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ABSTRACT: Chemical reactions, charge transfer reactions, and
magnetic materials are notoriously difficult to describe within
Kohn−Sham density functional theory, which is strictly a ground-
state technique. However, over the last few decades, an
approximate method known as constrained density functional
theory (cDFT) has been developed to model low-lying excitations
linked to charge transfer or spin fluctuations. Nevertheless, despite
becoming very popular due to its versatility, low computational
cost, and availability in numerous software applications, none of the
previous cDFT implementations is strictly similar to the
corresponding ground-state self-consistent density functional
theory: the target value of constraints (e.g., local magnetization)
is not treated equivalently with atomic positions or lattice
parameters. In the present work, by considering a potential-based formulation of the self-consistency problem, the cDFT is
recast in the same framework as Kohn−Sham DFT: a new functional of the potential that includes the constraints is proposed, where
the constraints, the atomic positions, or the lattice parameters are treated all alike, while all other ingredients of the usual potential-
based DFT algorithms are unchanged, thanks to the formulation of the adequate residual. Tests of this approach for the case of spin
constraints (collinear and noncollinear) and charge constraints are performed. Expressions for the derivatives with respect to
constraints (e.g., the spin torque) for the atomic forces and the stress tensor in cDFT are provided. The latter allows one to study
striction effects as a function of the angle between spins. We apply this formalism to body-centered cubic iron and first reproduce the
well-known magnetization amplitude as a function of the angle between local magnetizations. We also study stress as a function of
such an angle. Then, the local collinear magnetization and the local atomic charge are varied together. Since the atomic spin
magnetizations, local atomic charges, atomic positions, and lattice parameters are treated on an equal footing, this formalism is an
ideal starting point for the generation of model Hamiltonians and machine-learning potentials, computation of second or third
derivatives of the energy as delivered from density-functional perturbation theory, or for second-principles approaches.

1. INTRODUCTION
The vast majority of first-principles simulations of ground-state
properties of molecules, condensed matter, and nanosystems
relies on density functional theory (DFT). However, one is
also interested in excited state properties, while, strictly
speaking, DFT is a theory for the electronic ground state:
the fundamental theorems of DFT rely on a minimization of
the energy in the functional space of many-body electronic
wavefunctions. The electronic coupling with the external
potential being only determined by its electronic density, one
demonstrates that the exchange−correlation energy is a unique
functional of the ground-state density.1,2 For selected classes of
low-lying energy states, the same line of thought, based on a
minimization principle, has also a strong theoretical basis. For
example, taking into account spin magnetization yields spin
density functional theory (SDFT). In this case, the exchange−
correlation energy becomes a functional of the ground-state
density and magnetization.3

The space of allowed charge densities or magnetizations
might be further constrained, giving access to other low-lying
energy states. For example, the charge in some region of space,
be it around an atom or on some fragment, might be forced to
some predefined value to describe chemical reactions with
charge transfer. Similarly, the magnetization vector, or just its
direction in the neighborhood of an atom, might be
constrained to solve key problems in solid-state chemistry,
such as the search for ferromagnetic semiconductors and stable
half-metallic ferromagnets with Curie temperatures higher than
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room temperature. The angular-momentum-projected occupa-
tion might also be considered. Such generalizations4 should be
accompanied by the proper redefinition of the exchange−
correlation functional, which should depend explicitly on the
constraint. In this case, the formalism, known as constrained
density functional theory (cDFT), is as theoretically justified as
DFT or SDFT. In practice, though, unlike for DFT or SDFT,
the usual functionals are not modified, giving powerful but
approximate methodologies to explore the low-lying excited
states of systems made of electrons and nuclei.
cDFT has been applied in two major fields of research.

Constraining the charge on some molecular fragments allows
one to explore the gradual transfer of an electron from one
fragment to another and provides parameters for Marcus
theory.5 Constraining the spin magnetization in the neighbor-
hood of an atom inside a solid allows one to obtain the energy
of the system as a function of the local magnetization.4 This
can be combined with more usual variables governing the
energy in first-principle calculations, such as the atomic
positions or cell parameters. Thus, cDFT can provide
parameters for models of the magnetic state of matter,
including the Heisenberg model, with the associated
description of magnons,4,6,7 or for second-principles mod-
els8−11 or for constituting training sets for the fitting of
machine-learning interatomic potentials.12−16

The implementations and applications of cDFT over the
years have been numerous and have been reviewed by Kaduk
and Van Voorhis in 2012.5 In 2016, a list of existing
implementations was collected by Melander and co-workers.17

Then, one further implementation was described by Hegde
and co-workers.18

Several methods have been proposed to impose the
constraints. In the first one,19 an inner “micro”-self-consistency
loop is added to the usual DFT self-consistency loop. In this
inner loop, the potential (or local magnetic field) is varied to
impose the constraint. In the second one,19 a penalty function
is added to the energy functional. Also, in the specific case of
the imposition of the direction of the local magnetization, one
can build in directly the constraint in a linearized augmented
plane wave formalism,20 but this is a specific case. None of
these techniques consider the atomic magnetization or the
fragment charge on the same footing as the atomic positions or
the cell parameters, namely as “external” parameters to the self-
consistency problem, for which the same treatment is applied,
and with respect to which, the energy and its derivatives are
exactly obtained without any restriction.
In the present work, we show that a potential-based self-

consistency approach is precisely capable of placing the local
magnetization, fragment charge, atomic positions, and strains
on a par. We explain the approach on a simple case in which
the charge of one fragment is constrained and explain why a
similar approach cannot be obtained using a density-based self-
consistency approach while usually both are equivalent. Then,
we generalize the approach to a combination of constraints, be
they fragment charge constraints and/or local magnetization
constraints and/or local magnetization directions and/or local
magnetization amplitudes. We derive the expressions for the
gradients with respect to the value of the constraint (e.g.,
chemical hardness or spin torque) with respect to the atomic
positions (i.e., the forces) and with respect to the strains (i.e.,
the stress tensor).
The implementation of this approach has been carried out,

and we apply it to the iron body-centered cubic (bcc) phase,

with two atoms per conventional unit cell. The technique
allows one to vary independently the two magnetization
vectors by either fixing their value, relative angle, or amplitude
and monitor different quantities as a function of such
parameters. We first reproduce the magnetization amplitude
as a function of the magnetization angle available in the
literature in both LDA and GGA and obtain excellent
agreement with previously published results, despite different
parameters (e.g., the basis of functions or a different projector-
augmented wave (PAW) atomic data set). Then, we carry on
with the computation of the stress at fixed volume, as well as
optimized volume, as a functional of the magnetization angle as
well. We also compute cross derivatives of the energy of the
system with respect to both difference of charge on the two
atoms and magnetization of the two atoms by two techniques:
second-order finite differences of total energies and first-order
finite differences of analytic hardness and spin torque with
excellent agreement.

