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Abstract: There is a large proliferation of complex data-driven artificial intelligence (AI) applications
in many aspects of our daily lives, but their implementation in healthcare is still limited. This scoping
review takes a theoretical approach to examine the barriers and facilitators based on empirical data
from existing implementations. We searched the major databases of relevant scientific publications
for articles related to AI in clinical settings, published between 2015 and 2021. Based on the theoretical
constructs of the Consolidated Framework for Implementation Research (CFIR), we used a deductive,
followed by an inductive, approach to extract facilitators and barriers. After screening 2784 studies,
19 studies were included in this review. Most of the cited facilitators were related to engagement
with and management of the implementation process, while the most cited barriers dealt with
the intervention’s generalizability and interoperability with existing systems, as well as the inner
settings’ data quality and availability. We noted per-study imbalances related to the reporting of
the theoretic domains. Our findings suggest a greater need for implementation science expertise
in AI implementation projects, to improve both the implementation process and the quality of
scientific reporting.

Keywords: artificial intelligence; machine learning; CFIR; AI implementation; eHealth; healthcare;
deep learning; diagnosis; prognosis

1. Introduction

Nowadays, artificial intelligence (AI) has become ubiquitous, and much more ad-
vanced and user-friendly than it was two decades ago. In many respects, AI has become
reliable and permeates many aspects of our daily lives, such as face and speech recognition
apps. Yet, only recently have we seen a corresponding rate of adoption in the healthcare
services. AI systems can emerge as a smart solution to reduce clinical staff workload
in a world with increasingly saturated healthcare systems. AI is different from simple
technology interventions in the sense that AI does not just manage data, but it provides
suggestions and recommendations directly shaping the clinical decision process [1,2].

There exists a wide body of literature on the barriers to and facilitators of implementing
AI in healthcare [3–5]. However, much of what we know about these barriers and facilitators
comes from anecdotal evidence [6], narrative commentaries [7] and reviews [8–11], mostly
without any empirical support or sound theoretical basis. As a result, the determinants
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of AI implementation success in healthcare are still poorly understood [12]. We lack a
complete overview of all the factors that are relevant to implementing AI in clinical settings.
In this study, we turn to implementation science [13] to analyze the facilitators and barriers,
based on accounts from existing implementations.

Implementation science is a fairly new field, whose emerging theories, models and
frameworks have the potential to inform our understanding of AI implementation in a
more widely accessible and systematic way. This multidisciplinary approach, combining
AI and implementation science, transcends the traditional boundaries of each of the fields.
Blending these two disparate, yet complementary, fields is key to our understanding of AI
implementation in healthcare. However, there is a need to reconcile the methodological
differences and conflicting domain-specific jargon. In the next two subsections, we explore
the fundamental aspects of each of these two fields.

1.1. Artificial Intelligence

AI is not a new concept, but renewed interest in the field is widely attributed to the
increasing abundance of digital data and the advancements in data analytic approaches. AI
comprises many different areas that range from logic-based models to machine learning
(ML). Logic-based models [14] have been successfully used in areas such as biomedical
ontologies management (e.g., SNOMED-CT automatic concept classification [15]) and
decision support (e.g., SAGUE, Arden syntax, GLIF, etc. [16]). Conversely, ML has had a
less prominent role, partially due to the lack of health data availability for training data-
driven algorithms. Data-driven methods have the capacity to unveil patterns in data that
otherwise would remain hidden [17]. They stand a comparatively better chance at dealing
with subpopulations, where one clinical guideline may not suffice to provide the optimal
treatment (e.g., multimorbid patients).

In the scope of this study, we refer to AI as systems that are used to solve healthcare
problems of interest and are powered by ML. Witten et al. [18] define ML as ”a family of
statistical and mathematical modeling techniques that use a variety of approaches to auto-
matically learn and improve the prediction of a target state, without explicit programming”.
This definition precludes most expert systems and other basic knowledge-based AI systems
that use simple rule-based processes or Boolean rules.

1.2. Implementation Science

In a seminal paper, Eccles and Mittman [13] define implementation science as “ . . . the
scientific study of methods to promote the systematic uptake of research findings and other
evidence-based practice into routine practice. . . ”. In contrast, AI, comprised mostly of com-
puting sciences, defines implementation as generally referring to development of software
components according to a specification, for example, implementing an algorithm. To the
extent that these two fields define implementation in significantly different ways, their
focus as academic fields will also diverge markedly. Computing sciences focus more on
developing artefacts rather than systematically studying how the artefacts are put into rou-
tine use. This lack of shared meaning will inevitably have serious consequences for search
strategies to find relevant articles in academic databases. For the purpose of discussion in
this study, we use the definition of implementation from implementation science.

