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EXECUTIVE SUMMARY 

Timely information collection and assessment of transportation assets are beneficial to 

daily maintenance practices of state departments of transportation (DOTs). However, traditional 

transportation asset assessment methods either rely on the labor-intensive manual data collection 

process or employ costly devices (e.g., light detection and ranging (LiDAR)) that are prohibitive 

in frequent data collection due to high operational costs. With the advancement of computing 

techniques, artificial intelligence (AI) (e.g., computer vision and deep learning) has demonstrated 

its capabilities in automatic and accurate object detection, comparable to human eyes. Therefore, 

to fully explore the applicability of AI in transportation-relevant applications, this project aims to 

develop reliable and accurate AI algorithms with capabilities of automatic object identification, 

including pavement marking issues, traffic signs, trash and litter on the roads, and steel guardrails 

and concrete barriers, aiming to improve the current practice of transportation asset management.  

First, this project reviewed the pros and cons of existing technologies in transportation asset 

data collection. The commonly used techniques include but are not limited to ground-penetrating 

radar, LiDAR, infrared thermography, and close-range photogrammetry, among which the close-

range optical image is considered a reliable way of timely information collection without 

introducing excessive cost. In addition, we have reviewed the applied AI algorithms in 

transportation asset monitoring and inspection, including regional convolution neural networks 

(RCNN), faster RCNN, and You Only Look Once (YOLO). Generally, YOLO, as one of the deep 

learning-based AI algorithms, excels in object detection with high accuracy and computational 

efficiency. In the past, these AI algorithms have been widely utilized in pavement issue 

identification. Limited research has been conducted to apply AI in detecting pavement marking 

issues and identifying traffic signs, trash & litter on the roads, and steel guardrails and concrete 

barriers. 

Next, a smartphone was mounted on the front windshield of a vehicle to collect videos of 

targeted transportation assets and issues on state highways and local roads. In total, approximately 

31 hours of videos were collected, including all types of objects of interest, i.e., pavement 

markings, traffic signs, steel guardrails and concrete barriers, and litter and trash on the roads. 

These videos were processed into labeled images to train robust AI algorithms.  



 

2 

Finally, utilizing labeled images as training and test data, three AI models were developed 

for the automatic detection of pavement marking issues, traffic signs, and litter and trash. 

Specifically, the AI model for the identification of pavement marking issues is capable of detecting 

faded white and yellow pavement markings. The traffic sign model has the ability to identify 

regulatory signs, speed-related signs, warning signs, and guide signs. The litter and trash model 

can be used to detect white litter, black litter, dirt, and leaves on the roadside. Additionally, this 

project developed a prototype AI algorithm to identify steel guardrails and concrete barriers. 

Iterative training and tuning were implemented to ensure the robust performance of the developed 

algorithms. The results show that the developed AI models achieve good performance with the 

accuracy of over 85% in transportation asset identification.  

The developed mobile phone-based AI package in this project delivers an accurate, 

efficient, and automated approach to collect and analyze transportation asset data, hence, enabling 

the inspection of transportation assets on a more frequent basis and further improving road safety. 
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1.0 INTRODUCTION 

1.1 Problem Statement 

Timely assessment of transportation asset conditions facilitates the practice of effective 

asset management with optimized resource allocation. The damage or deterioration of certain types 

of assets (e.g., debris on roads, faded pavement markings) also introduces traffic safety risks. 

Collecting this information on a frequent basis and prioritizing the maintenance of these assets are 

of significance to further improve asset management practices and road safety. However, 

traditional asset assessment methods heavily rely on the manual process, which could be labor-

intensive and time-consuming (Schnebele et al., 2015). Also, manually collected data are usually 

incomplete, thus, insufficient for comprehensive assessments of transportation asset conditions 

(De Blasiis et al., 2020). Despite advances in sensing techniques such as Light Detection and 

Ranging (LiDAR) and infrared thermography in transportation asset information collection (Lin 

et al., 2022; Solla et al., 2014), these are expensive to operate. Limited scanning is allowed 

periodically for information collection. Hence, there is an urgent need to develop a lightweight 

information collection and assessment technique capable of acquiring transportation asset 

information in a timely and accurate manner.  

In addition to timely information collection, automatic identification and evaluation of 

transportation assets are beneficial to save labor in asset management practice. Computing-based 

image analysis and object detection are similar to visual inspection by human inspectors (Spencer 

et al., 2019). Therefore, one promising solution is to leverage artificial intelligence (AI), more 

specifically, computer vision and deep learning to facilitate the process. The advancement of 

computer vision and deep learning has enabled object detection and image classification in various 

fields, including the automated detection of transportation assets (Du et al., 2020; Ghosh & Smadi, 

2021). A well-developed AI model is expected to deliver a low-cost, objective, and efficient 

approach with timely detection and high accuracy in transportation asset assessment (H. Nguyen 

et al., 2018; Pang et al., 2021). The key steps to develop AI models include sufficient collection, 

labeling, and utilization of data (e.g., videos and images) in the algorithm process. In this regard, 

the basis for AI model development is the image, which can come from different sources, for 

example, photos taken from drones (Alzraiee et al., 2021), LiDAR images (Lin et al., 2022), 
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Google Street views (Campbell et al., 2019), and images taken by cameras or even phones (Wu & 

Ranganathan, 2012). Among different sources of images, cameras or phones are cheaper and more 

available than most other devices (Hanson et al., 2014). Therefore, combining AI models with 

images taken by phones has great potential in automatic data collection and identification of 

transportation assets.  

Therefore, this project aims to develop accurate and easily deployed AI algorithms to 

facilitate transportation asset management in an automatic manner. The proposed technology 

leveraged a smartphone mounted on the front windshield of a vehicle to collect videos. Then, based 

on these collected videos, we developed AI algorithms that can automatically assess the conditions 

of pavement markings and identify traffic signs and litter on the roadside. A prototype algorithm 

for detecting concrete barriers and steel guardrails was also developed. The proposed technology 

offers an affordable solution to enable maintenance asset data collection on a more frequent basis.  