The theory is presented in Sec. 2, which covers (i) some
background information about density- and potential-based
DFT self-consistency approaches, (ii) the concepts of
potential-based cDFT in the simple case of one constraint,
first in a Lagrange multiplier approach and then in a new cDFT
functional, (iii) the specification of the types of cDFT
constraints, (iv) the treatment of multiconstraint cDFT, and
(v) the computation of stress in cDFT. Section 3 presents first
the computational details, then proceeds with validation tests
against published results, and concludes with the investigation
of the stress−magnetization relationship and the charge
transfer−magnetization relationship for bcc iron in the cDFT
formalism.

2. THEORY
In this section, we highlight first the conceptual basis of
density- or potential-based DFT self-consistency at the heart of
the vast majority of DFT calculations worldwide. We then
show how the potential-based self-consistent method can be
generalized to cDFT for the simple case of one constraint
applied to the density (imposing the charge of a fragment).
The corresponding chemical hardness is obtained, as well as
the expression of first-order derivatives with respect to
modification of the external parameters (Hellman−Feynman
theorem). Then these equations are generalized to multiple
constraints, possibly defined in overlapping regions, and
applied to both charge and magnetization. The generalized
expressions for the chemical hardness, spin-torque, forces, and
stresses are then presented.
2.1. Density- and Potential-Based DFT Self-Consis-

tency Approaches. Consider a set of electrons placed in a
potential external to the electron system, vext, sum of the nuclei
potentials (or ionic pseudopotentials), and other external
potential applied to the electron system. The DFT energy
Ev i

i
ext

[{ }] is expressed as a function of occupied orthonormal
Kohn−Sham wavefunctions, {ϕi}, where i labels occupied
states with occupation number f i (e.g., f i = 2 for doubly
occupied orbitals, spin up and spin down) and includes the
kinetic energy, potential energy of the electrons, and the
density-dependent Hartree and exchange−correlation energy
EHxc[ρ]
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E T v

E

r r r( ) ( )dv i i i

i

ext

Hxc

i
ext

[{ }] = [{ }] + [{ }]

+ [ [{ }]] (1)

with kinetic energy and electronic density given by

T f Ti
i

i i i
1

[{ }] = | |
= (2)

and

fr r r( ) ( ) ( )i
i

i i i
1

[{ }] = *
= (3)

where T̂ is the kinetic energy operator.
Self-consistency can be formulated as requiring the wave-

functions to minimize Ev i
i

ext
[{ }]

E Eminv v i
SC

orthonormali

i
ext ext

= [{ }]
{ } (4)

Indeed, constrained minimization of eq 4 through the
Lagrange approach yields the well-known Kohn−Sham
equations and associated self-consistent requirement of
density, potential, Kohn−Sham Hamiltonian, and wave-
functions. Explicitly, for any given charge density ρ, the
screened potential is obtained as

v v v v
E

r r r r
r

( ) ( ) ( ) ( )
( )ext Hxc ext
Hxc[ ] + [ ] = +

(5)

In a similar way, for any given trial-screened potential denoted
u and the associated local potential operator û, the
corresponding Schrodinger equation is solved

T u( ) i u i u i u, , ,+ | = | (6)

and the resulting wavefunctions, |ϕi,u⟩, inserted in the density
expression eq 3, delivers the density as a functional of the
potential noted ρv

u i u
v

,[ ] [{ }] (7)

The self-consistent density ρ* thus fulfills

vv* = [ [ *]] (8)

In the latter equations, the density, potential, and wave-
functions are functions of the position. For the sake of clarity,
their position dependence, as in eq 3, has not been explicitly
mentioned, as in most of the following equations.
Many iterative techniques have been developed over the

years to tackle the self-consistency problem.21−24 A trial input
density at step n, ρn

in, delivers an output density ρn
out

K vn n n
out in v in= [ ] [ [ ]] (9)

The discrepancy between the output and input densities

R Kn n n n n
in out in in in[ ] = [ ] (10)

is usually referred to as the density residual. The vast majority
of algorithms to solve this self-consistency problem relies on
the knowledge of pairs of trial density and the corresponding
residual to infer the next trial density. The easiest algorithm to
implement, that is, simple mixing, is defined by

Rn n n1
in in in= + [ ]+ (11)

with λ being a tunable parameter. Most sophisticated
algorithms take advantage of the history (at least the most
recent part of it) and possibly include some preconditioning
operator P, even varying at each step

P Rn n n
j

n

j j1
in in

1

in= + [ ]+
= (12)

where the set of parameters and the possible preconditioner
are computed on the flight from the history and differ for
different algorithms.

Instead of such density-based mixing approaches, potential-
based mixing approaches can also be found in the literature.22

In order to distinguish the (nonlinear) operators appearing in
this approach from those appearing in the density-based
approach, we label them with a “v” superscript. In the
potential-based approaches, instead of eqs 8−12, one relies on

v v vv* = [ [ *]] (13)

v K v v vn n n
out v in v in= [ ] [ [ ]] (14)

R v v v K v vn n n n n
v in out in v in in[ ] = [ ] (15)

v v P R vn n n
j

n

j j1
in in v

1

v in= + [ ]+
= (16)

The density- and potential-mixing approaches are dual to
each other: in the case of usual (unconstrained) DFT, for each
density-based mixing algorithm, there exists an equivalent
potential-based mixing algorithm in which the pairs of density
and the corresponding density residual are replaced by pairs of
potential and the corresponding potential residual.