1.3. Pilot Study vs. Implementation Trial

In the context of screening for implementation trials, there is a thin line between a pilot
study and an implementation trial. Pilot studies and feasibility studies are necessary com-
ponents in the path to implementation. Curran et al. [19] describe a progressive path from
efficacy studies, followed by effectiveness studies and then proceeding to implementation
research. Pearson et al. [20] distinguish between studies conducted for testing effectiveness
and studies intended to evaluate implementation strategies, using three conceptualiza-
tions named Hybrid Type 1, Type 2 and Type 3. These conceptualizations are based on
Curran et al.’s [19] work on combining both effectiveness studies and implementation sci-
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ence elements. Major distinctions are made between the purpose of the study and the
methods used. The primary purpose of Hybrid Type 1 is for testing the clinical or public
health effectiveness of an intervention. Hybrid Type 2 considers both the clinical effective-
ness and evaluation of an implementation strategy. The primary goal of Hybrid Type 3
is to evaluate the effectiveness of the implementation strategies, with a secondary goal
to observe other data such as health outcomes. In the current study, we focus on studies
evaluating implementation strategies (Hybrid Type 2 and 3), where a full implementation
already exists or where the organization is committed to a full roll-out, and the smaller
implementation trial forms part of a risk minimization strategy. Thus, pilot studies that fall
under Hybrid Type 1 are excluded.

1.4. Objectives

The goal of this scoping review is to characterize the barriers and facilitators influ-
encing the implementation of ML methods in the healthcare setting. This study differs
from the existing reviews in at least two major ways. First, whereas the existing reports on
barriers and facilitators are fragmented, this study analyzes these barriers and facilitators
in a more systematic and theoretic way, which allows us to identify reporting problems
and knowledge gaps. Second, the existing reviews do not discriminate based on the phases
of implementation. Therefore, most of the studies include algorithm development, efficacy
and effectiveness studies. The current study, on the other hand, focuses on empirical
observations from the late phases of implementation and roll-out.

2. Methodology

This scoping review follows standard reporting, based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping re-
views [21] (see Additional file S4—PRISMA checklist). A scoping review is an appropriate
methodology for exploring new areas of research [22]. There are only a few implemen-
tations, and reviewing auxiliary information sources, such as reports or websites of the
implementation, adds value to our overall understanding of the implementation context.
The authors are a multidisciplinary team of statisticians, data scientists, computer scientists
and clinicians. The authors have had experience in the implementation of data-driven ML
methods and their performance evaluation.

2.1. Protocol

Since this review is scoping in nature and required an additional search phase, no
protocol was published in advance. However, the data extraction form was designed before
starting the search.

2.2. Eligibility Criteria

The screening goal was to exclude articles that do not study actual or real-world im-
plementations. To identify and understand the barriers and facilitators, based on empirical
observations and real experiences with production systems, we included implementa-
tion trials and excluded early pilot testing of algorithms. Table 1 shows the eligibility
criteria based on the population, intervention, comparator, outcomes and study type (PI-
COS). We searched for papers published between 2015 and 2021. Only publications in
English were included.
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Table 1. Study eligibility criteria based on PICOS.

Inclusion Exclusion

Population • Humans
• Any disease groups

• Animals

Intervention

• Use ML techniques
• Implemented in healthcare settings or

approved by the FDA, EMA or
equivalent body

• Systems without ML
component

• Purely logic-based systems

Comparator • Not relevant • Not relevant

Outcomes

• Implementation results or evaluation
• Implementation barriers
• Implementation facilitators
• Economic benefits, process

improvement, treatment outcomes, etc.

• Papers without
implementation results
(other than technical and
algorithmic performance)

Study type

• Prospective validation in clinical
settings

• Retrospective implementation
evaluation

• Published between 2015 and 2021

• Review papers, expert
opinions

• Non-English papers
• Pilot and experimental

studies without real-world
implementation

2.3. Information Sources and Selecting Sources of Evidence

The databases and indexes that we searched included PubMed, IEEE, ACM, Google
Scholar, and the Web of Science. These sources represent the major indices of scientific
articles related to both AI–ML and the healthcare sciences.

