
Computer Physics Communications 286 (2023) 108665

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Geometric multigrid method for solving Poisson’s equation on octree

grids with irregular boundaries ✩,✩✩

Jannis Teunissen a,∗, Francesca Schiavello b

a Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
b UKRI, STFC, Hartree Centre, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 August 2022
Received in revised form 6 January 2023
Accepted 10 January 2023
Available online 20 January 2023

Keywords:
Multigrid
Irregular boundary
Poisson equation
Adaptive mesh refinement
Level set function

A method is presented to include irregular domain boundaries in a geometric multigrid solver. Dirichlet
boundary conditions can be imposed on an irregular boundary defined by a level set function. Our
implementation employs quadtree/octree grids with adaptive refinement, a cell-centered discretization
and pointwise smoothing. Boundary locations are determined at a subgrid resolution by performing line
searches. For grid blocks near the interface, custom operator stencils are stored that take the interface
into account. For grid block away from boundaries, a standard second-order accurate discretization is
used. The convergence properties, robustness and computational cost of the method are illustrated with
several test cases.

New version program summary
Program Title: Afivo
CPC Library link to program files: https://doi .org /10 .17632 /5y43rjdmxd .2
Developer’s repository link: https://github .com /MD -CWI /afivo
Licensing provisions: GPLv3
Programming language: Fortran
Journal reference of previous version: Comput. Phys. Commun. 233 (2018) 156–166. https://doi .org /10 .1016 /
j .cpc .2018 .06 .018
Does the new version supersede the previous version?: Yes.
Reasons for the new version: Add support for internal boundaries in the geometric multigrid solver.
Summary of revisions: The geometric multigrid solver was generalized in several ways: a coarse grid solver
from the Hypre library is used, operator stencils are now stored per grid block, and methods for including
boundaries via a level set function were added.
Nature of problem: The goal is to solve Poisson’s equation in the presence of irregular boundaries that are
not aligned with the computational grid. It is assumed these irregular boundaries are defined by a level
set function, and that a Dirichlet type boundary condition is applied. The main applications are 2D and
3D simulations with octree-based adaptive mesh refinement, in which the mesh frequently changes but
the irregular boundaries do not.
Solution method: A geometric multigrid method compatible with octree grids is developed, using a cell-
centered discretization and point-wise smoothing. Near irregular boundaries, custom operator stencils are
stored. Line searches are performed to locate interfaces with sub-grid resolution. To increase the methods
robustness, this line search is modified on coarse grids if boundaries are otherwise not resolved. The
multigrid solver uses OpenMP parallelization.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
✩ The review of this paper was arranged by Prof. N.S. Scott.
✩✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).

* Corresponding author.

E-mail address: jannis.teunissen@cwi.nl (J. Teunissen).

https://doi.org/10.1016/j.cpc.2023.108665
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access artic
1. Introduction

A common elliptic partial differential equation (PDE) is Pois-
son’s equation

∇ · (a(x)∇φ) = g, (1)
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108665
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108665&domain=pdf
https://doi.org/10.17632/5y43rjdmxd.2
https://github.com/MD-CWI/afivo
https://doi.org/10.1016/j.cpc.2018.06.018
https://doi.org/10.1016/j.cpc.2018.06.018
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:jannis.teunissen@cwi.nl
https://doi.org/10.1016/j.cpc.2023.108665
http://creativecommons.org/licenses/by/4.0/

J. Teunissen and F. Schiavello Computer Physics Communications 286 (2023) 108665
where the right-hand side g and coefficient a(x) are given and
φ has to be obtained given certain boundary conditions. Equa-
tion (1) can numerically be solved with a variety of techniques,
for example using fast Fourier transforms (FFTs), cyclic reduction,
direct sparse solvers, (preconditioned) Krylov methods, multipole
methods and multigrid methods, see e.g. [1,2]. The most suitable
method depends on the type of computational grid, the boundary
conditions, the spatial variation in a(x), and the available compu-
tational hardware. Our goal is to develop an efficient geometric
multigrid scheme for the following case:

• There are irregular Dirichlet boundary conditions. These bound-
aries are located inside the computational domain, but they
are not aligned with the numerical grid.

• Equation (1) has to be solved several times for different right-
hand sides, but with the same irregular boundaries.

