forms are the symplectic forms. Multisymplectic n-forms on N are
the volume forms on N. We hereafter assume that dim N � 2 and, thus, every multisymplectic
k-form has degree k � 2. The ‘multisymplectic’ term can be misleading and it should not be
confused with other structures, such as k-symplectic and polysymplectic [45, p 21], where
several differential forms appear. Anyhow, we will stick to the standard nomenclature, which
has been established for almost fifty years now [40, 41].

Definition 2.7. Let (N,Θ) be a multisymplectic manifold of degree k. A vector field X on
N is locally Hamiltonian if ιXΘ is closed. A vector field X is Hamiltonian if ιXΘ is exact, i.e.
ιXΘ = dΥ for a differential (k − 2)-form ΥX on N. In previous cases, ιXΘ and ΥX are called
Hamiltonian (k − 1)- and (k − 2)-forms associated with X, respectively.

A vector field is locally Hamiltonian if, and only if, Θ is invariant by X, that is,

LXΘ = 0,

where LXΘ stands for the Lie derivative of Θ relative to X.
To keep the notation simple, we will frequently call ιXΩ and ΥX Hamiltonian forms asso-

ciated with X. Note that the degree is obvious from the context and does not need to be
detailed.
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In analogy with symplectic geometry, it is possible to define certain brackets on the spaces of
Hamiltonian forms on multisymplectic manifolds. Notwithstanding, their properties generally
differ significantly from the properties of the brackets defined in symplectic geometry.

Definition 2.8. Let (N,Θ) be a multisymplectic manifold of degree k.

• A bracket between Hamiltonian (k − 1)-forms can be set as follows. Let ξ, ζ ∈ Im Θ̂ ⊂
Ωk−1(N), and let X, Y ∈ X(N) be the unique vector fields such that ιXΘ = ξ and ιYΘ = ζ .
The bracket between ξ and ζ is defined by

{ξ, ζ} = ι[Y,X]Θ ∈ Im Θ̂. (2.3)

This bracket satisfies the Jacobi identity and, therefore, becomes a Lie bracket.
• The bracket between Hamiltonian (k − 2)-forms will be now defined. Let X, Y be Hamilto-

nian vector fields and letΥX,ΥY ∈ Ωk−2(N) be Hamiltonian forms of X and Y, respectively.
Then,

{ΥX,ΥY} = ιY ιXΘ

gives rise to a bracket on (k − 2)-forms. It can be proved that the bracket of Hamiltonian
(k − 2)-forms needs not be a Lie bracket for k > 2 [13].

Although the brackets for Hamiltonian (k − 1) and (k − 2)-forms have been denoted in the
same way, this will not lead to confusion and will simplify the notation.

Note that

d{ΥX,ΥY} = dιYιXΘ = ι[Y,X]Θ = {dΥX , dΥY}. (2.4)

The equality d{ΥX,ΥY} = ι[Y,X]Θ, shows that [Y, X] is a Hamiltonian vector field admitting
a Hamiltonian form {ΥX,ΥY}. Consequently, the space of (locally) Hamiltonian vector fields
(Hamloc(N)) Ham(N) becomes a Lie algebra, and the map attaching a (locally) Hamiltonian
vector field X to ιXΘ is an injective Lie algebra anti-homomorphism.

Let us recall the notion of a multivector field, which is needed in our reduction procedure
for multisymplectic Lie systems (see [26, 30] for more details). An �-multivector field on N is
a section of the bundle Λ�(TN). An �-multivector field Y on N is said to be decomposable if
there exists a family of vector fields Y1, . . . , Y� ∈ X(N) such that Y = Y1 ∧ . . . ∧ Y�. We will
denote by X�(N) the set of �-multivector fields.

Let (N,Θ) be a multisymplectic manifold of degree k. An �-multivector field Y is Hamil-
tonian (with respect to Θ) if there exists a (k − �− 1)-form θ such that ιYΘ = dθ. This
notion allows us to generalise the notion of Hamiltonian vector fields to multivector fields.
Furthermore, Y is locally Hamiltonian or multisymplectic if LYΘ = 0 (see [13, 14]).

Finally, let us recall the notion of a multisymplectic Lie system [33].

Definition 2.9. A (locally) multisymplectic Lie system is a triple (N,Θ, X), where X is a
Lie system whose smallest Lie algebra VX is a finite-dimensional real Lie algebra of (locally)
Hamiltonian vector fields relative to a multisymplectic structure Θ on N.

2.4. Unimodular Lie algebras

This section surveys the fundamentals of unimodular Lie algebras and Lie groups to be used
hereafter.

7
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Let G be a Lie group with Lie algebrag = TeG. A (left) Haar measure on G is a left-invariant
volume form on G [39]. Every Lie group admits a Haar measure given by a left-invariant
volume form, and it is unique up to a non-zero multiplicative constant (cf [12]).

Let {XL
1 , . . . , XL

r } be a basis of the Lie algebra XL(G) of left-invariant vector fields on G
and let {ηL

1 , . . . , ηL
r } be its dual basis of left-invariant differential one-forms. Then, any left-

invariant volume form on G is a non-zero scalar multiple of

Θ = ηL
1 ∧ . . . ∧ ηL

r .

If XL is a left-invariant vector field on G, then [33]:

LXLΘ = −Tr(adXL)Θ; (2.5)

where Tr stands for the trace of an endomorphism, and ad : v ∈ g �→ adv ∈ End(g), is the
adjoint representation of a Lie algebra g and given by advw = [v,w].

A Lie group is called unimodular if its Haar measure is bi-invariant, namely it is left- and
right-invariant [52]. For instance, Abelian, compact, and semi-simple Lie groups, are all uni-
modular [62]. This work focusses on the Lie algebras of unimodular Lie groups, whose most
important properties (for our purposes) are detailed in the definition and proposition below (for
details, see [33]).

Definition 2.10. A finite-dimensional Lie algebra g is called unimodular when the maps
adv ∈ End(g) are traceless—we say then that the adjoint representation is traceless.

Proposition 2.11. A (connected) Lie group G is unimodular if, and only if, its Lie algebra
is unimodular.

Remark 2.12. It is worth noting that each left-invariant vector field X on G has a flow of
the form φ : t ∈ R �→ Rexp(tXe) ∈ Diff(G). Then, a vector field Y on a connected Lie group G
is right-invariant if, and only if, it commutes with every left-invariant vector field XL, namely
LXLY = 0. This also applies to tensor fields on G.

Definition 2.13. Let g be an n-dimensional Lie algebra. We write G(r, g) for the set of
decomposable r-multivectors spanning r-dimensional unimodular Lie subalgebras. The set
G(g) =

⋃n
r=0G(r, g) is called the unimodular Grassmannian of g.

3. Locally automorphic Lie systems and invariant forms

In this section, we recall conditions that ensure the existence of a multisymplectic form Θ
invariant with respect to the elements of a Vessiot–Guldberg Lie algebra V.

In general, it is difficult to find multisymplectic forms compatible with a Lie system X
admitting a Vessiot–Guldberg Lie algebra V, because this requires finding adequate solutionsΘ
to a system of partial differential equationsLYΘ = 0 for every Y ∈ V. However, we can develop
several simpler methods to find compatible invariant forms for a special class of Lie systems
with many relevant physical applications: the so-called locally automorphic Lie systems.

3.1. Locally automorphic Lie systems

Definition 3.1. A locally automorphic Lie system is a triple (N, X, V), where X is a Lie system
on the manifold N with a Vessiot–Guldberg Lie algebra V such that dim V = dim N and DV =
TN.

8
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The following result, whose proof can be found in [33], shows that locally automorphic Lie
systems are locally diffeomorphic to automorphic Lie systems, thus motivating the previous
definition.

Theorem 3.2. Consider a locally automorphic Lie system (N, X, V). Let G be a Lie group
whose Lie algebra is isomorphic to V, let ϕ be a local action of G on N obtained from the
integration of V, and let (G, X G, V G) be the corresponding automorphic Lie system on G given
by theorem 2.5. Then, for every x ∈ N, the map ϕx = ϕ(·, x) is a local diffeomorphism such
that Tgϕx(XG

t (g)) = Xt(ϕx(g)) for every t ∈ R.

Recall that the action ϕ can be ensured to be globally defined if, and only if, G is simply
connected and the Lie algebra V consists of complete vector fields [57]. From now on, we
assume that the action ϕ is defined globally.

The mapping ϕ allows us not only to find local diffeomorphisms ϕx : G → N, with
x ∈ N, but also maps certain geometric structures related to the locally automorphic Lie system
(N, X, V) with the associated automorphic Lie system (G, X R, V R).

As a consequence of theorem 3.2, we have the following corollaries.

Corollary 3.3. Consider a locally automorphic Lie system (N, X, V). Then, X admits a
superposition rule that depends only on one particular solution of X.

Corollary 3.4. Let (N, X, VX) be a locally automorphic Lie system on a (connected)
manifold. Then all t-independent constants of motion of X are constants.

The existence of the local diffeomorphism ϕx allows us to obtain theoretical properties of
locally automorphic Lie systems, such as corollary 3.3. However, its use to map them into
automorphic Lie systems is quite limited due to the locality of ϕx and the difficulties in obtain-
ing an explicit expression, which must be obtained by solving a system of nonlinear ordinary
differential equations determined by the Lie algebra V.

This can be seen in the next two examples of locally automorphic Lie systems.

Example 3.5 (The generalised Darboux–Brioschi–Halphen (DBH) system [24]).
Consider the system of ordinary differential equations given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dw1

dt
= w3w2 − w1w3 − w1w2 + τ 2,

dw2

dt
= w1w3 − w2w1 − w2w3 + τ 2,

dw3

dt
= w2w1 − w3w2 − w3w1 + τ 2,

(3.1)

where

τ 2 = α2
1(w1 − w2)(w3 − w1) + α2

2(w2 − w3)(w1 − w2) + α2
3(w3 − w1)(w2 − w3),

andα1,α2,α3 ∈ R. The DBH system with τ = 0 appears in the description of triply orthogonal
surfaces and the vacuum Einstein equations for hyper-Kähler Bianchi-IX metrics [23, 24, 35].
Furthermore, the generalised DBH system for τ �= 0 is a reduction of the self-dual Yang–Mills
equations corresponding to an infinite-dimensional gauge group of diffeomorphisms of a three-
dimensional sphere [23].