This duality does not extend to all characteristics of these
two approaches. Indeed, one can immediately associate to a
given screened potential u, taken as trial potential, a set of
wavefunctions {ϕi,u}, through eq 6. On the contrary, there is
no such set of wavefunctions immediately associated with
every trial density, ρ, even if one generates such wavefunctions
through the screened potential v[ρ]�unless one is at self-
consistency.

Focusing on the potential-based approach, the self-
consistent electronic energy expression, eq 4, is straightfor-
wardly recast as a minimization problem in the space of trial
screened potentials as follows

E E uminv
u

v
SC v
ext ext

= [ ]
(17)

with

E u T u v d E ur r r( ) ( )v i u
v

,
v

ext Hxc
v

ext
[ ] = [{ }] + [ ] + [ [ ]]

(18)

The gradient of this functional of the potential has been
computed in ref 25

E u

u
u

u
K u u d

R u

r
r

r
r r r

r r r r

( )
( )

( )
( ( ) ( ))

( , ) ( )d

v
v v

v

0
v

ext
[ ]

= [ ] [ ]

= [ ] (19)

where the independent-particle susceptibility χ0(r, r′) is to be
evaluated at the screened potential u. This gradient obviously
vanishes at the minimum since Rv[v*] vanishes. In practice,
multiplication by χ0

−1, like in ref 25, delivers a preconditioned

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00673
J. Chem. Theory Comput. 2022, 18, 6099−6110

6101

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00673?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


gradient, which is nothing else than the residual Rv[u], so that
χ0(r, r′) does not even have to be computed. Hence, this
approach shows that the usual potential-based self-consistency
algorithms, eq 16, can be understood as mixing of the
preconditioned potential gradients of the electronic energy eq
18 from the current and previous steps. Note that an even
better preconditioner can be defined if the inverse dielectric
constant is known ( also see ref 25).
As a side note, the present formulation of cDFT shares with

the OEP method26−29 the usage of the screened potential as
the fundamental object to be varied in order to optimize a
variational expression. In the OEP case, there is no such
constraint as in cDFT, although the OEP variational expression
is formulated not only in terms of density (and magnetization)
but also in terms of orbitals.
2.2. Imposing the Charge of One Fragment in cDFT

through the Lagrange Approach. Let us present the
concepts of the potential-based self-consistent approach to
cDFT for the simple case of one constraint, namely
constraining the weighted charge of one fragment, labeled
generically as “A.” The weighted charge on fragment A, a
functional of ρ, is defined as follows

w r r r( ) ( )dA A[ ] (20)

for some weight function wA(r), spanning the region A where
the fragment is located, typically wA(r) = 1 well inside this
region and wA(r) = 0 outside, so wA smoothly decreases to zero
when reaching the frontier of A. Mathematically, the constraint
of fragment charge being NA is formulated as

NA A= [ ] (21)

Such a constraint might be dealt with by adding a penalty
function multiplied by a weight, as in refs 30 and 31. In the
limit of infinite weight, the constraint is exactly fulfilled. Unlike
asserted in ref 31, this formulation is not a Lagrange multiplier
approach. Anyhow, this technique is plagued with numerical
instabilities and definitely does not treat the values of the
constraint similarly to other external parameters, such as
atomic positions or cell parameters.
By contrast, in the Lagrange multiplier method, the energy is

augmented by the product of a Lagrange multiplier Λ with an
expression that vanishes when the constraint is fulfilled. The
proper choice of the Lagrange multiplier makes the constraint
exactly satisfied. The cDFT electronic energy, dependent on
the Lagrange multiplier, is the augmented functional

E E N, ( )v N i v i i, A A
i i

ext A ext
[{ } ] = [{ }] + [ [{ }]]+

(22)

for which self-consistency can be formulated similarly to the
DFT case, eq 4, as

E Emin ,v N v N i,
orthonormal

,
i

i
ext A ext A

[ ] = [{ } ]+
{ }

+

(23)

The minimization procedure delivers wavefunctions and
density as a function of Λ (also vext and NA), and the final
choice of Λ is the one that yields fulfillment of the constraint.
Enforcing the value of Λ that satisfies the constraint can be
done along the iterative self-consistent procedure by using
microiterations, as proposed by Wu and Van Voorhis.19

However, again, this does not treat the variable NA on the same
footing as other external variables, such as the atomic positions
or cell parameters. Moreover, the algorithms to be used differ

from the ones for a usual self-consistency loop without
microiterations, and there is an overhead associated with such
treatment.

The potential-based approach can be adapted as well in
order to include similarly a Lagrange augmentation. This will
prove more fruitful. The augmentation is as follows

E u E u u N, ( )v N v,
v v

A
v

Aext A ext
[ ] = [ ] + [ ]+

(24)

where ρA
v [u] is a shorthand for ρA[ρv[u]], and where self-

consistency is reached at the minimum over all trial potentials

E E umin ,v N
u

v N, ,
v

ext A ext A
[ ] = [ ]+ +

(25)

In eq 24, the gradient of E uv
v
ext

[ ] with respect to the screened
potential u is given by eq 19, and a similar approach delivers
the gradient of the entire E u ,v N,

v
ext A

[ ]+ with respect to u

E u

u
R u

r
r r r r

,

( )
( , ) , ( )d

v N,
v

0
vext A

[ ]
= [ ]

+
+

(26)

with

R u R u wr r r, ( ) ( ) ( )v v
A[ ] [ ] ++ (27)

According to eqs 25 and 26, a self-consistent solution is
obtained for u = v* that satisfies

R v v v v wr r r r0 , ( ) ( ) ( ) ( )v
out A= [ * ] = [ *] * ++

(28)

for all r′. Namely, it occurs when the difference between the
output and input potentials is a multiple of the weight
function, the prefactor being the Lagrange parameter.