• The coefficient a(x) is constant.
• The computational grid is a quadtree/octree mesh that is fre-

quently adapted, so that it is desirable to have a (mostly)
matrix-free method.

Multigrid methods [3–5] can be used to solve equations like (1)
with great efficiency. The main idea is to iteratively damp the er-
ror on a hierarchy of grids with a smoother. On coarse grids, the
long-wavelength components of the error are damped, and on fine
grids the short-wavelength components. Information from differ-
ent grid levels is combined via prolongation (i.e., interpolation) to
finer grids, and via restriction to coarser grids. Multigrid methods
can have a computational cost linear in the number of unknowns,
which is ideal. We focus on geometric multigrid (GMG) methods,
which solve problems on a given hierarchy of numerical grids. In
contrast, algebraic multigrid (AMG) methods can be used to solve
more general linear systems. This flexibility is attractive for prob-
lems with irregular boundaries, but the cost of AMG methods is
generally higher [6].

Considerable work has been done on solving equations like (1)
with geometric multigrid in the presence of irregular boundaries.
We briefly mention some relevant work below. In [7], a matrix-
free geometric multigrid was developed that could handle irregular
boundaries, which were tracked by a level-set function. Node-
centered grids were considered from 1D to 3D, and interpolation
was performed by locally solving the elliptic PDE for a grid point.
Besides Dirichlet boundaries, the authors also consider disconti-
nuities in the PDE coefficient a(x). In [8], a geometric multigrid
scheme was presented to apply irregular Dirichlet boundary con-
ditions on AMR grids, with a focus on self-gravitating astrophysi-
cal flows. On the fine grid boundaries were described by a mask,
leading to a staircase pattern. The authors discuss a trade-off be-
tween a first and second order accurate scheme for representing
boundaries, with the second order scheme suffering from a lack
of convergence on coarse grids when boundaries are not well re-
solved. In [9], a multigrid solver was presented for elliptic and
parabolic problems on quadtree and octree grids. A node-centered
discretization was used and irregular boundaries were described
by a level-set function. So-called ghost values were obtained by
third-order extrapolation near refinement boundaries. In [10], a
geometric multigrid solver compatible with irregular Neumann
boundaries was presented. The boundaries were represented by a
staircase pattern on the fine grid. The authors highlight the im-
portance of a conservative discretization, which is also referred
to as a compatibility condition, see e.g. [11,12]. Interpolation was
avoided near boundaries, leading to a first order accurate method.
In [13], a cut-cell geometric multigrid solver was presented sup-
porting both Dirichlet and Neumann boundary conditions, with a
focus on the efficient simulation and visualization of incompress-
ible flow. A cell-centered discretization was used, and a constant
2

Fig. 1. Illustration of a quadtree grid. The squares indicate grid blocks, which each
contain N × N cells (not indicated). From left to right, refinement is added around
the center.

(zeroth-order) prolongation scheme. The method was shown to be
first order accurate for Dirichlet boundaries and second order ac-
curate for Neumann boundaries.

The main novelty of the method presented here is that it com-
bines the following aspects:

• The flexible handling of different geometries via a level-set
function.

• An (approximately) second-order accurate cell-centered dis-
cretization that is compatible with adaptive mesh refinement
(AMR) on quadtree/octree grids.

• The use of a line search method to accurately locate interfaces.
• A correction for unresolved boundaries on coarse grids.
• An efficient open-source implementation, with custom stencils

only stored for grid blocks that contain a boundary.

2. Multigrid method without irregular boundaries

Below, the basis of multigrid method used in this paper is
briefly introduced. The extension to irregular boundaries is dis-
cussed in section 3.

2.1. Mesh

We consider so-called octree meshes, see Fig. 1. In our imple-
mentation, which is based on the afivo framework [12], such a
mesh consists of blocks of N D cells, where D denotes the problem
dimension. These blocks can be refined by halving the grid spacing,
so that 2D refined child blocks cover a parent block. Nearby blocks
are refined, if necessary, to ensure that adjacent blocks differ by
at most one refinement level. A tree fulfilling such a condition is
called 2:1 balanced.