1.2 Research Objectives 

There are two research objectives in this project.  

The primary objective of this project is to develop usable AI algorithms capable of 

automatically detecting certain types of transportation assets, including pavement markings, traffic 

signs, and steel guardrails and concrete barriers, as well as the litter and trash on roads.   

With the developed algorithms, the other objective of this research is to evaluate the 

performance of leveraging a mobile phone as a lightweight and easily implementable data 

collection method to facilitate the auto-detection of transportation assets.  

1.3 Research Scope 

The project consists of five main research tasks (listed below), i.e., developing usable AI 

algorithms to detect pavement marking issues, traffic signs, trash/litter, and a prototype algorithm 

to identify concrete barriers and steel guardrails. The identification of pavement issues was 

originally in the scope but removed based on the comments of the TAC. Also, the AI development 

currently focuses on state roads (highways), although data collection/processing in the AI 
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algorithm development incorporates both state and local roads. The five specific tasks are 

described below:  

Task 1: Literature review: Review existing technologies and current practices in 

transportation asset information collection. 

Task 2: Preliminary study: Record videos of roadways using mobile phones and pre-

evaluate the capability of AI in transportation asset identification (basic assumption: an 

object/phenomenon that human eyes can capture could also possibly be detected by AI). 

Task 3: Proof of concept 1: Develop AI algorithms to detect pavement marking issues, 

traffic signs, and trash and litter on the road. 

Task 4: Proof of concept 2: Develop a prototype algorithm for concrete barriers and steel 

guardrail identification. 

Task 5: Project report preparation: Prepare the final project report. 

1.4 Outline of Report 

The remaining report is structured as follows. Section 2 reviews the pros and cons of 

current common practices in transportation asset data collection and applications of AI algorithms 

in maintaining various transportation assets. Section 3 introduces the methods used in this project 

and accuracy metrics to measure the developed algorithms’ performance. The results and 

performance of the developed AI models for the identification of pavement marking issues, traffic 

signs, and litter/trash, as well as the prototype algorithm for steel guardrail and concrete barrier 

identification are presented in section 4. Finally, section 5 summarizes the key findings and 

recommendations for future work.  
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2.0 LITERATURE REVIEW 

2.1 Transportation Assets Data Collection 

Various sensing techniques, including ground-penetrating radar (GPR), light detection and 

ranging (LiDAR), and infrared thermography (IRT), have been developed and applied to 

transportation asset data collection (such as pavement, pavement markings, and traffic signs).  

2.1.1 Ground-Penetrating Radar (GPR) 

GPR is an electromagnetic-based geophysical method employing radar pulses (200mm-

3m) to image the subsurface with either a ground-coupled antenna (60cm-3m) or an air-coupled 

antenna (200-300mm) (Schnebele et al., 2015). The principle of GPR is shown in Figure 2.1. A 

GPR transmitter and antenna emit electromagnetic energy into the ground. When the energy 

encounters a buried object or boundary between materials with different dielectric permittivity, it 

may be reflected, refracted, or scattered back to the surface. A receiving antenna can then record 

the variations in the return signal, including the arrival time and the magnitude of the reflected 

signal (Tong et al., 2020).  

 

Figure 2.1 The Principle of GPR 

(Khamzin et al., 2017) 

GPR has been proven to be a useful technology in collecting and assessing pavement 

conditions. Specifically, within a pavement segment, the dielectric permittivity varies in different 

pavement conditions. The dielectric permittivity of poor-quality pavement is different from that of 

high-quality pavement (Khamzin et al., 2017). GPR can also operate on moving survey vehicles 
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(see Figure 2.2), which promotes its application in obtaining and assessing structures and materials 

of pavements, such as pavement layer thickness measurement, void discovery, and pavement 

distress detection (Khamzin et al., 2017; Vilbig, 2013). 

 

Figure 2.2 GPR Mounted on a Survey Vehicle  

(Khamzin et al., 2017) 

However, GPR has limitations in application. First, this technology requires the operators 

to have knowledge of both electromagnetic waves and pavement distress to interpret the results 

(Tong et al., 2020). Second, GPR can measure the depth and thickness of subsurface irregularities 

but cannot provide accurate horizontal information (Schnebele et al., 2015). Additionally, GPR is 

a subsurface detector to map underground anomalies but cannot be applied to collect the 

aboveground transportation assets (e.g., traffic signs and barriers) (Dai & Yan, 2014).  

2.1.2 Light Detection and Ranging (LiDAR) 

LiDAR is another common technology applied in transportation. The principle of LiDAR 

is shown in Figure 2.3. It measures ranges through targeting an object with a laser and then 

measuring the travel time of the reflected light back to the receiver. There are various types of 

LiDAR based on laser-mounted platforms, including the Terrestrial Laser Scanner (TLS) and 

Mobile Laser Scanner (MLS) (Schnebele et al., 2015; Topo, 2020). TLS uses ground-based remote 

sensing systems, usually mounted on static tripods, to scan objects in all directions. Once the scan 

in one area is complete, the tripod will be moved to another location to scan from another angle or 

capture data in a new area. Furthermore, MLS allows the acquisition of 3D data employing one or 
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more laser scanners mounted on moving vehicles, unmanned aerial vehicles (UAVs), or 

helicopters. Figure 2.4 shows a mounted MLS on a moving vehicle.  