In addition to scientific publication databases, we used other sources of information,
such as the database of FDA-approved AI systems [23]. We performed an additional
Google search on the Internet to gain a better understanding of both the functions of the
system and the implementation context. We used website information and any available
reports relevant to the specific implementation. These auxiliary information sources are
appropriate for use in a scoping review and helped us screen the studies. However, the
data extraction was only based on scientific articles.

2.4. Search Query and Two-Phase Search

As a multidisciplinary team of researchers, we knew about the conflicting definitions
of implementation. However, we could not anticipate the extent of the problem or how it
would affect our search results. We defined an iterative search process with two phases.
In the first phase, we searched only the title with terms such as “implement*” and “prac-
tice”. Through a limited screening of the title and abstract, we quickly realized that many
potentially relevant papers were missed, and most of the papers were about implementing
algorithms. In phase two of the search, we had to define our search more broadly; include
both title and abstract, and more synonyms. This iterative approach to a search strategy is
supported by the literature [24].

We identified a broad spectrum of studies, and, given the lack of a unified vocabulary
for indexing relevant articles, we had to make a subjective judgement regarding where a
study fell on a continuum: (i) algorithm implementation, (ii) efficacy, effectiveness or algo-
rithm validation, (iii) implementation trial, or (iv) full implementation. An overwhelming
majority of the search hits fell within (i) and (ii). Only the studies identified as class (iii) or
(iv) were included in this study.

The basic structure of the search query was «Artificial intelligence AND implemen-
tation AND healthcare». Synonyms and terms related to AI were then added using the
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logical disjunction operator (OR). The initial abstract screening was done using Rayyan [25].
All the search strings are available in [Additional File S1—search string]. An example of
the search in PubMed was as follows:

(«machine learning»[Title/Abstract] OR machine learning[mesh] OR «artificial intelli-
gence»[Title/Abstract] OR artificial intelligence[mesh] OR «deep learning»[Title/Abstract]
OR deep learning[mesh] OR «neural network»[Title/Abstract] OR «image analysis»[Title/
Abstract] OR «deep neural networks»[Title/Abstract] OR «supervised learning»[Title/
Abstract] OR «unsupervised learning»[Title/Abstract] OR «reinforcement learning»[Title/
Abstract] OR «automated algorithms»[Title/Abstract] OR «adaptive algorithms» [Ti-
tle/Abstract]) AND (implement* [Title] OR practice [Title] OR approved [Title]) AND
(y_10[Filter]))

2.5. Data Extraction and Items

The data extraction variables were developed through weekly brainstorming sessions.
At least four co-authors (TC, TOS, MT, PDN) participated in each brainstorming session,
defining the list of topics relevant for extraction. The initial sessions were focused on
the free definition of the topics and variables useful for extraction. As the brainstorming
sessions advanced, the categories of variables were inductively defined, leading to the final
list of agreed variables for data extraction as shown in Table 2. The final list of extraction
items was calibrated through limited tests by four co-authors.

Table 2. Data extraction items.

Data Type Examples

Study authors, year, title, journal

Description country of implementation, product name, company/research group,
timeline for implementation, implementation phase

Role of AI patient group, primary users, training required, medical specialty,
medical task

Technology AI methods, algorithms, hardware, transparency, interpretability,
explainability

Data type of input, sample size for training

Ethics security and privacy, bias, other ethics issues

Clinical Validation type, sample size

Legal process for approval, approval status, other legal issues/processes

Barriers
Facilitators qualitative methods used to extract the barriers and facilitators

2.6. Critical Appraisal of Individual Sources of Evidence

We used the Mixed Methods Appraisal Tool (MMAT) [26] to critically assess the
quality of the included studies. MMAT was an appropriate tool because the nature of
relevant studies varied widely between qualitative, quantitative and mixed methods. Three
co-authors (TC, MATH, LMR) assessed the quality of the studies and disagreements were
resolved by discussion.

