Buried Concrete Barrier Ends in Washington State

WA-RD 916.1

Paul Abbott Ida van Schalkwyk John Donahue Jim Mahugh

June 2022

×

3 Street View

WSDOT Research Report

Office of Research & Library Services

WA-RD 916.1

BURIED CONCRETE BARRIER ENDS IN WASHINGTON STATE

by

Paul Abbott Ida van Schalkwyk John Donahue Jim Mahugh

Washington State Department of Transportation Development Division

Prepared for

The State of Washington Department of Transportation Roger Millar, Secretary

June 2022

1. REPORT NO.		2. GOVERNMENT ACCESS	ION NO.	3. RECIPIENT'S CATALOG	NO.			
WA-RD 916.1								
4. TITLE AND SUBTITLE			5. REPORT DATE June 2022					
Buried Concrete I	Barrier Ends in V	Washington State		6. PERFORMING ORGANIZATION CO WSDOT				
7. AUTHOR(S)				8. PERFORMING ORGANI	ZATION REPORT NO.			
Abbott, P., Van S	•		n, J.					
9. PERFORMING ORGANIZA Washington State	Department of	Fransportation		10. WORK UNIT NO.				
310 Maple Park A PO Box 47329, O				11. CONTRACT OR GRAN	T NO.			
12. SPONSORING AGENCY N	NAME AND ADDRESS	13. TYPE OF REPORT AND	PERIOD COVERED					
Washington State				Technical report				
310 Maple Park <i>A</i> PO Box 47329, O				14. SPONSORING AGENCY WSDOT	Y CODE			
15. SUPPLEMENTARY NOTE	s							
There are over barrier ends are not interacting with the data sourced from System (CLAS) de location and sever included only one environment with	b longer included nese structures. A the WSDOT En latabase for the y rity. During this fatal crash and	An inventory of bug ingineering Crash years 2011 through ten-year period, 3 no serious injury of	s, it is not well und ried concrete barr Datamart and the 2020 to determin 6 crashes with the grashes. Most crash	derstood how veh ier ends was mato e Crash Location of the the distribution se ends were repor- hes occurred in an ps.	icles are whed with crash & Analysis of crashes in orted and they			
17. KEY WORDS Traffic barriers, co	oncrete barrier, l	oerm	18. DISTRIBUTION STATE	MENT				
19. SECURITY CLASSIF. (of this report)	20. SECURITY CLASSIF. (of this page)		21. NO. OF PAGES	22. PRICE			
None	None			27				

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation or Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Under 23 U.S. Code § 148 and 23 U.S. Code § 409, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings are not subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.

ACKNOWLEDGEMENTS

We would like to thank Rachel Estes, an intern during Summer 2021, for her review and classification work on the buried ends.

TABLE OF CONTENTS

DISCLAIMERii
ACKNOWLEDGEMENTS iii
INTRODUCTION1
SCOPE AND LIMITATIONS OF THE STUDY2
Scope of the Study2
Limitations2
DATA AND METHODOLOGY5
ANALYSIS AND FINDINGS12
CONCLUSIONS AND RECOMMENDATIONS18
Conclusions
Recommendation

LIST OF TABLES

Table 1 Buried Concrete Barrier End Type Count 5
Table 2 Buried Concrete Barrier End Type Count by Mainline vs. Ramp Location
Table 3 Buried Concrete Barrier End Type Count by Interstate vs. Non-Interstate Location
Table 4 Buried Concrete Barrier End Type Count by Speed Limit
Table 5 Buried Concrete Barrier End Type Count by Functional Class
Table 6 Buried Concrete Barrier End Type by Mainline vs. Ramp, Interstate vs. Non-Interstate, Speed Limit, and Functional Class
Table 7 Crash Count by Severity for 2011 through 2020 (Source: WSDOT Engineering Crash Datamart)
Table 8 Impacts with guardrail end treatments on state highways from 2016 to 2020 (Source:WSDOT Engineering Crash Datamart)
Table 9 Crash Count by Location 13
Table 10 Crash Count by Type14
Table 11 AADT by Crash Severity 15
Table 12 Crash Outcomes by Type15
Table 13 Rollover Count by Severity for 2011 through 2020 (Source: WSDOT Engineering Crash Datamart)
Table 14 Rollovers with guardrail end treatments on state highways from 2016 to 2020 (Source:WSDOT Engineering Crash Datamart)
Table 15 Vault Count by Severity for 2011 through 2020 (Source: WSDOT Engineering Crash Datamart)
Table 16 Vaults with guardrail end treatments on state highways from 2016 to 2020 (Source:WSDOT Engineering Crash Datamart)

