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a b s t r a c t 

Context: There are many datasets for training and evaluating models to detect web attacks, labeling each 

request as normal or attack. Web attack protection tools must provide additional information on the type 

of attack detected, in a clear and simple way. 

Objectives: This paper presents a new multi-label dataset for classifying web attacks based on CAPEC 

classification, a new way of features extraction based on ASCII values, and the evaluation of several com- 

binations of models and algorithms. 

Methods: Using a new way to extract features by computing the average of the sum of the ASCII val- 

ues of each of the characters in each field that compose a web request, several combinations of algo- 

rithms (LightGBM and CatBoost) and multi-label classification models are evaluated, to provide a com- 

plete CAPEC classification of the web attacks that a system is suffering. The training and test data used 

for training and evaluating the models come from the new SR-BH 2020 multi-label dataset. 

Results: Calculating the average of the sum of the ASCII values of the different characters that make up 

a web request shows its usefulness for numeric encoding and feature extraction. The new SR-BH 2020 

multi-label dataset allows the training and evaluation of multi-label classification models, also allowing 

the CAPEC classification of the various attacks that a web system is undergoing. The combination of the 

two-phase model with the MultiOutputClassifier module of the scikit-learn library, together with the 

CatBoost algorithm shows its superiority in classifying attacks in the different criticality scenarios. 

Conclusion: Experimental results indicate that the combination of machine learning algorithms and 

multi-phase models leads to improved prediction of web attacks. Also, the use of a multi-label dataset is 

suitable for training learning models that provide information about the type of attack. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction & motivation 

Every year there are significant increases in the number of at- 

acks against web servers and applications; e-commerce platforms, 

nancial and government institutions, large corporations, etc. are 

argeted by web attacks for economic or ideological reasons. Ac- 

ording to Cisco ( Cisco, 2018 ), 14.5 million DDoS attacks are ex- 
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ected in 2022. Also, SQL Injection (SQLi) and Cross-site Scripting 

XSS) attacks are easy and powerful methods for attacking a web 

ite ( Johari and Sharma, 2012 ). The impact of cyber-attacks suf- 

ered by companies threatened their viability in 17% of cases, re- 

orted specialist insurer Hiscox( Hiscox, 2021 ), with their website 

ecoming the first point of entry in 29% of cases. 

Several technologies and systems exist to prevent and detect 

ttacks on web servers and applications: misuse detection sys- 

ems with large rules and vulnerability signature databases that 

ust be continuously updated, anomaly detection systems that in- 

erpret deviations based on expected patterns of user and ap- 

lication behavior, taking this behavior as evidence of malicious 

ctivity. Recently, there has been a significant increase in scien- 
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ific interest in anomaly detection techniques applied to web in- 

ruder detection ( Sureda Riera et al., 2020 ). To successfully train 

nd evaluate models based on anomaly detection techniques, spe- 

ific web traffic datasets are needed; a major drawback in the 

tudy of web attack prevention and detection is the lack of public 

atasets to audit and validate the studies performed in this field 

 Sureda Riera et al., 2020 ); the DARPA dataset and those belonging 

o the KDD family have been widely criticized in different studies 

 Brugger, 2007; Mahoney and Chan, 20 03; McHugh, 20 0 0; Taval- 

aee et al., 2009 ). The CSIC-2010 dataset has become one of the 

ost popular in recent years for testing protection systems against 

eb attacks. This dataset is generated by synthetic traffic and con- 

ains 36,0 0 0 requests labeled as normal and more than 25,0 0 0 la-

eled as anomalous ( Torrano-Gimenez et al., 2009 ). 

Most datasets are composed of artificially generated traffic and, 

o our best knowledge, all datasets available for training and/or 

valuation of machine learning models provide only labeling of 

he request in terms of normality or attack, without specifying in 

ny case what type(s) of attack(s) is/are being suffered. The au- 

hors strongly believe in the need for datasets that collect this type 

f additional information and that allow the training of machine 

earning models that classify attacks based on internationally ac- 

epted classification criteria, such as CAPEC. In this way, by pro- 

iding the incident response team with the CAPEC classification 

f the attack, response times and effectiveness will be improved, 

s the specific attack pattern and possible mitigations can be 

ueried. 

For this reason, one of the main achievements of this work is 

he generation of a new dataset (the SR-BH 2020 dataset) that 

ollects different types of attacks, coming from real traffic data 

generated by collecting real traffic in a honeypot exposed to the 

nternet for 12 days), with multi-labels, that report the normality 

f the request, or the CAPEC classification of the type or types of 

ttack that the web request represents. This dataset, to our knowl- 

dge, is the first one that allows the training and evaluation of 

ulti-label machine learning models and algorithms, which can 

rovide the CAPEC classification of the attack(s) that a web appli- 

ation is suffering. 

One of the fundamental stages in any data science project is the 

reprocessing of the data that will be used to train the machine 

earning models; this stage includes the selection of the relevant 

haracteristics of the dataset that allow a high level of model effi- 

iency to be achieved when making the prediction. In the case of 

 dataset with web traffic data, it is necessary to numerically en- 

ode the various fields of each web request, so that it is possible 

o apply different statistical techniques to the resulting numerical 

alues. In this study, we present a new form of numerical encod- 

ng consisting of calculating the average of the sum of the ASCII 

alues of each of the characters that make up each field of a web

equest. 

Several supervised machine learning algorithms and techniques 

pplied to intrusion detection have been studied over the years, 

ost notably algorithms using ensembles of decision trees in com- 

ination with gradient boosting ( Tama et al., 2020; Vu et al., 2019 );

wo popular algorithms that provide a gradient boosting frame- 

ork are LigthGBM ( Ke et al., 2017 ) and CatBoost ( Dorogush et al.,

018 ). In this paper, we will evaluate (using different metrics, de- 

ending on the criticality levels of several scenarios) the perfor- 

ance of these algorithms in predicting web attacks, such that 

hey report the normality of the request or the CAPEC classifica- 

ion(s) of the attack. As this is a multi-label classification task since 

 single request may contain more than one type of attack, the 

R-BH 2020 dataset will be used and different multi-label classifi- 

ation models will be combined with the LightGBM and CatBoost 

lgorithms. 
2

This paper makes the following contributions: 

• Construction of the SR-BH 2020 1 dataset, a new multi-label 

dataset for Web attack detection and prediction based on 

CAPEC attack patterns, suitable for training multi-label classi- 

fication models. 

• A new way of web request data encoding using the mean of the 

sum of the characters ASCII values. 

• Design of one-phase, two-phase, and customized classification 

multi-label machine learning models. 

• Study of the behavior of novel algorithms applying the designed 

classification multi-label models. 

• A ranking is obtained of the different combinations of algo- 

rithms/models to be applied in the protection of different sce- 

narios, according to their criticality levels, using different eval- 

uation metrics. 

The rest of this work is structured as follows: Section 2 de- 

cribes background and related work. Section 3 shows in an 

verview the process followed in this work. In Section 4 , the mate- 

ials and methods used are provided including the dataset used for 

he experiments and method evaluation, the system followed for 

eature extraction from the dataset, and a description of the dif- 

erent models applied to algorithms. Section 5 , shows the model 

esults and considerations. The conclusions of the study are pro- 

ided in Section 6 . 

