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1.0 INTRODUCTION 

Systematic collection of accurate and detailed data from on-going construction projects is 

important for monitoring project progress. The acquired data can be processed to generate 

information about the status of completion of various activities. This information can be used by 

various parties involved in the project for decision-making and to find effective solutions to 

overcome any delays. Timely identification of construction delays is possible if such information 

is collected frequently and with sufficient detail from the construction site.  

The first chapter of this report, for the “Project Progress Tracking Using Lidar and 4D Design 

Models” study, provides the background and objectives of the study. The next chapter reviews 

the current literature on the various technologies that are used in the construction industry, with a 

specific focus on the technologies that are used for progress tracking. Chapters 3 and 4 detail the 

experimental design and research methodology respectively. Chapter 5 provides the data analysis 

and results. Finally, the report concludes with a discussion on the limitations and provides 

suggestions for expanding the project further in future work.  

1.1 BACKGROUND 

The investment in transportation infrastructure in the United States is estimated to reach $278.1 

billion in 2019 (American Road & Transportation Builders Association 2017). Every four years, 

the American Society of Civil Engineers (ASCE) releases a comprehensive assessment of the 

U.S. infrastructure as a “report card”. The most recent report card that ASCE published in 2017 

issued an overall grade of D+ (poor) for the nation’s infrastructure, and C+ (mediocre) for 

bridges. The report estimated that 188 million trips were taken daily across deteriorating roads, 

bridges and highways (Economic Development Research Group et al, 2016). Based on their 

assessment, the current state of transportation infrastructure resulted in increased travel times and 

a number of accidents on roads (Economic Development Research Group et al, 2016). 

Ultimately, these conditions has a negative impact on the cost of delivered goods and personal 

income (Economic Development Research Group et al, 2016).  

Frequent inspection of existing transportation infrastructure and performing necessary repair 

work in a timely manner can ensure good conditions of roads and bridges. In addition to 

performing comprehensive inspections regularly after the construction phase, proper measures 

implemented during the construction phase also help ensure good quality. During the pre-

construction phase, the various parties involved in a project collectively define the milestones of 

the project based on the expected duration of completion and the available budget. Under the 

constant pressure of completing the required work within a given time period while monitoring 

the available budget, the quality of work performed may be compromised (Nee 1996). In 

addition, failure to communicate the project performance with all involved parties in an effective 

and timely manner may lead to delays and cost-overruns in construction work (Owolabi et al., 

2014).  
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Transportation construction projects often experience significant cost overruns and schedule 

delays (Bhargava et al. 2010; Cantarelli et al., 2010; Flyvbjerg et al., 2003). Obtaining reliable 

progress information pertaining to on-site activities would enable identifying issues that can 

cause delays in the completion of these activities. Progress information acquired using current 

manual-based progress measurement workflows are prone to errors and are time consuming 

(Vick and Brilakis 2016). Additionally, multiple site visits may be required if the collected data 

is inaccurate or incomplete. Therefore, the inefficiencies associated with manual-based progress 

measurement methods indicates the need for adopting new technologies for project progress 

monitoring. 

In this study, a novel project progress tracking framework that uses lidar data and four-

dimensional (4D) Design Models (3D design model + project schedule) was developed. A 4D 

model is obtained when 3D design model elements are linked to project schedule. A 4D model 

linked to project cost information is referred to as a 5D project model (Schneider 2013).  Lidar 

creates a digital snapshot of the project site scanned, which can provide not only timely 

information about the construction progress, but also a detailed record of the construction 

process that can be repeatedly queried, as needed. The next chapter of this report reviews project 

progress tracking practices both in transportation and the building construction industry. It is 

worth noting that the use of lidar and advanced technologies are much more mature for building 

construction projects than for transportation projects, and some of these techniques may be 

adapted or help inform processes developed for transportation projects, which is why they are 

included in this report. Moreover, the concepts and technologies adopted for monitoring the 

progress in building construction projects are applicable to transportation construction projects as 

well. However, the application of such technologies and concepts still needs to be evaluated. 

Types of technologies that have been adopted for progress monitoring purposes are also 

discussed in the next chapter, which includes the current initiatives and uses of 4D design 

models, lidar, and several other technologies in the transportation industry as well as by ODOT.  

1.2 GOAL AND OBJECTIVES OF THE STUDY 

Previous studies have developed frameworks for project progress tracking, specifically designed 

for building construction projects. The goal of this study is to design a progress tracking 

framework that can be used by ODOT to better monitor the progress of horizontal (or heavy 

civil) construction projects, bridge construction projects in particular, and make timely decisions 

when necessary. To meet this goal, the following objectives were defined for this study: 

1. Develop a framework that reports the progress of each construction element in 

horizontal construction projects in the form of Percentage of Completion (POC). 

2. Test and validate the framework using a real-life case study, and investigate the 

framework’s applicability in tracking the progress of horizontal construction projects. 

1.3 RESEARCH TASKS AND METHODS 

To meet the project goal and the stated objectives, five primary research tasks have been 

identified that are detailed below.   
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1.3.1 Literature Review 

To identify the existing gaps in knowledge, the state-of-the-art progress tracking practices in the 

horizontal and vertical construction industry were investigated. These findings are summarized 

in Chapter 2.  For this work, a comprehensive search of archival publications was performed to 

facilitate this research task. All articles and publications relevant to the theme of this research 

were analyzed to identify gaps in the existing body of knowledge. The identified gaps serve as 

guidelines for designing the proposed framework. In addition, the various types of technologies 

used in progress tracking of construction projects in both industry and academia were identified. 

The comparison between the characteristics of these technologies was performed to obtain a 

basic understanding regarding the performance of these technologies in progress tracking. The 

characteristics include the accuracy of data collected, data analysis procedures, installation and 

setup times, mobility of associated equipment and the location of projects that are best suited for 

implementing these technologies (indoor or outdoor). Furthermore, the comparison of different 

lidar platforms for project progress tracking was performed. Different characteristics, such as 3D 

position accuracy, resolution, cost, data pre-processing and equipment setup were compared 

between these platforms. Furthermore, the adoption of BIM for Infrastructure practices in the 

transportation industry, in general, as well as within the Oregon Department of Transportation 

(ODOT) were discussed.  

1.3.2 Research Methodology 

The research methodology includes identification of the technologies or data collection platforms 

to be used for acquiring as-built data. A site suitable for data collection was selected for 

collecting data from the construction site periodically. The challenges regarding data collection 

were identified and their impact on data collection and the quality of data collected are discussed.  

Based on the literature review, a progress tracking framework was developed. The framework 

involves a series of steps for processing the collected data to output progress tracking results that 

describe the performance of a project on a given date. The steps involve data preprocessing, data 

processing including coarse and fine registration steps between as-built and virtual point cloud 

data, segmentation and object recognition, and POC calculation. A case study was then used to 

validate the proposed framework. Algorithms and methods designed during this process, 

including the validation results, are included in this report.  

1.3.3 Data Collection 

The data for this study was collected as detailed in Section 3.1. In summary, in this study as-built 

data was collected using a TOPCON IP-S2 mobile lidar mapping system from a small bridge 

construction project located in Albany, OR. A 3D design model of the bridge was developed 

manually by the research team using the 2D design drawings that were provided. All data was 

recorded in a standardized and secure form and will be delivered to ODOT with the final version 

of this report.   
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1.3.4 Data Analysis (Validation of Framework) 

The collected data will be analyzed using the methods discussed in Section 1.3.2.  The time 

required for performing each of the steps is presented to help ODOT implement this technology 

for project progress tracking. The results obtained using this workflow will assist ODOT 

personnel with decision making and prioritizing project tasks.  

1.4 BENEFITS 

The developed semi-automated progress tracking framework utilizes highway construction as-

built data and 4D design models to evaluate the status of construction. Acquisition of as-built 

data on a regular basis would enable project stakeholders to effectively prepare solutions that 

would help bring the project back on track. It also fosters speedy and effective communication 

among project stakeholders, which enables proposed solutions to be implemented efficiently.  

Thus, the periodic collection and analysis of as-built data contributes toward the completion of 

the project by avoiding possible delays, which would otherwise result from ineffective and 

delayed communication. This study proposes a progress tracking framework for bridge 

construction projects that accurately tracks the progress of construction. The results obtained 

using this workflow will help ODOT personnel with decision making and prioritizing project 

tasks.  

1.5 IMPLEMENTATION 

The final product of this project is the progress tracking framework, which includes codes for 

algorithms designed in the process, as well as this report that describes the details of the 

framework. ODOT will ensure the final product of the study is available online so that the 

framework can be used by state transportation agencies and DOTs for tracking the progress of 

horizontal construction projects.   
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2.0 LITERATURE REVIEW 

Monitoring the progress of an on-going construction project starts with the development of a 

work plan that dictates how the project will progress and meet the established objectives. 

Progress measures and metrics for each activity show the cost and time associated with the 

completion of the activity. At the beginning of the progress monitoring cycle, as-built data is 

acquired from the site and the work performed is measured using information from the costs 

incurred to date and the volumetric work calculations. This information, along with its 

comparison against as-planned work, is then reported to involved parties. Based on the current 

progress, a forecast for the project completion date is also reported. Problems that have occurred 

or topics relevant to performing the work on-site are discussed and necessary actions are taken. 

As these issues are addressed, their potential impact on the duration of the entire project is 

determined (Arcuri 2007). Several studies have focused on implementing a variety of 

technologies including nD (3D, 4D and 5D) models, lidar, radio frequency identification (RFID) 

tags, and Ultra-wideband (UWB) sensors for progress monitoring both in building and 

transportation construction projects.  