 

Figure 2.3 The Principle of LiDAR 

 

Figure 2.4 Mobile LiDAR System on a Moving Vehicle 

(Olsen et al., 2018) 

LiDAR is widely applied to retrieve transportation asset information. Laser scanners are 

able to capture millions of 3D coordinates (also known as points), which form point clouds (Topo, 

2020). These point clouds provide accurate and high-resolution 3D data and create digital models 

of the scanned environment (De Blasiis et al., 2021). For example, the 3D model created for 

pavement will facilitate the identification and evaluation of different types and severity levels of 

road roughness and distress (De Blasius et al., 2020; 2021). In addition to the pavement condition 

assessment, LiDAR is also applicable to collect and assess the information of lane markings (e.g., 

dashed lines, continuous lines, and direction arrows) and traffic signs (Gargoum et al., 2017; 

Zeybek, 2021).  
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LiDAR has several advantages in information collection and assessment of transportation 

assets. First, it has high accuracy and resolution in transportation asset data collection. Secondly, 

this technique is not sensitive to the ambient environment of data collection, e.g., humidity or 

temperature (De Blasiis et al., 2021). However, the cost of LiDAR is much higher than that of 

other technologies (Ragnoli et al., 2018; Schnebele et al., 2015). Also, the operation and analysis 

of LiDAR data require expert knowledge, which introduces additional barriers to technology 

application (Farhadmanesh et al., 2021).  

2.1.3 Infrared Thermography (IRT) 

IRT operates by measuring the amount of radiation emitted from an object in the infrared 

range (9-14μm) using infrared (IR) cameras (Schnebele et al., 2015). The measured radiation is 

affected by the emissivity and temperature of targeted objects, as well as surrounding weather and 

atmospheric conditions. Then, the measured amount of thermal infrared radiation can be converted 

into temperature, which is usable to indicate any anomalies of transportation assets based on the 

known difference in thermal properties between normal and defective areas (Garrido et al., 2018). 

Figure 2.5 shows examples of pavement IR images.  

 

Figure 2.5 IR Image of Pavement 1 

IRT also provides remote measurements of objects of interest in wide areas (Sakagami, 

2015). It is usually used to detect issues (e.g., pores, cracks, and delamination) related to asphalt, 

                                                 

1  https://www.flir.com/discover/rd-science/mobile-infrared-scanning--a-high-tech-accurate-alternative-to-

traditional-bridge-inspection-methods/ 
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metal, and concrete (Garrido et al., 2018; Lu et al., 2017). However, the spatial resolution of 

thermal images for most infrastructure is typically low, hence, affecting the inspection results. 

Moreover, in contrast to GPR, IRT is usable for horizontal data collection and measurement but 

not vertical measurements, such as thickness and depth of the subsurface (Schnebele et al., 2015). 

IR image collection, in many cases, requires costly professional IR cameras for accurate 

measurement as well (Garrido et al., 2018).  

2.1.4 Hyperspectral Imagery (HSI) 

HSI utilizes large numbers of narrow, contiguous spectral bands (sometimes ranging from 

as much 0.35-2.4μm) to gather detailed spectral information of an observed feature, often related 

to chemical and mineral properties (Schnebele et al., 2015). Figure 2.6 shows a hyperspectral 

image cube with two axes describing spatial information and one for spectral information. These 

are sufficient to differentiate natural and artificial objects (Gomez, 2002). The data collection and 

analysis by HSI are based on varied spectral reflectance across different materials. For example, 

the material inside road cracks differs from the material of worn surfaces, which can be captured 

by different spectral signals in hyperspectral images (Abdellatif et al., 2019). Therefore, HSI is 

applicable to assess the characteristics of pavement (Özdemir et al., 2020), including the 

identification of the defects and anomalies of pavement. 

 

Figure 2.6 Hyperspectral Image Cube  

(Gomez, 2002) 

HSI is an effective nondestructive technology to determine the physical and chemical 

parameters (Ayalew et al., 2003). However, due to the operation principles of HSI, its application 
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has certain limitations. First, it is mainly used to assess asphalt pavement conditions (Abdellatif et 

al., 2020). Moreover, it is difficult to distinguish the degree of weathering of an aged pavement, 

even when the differences are evident (Schnebele et al., 2015). In addition, the high price limits 

its application in the field (Ozdemir & Polat, 2020).  

2.1.5 Close-Range Photogrammetry (CRP) 

CRP is suitable for sensing physical objects at a distance less than 330 ft (100 m) from the 

camera (Jiang et al., 2008). This technique is usually used to measure and analyze the two-

dimensional photographs collected by cameras. The final outputs of CRP can also be three-

dimensional models reconstructed from 2D images taken from different angles. The 3D 

information is usable to assess the condition of objects (Farhadmanesh et al., 2021).  

The application areas of CRP are relatively broader than other technologies. For example, 

cameras mounted on a vehicle (see Figure 2.7) have been utilized to detect transportation asset 

issues (e.g., pavement, guardrail, and marking) (Farhadmanesh et al., 2021; Liq et al., 2012). Also, 

these image data can be combined with other techniques, e.g., deep learning and image processing, 

to extend its application. For example, traffic signs can be detected automatically based on the 

color of objects, geometrical edge, and corner analysis (Ruta et al., 2010). 

 

Figure 2.7 Mobile Photogrammetry Setup and the View 

(Farhadmanesh et al., 2021) 

CRP provides a direct way of data collection (through mobile phones or cameras) and 

analysis, hence, allowing frequent data updates without introducing high costs (Ahmed et al., 2011; 

Hanson et al., 2014). However, CRP also has limitations. Mainly, its precision and accuracy could 
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be lower compared to other technologies (Ragnoli et al., 2018). Moreover, some factors (e.g., 

vehicle speed, camera quality, light conditions, etc.) will affect the final resolution of the images 

collected (Farhadmanesh et al., 2021; Gargoum et al., 2017).  