. Background and related works 

.1. Background 

This section provides an overview of the WAF and RASP web 

rotection tools and the similarities and differences between them, 

 presentation of the characteristics of the algorithms analyzed in 

his study, namely LightGBM and CatBoost, as well as a description 

f the metrics and scenarios of criticality to be used to evaluate 

he performance of the various models and algorithms. 

.1.1. Web application protection 

One of the most widely used methods for Web application pro- 

ection is the implementation of Web Application Firewall (WAF) 

ools. A WAF is deployed between the application and the request- 

ng user, inspecting the incoming traffic at the application layer of 

he OSI model and looking for attack patterns, eventually block- 

ng incoming malicious traffic. WAF devices work by checking that 

ncoming traffic against a database of signatures or rules so that 

he update of that database is critical. They are independent of the 

rogramming language of the web application as they act before 

he malicious traffic gets to execute the code. Different ways of cir- 

umventing the protection provided by a WAF have been proposed 

 Ristic, 2022 ), OWASP : Normalization Method, Using HTTP Param- 

ter Pollution (HPP), Using HTTP Parameter Fragmentation (HPF), 

sing logical requests AND / OR, replacing with their synonyms 

he SQL functions that get WAF signatures, using comments, case 

hanging, triggering a Buffer Overflow / WAF Crashing. Most of 

hese methods focus on protocol layer exploits that attempt to take 

dvantage of small differences between how WAF, web servers, and 

ackend applications see traffic. 

Runtime Application Self-Protection (RASP) tools are defined by 

artner Gartner (2022) as ”a security technology that is built or 

inked into an application or application runtime environment, and 

s capable of controlling application execution and detecting and 

reventing real-time attacks”. These tools combine real-time con- 

extual awareness of the factors that have led to the application 
1 Available at https://doi.org/10.7910/DVN/OGOIXX . 

https://doi.org/10.7910/DVN/OGOIXX
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f current behavior ( Dubey, 2016; Steiner et al., 2017 ). They work 

ia ”embedding” the security in the application server to be pro- 

ected, intercepting all calls to the system to check they are secure 

o that they depend entirely on the programming language of the 

pplication to protect. 

Both technologies work in the application layer filtering the 

TTP protocol. WAF is a black box technology (it does not need 

ccess to the logic of the application; it intercepts the calls and re- 

ponses to the logic of the application to be protected, performing 

 syntactic analysis to detect attacks). On the other hand, RASP is a 

hite-box technology that works by installing an agent on the ap- 

lication server, examining how variables in the application’s pro- 

ess and code stack get their values to, based on that information, 

redict whether an attack is taking place. 

Several attempts have been made to improve the effectiveness 

f WAF solutions. The model proposed by Moosa (2010) is based 

n an Artificial Neural Network (ANN) that defends against SQL in- 

ection attacks. While in the training phase the ANN is exposed 

o a set of normal and harmful data, in the working phase, the 

rained ANN is embedded into the WAF, thus protecting the entire 

eb server. 

In an attempt to improve the effectiveness of WAF rule sets, 

uxilia and Tamilselvan (2010) propose a negative security model, 

hich monitors applications for security anomalies, uncommon 

ehaviors, and common web application attacks. 

Taint analysis is one of the techniques used in RASP solutions. 

aldar et al. Haldar et al. (2005) , propose the analysis of externals 

o the web application data, marking them as untrusted (tainted 

ata). They identify, monitor, and prevent the inappropriate use of 

his type of data at runtime in the web application to protect, de- 

eloping a heuristic that instruments the java.lang.String class, to 

ropagate taintedness of strings, as well as to mark certain strings 

s untainted. 

Halfond et al. (2008) propose the use of positive tainting , iden- 

ifying and tracing trusted data at execution time, while conven- 

ional tainting is centered on untrusted data. In this way, False 

egatives (FN) are completely eliminated, at the cost of producing 

n increase in False Positives (FP). This approach also makes use of 

yntax-aware evaluation, so that data usage regulation is applied at 

evelopment time based on its syntax in the query string, requir- 

ng only the deployment of the web application using the MetaS- 

rings library. 

.1.2. Algorithms 

LightGBM LightGradient Boosting Machine, abbreviated as Light- 

BM, is an open-source library that provides a fast, decentralized, 

ighly performant gradient boosting environment on the basis of a 

ecision tree algorithm. Guolin Ke, et al. Ke et al. (2017) , introduced 

wo key concepts: 

• Gradient-based One-Side Sampling (GOSS): A modified version 

of the gradient boosting method that uses only large gradi- 

ent data instances. GOSS can get fairly accurate information 

gain estimates with a much smaller data size, which speeds 

up training and reduces the computational complexity of the 

method. 

• Exclusive Feature Bundling (EFB): This approach groups dis- 

persed (mostly null) features that are mutually exclusive from 

each other, thus becoming a feature selection method. 

In standard decision tree algorithms, such as c4.5 ( Ross Quin- 

an et al., 1994 ) and CART ( Breiman et al., 1984 ), nodes are ex-

anded in order of depth (level-wise tree growth) through of the 

divide and conquer” strategy, using a prefixed order (usually from 

eft to right). 

LightGBM, on the other hand, is part of a so-called ”best-first 

ecision trees” (leaf tree growth) where nodes are expanded in the 
3 
est order rather than in a fixed order. In this case, the best split 

ode at each step is added to the tree. The best node is a node that

s not classified as a terminal, that is, a node that minimizes the 

ini impurity index among all nodes that can be split ( Shi, 2007 ). 

LightGBM uses a histogram-based algorithm. That is, group suc- 

essive feature values into individual bins, build feature histograms 

uring training, and speeds up this process and reduces memory 

sage. Following the leaf-wise based approach produces a much 

ore complex tree than the hierarchical-based approach, which is 

 key factor in achieving higher accuracy. But sometimes this can 

ead to overfitting. LightGBM aims to reduce the complexity of his- 

ogram construction by using GOSS and EFB to reduce sampling 

ata and features. 

CatBoost 

Yandex developed CatBoost, an open-source software library 

hat provides an innovative categorical feature processing algo- 

ithm and a gradient boosting framework that implements order- 

ng boosting , a permutation-based alternative to traditional algo- 

ithms. CatBoost uses one-time encoding to implement a symmet- 

ic tree that handles categorical features and helps reduce predic- 

ion times. LightGBM uses GOSS to reduce complexity, while the 

atBoost algorithm introduces Minimal Variance Sampling (MVS) , a 

eighted version of stochastic gradient boosting sampling used to 

ormalize boosting models. Using MVS reduces the number of ex- 

mples required for each boosting iteration and greatly improves 

he quality of the model, making the model more general and 

ess likely to overfit ( Dorogush et al., 2018; Prokhorenkova et al., 

018 ). 

Another important concept of CatBoost is the use of Oblivious 

ecision Trees (ODT’s) in the process of building Decision Trees so 

hat a set of ODT’s is built. If an ODT has n levels, the set will have

 

n levels, since an ODT is a complete binary tree. The same split- 

ing criterion will be applied to all nodes that are not leaves of 

he ODT ( Hancock and Khoshgoftaar, 2020; Prokhorenkova et al., 

018 ). According to Prokhorenkova et al. ODTs are balanced, al- 

ow speeding up execution, and are less prone to overfitting 

 Prokhorenkova et al., 2018 ). 