Octree meshes balance adaptivity and computational efficiency.
Because each block has the same shape, computations, communi-
cation and mesh refinement can be implemented rather efficiently.
We use a cell-centered approach, in which the solution φ and
right-hand side of equation (1) are defined at cell centers, and the
components of ∇φ are defined at cell faces.

2.2. Geometric multigrid method

The algorithms presented here for irregular boundaries extend
the geometric multigrid solver of the Afivo framework [12]. This
solver implements the Full Approximation Scheme (FAS), in which
the solution φ is approximated on all grid levels. A brief overview
is given below; further details can be found in [12] and in [14],
which describes an MPI-parallel version.

Operators A standard finite difference discretizations of the
Laplacian is used, with 3, 5 and 7-point numerical stencils in 1D,
2D and 3D, respectively. If the grid spacing �x is constant and
there are no boundaries, a second order accurate discretization of
equation (1) in 1D is given by

∇2φi = 1
(

φi+1 − φi − φi − φi−1
)

= gi, (2)

�x �x �x

J. Teunissen and F. Schiavello Computer Physics Communications 286 (2023) 108665
Fig. 2. Illustration of the FMG cycle for a grid with four levels.

where g is the right-hand side. The residual for an approximate
solution φ∗ is defined as

r = g − ∇2φ∗. (3)

Smoother Gauss-Seidel red-black (GSRB) smoothers are used.
The unknowns are first divided into red and black groups, in a
checkerboard fashion. Equations like (2) can then be solved in par-
allel for one group, assuming the other group’s values stay fixed.
For equation (2), this results in

φi = 1

2

(
φi+1 + φi−1 − �x2 g

)
.

The error is damped by alternatingly solving for the red and black
groups.

Prolongation and restriction Prolongation is the transfer of
coarse-grid corrections to a finer grid, which is a key part of a
geometric multigrid method. Standard (bi/tri)linear interpolation is
here used, also when irregular boundaries are present. Restriction
is the transfer of information to a coarser grid. This is implemented
by taking the average of the 2D fine-grid cells covering a coarse
grid cell.

Multigrid cycle A standard V-cycle and full multigrid (FMG)
cycle are implemented, see Fig. 2. The V-cycle goes from fine to
coarse, and then back to fine. The FMG cycle iteratively performs
V-cycles from the coarsest grid up to the finest grid. Although FMG
cycles are more expensive than V-cycles, they can guarantee a re-
duction of the residual that is independent of the problem size [4].
This results in the ideal O(N) computational cost of FMG, where
N is the number of unknowns.

Every time a grid level is visited in a cycle, smoothing is per-
formed. In the upward part of a cycle, Nup smoothing steps are
performed before prolongation, and in the downward part of a cy-
cle, Ndown smoothing steps performed before restriction. We here
use Nup = Ndown = 2. The handling of the coarse grid is discussed
in section 3.5.

Ghost cells When performing multigrid on an adaptive mesh,
it is convenient to extend grid blocks with a layer of ghost cells.
It is important that the ghost cells near refinement boundaries are
filled in such a way that the fine-grid discretization is consistent
with the underlying coarse grid. We here follow the same approach
as in [12]. The basic idea is that ghost cells are filled in such a
way that the coarse and averaged fine ‘flux’ across the refinement
boundary (e.g., ∂xφ) agree.

3. Implementation of boundaries

3.1. Level set function

Internal boundaries are here defined by the zero contour of a
level set function (LSF) [15,16]:

f (x) = 0.

For example, a spherical boundary of radius R centered at xc can
be described by
3

f (x) = ||x − xc|| − R. (4)

In this case, the LSF is a signed distance function, with a nega-
tive sign inside the sphere. Examples of other LSFs are given in
section 4.

3.2. Distance computation

For geometric multigrid, it is important that the locations of
boundaries (i.e., roots of the LSF) agree well between grid levels.
We therefore use a line search method to locate boundaries at a
sub-grid resolution.

Let a denote a start point, e.g., the center of a grid cell, and b
a neighboring point. We want to know if there is a root in the LSF
on the line segment from a to b, and if so, how far this root is
from a. This information is here stored in a single value d, which
denotes the relative distance to the boundary. If there is no bound-
ary between a and b, d = 1. Otherwise, if there is root at x0, d is
given by

d = ||x0 − a||/||b − a||. (5)

The procedure for locating roots is illustrated in Fig. 3. If f (a) ×
f (b) ≤ 0, bisection is used to locate the root x0 between a and
b, with a relative tolerance of εtol. Otherwise, a bracket for the
potential root first has to be determined. We use golden section
search to minimize f (x) × f (a) on the line from a to b. As soon as
f (x) × f (a) ≤ 0, bisection is again applied on the interval between
a and x. If this condition is not met within a given number of
iterations, corresponding to the same relative tolerance εtol , it is
assumed there is no boundary.