2.1.6 Brief Summary 

The comparisons of the five sensing techniques are shown in Table 2.1. Overall, GPR, IRT, 

and HSI have limited application areas. Although LiDAR, GPR, IRT, and HSI have relatively high 

accuracy, they need costly professional instruments and expert knowledge to collect and interpret 

the data. In contrast, CRP is a low-cost method of data collection, which can be easily achieved 

with mobile phones. Therefore, close-range photogrammetry has demonstrated its great potential 

as an affordable and reliable approach to assessing the conditions of various types of transportation 

assets.  

Table 2.1 Comparisons of Different Sensing Techniques 

Technique Accuracy Data Analysis Knowledge Application Range Cost 

GPR High Complex Limited High 

LiDAR High Complex  Wide High 

IRT Medium Complex  Limited High 

HSI Medium Complex  Limited High 

CRP Relatively low Medium Wide Low 

2.2 Transportation Asset Maintenance AI Models 

AI models (e.g., computer vision and deep learning) perform well in automatic object 

detection and image classification. Currently, these AI models have been applied in transportation 

asset monitoring and maintenance practices.  

2.2.1 Artificial Intelligence Models 

Computer vision is an interdisciplinary research area to understand the underlying physical 

world by extracting and analyzing valuable information from images or videos (Huang et al., 

2021). Image analysis and object detection by computer are similar to visual inspection by human 

inspectors due to the information captured by images or videos being analogous to that obtained 

by humans (Spencer et al., 2019). From low-level to high-level processing, computer vision 



 

13 

includes image acquisition, segmentation, feature extraction, object recognition, and structure 

analysis (Koch et al., 2015).  

Deep learning has a strong capability to interpret images, sounds, and text by mimicking 

the mechanisms of the human brain in interpretation. The frameworks of deep learning consist of 

multiple layers of neuron nodes, and the training dataset is used to solve the weights of the neural 

network and form the AI model (Lu, 2019). There are large numbers of deep learning frameworks 

available, such as You Only Look Once (YOLO) (Redmon et al., 2016), Convolutional Neural 

Networks (CNN), and Region-CNN (RCNN) (Krizhevsky et al., 2017). Compared with other deep 

learning methods that propose regions of interest first before convolution operation, YOLO 

performs detection and classification simultaneously (Redmon et al., 2016). This makes YOLO 

run faster than other algorithms (e.g., Faster RCNN) and achieve higher mean average precision 

(Redmon et al., 2016). Consequently, YOLO is proven to be an object detection model with high 

accuracy and speed among deep learning models. 

In recent years, due to the high accuracy and fast speed of deep learning, deep learning has 

fueled significant strides in various computer vision problems, including object detection and 

image segmentation (Voulodimos et al., 2018). Compared to traditional computer vision 

algorithms, deep learning has many advantages. Traditional computer vision algorithms use certain 

programming paradigms to extract features, requiring trial and error to select the appropriate ones 

(O’Mahony et al., 2020). On the other hand, deep learning directly uses a training framework with 

a set of inputs and known outputs, which alleviates the tedious process of feature extraction and 

signal processing (O’Mahony et al., 2020). Second, deep learning can achieve better performance 

compared to other traditional computer vision methods, especially in big data analysis, e.g., video 

data processing and analysis (Huang et al., 2021). 

2.2.2 Applications of AI Models in Transportation Assets Maintenance 

Various AI algorithms have been applied to transportation asset maintenance, among 

which pavement condition assessment is a major research area. The commonly used deep learning 

methods include CNN (Gopalakrishnan et al., 2017), Faster RCNN (Majidifard et al., 2020), and 

YOLO (Mandal et al., 2020). There are also rich public datasets related to pavement distress that 

were collected by smartphones, cameras, and Google view images (Majidifard et al., 2020; Mandal 
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et al., 2020). Based on these AI models and data sources, multiple types of pavement distresses, 

for example, transverse cracks, longitudinal cracks, block cracks, potholes, and alligator cracks, 

can be automatically identified with high accuracy (Du et al., 2020; Ghosh & Smadi, 2021; 

Majidifard et al., 2020). Besides, there are several studies focusing on the pavement issues related 

to specific types of pavement, e.g., asphalt pavement (Wang et al., 2017; Wen et al., 2022) and 

Portland cement concrete (Gopalakrishnan et al., 2017). Some exceptional cases were also studied, 

such as object detections in nonideal photographic images with low illumination levels or shadows 

cast by nearby objects (Tepljakov et al., 2019). 

Other than pavement, previous studies related to automatic pavement marking condition 

assessment also exist. Zhang & Ge (2012) adopted traditional image processing methods (e.g., 

camera calibration, Hough transformation, feature recognition, etc.) to assess conditions of 

pavement marking automatically. Xu et al. (2021) also applied image pre-processing, feature 

extraction, and segmentation to detect and assess the damage of pavement line markings. 

Traditional image processing techniques, however, have insufficient robustness because they rely 

on accurate feature extractions from images, which could be affected by various types of noise 

originating from complex real-world situations, e.g., light and shadows (S. Li & Zhao, 2019). In 

terms of the applications of deep learning, Kawano et al. (2017) applied YOLO to detect faded 

pavement markings. However, the accuracy of detection was less than 50% due to inaccurate 

annotations. Kang et al. (2020) developed a framework to evaluate the visibility conditions of 

pavement markings based on deep learning (YOLOv3). Additional image processing techniques 

(e.g., edge extraction, mask construction, and gray transformation) for image processing are 

required in their developed framework. Vokhidov et al., (2016) used the CNN to detect damaged 

pavement markings with a focus on arrow-based markings. Wei et al., (2021) combined Fater-

RCNN with U-Net to evaluate the damage ratio of white pavement markings while neglecting 

other pavement markings.  