.1.3. Evaluation metrics and scenarios 

Most supervised classification algorithms focus on binary or 

ulti-class classification; in this case, classical classification met- 

ics are adequate, e.g. accuracy, F1 Score, precision, recall, etc. 

 Sureda Riera et al., 2020 ). However, when working with datasets 

n which there are several labels for each observation, it is neces- 

ary to complement the classical metrics since the notion of a par- 

ially correct prediction of the various labels that make up each ob- 

ervation is introduced ( Cheng and Hüllermeier, 2009; Gouk et al., 

016; Read et al., 2011; Zhang and Zhou, 2014 ). 

Also, according to the work of Antunes and Vieira (2015) , it is 

ecessary for the metrics to make sense of the model being evalu- 

ted and the scenario to which the model is applied; for this rea- 

on, their recommendations are followed and four different types 

f scenarios are defined in which each algorithm/model combina- 

ion is evaluated, applying the recommended metric in each sce- 

ario. 

In our case, we have chosen to perform several evaluations: 

rst, we have calculated the Accuracy following the exact-match 

rinciple (exact prediction of all the labels); F measure, Recall, 

recision, ROC AUC, Informedness, and Markedness of each of the 

odel/algorithm combinations have been calculated on an overall 

asis. On the other hand, Accuracy and F measure have been eval- 

ated for each of the labels individually, as it may be useful to 

etermine how well the model predictions fit for each type of at- 

ack; additional metrics such as Hamming Loss, Hamming Score, 

nd Jaccard Similarity have been introduced to evaluate the mod- 

ls taking into account possible partially correct model predictions. 
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Metrics 

• Accuracy (for each label): This is the measure of accuracy that 

we will use to assess the model’s efficiency in predicting each 

of the labels that make up an observation; in this case, we will 

apply the classical definition of accuracy: 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

• Accuracy - Exact Match (EMR): This is the measure of accuracy 

that we will use to evaluate the global model performance; in 

our case, the exact measure of the prediction for all the labels 

that compose an observation: We just ignore partially correct 

predictions (considering them incorrect) and extend the con- 

cept of Accuracy used for single label prediction to the multi- 

label case. 

EMR = 

Number of records with exact label match 

T otal number of records 

• Precision: In our case, to account for label imbalance, we com- 

puted the proportion between the correct predicted labels and 

the total labels averaged over all cases and weighted them by 

support (the total number of cases for each label). 

P recision = 

T P 

T P + F P 

P recision weighted = 

∑ 

classes 

weight of class x precision of class 

• Recall: This is the true positive percentage correctly identified, 

averaged across all instances and support-weighted. 

Recall = 

T P 

T P + F N 

Recall weighted = 

∑ 

classes 

weight of class x recall of class 

• F measure (for each label): It is a measure of the accu- 

racy of a test, taking into account both precision and recall. 

Also known as F1-Score or F-Score, this value is a balanced 

harmonic mean of two metrics: Precision (P) and Recall (R) 

Bermejo Higuera (2013) ; Díaz and Bermejo (2013) ; Van Rijsber- 

gen (1979) . 

F measure = 

2 x precision x recall 

precision + recall 

• F measure (averaged): F measure score averaged across all in- 

stances and support-weighted. 

F measure weighted = 

∑ 

classes 

weight of class x F measure of class 

• Informedness: Is a measure of how much information the sys- 

tem provides about positive and negative labels,i.e. how in- 

formed a predictor is for the desired condition, as opposed to 

chance, averaged across all instances and support-weighted. 

In f ormedness = 

T P 

F N + T P 
+ 

T N 

F P + T N 

− 1 = 

T P 

F N + T P 
− F P 

F P + T 

In f ormedness weighted = 

∑ 

classes 

weight of class x In f ormedness of cl
4 
• Markedness: A measure of the confidence in the system’s posi- 

tive and negative predictions, it quantifies how consistently the 

outcome includes a predictor variable as a marker, that is, how 

the labeled condition for a given predictor compares to chance, 

averaged across all instances and support-weighted. 

Markedness = 

T P 

T P + F P 
+ 

T N 

F N + T N 

− 1 = 

T P 

T P + F P 
− F N 

F N + T N 

Markedness weighted = 

∑ 

classes 

weight of class x Markedness of class 

• ROC AUC: Shows the global efficiency of a classification model 

at all classification levels, by plotting the true positive rate 

(TPR) versus the false positive rate (FPR). The AUC is a bidi- 

mensional metric of the area under the full ROC curve, which 

ranges from 0 (100% inaccurate predictions) to 1 (100% accu- 

rate predictions), reflecting the separability grades and showing 

the capacity of a particular model to distinguish among classes 

( Sureda Riera et al., 2020; Swets, 1996 ). In our case, ROC AUC 

is averaged across all instances and support-weighted. 

• Hammming Loss: Is the proportion of incorrectly predicted la- 

bels over the total number of labels. In multi-label classifica- 

tion, the Hamming loss is calculated as the Hamming distance 

between the true and the predicted values. Its value ranges 

from 0 to 1. The lower the value, the better the performance 

of the model. Let D be a multi-label dataset, consisting of | D |
multi-label observations ( x i , Y i ), i = 1.|D|, Y i ⊆ L . Let H be a

multi-label classifier and Z i = H(x i ) be the set of labels pre- 

dicted by H for observation x i . 

Hamming Loss (H, D ) = 

1 

| D | 
| D | ∑ 

i =1 

| Y i �Z i | 
| L | 

Where � represents the symmetric difference between the two 

sets ( Schapire and Singer, 20 0 0; Tsoumakas and Katakis, 2009 ). 

• Jaccard Similarity: It measures the degree of similarity be- 

tween two sets by examining the proportion of correctly pre- 

dicted positive labels in a potentially positive set (expected pos- 

itive and real positive). 

J (T , P ) = 

T ∩ P 

T ∪ P 

where T and P are true labels and predicted labels respectively. 

Scenarios 

Four different scenarios are defined, based on the classification 

ade by Antunes and Vieira (2015) : 

• Very high critical scenario: Represents the development and 

evaluation of critical applications that have very high-security 

requirements because they need to provide their customers 

with a reliable system. Examples of this scenario are inter- 

net bank websites, trade-in equity shares, or massive electronic 

commerce systems. The top priority in this scenario is the elim- 

ination of the largest number of attacks , thus assuming the 

investment of time and resources in remediating the occurrence 

of non-existent attacks (false positives). In this case, the metric 

of choice is recall , as it maximizes attack detection. 

• Heightened-critical scenario: In this case, the goal is to 

achieve a balance between the priority of detecting and elim- 

inating the maximum number of attacks and preventing the 

excessive reporting of false positives , since resources in this 

type of scenario must be properly managed. Security require- 

ments are high, but lower than Very high critical scenario. Ex- 

amples of this scenario are government portals, e-commerce 

web applications, etc. A metric of choice in this scenario could 
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be the F-measure, but the problem is that it assigns equal im- 

portance to precision and recall; Informedness appears to be a 

better alternative, as it is bias-free and does not have the dis- 

advantages of harmonic averaging. 