LIST OF FIGURES

Figure 1 Buried End (Type A)	3
Figure 2 Buried in Backslope End (Type B)	3
Figure 3 Ambiguous End (Type C)	4
Figure 4 AADT Distribution	14

INTRODUCTION

Buried concrete barrier ends are no longer included in standard plans, except where these ends can be buried in natural backslopes, and there are over 400 remaining statewide. It is unknown how and where vehicles are interacting with these structures, and what the outcome of crashes are. This study combines the inventory of buried concrete barrier ends with crash data to determine if these structures warrant further study or replacement.

SCOPE AND LIMITATIONS OF THE STUDY

This section presents the scope and limitations of the study.

Scope of the Study

There are 437 buried concrete barrier ends identified in the WSDOT roadside safety feature inventory that was collected in 2019 and 2020. This report examines the locations of these structures and the crashes involving these ends.

The buried concrete barrier ends can be divided into three categories which are somewhat subjective:

- Buried (Type A). The concrete barrier end is buried with fill dirt with an otherwise flat surrounding area. See Figure 1.
- Buried in Backslope (Type B). The concrete barrier end is buried in a backslope. There
 may or may not be fill dirt added to complete the burial. See Figure 2. These types of
 installations are still allowed if installed in accordance with WSDOT Design Manual
 1610.06(3).
- Ambiguous (Type C). The concrete barrier end is buried with somewhat of a backslope, or there is some other reason why it cannot be placed in the other two categories. See Figure 3.

Crashes associated with these concrete barrier ends were identified and analyzed as part of this project.

Limitations

Buried concrete barrier ends are not explicitly identified as a type of object struck in the Crash Datamart. Crashes with *Concrete Barrier* or *Earth Bank or Ledge* as the first or second object struck were extracted that occurred within 500 feet of the buried concrete barrier ends to locate related crashes.

The study did not assess individual buried concrete ends to determine whether the buried end was located within the clear zone or not, and no distinction is made in the dataset between leading and trailing ends.

Figure 1 Buried End (Type A)

Figure 2 Buried in Backslope End (Type B)

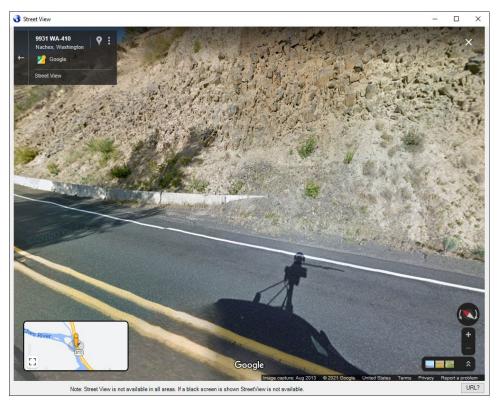


Figure 3 Ambiguous End (Type C)

DATA AND METHODOLOGY

The study used data from the WSDOT Engineering Crash Datamart from 2011-2020 and the most current WSDOT roadside safety feature inventory collected in 2019 and 2020. The inventory was collected using orthography, the WSDOT SR View application, and tools such as Google Street View and Microsoft Birds Eye.