2.7. Synthesis of Results

Qualitative methods were used to synthesize the extracted facilitators and barriers
based on the Consolidated Framework for Implementation Research (CFIR) (see Figure 1
and the codebook in Additional file S5). CFIR is a framework used by many implementation
research studies. It provides an index of constructs for organizing findings in a consistent
and understandable manner [27]. It naturally invites us to follow a deductive strategy in the
synthesis of results. However, due to the many technical and organizational details found
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in AI implementations, we considered that a more granular presentation was convenient
in the synthesis of results, as previous studies in the field of clinical decision support
(CDS) had shown [28]. To that end, we opted for a mixed approach, aiming to join the
proven coherency of the CFIR constructs, for the general classification of barriers and
facilitators, with the detailed approach that open inductive coding provided for defining
items about the specific context under examination. In this way, we broke down the details
of each CFIR construct in the framework’s codebook into more granular sub-constructs
that were easily mappable to specific barriers and facilitators in AI implementations. With
this rationale in mind, we split the analysis of results in two stages and performed a mixed
inductive-deductive approach.
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2.8. Open Inductive Coding and Mapping onto the CFIR Framework

Five co-authors (LMR, TOS, MATH, MT, PDN) read the full papers, extracting any
section that pointed to a possible barrier or facilitator. Free comments (e.g., observations
and interpretations) from the reviewers were allowed. All the papers were reviewed by
at least two co-authors. Both text segments and free comments were imported into the
qualitative analysis software, MaxQDA [29], for further analysis.

Two co-authors (TOS, LMR) went through the extracted segments of the selected
papers independently. Initially, a deductive approach to code the segments into CFIR
constructs was used. After one iteration, the constructs were considered not granular
enough. Then, two reviewers (TOS, LMR) proceeded with an inductive approach, with no
predefined code list. The reviewers marked all the segments of text that indicated a barrier
or a facilitator for AI adoption.

Once all the papers had been coded, the reviewers met with three other members of
the team, who had read all the papers but had not coded the texts. Iterative meetings were
performed to go through all the coded texts and crosscheck the results. Equivalent labels
were merged into one single concept when agreements were found. Any disagreements
were discussed until all the members agreed on the optimal concept to code a specific
fragment of the text by checking the full text and re-reading the section of interest. The
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usual sources of disagreement were the scope of one concept and the specific barriers and
facilitators that one concept should encompass.

The same concept could be described as a barrier or as a facilitator by different studies
(for instance, data quality was described as a barrier with ”insufficient data quality“ and
a facilitator as ”availability of high-quality data“. This process resulted in an index of
concepts that fully categorized all the barriers and facilitators found in the full texts. The
index of concepts evolved iteratively until the end of this inductive analysis, refining the
semantics of each concept and its scope.

The index of concepts was analyzed by the team and mapped into the constructs
of the CFIR framework. Any disagreements about which CFIR construct was the most
appropriate for the concept were resolved by discussing the possible options until an
agreement was reached. With regards to coverage, the CFIR fully covered the concepts
defined in our index, and all of the index concepts could be mapped to CFIR constructs.

3. Results
3.1. Selection of Sources of Evidence

Phase one of the search resulted in a total of 607 articles, while the second phase
resulted in 2177 articles, after the removal of duplicates. Four co-authors (TC, TOS, MT,
PDN) independently screened the titles and abstracts according to the inclusion and
exclusion criteria. This resulted in the removal of 2668 articles, leaving 116 relevant articles.
A full-text assessment was conducted on these 116 relevant articles, which resulted in 19
included articles, as shown in Figure 2, 11 of which were published in 2020.

As shown in Table 3, about half of the included studies were conducted in the USA
and Canada (47%, n = 9/19); about a quarter (26%, n = 5/19) were conducted in North-
eastern Asia, and only three in Europe. Several medical fields were represented: sepsis
(16%, n = 3/19), diabetes (11%, n = 2/19), cardiology (11%, n = 2/19), mental health (11%,
n = 2/19), emergency care (11%, n = 2/19) and palliative care (5%, n = 1/19), and the rest
were for all patients (16%, n = 3/19). The most common medical task (an AI-use case) was
screening (79%, n = 15/19). Only two of the studies had AI systems targeted towards use
by patients, while the rest were meant to be used by clinicians or healthcare staff (89%,
n = 17/19). In terms of AI algorithms, the majority of the studies applied deep learning
(63%, n = 12/19).

In terms of the appraisal, three co-authors (TC, LMR, MATH) used the MMAT template
to independently appraise the included studies (see Additional file S2—MMAT), and any
disagreements were reconciled through discussion. Except for one study, all the other
studies had well-defined research questions and sufficient data to address the questions
they posed. We categorized the studies into quantitative non-randomized (58%, n = 11/19),
qualitative (37%, n = 7/19) and quantitative descriptive (5%, n = 1/19). In all the quantitative
studies, the participants were representative of the target population. For all but one of the
qualitative studies, the methods used were appropriate to answer the posed questions.
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Table 3. Properties of the included studies.