Even though the DBH system is autonomous, it is useful, e.g. to obtain its Lie symmetries
[28], to view it as a Lie system related to a Vessiot–Guldberg Lie algebra VDBH (V to simplify

9
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the notation) spanned by the vector fields

X1 =
∂

∂w1
+

∂

∂w2
+

∂

∂w3
,

X2 = w1
∂

∂w1
+ w2

∂

∂w2
+ w3

∂

∂w3
,

X3 = −(w3w2 − w1(w3 + w2) + τ 2)
∂

∂w1
− (w1w3 − w2(w1 + w3) + τ 2)

∂

∂w2

− (w2w1 − w3(w2 + w1) + τ 2)
∂

∂w3
.

One can check that the commutation relations are,

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3.

Thus, we have V  sl2, dim V = dim O and X1 ∧ X2 ∧ X3 �= 0 on an open submanifold O of
R3. Hence, (O, X, V) is a locally automorphic Lie system. To obtain a local diffeomorphism
mapping the DBH system into an automorphic one, one needs to integrate the vector fields
of V. In view of their analytic form, it is clear that it is very difficult to provide such a local
diffeomorphism.

Example 3.6 (A control system [53, 58]). Consider the following system of ordinary
differential equations on R

5:

dx1

dt
= b1(t),

dx2

dt
= b2(t),

dx3

dt
= b2(t)x1,

dx4

dt
= b2(t)x2

1,

dx5

dt
= 2b2(t)x1x2,

(3.2)

where b1(t) and b2(t) are arbitrary t-dependent functions.
This control system is defined by the t-dependent vector field XCS = b1(t)X1 + b2(t)X2 on

R5, where the vector fields

X1 =
∂

∂x1
, X2 =

∂

∂x2
+ x1

∂

∂x3
+ x2

1
∂

∂x4
+ 2x1x2

∂

∂x5
,

X3 =
∂

∂x3
+ 2x1

∂

∂x4
+ 2x2

∂

∂x5
, X4 =

∂

∂x4
, X5 =

∂

∂x5

(3.3)

are such that their only non-vanishing commutation relations are

[X1, X2] = X3, [X1, X3] = 2X4, [X2, X3] = 2X5. (3.4)

It is remarkable that the initial system of differential equation (3.2) can be described via a t-
dependent vector field that can be written as a linear combination of the vector fields X1, X2 with
t-dependent coefficients. Nevertheless, to prove that X is a Lie system, one has to add to X1, X2

as many vector fields as necessary to ensure that all such vector fields close a Vessiot–Guldberg
Lie algebra. In fact, the vector fields X3, X4, X5 appear as successive Lie brackets of the vector
fields X1, X2 and give rise, all of them, to a basis of a Vessiot–Guldberg Lie algebra.

Thus, X1, . . . , X5 span a five-dimensional nilpotent Lie algebra V CS. Since X CS takes val-
ues in V CS, we have that (R5, XCS, VCS) is a Lie system [58]. The vector fields of V CS span
a distribution DVCS

= TR5 and dim VCS = dim R
5. Then, (R5, XCS, VCS) becomes a locally

automorphic Lie system.

10
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3.2. Invariants for locally automorphic Lie systems

A Lie symmetry of a Lie system (N, X, V) is a vector field Y ∈ X(N) such that LYZ = 0 for every
vector field Z ∈ V. If V is spanned by the vector fields X1, . . . , Xr, this condition is equivalent
to saying that Y has to fulfil the following system of partial differential equations:

LXi Y = 0, i = 1, . . . , r. (3.5)

Note that the space of Lie symmetries of (N, X, V ) just depends on the Vessiot–Guldberg
Lie algebra V, which motivates denoting it by Sym(V ). Moreover, Sym(V) is a Lie algebra. In
what follows, we study Sym(V ) for the case of locally automorphic Lie systems (N, X, V ).

Consider a locally automorphic Lie system (N, X, V ). Then, each mapping ϕx maps it to
an automorphic Lie system (G, X R, V R). It is clear that Sym(V R) = V L. Since ϕx is a local
diffeomorphism mapping V onto V R, then it also maps Sym(V ) onto V L. Thus, we have the
following lemma, whose implications are shown in example 3.8.

Lemma 3.7. The Lie algebra of Lie symmetries of (N, X, V ), namely Sym(V ), is isomorphic
to V.

Example 3.8. Consider again example 3.6, where we studied the control system given by
(3.2).

Solving the linear system of partial differential equation (3.5) in the coefficients of a vector
field Y in the basis ∂/∂x1, . . . , ∂/∂x5, which demands a very long and tedious calculation, one
sees that every Lie symmetry Y of an arbitrary control system of the form (3.2) has to be a
linear combination with constant coefficients of the vector fields

Y1 =
∂

∂x1
+ x2

∂

∂x3
+ 2x3

∂

∂x4
+ x2

2
∂

∂x5
, Y2 =

∂

∂x2
+ 2x3

∂

∂x5
,

Y3 =
∂

∂x3
, Y4 =

∂

∂x4
, Y5 =

∂

∂x5
.

(3.6)

It is easy to see that the vector fields −Yi, where i = 1, . . . , 5, span a Lie algebra with the same
structure constants as V CS = 〈X1, . . . , X5〉.

From the fact that every locally automorphic Lie system (N, X, V) is locally diffeomorphic
to an automorphic Lie system (G, X R, V R), we find that every differential form on N that is
invariant with respect to the Lie derivative of elements of V must be locally diffeomorphic to
a left-invariant differential form on G. Since Sym(V) is also diffeomorphic to VL, and taking
into account remark 2.12, one gets the following theorem:

Theorem 3.9. Consider a locally automorphic Lie system (N, X, V). Let Y1, . . . , Yr be a
basis of Sym(V), with a dual frame ν1, . . . , νr. Then, a differential form on N is invariant with
respect to the Lie algebra V if, and only if, it is a linear combination with real coefficients of
the exterior products of ν1, . . . , νr.

Remark 3.10. Let us consider a result on the invariants of general multisymplectic Lie sys-
tems. Let (N,Θ, X) be a multisymplectic Lie system X with a Vessiot–Guldberg Lie algebra

11
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VX. A Lie algebra of vector fields W on N is a Lie algebra of symmetries of the Lie system X
if, and only if, [VX, W] = 0. Let Y1, . . . , Yn be a basis of W. Then,

ιY1∧...∧YnΘ

are constants of the motion of our system.

4. Reduction of multisymplectic Lie systems

This section introduces a reduction procedure for multisymplectic Lie systems by infinitesimal
symmetries of the associated Lie system and its compatible multisymplectic form. On the one
hand, this simplifies the study of certain multisymplectic Lie systems by transforming them
into new ones on manifolds of smaller dimension. On the other hand, the multisymplectic
form of the reduced multisymplectic Lie system enables one to use the methods described in
[33] to study its properties. To introduce our multisymplectic Lie system reduction theory, we
illustrate a reduction procedure based upon some examples.

4.1. Introductory examples

The following examples show how multisymplectic Lie systems can be reduced to new
multisymplectic Lie systems on manifolds of smaller dimension.

4.1.1. Schwarz equations. Consider a Schwarz equation of the form [7, 56]

d3x
dt3

=
3
2

(
dx
dt

)−1(d2x
dt2

)2

+ 2b1(t)
dx
dt

, (4.1)

where b1(t) is a non-constant function. The relevance of (4.1) is due to its appearance in the
study of Ermakov systems [42] and the Schwarz derivative (see [17] and references therein).

The differential equation (4.1) is known to be a higher-order Lie system [16]. This means
that the associated system of first-order differential equations obtained by adding the variables
v := dx/dt and a := d2x/dt2, i.e.

dx
dt

= v,
dv
dt

= a,
da
dt

=
3
2

a2

v
+ 2b1(t)v (4.2)

is a Lie system. Indeed, (4.2) is associated with the t-dependent vector field onO := {(x, v, a) ∈
T2
R|v �= 0} of the form XS = X3 + b1(t)X1, where the vector fields

X1 = 2v
∂

∂a
, X2 = v

∂

∂v
+ 2a

∂

∂a
, X3 = v

∂

∂x
+ a

∂

∂v
+

3
2

a2

v

∂

∂a
(4.3)

satisfy the commutation relations

[X1, X2] = X1, [X1, X3] = 2X2, [X2, X3] = X3. (4.4)

Consequently, X1, X2, X3 span a three-dimensional Lie algebra of vector fields V S isomorphic
to sl2 and XS becomes a t-dependent vector field taking values in V S, i.e. XS is a Lie system.

In [33] it was proved that the vector fields of V S are Hamiltonian relative to the multisym-
plectic structure ΘS on O given by ΘS = 1

2v3 da ∧ dv ∧ dx satisfying that

LXαΘS = 0, α = 1, 2, 3. (4.5)

12
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Therefore, (O,ΘS, XS) is a multisymplectic Lie system. Moreover,

ιX1ΘS =
1
v2

dv ∧ dx = d

(
−1
v

dx

)
= dθ1,

ιX2ΘS =
1
v

(
a
v2

dv − 1
2v

da

)
∧ dx = d

(
− a

2v2
dx +

dv
2v

)
= dθ2,

ιX3ΘS = −3a2

4v4
dx ∧ dv − a

2v3
da ∧ dx +

1
2v2

da ∧ dv

= d

(
− a2

4v3
dx +

a
v2

dv − 1
2v

da

)
= dθ3.

(4.6)

Hence, X1, X2, X3 are Hamiltonian vector fields with respect to the multisymplectic manifold
(O,ΘS), with Hamiltonian one-forms

θ1 = −dx
v

, θ2 = − a
2v2

dx +
dv
2v

, θ3 = − a2

4v3
dx +

a
v2

dv − 1
2v

da.

Consequently, no matter what the t-dependent coefficient b1(t) in (4.2) is, the evolution of
XS preserves the volume form ΘS. Since DVS

= TO, and in view of (4.5), the value of ΘS at a
point o ∈ O determines the value of ΘS on the connected component of o in O. Moreover, ΘS

is, up to a multiplicative constant on each connected component of O, the only volume form
satisfying equation (4.5). Since any one-form or two-form on a three-dimensional manifold is
one-degenerate, the system under study has a unique, up to a non-zero proportional constant,
multisymplectic form which is invariant under the action of V S.