Note that if there are two roots on the interval between a and
b, the bracket search will eliminate the one farthest from a. If
there are three or more roots, it is not guaranteed that the above
procedure finds root closest to a. By default, we use a small rela-
tive tolerance of εtol = 10−8.

3.3. Discretization of Laplacian with boundaries

When there are irregular boundaries, the distances between an
unknown φi and neighboring values are no longer fixed. The nu-
merical Laplacian of equation (2) can then be generalized to

∇2φi = 2

(di+1 + di−1)�x

(
φi+1 − φi

di+1�x
− φi − φi−1

di−1�x

)
= gi, (6)

where 0 < d j ≤ 1 denotes the relative distances from φi to neigh-
boring values φ j , see section 3.2. Note that in the above notation
the φ j (for j �= i) do not always correspond to unknowns on the
grid. For example, if there is a boundary between cell i and i + 1,
then φi+1 will correspond to a boundary value φb . If the corre-
sponding term is moved to the right-hand side, equation (6) be-
comes

2

(di+1 + di−1)�x

(−φi

di+1�x
− φi − φi−1

di−1�x

)

= gi − 2φb

(di+1 + di−1)di+1�x2
.

Equation (6) is a non-symmetric discretization that was used
before in e.g. [17–19]. Near boundary points this discretization is
first order (O(�x)) accurate, because the second derivative is not
evaluated at the center of the two gradient terms. However, if the
number of boundary cells is small the global error can still be ap-
proximately second order accurate [18,19].

The extension of equation (6) to multiple dimensions is
straightforward, with the same type of terms appearing for each
dimension. For example, in 2D, the Laplacian can be written as

J. Teunissen and F. Schiavello Computer Physics Communications 286 (2023) 108665

Fig. 3. Illustration of the procedure for locating roots in the level set function between two points a and b. Three cases are illustrated: (a) The root is already bracketed, so
bisection is directly applied; (b) A bracket is determined using Golden section search, then bisection is applied; (c) No bracket is found, and thus also no root.
∇2φi, j = 2
(di+1, j+di−1, j)�x

(
φi+1, j−φi, j

di+1, j�x − φi, j−φi−1, j
di−1, j�x

)
+

2
(di, j+1+di, j−1)�x

(
φi, j+1−φi, j

di, j+1�x − φi, j−φi, j−1
di, j−1�x

)
= gi, j . (7)

3.4. Prolongation

Standard (bi/tri)linear prolongation is used, also when bound-
aries are present. We did experiment with a custom prolongation
scheme, in which a linear function was constructed between the
nearest D + 1 neighbors and/or boundaries, but this scheme did
typically not lead to faster convergence.

3.5. Coarse grid solver

At the coarsest grid there are essentially two options. The first
is to apply the same smoother as on other grid levels. However,
depending on the size and geometry of the coarse grid, it could
take a large number of smoothing steps to achieve a desired re-
duction of the residual. Therefore, we here solve the coarse grid
equations using a different multigrid solver, provided by the Hypre
library [20].

The coarse grid is frequently visited in an FMG cycle, see Fig. 2.
It is therefore important to keep the computational cost of the
coarse grid solver as low as possible. For this reason, we by de-
fault use Hypre’s PFMG solver, which is a parallel semicoarsen-
ing multigrid solver that uses pointwise smoothing [21,22]. In
1D, the PFMG solver is not available and we use Hypre’s PCG
solver instead. Hypre’s default tolerance of 10−6 is used for these
solvers.

3.6. Implementation aspects

Below, we provide information on implementation aspects rel-
evant for the computational efficiency of the method.