Another application area of AI algorithms in transportation asset management is the 

identification of traffic signs. Hoang et al. (2018) combined different computer vision methods 

(e.g., image augmentation and region processing) with CNN to establish an AI model for traffic 

sign recognition. Similarly, Tabernik & Skočaj (2020) used a deep learning model, more 

specifically mask R-CNN, to build an automatic traffic-sign inventory management system 
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involving 200 categories of traffic signs. Based on open-source images (i.e., Google Street view 

images), Campbell et al. (2019) built a training dataset and developed a deep learning model to 

identify the Stop and Give Way signs on the streets. The robustness of automatic traffic sign 

detection in special scenarios (e.g., snowy days, low illumination) has been studied as well (Chehri 

et al., 2021; Khan et al., 2018). 

Compared to pavement issues, fewer studies were conducted on litter and trash recognition 

on roads. Liu et al. (2018) applied YOLOv2 to detect garbage on the pavement; however, only one 

class of garbage was considered. Likewise, the AI model developed by Sayyad et al. (2020) did 

not classify different types of identified garbage and was only applicable to garbage of large size. 

P. Zhang et al. (2019) applied Faster R-CNN to identify different categories of litter and count the 

number automatically. Although this study mentioned eight categories of litter, including 

inorganic, organic, trash, and tree leaves, the image data used were collected entirely on street 

roads, which may limit its application to litter detection on highways.  

Furthermore, there is far less research to detect steel guardrails and concrete barriers. Hou 

et al. (2022) proposed an automatic guardrail detection model based on 3D local features 

extraction; however, the model is based on mobile LiDAR data. Regarding RGB images, Z. Liu 

et al. (2020) built a standard urban image database containing eight categories of urban images in 

cities, among which damaged traffic guardrail is one category. Jin et al. (2021) integrated feature 

extraction with mask RCNN to detect steel guardrails on highways; however, concrete barriers 

were ignored in this model.  

2.2.3 Brief Summary 

Overall, deep learning and computer vision have outstanding performance in automatic 

object detection and image classification. In the past, they have been used in many fields, including 

transportation assets monitoring and inspection. Pavement condition assessment is one of the most 

studied areas, followed by traffic signs identification, which proves the great potential of 

applications of AI models in transportation assets detection. However, relatively less research has 

been conducted on identifying pavement marking issues, steel guardrails and concrete barriers, 

and litter/trash on roads.  
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2.3 Commercial Practices of Transportation Assets Data Collection and Management 

Leveraging these data collection techniques and AI models, companies and organizations 

have developed commercial platforms to facilitate transportation asset management practices.  

2.3.1 Pillar 

Pillar1 is an infrastructure asset management firm that has developed an AI-based system 

to manage transportation assets, including data collection to form an inventory database, 

assessment of asset conditions, development of maintenance plans, and execution assistance. In 

this system, mobile LiDAR and imagery scanning are used to collect the asset data. AI algorithms 

are then developed to process collected data and automatically extract transportation assets (e.g., 

traffic signs, guardrails, striping, etc.). With imagery and point cloud analysis, the inventory of 

assets is created with evaluated conditions. Figure 2.8 shows an example of the scanning and 

automatic extraction of steel guardrails. 

 

Figure 2.8 An Example of Guardrail Scan and Automatic Extraction by Pillar 

2.3.2 Esri 

Esri2 has created a deep learning model to predict indicators of road conditions, such as 

road roughness and level of crack damage, by leveraging road traffic density and road condition 

                                                 

1 https://www.pillaroma.com/artificial-intelligence-ai-in-transportation-asset-management/ 
2 https://www.esri.com/en-us/industries/roads-highways/business-areas/maintenance 

https://www.pillaroma.com/artificial-intelligence-ai-in-transportation-asset-management/
https://www.esri.com/en-us/industries/roads-highways/business-areas/maintenance
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data. Esri allows the users to organize road assets comprehensively, understand their location and 

condition, and integrate systems with the leading asset management solutions for road 

maintenance. Besides, Esri provides mobile solutions to help with data collection and asset 

inspection on highways. Florida Department of Transportation (FDOT) has adopted this system, 

called FDOT’s public-facing eMaintenance Web App (see Figure 2.9), which is open to the public 

to see inspection results for crash cushions and guardrails across Florida1. 

 

Figure 2.9 The Interface of FDOT eMaintenance Web App 

2.3.3 Deep Systems 

Deep Systems (Russia)2 is an automatic road defect detection software developed by one 

of the leading Russian research groups based on computer vision and deep learning. The algorithm 

runs in real-time to quickly detect defects (e.g., cracks, holes, and patches) from the recorded 

video. This system also provides a Web dashboard for monitoring and controlling GPU clusters, 

including training models, running defects detection, and viewing results. The dashboard page is 

shown in Figure 2.10. Moreover, it has robust interoperability that supports operators in creating, 

modifying and populating training samples according to their requirements.  

                                                 

1 https://www.esri.com/about/newsroom/arcnews/big-data-is-coming-and-fdot-is-prepared/ 
2 https://deepsystems.ai/solutions/road-defects-detection 

https://www.esri.com/about/newsroom/arcnews/big-data-is-coming-and-fdot-is-prepared/
https://deepsystems.ai/solutions/road-defects-detection
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Figure 2.10 Web Dashboard Page of Deep System 

2.3.4 TRIK 

TRIK1 is an enterprise software solution that allows the efficient use of drone photography 

for structural inspection. It automatically turns photos taken by drones into an interactive 3D 

model, which can be measured and annotated. The 3D model can also serve as a database that 

supports photo search, structural change detection, and project maintenance directly. Besides, the 

created model can help detect pavement issues as well.  

2.3.5 Pavemetrics 

Pavemetrics2 develops a Laser Crack Measurement System (LCMS-2), which is a single-

pass 3D sensor for pavement inspection. The LCMS-2 can automatically geotag, measure, detect 

and quantify critical functional parameters of pavement in a single pass, including but not limited 

to cracking, rutting, texture, potholes, bleeding, shoving, raveling and roughness. 

