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Abstract
Given a smooth family of unparameterized curves such that through every point in
every direction there passes exactly one curve, does there exist a Lagrangian with
extremals being precisely this family? It is known that in dimension 2 the answer is
positive. In dimension 3, it follows from the work of Douglas that the answer is, in
general, negative. We generalise this result to all higher dimensions and show that
the answer is actually negative for almost every such a family of curves, also known
as path structure or path geometry. On the other hand, we consider path geometries
possessing infinitesimal symmetries and show that path and projective structures with
submaximal symmetry dimensions are variational. Note that the projective structure
with the submaximal symmetry algebra, the so-called Egorov structure, is not pseudo-
Riemannian metrizable; we show that it is metrizable in the class of Kropina pseudo-
metrics and explicitly construct the corresponding Kropina Lagrangian.

Keywords Path structure · Projective structure · Euler-Lagrange equation ·
Symmetry analysis · Geodesics · Inverse variational problem · Jet space ·
Metrization · Finsler metrics · Kropina metrics
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1 Introduction

1.1 Definitions andmotivations

Consider the following system of second order ODEs on a space M of dimension n+1
with coordinates x = (x0, . . . , xn):

xitt + hi (x, xt ) = νxit , 0 ≤ i ≤ n. (1.1)

Here functions hi (x, xt ) are assumed to be positively homogeneous of the second
degree in xt , i.e., h(x, λxt ) = λ2h(x, xt ) for every λ > 0, and ν is an arbitrary
functional parameter to be eliminated. That is, a solution of the system is a vector-
function x(t) such that there exists a function ν(t) for which (1.1) holds; xt and xt t
denote the first and second derivatives of the vector-function x(t) in t . This system
is clearly underdetermined and effectively consists of n equations on n + 1 unknown
functions. From the physical viewpoint it can be interpreted as the condition that at
every point the acceleration xt t + h(x, xt ) is linearly dependent with the velocity xt .

Since h is positively homogeneous of the second degree in xt , for every solution
x(t) of system (1.1) and for any local diffeomorphismn t �→ τ(t) of R with τ ′(t) > 0
the reparameterized curve x(τ (t)) is also a solution. Therefore, solutions of (1.1) are
arbitrary orientation-preserving reparameterizations of solutions of the system

xitt + hi (x, xt ) = 0, 0 ≤ i ≤ n. (1.2)

For any point and any oriented direction there exists exactly one solution with these
initial data.

A path structure (also known as path geometry) is the solution space of an equation
of the form (1.1) or equivalently of (1.2) where we forget parametrization of solution-
curves (henceforth called paths). Geometrically, it is defined as a smooth family of
unparameterized curves such that there exists precisely one curve from the family
through every point in every oriented direction.

The simplest example of a path structure is theflat structure on an affine space,where
all the curves of the family are straight lines. (A locally equivalent path structure is
given by the geodesic family on a Riemannian space of constant sectional curvature.)
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Wesay that a path structure is reversible, if for every point and any oriented direction
the path passing through this point in this direction geometrically coincides with the
path passing in the reversed direction. For example, the flat structure is reversible.
Clearly, reversibility is equivalent to the property that for every (x, xt ) the difference
h(x, xt ) − h(x,−xt ) is proportional to xt .

Path structures naturally appear in differential geometry and in mathematical rel-
ativity. Indeed, for a Lagrangian1 L̂(x, xt ) positively homogeneous of degree one in
velocities (that is L̂(x, λxt ) = λL̂(x, xt ) for λ > 0) and such that for the “energy

function” Ê := 1
2 L̂

2 the Hessian

(
∂2 Ê

∂xit ∂x
j
t

)
with respect to xt is nondegenerate, the

Euler-Lagrange equation is algebraically-equivalent to a system of the form (1.1).
Since unparameterized geodesics of Riemannian and pseudo-Riemannian metrics are
extremals of the Langrangian L̂ equal to the square root of the kinetic energy, sys-
tem (1.1) contains the equation of geodesics as a special case. The same is true in
Finsler geometry (and pseudo-Finsler generalisations), where geodesics are extremals
of the Lagrangian L̂ equal to the Finsler norm; if the Finsler norm is only positively
homogeneous the corresponding path structure can be irreversible.

Investigation of path structures, as differential equations, and in particular their
symmetries, goes back to the works of Lie [38] and his student Tresse [51]. For a
scalar ODE of the form

yxx = f (x, y, yx ), (1.3)

they considered the path structure on R
2(x, y) whose paths are given by x →

(x, y(x)), where y(x) is a solution of (1.3). This path structure is singular in the
sense that in the vertical direction the paths are not defined. Symmetries of this path
structure are called point transformations of the ODE; they correspond to changes of
variables mixing dependent and independent variables.