3.6.1. Boundary detection
The line search for boundaries described in section 3.2 can

be expensive. For computational efficiency, we only perform
such a search for cells that are sufficiently close to a boundary.
The distance to a boundary can be approximated by the ratio
| f (x)|/||∇ f (x)||, which for a linear function f (x) would be ex-
act. This inspires the following condition for a potential boundary,
evaluated at every cell center:

| f (x)| < L × ||∇ f (x)||, (8)

where L should be proportional to the grid spacing �x. For the
tests presented in section 4 we use L = 1.5 × √

D�x, with D the
4

problem dimension. The components of ∇ f (x) are computed nu-
merically using central differencing.

Note that if ||∇ f (x)|| varies rapidly near boundaries, a larger
safety factor than the 1.5 × √

D used above might be necessary.
One way to avoid this is to use a LSF that is (approximately) a
signed distance function, such as equation (4).

3.6.2. Storing stencils and boundary information
In our implementation, boundary information and numerical

stencils are stored per grid block. For grid blocks without bound-
aries, stencils are constant, so they can be stored compactly. If
there is a boundary passing through the grid block, the following
information is stored per grid cell:

• The relative distances di to boundaries from the cell center
to neighboring cell centers, according to equation (5). These
distances are only stored for cells with at least one adjacent
boundary.

• Operator stencil coefficients. For example, in 2D, five values
have to be stored per cell for the operator in equation (7). Fur-
thermore, the sum of the stencil coefficients that were moved
to the right-hand side is stored, so that the value imposed at
the boundary can be changed.

3.6.3. Unresolved LSF roots on coarse grids
If an irregular boundary has a small spatial extent in two of its

dimensions, it might not be detected on a coarse grid by the line
search described in section 3.6.1. An example is shown in Fig. 4.
A boundary that is not detected on the coarse grid can lead to
convergence issues. We therefore perform an additional boundary
search for grid cells that satisfy the following conditions:

• Equation (8) holds, indicating there is a nearby boundary.
• No boundaries are detected between the cell’s center and the

neighboring cell centers.
• The grid spacing �x is larger than a user-defined threshold

wmin.

For these cells, gradient descent is performed in the direction in
which f goes to zero, starting from the cell’s center (a). At most
�x/wmin steps are performed with a step size wmin. If after one
of these steps, a location x is found such that f (a) f (x) ≤ 0, a line
search is performed between a and x to determine the relative
distance d to the boundary (normalized to the grid spacing). This
relative distance is then used in the direction of the neighboring
cell closest to x, as illustrated in Fig. 4. The resulting discretization
does not accurately represent the unresolved object, but this dis-
cretization is only used on coarse grids, so it does not affect the
converged fine-grid solution.

J. Teunissen and F. Schiavello Computer Physics Communications 286 (2023) 108665
Fig. 4. Illustration of procedure for unresolved boundaries on coarse grids, for the
grid cell marked a. The object (red ellipse) has a small extent in both dimensions,
and is therefore not detected by a line search between cell centers (blue arrows).
First, the distance to the closest point x on the boundary is determined (gray arrow),
and then a virtual boundary is placed between a and the neighboring cell center
closest to x. (For interpretation of the colors in the figures, the reader is referred to
the web version of this article.)

4. Numerical experiments

4.1. Convergence tests on sphere

To test the numerical convergence of the method, we solve the
Laplace equation

∇2φ = 0

for a spherical LSF of the form

fsphere(x) = ||x|| − R, (9)

using a computational domain of unit size (e.g., the unit cube in
3D) centered at the origin. On the spherical boundary, a Dirichlet
condition φ = φb is imposed. On the boundaries of the computa-
tional domain, the following analytic solutions are imposed

φ2d(r) = φb + a log(||x||/R), (10)

φ3d(r) = φb + a(1 − R/||x||), (11)

using φb = 0 and a = 1.
As a first test, we consider the case R = 1/4 on uniformly re-

fined grids. The coarsest grid contains 8D cells, and the finest grid
(8 × 2lmax−1)D cells, where lmax is the maximal refinement level.
Fig. 5a shows convergence results in 2D and 3D. The residual re-
duction factor per FMG iteration is about 40–80 in 2D and about
30–40 in 3D. Due to numerical round-off errors, the residual even-
tually stops decreasing. The resulting ‘converged’ residual is larger
on finer grids because of the division by �x2 in equation (3).