2.1 TECHNOLOGIES USED IN TRACKING BUILDING 

CONSTRUCTION PROJECTS 

The iterative process of measuring on-site work generates a large amount of information, which 

is used by involved parties to determine project objectives and plan necessary action items. Use 

of devices such as PocketPC (Cox et al. 2002) to collect daily progress information is one of the 

traditional methods of performing progress monitoring. The collected data is recorded on a daily 

basis, and processed to include relevant information. Finally, the information is uploaded to 

project management software, and the project status is updated (Del Pico 2013; Vick and 

Brilakis 2016). It can be inferred that the process of using such handheld devices for manually 

recording as-built information is labor intensive and the recorded information is prone to errors.  

In an effort to overcome the disadvantages associated with the traditional methods of collecting 

as-built data from construction sites, several technologies have been tested and adopted for 

recording information. These technologies have been used either exclusively, or integrated with 

other technologies to collect as-built data. Examples of such technologies include using RFID 

(Radio-frequency identification) (Chin et al. 2008), RFID and GPS (Global Positioning System) 

(Ergen et al. 2007), barcode and GIS (Geographical Information Systems) (Cheng and Chen 

2002),  lidar (Turkan et al. 2012; Zhang and Arditi 2013; Kim et al. 2013; Tuttas et al. 2014; 

Tuttas et al. 2015; Son et al. 2017) and photogrammetry (Golparvar-Fard et al. 2009; Dimitrov 

and Golparvar-fard 2014). Several studies reported that using RFID and GPS technologies for 

progress monitoring have a common drawback that significant human effort is required for 

analyzing and processing the data (Golparvar-Fard et al. 2009; Son et al. 2017).   

A number of studies have concluded that lidar and photogrammetry technologies can help 

automate construction progress monitoring. For example, Golparvar-Fard et al. (2009) developed 

a four dimensional augmented reality model (D4-AR) to help project managers identify 
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discrepancies between as-built and as-planned progress. The as-built data is collected and 

recorded in the form of photographs on a daily basis. The structure-from-motion (SfM) technique 

was then used to extract geometric information by reconstructing a 3D model from photographs 

acquired at various angles. The information included the collected photographs that are used to 

generate progress information, which is then integrated into the 4D BIM. Although the approach 

is robust to occlusions, it is not sensitive to the variations in the density of 3D data. The 

economic benefits of using cameras for communication with project stakeholders for large 

construction projects are discussed in (Bohn and Teizer 2009). This study highlighted the 

benefits and drawbacks of using high-resolution cameras for tracking the progress of 

construction projects. The researchers quantified the amount of savings generated as a result of 

using cameras for various tasks during construction.  

Bosché et al. (2009) proposed an object recognition method based on a-priori knowledge that 

correctly identified the status of 88% of steel columns in lidar data. A progress tracking system, 

based on the object recognition algorithm proposed in (Bosché 2010), was proposed by Turkan et 

al. (2012). The system integrated schedule information into 3D BIM and used it together with 

lidar data to monitor the progress of construction. Based on the methodology described in the 

paper, a comparison is made between the number of elements recognized in the lidar data and the 

number of components that are expected to be complete within a given time period. In this way, 

the calculated progress rate information is continually uploaded in the 4D BIM, until the end of 

the project. One drawback associated with this method is that a user is required to manually 

register the BIM and the point clouds within the same coordinate system at the beginning, prior 

to processing the data. It also requires linking the 3D BIM and the project schedule manually, 

which is somewhat time consuming. However, it has to be done only once at the beginning of the 

project. The researchers concluded that an effective scan planning methodology to supplement 

the proposed progress tracking system could be a step further toward achieving a fully automated 

system.  

Zhang and Arditi (2013) developed a progress tracking system that calculates the percentage of 

work completed by comparing the collected point cloud data with a 3D model. Since the tests 

were carried out in a laboratory, the factors which could interfere with the quality of the 

collected scan were not considered. Furthermore, the test specimens used for the study had 

simple geometries, making it easier for the object detection algorithm to recognize an object. The 

components of a building structure often have more complex geometric shapes than those tested 

in this study. Thus, the validity of the system for detecting such elements remains to be tested. 

Although insignificant human intervention is required in the object identification and progress 

measurement phase, this system also requires manual input during the registration process. A 

progress tracking method developed by Kim et al. (2013) is based on a repetitive process of 

comparing the collected as-built lidar data with a BIM model that regularly updates the status of 

construction activities. The method is built upon the assumption that delay may not be 

encountered and that there are no discrepancies between the actual and planned schedule. 

However, in reality, construction projects often experience unwanted delays. The automatic 

schedule updating system proposed by Son et al. (2017) automatically updates schedules in 

Microsoft Project; however, the registration of as-built and as-planned data is performed 

manually in the study. A review of related techniques for automatically reconstructing BIM 

representing as-built conditions using lidar data is presented in (Tang et al. 2010) and the validity 

of some of these approaches was tested in this project.   
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El-Omari and Moselhi (2009) utilized RFID, lidar, and photogrammetry technologies to develop 

a progress monitoring and control system. One major drawback of this approach is the process of 

identifying and pairing common points between the collected lidar data and photographs, which 

is quite laborious. Table 2.1 shows the performance of different technologies used for 

construction project progress measurements (Kopsida et al. 2015, NCHRP 2013, Vick and 

Brilakis 2016).  

Table 2.1: Comparison of Performance of Various Technologies for Construction Progress 

Measurements (Kopsida et al. 2015, NCHRP 2013, Vick and Brilakis 2016) 

 Technology 

 RFID GPS Laser Scanners Photogrammetry 

Accuracy (Good, 

Mediocre, Poor) 

Mediocre Good  Good  Mediocre 

Data analysis  Partially 

Automated 

Partially 

Automated 

Fully Automated  Fully Automated 

Time for setup Installation > 

1 hr  

Setup < 1 hr Setup < 1 hr Minimal set-up 

time 

Mobility of 

equipment 

Handheld Handheld Heavy Equipment Handheld 

Project Location Indoors and 

Outdoors 

Outdoors Indoors and 

Outdoors 

Indoors and 

Outdoors 

 

As described above, several studies have focused on using lidar for monitoring progress of 

building construction projects. Nevertheless, no studies were found that have used lidar 

technology, notably mobile lidar technology, for monitoring progress of transportation 

construction projects. 

2.2 TECHNOLOGIES USED IN TRACKING TRANSPORTATION 

CONSTRUCTION PROJECTS 

Satellite-based navigation systems such as GPS, Unmanned Aircraft systems (UAS), and RFID 

sensors have been used to assess productivity and to keep track of critical resources in projects 

that require earthwork calculations (Navon and Shpatnitsky 2005; Pradhananga and Teizer 

2013; Siebert and Teizer 2014; Vasenev et al. 2014). Jaselskis et al. (2003) demonstrated the use 

of lidar data collected using a terrestrial laser scanner for calculating and estimating the volume 

of rocks and soils. The researchers concluded that using lidar as the preferred surveying method 

is efficient and effective compared to traditional surveying methods. In transportation 

construction projects, it is important to track on-going site activities and to ensure that they have 

not deviated from their planned schedule. Jeong et al. (2015) described how information from 

Daily Work Reports (DWR) can be used for acquiring daily updates and tracking the progress of 

transportation projects. The researchers integrated the information collected from adjacent days 

and obtained the information about completed activities.   

Lidar is mainly used for surveying tasks in transportation projects. The guidelines for 

implementing mobile lidar technology have been provided in Olsen et al. (2013) and 

(learnmobilelidar.com). Schneider (2013) states that lidar is a popular choice among state DOTs. 
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However, its high initial implementation cost is identified as being one of the biggest barriers to 

widespread adoption of this technology. Yen et al. (2014) investigated the economic implictions 

of adopting mobile lidar technology. Using data from programs implemented by the Washington 

State Department of Transportation (WSDOT) and California Department of Transportation 

(Caltrans), the researchers concluded that a majority portion of the initial implementation costs 

were attributable to equipment costs, personnel salary, transportation costs, and the costs 

associated with the collection and processing of data. The primary benefits of using this 

technology were identified as increased productivity and significant reductions in manual labor 

and carbon dioxide (CO2) emissions from the fleet. The researchers demonstrated how $6.1 

million in savings were achieved over three data-collection cycles, covering a period of 6 years. 

The study pointed out that the savings increased with the completion of each cycle as opposed to 

having a constant amount of savings for each cycle. The large savings in cost arising from the 

utilization of mobile lidar technology can be attributed to the concept of “collect once, use 

many”. Data collected once can be stored for future use and used for multiple applications. Table 

2.2 shows the comparison of properties of lidar datasets obtained using different lidar systems 

(Leica, NCHRP 2013, Trimble, Velodyne, Vick and Brilakis 2016).  

Table 2.2: Comparison of Performance of Different Lidar Platforms for Construction 

Progress Tracking (Leica, NCHRP 2013, Trimble, Velodyne, Vick and Brilakis 2016) 

 Lidar Platforms 

 Aerial Lidar 

(manned) 

Aerial Lidar 

(unmanned) 

Mobile Lidar Terrestrial 

Lidar 

3D Position 

Accuracy 

20 – 30 cm ± 3 cm at 100 m ± 2 cm at 100-200 

m  

± 3 mm at 50 m - 

±6 mm at 100 m   

Resolution  5 – 15 pts/m2 50-100 pts/m2 100-1000 pts/m2 100 – 1000 pts/m2 

Cost $1,000,000 $50,000 - 

$500,000 

$300,000 - 

$1,000,000 

$16,000 - 

$200,000 

Data Pre-

processing 

Raw data requires 

several steps of 

processing 

Raw data 

requires several 

steps of 

processing 

Raw data requires 

several steps of 

processing 

Raw data can be 

used after 

minimal 

processing 

Equipment 

Setup 

Mobile Mobile Mobile Stationary 

 

Utilizing lidar for measuring work progress overcomes inaccuracies in data and saves time, 

compared to using manual methods such as DWR. The application of lidar and 4D modelling for 

progress tracking is yet to be evaluated for transportation projects.  