The data used in the analysis combined the crash and inventory location data spatially. First all crashes in the WSDOT Engineering Crash Datamart from 2011-2020 involving *Concrete Barrier* or *Earth Bank or Ledge* located within 500 feet of buried concrete barrier ends were identified: a total of 1,514 crash records. The Police Traffic Collision Reports (PTCRs) were then manually reviewed for each crash to determine if the buried concrete barrier end was involved. A total of 36 crashes involving buried concrete barrier ends were identified. Note that the initial review of five years of crash data, as is recommended practice at WSDOT, rendered such a small sample of crashes that the search was expanded to a ten-year analysis period.

Table 1 through Table 6 present the distribution of buried concrete barrier ends by type and location.

Table 1 shows the count of buried concrete barrier ends by type. The majority is Buried but Buried in Backslope is also well represented, indicating that all types should be included in the study.

Concrete Buried End Type	Number of features	Percentage of the total
Type A (Buried)	229	52.40%
Type B (Buried in Backslope)	136	31.12%
Type C (Ambiguous)	72	16.48%
Grand Total	437	100.00%

Table 1 Buried Concrete Barrier End Type Count

Table 2 shows the count of buried concrete barrier ends by their location on a state route mainline versus a ramp. Type C (Ambiguous) and Type B (Buried) are represented roughly 2:1 on mainlines but Buried in Type B (Buried in Backslope) is over-represented on mainlines.

Concrete Buried End Type	Mainline	Ramp	Total
Type A (Buried)	152	77	229
Type B (Buried in Backslope)	114	22	136
Type C (Ambiguous)	49	23	72
Grand Total	315	122	437

Table 2 Buried Concrete Barrier End Type Count by Mainline vs. Ramp Location

Table 3 shows the count of buried concrete barrier ends by their location on interstate versus non-interstate. Type C (Ambiguous) and Type A (Buried) have a roughly even split but Buried in Backslope is over-represented over 2:1 on non-interstate.

Table 3 Buried Concrete Barrier End Type Count by Interstate vs. Non-Interstate Location

Concrete Buried End Type	Interstate	Non-Interstate	Total
Type A (Buried)	122	107	229
Type B (Buried in Backslope)	39	97	136
Type C (Ambiguous)	34	38	72
Grand Total	195	242	437

Table 4 shows the count of buried concrete barrier ends by speed limit, if known. Most of the features are located on 50+ MPH zones. Note that unknown speed limits are usually associated with ramp locations where no posted speed limits exist.

Table 4 Buried Concrete Barrier End Type Count by Speed Limit

Concrete Buried End Type	Posted speed limit (mph)								
	0-35	40-45	50+	Unknown	Total				
Type A (Buried)	2	19	131	77	229				
Type B (Buried in Backslope)	6	16	92	22	136				
Type C (Ambiguous)	0	4	45	23	72				
Grand Total	8	39	268	122	437				

Table 5 shows the count of buried concrete barrier ends by functional class. Most of the features are located in urban environments, either urban interstate or urban other freeways/expressways.

Functional Class	Type A (Buried)	Type B (Buried in Backslope)	Type C (Ambiguous)	Total	
Rural Interstate	16	5	4	25	
Rural Major Collector	8	26	2	36	
Rural Minor Arterial	16	23	5	44	
Rural Other Freeways / Expressways	4	6	3	13	
Rural Other Principal Arterial	22	19	10	51	
Rural Total	66	79	24	169	
Urban Interstate	106	34	20	170	
Urban Major Collector	4	0	0	4	
Urban Minor Arterial	1	8	4	13	
Urban Other Freeways / Expressways	40	10	12	62	
Urban Other Principal Arterial	12	5	2	19	
Urban Total	163	57	48	268	
Grand Total	229	136	72	437	

Table 5 Buried Concrete Barrier End Type Count by Functional Class

Table 6 shows the counts of buried concrete barrier ends by all the previous categories, including crash counts. 34 out of 36 crashes occurred in urban areas, with a majority on urban interstate and 50+ speed limits. Crashes were nearly evenly split between mainlines and ramps. There does not appear to be a concentration of crashes on a particular facility category (functional class, posted speed) or buried end type.