Study (Year) Country Medical Field Medical Tasks
(Problem) Primary Users AI Techniques

Lee [31] (2015) USA Emergency Dept.
patients Screening Clinicians, nurses,

planners Machine learning

McCoy [32] (2017) USA Sepsis Screening Clinicians and
nurses Machine learning

Moon [33] (2018) Korea Delirium Screening Clinicians Logistic regression

van der Heijden
[34] (2018) Netherlands Diabetes/retinopathy Screening Clinicians Deep Learning

Schuh [35] (2018) Austria All patients Screening Clinicians
Deep learning,

fuzzy logic,
decision tree
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Table 3. Cont.

Study (Year) Country Medical Field Medical Tasks
(Problem) Primary Users AI Techniques

Guo [36] (2019) China All patients Screening Patients Deep learning

Cruz [37] (2019) Spain
Cardiology,

Gastrointerology,
Psychiatry

Quality
improvement

Clinicians (GPs,
Pediatricians) Deep learning

Joerin [38] (2019) USA/Canada Psychology Treatment Staff, patients and
family caregivers

Natural language
processing

Gonçalves [39]
(2020) Brazil Sepsis Screening Nurses Deep learning

Sendak [40] (2020) USA Sepsis Screening Clinicians Deep Learning

Gonzalez-Briceno
[41](2020) Mexico Diabetes/retinophathy Screening Clinicians Deep Learning

Xu [42] (2020) China All patients Screening Nurses and
clinicians Deep learning

Cho2020 [20] Korea Cardiology Screening Nurses and
clinicians Deep learning

Romero-Brufau
[43] (2020) USA All patients

Screening,
prognosis,
treatment

Clinicians,
outpatient care

coordinators
Decision tree

Scheinker [44]
(2020) USA Chronic kidney

disease, diabetes

Screening,
prognosis,
treatment

Clinicians Deep learning

Davis [45] (2020) USA Radiology Screening Clinicians Deep learning

Petitgand [46]
(2020) Canada Emergency Dept. Diagnose Clinicians Deep learning

Betriana [47] (2021) Japan Mental health Treatment Patients (receiver)
nurse (controller) Not specified

Murphree [48]
(2021) USA Palliative care Screening Palliative care

team (clinicians)
Gradient Boosting

Machine (GBM)

3.2. Results of Individual Sources of Evidence

The concepts identified through the inductive process were further classified into ten
broader themes: evaluation and testing, background, management and engagement, data
quality and management, trust and transparency, clinical workflow, interoperability, finance
and resources, technical design and AI policy and regulation. As illustrated in Table 4, most
of the facilitators were based on the management and engagement theme (47%, n = 27/57).
None of the reviewed articles reported barriers related to management and engagement.
The second most common facilitators were related to the theme of evaluation and testing
(14%, n = 8/57), while a third were related to technical design (12%, n = 7/57). For the
barriers, the most common were interoperability issues (19%, n = 7/36), data quality and
management (17%, n = 6/36) and trust and transparency (14%, n = 5/36).
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Table 4. Inductive extraction of concepts and themes.

Theme Facilitators Barriers Concept

Evaluation and testing 8 3 -

Background 5 2 Experiences and prior knowledge, Prior evidence,
Healthcare demand

Management and engagement 27 -
External collaboration, Planning, Feedback incorporation,
Communication, Involvement, Motivation, Leadership,
Education of workforce, Patient needs, Champions

Data quality and management 1 6 Data availability, Data quality

Trust and transparency 1 5 Interpretability, Trust

Clinical workflow 4 4 Integration, Disruptiveness (alert fatigue)

Interoperability 2 7 Model Interoperability, Data interoperability,
Generalizability

Finance and resources 1 3 Available Resources, Cost

Technical design 7 4 Usability, Documentation and presentation of results,
Adaptability, Innovation, Complexity, Trialability

AI policy and regulation 1 2 Organizational policy and culture, Regulation and law

Totals 57 36

Table 5 shows the concepts extracted from each study. Three studies had no easily
discernible barriers or facilitators [34,36,41]. Three studies that reported facilitators did not
report any barriers [38,39,47], and two studies that reported barriers did not report any
facilitators [33,35].

Table 5. Facilitators and barriers based on the concepts.