• Medium-critical scenario: This scenario features less exposed 

or less criticals applications, typically with a limited budget, so 

the resources available for remediation of reported attacks are 

limited. For this reason, both finding and eliminating as many 

attacks as possible and saving resources on remediation of 

false positives have equal importance . Examples of this type 

of scenario are web sites, where attacks result in lower financial 

losses, or intranet applications that are less prone to external 

attacks. The optimal solution for this case is to use F-Measure . 

• Low-critical scenario: This scenario represents non-critical ap- 

plications that are not very exposed to attacks. They are char- 

acterized by being implemented with small budgets, so the re- 

sources available are limited; the use of these resources should 

be focused on confirmed attacks. The goal is to report as few 

false positives as possible , increasing confidence in reported 

attacks. Examples of such scenarios are web portals for small 

and medium-sized companies. Markedness seems to be the 

best metric. Actually, it is able to give greater preponderance 

to the accuracy considerations, while at the same time being 

capable of considering the attacks that are left unnotified. 

.2. Related work 

This section details the state of the art related to studies on 

ataset generation, pattern extraction and feature selection tech- 

iques, attack classification and deep learning models. 

.2.1. Datasets 

Many datasets have been proposed for the study and evaluation 

f models and techniques to enable web attack prediction: 

• DARPA: The Lincoln Laboratory of the Massachusetts Institute 

of Technology (MIT) created this dataset in 1998 and updated it 

in 1999. It consists of about 5 million connection records, which 

contain raw tcpdump data. It has 244 tagged cases of 58 attacks 

on four different OS ( Lichman, 20 0 0; Tavallaee et al., 2009 ). 

• KDD Cup 99: This is a variant of the DARPA dataset with 

about 4,90 0,0 0 0 and 2,0 0 0,0 0 0 entries in the training and test

datasets, each of which contains 41 features and is appropri- 

ate for training several machine learning algorithms. It may 

produce inconsistent results, due to the presence of duplicate 

records ( Tavallaee et al., 2009 ). 

• NSL-KDD: In an attempt to deal with one of the problems 

with the KDD Cup 99 dataset, a series of cleanup operations 

were performed on the duplicate records. From this process- 

ing, the new NSL-KDD dataset was created, which has 175,341 

and 82,332 records in the training and test sets, respectively 

( Devi and Abualkibash, 2019 ). 

• UNSW-NB15: This is a mixed dataset of real normal activi- 

ties and synthetically generated behaviors of modern attacks, 

with 47 features and 2 class-labeled features ( Moustafa and 

Slay, 2015 ). 

• Kyoto 2006: This is an exhaustive and representative dataset 

generated from data obtained from real-time traffic. It has 24 

features, 14 of which were retrieved from KDD Cup ’99, plus 10 

additional ones, but not including those features that contain 

duplicate records ( Proti ́c, 2018 ). 

• ISCX: Emerged from the work of Shiravi et al. 

Shiravi et al. (2012) , this dataset was built by generating 

simulated traffic for seven days. It contains 11 features and, 

in addition to the requests being labeled as normal or attack, 

provides a description of the network traffic. 
5 
• CSIC-2010: Based on the work of Torrano-Gimenez, Perez- 

Villegas and Alvarez Torrano-Gimenez et al. (2009) , this dataset 

was produced at the Consejo Superior de Investigaciones Cien- 

tíficas (CSIC). Originated from simulated web requests to an e- 

commerce web application, this dataset is composed of 36,0 0 0 

normal requests and over 25,0 0 0 anomalous ones, marked as 

either normal or anomalous. 

• ECML/PKDD 2007: Generated from real traffic and replacing 

parameter values and names with random values in order 

to anonymize the data, this dataset includes 35,006 normal 

records and 15,110 records labeled as attacks ( Raïssi et al., 

2007 ). 

Although the University of California, specifically the archival 

uthority of the KDD Archive in Irvine discourages its use 

rugger (2007) ; Tavallaee et al. (2009) , as well as is considered in-

dequate and obsolete Mahoney and Chan (2003) ; McHugh (2000) , 

he KDDD family (DARPA, KDD CUP 99, and NSL_KDD), is widely 

sed in current intrusion detection system evaluation studies 

 Siddique et al., 2019 ). With the generation of the new SR-BH 2020 

ataset, the state of the art is improved by providing the first 

ataset, derived from real web traffic data, specifically designed 

or the training of multi-label web attack prevention and detection 

odels. 

.2.2. Pattern extraction and features selection 

Krügel et al. (2002) use a model of distribution of characters to 

haracterize the traffic genuinely generated to the web application. 

n this work, in contrast to the previous one, a numerical value to 

ach field of a web request is assigned, based on the ASCII value 

orresponding to each character, in order to train models that can 

redict the normality or malignity of a web request, as well as the 

orresponding CAPEC key. 

In Kruegel and Vigna (2003) , Kruegel and Vigna introduce an 

nomaly detection system that uses web server log files as input 

o produce an anomaly score for every web request based on the 

ength and character distribution of the attributes. In the present 

ork, the anomaly score is calculated for each field of interest of a 

eb request extracted from the ModSecurity log. 

Kozik et al. (2015) detect anomalies in HTTP traffic, using a 

attern extraction method derived from the distribution character 

odel suggested by Kruegel, Toth, and Kirda as well as token de- 

ection of a web request, using text segmentation. Our work takes 

dvantage of the log generated by ModSecurity and returns a nu- 

eric value for each field of interest. 

Resende and Drummond (2018) select characteristics and pro- 

le parameters for intrusion detection methods based on anomaly, 

sing an adaptational approach that relies on a genetic algorithm. 

n our work, features are selected by generating a histogram based 

n the mean ASCII value obtained by each field of a web request. 

In Tan and Hoai (2021) , Tan and Hoai propose the HQTN tech- 

ique that transforms the HTTP request into numeric, focusing 

n attributes names and values, and query strings and using the 

ityHash hash function, testing their approach on the CSIC 2010 

ataset. In our approach, we transform the full web request to a 

umeric value by calculating the mean value of the sum of the 

SCII values of all the web request fields, which in principle is 

uch easier and gives good results. In addition, they work with 

 binary label dataset (CSIC 2010) and we work with the SR-BH 

010 dataset which is specific for multi-label classification. 

.2.3. Attacks classification 

Dang and François (2018) use relationship inference be- 

ween various cybersecurity issue repositories: CAPEC (Com- 

on Attack Pattern Enumeration and Classification), CWE (Com- 

on Weakness Enumeration), and CVE (Common Vulnerabilities and 
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Fig. 1. Process overview. 
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xposures) to detect patterns of attacks and weak points in 

he software associated with SDN/NFV software vulnerabilities. 

anakogi et al. (2021) use three different measures of similar- 

ty: TF-IDF, Universal Sentence Encoder (USE), and Sentence-BERT 

SBERT) to track correlated CAPEC-IDs based on CVE-IDs. The al- 

orithm/model combinations proposed in our work, return infor- 

ation to the security operator on the CAPEC classifications of the 

ttack the system is undergoing. 