Facility	Posted	Terminal	Mainline				Ra		Features	Crashes Sub-		
Туре	Speed	Туре	Interstate		Non-Interstate		Interstate		Non-Interstate		Subtotal	
			Features	Crashes	Features	Crashes	Features	Crashes	Features	Crashes		total
Rural	50+	Type A	11								25	
Interstate		Type B	5									
		Type C	2									
		Subtotal	18									
	Unknown	Type A					5					
		Type B										
		Type C					2					
		Subtotal					7					
Rural	0-35	Type A									36	
Major Collector		Type B			1							
Conector		Type C										
		Subtotal			1							
	40-45	Type A			3							
		Type B			11							
		Type C			1							
		Subtotal			15							
	50+	Type A			5							
		Type B			14							
		Type C			1							
		Subtotal			20							

Table 6 Buried Concrete Barrier End Type by Mainline vs. Ramp, Interstate vs. Non-Interstate, Speed Limit, and Functional Class

Facility Type	Posted Speed	Terminal	Mainline				Ramps				Features	Crashes
		Туре	Inter	state	Non-In	terstate	Inter	state	Non-In	terstate	Subtotal	Sub-
			Features	Crashes	Features	Crashes	Features	Crashes	Features	Crashes	1	total
Rural	40-45	Type C			6	1					44	2
Minor Arterial		Type A			4							
Arterial		Type B			1							
		Subtotal			11	1						
	50+	Type A			9							
		Type B			19							
		Type C			4							
		Subtotal			32							
	Unknown	Type A							1	1		
		Type B										
		Type C										
		Subtotal							1	1		
Rural	50+	Type A			4						13	
Other		Type B			6							
Freeways /		Type C			3							
Express ways		Subtotal			13							
Rural	40-45	Type A									51	
Other		Type B										
Principal Arterial		Type C			1						1	
7 internar		Subtotal			1							
	50+	Type A			22							
		Type B			19							
		Type C			9						1	
		Subtotal			50							

Facility	Posted	Posted Terminal		Mainline				Ra		Features	Crashes	
Туре	Speed	Speed Type	Type Interstate		Non-Interstate		Interstate		Non-Interstate		Subtotal	Sub-
			Features	Crashes	Features	Crashes	Features	Crashes	Features	Crashes		total
Urban	50+	Type A	55	13							170	27
Interstate		Type B	20	1								
		Type C	16									
		Subtotal	91	14								
	Unknown	Type A					51	11				
		Type B					14	2				
		Type C					14					
		Subtotal					79	13				
Urban	50+	Type A			4	1					4	1
Major Collector		Type B										
Conector		Type C										
		Subtotal			4	1						
Urban	0-35	Type A									13	1
Minor Arterial		Type B			2]	
Anteniai		Type C										
		Subtotal			2							
	40-45	Type A			1							
		Type B										
		Type C			1	1						
		Subtotal			2	1						
	50+	Type A										
		Type B			6							
		Type C			3							
		Subtotal			9							

Facility Type	Posted	Terminal		Mai	nline			Ra	mps		Features	Crashes	
	Speed	peed Type	Inter	state	Non-In	terstate	Inter	state	Non-In	terstate	Subtotal	Sub-	
			Features	Crashes	Features	Crashes	Features	Crashes	Features	Crashes		total	
Urban	40-45	Type A			7						62	4	
Other		Type B											
Freeways /		Type C											
Express		Subtotal			7								
ways	50+	Type A			13	1							
		Type B			2								
		Type C			5								
		Subtotal			20	1							
	Unknown	Type A					1	1	19	1			
		Type B							8	1			
		Type C							7				
		Subtotal					1	1	34	2			
Urban	0-35	Type A			2						19	19	1
Other Principal		Type B			3								
Arterial		Type C											
		Subtotal			5								
	40-45	Type A			2								
		Type B			1								
		Type C											
		Subtotal			3								
	50+	Type A			8	1							
		Type B			1								
		Type C			2								
		Subtotal			11	1							
	Grand Tota	al	109	14	206	5	87	14	35	3	437	36	

ANALYSIS AND FINDINGS

There was only one fatal crash and no serious injury crashes from 2011 through 2020 (10 years) among the 36 identified crashes with the features (see Table 7). The initial analysis reviewed only five years of crashes but because of the low crash counts during this period, the five-year period was extended to ten years. This increased the sample size somewhat but overall frequency of crashes involving these buried ends remain low.