The Schwarz equation, whose first-order system XS is given by (4.2), admits a Lie algebra
of Lie symmetries, Sym(V S), spanned by (see [43, 55])

Y1 =
∂

∂x
, Y2 = x

∂

∂x
+ v

∂

∂v
+ a

∂

∂a
, Y3 = x2 ∂

∂x
+ 2vx

∂

∂v
+ 2(ax + v2)

∂

∂a
.

(4.7)

Since XS is a locally automorphic Lie system, Sym(V S) is the Lie algebra of Lie symmetries
given by lemma 3.7 and [Xα, Yβ] = 0, forα, β = 1, 2, 3. Therefore, W := 〈X1, X2, X3, Y1, Y2, Y3〉
is a Lie algebra isomorphic to sl2 ⊕ sl2.

A short computation shows that

ιY1ΘS = d

(
1

4v2
da

)
, ιY2ΘS = d

(
− a

2v
d
( x
v

))
,

ιY3ΘS = d

(
− x
v

dv − a
2v

d

(
x2

v

))
.

Since the Vessiot–Guldberg Lie algebra for XS, namely (4.3), consists also of Hamiltonian
vector fields relative to ΘS, the Lie algebra W is made of Hamiltonian vector fields relative to
ΘS and LZΘS = 0 for every Z ∈ W.

We denote by G2 the one-parameter group of diffeomorphisms generated by the flow of
the Lie symmetry Y2 and the inversion (x, v, a) �→ (−x − v,−a) on O. Define a projection π :
(x, v, a) ∈ O �→ (x̄ = x/v, ā = a/v) ∈ O/G2, where O/G2 is the space of orbits of the action
of G2 on O, which admits an immediate manifold structure as it is diffeomorphic to R

2. Since
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Y2 is a Lie symmetry of XS, the system XS can be reduced onto O/G2. In coordinates, the
projections of X1, X2, X3 onto O/G2 read

X̄1 := 2
∂

∂ā
, X̄2 := − x̄

∂

∂ x̄
+ ā

∂

∂ā
, X̄3 := (1 − x̄ā)

∂

∂ x̄
+

ā2

2
∂

∂ā
,

respectively. They form a basis of the projection, VS
R, of the Lie algebra V S = 〈X1, X2, X3〉 onto

O/G2. In fact,

[X̄1, X̄2] = X̄1, [X̄1, X̄3] = 2X̄2, [X̄2, X̄3] = X̄3. (4.8)

Since V S is simple and VS
R �= {0}, one gets VS

R  VS  sl2.
The vector fields X̄1, X̄2, X̄3 are Hamiltonian relative to the symplectic form defined by

Θ̄ :=
1
2

dx̄ ∧ dā. (4.9)

In fact,

ιX̄1
Θ̄ = −dx̄, ιX̄2

Θ̄ = −1
2

d(x̄ā), ιX̄3
Θ̄ =

1
2

d

(
ā − x̄ā2

2

)
.

Moreover, Θ̄ is the only two-form in O/G2 ≡ R
2 such that π∗Θ̄ = ιY2ΘS.

Thus, the multisymplectic Lie system (O,ΘS, XS) reduces to a new multisymplectic Lie
system (O/G2, Θ̄, XS

R) with a Vessiot–Guldberg Lie algebra VS
R, where XS

R is the projec-
tion of XS onto O/G2. In particular, this reduced Lie system is a Lie–Hamilton system (the
multisymplectic form is a symplectic form).

To illustrate the simplification obtained by our multisymplectic reduction, let us comment
on the particular reduced system XS

R = X̄3 − 1/4X̄1, whose integral curves satisfy the system
of differential equations

dx̄
dt

= 1 − x̄ā,
dā
dt

=
ā2

2
− 1

2
. (4.10)

Note that this system is a Hamiltonian system relative to the symplectic form (4.9). As a sym-
plectic Hamiltonian system on the plane, many of its properties, such as its superposition rules,
have been studied elsewhere [3, 5]. Let us comment on other properties that have not been stud-
ied so far, e.g. its equilibrium points. System (4.10) has equilibrium points at two points given
by

x̄ = ā = ±1.

It is notable that the system on O of the form

dx
dt

= v,
dv
dt

= a,
da
dt

=
3
2

a2

v
− v

2
, (4.11)

that projects onto (4.10) has no equilibrium point since v �= 0 on O. The points in O that
project onto equilibrium points of (4.10) are called relative equilibrium points [2, 50]. Note
that, although we have assumed b1(t) to be non-constant in (4.2), we have also succintly com-
mented which parts of our above analysis hold true for every, possibly constant, function b1(t).
In particular, (4.11) leads to a multisymplectic Lie system (O,ΘS, XS) which can be reduced,
but it does not give rise to a locally automorphic Lie system when b1(t) is a constant.
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Although analytical solutions for (4.11) can be obtained using mathematical manipulation
software, the solutions obtained in this way are, as far as we were able to analyse them, too
complicated to be easily studied. This justifies the execution of our reduction procedure. More
precisely, the solutions to (4.10) are of the form

x̄(t) = (2c2 − 1)(1 + cosh(t + 2c1)) + sinh(t + 2c1),

ā(t) =
1 − e2c1+t

e2c1+t + 1
, c1, c2 ∈ R,

for solutions with |ā(t)| < 1 and

x̄(t) = −1 − 2c2 + et+2c1c2 + e−t−2c1(1 + c2),

ā(t) =
1 + e2c1+t

1 − e2c1+t
, c1, c2 ∈ R,

for solutions for |ā(t)| > 1. Meanwhile, the solutions for ā(t) = ±1 read

x̄(t) = ±1 + e∓tc2, (4.12)

respectively.
It can be established whether two Lie systems in the plane related to a Vessiot–Guldberg

Lie algebra isomorphic to sl2, like (4.10), are locally diffeomorphic via the so-called Casimir
tensor fields (see [5] for details). In particular, it was proved in [5, p 5] that the Casimir tensor
field for a Vessiot–Guldberg Lie algebra on the plane isomorphic to sl2 in a basis with structure
constants (4.8) is given by

G = X1 ⊗ X3 + X3 ⊗ X1 − 2X2 ⊗ X2

= −2x̄2 ∂

∂ x̄
⊗ ∂

∂ x̄
+ 2

∂

∂ x̄
⊗ ∂

∂ā
+ 2

∂

∂ā
⊗ ∂

∂ x̄
.

It was also shown in [5, lemma 4.1] that the determinant of the coefficients of G, namely
det G = −4, allows us to determine that there exists a local diffeomorphism on R2 mapping
(4.10) onto a Lie system on the plane related to a Vessiot–Guldberg Lie algebra〈

∂

∂x
+

∂

∂y
, x

∂

∂x
+ y

∂

∂y
, x2 ∂

∂x
+ y2 ∂

∂y

〉
,

the so-called I4. It was proved in [46, table 1], that this Lie algebra is a Lie algebra of Killing
vector fields relative to a pseudo-Riemannian metric on R2. Physically, it is also notable that
(4.10) is locally diffeomorphic to a Milne–Pinney equation [5, lemma 4.1 and proposition 6.1],
which appears in many physical problems (see [20, 21, 48] and references therein).

It is possible to see in figure 1 that equilibrium points of (4.10) are unstable (solutions close
to them move away from them as time passes by).

There is a last remark about (4.10) to be considered. Since it is a Hamiltonian system, its
evolution conserves the area of any set of solutions. Despite this, system (4.10) is still unstable
around its equilibrium points.

4.1.2. Dissipative quantum harmonic oscillators. Let us define Gdo := SL2 � H3, where SL2 is
the Lie group of unimodular real 2 × 2 matrices with real entries, H3 is the Heisenberg group of
upper real triangular unimodular 3 × 3 matrices with ones in the diagonal, and � represents the
semidirect product of SL2 acting on the normal subgroup H3 of Gdo via a Lie group morphism
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Figure 1. The first three diagrams represent some integral curves of the system (4.11)
on the three-dimensional manifold O from different points of view, illustrating the fact
that it has no equilibrium points, as already commented. The figure on the second line
depicts the integral curves of the reduced multisymplectic system (4.10) close to the
equilibrium points (1, 1) and (−1,−1).

Φ : A ∈ SL2 �→ ΦA ∈ Aut(H3), where Aut(H3) is the space of Lie group automorphisms on H3.
Note that the Lie group product in Gdo can be written as

(A, B)(A′, B′) = (AA′, BΦA(B′)), A, A′ ∈ SL2, B, B′ ∈ H3.

Note that the elements of SL2 in SL2 � H3 can be then written as (A, I3), where A ∈ SL2 and I3

is the neutral element of H3. Meanwhile, the elements of H3 in SL2 � H3 can be brought into
the form (I2, B) for some B ∈ H3 and the neutral element I2 in SL2. Then,

(A, I3)(I2, B)(A−1, I3) = (A,ΦA(B))(A−1, I3) = (I2,ΦA(B)), A ∈ SL2, B ∈ H3.

Hence, ΦA(B) can be considered as the inner automorphism induced by A acting on B within
SL2 � H3. It is standard to consider Gdo as a matrix Lie group, at least locally around its neutral
element. In this case, the elements of SL2 and H3 can be considered as subgroups of matrices
in a certain GL(n,R) and one can write ΦA(B) = ABA−1 for every A ∈ SL2 and B ∈ H3. The
Lie algebra gdo of Gdo satisfies that gdo  sl2⊕Sh3, where ⊕S represents a semi-direct sum of
the Lie algebra sl2  TeSL2 with the ideal h3  TeH3 of TeGdo.
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Let us consider the automorphic Lie system on Gdo of the form

dg
dt

=

6∑
α=1

bα(t)XR
α (g), g ∈ Gdo, t ∈ R, (4.13)

where b1(t), . . . , b6(t) are arbitrary t-dependent functions, and {XR
1 , . . . , XR

6 } form a basis of
the Lie algebra V do of right-invariant vector fields on Gdo so that {XR

1 , XR
2 , XR

3 } is a basis
of the Lie algebra Vsl := 〈XR

1 , XR
2 , XR

3 〉  sl2 and {XR
4 , XR

5 , XR
6 } stands for a basis of the ideal

Vh := 〈XR
4 , XR

5 , XR
6 〉  h3 of V do. Geometrically, system (4.13) amounts to the t-dependent

vector field on Gdo given by

Xdo(t, g) :=
6∑

α=1

bα(t)XR
α (g), g ∈ Gdo, t ∈ R. (4.14)

Since the right-hand side of (4.14) is a t-dependent vector field X do on Gdo taking values in the
finite-dimensional Lie algebra V do, the system X do is a Lie system.