                                                 

1 https://gettrik.com/ 
2 https://www.pavemetrics.com/applications/road-inspection/lcms2-en/ 

https://gettrik.com/
https://www.pavemetrics.com/applications/road-inspection/lcms2-en/
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2.3.6 Brief Summary 

TRIK and Pavemetrics are commercially available platforms to collect and manage data, 

which can be further processed for pavement condition assessment. Pillar, Esri, and Deep Systems 

are AI-based platforms to assist operators in identifying transportation assets and assessing their 

condition based on deep learning technologies. Increasing combinations of computer vision and 

deep learning technologies have been applied in transportation asset management. 
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3.0 METHODOLOGY 

3.1 Research Process Overview 

The overall workflow of AI model development is shown in Figure 3.1. In general, AI 

algorithm development follows an iterative process. First, a mobile phone was mounted on the 

front windshield of vehicles for video collection. These collected videos were then converted into 

images and labeled for AI model training and test. Specifically, these labeled images were fed into 

the YOLO framework to train the AI models. Model tests were then performed using the test 

videos to identify remaining issues in object detection (manual verification). Then, based on 

identified issues, new images related to these remaining detection errors were further added into 

the training dataset to start a new round of iterative training. The full cycle was repeated for 

iterative model improvement.  

 

Figure 3.1 Flowchart of Model Development and Improvement 

3.2 Data Collection and Processing 

To collect transportation asset data for AI model training and test, a mobile phone (iPhone 

12 pro with a 12-megapixel triple-lens camera at the back) was mounted on the front windshield 

of a vehicle on the passenger side, hence, viewing transportation assets from a front view. The 

setup of video collection on a vehicle is shown in Figure 3.2. 
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Figure 3.2 Setup of Video Collection 

The collected videos have 30 frames per second (fps). In total, approximately 31 hours of 

videos (estimated to contain ~3.3 million images) have been collected on highways and local 

streets. These videos cover all types of transportation assets targeted in the project, including 

pavement markings, traffic signs, steel guardrails and concrete barriers, and litter & trash. Certain 

special scenarios, such as strong glare and low illuminance days, are included in data collection as 

well. To avoid missing objects, each image frame in the recorded videos was extracted in sequence. 

Only extracted images of high quality (e.g., with clear objects) were included in the training and 

test dataset. Additionally, to reduce duplicate images for one object, a maximum of 3 images for a 

single object were selected as training images.  

In addition to the self-collected images, this project has utilized other data sources, e.g., 

images processed from the UDOT Roadview Explorer dataset and Google Street view, to train AI 

models. Our tests found that the self-collected data achieved the best performance in algorithm 

training due to the straight and clear view of transportation assets from the front windshield. 

Therefore, in this stage, only images processed from self-collected videos were used to build AI 

models. 
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3.3 Data Annotations 

This project adopted LabelImg1 to label objects with bounding boxes in the development 

of training and the test dataset. LabelImg is a free and open-source tool to label images graphically. 

We labeled our training dataset separately for the identification of different transportation assets 

in different tasks.  

3.3.1 Pavement Markings Annotations 

In this project, we differentiated the pavement markings into white and yellow markings 

and assessed the conditions of these markings correspondingly. Based on ASTM (2020) and Zhang 

& Ge (2012), markings with over 50% of faded or missing areas were labeled as faded. Hence, 

faded markings were classified into two classes, i.e., “y_faded” (yellow faded markings) and 

“w_faded” (white faded markings) in this study. The “y_faded” includes faded double and single 

curb or lane markings in yellow. “w_faded” includes faded longitudinal lane markings, horizontal 

markings (e.g., crosswalk, stop line), arrow markings, and delineators in white.  

3.3.2 Litter & Trash Annotations 

This project classified trash and litter on the pavement into four types, namely “leaves”: 

vegetation and leaves on the roadside; “dirt”: dirt on the roadside; “w_litter”: litter in white or light 

colors (e.g., plastic, foam); “b_litter”: litter in black or dark colors (e.g., used tire, rubber, branch).  

3.3.3 Traffic Signs Annotations 

Based on the Manual on Uniform Traffic Control Devices (FHWA, 2009), traffic signs 

have been classified into four types, that is, (1) “regulatory”: stop signs, yield signs, Do not enter 

(most in red or white); (2) “speed”: speed limit, school zone (most in white); (3) “warning”: 

warning signs, object markers (most in yellow); and (4) “guide”: destination guide signs, traffic 

movement (most in green). 

                                                 

1 https://github.com/heartexlabs/labelImg 

https://github.com/heartexlabs/labelImg
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3.3.4 Guardrails and Barriers Annotations 

There were two classes presented, namely “concrete”, including cast-in-place concrete 

barriers and New Jersey shape barriers, and “w_beam steel”, such as w-beam with steel blocks and 

w-beam guardrails. 

3.4 You Only Look Once (YOLO) 

YOLO is an object detection model that was pretrained using the COCO dataset. YOLO 

proposes regions of interest and makes detection simultaneously; therefore, YOLO is faster than 

most state-of-the-art algorithms (Redmon et al., 2016). YOLO predicts bounding boxes of target 

objects and probabilities of the associated class directly after one scan of images. Only prediction 

with more than 30% confidence will be considered an effective identification and labeled with 

bounding boxes. YOLO is able to crop the labeled objects for further processing after detection.  

In this project, we use YOLOv51 as the base AI framework and continue the development. 