After two FMG iterations, the solution error (as compared with
the analytic solutions) hardly changes anymore. For example, for
the 3D case with lmax = 6, the maximal error after the first three
iterations is 0.32 × 10−3, 0.11 × 10−3 and 0.11 × 10−3. This means
that after two iterations, the discretization error dominates the
convergence error. Fig. 5b shows that the discretization error re-
duces proportional to �x2, both in the L∞ and in the L2 norm,
indicating second order convergence.

As a second test, we consider the case R = 5 × 10−3 in 3D,
in combination with grid refinement. The following refinement
criterion is used: refine if �x > �xmin × max(1, r/R), where r =√

x2 + y2 + z2 and �xmin is the grid spacing at level lmax. Due to
5

Fig. 5. Convergence results the spherical LSF given by equation (9), with R = 1/4
and a uniform grid. a) Maximal residual versus FMG iteration, with the maximum
refinement level indicated by lmax. b) Error in converged solution for different grid
spacings �x, determined by comparing with equation (10). Both the maximal error
(indicated by L∞) and the RMSE (indicated by L2) are shown.

Fig. 6. Convergence results for 3D spherical problem with grid refinement, in which
a boundary condition is imposed at a small radius (R = 5 × 10−3). a) Residual re-
duction. b) Error in the converged solution for different finest-grid spacings �xmin.

its small radius, the spherical boundary will not be resolved on the
coarsest grids, but the approach described in section 3.6.3 ensures
that the method still converges. Fig. 6 shows that the residual re-

J. Teunissen and F. Schiavello Computer Physics Communications 286 (2023) 108665

Fig. 7. Illustration of solutions with the level set functions of equations (12)–(15), shown on the unit square. Contours of the boundaries are indicated in white. Note that the
astroid shape has very sharp features.
duction factor per FMG iteration is again about 30–40. The error
in the solution is still approximately proportional to �x2, where
�x is the finest grid spacing. Note that this convergence behavior
also depends on how well the mesh refinement is adapted to the
problem.

4.2. Sharp boundaries

Irregular boundaries with sharp features are a more challeng-
ing test for a multigrid-based solver. On coarser grids, such sharp
features cannot be accurately described, potentially reducing the
effectiveness of the coarse-grid correction. Furthermore, near sharp
features the solution will have steep gradients, which increases in-
terpolation errors. To test the robustness of our solver, we consider
the following level set functions

fspheroid(p,q) =
√

8p2 + q2 − 1, (12)

frhombus(p,q) = 8|p| + |q| − 1.5, (13)

fheart(p,q) = p2 + (q − |p|2/3)2 − 1, (14)

fastroid(p,q) = |p|2/3/0.8 + |q|2/3/1.5 − 0.8. (15)

These LSFs are evaluated on the unit square using transformed co-
ordinates p = (x − 0.5)/4 and q = (y − 0.5)/4, see Fig. 7.

As a first test, we consider uniformly refined grids in 2D of size
10242 and 20482, using a coarse grid size of 8 ×8. The correspond-
ing maximum refinement levels are thus lmax = 8 and lmax = 9. At
the irregular boundary, a boundary condition φ = 1 is applied, and
φ = 0 on the boundaries of the computational domain. The small-
est width to resolve on coarse grids (see section 3.6.3) was set to
wmin = 4 × 10−3.

Fig. 8a shows the reduction in the residual per FMG iteration
for each test case. The residual reduction factor is similar for the
spheroid, rhombus and heart shapes. For the astroid shape the re-
duction factor is lower, and it changes with the refinement level.
We have also noticed that the reduction factor for this test case
can depend on the position of the astroid. This is probably due
to an inconsistent description of the sharp endpoints on different
refinement levels.

We generalize the above LSFs to cylindrical geometries in 3D
by using transformed coordinates p = (

√
x2 + y2 − 0.5)/4 and q =

(z − 0.5)/4. Note that in 3D there is curvature along an extra coor-
dinate, so that solution gradients become even steeper near sharp
features. We consider the shapes given above in a 3D unit cube,
using the same boundary conditions as in 2D, a coarse grid size of
83 and wmin = 8 × 10−3. Fig. 8b shows the residual reduction per
FMG iteration on a uniformly refined grid of 2563 (lmax = 6). Note
that the residual reduction factor is again lowest for the astroid
shape, which has the sharpest features.
6

Fig. 8. a) Maximal residual versus FMG iteration for the 2D shapes shown in Fig. 7.
The dashed lines correspond to a 10242 grid, and the solid lines to a 20482 grid on
the unit square. b) Results for the axisymmetric 3D generalizations of the shapes on
a 2563 grid.