The relevance of system (4.13) is due to the fact that it appears in the study of quantum
harmonic oscillators with dissipation (see [21, equation (3.9)] for details). More specifically,
they appear in methods to solve t-dependent Hamilton operators of the form

Ĥ(t) = α(t)
x̂2

2
+ β(t)

p̂2

2
+ γ(t)

x̂ p̂+ p̂ x̂
4

+ δ(t) p̂+ ε(t)x̂ + φ(t)Îd, (4.15)

where α(t), β(t), γ(t), δ(t), ε(t),φ(t) are arbitrary t-dependent functions, while x̂, p̂, Îd, are the
position, moment, and identity operators on the space of complex square-integrable functions
on R, respectively. It is evident that (4.15) has many relevant applications in many quantum
mechanical problems.

Although the relevant properties of X do are better understood using a geometric approach,
a representation in coordinates of X do will also be useful to describe some of its features. More
specifically, let us use the canonical coordinates of the second kind {v1, . . . , v6} on Gdo induced
by (see [21] for details)

φ :
6∑

i=1

via
i ∈ g �→ exp(−v4a4) exp(−v5a5) exp(−v6a6) exp(−v1a1)

× exp(−v2a2) exp(−v3a3) ∈ Gdo, (4.16)

where {a1, . . . , a6} is a basis of TeGdo  gdo spanning the commutation relations given in [21, p
70] and XR

i (e) = −ai for i= 1, . . . , 6. This allows one to write system (4.13) in local coordinates
as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dv1

dt
= b1(t) + b2(t) v1 + b3(t) v2

1,
dv4

dt
= b4(t) +

1
2

b2(t) v4 + b1(t) v5,

dv2

dt
= b2(t) + 2 b3(t) v1,

dv5

dt
= b5(t) − b3(t) v4 −

1
2

b2(t) v5,

dv3

dt
= ev2 b3(t),

dv6

dt
= b6(t) − b5(t) v4 +

1
2

b3(t) v2
4 −

1
2

b1(t) v2
5 .

(4.17)
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Comparing the system X do in intrinsic form (4.13) with the above, we obtain

XR
1 =

∂

∂v1
+ v5

∂

∂v4
− 1

2
v2

5
∂

∂v6
, XR

2 = v1
∂

∂v1
+

∂

∂v2
+

1
2
v4

∂

∂v4
− 1

2
v5

∂

∂v5
,

XR
3 = v2

1
∂

∂v1
+ 2v1

∂

∂v2
+ ev2

∂

∂v3
− v4

∂

∂v5
+

1
2
v2

4
∂

∂v6
, XR

4 =
∂

∂v4
,

XR
5 =

∂

∂v5
− v4

∂

∂v6
, XR

6 =
∂

∂v6
.

(4.18)

The commutation relations between the above vector fields read

[XR
1 , XR

2 ] = XR
1 ,

[XR
1 , XR

3 ] = 2 XR
2 , [XR

2 , XR
3 ] = XR

3 ,

[XR
1 , XR

4 ] = 0, [XR
2 , XR

4 ] = −1
2

XR
4 , [XR

3 , XR
4 ] = XR

5 ,

[XR
1 , XR

5 ] = −XR
4 , [XR

2 , XR
5 ] =

1
2

XR
5 , [XR

3 , XR
5 ] = 0, [XR

4 , XR
5 ] = −XR

6 ,

[XR
1 , XR

6 ] = 0, [XR
2 , XR

6 ] = 0, [XR
3 , XR

6 ] = 0, [XR
4 , XR

6 ] = 0, [XR
5 , XR

6 ] = 0.

(4.19)

Therefore, the vector fields given in (4.18) span a six-dimensional real Lie algebra V do

isomorphic to the semidirect sum of Lie algebras sl2 ⊕ Sh3.
Following the method described in [33], one can construct a multisymplectic form on

Gdo turning the elements of V do into locally Hamiltonian vector fields. Since (XR
1 ∧ . . . ∧ XR

6 )
(g) �= 0 on each g ∈ Gdo, the vector fields XR

1 , . . . , XR
6 admit a family of differential one-forms

ηR
1 , . . . , ηR

6 on Gdo such that ηR
α (XR

β ) = δαβ for α, β = 1, . . . , 6, where δαβ is the Kronecker
delta. More specifically, the local expressions of these differential one-forms are

ηR
1 = dv1 − v1dv2 + v2

1e−v2dv3, ηR
2 = dv2 − 2v1e−v2dv3, ηR

3 = e−v2dv3,

ηR
4 = −v5dv1 +

(
v1v5 −

1
2
v4 +

1
2
v4v5

)
dv2

+ (v1v4 − v2
1v5 − v1v4v5 + v2

4)e−v2dv3 + dv4 + v4dv5,

ηR
5 =

1
2
v5dv2 + (v4 − v1v5)e−v2dv3 + dv5,

ηR
6 =

1
2
v5dv1 −

1
2
v1v5dv2 +

1
2

(v2
1v5 − v2

4)e−v2dv3 + dv6.

As ηR
1 , . . . , ηR

6 are right-invariant differential forms, it makes sense to denote
Vdo∗ := 〈ηR

1 , . . . , ηR
6 〉. This enables us to define the volume form

Θdo := ηR
1 ∧ . . . ∧ ηR

6 = e−v2dv1 ∧ . . . ∧ dv6. (4.20)

Since Θdo is a volume form, it is clearly a multisymplectic one.
Let us prove that the vector fields XR

1 , . . . , XR
6 are locally Hamiltonian relative to Θdo. This

is indeed a consequence of the geometric construction of Θdo and the Lie algebra structure of
gdo. We have that
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(
LXRηR

)
(X̄R) = LXR(ιX̄RηR) − ηR([XR, X̄R]) = −ηR([XR, X̄R]),

∀ XR, X̄R ∈ Vdo, ∀ ηR ∈ Vdo∗.

Since all the X̄R span the tangent bundle to Gdo, it follows that

LXRηR = −ad∗
XRη

R, ∀ XR ∈ Vdo, ∀ ηR ∈ Vdo∗.

The adjoint representation ad : XR ∈ Vdo �→ adXR := [XR, ·] ∈ End(Vdo) is such that ad(V do)
consists of traceless operators on V do. Hence, the adjoint representation of V do is traceless and
V do is a unimodular Lie algebra. Then, V do acts on V do∗ through the coadjoint Lie algebra rep-
resentation coad : XR ∈ Vdo∗ �→ −ad∗

XR ∈ End(Vdo∗). Since ad is traceless, the representation
coad is also traceless. Thus,

LXRΘdo = −Tr(ad∗
XR)Θdo = 0, ∀ XR ∈ Vdo.

As a consequence, the elements of V do are locally Hamiltonian vector fields with respect to the
multisymplectic volume form Θdo. The above construction gives rise to a Lie system on Gdo

admitting a Vessiot–Guldberg Lie algebra of locally Hamiltonian vector fields XR
1 , . . . , XR

6 rel-
ative to the multisymplectic form Θdo, that is (Gdo = SL2 � H3,Θdo, X do) is a multisymplectic
Lie system.

The multisymplectic form, Θdo, given in (4.20), and the elements of V do, detailed in
(4.18), are right-invariant. Hence, for every left-invariant vector field YL on Gdo, one has that
LYLΘdo = 0 and LYL Xdo = 0. Then, YL is a Lie symmetry of V do, that is, YL ∈ Sym(V do).
Lemma 3.7 yields that Vdo

L := Sym(Vdo) is isomorphic to V do. As shown next, this will
lead to the construction of multisymplectic reductions of the multisymplectic Lie system
(Gdo,Θdo, X do) by unimodular Lie subalgebras of Vdo

L  sl2 ⊕ Sh3.
Let {XL

1 , . . . , XL
6 } be a basis of left-invariant vector fields on Gdo satisfying that

XL
α(e) = XR

α (e), α = 1, . . . , 6. (4.21)

A tedious calculation yields the local coordinate expression of these vector fields:

XL
1 = ev2

∂

∂v1
+ 2v3

∂

∂v2
+ v2

3
∂

∂v3
, XL

2 =
∂

∂v2
+ v3

∂

∂v3
, XL

3 =
∂

∂v3
,

XL
4 = e−v2/2(ev2 − v1v3)

∂

∂v4
− e−v2/2v3

∂

∂v5
− e−v2/2(ev2 − v1v3)v5

∂

∂v6
,

XL
5 = v1e−v2/2 ∂

∂v4
+ e−v2/2 ∂

∂v5
− v1v5e−v2/2 ∂

∂v6
, XL

6 =
∂

∂v6
.

(4.22)

Note that Vdo
L = 〈XL

1 , . . . , XL
6 〉. The above properties will be useful in the following results.

As an example of reduction for the multisymplectic Lie system (Gdo,Θdo, X do), we consider
the unimodular Lie subalgebra VL

sl := 〈XL
1 , XL

2 , XL
3 〉  sl2 and an associated Noether invariant

Θsl
d := ιXL

1 ∧XL
2 ∧XL

3
Θdo of the Lie system X do. The idea is to obtain a new multisymplectic Lie

system (G̃, Θ̃sl
d , X̃sl

d ) such that the following conditions hold:

(a) If Gdo/SL2 stands for the manifold of left cosets relative to the subgroup SL2 of Gdo,
then the canonical projection πsl : Gdo → G̃ :=Gdo/SL2 is a submersion and G̃ becomes a
manifold, which does not need to have a Lie group structure.

(b) The vector fields of the Vessiot–Guldberg Lie algebra V do project onto a Lie algebra
Ṽsl

d := (πsl)∗(Vdo) of vector fields on G̃.
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(c) Finally, (πsl)∗Θ̃sl
d = Θsl

d = ιXL
1 ∧XL

2 ∧XL
3
Θdo.