In the context of metric geometry, path structures were studied by H. Busemann
[11]; one of the question he considered is whether for a given path structure there
exists a Finsler metric whose unparameterized geodesics are paths.

A projective structure is a path structure given by equation (1.1) with the functions
hi of the form

hi (x, xt ) =
n∑

j,k=0

�i
jk(x)x j

t x
k
t .

The corresponding paths are unparameterized geodesics of the affine connection (�i
jk).

Clearly, it is a reversible path structure. Projective equivalence of affine connections
is their equivalence as path structures, and was studied since H. Weyl [53, 54] who in
particular proved that in dimension n + 1 ≥ 3 the Weyl projective curvature tensor
W �

i jk vanishes if and only if the projective structure is flat. See also E. Cartan [15], who

1 We use hat on autonomous Lagrangians (which for most part of the paper can be assumed to be homoge-
neous in xt ) to distinguish them from nonautonomous Lagrangians in a space of one dimension less used
later on.
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constructed the fundamental systems of differential invariants for projective structures
(in dimension n + 1 > 2; the case n = 1 is due to [51]).

A closely related classical problem is when two different metrics have the same
geodesics viewed as unparameterized curves. First nontrivial results in this direction
are due to E. Beltrami [4] who proved that in dimension two a Riemannian metric
generating a flat projective structure has constant curvature, and to U. Dini [20] who
gave a local description of pairs of 2-dimensional Riemannian metrics sharing the
same (unparameterized) geodesics. Results of Beltrami and Dini were generalised to
all dimensions by F. Schur [46] and T. Levi-Civita [37].

In the framework of mathematical relativity, projective structures were studied
since H. Weyl [53, 54]. He proposed to base the geometric framework of gravity
theory on the observable structures of particle trajectories and light propagation, i.e.,
on unparameterized geodesics and the conformal structure, see also O. Veblen and T.
Thomas [52]. In a fundamental and widely read paper [27] J. Ehlers, F. Pirani and A.
Schild claimed that a projective structure and a conformal structure on a differentiable
manifold M determine a Weylian metric (Weyl structure), if and only if the light-like
geodesics of the conformal structure are paths of the projective structure. This claim
has been recently proven in [43]; see also [39], [40] and [9, §12].

Path structures which are not projective structures also naturally appear within
mathematical relativity, see the survey by Ch. Pfeifer [44]. In particular, according to
the Fermat principle, projection of null geodesics of a stationary spacetime to a Cauchy
hypersurface are geodesics of a Randers (Finsler) metric, see e.g. E. Caponio et al [13].
These geodesics come without preferred parameterization, since a parameterization
depends on the choice of a Cauchy hypersurface. Note that path structures coming
from most Randers metrics are not reversible; moreover, if a path structure coming
from a Randers metric is not reversible, then one can uniquely reconstruct this metric
up to a trivial projective change by [42].

In our paper we discuss the question whether a given path structure is variational,
that is whether there exists a Lagrangian function L̂(x, xt , xtt , ...) whose extremals
are precisely the paths of the structure. This question is important, because many
physical systems can be described mathematically with the help of the Hamilton-
Jacobi formalism and was considered already by H. Helmholz [29]. In differential
geometry, this question was explicitly asked by H. Busemann [10].

In the calculus of variations, this question is one of the so-called inverse problems,
and there is a vast literature on this topic, see e.g. books by I. Anderson and G.
Thompson [3] and by J. Grifone and Z. Muzsnay [28] for two different approaches
to this problem (note that the second reference treats mostly parameterized solution-
curves of differential equations and is not directly applicable to our problem), as well
as the recent surveys [21, 22] by T. Do and G. Prince.

1.2 Results

We consider a path structure in dimension n + 1 and ask whether there exists an
autonomous Lagrangian such that every curve of our path structure (with any param-

123



Almost every path structure is not variational Page 5 of 18 121

eterization), is an extremal of the Lagrangian and vice versa. We will call such path
structures variational.

We first observe that we can eliminate higher order derivatives in the Lagrangian
L̂:

Proposition 1 Suppose a path structure is variational. Then it is variational in the
class of Lagrangians of order one: there exists a positively homogeneous of degree
one in velocities function L̂(x, xt ) whose extremals are precisely the curves of the
path structure.

Almost equivalent statements can be found in the literature, see e.g. [45, Theorem
1] or [2, Theorem 3.2], so we do not pretend that the result is new. We will give a short
proof to be self-contained.

