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EXECUTIVE SUMMARY

Timely information collection and assessment of transportation assets are beneficial to
daily maintenance practices of state departments of transportation (DOTs). However, traditional
transportation asset assessment methods either rely on the labor-intensive manual data collection
process or employ costly devices (e.g., light detection and ranging (LiDAR)) that are prohibitive
in frequent data collection due to high operational costs. With the advancement of computing
techniques, artificial intelligence (Al) (e.g., computer vision and deep learning) has demonstrated
its capabilities in automatic and accurate object detection, comparable to human eyes. Therefore,
to fully explore the applicability of Al in transportation-relevant applications, this project aims to
develop reliable and accurate Al algorithms with capabilities of automatic object identification,
including pavement marking issues, traffic signs, trash and litter on the roads, and steel guardrails

and concrete barriers, aiming to improve the current practice of transportation asset management.

First, this project reviewed the pros and cons of existing technologies in transportation asset
data collection. The commonly used techniques include but are not limited to ground-penetrating
radar, LIDAR, infrared thermography, and close-range photogrammetry, among which the close-
range optical image is considered a reliable way of timely information collection without
introducing excessive cost. In addition, we have reviewed the applied Al algorithms in
transportation asset monitoring and inspection, including regional convolution neural networks
(RCNN), faster RCNN, and You Only Look Once (YOLO). Generally, YOLO, as one of the deep
learning-based Al algorithms, excels in object detection with high accuracy and computational
efficiency. In the past, these Al algorithms have been widely utilized in pavement issue
identification. Limited research has been conducted to apply Al in detecting pavement marking
issues and identifying traffic signs, trash & litter on the roads, and steel guardrails and concrete

barriers.

Next, a smartphone was mounted on the front windshield of a vehicle to collect videos of
targeted transportation assets and issues on state highways and local roads. In total, approximately
31 hours of videos were collected, including all types of objects of interest, i.e., pavement
markings, traffic signs, steel guardrails and concrete barriers, and litter and trash on the roads.

These videos were processed into labeled images to train robust Al algorithms.



Finally, utilizing labeled images as training and test data, three Al models were developed
for the automatic detection of pavement marking issues, traffic signs, and litter and trash.
Specifically, the Al model for the identification of pavement marking issues is capable of detecting
faded white and yellow pavement markings. The traffic sign model has the ability to identify
regulatory signs, speed-related signs, warning signs, and guide signs. The litter and trash model
can be used to detect white litter, black litter, dirt, and leaves on the roadside. Additionally, this
project developed a prototype Al algorithm to identify steel guardrails and concrete barriers.
Iterative training and tuning were implemented to ensure the robust performance of the developed
algorithms. The results show that the developed Al models achieve good performance with the

accuracy of over 85% in transportation asset identification.

The developed mobile phone-based Al package in this project delivers an accurate,
efficient, and automated approach to collect and analyze transportation asset data, hence, enabling

the inspection of transportation assets on a more frequent basis and further improving road safety.



1.0 INTRODUCTION

1.1 Problem Statement

Timely assessment of transportation asset conditions facilitates the practice of effective
asset management with optimized resource allocation. The damage or deterioration of certain types
of assets (e.g., debris on roads, faded pavement markings) also introduces traffic safety risks.
Collecting this information on a frequent basis and prioritizing the maintenance of these assets are
of significance to further improve asset management practices and road safety. However,
traditional asset assessment methods heavily rely on the manual process, which could be labor-
intensive and time-consuming (Schnebele et al., 2015). Also, manually collected data are usually
incomplete, thus, insufficient for comprehensive assessments of transportation asset conditions
(De Blasiis et al., 2020). Despite advances in sensing techniques such as Light Detection and
Ranging (LIDAR) and infrared thermography in transportation asset information collection (Lin
et al., 2022; Solla et al., 2014), these are expensive to operate. Limited scanning is allowed
periodically for information collection. Hence, there is an urgent need to develop a lightweight
information collection and assessment technique capable of acquiring transportation asset

information in a timely and accurate manner.