In particular, multiplying this equation by wA(r′) and
integrating over r′ allows one to obtain the value of Λ that
makes the residual vanish

R v W( )A
v

AA
1= [ *]· (29)

where

R u R u wr r r( ) ( )dA
v v

A[ ] = [ ] (30)

and

W w w dr r r( ) ( )AA A A= (31)

This constitutes a proper mathematical formulation of
potential-based cDFT within the Lagrange multiplier ap-
proach. Moreover, in this potential-based approach, the
Lagrange parameter is immediately determined, unlike in the
Wu and Van Voorhis approach.19 This is due to the simple
relationship between the potential-based residual and the
weight function, eq 28, for which there is no simple equivalent
in the wavefunction- or density-based cDFT formulations.
2.3. Simple Potential-Based cDFT Functional. In order

to go one step further, a new cDFT functional, EcDFT, which
admits the same self-consistent solution as eq 23 or 25, is
introduced. The Lagrange parameter in eq 24 is replaced by
the expression eq 29 evaluated at u instead of v*, giving

E u E u R u W u N( ) ( )v N v,
cDFT v

A
v

AA
1

A
v

Aext A ext
[ ] = [ ] [ ]· [ ] (32)

This new functional places vext (in which the atomic
positions and cell parameters enter) and NA on the same
footing, namely as external parameters of the calculation. Still
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E uv N,
cDFT
ext A

[ ] is a functional of the screened potential u only,
without auxiliary Λ to be determined. By construction, at the
self-consistent v* for the given vext and NA, the functional has
the same value as the cDFT functional based on the Lagrange
parameter, delivering the self-consistent value of the electronic
energy

E E vv N v N,
SC

,
cDFT

ext A ext A
= [ *] (33)

In this equation, one has not explicitly mentioned the v*
dependence on vext and NA. Equation 33 is stationary with
respect to variations of u around v*

E u E v u v(( ) )v N v N,
cDFT

,
cDFT 2

ext A ext A
[ ] = [ *] + * (34)

The gradient of this functional with respect to u is

( )

E u

u
R u u d

w W

u N

r
r r r r

r r r r

( )
( , ) , ( )

( , ) ( )d ( )

( )

v N

e

,
cDFT

0
v

A

A AA
1

A
v

A

ext A
[ ]

= [ [ ]]

+ ×

[ ]

+

(35)

where

u R u W( )A A
v

AA
1[ ] [ ]· (36)

and ϵe(r, r′) is the electron dielectric response function. The
gradient vanishes when u = v* since in this case, both R+v[v*,
ΛA[v*]] and v NA

v
A[ *] vanish. This actually proves the

stationary character of E uv N,
cDFT
ext A

[ ] at u = v*.
Importantly, ΛA[u] is the precise value that makes R+v[u,

ΛA[u]](r′) orthogonal to wA

R u u wr r r, ( ) ( )d 0v
A A[ [ ]] =+

(37)

To demonstrate this assertion, insert eq 36 in eq 27 and
integrate. This suggests treating the two parts of the gradient
with different preconditioning, eq 35. The following
expression, obtained by removing χ0 from the first term and
ϵe from the second, can indeed be used to define a residual for
the cDFT

R u R u u cw u Nr r r( ) , ( ) ( )( )cDFT v
A A A A[ ] [ [ ]] + [ ]+

(38)

Since the first and second terms belong to orthogonal
subspaces, the residual RcDFT vanishes for all r′, only if both
R+v and u N( )A

v
A[ ] vanish, which amounts to obtain self-

consistency, as, on the one hand, eq 28 is fulfilled, and, on the
other hand, the constraint eq 21 is imposed. In expression eq
38, c is a constant whose value is formally arbitrary but for
practical purposes should be of order one, as it defines the
balance between the convergence inside the space spanned by
wA and the convergence inside the space perpendicular to it.
This formulation of a residual for cDFT opens the door to the
adaptation of all algorithms used for potential-based DFT self-
consistency.
Since the new functional E uv N,

cDFT
ext A

[ ] is stationary, its behavior
with respect to modifications of parameters vext and NA fulfills
the 2n + 1 theorem of perturbation theory,32 allowing to obtain
easily numerous derivatives of the total energy33−39 with
respect to changes in the parameters of the calculation: at first

order, forces, and stresses but also chemical potential and spin-
torque (see later), specifically for cDFT; at second-order
interatomic force constants (yielding vibrational frequencies),
Born effective charges, and elastic constants but also cross-
derivatives between atomic displacements, local magnetization,
and fragment charges, specifically for cDFT.

In particular, in first order, the derivative with respect to the
fragment charge NA, that is, the chemical potential of fragment
A,40 μA, is

E v

N
R v W v( )

v N
A

,
cDFT

A
A
v

AA
1

A
ext A=

[ *]
= [ *]· = [ *]

(39)

This derivation highlights relations between different quanti-
ties appearing in the formalism. For the sake of simplicity, we
will often use μA to denote these different quantities.

One also recovers Hellmann−Feynman theorem,41,42 a
specific instance of the 2n + 1 theorem. This gives, for
example, the force exerted on atom κ in direction α as

F
Ev N

v

,
cDFT
ext A=

* (40)

where τκα is the coordinate atom κ. When taking the derivative,
the implicit dependence of v* on τκα is not to be taken into
account, according to the Hellmann−Feynman theorem.

The dependencies of Ev N,
cDFT
ext A

on τκα occurs through the
external potential vext and the weight function wA. Since the
second term in eq 32 does not depend explicitly on vext and the
first term does not depend on wA, one gets

F
E u

E
v

w
r

r
r( )

( )
d

v

v v

v

v

v

A
A
v

v

A
v A

ext

ext

= +
[ ]

= + [ *]