The action of SL2 on Gdo on the right has fundamental vector fields 〈XL
1 , XL

2 , XL
3 〉. The orbits

of this action are the left cosets of SL2 in Gdo. Furthermore, the quotient space Gdo/SL2 is
diffeomorphic to H3. Thus, the first condition is satisfied.

Let us verify the second condition. Since the elements of V do commute with left-invariant
vector fields on Gdo, they are all πsl-projectable vector fields onto Gdo/SL2. As Vdo =

〈XR
1 , . . . , XR

6 〉 is a Lie algebra whose distribution, DVdo
, is such that DVdo

g = TgGdo for every
g ∈ Gdo, the projections of XR

1 , . . . , XR
6 onto Gdo/SL2  H3 span T(Gdo/SL2). Hence, the ini-

tial system X do can be projected onto Gdo/SL2 giving rise to a Lie system on Gdo/SL2 with
a Vessiot–Guldberg Lie algebra Ṽsl

d = (πsl)∗(Vdo). The morphism (πsl)∗|Vdo : Vdo → Ṽsl
d is a

surjective Lie algebra morphism.
Note that v1, . . . , v6 form a canonical coordinate system of the second kind defined locally in

Gdo whilst, in view of our parametrisation (4.16), the v4, v5, v6 are, indeed global, coordinates
in Gdo/SL2. In coordinates v1, . . . , v6, we have the canonical projection πsl : (v1, . . . , v6) ∈
Gdo �→ (v4, v5, v6) ∈ Gdo/SL2  H3. The projections of the elements of the basis (4.18) of the
Vessiot–Guldberg Lie algebra V do of X do onto Gdo/SL2 read

X̃sl
1 = v5

∂

∂v4
− 1

2
v2

5
∂

∂v6
, X̃sl

2 =
1
2
v4

∂

∂v4
− 1

2
v5

∂

∂v5
, X̃sl

3 = −v4
∂

∂v5
+

1
2
v2

4
∂

∂v6
,

X̃sl
4 =

∂

∂v4
, X̃sl

5 =
∂

∂v5
− v4

∂

∂v6
, X̃sl

6 =
∂

∂v6
.

(4.23)

A simple calculation shows that

[X̃sl
α, X̃sl

β ] = cγαβ X̃sl
γ , α, β, γ = 1, . . . , 6,

where the cγαβ are again the same constants given in (4.19) for V do. This shows that

Ṽsl
d  Vdo  gdo. This gives rise to a Lie system XGdo

sl :=
∑6

α=1 bα(t)X̃sl
α on the quotient space

Gdo/SL2.
Finally, let us prove that there exists a multisymplectic form Θ̃sl

d on Gdo/SL2 turning the ele-
ments of Ṽsl

d into locally Hamiltonian vector fields. Since VL
sl is a Lie subalgebra, it makes sense

to define the restriction adXL
α
|VL

sl
of each adXL

α
: Vdo

L → Vdo
L , with α = 1, . . . , 6, to VL

sl . In view

of the commutation relations (4.19) of the vector fields of V do, it follows that Tr(adXL
α
|VL

sl
) = 0.

Therefore,

LXL
α

(
ιXL

1 ∧XL
2 ∧XL

3
Θdo

)
= Tr

(
adXL

α
|VL

sl

)
ιXL

1∧XL
2∧XL

3
Θdo = 0, α = 1, 2, 3. (4.24)

Moreover, Θsl
d := ιXL

1 ∧XL
2 ∧XL

3
Θdo satisfies

(
kerΘsl

d

)
(g) = 〈XL

1 (g), XL
2 (g), XL

3 (g)〉, ∀ g ∈ Gdo. (4.25)

Expressions (4.24) and (4.25) ensure that there exists a unique well-defined differential form
Θ̃sl

d on Gdo/SL2 such that (πsl)∗Θ̃sl
d = Θsl

d relative to the canonical projection πsl : Gdo →
Gdo/SL2. As the vector fields of Ṽsl

d span the tangent bundle to Gdo/SL2 and Θ̃sl
d is invariant

under the action by Lie derivatives of the elements of Ṽsl
d on it, then Θ̃sl

d is the only multi-
symplectic form, up to a non-zero proportionality constant, turning the vector fields of Ṽsl

d

into locally Hamiltonian vector fields relative to Θ̃sl
d . Since Θdo is a volume form on a six-

dimensional manifold, then Θ̃sl
d is a differential three-form. Therefore, Θ̃sl

d is a volume form
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on Gdo/SL2 and dΘ̃sl
d = 0. In view of (4.25), it follows that Θ̃sl

d is nondegenerate. Hence,
(Gdo/SL2, Θ̃sl

d ) is a multisymplectic manifold.
The differential form Θ̃sl

d can be explicitly derived by taking into account that it is, up to a
non-zero constant, invariant by the above projected vector fields (4.23) spanning the Lie algebra
Ṽsl

d , namely Θ̃sl
d = λdv4 ∧ dv5 ∧ dv6 for a certain λ ∈ R\{0} and ιXL

4 ∧XL
5 ∧XL

6
(πsl)∗Θ̃sl

d = 1 when
v4 = v5 = v6 = 0. Hence,

Θ̃sl
d = dv4 ∧ dv5 ∧ dv6.

It is worth noting that the multisymplectic reduction process has been carried out assuming VL
sl

to be unimodular.

4.2. Multisymplectic reduction of multisymplectic Lie systems

After studying the above examples, the following question arises: Can the above process be
repeated for other multisymplectic Lie subalgebras of V do? To answer this question, we define
the momentum map

J : G × G(g) −→
•
∧ T∗G

(g, XL
1 ∧ . . . ∧ XL

p ) �−→ (ιXL
1 ∧...∧XL

p
Θ)(g),

where J (g, XL
1 ∧ . . .XL

p) ∈ ∧•T∗
g G, the set G(g) is the unimodular Grassmannian defined in

definition 2.13 and Θ is a multisymplectic form on G.
In the example in section 4.1.1, we considered the space J (g, Y2), while J (g, XL

1 ∧ XL
2 ∧

XL
3 ) was used in the multisymplectic reduction of the example in section 4.1.2. In both cases,

g is the abstract Lie algebra isomorphic to the Lie algebra of Lie symmetries Sym(VX), where
VX is the Vessiot–Guldberg Lie algebra of the multisymplectic Lie system. Furthermore, it can
be shown that in both cases

LXJ = 0, ∀ X ∈ VX .

This section aims to use the examples of reduction of multisymplectic Lie systems already
studied to provide a general multisymplectic reduction procedure for multisymplectic Lie
systems.

4.2.1. Multisymplectic reduction. Let (N,Θ, X) be a multisymplectic Lie system, where (N,Θ)
is a multisymplectic manifold and X denotes a Lie system on N. Let VX be a Vessiot–Guldberg
Lie algebra of X and denote by Sym(VX) the finite-dimensional Lie algebra of Lie symmetries
of a Lie system (N, X, VX). Consider g to be the abstract Lie algebra isomorphic to Sym(VX).

To obtain a general reduction procedure for multisymplectic Lie systems, one considers the
map

J : N × G(g) −→
•
∧T∗N

(x,w) �−→ (ιwΘ)(x),

where (ιwΘ)(x) ∈ ∧•T∗
x N for every x ∈ N and w ∈ G(g).

Let V be an r-dimensional unimodular Lie subalgebra of Sym(VX) and let DV be the distri-
bution generated by the vector fields of V. We consider the reduction of the original system by
V. The reduced system is a multisymplectic Lie system if:
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(a) The quotient space N/DV is a manifold and the canonical projection π : N → N/DV is a
submersion.

(b) The elements of a basis of V are π-projectable.
(c) There exists a multisymplectic form Θ̃ on N/DV such that (π∗Θ̃)(x) = J (x, X1 ∧ · · · ∧

Xr), for every x ∈ N and where X1 ∧ · · · ∧ Xr is the unique (up to an irrelevant multiplica-
tive non-zero constant) r-vector field generated by the elements of V.

The idea is to give conditions in terms of Θ, V, and J so that these three properties are ful-
filled. The examples in the previous section can be considered as an application of the following
reduction procedure.

Theorem 4.1. Let Θ be an (r + 1)-nondegenerate multisymplectic form on N and let G be
an r-dimensional unimodular Lie group. We consider a proper and free unimodular Lie group
action Φ : G × N → N and denote by VΦ the Lie algebra of fundamental vector fields of Φ.
If w ∈ ΛrVΦ\{0} is a Hamiltonian r-vector field with respect to the multisymplectic form Θ,
then there exists a unique multisymplectic form Θ̃ on N/G given by

π∗Θ̃ = ιwΘ,

where π : N → N/G is the quotient projection of G onto N/G.

Proof. The differential form ιwΘ can be projected onto N/G if its contraction with the ele-
ments of VΦ vanishes and ιwΘ is invariant relative to the elements of VΦ. The first condition is
ensured by the fact that w ∈ ΛrVΦ and therefore ιXιwΘ = ιw∧XΘ = 0 for all X ∈ VΦ because
X ∧ w = 0. The second condition follows from the following considerations. By assumption,
the vector fields X1, . . . , Xr are Θ-Hamiltonian, i.e. LXΘ = 0 for every X ∈ VΦ, and VΦ is a
unimodular Lie algebra of vector fields, namely LXw = 0 for all X ∈ VΦ. This implies that

LXιwΘ = (−1)rιwLXΘ + ιLXwΘ = 0, ∀ X ∈ VΦ.

In consequence, LXΘ = 0 and ιXιwΘ = 0 for all X ∈ VΦ, which implies that there exists a
differential form Θ̃ on N/G such that π∗Θ̃ = ιwΘ. The differential form Θ̃ is also unique
because π∗ : Ω•(N/G) → Ω•(N) is an injection.

Moreover, Θ̃ is closed since the assumption that w is Hamiltonian enables us to write that

0 = LwΘ = (dιw + (−1)rιwd)Θ = dιwΘ = dπ∗Θ̃ = π∗dΘ̃ =⇒ dΘ̃ = 0.

Since Θ is (r + 1)-nondegenerate and Φ is effective, then w �= 0 and the form ιwΘ is
one-nondegenerate. Hence, Θ̃ is also one-nondegenerate. This turns (N/G, Θ̃) into a multi-
symplectic manifold. �

Definition 4.2. A pair (Θ,Φ) satisfying the conditions of the theorem 4.1 is called a
multisymplectic reduction scheme.