Next, we will reduce the problem to a similar one, but in dimension one less. In this
reduced problem we will look for nonautonomous Lagrangians (such a reduction was
used in e.g. [4, 38], see also [24, §3]). In order to do this, we parametrize the curves
of our path structure by the first coordinate x0 = x (this is possible locally for almost
all solutions). In the notations y = (y1, . . . , yn), y j = x j for 1 ≤ j ≤ n, the curves
are given by x �→ (x, y(x)). Thus a path structure on a manifold M is given by a
system of second order ODEs, which in local coordinates can be written as follows
(dot means the derivative by x):

ÿi = f i (x, y, ẏ), 1 ≤ i ≤ n. (1.4)

Paths of the path structure are the curves of the form x �→ (x, y(x)), where y(x)
are solutions of (1.4). On the language of geometric theory of ODEs, local dif-
feomorphisms of the space (x, y) preserving the path structure are called point
transformations.

We will recall in §3 relations between systems (1.1) and (1.4), and explain that the
inverse variational problem for both systems is essentially the same. We treat it in
the second (reduced) version. The corresponding Lagrangian L is a function on the
ray-projectivized (or spherical) tangent bundle ST M .

Recall that the space J k := J k(R2n+1,Rn) of k-jets of vector-functions f =
( f i (z))ni=1 of the argument z = (x, y, ẏ) consists of the values of independent and
dependent variables and their derivatives up to order k. The jet-lift of f is the map
j k f : R2n+1 → J k , z �→ (z, {∂ j f (z)}kj=0).

Theorem 2 Let � = 4 for n > 2 and � = 5 for n = 2. There exists an open dense
set U ⊂ J � such that if j� f (U ) ∩ U 	= ∅ for U ⊂ ST M for the right-hand side of
(1.4) then the path structure of (1.4) is not variational via a first-order Lagrangian
L(x, y, ẏ) even microlocally on U.

It is well-known that fibers of the bundle J k → J 1 carry a natural affine structure,
while fibers of J 1 → J 0 can be identified with (open charts in) Grassmanians, see
e.g. [31]. Hence, fibers of J k → J 0 are algebraic, so we can use the Zariski topology.
Recall that open sets in a Zariski topology are open dense in the standard topology,
and the above set U can be taken Zariski open. This straightforwardly implies the
following statement:
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Corollary 3 In dimension n + 1, a generic smooth path structure in C4 topology for
n ≥ 3 and in C5 topology for n = 2 is not variational (hence not Finsler).

In other words, in proper topology, every path structure P can be deformed by an
arbitrary small deformation to a nonvariational path structure P̃ and any sufficiently
small deformation of P̃ remains nonvariational.

Let us now discuss the dimension n + 1 = 2. It is known since 1886, see N. Sonin
[47] and G. Darboux [18], that in this case every equation (1.4) is (equivalent to) the
Euler-Lagrange equation of an nonautonomous Lagrangian. This result was improved
in [1] where it was shown that for every reversible path structure P there exists a
reversible Finsler metric whose geodesics are paths of the structure. The irreversible
case is still open, see e.g. [49]where the casewhen all paths are circleswas investigated
in details.

The case n+ 1 = 3 was considered by Douglas [23], who in particular constructed
the first example of a nonvariational projective structure. He also discussed the PDE
system for the inverse variational problem in the case of general n, but did not inves-
tigate it in detail. We recall this fundamental system in §3 and in §4 we show how to
exploit it for specific path structures and for all dimensions.

Let us now discuss the question whether all the curves of a given path structure are
geodesics of some pseudo-Riemannian metric. In the literature, this problem is known
as “metrizability”. Of course, in this case we may assume that the path structure is
actually projective.

Our way to prove Theorem 2 easily implies:

Corollary 4 In dimension n + 1, a generic smooth projective structure in C4 topology
for n ≥ 3 and in C5 topology for n = 2 is not variational, hence not metrizable.

The last portion of our results concerns path/projective structures with large Lie
algebras of symmetries. Recall that symmetry of a path or projective structure is a
local diffeomorphism that sends paths to paths. It is known that the flat structure in
dimension n + 1 has maximal symmetry dimension (i.e., dimension of the symmetry
algebra) equal ton2+4n+3.Of course, this path structure is variational since geodesics

of the Lagrangian
√

(x0t )2 + ... + (xnt )2 are straight lines.