* *

* (41)

the first term is the usual DFT expression for the force, albeit
evaluated at v*, that is determined under the constraint eq 21.
The second contribution is easily evaluated once the density
has been self-consistently determined. Forces are thus
byproducts of the self-consistent calculation, as usual in
normal DFT. Note that while RA

v and WAA in eq 32 depend on
the atomic position, their contribution to the force vanishes, as
the second line in eq 32 contains ρA

v [u]−NA, which vanishes at
u = v*. Other derivatives with respect to parameters for the
DFT calculation can be obtained likewise.
2.4. Types of cDFT Constraints. The previous approach,

presented for the case of the specific constraint of imposing the
charge of a fragment, can be generalized to several
simultaneous constraints and constraints more general than
fragment charges. Such possible constraints have been
discussed in ref 5 and other references presented in the
introduction. While the original DFT approach considered a
functional of the charge density only, later generalizations
introduced functionals of collinear magnetization or even
noncollinear magnetization, both equivalently formulated in
terms of the spin-density matrix. The spin-density matrix
ρss′[{ϕi}](r) can be computed from spinorial wavefunctions
{ϕsi(r)}, with s and s′ subscripts being up (↑) or down (↓)
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fr r r( ) ( ) ( )ss i
i

i si s i
1

[{ }] =
= (42)

Constraints might be defined in terms of linear combinations
and integrals of the spin-density matrix elements, for example,

w r r r( ) ( )dI ss
ss

I
ss

ss[ ] =
(43)

The w r( )I
ss function has to be specified for each possible value

of the index I, possibly a composite index, characterizing the
different constraints.
For example, and in view of practical applications later, the

magnetization along x around atom κ, Mxκ, might be imposed
by requiring the following constraint

Mx x ss= [ ] (44)

with the weight function inside eq 43 being

w wr r( ) ( ) ( )x
ss

x ssrad= | | · (45)

in this expression, rκ ≜r − τκ, σx is the 2 × 2 Pauli matrix for
the x direction, and wrad(r) is a radial weight function (e.g.,
wrad(r) is 1 for r smaller than some cut-off radius rc1, then
decreases smoothly beyond that radius, and becomes exactly
zero beyond some other cut-off radius rc2). An alternative
formulation, more convenient for numerical evaluation and
computation of forces and stresses, uses

w wr r( ) ( ) ( )x
ss

x ssrad2
2= · (46)

with the following obvious relation wrad(t1/2) = wrad2(t).
The constrained magnetization along y or z for the same

atom, as well as for other atoms, can be defined similarly to eqs
44 and 45. All these constraints can be considered together.
We will also consider constraining only the direction of

magnetization, using a linear formulation as well, like in ref 20.
Let e ̂ be a unit vector along the constraint direction for the
magnetization, the directional constraint can be obtained by
requiring together

ex ss e ss x[ ] = [ ]· (47)

ey ss e ss y[ ] = [ ]· (48)

ez ss e ss z[ ] = [ ]· (49)

with

e e ee ss x ss x y ss y z ss z[ ] = [ ] + [ ] + [ ] (50)

The function ρeκ[ρss′], as well as its x, y, z counterparts, is linear
in ρss′ and thus also the constraints (eqs 47−49). This
constraint will be illustrated in the application part.
Finally, even nonlinear constraints might be considered. For

example, the amplitude of the magnetization vector for atom κ,
∥Mκ∥, can be imposed by requiring

M ( ) ( ) ( )x ss y ss z ss
2 2 2 2= [ ] + [ ] + [ ] (51)

This has also been implemented and tested but will not be
illustrated. The Lagrange multiplier method also deals easily
with such nonlinear constraint, as well as the potential-based
cDFT formulation.
2.5. Multiple Constraints in Potential-Based cDFT.

Now, we generalize most of the equations in Sections 2.2 and
2.3 to the case of several constraints and constraint types. The

indices I or J run through the whole set of constraints and
replace the index A that we had used in these sections to
explain the concepts in the case of one fragment.

For the target value of constraint I, we use the notation NI
generically, even if it is a magnetization-type constraint. Like
the density that becomes the spin-density matrix, the potential
(screened or external) and the residual both become two-by-
two spin matrices. The notation might become very
cumbersome so that we do not explicitly mention the two
spin variables when not strictly needed, and also we combine
the two-spin labeling ss′ into one label S placed as superscript.
Therefore, we use vextS or even vext instead of vss

ext and, likewise,

uS or u instead of ussd′ and RS or R instead of Rssd′. By contrast, for
this multiple-constraint generalization, we explicitly treat the
indices I or J.

For each constraint, there is a Lagrange multiplier ΛI. The
augmented energy eq 24 becomes

E u E u u N, ( )v N I v
I

I I I,
v v v

Iext ext
[ { }] = [ ] + [ ]{ }

+

(52)

with

E E umin ,v N I
u

v N I, ,
v

I Iext ext
[{ }] = [ { }]{ }

+
{ }

+
(53)

The generalization of the self-consistent solution defined by
eqs 27 and 28 is as follows. For the self-consistent v*, the
condition is

R v r0 , ( )S
I

v= [ * { }]+ (54)

for all r′ with definitions

R u R u wr r r, ( ) ( ) ( )S
I

S

I
I I

Sv v[ { }] [ ] ++

(55)

and

R u v u vr r r( ) ( ) ( )S S Sv
out[ ] [ ] * (56)

Equation 54 must be true for all values of S and r′.
Multiplying these equations by w r( )J

S for all values of J, then
integrating over r′ and summing over S allows one to obtain
the value of ΛI that makes the residual vanish

R v W( )I
J

J IJ
v 1= [ *]·

(57)

where

R u R u wr r r( ) ( )dJ
S

S
J
Sv v[ ] = [ ]

(58)

and

W w wr r r( ) ( )dIJ
S

I
S

J
S=

(59)

The appearance of the cross-constraint matrix WIJ and its
inverse is key to the formulation of a many-constraint
potential-based cDFT functional

E u E u R u W u N. ( ) ( )v N v
IJ

I IJ J J,
cDFT v v 1 v

Iext ext
[ ] = [ ] [ ] [ ]{ }

(60)

For the self-consistent v*, one recovers

E E vv N v N,
SC

,
cDFT

ext I ext I
= [ *]{ } { } (61)
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and E uv N,
cDFT