In addition to timely information collection, automatic identification and evaluation of
transportation assets are beneficial to save labor in asset management practice. Computing-based
image analysis and object detection are similar to visual inspection by human inspectors (Spencer
et al., 2019). Therefore, one promising solution is to leverage artificial intelligence (Al), more
specifically, computer vision and deep learning to facilitate the process. The advancement of
computer vision and deep learning has enabled object detection and image classification in various
fields, including the automated detection of transportation assets (Du et al., 2020; Ghosh & Smadi,
2021). A well-developed Al model is expected to deliver a low-cost, objective, and efficient
approach with timely detection and high accuracy in transportation asset assessment (H. Nguyen
et al., 2018; Pang et al., 2021). The key steps to develop Al models include sufficient collection,
labeling, and utilization of data (e.g., videos and images) in the algorithm process. In this regard,
the basis for Al model development is the image, which can come from different sources, for

example, photos taken from drones (Alzraiee et al., 2021), LIDAR images (Lin et al., 2022),
3



Google Street views (Campbell et al., 2019), and images taken by cameras or even phones (Wu &
Ranganathan, 2012). Among different sources of images, cameras or phones are cheaper and more
available than most other devices (Hanson et al., 2014). Therefore, combining Al models with
images taken by phones has great potential in automatic data collection and identification of

transportation assets.

Therefore, this project aims to develop accurate and easily deployed Al algorithms to
facilitate transportation asset management in an automatic manner. The proposed technology
leveraged a smartphone mounted on the front windshield of a vehicle to collect videos. Then, based
on these collected videos, we developed Al algorithms that can automatically assess the conditions
of pavement markings and identify traffic signs and litter on the roadside. A prototype algorithm
for detecting concrete barriers and steel guardrails was also developed. The proposed technology
offers an affordable solution to enable maintenance asset data collection on a more frequent basis.

1.2 Research Objectives
There are two research objectives in this project.

The primary objective of this project is to develop usable Al algorithms capable of
automatically detecting certain types of transportation assets, including pavement markings, traffic

signs, and steel guardrails and concrete barriers, as well as the litter and trash on roads.

With the developed algorithms, the other objective of this research is to evaluate the
performance of leveraging a mobile phone as a lightweight and easily implementable data
collection method to facilitate the auto-detection of transportation assets.

1.3 Research Scope

The project consists of five main research tasks (listed below), i.e., developing usable Al
algorithms to detect pavement marking issues, traffic signs, trash/litter, and a prototype algorithm
to identify concrete barriers and steel guardrails. The identification of pavement issues was
originally in the scope but removed based on the comments of the TAC. Also, the Al development

currently focuses on state roads (highways), although data collection/processing in the Al

4



algorithm development incorporates both state and local roads. The five specific tasks are

described below:

Task 1: Literature review: Review existing technologies and current practices in

transportation asset information collection.

Task 2: Preliminary study: Record videos of roadways using mobile phones and pre-
evaluate the capability of Al in transportation asset identification (basic assumption: an

object/phenomenon that human eyes can capture could also possibly be detected by Al).

Task 3: Proof of concept 1: Develop Al algorithms to detect pavement marking issues,

traffic signs, and trash and litter on the road.

Task 4: Proof of concept 2: Develop a prototype algorithm for concrete barriers and steel

guardrail identification.

Task 5: Project report preparation: Prepare the final project report.

1.4 Outline of Report

The remaining report is structured as follows. Section 2 reviews the pros and cons of
current common practices in transportation asset data collection and applications of Al algorithms
in maintaining various transportation assets. Section 3 introduces the methods used in this project
and accuracy metrics to measure the developed algorithms’ performance. The results and
performance of the developed Al models for the identification of pavement marking issues, traffic
signs, and litter/trash, as well as the prototype algorithm for steel guardrail and concrete barrier
identification are presented in section 4. Finally, section 5 summarizes the key findings and

recommendations for future work.



2.0 LITERATURE REVIEW

2.1 Transportation Assets Data Collection

Various sensing techniques, including ground-penetrating radar (GPR), light detection and
ranging (LIiDAR), and infrared thermography (IRT), have been developed and applied to

transportation asset data collection (such as pavement, pavement markings, and traffic signs).

2.1.1 Ground-Penetrating Radar (GPR)

GPR is an electromagnetic-based geophysical method employing radar pulses (200mm-
3m) to image the subsurface with either a ground-coupled antenna (60cm-3m) or an air-coupled
antenna (200-300mm) (Schnebele et al., 2015). The principle of GPR is shown in Figure 2.1. A
GPR transmitter and antenna emit electromagnetic energy into the ground. When the energy
encounters a buried object or boundary between materials with different dielectric permittivity, it
may be reflected, refracted, or scattered back to the surface. A receiving antenna can then record
the variations in the return signal, including the arrival time and the magnitude of the reflected
signal (Tong et al., 2020).