Once a reduction scheme is provided, it is mandatory to show how this can be applied to
the reduction of a multisymplectic Lie system.

Theorem 4.3. Let (N,Θ, X) be a multisymplectic Lie system and let (Θ,Φ) be a multisym-
plectic reduction scheme whose {Φg}g∈G are symmetries of the elements of VX. Then, X can be
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projected onto N/G giving rise to a new multisymplectic Lie system (N/G, Θ̃, π∗X), where Θ̃
is the multisymplectic form on N/G induced by the multisymplectic reduction scheme (Θ,Φ).

Proof. If the Φg, with g ∈ G, are symmetries of the elements of VX, in particular they are
symmetries of X because it takes values in VX. Hence, X can be projected onto N/G. If π :
N → N/G is the quotient projection, then π∗|VX : VX → X(N/G) is a Lie algebra morphism
and π∗(VX) is therefore finite-dimensional turning π∗X into a Lie system. Since (N,Θ, X) is
a multisymplectic Lie system and the elements of VX commute with the fundamental vector
fields of the Lie group action Φ, one has that LXιX1∧...∧XrΘ = 0 and, as X and Θ are projectable
onto N/G, then Lπ∗XΘ̃ = 0. Therefore (N/G, Θ̃, π∗X) is a multisymplectic Lie system. �

It is frequently accessible to find Lie symmetries for a Lie system by using Lie theory meth-
ods. Nevertheless, the crux is to find a multisymplectic form satisfying the conditions provided
in theorem 4.3.

4.2.2. Reductions of a control system. Consider again the control system given in example
3.6. Let us now apply our multisymplectic reduction to this control system. Recall that the
vector fields X1, . . . , X5 span, in view of their unique non-vanishing commutation relations
(3.4), a unimodular Lie algebra V. Moreover,DV = TR5. In consequence, this control system is
a locally automorphic one and the application to it of the techniques devised in [33] gives rise to
a multisymplectic Lie system (R5,ΘB, X). For example, we can construct the multisymplectic
structure

ΘB = η1 ∧ η2 ∧ η3 ∧ η4 ∧ η5,

where η1, . . . , η5 is a dual basis to X1, . . . , X5 given by

η1 = dx1, η2 = dx2, η3 = −x1dx2 + dx3,

η4 = x2
1dx2 − 2x1dx3 + dx4, η5 = −2x2dx3 + dx5.

In coordinates,

ΘB = dx1 ∧ · · · ∧ dx5.

Let us use the Lie symmetries of this system to accomplish several of its possible reductions.
Recall that the Lie symmetries of the control systems (3.2) are given in (3.6). Indeed, after a
long but simple calculation, we obtain a Lie algebra VS of Lie symmetries spanned by

Y1 =
∂

∂x1
+ x2

∂

∂x3
+ 2x3

∂

∂x4
+ x2

2
∂

∂x5
, Y2 =

∂

∂x2
+ 2x3

∂

∂x5
,

Y3 =
∂

∂x3
, Y4 =

∂

∂x4
, Y5 =

∂

∂x5
.

Recall also that

Yα(0) = Xα(0), α = 1, . . . , 5

and the only non-vanishing commutation relations between the previous vector fields read

[Y1, Y2] = −Y3, [Y1, Y3] = −2Y4, [Y2, Y3] = −2Y5.
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Hence, VS = 〈Y1, . . . , Y6〉  V. Let gC be the abstract Lie algebra isomorphic to V. This leads
us to define a momentum map

J : R
5 × G(gC) −→

•
∧T∗

R
5

(ξ,w) �−→ ιwΘ
B(ξ).

Consider the unimodular subalgebra VL
45 := 〈Y4, Y5〉 and the associated Noether invariant of

XG:

Θ̄45 := ιY4∧Y5Θ
B = dx1 ∧ dx2 ∧ dx3.

The Lie algebra 〈Y4, Y5〉  R2 can be considered as the Lie algebra of fundamental vector
fields of a proper and free unimodular Lie group action

Φ45 : (λ1,λ2; x1, x2, x3, x4, x5) ∈ R
2 × R

5 �−→ (x1, x2, x3, x4 + λ1, x5 + λ2) ∈ R
5.

Moreover, the space Λ2VΦ = 〈Y4 ∧ Y5〉 is Hamiltonian. Since ΘB is five-nondegenerate,
the pair (ΘB,Φ45) becomes a reduction scheme and theorem 4.1 can be applied to reduce
this multisymplectic structure to R5/R2. More specifically, the orbits of the action Φ take
the form O[x1,x2,x3,x4,x5] = {x1} × {x2} × {x3} × R2 and the quotient space is R5/R2  R3.
The variables x1, x2, x3 give rise to a coordinate system in the quotient and one can define the
submersion

π45 : (x1, . . . , x5) ∈ R
5 �−→ (x1, x2, x3) ∈ R

3.

Additionally, theorem 4.1 ensures that there exists a unique multisymplectic form Θ̂45 on R3

whose pull-back to R5 is Θ̄45, namely Θ̂45 = dx1 ∧ dx2 ∧ dx3.
Since (ΘB,Φ45) is a reduction scheme such that the Φg, with g ∈ R2, are symmetries of

the Lie system of the multisymplectic Lie system (R5,ΘB, X), theorem 4.3 ensures that we
can reduce the multisymplectic Lie system. In fact, the Vessiot–Guldberg Lie algebra for the
control system (3.2) project onto R3 giving rise to a new Lie algebra V45 spanned by vector
fields

X45
1 =

∂

∂x1
, X45

2 =
∂

∂x2
+ x1

∂

∂x3
, X45

3 =
∂

∂x3
.

Hence, also the system XCS can be projected onto R3 to give rise to a Lie system X45 on R3.
Moreover, the Lie algebra V45 consists of Hamiltonian vector fields relative to Θ̂45, which turns
the triple (R3, Θ̂45, X45) into a new multisymplectic Lie system.

4.2.3. Systems on Lie groups and quantum harmonic oscillators with a spin-magnetic term.
Let us consider a Lie system on Gos := SL2 × SO3 related to a quantum mechanical system
given by a t-dependent harmonic oscillator with a spin-magnetic term. This example will be
useful in the next section to illustrate how several reductions of a multisymplectic Lie system
can be used to reconstruct the dynamics of the original one.

The Lie algebra of Gos takes the form gos := sl2 ⊕ so3 where ⊕ represents the direct sum of
the Lie algebra sl2 and so3.

Let us define the Lie system on Gos of the form

dg
dt

=

r∑
α=1

bα(t)XR
α (g) =: Xos(t, g), g ∈ Gos, t ∈ R, (4.26)
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where b1(t), . . . , b6(t) are arbitrary t-dependent functions and {XR
1 , . . . , XR

6 } form a basis of
the Lie algebra V R of right-invariant vector fields on a Lie group Gos in such a way that
{XR

1 , XR
2 , XR

3 } forms a basis of the Lie algebra Vsl := 〈XR
1 , XR

2 , XR
3 〉  sl2 and {XR

4 , XR
5 , X6

R} stands
for a basis of the Lie algebra Vso := 〈XR

4 , XR
5 , XR

6 〉  so3.
The relevance of the Lie system (4.26) is due to the fact that it appears in the solution of quan-

tum harmonic oscillators with a spin-magnetic term [21]. More specifically, particular cases
of (4.26) appear as the automorphic Lie systems associated with the t-dependent Schrödinger
equation related to a quantum t-dependent Hamiltonian operator of the form

Ĥ1(t) =
p̂2

x + p̂2
y + p̂2

z

2
+ ω2(t)

x̂2 + ŷ2 + ẑ2

2
+ Bx(t)Ŝx + By(t)Ŝy + Bz(t)Ŝz, (4.27)

where ω(t) is any t-dependent frequency, Bx(t), By(t), Bz(t) are the coordinates of a magnetic
field and Ŝx , Ŝy, Ŝz can be assumed to be, for instance, the Pauli matrices up to a proportional
constant. Note that Ĥ1(t) acts on L2(R3) ⊗ C2, where L2(R3) is the space of complex square-
integrable functions on R3. It is remarkable that (4.26) is also related to other t-dependent
Hamiltonian operators, e.g.

Ĥ2(t) =
p̂2

x + p̂2
y + p̂2

z

2
+ ω2(t)

x̂2 + ŷ2 + ẑ2

2
+ Bx(t)L̂x + By(t)L̂y + Bz(t)L̂z, (4.28)

acting on L2(R3), where L̂x , L̂y, L̂z are the angular momentum operators relative to the axes
OX, OY, OZ, respectively. In both previous cases, the key to understand the relation between
(4.27) and (4.28) is the fact that iĤ j(t), with j = 1, 2, can be written as a linear combination
with t-dependent constants of a family of skew-Hermitian operators closing a real Lie algebra
isomorphic to gos (cf [21]).

The above examples show that we can define a momentum map of the form

J os : Gos × G(gos) →
•
∧ T∗Gos.

We call G(gos) a traceless Grassmannian, i.e. the space of traceless subalgebras of gos. This
mapping allows us to gather all previous reduction processes. Although the relevant properties
of the system are better understood by using a geometric approach, we hereafter provide a local
coordinate expression for this system by using canonical coordinates of the second kind on Gos

of the form

φ : (v1, . . . , v6) ∈ gos �→ exp(−v1e1) × · · · × exp(−v6e6) ∈ Gos,

for XR
α (e) = −eα for α = 1, . . . , 6, namely

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dv1

dt
= b1(t) + b2(t) v1 + b3(t) v2

1,
dv4

dt
= b4(t) + tan v5(b5(t) sin v4 + b6(t) cos v4),

dv2

dt
= b2(t) + 2 b3(t) v1,

dv5

dt
= b5(t) cos v4 − b6(t) sin v4,

dv3

dt
= ev2 b3(t),

dv6

dt
=

b5(t) sin v4 + b6(t) cos v4

cos v5
.