2.3 CURRENT CIM/BIM FOR INFRASTRUCTURE PRACTICES – USE 

OF ND DESIGN MODELS AND LIDAR IN THE TRANSPORTATION 

INDUSTRY 

Along with the increasing complexity of construction projects, the demands for improving 

construction workflows and the quality of work performed have also steadily increased over the 

years. Several research studies have investigated how technology can be leveraged for 

supporting construction management tasks. Advanced digital tools and technologies are 
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replacing traditional methods of acquiring as-built data, thus improving project delivery (Guo et 

al. 2017). A smooth transition from 2D paper-based project delivery to a 3D digital data-based 

delivery method can be achieved using such tools and technologies. 

Through an initiative called Every Day Counts (EDC) undertaken by the FHWA, new 

transportation technologies, innovations and processes are promoted every two years. The 

initiative involves participation of representatives from state transportation departments, local 

governments, tribes and private industry. The participants identify and implement innovations to 

reduce the duration of the project delivery process, foster environmental sustainability and 

improve traffic operations and safety (Federal Highway Administration 2010). EDC-2 initiative 

focused on promoting the use of 3D design models in the transportation construction industry, 

while EDC-3 initiative focused on the use of 4D and 5D design models as well as the use of lidar 

to create accurate as-built record drawings for transportation projects. 

The fundamentals of Civil Integrated Management (CIM) comprises the implementation of a 

wide array of advanced technologies, tools, and practices for collecting, organizing, and 

managing data pertaining to transportation infrastructure projects (Adam et al. 2015) (O’Brien et 

al. 2016). The adoption and implementation of such advanced technologies and tools in 

transportation projects is similar to the use of BIM in building construction projects (Guo et al. 

2014). According to Sankaran et al. (2016), the rate of adoption of CIM technologies in the 

transportation industry increased by 180% from 2009 through 2012. State transportation agencies 

have used CIM tools in transportation projects for advanced 3D visualization, and for creating 

existing and proposed ground Digital Terrain Models (DTMs) (Sankaran et al. 2018). The study 

shows that adopting the Public-Private-Partnership (PPP) model for project delivery promotes 

better integration of CIM tools and technologies in the project workflow. The adoption of 3D 

modeling technologies by state DOTs has also been steadily increasing. Based on a study 

presented by FHWA (FWHA 2013), digital 3D modelling workflows have replaced 2D design 

workflows in 23 DOTs. Based on the study, FHWA also reported that seven DOTs relied 

entirely on 2D drawings and fifteen DOTs are making the transition towards 3D modeling based 

workflows. Furthermore, FHWA lists the most commonly used software by DOTs for improving 

overall project performance including Microstation, InRoads, Geopak, and Autodesk Civil 3D. 

Nevertheless, for the state DOTs, although generated from 3D models, 2D plans are still the 

governing documents, and included as part of the legal binding contract documents. Typically, if 

requested, state DOTs provide their 3D model to the contractor, however in several states, the 

contractor must sign a liability form when receiving the model that limits the DOT from liability 

associated with use of the 3D model, but is not required on ODOT projects. Singh (2008) 

provides the ODOT vision for implementing new technologies and tools in their projects and 

processes, while particularly focusing on engineering automation. One of the technologies 

included in Singh (2008) is digital signatures. The Oregon State Board of Examiners for 

Engineering and Land Surveying (OSBEELS) approved to accept digital signatures in 2008, 

which has enabled 3D design models that are stamped and approved, to be included in the 

contract documents.  

CIM assist with modelling, data management, and monitoring of construction projects and are 

used to improve overall project performance. Sankaran et al. (2016) states that bridging the gap 

between traditional project delivery and digital project delivery is possible through the use of 

new technologies for supporting project management tasks. The circulation of information 
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among involved parties and the coordination between the members of the parties are greatly 

enhanced through the adoption of CIM technologies.  

2.3.1 Current CIM/BIM for Infrastructure Practices by Oregon Department 

of Transportation (ODOT)  

Oregon is one of the leading states in the adoption of Intelligent Construction Systems and 

Technologies (ICST). The Oregon Department of Transportation (ODOT) has adopted and 

implemented numerous CIM tools and technologies including 3D design models, lidar, drones, 

and tablet computers for improving the overall performance of their projects. In 2014, ODOT 

held an event titled “Design to Paver” and presented the latest technological advancements in the 

transportation construction industry. Some of the advancements showcased include automatic 

stakeless grading, which integrated satellite positioning and digital 3D models to improve 

grading productivity. Intelligent compactors, that use GPS and infrared technology for enabling 

pass counts and temperature mapping, were also demonstrated in the field. Using such 

compactors ensured better accuracy and quality of the finished work. The utilization of UAVs 

for visualizing jobsite conditions and for surveying and mapping observation with the help of 

acquired imagery was also demonstrated. Several key concepts of engineering automation were 

also presented during the two-day event. Currently, ODOT develops 3D design models (typically 

delivered in XML format) for all their highway projects requiring earthwork, and provides these 

models to their contractors (ODOT, 2012). In return, contractors provide the 3D model they use 

on their machines back to ODOT for review. However, 3D design models are not a mandatory 

part of the construction contracts, and contractors are not required to use them. The current 

ODOT bridge design process follows a 2D workflow; however, there are plans to move toward 

3D design in the near future. ODOT uses various lidar technologies, including mobile and 

terrestrial lidar, very effectively for the design phase of their projects as well as for inventory 

purposes.  

ODOT has contributed toward pushing the frontiers of scientific research in many areas by 

funding several civil, construction, and geomatics engineering research projects. Some of the 

projects include using drones for a bridge inspection project (SPR787), lidar to determine 

International Roughness Index (IRI) (SPR744) of pavements and examining distractions during 

driving caused by drones. Several of these projects have used lidar data for project development, 

management of assets, evaluation of pavements, and monitoring of landslides. In one of these 

projects, Terrestrial Laser Scanning (TLS) point clouds were used for the quantification of 

erosion rates and surface deformation (OTREC-RR-11-23) (Olsen et al. 2012). Additional on-

going projects (SPR 740, 786, and 808) utilize lidar for landslide inventorying and hazard 

mapping at a landscape scale (Leshchinsky et al. 2018). Additionally, a recently completed 

project funded by ODOT assessed the appearance and retro-reflectivity of pavement markings 

using mobile  lidar data, and developed a road marking extraction tool (SPR 799) (Olsen et al. 

2018). As mentioned above, one of the CIM technologies used by ODOT is drones, i.e., 

unmanned aerial vehicles. ODOT uses drones to collect as-built or condition data from the areas 

or structures that are hard to reach or not safe to access. Tablet computers are also used for 

construction inspection purposes by ODOT. The utilization of advanced technologies such as 

lidar and 3D design models in this study is well-aligned with the key concepts presented by 

ODOT for the future. The concepts were presented as the guidelines for directing ODOT’s future 
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engineering automation efforts, which ultimately enable the integration of technologies and tools 

in routine construction tasks (Singh 2008).  

2.4 DISCUSSION 

Adoption of reliable and accurate technologies by DOTs to support project management tasks 

has created new challenges. One of the primary challenges is identifying appropriate 

technologies and tools that could help address the needs of a project. BIM software that is 

available for building projects is more mature and advanced than currently available software for 

BIM for Infrastructure. Current practices in GIS provide support for asset management, but do 

not encompass the necessary tools required to support progress monitoring tasks. Although both 

lidar and 3D design models are being used in multiple applications by DOTs, their potential for 

monitoring construction of transportation projects warrants more exploration, as was also 

discussed at ODOT’s design to paver workshop. Using 3D design models in conjunction with 

lidar data can provide numerous benefits to DOT infrastructure projects, such as savings in cost 

and time, as discussed in Section 2.2. Therefore, this study aims to explore how progress 

monitoring tasks can be significantly improved through the use of these technologies in 

transportation projects.  

Studies have shown that lidar technology combined with 4D Design models has great potential in 

improving construction progress monitoring (Turkan et al. 2012; Zhang and Arditi 2013; Kim et 

al. 2013; Braun et al. 2015; Tuttas et al. 2014; Son et al. 2017). The utilization of these 

technologies has been well illustrated in the building construction industry, but requires 

evaluation and testing in the transportation construction industry. The frameworks developed for 

reporting the progress in horizontal construction projects report progress of a construction 

element in terms of binary values (0 for not detected and 1 for detected). However, it would be 

beneficial to have the progress information about some construction elements in percentage 

form. Thus, the following research question was developed for the study: 

What steps should be taken to design a progress tracking framework that reports the 

progress of incremental work in horizontal construction projects, in terms of percentage 

of completion (what percent of a bridge element is complete), as opposed to binary 

output (element detected or not detected)? 
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3.0 EXPERIMENTAL DESIGN 

3.1 CASE STUDY 

The selection of a suitable bridge construction project was important for this study. To be 

suitable for data collection, the project had to meet the following requirements.  

 The project must be preferably in the initial stages of construction, so that the 

construction of each bridge element can be captured.   

 The data collection cycles should be tentatively based on the provided construction 

schedule. This is important to make sure that the as-built data for each bridge element 

is captured. If a particular data collection cycle is too long, the construction of some 

bridge elements may not be captured.  

In this study, the Truax Creek Bridge Replacement project located in Albany, OR was selected 

for the case study. The project involved demolishing the existing bridge structure and building a 

new one. At the time the research team started collecting data from the site, the northbound lane 

had already been completed, but was not yet open to traffic. The traffic was operating on the 

southbound lane. The new bridge is approximately 108 feet in length and 42 feet in width. Figure 

3.1 shows the construction site. The scans were collected from the construction site on a weekly 

or bi-weekly basis, depending on the work scheduled for a particular week. At the end of each 

scanning period, the progress was recorded in the captured scans. These results were compared 

with traditional tracking methods.  