Iext
[ ]{ } is stationary with respect to variations of u

around v*

E u E v u v(( ) )v N v N,
cDFT

,
cDFT 2

ext I ext I
[ ] = [ *] + *{ } { } (62)

as in eq 34. This is the central result of this work.
Thus, E uv N,

cDFT
Iext
[ ]{ } possesses many of the properties enjoyed

by usual DFT functionals, in particular, the possibility to apply
the 2n + 1 theorem of perturbation theory, including the
Hellmann−Feynman theorem. It is also clear that the
constraints (fragment charge, fragment magnetization, and
variation thereof) are treated on the same footing as other
parameters of the problem that enter the play through the
external potential, such as atomic positions, cell parameters, or
applied external fields.
The following residual can be used to perform searches for

self-consistency, with usual algorithms

R u R u u c w W

u N

r r r( ) , ( ) ( )( )

( )

S S
I

IJ
I I

S
IJ

J J

cDFT, v, 1

v

[ ] [ { [ ]}] +

[ ]

+

(63)

Indeed, the first term lives in a subspace orthogonal to the
second term.
The derivative of Ev N,

cDFT
Iext { } with respect to the value of the

constraint NJ, evaluated at the self-consistent screened
potential, v*, is given by

E v

N
R v W v( )J

v N

J I
I IJ J

,
cDFT

v 1Iext=
[ *]

= [ *]· = [ *]{ }

(64)

The same notation μJ as for the derivative of the fragment
charge is used although such derivative might correspond to a
rather different physical phenomenon. For example, when the
constraint imposes a magnetization direction, such a derivative
is the spin torque, namely the gradient of the energy with
respect to a change of the direction of the spin magnetization,
for example, the torque that is needed to ensure that the
magnetization is strictly constrained to a given value.
The force eq 40 becomes

F
E u

E
v

w
r

r
r( )

( )
d

v

v J
J

J

v

v

v JS
J S

J
S

v v

v
v

ext

ext

=
[ ]

= [ *]

* *

* (65)

If the weight functions decompose, as in eq 46, namely if they
are a product of a rigid spherical function attached to atom κJ
position, times a spin-dependent quantity QJ

S, independent of r
and κ

w w Qr r( ) ( )J
S

J
S

rad2
2

J
= (66)

then
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2 ( )
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v JS
J J
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,
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rad2
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2

ext= + × [ *]
*

(67)

Note the presence of the , J
factor: with the weight functions,

as in eq 66, only the rigid spherical function attached to atom κ
will contribute to the force correction. This is not true in
general since modification of the atom κ position might induce
modification of the weight function linked to another atom.

Such a weight function (eq 66) is commonly used for
computing local magnetization. In the case of a real space
evaluation of the integral in eq 67, on a grid of points, the
decrease in the cut-off function 1 to 0 should not be too steep;
otherwise, the numerical evaluation of the space integral of the
derivative in such an equation will have large numerical noise
(and error). The derivative of the function wrad2(t) is
accompanied by a rκα factor.

An equivalent formula is obtained after considering that the
derivative with respect to τκα is equal to the negative derivative
with respect to the position rα, then integrating by parts

F
E

Q

v

r
w d

r
r r

2

( )
( )

v

v JS
J J

S

S

v

,

v

rad2
2

J

ext= + ×

[ *]
*

(68)

Evaluation of the density derivative in the Fourier space then
transform to real space might yield smaller numerical noise
than the previous procedure based on eq 67 but has not been
implemented.

Another type of weight function makes sense in the cDFT
context: partitioning in regions around atoms, which
completely paves the entire space so that the charge density
is allocated to one or another atom. For example, Bader,43

Hirshfeld,44 or Becke45 partitioning yield

w w Qr r( ) ( )I
S

I
S= (69)

where for each r in the full space

w r( ) 1=
(70)

the sum running over all atoms in space. Also, in this case, for
an evaluation in real space, the weight function cannot
decrease abruptly from 1 to 0 in order to compute the forces.
Thus, the wκ(r) functions overlap. The present formalism
easily deals with such cases by means of nonzero off-diagonal
overlap elements WIJ (see eq 59). The implementation of the
Becke partitioning and associated forces has been described in
detail in ref 46.
2.6. Stress in cDFT. Although the implementation of

forces is common in cDFT, the implementation of stress has
not been reported to our knowledge. The stress tensor, σαβ,
where α and β are along the three Cartesian directions, is
obtained as the derivative of the energy per unit cell of volume,
which we will note as EΩtot

SC with respect to the deformation
tensor ηαβ divided by the cell volume Ω.47,48 In our notations

E1 tot
SC

=
(71)

where the deformation tensor is such that the position vector
rα becomes rα = rα + ∑βηαβrβ. Similarly, E v

v
ext

will be the
energy per unit cell obtained from vext in the potential-based
self-consistent approach.
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With respect to the previous formalism, treating the periodic
case will explicitly assume that each constraint J is repeated
periodically in every primitive cell. In order to have the cell
contribution of constraints to the total energy per primitive
cell, the summation over constraint J will be restricted to one
instance of each periodically repeated constraint.
The cDFT stress is then written as

E u

E
v

w
r

r
r

1 1

1
( )

1 ( )
d

v

v J
J

J

v

v

v JS
J S

J
S

v v

v
v

ext

ext

= +
[ ]

= + [ *]

* *

*
(72)

In the case of atom-centered, separable weight functions, such
as eq 66, the stress becomes

E
Q v

w t
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v JS
J J

S
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r

v
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rad2
J J

ext

2

= + × [ *]
*

(73)

The derivative of the function wrad2(t) is accompanied by a rκα
factor and rκβ factor, while the contribution of all constraints is
summed.
The applications in the next section rely on this formula. An

alternative formulation of the stress, similar to the one for the
forces, eq 68, is possible but has not been tested.