In the fatal crash the vehicle (a Toyota Camry), departed the roadway to the left, struck the Type B (Buried in Backslope) end, rode up the barrier, slid along the top of the concrete barrier, and then impacted the post of a large overhead sign structure behind the barrier. The driver was over the legal limit for both alcohol and cannabis. There were no other passengers or vehicles involved.

Table 7 shows the total crashes with concrete buried ends by severity. There was only one fatal or serious injury crash involving these features. Simply put, if there were 1000 concrete buried ends, it would equate to a fatal and serious injury crash among all of these ends every 4.4 years, an evident injury crash every 1.1 years, a possible injury every 4 months and a property damage only crash every month.

The question then becomes how the number of crashes with these concrete buried ends can be placed into perspective. To this end, Table 8 summarizes the performance of guardrail end treatments between 2016 and 2020, showing that the performance of these devices is quite similar. The percentage fatal and serious injury crashes with guardrail end treatments are slightly higher at 3.4% compared to the 2.8% of buried concrete ends.

Table 7 Crash Count by Severity for 2011 through 2020 (Source: WSDOT Engineering CrashDatamart)

Crash Severity	Number of crashes with buried concrete ends (10-year total)	Crashes per unit per year	Crash intervals for an equivalent 1000 concrete buried ends	% of total crashes with concrete buried ends
Fatal crashes	1	0.00023	4.4 years	2.8%
Serious injury crashes	0	0	N/A	0%
Evident injury crashes	2	0.00046	2.2 years	5.6%
Possible injury crashes	8	0.00183	6 months	22.2%
Property damage only crashes	25	0.00572	2 months	69.4%
Total	36	0.00824	1.5 months	100%

Table 8 Impacts with guardrail end treatments on state highways from 2016 to 2020 (Source:WSDOT Engineering Crash Datamart)

Crash Severity	Crashes with guardrail end treatments	Crashes with guardrail end treatments per unit per year	Crash intervals for an equivalent 1000 guardrail end treatments	% of total crashes with guardrail end treatments
Fatal crashes	17	0.00009	11.7 years	1.9%
Serious injury crashes	14	0.00007	14.3 years	1.5%
Evident injury crashes	84	0.00042	2.4 years	9.2%
Possible injury crashes	143	0.00072	1.4 years	15.6%
Property damage only crashes	657	0.00329	4 months	71.8%
Total	915	0.00458	3 months	100%

Table 9 shows crash count by location. As also shown in Table 6, crashes were nearly evenly split between mainlines and ramps with a majority occurring on interstate.

Table	9	Crash	Count	by	Location
-------	---	-------	-------	----	----------

Location	Number of Crashes	Number of Features
Interstate	30	196
Mainline	10	109
Ramp	20	87
Non-Interstate	6	241

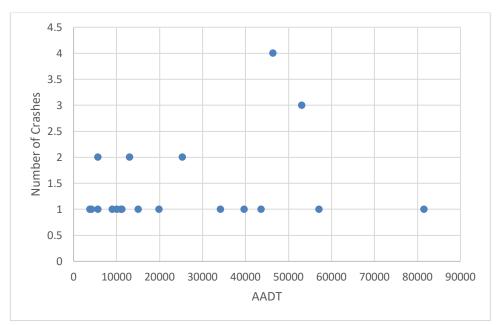

Mainline	5	206
Ramp	1	35
Grand Total	36	437

Table 10 shows crash count by type. Impacts with the Type A (Buried) end type represents 86% of the total crashes with buried ends while the Type A end type represents 52% of all the concrete buried end types. The Type B (Buried in Backslope) end type represents 31.1% of the inventory while only 11.1% of the crashes with buried ends occurred at Type B locations.