Display

GPR

- Transmitted signal
""" Reflected signal

Figure 2.1 The Principle of GPR
(Khamzin et al., 2017)

GPR has been proven to be a useful technology in collecting and assessing pavement
conditions. Specifically, within a pavement segment, the dielectric permittivity varies in different
pavement conditions. The dielectric permittivity of poor-quality pavement is different from that of

high-quality pavement (Khamzin et al., 2017). GPR can also operate on moving survey vehicles
6



(see Figure 2.2), which promotes its application in obtaining and assessing structures and materials
of pavements, such as pavement layer thickness measurement, void discovery, and pavement
distress detection (Khamzin et al., 2017; Vilbig, 2013).

2 GHz antenna
2 GHz antenna ‘\\‘.

L3

"‘\\\\

Figure 2.2 GPR Mounted on a Survey Vehicle
(Khamzin et al., 2017)

However, GPR has limitations in application. First, this technology requires the operators
to have knowledge of both electromagnetic waves and pavement distress to interpret the results
(Tong et al., 2020). Second, GPR can measure the depth and thickness of subsurface irregularities
but cannot provide accurate horizontal information (Schnebele et al., 2015). Additionally, GPR is
a subsurface detector to map underground anomalies but cannot be applied to collect the

aboveground transportation assets (e.g., traffic signs and barriers) (Dai & Yan, 2014).

2.1.2 Light Detection and Ranging (LiDAR)

LiDAR is another common technology applied in transportation. The principle of LIDAR
is shown in Figure 2.3. It measures ranges through targeting an object with a laser and then
measuring the travel time of the reflected light back to the receiver. There are various types of
LiDAR based on laser-mounted platforms, including the Terrestrial Laser Scanner (TLS) and
Mobile Laser Scanner (MLS) (Schnebele et al., 2015; Topo, 2020). TLS uses ground-based remote
sensing systems, usually mounted on static tripods, to scan objects in all directions. Once the scan
in one area is complete, the tripod will be moved to another location to scan from another angle or

capture data in a new area. Furthermore, MLS allows the acquisition of 3D data employing one or



more laser scanners mounted on moving vehicles, unmanned aerial vehicles (UAVS), or

helicopters. Figure 2.4 shows a mounted MLS on a moving vehicle.

p

- — ~ =
Transmitter Reflector
. — o /\\
)

Time of travel =T T

Figure 2.3 The Principle of LIDAR

Figure 2.4 Mobile LIiDAR System on a Moving Vehicle
(Olsen et al., 2018)

LiDAR is widely applied to retrieve transportation asset information. Laser scanners are
able to capture millions of 3D coordinates (also known as points), which form point clouds (Topo,
2020). These point clouds provide accurate and high-resolution 3D data and create digital models
of the scanned environment (De Blasiis et al., 2021). For example, the 3D model created for
pavement will facilitate the identification and evaluation of different types and severity levels of
road roughness and distress (De Blasius et al., 2020; 2021). In addition to the pavement condition
assessment, LIDAR is also applicable to collect and assess the information of lane markings (e.g.,
dashed lines, continuous lines, and direction arrows) and traffic signs (Gargoum et al., 2017;
Zeybek, 2021).



LiDAR has several advantages in information collection and assessment of transportation
assets. First, it has high accuracy and resolution in transportation asset data collection. Secondly,
this technique is not sensitive to the ambient environment of data collection, e.g., humidity or
temperature (De Blasiis et al., 2021). However, the cost of LIDAR is much higher than that of
other technologies (Ragnoli et al., 2018; Schnebele et al., 2015). Also, the operation and analysis
of LIDAR data require expert knowledge, which introduces additional barriers to technology

application (Farhadmanesh et al., 2021).

2.1.3 Infrared Thermography (IRT)

IRT operates by measuring the amount of radiation emitted from an object in the infrared
range (9-14um) using infrared (IR) cameras (Schnebele et al., 2015). The measured radiation is
affected by the emissivity and temperature of targeted objects, as well as surrounding weather and
atmospheric conditions. Then, the measured amount of thermal infrared radiation can be converted
into temperature, which is usable to indicate any anomalies of transportation assets based on the
known difference in thermal properties between normal and defective areas (Garrido et al., 2018).

Figure 2.5 shows examples of pavement IR images.

Figure 2.5 IR Image of Pavement !

IRT also provides remote measurements of objects of interest in wide areas (Sakagami,
2015). It is usually used to detect issues (e.g., pores, cracks, and delamination) related to asphalt,

L https://www.flir.com/discover/rd-science/mobile-infrared-scanning--a-high-tech-accurate-alternative-to-
traditional-bridge-inspection-methods/



metal, and concrete (Garrido et al., 2018; Lu et al., 2017). However, the spatial resolution of
thermal images for most infrastructure is typically low, hence, affecting the inspection results.
Moreover, in contrast to GPR, IRT is usable for horizontal data collection and measurement but
not vertical measurements, such as thickness and depth of the subsurface (Schnebele et al., 2015).
IR image collection, in many cases, requires costly professional IR cameras for accurate

measurement as well (Garrido et al., 2018).