(4.29)
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We have now the following coordinate expressions for the vector fields

XR
1 =

∂

∂v1
, XR

4 =
∂

∂v4
,

XR
2 = v1

∂

∂v1
+

∂

∂v2
, XR

5 = sin v4 tan v5
∂

∂v4
+ cos v4

∂

∂v5
+

sin v4

cos v5

∂

∂v6
,

XR
3 = v2

1
∂

∂v1
+ 2v1

∂

∂v2
+ ev2

∂

∂v3
, XR

6 = cos v4 tan v5
∂

∂v4
− sin v4

∂

∂v5
+

cos v4

cos v5

∂

∂v6
.

(4.30)

Recall that right-invariant vector fields must be defined everywhere. The singularity in the
above local coordinate expression when v5 = π/2 + kπ for k ∈ Z is only due to the fact that
canonical coordinates of the second kind are defined, generically, only on an open neigh-
bourhood of the neutral element of Gos. A simple change of coordinates would remove the
singularity in the expression of right-invariant vector fields when the previous second canonical
coordinates fail to be well defined.

Next, it will be useful to describe the commutation relations among the above vector fields

[XR
1 , XR

2 ] = XR
1 , [XR

2 , XR
3 ] = XR

3 , [XR
3 , XR

4 ] = 0, [XR
4 , XR

5 ] = XR
6 , [XR

5 , XR
6 ] = X4,

[XR
1 , XR

3 ] = 2XR
2 , [XR

2 , XR
4 ] = 0, [XR

3 , XR
5 ] = 0, [XR

4 , XR
6 ] = −XR

5 ,

[XR
1 , XR

4 ] = 0, [XR
2 , XR

5 ] = 0, [XR
3 , XR

6 ] = 0,

[XR
1 , XR

5 ] = 0, [XR
2 , XR

6 ] = 0,

[XR
1 , XR

6 ] = 0.

Thus, the vector fields given in (4.30) span a real six-dimensional Lie algebra Vos isomorphic
to sl2 ⊕ so3. Their dual forms are given by

ηR
1 = dv1 − v1dv2 + v2

1e−v2dv3, ηR
4 = dv4 − sin v5dv6,

ηR
2 = dv2 − 2v1e−v2dv3, ηR

5 = cos v4dv5 + sin v4 cos v5dv6,

ηR
3 = e−v2dv3, ηR

6 = − sin v4dv5 + cos v4 cos v5dv6.

Following the method presented in [33], we can build up a multisymplectic form on
Gos = SL2 × SO3 such that the elements of Vos become Hamiltonian vector fields with respect
to it. Indeed, the obtained multisymplectic form reads

Θos = ηR
1 ∧ · · · ∧ ηR

6 = e−v2 cos v5 dv1 ∧ dv2 ∧ dv3 ∧ dv4 ∧ dv5 ∧ dv6. (4.31)

We will use the Lie symmetries of the multisymplectic Lie system (Gos,Θos, Xos) to reduce
it. Recall that the Lie symmetries of a Lie system are given by the system of partial differential
equation (3.5). In this case, the Lie algebra VS = Sym(Vos) is spanned by the vector fields

26



J. Phys. A: Math. Theor. 55 (2022) 295204 J de Lucas et al

YL
1 = ev2

∂

∂v1
+ 2v3

∂

∂v2
+ v2

3
∂

∂v3
, YL

4 =
cos v6

cos v5

∂

∂v4
− sin v6

∂

∂v5
+ cos v6 tan v5

∂

∂v6
,

YL
2 =

∂

∂v2
+ v3

∂

∂v3
, YL

5 =
sin v6

cos v5

∂

∂v4
+ cos v6

∂

∂v5
+ sin v6 tan v5

∂

∂v6
,

YL
3 =

∂

∂v3
, YL

6 =
∂

∂v6
, (4.32)

where the only non-vanishing commutation relations are

[YL
1 , YL

2 ] = −YL
1 , [YL

2 , YL
3 ] = −YL

3 , [YL
4 , YL

5 ] = −YL
6 , [YL

5 , YL
6 ] = −YL

4 ,

[YL
1 , YL

3 ] = −2YL
2 , [YL

4 , YL
6 ] = YL

5 .

Hence, VS = 〈YL
1 , YL

2 , YL
3 , YL

4 , YL
5 , YL

6 〉  Vos via the Lie algebra isomorphism mapping
XR
α �→ −YL

α for α = 1, . . . , 6.
Let us consider the momentum map

J os: Gos × G(gos) −→
•
∧T∗Gos

(ξ,w) �−→ ιwΘ
os(ξ).

• First, consider the reduction ofΘos by YL
1 ∧ YL

2 ∧ YL
3 . We have the quotient map projection

π123 : (v1, . . . , v6) ∈ Gos �−→ (v4, v5, v6) ∈ G/SL2  SO3.

The projections of the elements of the basis (4.30) of the Vessiot–Guldberg Lie algebra Vos

onto Gos/SL2 read X̃sl
1 = X̃sl

2 = X̃sl
3 = 0, while

X̃sl
4 =

∂

∂v4
,

X̃sl
5 = sin v4 tan v5

∂

∂v4
+ cos v4

∂

∂v5
+

sin v4

cos v5

∂

∂v6
,

X̃sl
6 = cos v4 tan v5

∂

∂v4
− sin v4

∂

∂v5
+

cos v4

cos v5

∂

∂v6
.

It is clear that Ṽsl = 〈X̃sl
4 , X̃sl

5 , X̃sl
6 〉 is a three-dimensional Lie algebra isomorphic to so3. This

gives rise to a Lie system

Xsl =

6∑
α=4

bα(t)X̃sl
α

on the quotient space Gos
1 = Gos/SL2. This is a multisymplectic Lie system with respect to the

multisymplectic three-form Θos
123 determined by

π∗
123Θ

os
123 = ιYL

1 ∧YL
2 ∧YL

3
Θos = cos v5 dv4 ∧ dv5 ∧ dv6

on Gos
1 .

• On the other hand, consider the reduction of Θos by YL
4 ∧ YL

5 ∧ YL
6 . We have the projection

π456 : (v1, . . . , v6) ∈ Gos �−→ (v1, v2, v3) ∈ Gos/SO3  SL2.
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The projections of the elements of the basis (4.30) of the Vessiot–Guldberg Lie algebra Vos

onto Gos/SO3 read

X̃so
1 =

∂

∂v1
, X̃so

2 = v1
∂

∂v1
+

∂

∂v2
, X̃so

3 = v2
1
∂

∂v1
+ 2v1

∂

∂v2
+ ev2

∂

∂v3
,

and X̃so
4 = X̃so

5 = X̃so
6 = 0. It is clear that Ṽso = 〈X̃so

1 , X̃so
2 , X̃so

3 〉 is three-dimensional Lie algebra
isomorphic to sl2. This gives rise to a Lie system

Xso =

3∑
α=1

bα(t)X̃so
α

on the quotient space Gos
2 = Gos/SO3. This is a multisymplectic Lie system on Gos

2 with respect
to the multisymplectic three-form Θos

456 induced by

π∗
456Θ

os
456 = ιYL

4 ∧YL
5 ∧YL

6
Θos = −e−v2dv1 ∧ dv2 ∧ dv3.

5. Multisymplectic reconstruction

This section gives criteria for determining a multisymplectic Lie system (M,Θ, X) from several
of its multisymplectic reductions. Let us start by giving a particular example that illustrates our
more general techniques to be deployed later on.

Let us go back to the multisymplectic Lie system (Gos,Θos, Xos) related to (4.26) and asso-
ciated with quantum harmonic oscillators with a spin-magnetic term. Recall that (Gos,Θos, Xos)
gives rise, by using multisymplectic reductions, to two different multisymplectic Lie systems

(Gos
1 ,Θos

123, Xsl), (Gos
2 ,Θos

456, Xso ).

Recall that Θos
123 is a multisymplectic form on Gos

1 such that π∗
123Θ

os
123 = ιYL

1 ∧YL
2 ∧YL

3
Θos. As

YL
1 ∧ YL

2 ∧ YL
3 = ev2

∂

∂v1
∧ ∂

∂v2
∧ ∂

∂v3
, (5.1)

and Θos is six-nondegenerate because it is a volume form on Gos, the original multisymplectic
form is uniquely determined by Θos

123, namely Θos
123 = cos v5dv4 ∧ dv5 ∧ dv6, and it must take

the form (4.31). Alternatively, the knowledge of Θos
456, namely Θos

456 = −e−v2dv1 ∧ dv2 ∧ dv3,
and the fact that it was obtained as a multisymplectic reduction via the contraction of Θos with

YL
4 ∧ YL

5 ∧ YL
6 =

1
cos v5

∂

∂v4
∧ ∂

∂v5
∧ ∂

∂v6
,

determines again the value of Θos, which matches the value obtained previously via the
previous multisymplectic reduction.

Let us now focus on retrieving the t-dependent vector field Xos on Gos, whose reductions
gave rise to the t-dependent vector fields on Gos

1 and Gos
2 , given by

Xsl =
6∑

α=4

bα(t)X̃sl
α , Xso =

3∑
α=1

bα(t)X̃so
α , (5.2)

respectively. In this case, we know that π123∗Xos = Xsl, which determines Xos up to a vector
field on Gos taking values in ker Tπ123. Similarly, π456∗Xos = Xso, which retrieves the value of
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Xos up to a vector field on Gos taking values in ker Tπ456. Hence, the value of Xos is determined
at a point g ∈ Gos up to an element of

ker Tpπ123 ∩ ker Tpπ456 = {0}.

In other words, Xos is uniquely determined by (5.2). Note that this example shows how to
determine the original multisymplectic Lie system on a Lie group, related to a multisymplectic
volume form, via two of its multisymplectic reductions.

The previous example illustrates how to set sufficient conditions to retrieve our initial mul-
tisymplectic Lie system from its multisymplectic reductions. For instance, we can consider the
following proposition.

Proposition 5.1. Let G be a Lie group with certain Lie subgroups G1, . . . , Gk. Let
(G/Gi,Θi, Xi), with i = 1, . . . , k, be a set of multisymplectic reductions of a multisymplec-
tic Lie system (G,Θ, X), let πi : G → G/Gi and ιYiΘ, with 1, . . . , k, be the projections and
Noether invariants related to the multisymplectic reductions induced by the multivector fields
Y1, . . . , Yk on G. Assume that

k⋂
i=1

ker Tgπi = {0}, ∀ g ∈ G,

and suppose that Θ is a volume form on G. Then, the multisymplectic Lie system (G,Θ, X) is
univocally determined from its multisymplectic reductions.