The next possible symmetry dimensions are n2 + 5 (for general path structures)
and n2 + 4 (for projective structures), see [34]. In §5.1–5.2 we will demonstrate that
these structures are variational by exhibiting Lagrangians (of Kropina type). However
they are not metrizable: for the submaximally symmetric projective structure, called
Egorov structure, this follows from [32]; the submaximally symmetric path structure
is not a projective structure hence can not be metrizable by any pseudo-Riemannian
metric. This implies the following result:

Corollary 5 In dimension n + 1 > 1 there exists a projective structure that is varia-
tional, but not metrizable.

Note that §5.1 implies this results for n ≥ 2. For n = 1, the result is known and
follows from e.g. R. Bryant et al [6, 7]. Note also that (n + 1 = 2)-dimensional
projective structures admitting infinitesimal symmetries and the metrization problem
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for them was solved completely in [6, 41]. As mentioned above, 2-dimensional pro-
jective structures are always variational. J. Lang in [36] constructed Lagrangians for
2-dimensional path and projective structures with the submaximal symmetry algebra
(of dimension 3), see also [30, 50].

Wewill also show that theEgorov projective structure is not (regular) Finslermetriz-
able. We expect, in the spirit of our results above, that generic variational projective
structures are not metrizable (neither via pseudo-Riemannian nor via Finsler metrics).
We briefly discuss other examples in §5.3 in relation to the inverse variational problem.

Our main result on non-variationality should be expected by experts. Indeed, the
freedom of choosing system (1.4) is n functions of 2n + 1 variables, while the
Lagrangian is just one such function. This indicates that the system of PDEs express-
ing the existence of a Lagrangian is overdetermined, so one expects that for generic
f = ( f i ) it is not solvable. This arguments however requires high regularity (smooth-
ness) of f . See also [8, 48] for a treatment of this system using the machinery of
Finsler geometry.

2 Proof of Proposition 1

By the Vainberg-Tonti formula [35], if the second order ODE system (1.1) is vari-
ational, then without loss of generality we may assume that the Lagrangian has the
form L̂ = L̂(x, xt , xt t ). The corresponding Euler-Lagrange equation then reads:

d2

dt2
∂ L̂

∂xitt
− d

dt

∂ L̂

∂xit
+ ∂ L̂

∂xi
= 0. (2.1)

In this formula the possible highest t-derivative of x has order 4 and can come from

the terms d2

dt2
∂ L̂
∂xitt

only. Since (1.1) does not have terms involving xitt t t , L̂ must have

the following form:

L̂(x, xt , xt t ) = F(x, xt ) +
∑
s

xsttλs(x, xt ). (2.2)

Let is now look on the third t-derivatives of x: since the terms with xitt t in the equation
(2.1) with L̂ given by (2.1) must cancel, we obtain:

∑
s

(
∂λs

∂xit
− ∂λi

∂xst

)
xstt = 0. (2.3)

Then there exists a function �(x, xt ) such that λs = ∂�
∂xst

implying
∑

s x
s
tt

∂�
∂xst

=
d
dt � − ∑

s x
s
t

∂�
∂xs .

Since the addition of the total derivative − d
dt � to a Lagrangian does not change

the complete variation, the Euler-Lagrange equation with Lagrangian (2.2) coincides
with that substituted by L̃ = F(x, xt ) − ∑

s x
s
t

∂�
∂xs . We see that L̃ is independent of
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xt t implying the first claim of Proposition 1. Next, since by our assumptions for a
solution x(t) any of its reparameterization x(τ (t)) is also a solution, the Lagrangian
L̃ is necessary homogeneous in t of degree 1.

3 PDE setup for the inverse problem

Here we work with inhomogeneous ODE (1.4) and the corresponding Lagrangian L ,
which now can be assumed of the first order. The variational problem

∫
L(x, y, ẏ) dx → min (3.1)

leads to the Euler-Lagrange equations

∂L

∂ y j
− d

dx

∂L

∂ ẏ j
= 0, 1 ≤ j ≤ n, (3.2)

where d
dx = ∂x + ẏ j∂y j + f j∂ẏ j is the operator of total derivative.

This is an overdetermined 2nd order PDE system on a scalar function L =
L(x, y, ẏ) and it is equivalent to (1.4) if and only if: Euler-Lagrange system (3.2)
vanishes modulo ODE system (1.4) and the Hessian matrix of L is nondegenerate (to
be able to express the ODE from the EL)

det

[
∂2L

∂ ẏi∂ ẏ j

]n
i, j=1

	= 0.

Note that system (3.2) is not of finite type, i.e. its solution is non-unique (modulo
divergences and rescalings) and may be even not finitely parametric but contain arbi-
trary functions. Indeed, when f i = 0 the problem (3.1) with straight lines as extremals
has infinite-dimensional space of solutions. These are the so-calledMinkowski Finsler
metrics, given by translationally invariant Lagrangians L = L( ẏ). Clearly there is a
functional freedom in choosing such a Finsler metric.