.2.4. Deep learning models 

Mac et al. (2018) detect harmful patterns in the HTTP/HTTPS 

raffic, using an autoencoder. They worked on the raw web request, 

ollecting the absolute path, the method, and the query parameters 

hanks to a preprocessing of the data by tokenizing the URL, re- 

lacing the characters with their corresponding ASCII code. In the 

resent work, a numeric value based on the mean value of the sum 

f the ASCII score of all the characters that are part of a field in a

eb request is calculated. 

Liang et al. (2017) propose the use of an Autoencoder and a 

ecurrent Neural Network (RNN) to detect anomalous requests on 

eb servers, tokenizing the URLs to reduce their variability, while 
6 
in et al. (2018) apply AutoEncoder and RNN to identify web at- 

acks based on payloads. Instead of using neural networks, various 

ombinations of models and novel algorithms (LightGBM and Cat- 

oost) in the field of machine learning are evaluated. 

Pan et al. (2019) detect runtime intrusions by mining 

all traces in web applications and learning the correct pro- 

ram execution model through a stacked denoising autoencoder; 

hey call their model Robust Software Modeling Tool (RSMT). 

ruong et al. (2019) propose detecting anomalous HTTP queries us- 

ng Sum Rule and Xgboost and combining the related results with 

everal stacked denoising autoencoders (SDAE). In our work, we 

o not use deep learning techniques, but train models of different 

hases, using LightGBM and CatBoost. 

Tama et al. propose an architecture of stacked ensembles where 

ts base learners are other ensembles learners Tama et al. (2020) . 

ekerek proposes an anomaly-based Web attack detection ar- 

hitecture that relies on Convolution Neural Network (CNN) 

 Tekerek, 2021 ). Our work proposes a two-phase model architec- 

ure with CatBoost algorithm. 

Montes et al. (2021) use deep learning techniques to enhance 

odsecurity performance using a two-phase model: first, using 
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Table 1 

Number of web requests by CAPEC classification. 

CAPEC Classification Number of web requests % of total requests 

000 - Normal 525,195 57.85% 

272 - Protocol Manipulation 9153 1.00% 

242 - Code Injection 15,827 1.74% 

88 - OS Command Injection 7482 0.82% 

126 - Path Traversal 20,992 2.31% 

66 - SQL Injection 250,311 27.57% 

16 - Dictionary-based Password Attack 1847 0.20% 

310 - Scanning for vulnerable software 2718 0.30% 

153 - Input Data Manipulation 2272 0.25% 

274 - HTTP Verb Tampering 5437 0.60% 

194 - Fake the source of data 56,145 6.18% 

34 - HTTP Response Splitting 19,738 2.17% 

33 - HTTP Request Smuggling 1059 0.12% 

TOTAL 918,176 
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Table 2 

Number of different CAPEC classifications assigned to a web request. 

Number of different CAPEC classification Number of web requests 

1 898,576 

2 8132 

3 1088 

4 18 
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eep learning technology, features are extracted; in a second 

hase, http requests are treated as raw text to train a one-class 

upervised model. Our work uses a numerical abnormality value of 

he fields of interest of a web request to train a two-phase model 

ombined with the CatBoost algorithm. 

Oliveira et al. (2021) , propose a multi-class classification to in- 

orm the attack type, comparing a Random Forest (RF), a Multi- 

ayer Perceptron (ML), and a Long-Short Term Memory (LSTM) al- 

orithm. Although their proposal obtains very good results, it is 

mportant to consider that the fact of working with a multi-class 

lassification implies that a request can only be classified under a 

ingle type of attack. Our work allows us to properly classify web 

equests that involve more than one type of simultaneous attack. 

Zhang and Zhou (2007) , based on the K-nearest neighbor 

KNN) algorithm, develop a lazy multi-label learning algorithm. 

adjarov et al. (2012) used 11 benchmark data sets on which 

hey experimentally compared 12 multi-label learning methods 

y using 16 metrics. Zhang and Zhou (2014) review different 

ulti-label learning algorithms and detail different evaluation 

etrics. Read et al. (2011) perform multi-label classification us- 

ng a chain of classifiers. Büyükçakir et al. (2018) propose an 

nline stacked ensemble for multi-label stream classification. 

ang et al. (2020) propose a collaboration-based multi-label 

odel for e-commerce fraud detection. 

. Process overview 

The process followed to complete this work can be summarized 

s follows: 

• First, ModSecurity for Apache with Core Rule Set (CRS) version 

3.3.0 is installed on a web server exposed to the Internet. Mod- 

Security is configured in ”Detection Only” mode. 

• During the exposure period, the logs generated by the ModSe- 

curity activity are collected on a daily basis. 

• The logs are reviewed and cleaned manually and semi- 

automatically. The correct labeling of each log made by Mod- 

Security is verified, thus ensuring a proper CAPEC classification. 

• The reviewed logs are saved in CSV format, resulting in the SR- 

BH 2020 dataset. 

• Each of the input fields of the dataset is numerically encoded 

by calculating the mean value of the sum of the ASCII code as- 

signment of each of the characters in each field. 

• The values obtained are normalized and a selection of the rele- 

vant features of the dataset is made. 

• The performance of different combinations of algorithms and 

multi-label classification models in predicting the CAPEC classi- 

fication is evaluated. 
7 
• The results obtained are tabulated and sorted by different met- 

rics according to the level of criticality of the different scenarios 

chosen. 

A graphical overview of the process can be seen in Fig. 1 . 

. Materials and methods 

.1. Dataset description 

In this study, our new SR-BH 2020 dataset has been developed 

nd implemented to experiment and evaluate the different algo- 

ithms and models. The dataset is composed of web requests col- 

ected during 12 days of July 2020 by a web server (Wordpress) 

nstalled on a virtual machine and exposed to Internet. On this 

erver, Modsecurity version 2.9.2 for Apache, with Core Rule Set 

CRS) version 3.3.0 was installed in ”Detection only” mode, so that 

ll requests (legitimate and malicious) were recorded in the log 

enerated by ModSecurity, but without being blocked. Daily, the 

ogs generated by ModSecurity were collected and the virtual ma- 

hine was restored to a clean state. 

Once the web server exposure period was over, the collected 

ogs were manually and semi-automatically processed by one of 

he authors to review the web request tagging performed by Mod- 

ecurity, correcting where necessary the normal/attack assignment 

o the corresponding web request and ensuring an appropriate 

APEC classification assignment. 

The final result is a multi-label dataset aimed especially at 

eb attack detection and composed of 907,814 requests of which 

25,195 are normal requests and 382,619 are anomalous requests, 

here each record has 24 different features and a set of 13 la- 

els. See Table 1 for detailed information on the number of times 

 web request is classified under a given CAPEC heading. Note that 

he sum total of the number of CAPEC classifications in Table 1 is 

reater than the number of web requests present in the dataset, 

ue to the fact that there are web requests in which more than 

ne type of attack is combined. See Table 2 for details of the num- 

er of web requests with multiple CAPEC classifications. 

In order to protect the personal data of users accessing the 

eb server, the environment was configured so that all web re- 
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Fig. 2. Example of a web request numerical coding. 
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uests pass through a router interposed between the web server 

nd the Internet connection: in this way, all requests received by 

he web server seem to be originated from the local IP address of 

he router. 