The architecture of YOLOv5 is shown in Figure 3.3 (S. Xu et al., 2021). The backbone, neck, and 

output are the three main parts of the YOLO framework. First, in the backbone network, a cross-

stage partial network (CSP) and spatial pyramid polling (SPP) are used to extract feature maps 

from the input image in different scales across multiple convolutions and pooling layers (Z. Li et 

al., 2022). In this way, the inference speed and accuracy can be improved. Then, a path aggregation 

network (PANet) is employed in the neck network to make useful information in each feature level 

propagate directly to the following subnetwork. It improves the propagation of low-level features 

through the enhanced bottom-up path and leverages adaptive feature pooling to increase the 

utilization of accurate location signals in lower layers (S. Xu et al., 2021). Finally, the head is the 

output of YOLO. It generates three different sizes of feature maps (18x18, 36x36, and 72x72) to 

detect objects in multiple scales (Redmon et al., 2016; S. Xu et al., 2021). With the developed 

framework, YOLOv5 has a high detection speed and accuracy.  

                                                 

1 https://github.com/ultralytics/yolov5/ 

https://github.com/ultralytics/yolov5/
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Figure 3.3 The Architecture of YOLOv5 

(R. Xu et al., 2021) 

3.5 Accuracy Metrics 

This project applies YOLO to train the AI modes for transportation asset detection. The 

metrics are defined as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

TP describes the true positive, i.e., a positive object is captured by a prediction box, while 

a false positive (FP) dictates that a prediction box is made but captures a wrong object. Likewise, 

false negative (FN) means that a positive object is not detected with any prediction box. The 
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precision reflects the reliability in classifying objects as positive, while the recall measures the 

models’ ability to detect positive objects (i.e., TP). To avoid outperforming in one of the two 

metrics (i.e., precision and recall) but underperforming in the other, the F1-score is introduced to 

balance recall and precision by weighting them equally (Arya et al., 2020). In the reported metrics, 

since our objective is to identify the objects of interest, these objects will be marked as true positive 

as long as they are captured by the developed AI algorithms in the video detection process.  
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4.0 AI MODEL DEVELOPMENT FOR TRANSPORTATION ASSETS 

4.1 Model Training Environment and Parameter Setting 

The training and test in AI model development were performed using a Windows 10 

desktop. The hardware information, configurations of the AI development environment, and 

training parameters are shown in Table 4.1 and Table 4.2.  

Table 4.1 Training Environment Configuration 

Environment Configuration 

CPU 8-Core 

GPU NVIDIA GeForce RTX 3070 

Memory 64GB 

Operating System Windows 10 

Language Python 3.10.4 

Deep Learning Framework PyTorch 1.10.2 

CUDA Version 11.3 

Table 4.2 Training Parameter Settings 

Parameter Setting Parameter Setting 

Size of Input Images 640 x 640  Learning Rate 0.01 

Initial weight Yolov5s Epochs 1000 

Optimizer Adam Batch size 16 

4.2 AI Model Development to Identify Pavement Marking Issues  

1479 images were incorporated into our training dataset for pavement marking model 

development, in which 1088 images were used for training while 391 were used as validation 

images. 

4.2.1 Model Training and Test Performance 

The training process stopped in 315 epochs as no improvement was further observed in the 

last 100 epochs. The best model training result was achieved at the epoch 215. Figure 4.1 illustrates 

the reported accuracy metrics during the algorithm training process, and finally the AI model 

reaches convergence. The model precision is around 87% with a recall rate of 90% and F1 score 

of 89% (Table 4.3). 
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Figure 4.1 Accuracy Metrics of Pavement Marking Issues During Training 

Table 4.3 Training Results of Pavement Marking Issues 

Class Precision Recall F1 score 

all 0.87 0.9 0.89 

w_faded 0.88 0.91 0.89 

y_faded 0.86 0.89 0.87 

 

4.2.2 Examples of Pavement Marking Issues Detection 

In the iterative improvement process, we have performed visual inspections on 

approximately seven hours of videos to validate the performance. More training images were 

incorporated to correct wrong identifications. The addressed detection issues include false 

detection of normal markings as faded markings, wrong classification of pavement issues as faded 

markings, and wrong detection of special markings as faded markings. Examples of pavement 

marking detection by the developed AI model are shown in Figure 4.2. 
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(a) Faded white lane and arrow markings (b) Faded white lane marking 

  
(c) Faded white dot lane marking (d) Faded white crosswalk marking 

  
(e) Faded white stop lane markings (f) Faded white delineator markings 

  
(g) Faded double yellow lane marking (h) Faded single yellow lane marking 

Figure 4.2 Examples of Detection Results of Pavement Marking Issues 
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4.3 AI Model Development to Identify Litter & Trash  

1916 images were used to develop the AI model for trash and litter detection with 1371 

and 545 for training and validation, respectively. 

4.3.1 Model Training and Performance 

The AI model for litter & trash identification converges after 457 epochs since there existed 

no obvious improvement in the last 100 epochs. The optimal training model was achieved at the 

epoch 357. The training process and accuracy metrics are shown in Figure 4.3 and Table 4.4. The 

precision and recall rate of the developed AI model are 86% and 92%, respectively. The F1 score 

is 89%.  

 

Figure 4.3 Accuracy Metrics of Litter & Trash Identification During Training 

Table 4.4 Training Results of Trash & Litter 

Class Precision Recall F1 score 

all 0.86 0.92 0.89 

leaves 0.88 0.93 0.90 

dirt 0.91 0.91 0.91 

w_litter 0.79 0.93 0.85 

b_litter 0.88 0.92 0.90 
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4.3.2 Examples of Litter & Trash Identification 

Around four-hour videos have been tested in the iterative AI model development process. 

The addressed litter & trash detection issues include misclassification of outfall points on highways 

as “b_litter”, and wrong detection of white markings or pavement as “w_litter” or “b_ litter”. 

Examples of trash and litter identification by the developed AI algorithm are demonstrated in 

Figure 4.4. 

4.4 AI Model Development to Identify Traffic Signs  

Overall, 1456 images were used to train the AI model for traffic signs detection, among 

which 1026 and 430 images were employed for training and validation, respectively.  