3.1 The fundamental system

In [19] Davis and in [23] Douglas derived the following fundamental overdetermined
system on the symmetric nondegenerate matrix φi j = ∂2 L

∂ ẏi ∂ ẏ j = φ j i :

∂φik

∂ ẏ j
= ∂φ jk

∂ ẏi
, (3.3)

d

dx
φi j + 1

2

∂ f k

∂ ẏi
φk j + 1

2

∂ f k

∂ ẏ j
φki = 0, (3.4)

Ak
i φk j = Ak

jφki , (3.5)
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where

A j
i = d

dx

∂ f j

∂ ẏi
− 2

∂ f j

∂ yi
− 1

2

∂ f k

∂ ẏi
∂ f j

∂ ẏk
.

Note that A is a (1,1)-tensor (or a field of operators, which is more obvious than in
[23], when written in proper indices), so condition (3.5) means that A is symmetric
with respect to metric φ: φ(Aξ, η) = φ(ξ, Aη). However A is a given field and the
unknown in this equation is φ. Yet, there are many solutions (depending on arbitrary
functions).

To restrict those solutions further note that A, in general, is not integrable (its
Nijenhuis tensor does not vanish), and there are more constraints coming from (3.4),

and also (3.3). Namely, passing from A to A′ = d
dx A− 1

2 AJ− 1
2 J

∗A, where J kj = ∂ f k

∂ ẏ j

and ∗ is conjugation with respect to φ we get the equation φ(A′ξ, η) = φ(ξ, A′η).
One can further iterate this recursive generation of constraints, and this is what is done
in [23] for n = 2. However, as we will see, for n > 2 already the first iteration is
generically sufficient.

3.2 On reparametrizations

If L̂ = L̂(x, xt ) is 1-homogeneous in velocity xt , then the functional on curves in M

x(t) �→
∫

L̂(x(t), xt (t)) dt

is reparameterization invariant. In particular for a path xi = xi (t) choosing x0 = x
instead of parameter t we obtain the integral in (3.1): indeed when x0 = t we get
x0t = 1 and

L(x, y j , ẏ j ) = L̂(x, y j , 1, ẏ j ).

Conversely, given L(x, y j , ẏ j ) can be extended to a function 1-homogeneous in
velocities on T M (we view T M as a cone over ST M) as follows (for nonsymmetric
L , i.e. if L(−v) 	= L(v), v ∈ STxM , one has to distinguish between x0t < 0 and
x0t > 0 that may be not possible locally over domains in M , but only microlocally on
small domains U ⊂ ST M):

L̂(x0, x1, . . . , xn, x0t , x
1
t , . . . , x

n
t ) = L

(
x0, x1, . . . , xn,

x1t
x0t

, . . . ,
xnt
x0t

)
· x0t .

Recall that the condition for L̂ to define a Finsler metric is the subadditivity in
velocities,which is equivalent (provided L̂ smooth on T M\0M ) to the strong convexity
condition: for any x ∈ M and 0 	= v ∈ TxM the Hessian of L̂2|Tx M is positive definite
at v.
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Note that L̂2 is nondegenerate, i.e. det Hess
(
L̂2|CU

) 	= 0, for the cone CU ⊂ TxM
over an open dense subset U ⊂ STxM , if L is nonvanishing and nondegenerate:

det Hess
(
L̂2|CU

) = 2n+1Ln+2 det Hess
(
L|U

)

(in general there are no relations between nondegeneracy of L and L2. Note also
that, due to 1-homogeneity, det Hess

(
L̂|Tx M

) ≡ 0). We will call such L̂ a pseudo-
Finsler metric (an example is

√|g(v, v)| for a Lorentzian metric g on M). In this case
equation {L̂ = 1} in TxM does not necessary define a convex but a nondegenerate
(almost everywhere) hypersurface.

4 Proof of Theorem 2

In the case f i = f i (x, y) we have A j
i = −2 ∂ f j

∂ yi
and the fundamental system and its

prolongation contian the following algebraic subsystem

Ak
i φk j = Ak

jφki ,
( d
dx A

k
i

)
φk j = ( d

dx A
k
j

)
φki . (4.1)

This linear homogeneous systemconsists ofn(n−1) equations on 1
2n(n+1)unknowns,

and so is determined forn = 3 andoverdetermined forn > 3.Weclaim that generically
it attains the maximal rank, and hence the only solution is φi j = 0.