.2. Preprocessing the data, numerical transformation and features 

election 

Before performing the training of the different machine learning 

odels, a review and preprocessing of the dataset data is neces- 

ary to avoid inconsistent and/or duplicated data, error correction 

nd, at the same time, to adapt the data for numerical coding so 

hat they are usable for the machine learning models. 

The main objective of the data preprocessing and selection of 

elevant features of the dataset is to allow the different combina- 

ions of algorithms and models evaluated to reach the maximum 

evel of performance and efficiency in their predictions, in addition 

o reducing the computational cost of modeling. 

The numerical transformation of the dataset data was carried 

ut using a procedure inspired by the work of Kozik et al. (2015) ,
Table 3 

Mean field ASCII values of normal and attack web request. 

Field Mean value normal re

method_value 106.667 

http_request_value 97.1 

protocol_value 79.875 

referer_value 105.667 

agent_value 73.9618 

host_value 99.6154 

origin_value 105.667 

cookie_value 105.667 

content_type_value 105.667 

accept_value 43.6667 

accept_language_value 105.667 

accept_encoding_value 95.6154 

do_not_track_value 0 

connection_value 99.5 

body_value 105.667 

response_http_protocol_value 79.875 

http_status_code_value 200 

http_status_message_value 109 

response_content_length_value 51.6667 

8

rügel et al. (2002) and Kruegel and Vigna (2003) . In our case, the 

ean of the sum of the ASCII values of the characters (applying 

 transformation to lowercase) of each of the fields of each web 

equest is calculated: in this way, those fields with a high pres- 

nce of anomalous characters (such as ”./../.”, present in a typical 

path traversal” attack attempt) will obtain different mean ASCII 

alues than those fields where the web request made is normal. 

he detailed procedure is provided by Algorithm 1 . See Fig. 2 for 

n example of the proposed numerical coding. 

In Table 3 , the mean values of different fields of a normal 

eb request and one labeled as a combination of ”Protocol Ma- 

ipulation” and ”OS Command Injection” attacks are compared. In 

able 4 , shows the detail of the fields of the web request in which

here are differences in the mean sum of their ASCII values. 

Feature selection involves selecting those input variables that 

ave the strongest relationship with the targets variables. Once 

he mean ASCII values of each feature have been calculated, a his- 

ogram is generated for each field in such a way that it is possible 

o determine and eliminate those characteristics that do not pro- 

ide differential information. As can be seen in graph A of Fig. 3 ,
quest Mean value attack request Difference 

113.5 Yes 

94.7 Yes 

79.875 No 

105.667 No 

98.4444 Yes 

48.5556 Yes 

105.667 No 

105.667 No 

100.848 Yes 

43.6667 No 

105.667 No 

95.6154 No 

0 No 

99.5 No 

92.7102 Yes 

79.875 No 

404 Yes 

101 Yes 

51.3333 Yes 
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Fig. 3. Histogram of features informational levels. 

Data : A field of a web request F 

Result : Decimal value D 

L ← length of F ; 

if L = 0 then 

D ← 0 ; 

else 

v ← 0 ; 

while there is data to read in F do 

c ← read a character ; 

c ← convert c to lowercase ; 

c ← calculate c ASCII value ; 

v ← v + c; 

end 

D ← v /L ; 

end 

Algorithm 1: Calculation of the mean of the sum of character 

ASCII values in a field. 
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he cookie_value feature provides useful information to allow the 

ifferentiation of web requests, since its numerical values are dis- 

ributed in the 80–90 and 100–110 ranges. However, in graphic B it 

an be seen that do_not_track_value feature does not provide any 

seful information since all web requests have the same value. 

Once the features that do not provide useful information have 

een removed, an approximation to the normal distribution of 

ach remaining feature is made by applying the natural logarithm 

o each value of the remaining features, subsequently standardiz- 

ng their values using the StandardScaler class of the Scikit-learn 

ibrary Pedregosa et al. (2011) . 

Finally, using the random forest classification algorithm and 

he RFECV class Guyon et al. (2002) of the scikit-learn library 
Table 4 

Detail of fields with different mean ASCII values. 

Field Normal web request 

method_value GET 

http_request_value /blog/xmlrpc.php?rsd

agent_value Mozilla/4.0 (compatib

host_value test-site.com 

content_type_value nan 

body_value nan 

http_status_code_value 200 

http_status_message_value OK 

response_content_length_value 317 

9

edregosa et al. (2011) , we performed recursive feature removal 

sing cross-validation and selected the final number of features. 

When working with a dataset composed of real data, it is 

ommon to have imbalanced classes; this different percentage of 

epresentation of the classes in a dataset can affect the differ- 

nt evaluation metrics of the learning models. Although there 

re several methods to generate synthetic data that promote the 

qual representation of the different classes in a dataset, such as 

MOTE Chawla et al. (2002) and MLSMOTE Charte et al. (2015) , 

e have chosen to work only with real data and evaluate the al- 

orithms and models with specific metrics that take in considera- 

ion the different percentage of representation of the classes in the 

ataset: Accuracy, Precision, Recall, F-Score, Hamming Loss, Ham- 

ing Score, Jaccard Similarity and ROC AUC. The selected features 

nd labels are detailed in Table 5 . 

.3. Models 

The SR-BH 2020 dataset has a set of 13 labels. First label indi- 

ates whether the web request is considered normal or not, so it 

s assumed that if its value is 1 (normal request), the rest of the 

abels of the set should be 0. On the contrary, if the value of the

rst label is 0 (possible attack), there should be one or more of the 

abels of the remaining set with its value at 1. 

This assumption allows us to establish a division of classifica- 

ions by phases: Classifications can be established with a single- 

hase model, in which an attempt is made to predict the entire 

et of labels independently of the value obtained by the first label, 

.e., even if the first label indicates that the request is normal, an 

ttempt will be made to predict the remaining labels in the set. 

n the other hand, it is possible to generate two-phase prediction 

odels in which the algorithm will only predict the rest of the tags 
Attack web request 

POST 

 /cgi-bin/ViewLog.asp 

le;...) B4ckdoor-owned-you 

127.0.0.1 

application/x-www-form-urlencoded 

remote_submit_Flag = 1& 

remote_syslog_Flag = 1& 

RemoteSyslogSupported = 1&LogFlag = 0& 

remote_host = %3bcd + /tmp;wget+ 

http://45.95.168.230/ 

taevimncorufglbzhwxqpdkjs/Meth.arm7 

;chmod + 777+Meth 

404 

Not Found 

271 
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Table 5 

Final set of selected features and labels. 

Feature Selected 

method_value Yes 

http_request_value Yes 

protocol_value No 

referer_value Yes 

agent_value Yes 

host_value No 

origin_value No 

cookie_value Yes 

content_type_value No 

accept_value Yes 

accept_language_value No 

accept_encoding_value No 

do_not_track_value No 

connection_value No 

body_value Yes 

response_http_protocol_value No 

http_status_code_value No 

http_status_message_value Yes 

response_content_length_value Yes 

000 - Normal Yes 

272 - Protocol Manipulation Yes 

242 - Code Injection Yes 

88 - OS Command Injection Yes 

126 - Path Traversal Yes 

66 - SQL Injection Yes 

16 - Dictionary-based Password Attack Yes 

310 - Scanning for Vulnerable Software Yes 

153 - Input Data Manipulation Yes 

274 - HTTP Verb Tampering Yes 

194 - Fake the Source of Data Yes 

34 - HTTP Response Splitting Yes 

33 - HTTP Request Smuggling Yes 
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f the value of the first tag is 0; if its value is 1 (normal request),

t will automatically set all the remaining tags in the set to 0. 