 

Figure 3.1: Study site, Truax Creek Bridge in Albany, OR. Left: Google maps showing the 

location of the bridge. Right: Photo showing the southbound lane near its completion 

date. 
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3.2 EQUIPMENT 

Data was collected using a Topcon IP-S2 mobile lidar mapping system previously owned by 

ODOT (Figure 3.2). The system integrates Velodyne's HDL-64E S2.2 3D lidar scanner with an 

inertial measurement unit (IMU) and GNSS sensor for positioning. The acquired data, however, 

has a lower accuracy compared to that can be collected using ODOT’s current Leica Pegasus 2 

system. The lidar sensor on the IP-S2 consists of 64 individual lasers, and can collect up to 1.3 

million points/second. The sensor delivers a 360° field of view perpendicular to its axis and a 

26.8° field of view parallel to its axis. Topcon IP-S2 mobile lidar mapping system includes a 

ladybug camera system that can capture 360o panoramic or spherical images, which can be 

useful for interpretation of the point cloud data. However, it was not operational during most of 

the data collection cycles.  

 

Figure 3.2: Transfer of the Topcon IP-S2 mobile lidar mapping system from ODOT to 

OSU through an interagency agreement 
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4.0 METHODOLOGY 

4.1 DEVELOPMENT OF THE PROPOSED FRAMEWORK 

The proposed framework uses 3D mobile lidar point clouds and 4D design models (3D design 

model + project schedule) to continuously track bridge construction progress. This process 

entails the registration of the as-built and as-designed data in the same coordinate system. The 

next step involves segmentation of the point cloud and object recognition where bridge elements 

are detected. Based on the object recognition results, the deviation between the planned and 

actual work are quantified. This framework is discussed in detail in the following sections of this 

chapter and is summarized in Figure 4.1 (grey and orange boxes denote input/output data and 

data processing respectively). Hardware issues posed some challenges during some of the data 

collection cycles. The results of the object recognition algorithm used were validated partly 

through visual inspection of the scans.  

 

Figure 4.1: Overview of the proposed framework 

4.1.1 Data Preprocessing  

The raw mobile lidar data consists of ranges, angles, and timestamps that are referenced with 

respect to the origin of the scanner (Williams et al. 2013) as well as data from the GNSS and 

IMU sensors. After the data collection, GNSS (Global Navigation Satellite System) data from a 

reference station is downloaded from a nearby, permanent GNSS station to correct for 
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ionospheric disturbance and other systematic errors.  Typically, these data are available in the 

form of Receiver Independent Exchange (RINEX) files from the Oregon Real Time Network 

maintained by ODOT, the National Geodetic Survey Continually Operating Reference Stations 

(CORs), or the Plate Boundary Observation (PBO) network maintained by UNAVCO. The raw 

data and the GNSS information are then imported into TOPCON Geoclean software, where the 

raw data is combined with GNSS and IMU data to generate 3D point clouds. If required, several 

point clouds from different passes can be collected and registered together into a single point 

cloud. They can also be combined with terrestrial laser scan data as needed. Color information is 

captured using a 360-degree ladybug camera and is mapped to each individual point in the point 

cloud (Olsen et al. 2013). The point cloud dataset can be saved in various file formats, some of 

which include LAS and E57 (Olsen et al. 2013). 

4.1.2 Data Processing 

After data preprocessing, the next step is to register the as-built data (3D lidar point cloud) and 

as-planned 4D model (3D design model (Figure 4.2) + project schedule) in the same coordinate 

system through coarse and fine registration steps. This process can be made more efficient by 

developing the 3D design model in the same coordinate system as the as-built point cloud. Once 

registered, an object recognition algorithm is implemented to detect the built elements in the 

point cloud. The discrepancies between the as-built and as-planned status of the project are 

identified by comparing the as-built point cloud data with the as-planned 4D model.  

 

Figure 4.2: 3D model of Truax Creek Bridge, developed from the 2D design drawings 

The 3D as-designed model needs to be converted into a triangulated mesh (STereoLithography 

(STL)) format before running the object recognition algorithm. This enables extracting as-

designed points from the 3D model. These points are then manually matched to the 
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corresponding points in the 3D point cloud. The manual selection of points in the 3D model and 

point cloud data enables a quicker process of matching because elements that are similar in 

geometry can be identified and matched without errors, as compared to using an algorithm for 

matching the corresponding points (Son et al., 2017). Furthermore, manually aligning the 

relevant portion of the point cloud with the 3D model overcomes the problem of occlusions 

(Turkan et al., 2012). After manually aligning the point cloud and the 3D model, the registration 

is completed by fine-tuning the alignment using an Iterative Closest Point (ICP) algorithm (Besl 

and McKay, 1992). For a particular scan date, based on the alignment between the 3D design 

model and the 3D point cloud, the object recognition algorithm that was developed in (Turkan et 

al., 2012) was adopted and modified for this project and used to segment a region of the point 

cloud in order to identify the objects in the 3D design model corresponding to that region.  

4.1.2.1 Coarse and Fine Registration 

After converting the 3D design model into STL file format, a virtual point cloud is 

generated by extracting the vertices of each of the triangulated faces present in the STL 

file. During both the coarse and fine registration steps, the as-built point cloud is fixed 

and the virtual point cloud is moving. The coarse registration process was completed by 

manually picking pairs of points between the as-built point cloud and the corresponding 

virtual point cloud. In Leica Cyclone, this process can be performed by first creating 

registration labels for several points in the models representing the corners of different 

elements. Those labels can be extracted into the as-built scans and re-used for facilitating 

the coarse registration process.  

Upon the completion of the coarse registration process, the original as-built point cloud 

and the original virtual point cloud are finely registered using pairs of points in both point 

clouds. For a pair of points, one point belongs to the original virtual point cloud (query 

point), and the other point belongs to the original point cloud that is nearest to the query 

point. After this step, each of the points in the original virtual point cloud is matched with 

a corresponding point in the original as-built point cloud. When implementing this 

process, 7 cm was chosen as the threshold distance to account for the noise levels of the 

velodyne lidar system and construction errors. Figure 4.3 shows a slice of the alignment 

between the as-built (red, green and yellow colored points) and virtual point cloud (white 

colored points). From the distance between a pair of points in the as-built and virtual 

point clouds, it is evident that the scan data contains noise that is approximately 3-4 cm 

(1 sigma (σ)). Thus, 7 cm was chosen as the threshold to account both for noise in the as-

built data and construction errors. 
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Figure 4.3: A section of the aligned as-built (red, green and yellow colored points) and 

virtual point clouds (white colored points) (scan date: August 22, 2018) 

At the end of the coarse and fine registration steps, the coarsely registered as-built point 

cloud and the virtual point cloud are segmented to generate a subsampled version of both 

point clouds, containing an equal number of points. An equal number of points are 

obtained in both of the subsampled point clouds through a one-to-one matching process. 

After finding the matching pair of points between the as-built and virtual point clouds, an 

ICP algorithm is applied to fine-tune the coarse registration. The algorithm minimizes the 

Euclidean distance between a pair of points in an iterative manner. The iterations can be 

based on either a maximum threshold distance or a maximum number of iterations. In 

this study, since both of the subsampled point clouds have equal number of points, either 

can be chosen for facilitating the object recognition process. The subsampled virtual 

point cloud was chosen for further analysis, in our case, as detailed in section 4.1.2.2. At 

the end of coarse and fine registration steps, a composite transformation matrix 

combining the both transformation results was obtained and used in segmentation and 

object recognition steps.   

Before implementing the segmentation and object recognition steps, STL files that were 

developed for each individual bridge element are used to generate corresponding virtual 
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point clouds for each of those elements. This step is important in order to keep track of 

individual bridge elements for a given date during the object recognition process. The 

coarse and fine registration processes are repeated for the virtual point clouds of 

individual bridge elements. This is achieved by applying the composite transformation 

matrix, obtained in the previous step, to each bridge element. This step helps facilitate the 

segmentation and object recognition process in the subsequent step. The fine registration 

step is summarized in Figure 4.4. 

 

Figure 4.4: Overview of the fine registration step 

4.1.2.2 Segmentation and Object Recognition 

This step uses the subsampled virtual point cloud and finely registered virtual point cloud 

of each of the individual bridge elements obtained in the previous step. For a given scan 

date, an STL file of each bridge element is automatically aligned with the subsampled 

virtual point cloud corresponding to the entire bridge. The STL file of each bridge 

element carries the label of each bridge element, which is then passed onto the 

corresponding virtual point cloud of each bridge element. The STL file and the 

corresponding virtual point cloud were generated to help track individual bridge elements 

and their POC values for a given scan date. In the next step, the subsampled virtual point 

cloud is segmented automatically to extract the points corresponding to the bridge 

element in consideration. At the end of this step, a segmented subsampled virtual point 

cloud representing the as-built status of the corresponding bridge element for the given 

date is obtained. A case may arise where there is no overlapping region between 

subsampled virtual point cloud and finely registered virtual point cloud of an individual 

bridge element. This implies that the given element has either not been constructed yet, or 

has been constructed, but is obstructed from the scanner’s view.  

The segmentation process is facilitated by finding the nearest neighbor of each query 

point in the finely registered virtual point cloud of an individual bridge element, within 

the segmented subsampled virtual point cloud for a given scan date. The nearest neighbor 

search, similar to the previous step, is also carried out using the same predefined 

threshold, 7 cm. As explained in Section 4.1.2.1, at the end of the nearest neighbor 
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matching process in the registration step, the subsampled virtual point clouds were 

chosen instead of the subsampled as-built point clouds for further processing. Thus, the 

selection of the subsampled virtual point clouds is justified because the nearest neighbor 

matching process in this step can be performed between point clouds that are subset of 

the original virtual point cloud.  

For a given bridge element, the one-to-one matching process between the segmented 

subsampled virtual point cloud and the finely registered virtual point cloud of the element 

yields a fragment of the segmented subsampled virtual point cloud that accurately 

represents the as-built status of that element for a given date. This fragment of the 

segmented subsampled virtual point cloud for a bridge element is an indicator that the 

bridge element is detected as constructed or under construction. The percentage of 

completion is calculated in the next step.  