3. RESULTS AND DISCUSSION
In support of the concepts presented in the theory section, we
provide validation tests against known results, as well as
demonstrate the usage of the potential-based cDFT functional
to investigate stress-magnetization and charge-magnetization
couplings, for the paradigmatic case of BCC iron.
3.1. Computational Details. The potential-based cDFT

approach has been implemented in ABINIT.49,50 Results
presented in this section have been obtained with publicly
available version 9.6, except for some fixes needed to compute
the stress, which will be made publicly available in ABINIT
v9.8. The cDFT electronic energy (eq 60) is optimized using
Pulay residual minimization algorithm,21 keeping seven past
pairs of trial potential and corresponding residuals (eq 63) in
the history. Other algorithms are also available in ABINIT but
are not demonstrated hereafter. We have observed several
cases in which the Pulay residual minimization algorithm does
not yield convergence with the present cDFT formalism and its
implementation. This only occurred for noncollinear magnet-
ization calculations within GGA(PBE) and not for LDA. We
do not report these cases in the present work, as they will be
the subject of further work.
The representation of wavefunctions relies on the PAW

formalism.48 Two PAW atomic data are tested, the first one
using the LDA exchange−correlation functional for compar-
ison to the work by Kurz et al.20 and another one using the
GGA-PBE51 exchange−correlation functional for all other
calculations. The pseudopotential cut-off radius rc2 = 1.065 Å is
used as the cut-off radius for the definition of the atomic spins
and charges. The width of the smearing region is 0.026 Å or
roughly 2.5% of the atomic radius. The smearing width is kept

small so that comparisons could be made to the Ma and Kurz
papers, where muffin tin potentials are used. Still, the smearing
width needs to be large enough in order to avoid the numerical
instabilities in the pressure calculations, as mentioned in the
Theory section. The smeared function, going from 1 to 0, is
the inverse of Eq. (B4) of ref 38.

All calculations are performed for a two-atom BCC iron
conventional unit cell. For a given θ angle between
magnetization directions on the two atoms, magnetization on
atom 1 is imposed as M (sin(θ/2), 0, cos(θ/2)), while
magnetization on atom 2 is imposed as M (−sin(θ/2), 0,
cos(θ/2)). The parameter M is freely optimized by ABINIT.
Among the existing symmetry operations, a binary symmetry
axis, exchanging atoms 1 and 2, is present for such calculations
and is actually critical to reaching some of the results presented
below. Indeed, without such symmetry operation, constraining
the magnetization angle θ for different atoms using
homogeneous constraints Equations 47−50 works if such an
angle is lower than 90° but is inherently problematic when a θ
angle beyond 90° is aimed at. For example, imposing
magnetization on atom 1 to be M1(001) and M2(sin(θ), 0,
cos(θ)) induces spontaneous switching of θ larger than 90° to
a value 180° − θ, smaller than 90°.

The self-consistency algorithm easily achieves more than six-
digit accuracy on the constraint, be it a magnetization
component, a magnetization direction or amplitude, or a
local charge, so essentially perfectly imposing the constraint.

For comparison with results from previous publications, we
use the same lattice parameters: 2.789 Å for comparison with
Kurz et al.20 and 2.83 Å for comparison with Ma et al.,31

respectively. For all other PBE calculations, we use the lattice
parameter 2.845 Å obtained from ABINIT relaxation.

A cut-off energy of 30 Ha is used, with a 16 × 16 × 16 grid
to sample the Brillouin zone and an electronic smearing of
0.0005 Ha. This is sufficient to converge the energy, spin
magnitude, pressure, and transverse spin force.

It is worth noting that the longitudinal value of the spin
force, obtained when the magnitude of the spin vector is also
constrained, requires a 72 × 72 × 72 grid to sample the
Brillouin zone in order to reach convergence. However, this
value can be significantly reduced when a nonzero electronic
temperature is used.
3.2. Validation of the Self-Consistency Approach. In

order to validate the potential-based cDFT method, we
compare results with the implementations reported by Ma
and Dudarev,31 who use the PBE functional, as well as Kurz et
al.,20 who use the LDA functional. We calculated the variation
in energy and spin magnitude as the angle between the spin (or
local magnetization) vectors was varied from 0° (ferromag-
netic) to 180° (antiferromagnetic) in increments of 10°. The
energy and spin magnitudes are plotted in Figure 1 and
constitute a convincing validation of the potential-based cDFT
implementation. We use a cut-off radius of 1.065 Å for our
definition of the atomic spin vector compared to 1 Å for Ma
and Dudarev and 1.19 Å for Kurz et al. The slight difference
between our value for the radius and that used by Kurz et al., as
well as the different PAW atomic data set, explains the rather
small albeit non-negligible difference with these calculations.
Our values for the spin magnitude are consistently slightly
lower than their values. However, this difference is
unsurprisingly small since it is the localized d electrons that
contribute to the atomic magnetic moment.
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The behavior of the spin magnetization as a function of spin
angle is not very smooth, albeit continuous, which is in line
with the results obtained in previous studies. This is observed
despite the fact that the numerical accuracy has been pushed to
a high level (e.g., one part per million for the spin magnitude at
a given spin angle). In our opinion, this jagged behavior is to
be linked to the existence of critical points in the electronic
density of states, these being affected by the spin angle hence
affecting the spin magnitude.
3.3. Stress-Magnetization Coupling. As an example of

the strong magnetoelastic coupling in iron, we calculated the
pressure for varying spin angles when the cell is fixed, then
relaxed the lattice parameters and obtained the variation in the
equilibrium lattice parameter. The pressure is minus the trace
of the stress tensor σαβ (see eq 73).
In Figure 2, the pressure varies within a range of roughly 8

and 12 GPa for the PBE and LDA calculations, respectively, as
the spin vectors are rotated between the ferromagnetic and

antiferromagnetic configurations. To put this in context, the
bulk modulus of iron is 166 GPa.52

The variation in the relaxed values for the lattice parameters
shown in Figure 3 mirrors the pressure changes. The lattice

parameter variation is 0.06 Å or roughly 2% of the total lattice
parameter, which again demonstrates how changes in the spin
configuration can induce significant strains. In order to
perform this calculation, the stress obtained at a fixed spin
angle was relaxed using cell optimization algorithm in ABINIT.
However, it was also independently checked that for a fixed
spin angle, the minimum of the total energy as a function of
the lattice parameter does indeed correspond to the stress

Figure 1. Comparison of energies (top) and the spin magnitude
(bottom) as a function of the angle between spin directions.
Potential-based cDFT LDA data (blue) are to be compared to
those from Kurz et al.20 in orange, while potential-based PBE data
(green) are to be compared to those of Ma and Dudarev.31 in red.