Table 10 Crash Count by Type

Туре	Number of Crashes	Number of Features	% of Crashes	% of Features
Type A (Buried)	31	229	86.1%	52.4%
Type B (Buried in Backslope)	4	136	11.1%	31.1%
Type C (Ambiguous)	1	72	2.8%	16.5%
Grand Total	36	437	100%	100%

Figure 4 shows the histogram of AADT, indicating that most crashes occurred in the lower end of the AADT range.

Figure 4 AADT Distribution

Table 11 shows the AADT by crash severity. There was only one fatal crash and one evident injury crash, so no AADT range is specified. There were no serious (A) crashes.

Crash Severity	Minimum AADT	Average AADT	Maximum AADT
Fatal crashes	-	81476	-
Serious injury crashes	-	-	-
Evident injury crashes	5661	26020	46379
Possible injury crashes	4179	28535	57050
Property damage only crashes	3737	26163	53049

Table 11 AADT by Crash Severity

Table 12 shows the outcomes of the crashes (as determined from the PCTR narrative) by type. The Type A (Buried) type caused the greatest number of rollovers and vaults. A vault is where the vehicle became airborne and lost total control over speed and direction, indicated by the PCTR narrative explicitly using the term "vault", "air", or "airborne".

Table 12 Crash Outcomes by Type

Туре	Number of Crashes	Rollovers	Vaults
Type A (Buried)	31	7	5
Type B (Buried in Backslope)	4	1	0
Type C (Ambiguous)	1	1	0
Grand Total	36	9	5

Table 13 shows the total crashes with concrete buried ends that have a rollover postharmful event by severity. There were no fatal or serious injury crashes involving these features. If there were 1000 concrete buried ends, there would be an evident injury crash every 4.4 years, a possible injury every 2.2 years and a property damage only crash every nine months.

Table 14 summarizes the rollover performance of guardrail end treatments between 2016 and 2020.

Table 13 Rollover Count by Severity for 2011 through 2020 (Source: WSDOT Engineering Crash Datamart)

Crash Severity	Number of rollovers with buried concrete ends (10-year total)	Rollovers per unit per year	Rollover intervals for an equivalent 1000 concrete buried ends	% of total rollover with concrete buried ends
Fatal crashes	0	0	N/A	0%
Serious injury crashes	0	0	N/A	0%
Evident injury crashes	1	0.00023	4.4 years	11.1%
Possible injury crashes	2	0.00046	2.2 years	22.2%
Property damage only crashes	6	0.00137	9 months	66.7%
Total	9	0.00206	6 months	100%

Table 14 Rollovers with guardrail end treatments on state highways from 2016 to 2020 (Source:WSDOT Engineering Crash Datamart)

Crash Severity	Rollovers with guardrail end treatments	Rollovers with guardrail end treatments per unit per year	Rollover intervals for an equivalent 1000 guardrail end treatments	% of total rollovers with guardrail end treatments
Fatal crashes	8	0.00004	25 years	8.2%
Serious injury crashes	4	0.00002	50 years	4.1%
Evident injury crashes	17	0.00009	12 years	17.5%
Possible injury crashes	24	0.00012	8 years	24.7%
Property damage only crashes	44	0.00022	4.5 years	45.4%
Total	97	0.00049	2 years	100%

Table 15 shows the total crashes with concrete buried ends that have a vault postharmful event by severity. There were no fatal or serious injury crashes involving these features. If there were 1000 concrete buried ends, there would be an evident injury crash every 4.4 years, a possible injury crash every 2.2 years and a property damage only crash every 2.2 years. Table 16 summarizes the vault performance of guardrail end treatments between 2016 and 2020. This data was obtained by searching the PTCR narratives for the same keywords used to identify vaults for the buried concrete barrier ends ("vault", "airborne", and "air") and manually reviewing the reports.