Proof. Since by construction of the multisymplectic reductions, one has that Xi
πi(g) = TgπiXg

for i = 1, . . . , k and every g ∈ G, then the value of X at g, let us say Xg, is determined by
X1, . . . , Xk up to an element of

⋂k
i=1ker Tgπi, which is, by assumption, equals to zero. Hence,

X is determined univocally by X1, . . . , Xk.
Let us now study the determination of the multisymplectic form Θ on G via the Noether

invariants ιYiΘ associated with the multisymplectic reductions and the induced multisymplectic
forms on the different quotients G/Gi. Given one of them, let us say Θi, one has that

ιYiΘ = π∗
i Θ

i.

Since Θ is a volume form and π is a surjective submersion, Θ is univocally determined by Θi,
the multivector field Yi, and the above relation. �

To understand the generality of the assumptions of the previous proposition, it is worth
noting that multisymplectic volume forms are not as restrictive as it may seem at first. In two-
dimensional manifolds, every multisymplectic form is a volume form. On three-dimensional
manifolds, it occurs the same way as differential two- and one-forms are degenerate. In four-
dimensional manifolds, differential three-forms are degenerate because they can all be written,
locally, as the contraction of a volume form with a vector field. Moreover, differential one-
forms are also degenerate and the only multisymplectic forms on a four-dimensional manifold
are volume forms or symplectic ones. It is worth stressing that we are mainly interested in
multisymplectic forms that are not symplectic ones, as only in this case the multisymplectic
formalism will provide information that is not available by means of other theories. Hence, non-
volume multisymplectic forms, which are not symplectic forms, appear only on manifolds of
dimension five or higher.
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Anyhow, proposition 5.1 can be modified to deal with multisymplectic Lie systems rela-
tive to a class of non-volume multisymplectic forms. As shown next, these multisymplectic
forms need not be k-nondegenerate for k > 1, and this leads to new features. Let us provide an
example to illustrate the new geometric aspects introduced in this case.

Consider a multisymplectic form on R8 of the form

ΩS =
∑

1�i1<i2<i3<i4<i5<i6�8

dxi1 ∧ dxi2 ∧ dxi3 ∧ dxi4 ∧ dxi5 ∧ dxi6 ,

where {x1, . . . , x8} are global coordinates on R8. In fact, ΩS is closed and, since the mappings
ΩS�

x : TxM →∧5TxM are injections for every x ∈ M, one-nondegenerate. Moreover, ΩS is also
two- and three-nondegenerate, i.e. if ιZΩ

S = 0 for Z ∈ X2(R8) or Z ∈ X3(R8), then Z = 0. In
fact, ιZΩ

S = 0 can be seen as an algebraic equation in the coefficients of Z ∈ Xs(R8) in a certain
basis of differential s-forms. In particular, when Z ∈ X2(R8), the algebraic system ιZΩ

S = 0
can be seen as a system of

( 8
4

)
linear equations on the

( 8
2

)
coefficients of Z, which, after a

simple but tedious calculation, turns out to have a unique trivial Z = 0 solution. Moreover, if
Z ∈ X3(R8), the algebraic system ιZΩ

S = 0 can be seen as a system of
( 8

3

)
linear equations on

the
( 8

3

)
coefficients of Z, which, as in the previous case, has only a unique zero trivial solution.

Note that this last fact also implies that ΩS must be one- and two-nondegenerate.
Consider the Lie system on R8 of the form

XS =

8∑
i=1

bi(t)
∂

∂xi
,

where b1(t), . . . , b8(t) are arbitrary t-dependent functions. It is immediate that the vector
fields {∂/∂x1, . . . , ∂/∂x8} are Hamiltonian relative to ΩS. Then, (R8,ΩS, XS) becomes a
multisymplectic Lie system.

Consider the Lie group action Φ : (λ1, . . . ,λ8, x1, . . . , x8) ∈ R8 × R8 �→ (λ1 +
x1, . . . ,λ8 + x8) ∈ R8, which admits a momentum map

J : R8 × G(R8) →
•
∧T∗

R
8.

Given the Hamiltonian bivector fields on R8 of the form

Za =
∂

∂x1
∧ ∂

∂x2
, Zb =

∂

∂x4
∧ ∂

∂x5
, Zc =

∂

∂x7
∧ ∂

∂x8
,

let us analyse the multisymplectic reductions of ΩS related to them. In particular,

ιZaΩ
S =

∑
3�i1<i2<i3<i4�8

dxi1 ∧ dxi2 ∧ dxi3 ∧ dxi4 ,

ιZcΩ
S =

∑
1�i1<i2<i3<i4�6

dxi1 ∧ dxi2 ∧ dxi3 ∧ dxi4 ,

ιZbΩ
S =

∑
1�i1<i2<i3<i4�8

ε45i1i2i3i4 dxi1 ∧ dxi2 ∧ dxi3 ∧ dxi4 ,

where ε45i1i2i3i4 is the Levi-Civita symbol relative to the sequence of indices 4, 5, i1, i2, i3, i4.
The above Noether invariants are basic forms relative to the canonical projections πa :
(x1, . . . , x8) ∈ R

8 �→ (x3, . . . , x8) ∈ R
6, πb : (x1, . . . , x8) ∈ R

8 �→ (x1, x2, x3, x6, x7, x8) ∈ R
6,
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and πc : (x1, . . . , x8) ∈ R8 �→ (x1, x2, x3, x4, x5, x6) ∈ R6 associated with the multisymplectic
reductions of ΩS by Za, Zb, and Zc, respectively. In other words, π∗

aΩa = ιZaΩ
S, π∗

bΩb = ιZbΩ
S,

π∗
cΩc = ιZcΩ

S for three unique differential four-forms Ωa,Ωb, and Ωc on R6, which are
therefore closed. They are also one-nondegenerate because ΩS is three-nondegenerate.

On the other hand, the value of π∗
aΩa does not allow us to characterise univocallyΩS via the

equality ιZaΩ
S = π∗

aΩa since there are many differential six-forms,Ω, satisfying that ιZaΩ = 0.
Therefore, π∗

aΩa = ιZaΩ
S determines ΩS up to a differential six-form, let us say Ωaa, whose

contraction with Za vanishes. Moreover, the differential six-forms ΩS + εΩaa, for small ε, are
one-nondegenerateand ιZa(ΩS + εΩaa) = π∗

aΩa. Hence, to determine every possible multisym-
plectic six-form on R8, let us say Ω, satisfying ιZaΩ = π∗

aΩa, it is interesting to define the
following notion.

Definition 5.2. Let w be a r-tangent vector at x ∈ M, i.e. w ∈
∧

rTxM. The �-annihilator of
w, denoted by w◦,�, is the space of skew-symmetric �-forms, Ωx , on TxM such that ιwΩx = 0.

In the previous example, the knowledge of π∗
aΩa determines the value of ΩS up to a

differential six-form vanishing on Za. Meanwhile,

Z◦,6
a � dxi1 ∧ dxi2 ∧ dxi3 ∧ dxi4 ∧ dxi5 ∧ dxi6

if, and only if, {1, 2} �⊂ {i1, . . . , i6}, which determines Z◦,6
a . Similarly, one can determine Z◦,6

b
and Z◦,6

c . From this, it follows that Z◦,6
a ∩ Z◦,6

b ∩ Z◦,6
c = {0} andΩS is the unique differential six-

form satisfying that ιZaΩ
S = π∗

aΩa, ιZbΩ
S = π∗

bΩb, and ιZcΩ
S = π∗

cΩc. Hence, it is immediate
that proposition 5.1 can be generalised as follows.

Proposition 5.3. Let G be a finite-dimensional Lie group with certain Lie subgroups
G1, . . . , Gk. Let (G/Gi,Θ

i, Xi), with i = 1, . . . , k, be a set of multisymplectic reductions of a
multisymplectic Lie system (G,Θ, X); where Θ is an (s + 1)-nondegenerate multisymplectic �-
form on G. Let πi : G → G/Gi and Θi = ιZiΘ, with 1, . . . , k and Zi ∈ Xs(G), be the projections
and Noether invariants related to the multisymplectic reductions. If

k⋂
i=1

ker Tgπi = {0} and
k⋂

i=1

Z◦,�
i (g) = {0}, ∀ g ∈ G,

then, the multisymplectic Lie system (G,Θ, X) is univocally determined from its multisymplec-
tic reductions (G/Gi,Θi, Xi), with i = 1, . . . , k.

6. Conclusions and outlook

This work presents a reduction procedure for multisymplectic Lie systems, which were first
introduced in [33], by using a suitable momentum map. We have also developed a reconstruc-
tion procedure which, in favourable cases, allows us to recover the original Lie system from
its reductions. These results are illustrated by working out several examples, including the
Schwarz equation, dissipative quantum harmonic oscillators, a control system, and a quantum
harmonic oscillator with a spin-magnetic term.

In the future, it is planned to study new physical and mathematical applications of our meth-
ods, e.g. to Schwarz derivatives [48]. It would also be interesting to investigate multisymplectic
Lie systems that are not of locally transitive type. In those cases, the Lie system is not locally
diffeomorphic to an automorphic Lie system on a Lie group and we cannot use the structures
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on Lie groups to obtain multisymplectic forms, Lie symmetries, reductions and so on. This
also raises the question of the existence of a multisymplectic form that turns a Lie system into
a multisymplectic one.

Note that shown results about Schwarz equations highlight that multisymplectic structures
may allow for the study of relative equilibrium points for systems that are not Hamiltonian ones
relative to any symplectic or Poisson structure. It would be interesting to study the extension of
energy–momentum methods [51] to Hamiltonian systems relative to multisymplectic forms.
The energy–momentum method is based heavily on a Marsden–Weinstein reduction procedure
(cf [50, 51]), which has been depicted here for multisymplectic structures. Therefore, our work
solves one of the main drawbacks in developing such a method. We hope to follow these lines
of research in upcoming works.

Finally, it would be interesting to develop an analogue of our methods to study the reductions
of Lie systems admitting a Vessiot–Guldberg Lie algebra of Hamiltonian vector fields relative
to other geometric structures, e.g. k-cosymplectic [45] or k-contact [31] structures.
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