Figure 2. Pressure as a function of the spin angle between the two
atoms in a Fe BCC conventional cell using the PBE and LDA
exchange−correlation functionals. The lattice parameters are fixed to
those found by relaxing the ferromagnetic cell, giving 2.83 and 2.76 Å
for the PBE and LDA functionals, respectively.

Figure 3. Lattice parameter after structural relaxation of a 2 atom
BCC iron unit cell as the angle between the spin vectors is varied. The
LDA calculations past 145° started converging to a zero spin
configuration and were not included in the plot.
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going to zero. A jagged behavior of the pressure and lattice
parameter as a function of the spin angle is observed, similar to
the spin magnetization of the previous subsection.
3.4. Atomic Magnetization and Charge Transfer as

Independent Variables. As a demonstration of the
combined usage of charge and spin constraints, which will be
relevant to addressing joint charge and spin ordering in
materials such as rare-earth ferrate systems,53 we calculate the
Hessian for a 2-atom Fe BCC unit cell, where the variables
considered are the two collinear atomic spins and the
difference in the charge between the atoms. The derivative
of the energy with respect to the charge difference is calculated
as

E E E1
2 1 2

i
k
jjjjj

y
{
zzzzz=

(74)

where Δρ = ρ1 − ρ2 is the charge difference, and the
derivatives with respect to the atomic charges are available as
the Lagrange multipliers for the charge constraint. The data are
presented in Table 1. These second derivatives have been

computed by both a second-order centered finite difference
method from the total energies, as well as from finite
differences of analytical first derivatives. Agreement between
these computations is at the level of the number of digits
shown in the table.
All the diagonal entries are positive, which is a prerequisite

for the stability of the system with respect to spontaneous
symmetry breaking. The negative value for ∂2E/∂s1∂Δρ can be
understood intuitively as a consequence of spin polarization
becoming easier as the amount of electron density, which can
be polarized, increases.
To our knowledge, this is the first case in which cDFT has

been used with both charge and spin constraints, while the
study and discovery of new multiferroic materials54 and the
analysis of spin and charge orderings53 will benefit from such
possibility.
Our formulation of cDFT also allows one to develop

magnetic machine learning potentials12−16 �potentials whose
functional form is extended to depend on magnetization
(norm, but also direction) and/or atomic charge values in
addition to atomic relative positions. More specifically, the
“usual” machine-learning potentials define the interatomic
interaction energy as a function of the type Tκ and position τκ
of each atom κ. Then, the generalized machine-learning
potentials might include the dependence of the energy on the
variables presented in Section 2, namely Nκ and/or Mxκ, Myκ,
Mzκ. Because the proposed cDFT defines a strictly conservative
force field as a function of such coarse-grained degrees of

freedom, it can be used as the first-principles basis to generate
such generalized magnetic machine learning potentials.

In the same spirit, computing the total energy as a function
of absolute atomic displacements with respect to a reference
unperturbed state, together with the local magnetization and/
or charge, allows for the generalization of second-principles
models8−11 beyond the current ferroelectric materials, to deal
with multiferroic materials, for example, as a function of
temperature. In both the machine learning potential and the
second-principles model cases, the knowledge of the various
first-order derivatives for which we have detailed the
expressions in Sections 2.5 and 2.6 might prove to be an
enabling feature.

4. CONCLUSIONS
In this work, we have formulated cDFT with a Lagrangian
multiplier approach and used the potential as a fundamental
variable, allowing us to recast the associated self-consistency
problem in a form suited for the application of standard self-
consistency algorithms. The potential residual has two
components, one directly related to the constraints, which
could be on local atomic density or magnetization or both, and
the other stemming from the usual definition, which invokes
the difference between the input and output potentials albeit
projected on a subspace perpendicular to the constraint. This
allows one to avoid both (i) the use of a penalty function,
which delivers a biased solution to cDFT, and (ii) an
additional internal loop, which departs from the usual SCF
algorithms.

A simple potential-based cDFT functional, valid for all kinds
of constraints placed on the density or spin-density in arbitrary
regions of space, has been introduced and shown to be
stationary with respect to trial-effective (spin-)potential
variations. The powerful 2n + 1 theorem of perturbation
theory can thus be applied in such a context, allowing the
cDFT predictive capabilities similar to its DFT counterpart.

We have also provided the analytic cDFT expression for the
derivatives with respect to the constraints (e.g., the local
chemical potential or spin torque), as well as for the atomic
forces and stress. We have validated the concepts of this
approach by their implementation in open-source ABINIT
code and then by comparison with published results for the
paradigmatic case of Fe BCC. The investigation of stress-
magnetization coupling and charge-magnetization coupling has
been done as well. In such a context, the atomic spin
magnetizations, local atomic charges, atomic positions, and
lattice parameters are on an equal footing, which is an ideal
starting point for the generation of model Hamiltonians for
second-principles approaches and generating training data sets
for machine-learning interatomic potentials.

The domain of application of our approach is thus large,
even more given the development of new fields of research in
which the different perturbations of the bulk or nanostructures
are combined, be them electric, magnetic, and stress or its
gradient, as testified by the interest in multiferroic materials,
flexoelectricity or flexomagnetism, or in materials where
charge, spin, and lattice degrees of freedom are coupled to
each other. Furthermore, it is applicable to the development of
machine learning potentials for crystal structure prediction of
magnetic materials.

Table 1. Elements of the Hessian for the Energy of a 2-Atom
Fe BCC Unit Cell Based on Three Variablesa

Hessian element Value

∂2E/∂s12 0.02382 Ha μB
−2

∂2E/∂s22 0.02382 Ha μB
−2

∂2E/∂Δρ2 0.21424 Ha e−2

∂2E/∂s1∂s2 0.00572 Ha μB
−1 e−1

∂2E/∂s1∂Δρ −0.01383 Ha μB
−1 e−1

∂2E/∂s2∂Δρ 0.01382 Ha μB
−1 e−1

aThe spin magnitudes for atoms 1 and 2 are s1 s2, respectively, and Δρ
is the charge difference between atom 1 and atom 2.
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