Table 15 Vault Count by Severity for 2011 through 2020 (Source: WSDOT Engineering Crash Datamart)

Crash Severity	Number of vaults with buried concrete ends (10-year total)	Vaults per unit per year	Vault intervals for an equivalent 1000 concrete buried ends	% of total vault with concrete buried ends
Fatal crashes	0	0	N/A	0%
Serious injury crashes	0	0	N/A	0%
Evident injury crashes	1	0.00023	4.4 years	20%
Possible injury crashes	2	0.00046	2.2 years	40%
Property damage only crashes	2	0.00046	2.2 years	40%
Total	5	0.00114	10 months	100%

Table 16 Vaults with guardrail end treatments on state highways from 2016 to 2020 (Source:WSDOT Engineering Crash Datamart)

Crash Severity	Vaults with guardrail end treatments	Vaults with guardrail end treatments per unit per year	Vaults intervals for an equivalent 1000 guardrail end treatments	% of total Vaults with guardrail end treatments
Fatal crashes	3	0.00002	66 years	75%
Serious injury crashes	1	0.00001	200 years	25%
Evident injury crashes	0	0	N/A	0%
Possible injury crashes	0	0	N/A	0%
Property damage only crashes	0	0	N/A	0%
Total	4	0.00002	50 years	100%

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

In the ten-year period from 2011 through 2020, 36 crashes on WSDOT state highways under WSDOT jurisdiction involved impacts with buried concrete ends. The current inventory indicates that there are 437 buried concrete barrier ends on the state highway network.

86% of the crashes with buried concrete ends was with the Type A (Buried) end type. These devices represent 52% of buried concrete ends on the system. It is frequently found on urban interstates and urban interstate ramps. It is also associated with the highest number of vaults and rollovers: 7 and 5 respectively.

In 11% of the crashes with buried concrete ends, a Type B (Buried in Backslope) type was hit. This end type represents 31% of buried concrete ends on the system. These devices are mostly found in rural environments.

The Type C (Ambiguous) end type is least common buried type, representing 17% of these buried ends, and only one crash was reported with this type in the ten years under review (3% of the total crashes). These buried end types are most commonly found in rural environments.

The performance of the buried ends is better than the performance of other end treatments with respect to fatal and serious crashes:

- The overall percentage of fatal and serious injury crashes with buried ends is 2.8% compared to 3.4% of other guardrail end treatments.
- The percentage of fatal and serious injury crashes with rollovers as a post-harmful event is 0% compared to 12.3% of other guardrail end treatments. Rollovers are more common for buried concrete barrier ends for all crash severities. When considering hypothetically 1000 units of buried concrete barrier ends and 1000 units of end treatments, the equivalent rollover event would occur once every six

months at buried concrete barrier ends compared to once every two years for a group of 1000 guardrail end treatments.

• The percentage of fatal and serious injury crashes with vaults as a post-harmful event is 0% compared to 100% of other guardrail end treatments. Vaults are more common for buried concrete barrier ends for all crash severities: when considering 1000 buried ends and 1000 end treatments, these vault events would occur once every ten months at one of the 1000 buried ends compared to once every 50 years for the group of 1000 guardrail end treatments. Therefore these events are rare.

Recommendation

Based on the analysis that found a low frequency of crashes involving these features, a low crash severity associated with these crashes, and that their performance with respect to fatal and serious crashes is better than other end treatments, it is concluded that a special I2 subcategory to modify or remove Type A and Type C buried ends is not warranted: the costs will outweigh the return on investment.

Americans with Disabilities Act (ADA) Information:

This material can be made available in an alternate format by emailing the Office of Equal Opportunity at wsdotada@wsdot. wa.gov or by calling toll free, 855-362-4ADA(4232). Persons who are deaf or hard of hearing may make a request by calling the Washington State Relay at 711.

Title VI Statement to Public:

It is the Washington State Department of Transportation's (WSDOT) policy to assure that no person shall, on the grounds of race, color or national origin, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its federally funded programs and activities. Any person who believes his/her Title VI protection has been violated, may file a complaint with WSDOT's Office of Equal Opportunity (OEO). For additional information regarding Title VI complaint procedures and/or information regarding our non-discrimination obligations, please contact OEO's Title VI Coordinator at (360) 705-7082.