A customized model is also generated in which the best hy- 

erparameters for the classification of each of the labels are cal- 
Fig. 4. Single-phase m

10 
ulated using GridSearchCV with the LightGBM and CatBoost al- 

orithms. The prediction of each label will be performed with the 

orresponding algorithm adjusted with the calculated hyperparam- 

ters. 

In order to obtain a model that provides the best possible re- 

ults in predicting the normality of the web request, or the result- 

ng CAPEC classification in the case of a web attack, the two al- 

orithms (LightGBM and CatBoost) have been evaluated, using five 

ifferent models: 

i A single-phase model, using the skmultilearn.problem_ 

transform.BinaryRelevance class of the scikit-multilearn library 

Szyma ́nski and Kajdanowicz (2017) , transforming a multi-label 

classification problem with L labels into L individual binary 

classification problems with single labels. The prediction result 

is the union of all label classifiers. Binary Relevance ignores 

label correlation that exists in the training data, i.e. it assumes 

independence between labels; due to this loss of informa- 

tion, it would be possible for the prediction sets to contain 

combinations of labels that never occur in reality. 

ii A single-phase model, using the skmultilearn.problem_ 

transform.ClassifierChain class of the scikit-multilearn library 

Szyma ́nski and Kajdanowicz (2017) . This class constructs a 

conditional sequence of Bayesian label classifiers, as described 

by Read Read et al. (2009) , by generating label classifiers and 

sorting them into a sequence according to the Bayesian Chain 

Rule . In this case, a chain of binary classifiers is formed in 

which each classifier in the chain is responsible for learning 

and predicting the binary association of the label given the 

feature space, modified by all previous binary predictions on 

the labels in the chain. 

iii A two-phase model in which, in the first phase, it detects the 

request is normal or not and, in the case of an anomalous re- 

quest, it passes to the second phase of the model to obtain 

its CAPEC classification using the BinaryRelevance class of the 

scikit-multilearn library ( Szyma ́nski and Kajdanowicz, 2017 ) 
odel flowchart. 
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Fig. 5. Two-phase model flowchart. 
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iv A two-phase model in which, in the first phase, it detects 

the request is normal or not and, in the case of an anoma- 

lous request, it passes to the second phase of the model to 

obtain its CAPEC classification using the MultiOutputClassifier 

class of the sklearn.multioutput module of Scikit-learn library 

( Pedregosa et al., 2011 ). 

v A customized model in which, the prediction is performed 

through the specific algorithm(LigthGBM or CatBoost) tuned 

with the hyperparameters calculated for each CAPEC label. 

Figs. 4 , 5 , and 6 show the flowcharts for the single-phase, two-

hase, and customized models respectively. 

The combination of models designed and algorithms allows the 

resentation to the security specialist of information about the 
11 
ttack(s) the system is suffering, including the CAPEC classifica- 

ion(s), as shown in Fig. 7 . 

. Results and discussion 

The results of the algorithms and model combinations have 

een evaluated according to the metrics and scenarios discussed 

n Section 2.1.3 . One of the main objectives of the present work 

s to propose the best combination of algorithms and models able 

o classify as accurately as possible the different types of attacks 

n each possible scenario, following the CAPEC classification. Since 

 web request can be simultaneously classified in more than one 

APEC key, it is necessary to work with multi-label models. The 

valuation has been carried out with data from the SR-BH 2020 
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Fig. 6. Customized model flowchart. 

Fig. 7. Information on attacks, received by the security operator. 

12 
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Fig. 8. Metrics by algorithm/model. 

Fig. 9. Hamming Loss by algorithm/model. 

13 
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Table 6 

Summary of metrics by algorithm and model, ordered by recall score. 

Model Accuracy EMR Precision Recall F meas. Avg. ROC AUC Hamming Loss Jaccard Sim. Inform. Marked. 

Two-phase MultiOutput CatBoost 0.88445 0.89557 0.88829 0.88912 0.91322 0.01703 0.80672 0.83580 0.82563 

Customized model CatBoost 0.88436 0.88853 0.88790 0.88501 0.90887 0.01756 0.80115 0.82690 0.81941 

Two-phase MultiOutput LightGBM 0.88095 0.89137 0.88641 0.88615 0.91139 0.01754 0.80214 0.83200 0.82028 

Single-phase Clas.Chain LightGBM 0.87224 0.87610 0.87360 0.87227 0.90421 0.01958 0.78432 0.81238 0.80567 

Single-phase Clas.Chain CatBoost 0.87213 0.87876 0.87343 0.87171 0.90281 0.01957 0.78264 0.81973 0.81282 

Customized model LightGBM 0.85888 0.86108 0.86270 0.85874 0.87702 0.02140 0.76356 0.76248 0.79066 

Single-phase Binary Relevance CatBoost 0.84939 0.90279 0.85734 0.87221 0.90139 0.01801 0.79153 0.77943 0.80261 

Two-phase Binary Relevance CatBoost 0.85201 0.90515 0.85508 0.87680 0.90055 0.01797 0.79100 0.81007 0.82741 

Single-phase Binary Relevance LightGBM 0.84419 0.89927 0.85112 0.87204 0.89820 0.01869 0.78439 0.80532 0.81899 

Two-phase Binary Relevance LightGBM 0.84782 0.90075 0.85049 0.87216 0.89768 0.01860 0.78468 0.80426 0.82138 

Table 7 

F measure by CAPEC Classification. 

Model F meas. Avg. 0 0 0 272 242 88 126 66 16 310 153 274 194 34 33 

Two-phase MultiOutput CatBoost 0.889 0.928 0.618 0.862 0.884 0.855 0.855 0.999 0.997 0.903 0.999 0.855 0.509 0.905 

Two-phase MultiOutput LightGBM 0.886 0.927 0.600 0.858 0.858 0.852 0.850 0.999 0.999 0.857 1.000 0.849 0.508 0.897 

Customized model CatBoost 0.885 0.925 0.621 0.860 0.877 0.852 0.853 0.999 0.997 0.895 0.999 0.856 0.431 0.897 

Single-phase Binary Relevance CatBoost 0.877 0.928 0.559 0.790 0.718 0.804 0.843 0.997 0.997 0.842 0.999 0.841 0.359 0.718 

Two-phase Binary Relevance CatBoost 0.877 0.928 0.561 0.788 0.716 0.803 0.843 0.997 0.996 0.849 0.998 0.841 0.354 0.718 

Single-phase Clas.Chain LightGBM 0.872 0.927 0.560 0.760 0.685 0.790 0.838 0.997 0.996 0.636 1.000 0.822 0.362 0.723 

Two-phase Binary Relevance LightGBM 0.872 0.927 0.548 0.761 0.677 0.797 0.837 0.998 0.999 0.807 1.000 0.827 0.325 0.726 

Single-phase Binary Relevance LightGBM 0.872 0.926 0.546 0.762 0.680 0.796 0.838 0.998 0.999 0.806 1.000 0.828 0.327 0.726 

Single-phase Clas.Chain CatBoost 0.872 0.923 0.549 0.792 0.729 0.797 0.835 0.999 0.997 0.834 1,000 0.833 0.364 0.724 

Customized model LightGBM 0.859 0.907 0.553 0.759 0.671 0.797 0.840 0.996 0.012 0.802 1.000 0.825 0.331 0.732 

0 0 0: Normal 272: Protocol Manipulation 242: Code Injection 88: OS Command Injection 126: Path Traversal 66: SQLi 16: Dictionary based Password Attack 310: Scanning for Vulnerable Software 153: Input Data Manipulation 

274: HTTP Verb Tampering 194: Fake the Source of Data 34: HTTP Response Splitting 33 HTTP Request Smuggling. 
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Table 9 

Best scores obtained for LightGBM and CatBoost 

Algorithms. 