2.1.4 Hyperspectral Imagery (HSI)

HSI utilizes large numbers of narrow, contiguous spectral bands (sometimes ranging from
as much 0.35-2.4um) to gather detailed spectral information of an observed feature, often related
to chemical and mineral properties (Schnebele et al., 2015). Figure 2.6 shows a hyperspectral
image cube with two axes describing spatial information and one for spectral information. These
are sufficient to differentiate natural and artificial objects (Gomez, 2002). The data collection and
analysis by HSI are based on varied spectral reflectance across different materials. For example,
the material inside road cracks differs from the material of worn surfaces, which can be captured
by different spectral signals in hyperspectral images (Abdellatif et al., 2019). Therefore, HSI is
applicable to assess the characteristics of pavement (Ozdemir et al., 2020), including the

identification of the defects and anomalies of pavement.

Figure 2.6 Hyperspectral Image Cube
(Gomez, 2002)

HSI is an effective nondestructive technology to determine the physical and chemical

parameters (Ayalew et al., 2003). However, due to the operation principles of HSI, its application
10



has certain limitations. First, it is mainly used to assess asphalt pavement conditions (Abdellatif et
al., 2020). Moreover, it is difficult to distinguish the degree of weathering of an aged pavement,
even when the differences are evident (Schnebele et al., 2015). In addition, the high price limits
its application in the field (Ozdemir & Polat, 2020).

2.1.5 Close-Range Photogrammetry (CRP)

CRP is suitable for sensing physical objects at a distance less than 330 ft (100 m) from the
camera (Jiang et al., 2008). This technique is usually used to measure and analyze the two-
dimensional photographs collected by cameras. The final outputs of CRP can also be three-
dimensional models reconstructed from 2D images taken from different angles. The 3D

information is usable to assess the condition of objects (Farhadmanesh et al., 2021).

The application areas of CRP are relatively broader than other technologies. For example,
cameras mounted on a vehicle (see Figure 2.7) have been utilized to detect transportation asset
issues (e.g., pavement, guardrail, and marking) (Farhadmanesh et al., 2021; Liq et al., 2012). Also,
these image data can be combined with other techniques, e.g., deep learning and image processing,
to extend its application. For example, traffic signs can be detected automatically based on the
color of objects, geometrical edge, and corner analysis (Ruta et al., 2010).

GoPro Hero'8

D
N

Figure 2.7 Mobile Photogrammetry Setup and the View
(Farhadmanesh et al., 2021)

CRP provides a direct way of data collection (through mobile phones or cameras) and
analysis, hence, allowing frequent data updates without introducing high costs (Ahmed et al., 2011;
Hanson et al., 2014). However, CRP also has limitations. Mainly, its precision and accuracy could

11



be lower compared to other technologies (Ragnoli et al., 2018). Moreover, some factors (e.g.,
vehicle speed, camera quality, light conditions, etc.) will affect the final resolution of the images
collected (Farhadmanesh et al., 2021; Gargoum et al., 2017).

2.1.6 Brief Summary

The comparisons of the five sensing techniques are shown in Table 2.1. Overall, GPR, IRT,
and HSI have limited application areas. Although LIDAR, GPR, IRT, and HSI have relatively high
accuracy, they need costly professional instruments and expert knowledge to collect and interpret
the data. In contrast, CRP is a low-cost method of data collection, which can be easily achieved
with mobile phones. Therefore, close-range photogrammetry has demonstrated its great potential

as an affordable and reliable approach to assessing the conditions of various types of transportation

assets.
Table 2.1 Comparisons of Different Sensing Techniques

Technique Accuracy Data Analysis Knowledge Application Range Cost
GPR High Complex Limited High
LiDAR High Complex Wide High
IRT Medium Complex Limited High

HSI Medium Complex Limited High

CRP Relatively low Medium Wide Low

2.2 Transportation Asset Maintenance Al Models

Al models (e.g., computer vision and deep learning) perform well in automatic object
detection and image classification. Currently, these Al models have been applied in transportation

asset monitoring and maintenance practices.

2.2.1 Artificial Intelligence Models

Computer vision is an interdisciplinary research area to understand the underlying physical
world by extracting and analyzing valuable in