4.1.2.3 Percentage of Completion (POC)  

After a particular bridge element is detected in the object recognition step, the status of 

completion of the element can be determined precisely by assigning it a percentage of 

completion (POC). For each virtual point cloud of an individual bridge element, the 

process of segmentation as described in Section 4.1.2.2 generates a point cloud that 

accurately represents the geometric as-built status for a given date. The alignment 

between obtained point cloud and the virtual point cloud of the individual element reveals 

the geometric faces of the element that overlap in the two scans. Depending on the bridge 

element type, the number of overlapping faces may vary. The part of the point cloud that 

represents the geometric face of the element with maximum number of overlapping 

points are chosen for the POC calculations. Convex hulls of the points covering that face 

is computed for both the virtual point cloud of the individual bridge element and the 

fragment of the segmented subsampled virtual point cloud for the element. The POC for 

an element e at a given date d is calculated by: 

POCe,d= 
𝑨

𝑨′
*100 %  

(4-1) 

Where: 

A represents the area of the convex hull of one of the common faces in the 

fragment of the segmented virtual point cloud of one as-built element. A’ is the 

area of the convex hull of the same face in the virtual point cloud of the individual 

bridge element.  

Let the dates of the scans be represented by Date1, Date2 and so on, where Date1 

represents the first day of scanning. If the construction of an element on a given date has 

not started yet, it is reflected in the output of the one-to-one matching process between 

the segmented subsampled virtual point cloud and the finely registered virtual point cloud 

of the element described in Section 4.1.2.2. An empty output resulting from this step 

indicates that the element was not detected in the as-built scan, whereas a non-empty 
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output signifies that an element was detected. Precedence relationships representing the 

dependencies of construction of one element on the other is developed to verify the POC 

calculated for all elements at a given scan date. The calculation of POC for all possible 

cases are summarized below:  

1. If an element is recognized, POCe,d is the maximum value between the existing 

POC (if it exists) and the POC calculated using Equation (1) for that day. Note 

that the element may have an existing POC if one of its successors is more than 

80% complete (using the information from the precedence relations). Majority of 

the bridge elements in this project were either 30%, 50% or 100% complete on 

different scan dates. In some cases, the elements that are fully constructed (100% 

complete) may be inaccurately reported to be 85% or 90% complete. In such 

cases, it would still be safe to assume that the predecessor of the bridge element is 

100% complete if its successor is anywhere above 50% complete. As a 

conservative estimate, 80% was chosen. If the POCe,2 is lower than the POCe,1 for 

an element, POCe,2 is set to the value of POCe,1, and so on. This can be observed 

when the fully completed element is occluded from the scanner’s view. 

2. If an element is not recognized for reasons discussed above, POCe,d is set to the 

maximum value between zero and the existing POC (if it exists). Again, note that 

the element may have an existing POC if one of its successors is more than 80% 

complete.   

3. Once the POCs for all elements for a particular scan date Datei are computed, the 

results are verified using the precedence relations. If the POCe,d reaches over 80% 

at a given date, the POCs for all other elements that are its predecessors during 

construction are set to 100%. This may also occur when a fully completed 

element is not visible to the scanner (occluded elements).  

Figure 4.5 summarizes the steps described in Sections 4.1.2.2 and 4.1.2.3.  

 

Figure 4.5: Overview of segmentation, object recognition and POC calculation steps 
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4.2 VALIDATION OF THE FRAMEWORK 

The data collected from the Truax Creek Bridge construction project, as described in Section 3.1, 

was used for validating the framework. The as-built POC for the bridge project was calculated   

as described in Section 4.1.2.3. The as-planned POC was prepared manually by referring to the 

project schedule provided by ODOT (Figure 4.6).   

 

 

Figure 4.6: Schedule for the Truax Creek Bridge replacement project



23 

5.0 RESULTS AND ANALYSIS 

In this study, as-built data was collected using the mobile lidar system for the Truax Creek 

Bridge Replacement project located in Albany, OR. Two to three passes were made with the 

mobile lidar truck on each scan date. The information regarding the dates of data collection, 

number of passes and notes based on site observation are presented in Table 5.1. 

Table 5.1: The Dates of Data Collection, Number of Passes during Each Data Collection 

Cycle and Notes Based on Site Observation 

Scan date Number 

of Passes 

Notes 

June 22, 2018 3 Northbound lane completed and traffic operating 

normally, earthwork in progress for the construction 

southbound lane 

Completed elements: North and South abutment, and two 

wing walls under the northbound lane complete but 

occluded from view 

July 06, 2018 3 Earthwork on the southbound lane still in progress 

July 13, 2018 2 Formwork for the abutments (north and south) and wing 

walls under the southbound lane was set up 

July 24, 2018 3 Abutments and wing walls completed, deck placed on 

southbound lane 

August 01, 2018 2 Deck and end panels complete 

August 14, 2018 2 Sidewalk complete and formwork for parapet setup 

August 22, 2018 2 Parapet still under construction 

September 04, 2018 2 Parapet complete and railing installed 

October 22, 2018 2 Asphalt Concrete Wearing Surface (ACWS) completed 

and construction finished 

 

5.1 DEVELOPMENT OF THE PROPOSED FRAMEWORK 

5.1.1 Data Processing 

GNSS data, in the form of RINEX files, was downloaded from the National Geodetic Survey 

(NGS) Continuously Operating Reference Station (CORS) website. The files downloaded in .gz 

format were imported into TOPCON Geoclean software. The configuration of the base profile 

used for processing the GNSS data is shown in Table 5.2. A subset of the collected scans is 

shown in Figure 5.1.   
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Table 5.2: Base Profile Entry Configuration in Geoclean 

Antenna Type Dorne Margolin with chokerings, Model 70 

Coordinate Type (IGS08 Epoch 

2005) 

ECEF 

X [m] -2498423.869 

Y [m] -38028020.840 

Z [m] 4454737.819 

 

 

Figure 5.1: As-built point clouds collected on (a) June 22, 2018 (b) July 06, 2018 (c) July 13, 

2018 (d) July 24, 2018 (e) August 08, 2018 (f) August 14, 2018 (g) August 22, 2018 (h) 

September 04, 2018 (i) October 22, 2018 

5.1.2 Registration of As-built Data with As-planned Model 

The as-built data coordinates were obtained from the lidar data collected using the mobile lidar 

unit, and matched with the coordinates extracted from the 3D as-designed model. The 3D design 

model of the Truax Creek Bridge was developed in Autodesk Revit software environment using 
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the 2D design drawings of the bridge, which were provided by ODOT. First, the model was 

exported to STL format using the STL exporter for Revit. Note that the .dgn files in Bentley 

Systems Microstation V8 could be exported from .dgn to .stl. However, the properties of the 

output STL file, including triangle count, could not be modified during the export. Thus, the 

exported STL file was imported into Gmsh, an open source software that allows further 

tessellation of the model, i.e. increase the triangle count. At the end of this process, another STL 

file of the model including 2,949,120 triangles was obtained. It is important to note that higher 

triangle count enables better one-to-one point matching process. The STL model is comprised of 

a tessellation of triangles that represent the geometric faces of the bridge elements in the 3D 

model. The .las files exported from the Geoclean software (original as-built point cloud), and the 

STL file of the bridge model (original virtual point cloud derived from it), are both imported into 

CloudCompare software for coarse registration. Figure 5.2 and Figure 5.4 show the original 

virtual point cloud derived from the STL file of the model, and the original as-built point cloud 

collected on 06/22/2017 respectively. Five points in the original as-built point cloud and the 

original virtual point cloud were selected for the coarse registration step. The output subsampled 

virtual point cloud and the subsampled as-built built cloud, obtained at the end of the one-to-one 

matching process, shown in Figure 5.3 and Figure 5.5, respectively.  

  

Figure 5.2: Original virtual point cloud derived from the STL model. 
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Figure 5.3: Subsampled version of the original virtual point cloud obtained from the STL 

model.  

 

Figure 5.4: Original as-built point cloud scan collected on June 22, 2018. 
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Figure 5.5: Subsampled version of the as-built point cloud collected on June 22, 2018. 

After obtaining subsampled as-built and virtual point clouds containing equal number of points, 

the ICP algorithm was applied to fine-tune the registration. The fine registration process was 

carried out using a point-to-point based distance minimization metric, and the fine registration 

iteration is carried until the error between two consecutive iteration processes is less than 1*10^-

6. The results of the registration process are shown in Table 5.33. 

Table 5.3: Root Mean Square Errors (RMSE) Obtained at the end of Coarse and Fine 

Registration Steps for Each Scan  

Scan Date 

Number of Points in 

Original As-built Point 

Cloud 

Number of Points after NN 

matching (before fine 

registration) 

Fine registration 

RMSE [m] 

6/22/2018 3,669,647  179,247  0.021 

7/6/2018 3,983,640  257,160  0.028 

7/13/2018 2,275,266  280,656  0.031 

7/24/2018 5,151,269  350,009  0.030 

8/1/2018 4,257,637  386,029  0.029 

8/14/2018 6,082,413  351,194  0.030 

8/22/2018 2,775,230  308,500  0.031 

9/4/2018 6,327,087  375,488  0.024 

10/22/2018 3,522,971  273,200  0.031 
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The consistent error values result from the 7 cm threshold, which was applied during the fine 

registration process.   

5.1.3 Segmentation, Object Recognition and POC calculations 

The segmentation process described in Section 4.1.2.2 is implemented for all elements at a given 

scan date and the object recognition results are obtained. The results are represented in the form 

of POC to accurately reflect the as-built status of the bridge elements. While performing 

segmentation between the segmented subsampled virtual point cloud and virtual point cloud of 

an element, one-to-one point matching performed by the nearest neighbor algorithm used a 

threshold of 7 cm. Figure 5.6 shows the result of the segmentation process applied to the bridge 

deck using the scan collected on June 22, 2018.  