Metric LightGBM CatBoost 

Accuracy EMR 0.88095 0.88445 

Precision 0.90075 0.90515 

Recall 0.88641 0.88829 

F measure 0.88615 0.88912 

ROC AUC 0.91139 0.91322 

Hamming Loss 0.01754 0.01703 

Jaccard Similarity 0.80214 0.80672 

Informedness 0.83200 0.83580 

Markedness 0.82138 0.82741 
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15 
ataset, created specifically to allow this type of multi-label clas- 

ification. 70% of web requests present in the dataset have been 

sed to train the different algorithms, while the remaining 30% of 

eb requests have been used to validate the models generated. 

Table 6 presents a summary of the different metrics obtained 

or each algorithm/model combination, ordered by recall score. 

Table 7 details the F measure obtained for each algo- 

ithm/model combination in the different CAPEC classifications. 

Table 8 details the Accuracy obtained for each algorithm/model 

ombination in the different CAPEC classifications. 

As can be seen in tables 6, 7, 8 , the combination of the CatBoost

lgorithm and a two-phase model in which the MultiOutputClassi- 

er class of the Scikit-learn library is applied is the one that ob- 

ains the best results in practically all the metrics. This model ob- 

ains a strict Accuracy (EMR) of 0.8844, an average F measure of 

.8891, an AUC ROC of 0.9132, and a Hamming Loss of 0.01703. 

The two-phase models with the MultiOutputClassifier class are 

learly superior to the other models, regardless of the algorithm 

LightGBM or CatBoost) included in them: using LightGBM, their 

MR is 0.88095, their average F measure is 0.8862, their ROC AUC 

s 0.9114 and their Hamming Loss is 0.01754. 

See Figs. 8 , 9 for a detail of the metrics obtained by each algo-

ithm/model combination. 

Although all algorithm/model combinations obtain good F-Score 

nd Accuracy scores in each CAPEC classification, it becomes ev- 

dent that the combination of the CatBoost algorithm and the 

wo-phase model with the MultiOutpoutClassifier class yields the 

est results, obtaining the highest Accuracy scores in all CAPEC 

lassifications and the highest F-Score in 9 of the 13 CAPEC 

lassifications. 

The superiority of the CatBoost algorithm over LightGBM can 

lso be clearly seen, regardless of the model with which they are 

ombined. See Table 9 for a comparison of the best scores obtained 

y LightGBM and CatBoost in the various metrics evaluated. Note 

hat in the case of the Hamming Loss metric, a lower score is in- 

icative of better performance, as indicated in Section 2.1.3.1 . 

Following the work of Antunes and Vieira (2015) , which rec- 

mmends the most appropriate metrics according to the type of 

cenario, the best algorithm/model combination has been selected 

ased on the recommended metric for each different scenario as 

etailed in 2.1.3.2 . Table 10 shows the recommended metric for 

ach of the four scenarios, the top three values obtained in this 

etric, as well as the algorithm/model combinations that obtained 

his value. 

From the results in Table 10 , it is concluded that the combina- 

ion of the CatBoost algorithm and the two-phase model with the 

ultiOutpoutClassifier class, is the one that obtains the best perfor- 

ance with the recommended metrics in the three most critical 

cenarios analyzed ( Very high critical scenario, Heightened-critical 

cenario , and Medium-critical scenario ). Only in the Low-critical sce- 

ario , this algorithm/model combination is outperformed by the 

ombination of CatBoost and the two-phase model with the Bina- 
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Table 10 

Recommended metrics for scenario and top three algorithm/model combination. 

Scenario Metric Best values Algorithm / Model Combination 

Business-critical Recall 

0.88829 Two-phase MultiOutput CatBoost 

0.88790 Customized model CatBoost 

0.88641 Two-phase MultiOutput LightGBM 

Heightened-critical 

applications 
Informedness 

0.83580 Two-phase MultiOutput CatBoost 

0.83200 Two-phase MultiOutput LightGBM 

0.82690 Customized model CatBoost 

Best effort F-Measure 

0.88912 Two-phase MultiOutput CatBoost 

0.88615 Two-phase MultiOutput LightGBM 

0.88501 Customized model CatBoost 

Minimum effort Markedness 

0.82741 Two-phase Binary Relevance CatBoost 

0.82563 Two-phase MultiOutput CatBoost 

0.82138 Two-phase Binary Relevance LightGBM 
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D

yRelevance class, obtaining the second-best score. From the review 

f the scores obtained in the different metrics, it can be concluded 

hat the Two-phase MultiOutput CatBoost model is adequate for all 

he scenarios considered. 

. Conclusions 

In this work we have presented the SR-BH 2020 multi-label 

ataset, which includes a set of 13 different labels, providing infor- 

ation about the normality of each web request and its possible 

lassification into 12 different CAPEC categories. 

A new way to give a numerical value to the alphanumeric 

trings and symbols that constitute the different fields that con- 

orm a web request, by calculating the average of the sum of the 

SCII values of each of the characters in each field, is proposed; 

his numerical value, calculated easily and quickly, allows the ex- 

raction of features and the training of the different machine learn- 

ng models. 

We have also designed and evaluated different multi-label 

lassification models, using modules and classes from the scikit- 

earn and scikit-multilearn libraries. Two leading algorithms in 

he field of machine learning have been tested with these mod- 

ls: LightGBM and CatBoost. The results obtained by our ex- 

eriments show a clear superiority of the combination of the 

atBoost algorithm and the two-phase model with the MultiOut- 

utClassifier module of the scikit-learn library, in multi-label clas- 

ification tasks. In future work, the possibility of executing auto- 

atic remediation actions, based on CAPEC attack patterns, could 

e considered. 

Consideration should also be given to the possibility of generat- 

ng a new dataset with data from traffic originating from commu- 

ications between SOAP or REST web services or even data from 

eb API communication. The labeling of the attacks performed on 

hese services and their CAPEC classification would allow the ap- 

lication of the combinations of algorithms and models generated 

n this work to new datasets as well as to determine the possible 

eneralization of results to other contexts. 

In addition, due to the excellent results obtained in all the sce- 

arios analyzed by the Two-phase MultiOutput CatBoost model, 

ore effort and research could be devoted to the development and 

mprovement of this model to achieve its integration into commer- 

ial or open-source web application protection tools that can be 

sed in all types of scenarios with different levels of criticality. 
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