Note that for n = 2 the system is underdetermined, hence as in [23] one should
add one more linear equation,2 namely

( d2

dx2
Ak
i

)
φk j = ( d2

dx2
Ak
j

)
φki . Then we get the

3 × 3 matrix of the system, which is generically nondegenerate, whence the same
conclusion.

4.1 Nonexistence of solutions to the inverse problem

To prove the above claim for n > 2 we first exhibit a system for which the maximal
rank is attained. This is given by

f 1 =
n∑

k=1

(yk)2, f 2 = (y1)2, f 3 = (y2)2, . . . , f n−1 = (yn−2)2, f n = yn−1.

(4.2)

The n(n − 1) × (n+1
2

)
matrix A of system (4.1) (to obtain it write φki into a column �

and write the system in matrix formA ·� = 0) depends on (x, y, ẏ) and has maximal
rank

(n+1
2

)
, for instance, at the point x = 0, y j = δ

j
n , ẏ j = 1. (We omit this tedious

verification.) Since the rank is generally maximal and the data are algebraic in 4-jets,
the rank is generically maximal.

Moreover, when we perturb the condition ∂ f i

∂ ẏ j = 0 the matrix A changes but still
is of maximal rank at generic points, and this persists for generic 4-jets of the vector

2 In the general case f = f (x, y, ẏ) the operator A �→ A′ of §3.1 should be used instead of d
dx .
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function f . Indeed, the second set of equations in (4.1) will express (i j)-symmetry of( d
dx A

k
i

)
φk j − 1

2 A
k
i

∂ f s

∂ ẏk
φs j − 1

2 A
k
i

∂ f s

∂ ẏ j φks due to equation (3.4), and the matrix of this

system is a perturbation of A provided that the values of derivatives ∂ f s

∂ ẏk
are small at

the reference point. This implies the claim for n > 2.
Let us give an alternative geometric, less computational, agrument for computing

the rank of A. The matrices involved in (4.1) have the form (note that A is not this
matrix below, but is easily derived from it):

(
A

∣∣∣ d
dx A

)t = −4 ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 y1 0 0 . . . 0 0 | ẏ1 ẏ1 0 0 . . . 0 0
y2 0 y2 0 . . . 0 0 | ẏ2 0 ẏ2 0 . . . 0 0
y3 0 0 y3 . . . 0 0 | ẏ3 0 0 ẏ3 . . . 0 0
...

...
...

...
. . .

...
... | ...

...
...

...
. . .

...
...

yn−2 0 0 0 . . . yn−2 0 | ẏn−2 0 0 0 . . . ẏn−2 0
yn−1 0 0 0 . . . 0 1

2 | ẏn−1 0 0 0 . . . 0 0
yn 0 0 0 . . . 0 0 | ẏn 0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For generic entries the blocks have different eigenvalues each and are mutually inde-
pendent. The quadraric form φ has eigenvectors of each block as orthogonal basis,
but in general two bases cannot be simultenously orthogonal for one metric (any
signature). This finished the proof.

For n = 2 the same argument works with the same ODE system (4.2). In fact,
this system for n = 2 was already indicated by Douglas, and in [23, formula (3.1)]
the 3 × 3 matrix � is nondegenerate, implying φi j = 0 as the only solution. Our
observation extends his result without going into detailed analysis of solvability of the
fundamental system.

4.2 Other approaches

Let us consider one more example of nonexistence, namely a higher-dimensional
version of another system from [23]:

f 1 =
n∑

k=1

(yk)2, f 2 = 0, . . . , f n−1 = 0, f n = 0. (4.3)

Then for the matrixA of system (4.1) its n×n minor consisting of rows with numbers(
1, . . . , n − 1,

(n+1
2

) − 1
)
and columns (1, . . . , n) is equal to (−2)× the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y2 y1 0 0 · · · 0 0
y3 0 y1 0 · · · 0 0
...

...
...

...
. . .

...
...

yn−1 0 0 0 · · · y1 0
yn 0 0 0 · · · 0 y1

ẏn 0 0 0 · · · 0 ẏ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with det = (y1)n−2(y1 ẏn − yn ẏ1) 	≡ 0,
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while the columns
(
n + 1, . . . ,

(n+1
2

))
vanish identically. This implies that φ1i = 0

and hence det(φi j ) = 0. Therefore ODE system (4.3) is not variational.
However this argument does not survive perturbation, as it belongs to a lower

strata in branching the compatibility analysis of system (3.3)-(3.5). In particular, it
can not be used as a substitute for (4.2) in our proof of Theorem 2. Complete analysis
depending on ranks of the arising matrices was performed for n = 2 in [23]. However
the number of branches grows rapidly with n > 2 and it would be unreasonable to
expect a complete answer due to complexity.