 

Figure 5.6: Fraction of the segmented subsampled virtual point cloud (shown in blue dots) 

obtained at the end of segmentation process between the subsampled virtual point 

cloud and the virtual point cloud of the bridge deck (scan date: June 22, 2018) 

For our project, the use of a mobile laser scanner entailed that upper face of elements contained 

the maximum number of points that overlapped in the virtual point cloud of an individual bridge 

element and the fragment of the segmented subsampled virtual point cloud. The resulting convex 

hull for these point clouds are shown in Figure 5.7.   
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Figure 5.7: Convex hull for both point cloud datasets for the bridge deck (scan date: June 

22, 2018) 

The as-planned POC for all the scans collected were prepared manually by inspecting the project 

schedule obtained from the Engineer of Record. The purpose of preparing the as-planned POC is 

to help in validating the accuracy of the POC calculations. The as-planned and as-built POC for 

the project are shown in Table 5.4 and   
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Table 5.5 respectively.  

Table 5.4: As-Planned POC (%) 

Scheduled progress 

(%) 

6/22 7/6 7/13 7/24 8/1 8/14 8/22 9/4 10/22 

'Abutment_N' 30 30 50 100 100 100 100 100 100 

'Abutment_S' 30 30 50 100 100 100 100 100 100 

'BridgeEndPanel_

N' 30 30 30 30 100 100 100 100 100 

'BridgeEndPanel_

S' 30 30 30 30 100 100 100 100 100 

'Deck' 30 30 30 100 100 100 100 100 100 

'Parapet_E' 100 100 100 100 100 100 100 100 100 

'Parapet_W' 0 0 0 0 0 50 50 100 100 

'Sidewalk' 0 0 0 0 0 100 100 100 100 

'Wingwall_NL' 0 0 0 100 100 100 100 100 100 

'Wingwall_NR' 100 100 100 100 100 100 100 100 100 

'Wingwall_SL' 0 0 0 100 100 100 100 100 100 

'Wingwall_SR' 100 100 100 100 100 100 100 100 100 
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Table 5.5: As-built POC (%) 

Actual progress 

(%) 

6/22 7/6 7/13 7/24 8/1 8/14 8/22 9/4 10/22 

'Abutment_N' 31 35 35 100 100 100 100 100 100 

'Abutment_S' 35 35 35 100 100 100 100 100 100 

'BridgeEndPanel_

N' 36 36 36 36 93 100 100 100 100 

'BridgeEndPanel_

S' 35 35 35 35 98 100 100 100 100 

'Deck' 34 34 34 97 100 100 100 100 100 

'Parapet_E' 99 100 100 100 100 100 100 100 100 

'Parapet_W' 0 0 0 0 0 3 70 70 94 

'Sidewalk' 0 0 0 1 5 100 100 100 100 

'Wingwall_NL' 0 0 100 100 100 100 100 100 100 

'Wingwall_NR' 100 100 100 100 100 100 100 100 100 

'Wingwall_SL' 0 0 84 100 100 100 100 100 100 

'Wingwall_SR' 100 100 100 100 100 100 100 100 100 

 

5.2 VALIDATION 

Table 5.6 shows the differences between as-planned and as-built POC values for all the bridge 

elements, i.e. the differences in corresponding POC values in Table 5.4 and   
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Table 5.5. The error values marked in yellow represent errors due to the limitations inherent in 

the convex hull algorithm that calculates overlapping area between the faces of the virtual and 

as-built point clouds, and the POC is defined as the ratio of these two. The planned POC may 

reflect an element to be 100% complete but the as-built POC may reflect it to be 96% complete. 

Practically, if such values are obtained, it can be interpreted as the slab being complete. The 

errors ranging from -6% to 6% in the yellow cells are the result of including or excluding a few 

as-built points belonging to these elements. This is likely to occur during the segmentation step 

since not all points (especially the ones on boundaries) are classified as belonging or not 

belonging to a particular element. Addition of a few points, depending on their location, can 

significantly impact the convex hull results, and consequently, the POC values. Visual inspection 

of the as-built scans belonging to these dates reveal that the corresponding values in Table 5.6 

are reasonable.  
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Table 5.6: Differences in POC for all the bridge elements at the different scan dates (%) 

Differences in POC (%) 6/22 7/6 7/13 7/24 8/1 8/14 8/22 9/4 10/22 

'Abutment_N' -1 -5 15 0 0 0 0 0 0 

'Abutment_S' -5 -5 15 0 0 0 0 0 0 

'BridgeEndPanel_N' -6 -6 -6 -6 7 0 0 0 0 

'BridgeEndPanel_S' -5 -5 -5 -5 2 0 0 0 0 

'Deck' -4 -4 -4 3 0 0 0 0 0 

'Parapet_E' 2 0 0 0 0 0 0 0 0 

'Parapet_W' 0 0 0 0 0 -3 -20 30 6 

'Sidewalk' 0 0 0 -1 -5 0 0 0 0 

'Wingwall_NL' 0 0 -10 0 0 0 0 0 0 

'Wingwall_NR' 0 0 0 0 0 0 0 0 0 

'Wingwall_SL' 0 0 6 0 0 0 0 0 0 

'Wingwall_SR' 0 0 0 0 0 0 0 0 0 

 

The values in the red cells indicate that the framework used in this study produced unacceptable 

results for some of the elements. For example, for the scan that was collected on July 13, 2018, 

the northbound abutment (Abutment_N) and the southbound abutment (Abutment_S) both show 

15% error. Referring to the as-built scans, the formwork was set in place for both abutments on 

that date. The planned POC (Table 5.4) shows a value of 50%. This value was set to 50% from 

35% on the previous scan date to indicate that installation of the formwork amounted to an 

additional increase in progress. Note that the right half (approximately 35%) of both abutments 

had been constructed by this date. Our framework calculates the POC based on the area of the 

convex hull spanned by the outermost points of the topmost face of the bridge element. The 

algorithm to calculate the convex hull is designed to discard points that are disconnected from 

the main cluster of points that accurately represent the as-built status of the element. In other 

words, as seen in Figure 5.8, the points encircled in blue are sparser compared to the points 

encircled in yellow. Thus, only the ones in yellow are considered in the convex hull calculations. 

Although the algorithm was specifically designed to handle cases, such as the one shown in 

Figure 5.9, it poses a limitation for certain cases.  

 

Figure 5.8: Virtual point cloud of southbound abutment with the point cloud representing 

the as-built status of the same element (red). The points encircled in yellow were 

included in convex hull calculations whereas the points encircled in blue are discarded.  
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Figure 5.9: Outliers (in light blue) causing significant error in the convex hull calculations. 

The convex hull algorithm is designed to discard those points and keep the purple 

points. 

Table 5.6 also shows erroneous values for the western parapet (Parapet_W) on scan dates 

August 22, 2018 and September 4, 2018. The corresponding values for this element in Table 5.4 

shows that the western parapet is set to be 50% and 100% completed, respectively, on those 

dates. 50% was set for August 22, 2018 since most of the formwork and reinforcement bars had 

already been set up on that day. On scan date September 4, 2018, the parapet was complete. 

Figure 5.10 illustrates that the convex hull calculations did not account for the surface correctly. 

This is attributed to the fact that railings were not included in the 3D model and the top of the 

parapet was not modeled precisely to account for the placement of railings. Based on the 

provided schedule, it is assumed that the completion of the parapet signifies the completion of 

the railings placement. Similarly, this explanation applies to the error obtained (-10%) for the left 

northbound wingwall (Wingwall_NL) in the scan collected on July 13, 2018.  
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Figure 5.10: Western parapet convex hull (August 22, 2018). The right part represents an 

enlarged view of the convex hull. The red line on the enlarged section on the right side 

represents the extent of the area that should have been covered, and the blue region 

represents the area that was covered. 
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6.0 DISCUSSION AND LIMITATIONS 

The performance of the proposed framework that was tested on the data collected from Truax 

Creek Bridge construction project was detailed in Section 5. Several factors may affect the 

quality of the progress tracking results, i.e. the POC values. For instance, the number of passes 

during the data collection can affect the density of the point cloud data obtained, which could 

impact the POC values. At the same time, the number of passes made during each data collection 

cycle has a direct impact on data collection time. The future research should investigate the 

number of passes required to obtain optimum results. Although the framework automatically 

computes the POC values, there are manual tasks which should be performed to support the 

automated processes described in the framework. The limitations of the proposed framework are 

detailed below.  

Necessity of Manual Intervention 

The presence of false positives directly impact the POC calculations. Thus, the initial process of 

manually removing false positives should be performed carefully. The removal process of false 

positives should ensure that points not belonging to the structure or part of the structure are 

completely removed. Figure 6.1 and Figure 6.2 illustrate this problem.  

 

Figure 6.1: Scan collected on July, 13, 2018 



38 

 

Figure 6.2: July, 13, 2018 scan overlapped with the finely registered original virtual point 

cloud. Regions of unwanted overlap bounded by red circles. 

As shown in Figure 6.2, the part of the original virtual point cloud corresponding to the two 

bridge end panels have overlapped with the original as-built scans. During the object recognition 

phase, the progress of panels will be reported as “under construction”, and will be assigned a 

percentage of completion, based on the percentage of overlap between the original virtual point 

cloud and the original as-built scans. Carefully cleaning the point cloud will result in better 

detection results.  

Accuracy of the Mobile Mapping System 

As shown in Figure 4.3, approximately one and a half inches noise was present in the as-built 

data. The presence of noise directly affected the selection of the threshold during the fine 

registration and segmentation steps described in Sections 4.1.2.1 and 4.1.2.2. Using a more 

accurate scanning system, such as the Pegasus system owned by ODOT can help overcome this 

limitation. Consequently, the threshold could be lowered by approximately one and a half inches, 

which should improve the accuracy of the POC calculations.  