Study Facilitators Barriers

Lee [31] Healthcare demand, Evaluation and testing, Generalizability,
Data availability, Available Resources, Trialability, Motivation Regulation and law

Betriana [47] Healthcare demand, Planning, Education of workforce,
Involvement, Evaluation and testing –

Cho [49] Generalizability, Evaluation and testing Evaluation and testing, Interpretability,
Model interoperability

Cruz [37] Evaluation and testing, Integration, Leadership, Usability Data availability

Davis [45] Integration, Usability Evaluation and testing, Trust

Gonçalves [39] Motivation, Experiences and prior knowledge –

Joerin [38] Involvement, Evaluation and testing, Patient needs,
Adaptability –

McCoy [32] Healthcare demand, Communication,
Feedback incorporation, Education of workforce Disruptiveness (alert fatigue)

Moon [33] – Model Interoperability, Data quality

Murphree [48] Involvement, Communication Generalizability

Petitgand [46] Involvement, Organizational policy and culture

Data interoperability, Usability,
Documentation and presentation of
results,
Trust



Int. J. Environ. Res. Public Health 2022, 19, 16359 11 of 18

Table 5. Cont.

Study Facilitators Barriers

Romero-Brufau [43] Planning, Involvement, Education of workforce, Adaptability Usability, Data quality, Data availability,
Generalizability, Evaluation and testing

Scheinker [44] Prior evidence, Involvement, Planning, Evaluation and testing Trust, Complexity, Disruptiveness

Schuh [35] –
Data quality, Experiences and prior
knowledge, Cost, Regulation and law,
Data interoperability

Sendak [40]

Involvement, Planning, External collaboration, Leadership,
Integration,
Interpretability, Evaluation and testing,
Champions, Education of workforce

Cost, Trust, Available Resources,
Generalizability, Prior evidence,
Integration

Xu [42] Education of workforce, Evaluation and testing, Innovation,
Usability, Integration Data availability, Integration

Gonzalez-Briceno
[41] – –

Guo [36] – –

van der Heijden [34] – –

3.3. Mapping Extracted Concepts to CFIR

The mapping between the coded concepts and the corresponding CFIR constructs is
available in [Additional file S3—CFIR mappings]. In total, 69 facilitators and 46 barriers
were identified and coded following the CFIR framework. The result of this mapping is
summarized in Figure 3. Most of the studies reported V. Process as the main facilitator for
AI implementation in healthcare (35%, n = 24/69). The second most popular facilitators
were based on III. Inner setting (29%, n = 20/69), followed by I. Intervention characteristics
(27%, n = 19/69). Most of the barriers were reported for I. Intervention characteristics (41%,
n = 19/46), followed by III. Inner setting (33%, n = 15/46) and II. Outer setting, which had
the least number of both barriers and facilitators.
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4. Discussion

Viewed in total, the reporting of facilitators and barriers related to the I. Intervention
characteristics, III. Inner setting and V. Process appear somewhat balanced, with some
under-reporting of the II. Outer setting and the IV. Characteristics of individuals. Viewed
per study, however, the reporting imbalances are more apparent, and we highlight two
kinds of imbalance. The first case relates to how a study can concentrate on a single
theoretic domain and neglect the rest, and the second is where, regardless of the theoretic
domain, a study focuses on either one of facilitators or barriers.

In the first case of theoretic domain imbalance, some studies focused on the character-
istics of the intervention [33,49], while others focused on the process [40,47]. Consequently,
we end up with an incomplete picture of the implementation for any single study, and it is
difficult to compare findings across studies [50]. In the second case, which was typically the
case, the studies focused more on the facilitating factors than the barriers. In extreme cases,
a study might focus on facilitators alone [38,39,47] and completely neglect the barriers, or
the other way round [33,35]. We attribute this poor reporting and imbalance to a lack of
implementation science expertise.

We further describe some of the salient highlights in each of the five CFIR domains.
These highlights are based on the frequency of discussion they generated in the included
studies. The major facilitating factors were related to the implementation process itself
and the involvement of users, and this finding is consistent with the literature [51]. In
contrast, barriers were mostly associated with the intervention characteristics and in-
ner setting, specifically interoperability, trust and transparency and non-availability of
high-quality data.

4.1. Intervention Characteristics
4.1.1. Evidence Strength and Quality

ML algorithms need to continuously learn from new data. As data change and
as methodological techniques advance, so must the models, and this presents several
challenges. One of challenges is the continuous need to validate algorithms and test
whether their specificity and sensitivity have deteriorated. This partially explains why
many of the included studies conducted fresh validation tests.