One can exploit the idea of [33] to find the number of independent solutions (dimen-
sion) when system (3.3)-(3.5) is of finite type. Namely, its prolongation, obtained
by differentiation of all equations of the system to a sufficiently large order N at
a particular point z ∈ U , stabilizes the solution space, given by (N + 1)-jet of
φi j at z. In practice this procedure allows to effectively decide solvability of the
system.

5 Submaximally symmetric structures are variational

In this section we discuss several examples, where we can resolve the fundamen-
tal system for the inverse problem. Namely we consider path structures admitting
infinitesimal symmetries, i.e., local diffeomorphisms preserving the structure. A flat
structure on a manifold M of dimension n+1 has maximal possible symmetry dimen-
sion n2 + 4n + 3 and is variational.

The next, so-called submaximal symmetry dimension is equal to n2 + 5 for n > 1;
let us specify submaximal symmetry depending on the type of (nonzero) harmonic
curvature, namely Fels torsion T or Fels curvature S, see [31, §5.3−5.4]. In the zero
curvature module (S = 0) we get projective geometry, and in the torsion-free module
(T = 0) we het general path geometry (Segré branch; non-projective). We consider
those in turn.

5.1 The Egorov projective structure

This structure is originally [26] given by the nonzero Christoffel coefficients �0
12 =

�0
21 = x1 on M = R

n+1(x), x = (x0, . . . , xn). The corresponding inhomogeneous
system (1.4) has the following form3:

ÿ j = 2y1 ẏ1 ẏ2 ẏ j , 1 ≤ j ≤ n. (5.1)

This structure has maximal symmetry dimension n2 + 4 among all nonflat projective
structures [26, 34] and up to local diffeomorphism it is unique such [50]; it is non-
metrizable by [32], i.e. there is no Levi-Civita connection in its projective class.

Surprisingly, the structure is variational, at least micro-locally:

3 Projective structure with a representative connection �c
ab (0 ≤ a, b, c ≤ n) can be encoded as the

ODE system ÿ j = �0
ik ẏ

i ẏ j ẏk + 2�0
0i ẏ

i ẏ j − �
j
ik ẏ

i ẏk + �0
00 ẏ

j − 2� j
0i ẏ

i − �
j
00 with summation over

1 ≤ i, k ≤ n.
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Proposition 6 There exists a Lagrangian function L defined for almost all velocities,
which generates the Egorov projective structure.

To see this note first following [5, remark after Theorem 3] that equation
(5.1) is linearizable, namely the point transformation (x, y1, . . . , yn) �→ (y1 −
x2
2 y2, x, y2, . . . , yn) maps it to the ODE

ÿ1 = y2, ÿ2 = 0, . . . , ÿn = 0. (5.2)

Wewill treat therefore this system. It is precisely of the kind considered at the beginning
of this section. Thus considering system (3.3)-(3.5) for this choice of f i we find a
Lagrangian

L = (ẏ1 − x y2)ẏ2 +
n∑
3

(ẏi )2

with extremals given by (5.2). The corresponding 1-homogeneous Lagrangian is

L̂ =
(
x1t
x0t

− x0x2
)
x2t + (x3t )

2 + · · · + (xnt )

x0t
.

Its extremal curves satisfy the (underdetermined) ODE with the same paths as (5.2):

x0t x
1
t t − x1t x

0
t t = (x0t )

3x2, x0t x
j
t t − x j

t x
0
t t = 0 (1 < j ≤ n).

Thus the Egorov structure is variational.

Remark 7 Lagrangians of the form L̂ = g(xt ,xt )
α(xt )

for a Riemannian or pseudo-
Riemannian metric g and for a 1-form α are called Kropina (pseudo-Finsler) metrics.
Kropina metrics were also considered in the framework of mathematical relativity, see
e.g. E. Caponio et al [14]. Kropina metrics are not defined on the vectors xt lying in
the kernel of α. Note that in our case the form α is closed so its extremals define a
projective structure by [17, Corollary 3.6].

In this context, the following question is natural: does there exist a strictly convex
Finsler metric (without singularities and defined on the whole slit tangent bundle)
whose geodesics are curves of the Egorov projective structure? The next proposition
answers this question negatively:

Proposition 8 The path structure given by (5.2), and hence by (5.1), is not Finsler
metrizable.