Processing time per epoch 

Table 6.1 summarizes the approximate time taken for the manual and automated processes in the 

framework, including the software used for each step. Note that the orange color denotes 

processes that need to be performed only once. The blue color represents processes that have to 

be performed multiple times (refer to the comments column). Apart from manual processes that 

are required to be performed only once (highlighted in orange), the data processing time required 

for each epoch takes approximately 1 hour and 15 minutes. Please note that if a 3D project 

design at Level of Development (LOD) 300 is already available, it can be converted into STL 

format directly, which would lower the time required for manual processes to be performed 

manually at the beginning of the project (processes highlighted in orange) down to 

approximately 12 minutes. 3D models are becoming more and more common on ODOT projects; 
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hence, this time window would not need to be considered as time to utilize this workflow for 

progress monitoring.   

Table 6.1: Time Taken for Manual Tasks for the Proposed Framework for the Case Study 

Process Software used Time 

Taken 

Comments 

Data Collection 

Average time required for each data 

collection cycle 

N/A 20 mins Time includes 2-3 

passes, depends on 

bridge length 

Data Download and Upload to 

external hard drive (4 TB) 

N/A 2 mins For 15-20 GB file size, 

depends on data storage 

device used 

Manual Processes 

*Development of 3D model 

(equivalent to BIM Level of 

Development 300 (LOD 300)) 

**Autodesk 

Revit 

4-5 hours  Time includes studying 

2D drawings 

Creation of as-planned POC table MS Excel 10 mins  

Generating STL files Gmsh 2 mins Per STL file 

Manual Processes (per epoch) 

Point cloud pre-processing 

Geoclean 

TOPCON 

Geoclean 

20 - 30 

mins 

Per as-built point cloud  

Point Cloud Cleaning (after 

preprocessing) 

CloudCompare 15 mins  Per as-built point cloud  

#Coarse Registration CloudCompare 20 mins  Per set of as-built point 

cloud and virtual point 

cloud  

Automated Processes 

Fine Registration (Approximate 

value, depends on size of point 

cloud) 

MATLAB 15 mins Per set of as-built point 

cloud and virtual point 

cloud 

Segmentation, Object Recognition 

and POC calculations 

MATLAB 5 secs Per virtual point cloud 

of an object 

Table Notes: 

* 3D models are becoming more and more common on ODOT projects; hence this time source 

will likely already be invested in the design phase (with some updates in the construction phase 

as appropriate.  Hence, it ordinarily will not be a significant source of time for progress 

monitoring.  

** Instead of Autodesk Revit, Microstation by Bentley Systems or Autodesk Civil 3D can be 

used to develop 3D project models. 

# The Coarse Registration step can be avoided by using a consistent coordinate system for the 

models and the mobile lidar data.   
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7.0 CONCLUSIONS 

In this study, a progress tracking framework for transportation projects, bridge construction 

projects in particular, was developed and demonstrated. The framework combines information 

from 3D design models and construction schedule and lidar data to report project progress 

information. Using mobile lidar for as-built data collection provides significant benefits over 

manual methods for progress tracking by facilitating faster as-built data collection and accurately 

capturing 3D geometric information from construction sites. 

The framework utilizes the project 3D model, at LOD 300 level, together with as-built data (in 

the form of lidar point clouds) to generate progress information. The 3D model data needs to be 

in STL file format, and lidar data needs to be in ASCII format (as .las files or .txt files). The 

software utilized for various processes required to implement the proposed framework are 

included in Table 6.1. Preparing a 3D model requires knowledge in conceptual massing or 

proficiency in using Revit or Microstation software. Familiarity with GeoClean software is 

necessary to import raw point cloud data, GNSS and IMU data together. Familiarity with various 

tools in CloudCompare software is required for manually cleaning the point cloud as well as for 

the coarse registration process. Therefore, implementing the framework presented in this report 

would require ODOT to have personnel with such skillsets and computing resources to process 

the lidar data. 

The developed framework was evaluated using data collected from the Truax Creek bridge 

project, a small bridge construction project located in Albany, OR. The results of the case study 

showed that the developed framework enables tracking the completion of individual bridge 

elements accurately and efficiently. The process of obtaining progress results using the 

framework is mostly automated. The steps that require manual work include removing irrelevant 

sections in the preprocessed point clouds that overlap with bridge elements. The object detection 

relies upon the geometric alignment between the as-built point cloud and virtual point cloud. 

Hence, overlap between as-built data and irrelevant regions, such as earthwork material, may 

lead to misclassification. Furthermore, the manual processing time for each epoch is 

approximately 1 hour and 15 minutes for the case study. This time could be further reduced by 

continued development and refinement of algorithms to complete these manual processing tasks, 

which were beyond the scope of this project. Therefore, it can be concluded that the developed 

framework could be very beneficial when ODOT has multiple projects going on at the same 

time, which would require inspectors to travel between sites resulting in less frequent project 

status data collection. The semi-automated project progress tracking framework presented in this 

report would enable rapid collection of project as-built data, and determining project status in an 

efficient manner.   

Future work should focus on implementing this framework on larger and more complex bridge 

construction projects that contain elements with complex geometrical shapes. The bridge used in 

this study was small and the project was almost 50% complete when the data collection had 

started. Furthermore, the entire framework utilizes only the x, y, and z coordinates of the 

collected scan. Future studies can be directed towards integrating RGB (Red-Green-Blue) values 



42 

and intensity values into the framework to help in material classification. Integrating RGB values 

can contribute toward accurate segmentation and object recognition results by correctly 

classifying points. The low quality data prevented performing this analysis for identifying the 

asphalt concrete wearing surface for the Truax Creek project. Using a high accuracy scanning 

system such as the Leica Pegasus: Two could help in road design layer classification. Additional 

parameters such as power spectral density could also be used to analyze the roughness of the 

profiles to distinguish one road design layer from another.  

Finally, it is strongly recommended that the framework presented in this report be implemented 

on larger bridge construction projects, such as the Rose Quarter or the Columbia River Crossing 

where the return on investment (ROI) will likely be the highest compared with the 

implementation results presented in this report. Also, it is important to note that the digital 

documentation of construction projects could be very beneficial for legal purposes should issues 

on the project arise.
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 Matlab code 

k-NN 

function[New_A_c, New_B_c]=knn_dist(A_c,B_c,distance) 

    %A_c and B_c are in double format  

       

    P=pointCloud(A_c); %original lidar 

    Q=pointCloud(B_c); %point cloud from STL 

    tic; 

    k=0; 

    New_A_c={}; 

    New_B_c={}; 

    for j = 1:length(B_c) 

        [i,dists] = 

findNearestNeighbors(P,Q.Location(j,:),1); 

        if dists < distance  

            New_A_c{1,1}(k+1,:)=A_c(i,:);  

            New_B_c{1,1}(k+1,:)=Q.Location(j,:); 

            k=k+1; 

        end 

    end 

%     f=New_A_c; 

%     g=New_B_c;   

toc; 

end 
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%     figure; 

%     pcshow(pointCloud(New_A_c)); 

%     hold on 

%     pcshow(pointCloud(New_B_c)); 

%     title('As-planned points matched with Point cloud') 

Extract Dependencies from .txt file 

function [depd]=dependencies() 

    fid = fopen( 'C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\Dependencies.txt' ); 

        cac = textscan( fid, '%s%s%s%s%s%s%s%s%s', 

'CollectOutput'  ... 

                    ,   true, 'Delimiter', ','  ); 

        [~] = fclose( fid ); 

    % D=textscan('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\Dependencies.txt',','); 

    Co=[cac{:}]; 

    cc=str2double(Co); 

    depd=cc(:,2:end); 

 

 

Fine Registration 

%% read point cloud and stl file 

function[New_a_pc_fReg,rmse,tform_comp,New_A_pc]=reg_ICP(A,

a,b,thres) 

%New_a_pc_fReg:segmented and registered 

(coarse+fine)virtual point cloud 

%New_a_pc:segmented virtual point cloud 
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    A_c=[A.x,A.y,A.z]; 

  

 

    a_pc=[a.x,a.y,a.z]; 

    b_pc=[b.x,b.y,b.z]; 

  

    [regParams,~,~]=absor(b_pc',a_pc'); 

    tform_coarse = affine3d(regParams.M'); 

    figure; 

    %x=pctransform(pointCloud(b_pc),tform_coarse); 

%     pcshow(x) 

%     hold on 

%     pcshow(pointCloud(a_pc)) 

%     hold on 

%     pcshow(pointCloud(b_pc)) 

  

  

    %% noise removal by finding nearest neighbours of each 

point in stl, in the point cloud 

    P=pointCloud(A_c); %as-built point cloud, fixed 

    Q=pointCloud(a_pc); %virtual point cloud, moving 

%     figure; 

    pcshow(P); 

    title('Original As-Built Point Cloud'); 

    xlabel('[m]') 
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    ylabel('[m]') 

    zlabel('[m]') 

    a = 

annotation('textbox','EdgeColor','White','String','[m]'

); 

    a.FontName = 'Times new Roman'; 

    a.FontSize = 30; 

    set(gca, 'FontSize', 30, 'FontName','Times New Roman'); 

    colormap(jet) 

     

    figure; 

    pcshow(Q); 

    title(' Virtual Point Cloud') 

    %[New_A_c,New_B_c]=knn_dist(A_c,B_c,distance) 

    tic; 

    k=0; 

    for j = 1:length(a_pc) 

        [i,dists] = 

findNearestNeighbors(P,Q.Location(j,:),1); 

        if dists < thres %accounting for noise and 

construction error 

            New_A(k+1,:)=A_c(i,:); %part of original point 

cloud, fixed 

            New_a_pc(k+1,:)=Q.Location(j,:);%part of 

virtual point cloud, moving 

            k=k+1; 

        end 
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    end     

    figure; 

    pcshow(pointCloud(New_A)); 

    title('Subsampled As-Built Point Cloud') 

    xlabel('[m]') 

    ylabel('[m]') 

    zlabel('[m]') 