In the validation process, it is essential to make sure the training data represents the
population to which the AI system is applied. In practice, results may not be representative
across populations [43,48], and experiences may not be generalizable to a new setting [40].
Projects that have been properly evaluated and tested are more likely to succeed in the
implementation process. In this regard, [49] recognized clinical trials and multi-center
studies are a necessary part of implementation [33,49].

4.1.2. Design Quality and Complexity

Technical design decisions might affect the implementation by facilitating or hindering
this process. Usability was cited as both an important facilitator and a barrier. For instance,
Romero-Brufau et al. [43] faced problems related to the documentation and presentation
of results, and reported difficulties understanding patient information from the decision
support system. They dedicated two months to refining the interface of the system and
adapting it to the workflow, reflecting the importance of customization in the implementa-
tion process. Intuitive, unintrusive, and easy-to-use systems have better chances to succeed
in the implementation process [42,45].

4.1.3. Interoperability, Adaptability and Generalizability

In order to successfully implement an AI system in a clinical workflow, the system must
interoperate with the targeted hospital systems. In [46], the lack of data interoperability
was exposed when overworked nurses were asked to print and deliver medical histories in
paper form. This resulted in a situation where medical histories were often not printed, and
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thus were not provided to physicians. Data interoperability issues led to poor integration
in the clinical workflow.

4.1.4. Integration with Clinical Workflow

A lack of integration with the clinical workflow can be a barrier to the implementation
process. For example, Sendak et al. [40] reported workflow issues with model retraining
and updating, which are intrinsic ML processes. In addition, projects that are too technically
complex or disruptive are at risk of hindering the implementation process:

“Models that require additional work, even if it is as little as looking at another
screen and clicking a few more times, are much less likely to be implemented or
sustained” [44].

As a solution, some studies showed that ML-based methods compatible with logic-
based CDS methods are easier to integrate in the clinical workflow. An example is the use
of neural networks for knowledge discovery during the development stage, where results
have been later discretized as Arden syntax ECA rules in the production stage [35].

4.2. Outer Setting
External Policies and Incentives

The outer setting was discussed by only one study [35], mostly from the perspective
of the legislative environment as a barrier, and the study was conducted in Europe, where
AI algorithms used in healthcare are considered Software as a Medical Device (SaMD)
and require CE-certification by law. This certification is expensive and time-consuming.
However, an exemption allows AI software under clinical evaluation to be used without
CE conformity. This requires only an approval from an ethical board and a study protocol
adhered to for auditing. This exemption is generally utilized due to costs related to
certification [35].

4.3. Inner Setting
Resource Availability

The availability of high-quality data resources within the organization was discussed
as an important determinant factor. Most of the studies used electronic health records
(EHR) as the primary source of data, and they reported their complexity and inadequate
use as a barrier [37,42]. Due to the complex nature of the EHR, key data that can be used to
predict the outcome of interest is not always available or ready in the structured format for
AI algorithms [31,37,43].

“ . . . key data that reliably predict the outcome of interest may not be readily
available as structured, discrete data inputs from the EHR . . . ” [43]

Missing data, noisy data, or data without proper labels and identifiers were among the
main factors that lowered data quality and were consequently reported as barriers. Besides
data quality, the frequency of data updates is another important issue in maintaining the
validity of predictive models [33]. Although data quality and management were usually
seen as a barrier by most of the studies, Lee et al. [31] mentioned that rich data availability
was a facilitator of the implementation process.

4.4. Characteristics of Individuals
Knowledge, Beliefs and Other Personal Attributes

This domain speaks to the perceptions and beliefs of the individuals involved in the
implementation. For instance, a lack of trust among clinicians might hinder the implemen-
tation process. The clinicians must trust that the system maintains good sensitivity and
specificity and provides trustworthy suggestions in line with evidence-based practice and
clinical judgement. As Sendak et al. [40] note:
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“Clinical leaders prioritized positive predictive value as a performance measure
and were willing to trade-off model interpretability for performance gains”.

At the beginning of the implementation process in [46], the physicians showed interest
in the use of an AI-based decision support system that improves diagnostics. However, two
of them reported errors in the medical histories, which led them to a wrong diagnosis. As a
consequence of sharing those reports among the physicians, the decision support system
was perceived as prone to error, generating persistent distrust, and so undermining the
usefulness of the system.