Indeed, in this case we can obtain the general solution of the fundamental system,
which due to a very simple form A j

i = −2δ j
1δ

2
i , is as follows:

φ11 = φ13 = · · · = φ1n = 0, φ12 	= 0, d
dx φi j = 0,
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where d
dx = ∂x + ẏi∂yi + y2∂ẏ1 . This implies the form (we omit dependence ofψ0, ψ1

on x, indicating only velocity xt ) of the homogeneous Lagrangian:

L̂ = ψ0

(
x2t
x0t

, . . . ,
xnt
x0t

)
x0t + ψ1

(
x2t
x0t

, . . . ,
xnt
x0t

)
x1t .

One can easily see that for any choice of ψ0, ψ1 the function L̂2 is not convex.

5.2 Submaximally symmetric path structure

The maximally symmetric nonflat path structure has dimension of the symmetry alge-
bra n2 + 5, see [34]. Uniqueness of such a structure has been recently established
in [50]. For n + 1 = 3 this structure was discussed in [16] in relation to self-dual
gravity, the corresponding spacetime4 is Ricci flat of Petrov type N. The ODE system
generating this metric via the twistor correspondence is

ÿ1 = (ẏ2)3, ÿ2 = 0, . . . , ÿn = 0. (5.3)

The fundamental system for the inverse problem is solvable; one solution is given by

L =
(√

π ẏ1 erf

(
ẏ1

(ẏ2)3/2

)
+ (ẏ2)3/2 exp

(
− (ẏ1)2

(ẏ2)3

)
+ ẏ1

)
e2y

1 +
n∑
3

(ẏi )2.

Thus the path structure (5.3) is variational. The corresponding 1-homogeneous
Lagrangian L̂ can be derived straightforwardly.

5.3 More examples

Another notable path structure is given by a family of distinguished curves of the
trivial scalar ODE, encoded as the flat A2/P1,2 homogeneous geometry [12]. The
distinguished curves transversal to the contact structure on J 1(R1) are given by a pair
of differential equations on unknowns y1(x), y2(x) (cf. an equivalent form in [16,
§7.2]):

ÿ1 = 2(ẏ1)2

y1 − ẏ2
, ÿ2 = 0. (5.4)

This ODEs system is also related to anti self-dual conformal metrics, namely it gen-
erates via the twistor correspondence an Einstein metric of constant negative scalar
curvature [16].

The fundamental system passes the compatibility test (as discussed at the end of
§4.2), so from the Cartan-Kähler theorem it follows that it possesses solutions with

4 This Plebanski type metric has coordinate expression g = dx dw + dy dz − y2dw2.
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any admissible Cauchy initial data; in particular, we conclude that system (5.4) is
variational. Indeed, for

L = ẏ1

ẏ2 − y1

extremals are exactly the paths given by (5.4). The corresponding 1-homogeneous
Lagrangian L̂ can be derived straightforwardly.

Remark 9 An elliptic version of this example consist of chains in (not necessary flat)
CR geometry. It was proven in [17] that in any dimension the path geometry of chains
is variational, with the Lagrangian being a Kropina metric.

6 Conclusion

The inverse variational problem for nonautonomous ODE systems (1.4) has attracted
a lot of interest in the literature; several criteria for variationability were obtained. We
have shown that a generic path structure in dimension n + 1 ≥ 3 is not variational.
The proof is done in terms of jets. Our methods allow to derive a proper subanalytic
subset � ⊂ J k such that (regular) variational structures given as (1.4) are subject to
the constraints j� f (U ) ⊂ �, U ⊂ ST M .

In particular if a path structure comes from experimental observations and should
be variational by physical reasons, our methods may help to confirm correctness of the
experiment; and also find a variational structure that (in some sense) is closest to the
experimental data. We leave aside a related question on optimal regularity Ck , where
our results hold.

A corollary of our main theorem implies that a generic projective structure is not
metrizable in the class of Riemannian or pseudo-Riemannian metrics. This result was
expected: indeed, themetrization problem can be reduced to an overdetermined system
of PDEs of finite type (see e.g. M. Eastwood et al [25]). Nevertheless, this result was
formally established only in dimension 2 (R. Bryant et al [7]) and in dimension 3 (M.
Dunajski et al [24]); we proved it in any dimension.

We also demonstrated that the Egorov projective structure is variational in any
dimension n + 1 ≥ 3 by exhibiting a Kropina type pseudo-Finsler metric. For n = 2
this could be obtained from the results of Douglas [23]; in [3] another Lagrangian was
derived for ODE (5.2) though without any relation to the Egorov structure. By our pre-
vious work [32] it is not metrizable in the pseudi-Riemannian setting. In this work we
proved it is not metrizable in the Finsler setting.We also demonstrated variationability
of some other notable path geometries with many infinitesimal symmetries.
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