   

    a.FontName = 'Times new Roman';  

    a.FontSize = 30; 

    set(gca, 'FontSize', 30, 'FontName','Times New Roman'); 

    colormap(jet) 

    figure; 

    pcshow(pointCloud(New_a_pc)); 

    title('Subsampled Virtual Point Cloud') 

    xlabel('[m]') 

    ylabel('[m]') 

    zlabel('[m]') 

   

    a.FontName = 'Times new Roman'; 

    a.FontSize = 30; 

    set(gca, 'FontSize', 30, 'FontName','Times New Roman'); 

    colormap(jet) 

    toc; 
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    tic; 

    [tform_fine,New_a_pc_fReg,rmse] = 

pcregistericp(pointCloud(New_a_pc),pointCloud(New_A),'T

olerance',[0.000001,0.000001]);  

    %tform_fine: fine reg between original and virtual 

    toc; 

    T=tform_coarse.T*tform_fine.T; 

    tform_comp=affine3d(T); 

    %tform_comp is the coarse and fine reg combined 

    %x_a=pctransform(pointCloud(b_pc),tform_comp); 

     

%     pcshow(x_a) 

%     hold on 

%     pcshow(New_a_pc_fReg) 

  

    %% plot reg resu;ts 

%     figure(1) 

%     

scatter3(New_a_pc(:,1),New_a_pc(:,2),New_a_pc(:,3),'.',

'MarkerEdgeColor',[0 .25 .25]) 

%     hold on 

%     

scatter3(A_c(:,1),A_c(:,2),A_c(:,3),'.','MarkerEdgeColo

r',[0 .75 .75]) 

%     title(['Fine Registration RMSE = ' num2str(rmse) ]) 

end 

%% 
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a=lasdata('C:\Users\purin\Box\OSU\papers\ODOT project\Truax 

Creek Files\3D model\CC_Binary_7_fr.las'); 

lidar_path=('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\Lidar data\'); 

out_folder='C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\3D 

model\Elements\Fine_reg\Reconigtion\7 cm\as-built\'; 

Files_lidar=dir('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\Lidar data\*.las'); 

b=lasdata('C:\Users\purin\Box\OSU\papers\ODOT project\Truax 

Creek Files\3D model\Gmsh_Binary_7.las'); 

  

  

for j=1: length(Files_lidar) 

    f = fullfile(lidar_path,Files_lidar(j).name); 

    Y=lasdata(f); 

    tic; 

    [finereg_pc,rmse,tcomp,]=reg_ICP(Y,a,b,0.07); 

    newFile = 

strcat(out_folder,Files_lidar(j).name,'.mat'); 

    save(newFile, 'as_built','rmse'); 

    toc; 

end 
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Object Recognition, Segmentation and POC calculations 

function [surf_area]=area_convhll(B) 

    row_idx=((max(B(:,3))-0.07)<B(:,3)).*(B(:,3)< 

max(B(:,3))); 

    Row_idx=logical(row_idx); 

    B_fil=B(Row_idx,:); 

%     figure 

%     pcshow(pointCloud(B_fil)) 

    %A and B pointclouds, type double 

    g=pointCloud(B_fil); 

            [labels,numClusters] = pcsegdist(g,1.5); 

            pcshow(g.Location,labels) 

            colormap(hsv(numClusters)) 

            title('Point Cloud Clusters') 

             

       for i = 1:numClusters      

            val(i) = sum(labels==i); 

       end 

       [m,i]=max(val); 

           newer=B_fil(labels==i,:); 

           figure 

           pcshow(pointCloud(newer)) 

  

     vi = convhull(newer(:,1),newer(:,2)); 

     x1= newer(:,1); 
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     y1= newer(:,2); 

     surf_area=polyarea(x1(vi),y1(vi)); 

  

     plot(x1,y1,'.') 

     axis equal 

     hold on 

     fill ( x1(vi), y1(vi), 'b','facealpha', 0.5 );  

     hold off 

end 

 

 

 

 

% 

b=lasdata('C:\Users\purin\Box\OSU\papers\ODOT project\Truax 

Creek Files\3D model\Gmsh_Binary_7.las'); 

% %finereg_pc:segmented and registered (coarse+fine)virtual 

point cloud 

% %finereg_fil_pc:segmented virtual point cloud (according 

to lidar) 

% save('C:\Users\purin\Box\OSU\papers\ODOT project\Truax 

Creek Files\3D 

model\Elements\Fine_reg\Fine_reg_pc.mat', 

'finereg_pc','rmse'); 

% 

out_folder='C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\3D 

model\Elements\Fine_reg\Reconigtion'; 
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Files_IFCBIM=dir('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\3D 

model\Elements\Fine_reg\*.las.mat'); 

  

recognition={}; 

dayy=1; 

Files_lidar=dir('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\Lidar data\*.las'); 

% 

for k=1:length(Files_IFCBIM) 

    s=strsplit(Files_IFCBIM(k).name,'.'); 

    recognition{1,dayy}(k,1)=s(1); 

end 

tic; 

% X=lasdata('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\Lidar data\082218.las'); 

Y=lasdata('C:\Users\purin\Box\OSU\papers\ODOT project\Truax 

Creek Files\Lidar data\090418.las'); 

a=lasdata('C:\Users\purin\Box\OSU\papers\ODOT project\Truax 

Creek Files\3D model\CC_Binary_7_fr.las'); 

  

% Z=lasdata('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\3D 

model\CC_Binary_7_fr.las'); 

% scatter3(X.x,X.y,X.z,'r','.') 

% hold on 

% scatter3(Y.x,Y.y,Y.z,'b','.') 

% hold on 
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% scatter3(Z.x,Z.y,Z.z,'g','.') 

lidar_path=('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\Lidar data\'); 

  

D=dependencies() 

addpath('C:\Users\purin\Box\OSU\papers\ODOT project\Truax 

Creek Files\3D model\Elements\Fine_reg') 

for j=1:length(Files_lidar) 

%     f = fullfile(lidar_path,Files_lidar(j).name); 

%     Y=lasdata(f); 

%     tic; 

%      

%     [finereg_pc,finereg_fil_pc,rmse]=reg_ICP(Y,a,b,0.07); 

%   

%     newFile = strcat('C:\Users\purin\Box\OSU\papers\ODOT 

project\Truax Creek Files\3D 

model\Elements\Fine_reg\Reconigtion\',Files_lidar(j).na

me,'.mat'); 

%     save(newFile, 'finereg_pc','rmse'); 

%     toc; 

    for k=1:length(Files_IFCBIM) 

        x=load(Files_IFCBIM(k).name); 

        B=x.x_a.Location; %IFCBIM elements 

        row_idx_B=((max(B(:,3))-0.07)<B(:,3)).*(B(:,3)< 

max(B(:,3))); 

        Row_idx_B=logical(row_idx_B); 

        B_fil=B(Row_idx_B,:); 
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        A=finereg_pc.Location;%segmented as planned point 

cloud 

        scatter3(A(:,1),A(:,2),A(:,3),'.') 

        hold on 

        pcshow(pointCloud(B_fil)) 

        [new_A,New_B]=knn_dist(A,B_fil,0.07); %find nearest 

neighbours of the STL object points in the segmented 

and registered (coarse+fine)virtual point cloud 

        if size(new_A)~=0 

            scatter3(new_A{1, 1}(:,1),new_A{1, 

1}(:,2),new_A{1, 1}(:,3),'*','r') 

            hold on 

            pcshow(pointCloud(B)) 

            figure; 

             title(' Overlap between the Segmented 

Subsampled Virtual Point Cloud and the Virtual Point 

Cloud of the Bridge Deck  ') 

            xlabel('[m]') 

            ylabel('[m]') 

            zlabel('[m]') 

            a = 

annotation('textbox','EdgeColor','White','String','[m]'

); 

            a.FontName = 'Times new Roman'; 

            a.FontSize = 30; 

            set(gca, 'FontSize', 30, 'FontName','Times New 

Roman'); 

            colormap(jet) 
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            New_A=pcdenoise(pointCloud(new_A{1, 1})); 

            c=New_A.Location; 

            d=B; 

            pcshow(pointCloud(c)) 

            hold on 

            %figure 

            pcshow(pointCloud(d)) 

            

  

            sur_area_1=area_convhll(c); 

            hold on 

         

            sur_area_2=area_convhll(d); 

            percentage_of_comple= 

min(100,round(sur_area_1/sur_area_2,2)*100); 

            if k>1 

                 

                

percentage_of_completion=max(percentage_of_comple,cell2

mat(recognition{1,1}(k,j+1))); 

            else 

                

percentage_of_completion=percentage_of_comple; 

                 

            end 
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            if j>1 && (cell2mat(recognition{1,1}(k,j))> 

percentage_of_completion) 

                

recognition{1,1}(k,j+1)=recognition{1,1}(k,j); 

            else 

                

recognition{1,1}(k,j+1)=mat2cell(percentage_of_completi

on,1); 

            end 

             

             

            %      pcshow(pcdenoise(pointCloud(New_A{1, 

1}))) 

        else 

            if j==1 

                if k>1 

                     

                    

percentage_of_completion=max(0,cell2mat(recognition{1,1

}(k,j+1))); 

                else 

                    percentage_of_completion=0; 

                     

                end 

                 

                

recognition{1,1}(k,j+1)=mat2cell(percentage_of_completi

on,1); 
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            else 

                

recognition{1,1}(k,j+1)=recognition{1,1}(k,j); 

            end 

        end 

         

        X=D(k,:); 

        Y=X(~isnan(X)); 

         

        for m =1:length(Y) 

            if cell2mat(recognition{1,1}(k,j+1))>80 && 

isempty(Y)==0 

                recognition{1,1}{Y(m),j+1}=100; 

            end 

        end 

        for i = 1:length(recognition{1,1}(:,j+1)) 

            s=size(cell2mat(recognition{1,1}(i,j+1))); 

            if s(1)==0 

                recognition{1,1}(i,j+1) = mat2cell(0,1); 

            end 

        end 

    end 

end 

  

  



A-16 

 

  

toc; 
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