Another factor is explainability, a characteristic that directly conditions the trans-
parency and trust of the AI implementation, which, in turn, are precursors of privacy and
fairness [52]. No explainability technique is a one-size-fits-all solution for every interven-
tion. Each AI system needs to adapt its explainability to the context and the audience
using the model. For instance, a CDS based on a logistic regression model is perfectly
understandable by clinicians, but it may be opaque in the context of a patient-oriented
app. Other models, such as neural networks, are generally opaque and could be comple-
mented with recent discoveries in explainability techniques such as feature relevance or
visualization [53–55].

4.5. Process
Champions and Key Stakeholders

User involvement ranked as the most reported facilitator, followed by the education
of key stakeholders. In the very beginning of a project, it is useful to have a common
justification [47] and an early mapping of the workflow [43]. In order to attain this, it is
necessary to get the relevant participants on board as early as possible [43,44,48]. The
stakeholders’ feedback and involvement, especially from the leadership, clinicians and
users, are also necessary throughout the implementation process [32,38,46,48]. In many
instances, the projects strongly supported by the leadership have a higher probability
to succeed. Senior leadership support can be crucial to achieve a shared vision among
different stakeholders to reach the desired impact.

4.6. Implication of the Results and Recommendations for the Future

The barriers and facilitating factors emerging from this study are not surprising, since
they are widely reported in the literature. The included studies presumably have overcome
many of the barriers since the studies are based on the late stages of implementation. We
expected that insight into the determinants of their successes would shed new light on our
basic understanding of AI implementation in clinical settings. However, what we uncov-
ered was insufficient and imbalanced reporting of some key theoretical domains, which
suggests a lack of implementation science expertise in the reporting of relevant projects.

The traditional recommendation for e-health implementation processes is to involve
both ICT and clinical domain experts. All the included studies seem to have followed this
basic recommendation, but our findings suggest there still is a missing piece of the puzzle-
socio-organizational considerations. Considering the successes of implementation science
as a field, perhaps it is time we looked beyond these traditional recommendations in order
to uncover additional synergies based on new modes of inquiry native to implementation
science, integrating insights from social science theories and abstractions.

We also showed that domain differences between AI and implementation science have
an impact on multidisciplinary research. Since implementation has become a key aspect of
AI in healthcare, it is important to unify the vocabulary to make relevant research more
accessible to both fields. This could start with annotating relevant publications with an
appropriate keyword indicating the implementation stage or purpose of the study, for
example, using Curran et al.’s [19] Hybrid Types or research pipeline model (ibid.). Classi-
fying implementation stages is an important problem [56] and may reduce the ambiguity
of terminology and bridge the gap between data science and implementation science.
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4.7. Limitations

Perhaps one of the major limitations of this study is the uncertainty regarding coverage
of the relevant literature, which was conditioned by multiple factors. First, we noted that
some AI implementations might not have been subject to rigorous scientific study or
evaluation, while other implementations were only reported locally in internal reports.
This made the implementations essentially inaccessible. In addition, ambiguity related
to terminology was a huge factor in successfully identifying all the relevant studies. We
allude to the difficulties of defining implementation and the consequences it had on our
search strategy and screening.

It is possible that attentional bias is a factor in our findings. Since we set out to identify
advanced implementations, it is conceivable these implementations faced comparatively
fewer challenging barriers than those of a typical implementation. This might partially
explain why there were many more facilitating factors than barriers. In looking at successful
implementations, it is quite possible we missed many important barriers from failed
implementations.

5. Conclusions

This study exemplifies a theory-based approach to synthesizing determinants of
AI implementation success and formalizes known gaps and biases related to how AI
implementations are reported. In addition to highlighting the major facilitators and barriers,
we noted a widespread imbalance and insufficient reporting of AI implementations in
clinical settings. We single out the II. Outer setting and IV. Characteristics of individuals
as two key theoretical domains, which were not fully explored in the included studies.
As a result, we know very little about the knowledge and beliefs, self-efficacy and other
personal attributes of the people involved in the implementations. Similarly, any policies,
incentives, collaborative networks or competitive pressures that helped or hindered these
implementations are largely unknown. These factors represent an important knowledge
gap and require further inquiry before AI implementation in healthcare can be more
fully understood.

Further, we recommend two remedial actions based on our findings: (i) implementa-
tion science expertise should be a part of every AI implementation project in healthcare in
order to improve both the implementation process and the quality of scientific reporting,
and (ii) scientific publications involving AI implementations in clinical settings should
be annotated with an implementation stage or purpose to make relevant research more
easily accessible.
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