4.4.1 Model Training and Performance 

The training process stopped in 315 epochs as no improvement was observed in the last 

100 epochs. The best results were observed at epoch 215. Training results are shown in Table 4.5 

and Figure 4.5. The AI model for traffic sign identification reaches convergence within the training 

process. The overall precision is 88% and the recall rate is 90%. The F1 score is 89%. 

Table 4.5 Training Results of Traffic Signs 

Class Precision Recall F1 score 

all 0.88 0.90 0.89 

regulatory 0.94 0.81 0.87 

speed 0.84 0.93 0.88 

warning 0.83 0.93 0.88 

guide 0.89 0.94 0.91 
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(a) Dirt on the highway (b) Black litter on the highway 

  
(c) Dirt and litter on the highway (d) White litter and dirt on the highway 

  
(e) Leaves on the street road (f) Leaves on the street road 

  
(g) Black and white litter on the street road  (h) Dirt on the street road  

Figure 4.4 Examples of Detection Results of Trash & Litter 
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Figure 4.5 Accuracy Metrics of Traffic Signs During Training 

4.4.2 Examples of Traffic Signs Detection 

The model developed for traffic signs was tested on 2-hour videos in the improvement 

process. The addressed detection issues in the iterative improvement process include the 

misclassification of advertisement boards on highways as traffic signs and the failure of sign 

detection when it is obscured by trees. Examples of using AI to identify traffic signs are shown 

in Figure 4.6. 

4.5 AI Prototype Development to Identify Guardrails and Barrier 

A prototype AI algorithm for steel guardrail and concrete barrier identification was 

developed using 241 images, among which 153 and 56 images were used for training and 

validation, respectively. The training process of this prototype AI algorithm development stopped 

in 265 epochs since no improvement was observed in further training. The best results were 

observed at epoch 165.  

The training process is shown in Figure 4.7. The AI model converges during the training 

process with ~80% accuracy in concrete barrier and steel guardrail detection. The training results 

demonstrate great potential to develop a high-performance model to identify steel guardrails and 

concrete barriers. The detection examples for the two classes are shown in Figure 4.8. 
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(a) Traffic movement guide and speed 

warning 

(b) Traffic movement guide 

  
(c) Exit guide and warning marker (d) Warning sign 

  
(e) Speed limit (f) Street guide  

  
(g) Stop sign and street guide  (h) Do not enter and street guide 

Figure 4.6 Examples of Detection Results of Traffic Signs 
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Figure 4.7 Accuracy Metrics of Guardrails and Barriers During Training 

  
(a) W-beam steel guardrail (b) Concrete barrier and steel guardrail 

  
(c) Concrete barrier (d) Concrete barrier and steel guardrail 

Figure 4.8 Examples of Detection Results of Guardrails 
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5.0 CONCLUSIONS 

5.1 Summary 

Close-range photogrammetry (including photogrammetric data collection by mobile 

phones) enables a lightweight solution for timely transportation asset information collection 

without introducing additional cost. Meanwhile, AI models (e.g., computer vision and deep 

learning) perform well in automatic object detection and image classification, showing great 

potential in transportation asset monitoring and maintenance. Therefore, this project develops 

reliable and affordable AI algorithms, capable of analyzing collected videos by mobile phones, to 

facilitate automatic information collection and assessment of transportation assets, including 

pavement markings, traffic signs, trash & litter, and steel guardrails and concrete barriers.   

In total, we collected approximately 31 hours of videos, covering both highways and local 

roads, with a smartphone mounted on the windshield of a vehicle. With videos processed into 

labeled images for training and validation, the AI package was developed for automatic 

information collection of all targeted types of transportation assets listed above. The results show 

that the developed AI models are capable of automatically collecting relevant transportation asset 

information with high accuracy (over 85%) and efficiency. 

5.2 Findings 

In this study, three AI models for automatic detection of pavement marking issues, traffic 

signs, and litter & trash, as well as a prototype model for steel guardrail and concrete barrier 

identification were developed based on training and test images processed from self-collected 

videos by a mobile phone mounted on the windshield of a vehicle. Specifically:  

(1) 1496 images were used to train the AI model for pavement markings issue detection, 

where pavement marking issues have been classified into two classes by color, i.e., faded yellow 

markings (“y_faded”) and faded white markings (“w_faded”). The precision, recall, and F1 score 

of this AI model are 87%, 90%, and 89%, respectively.  
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(2) 1916 images were used to develop the AI model for trash and litter identification, 

including four major classes, i.e., leaves, dirt, white litter (“w_litter”), and black litter (“b_litter”). 

The model achieves 86% precision, 92% recall, and 89% as the F1 score.  

(3) 1456 images were used to train the AI model for traffic sign identification. The traffic 

signs have been classified into four categories: “regulatory,” “speed,” “warning,” and “guide.” The 

accuracy metrics of the developed model are 88% for precision, 90% for recall, and 89% for the 

F1 score. 

(4) A prototype AI algorithm for steel guardrail and concrete barrier identification was 

developed using 241 images. The AI model performs well in identifying both steel guardrails and 

concrete barriers in tested videos and demonstrates great potential to achieve high-accuracy 

detection with further development.  

5.3 Limitations and Future Work 

With decent performance in current AI model development, limitations still exist. Firstly, 

the training dataset is still limited, leading to false detections in certain scenarios. Secondly, the 

performances of the developed AI models are not tested in special scenarios (e.g., rainy days, 

daytime with strong or low illuminance, etc.). These scenarios represent more challenging 

situations for accurate transportation asset information collection. The performance of the 

developed algorithms needs to be further evaluated under these scenarios.  

Considering these limitations, further improving the detection accuracy and robustness 

with AI algorithm validation on a large scale is a promising direction to continue in. More training 

and test images under special circumstances should be incorporated in algorithm performance 

evaluation for all types of transportation assets.  
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