4.3. Application example

We briefly present an example relevant for the simulation of
pulsed electric discharges such as streamers [23]. In discharge sim-
ulations, electrostatic fields have to be computed at every time
step. This is done by solving equation (1) for a given electrode con-
figuration, after which the electric field is obtained as E = −∇φ.
Solving Poisson’s equation is typically one of the most expensive
components of these simulations. Various methods have been used
to incorporate electrodes, ranging from a simple charge simulation
technique (see e.g. [24]) to the ghost fluid method [25]. Electrodes
have also been included on structured grids with different AMR
framework [26,27], in combination with multigrid-based solvers.
For complex geometries, the use of finite element methods can
also be advantageous [28].

We consider a 3D geometry in which two electrodes are
present, illustrated in Fig. 9. The computational domain is of size
unity, and the following boundary conditions are used on its sides:
φ = 1 at the top, φ = 0 at the bottom, and Neumann zero bound-

J. Teunissen and F. Schiavello Computer Physics Communications 286 (2023) 108665
Fig. 9. a) The electric potential φ (left half) and the magnitude of its gradient ||∇φ||
(right half) for a two-electrode problem. The figure is a cross section of the 3D
domain of size unity. Electrode contours are white, and the numerical mesh is illus-
trated, with each black square corresponding to a grid block of 83 cells. b) Maximal
residual versus FMG iteration.

ary conditions on the other sides. A rod electrode is placed at
the top, with radius rrod = 0.05, at which φ = 1. The correspond-
ing level set function (in the top half) is obtained by computing
the distance from a line segment, and then subtracting rrod. On
the bottom of the domain, a semi-sphere is placed with radius
rsphere = 0.25, at which φ = 0.

The numerical mesh has a spacing of �x = 1/512 near the tip
of the top electrode, and a resolution �x = 1/128 elsewhere, as
illustrated in Fig. 9, which also shows the solution φ, ||∇φ|| and
the maximal residual versus FMG iteration. The residual reduc-
tion factor is about 30-40 per FMG iteration. The components of
∇φ were computed on a staggered grid (on cell faces), taking the
stored distances to boundaries into account. For example, if there
is a boundary between φi, j,k and φi+1, j,k , then ∂xφ at i +1/2 is ap-
proximated by (φb −φi, j,k)/(d�x), where φb is the boundary value
and d is the relative distance to the boundary. For cells whose cen-
ter lies near the boundary but inside the electrodes, ||∇φ|| was set
to zero.

4.4. Computational cost

When new refinement is added to the mesh, the boundary
detection method described in section 3.6.1 is performed. This re-
quires the evaluation of the numerical gradient of the LSF at every
newly added grid cell.1 Afterwards, the distance computation de-

1 Note that in the majority of cases, the absence of an irregular boundary can be
deduced from the parent grid, but some sharp features might only be detected on
the fine grid.
7

Table 1
Computational time (in seconds) per FMG cycle for the
3D test case with a spherical boundary described in sec-
tion 4.1, on a uniform grid with 5123 ≈ 134 × 106 cells.
Results with block sizes of 83, 163 and 323 are included,
and parallel efficiencies compared to the case with 4
cores are indicated. The tests were performed using up
to 32 cores of an AMD Epyc 7H12 processor. The com-
putational times are an average over 40 consecutive FMG
cycles.

5123/83 5123/163 5123/323

4 cores 5.55 2.97 2.36
8 cores 2.77 (100%) 1.53 (97%) 1.31 (90%)
16 cores 1.62 (86%) 1.01 (74%) 0.87 (68%)
32 cores 1.46 (48%) 0.95 (39%) 0.84 (35%)

scribed in section 3.2 is performed for grid cells that are close to
the boundary. This requires a few tens of evaluations of the level
set function per grid cell. To keep these costs low, the LSF should
be cheap to compute. When removing refinement, no extra work
is required.

In many applications, solutions have to be computed multiple
times on the same numerical mesh, but with different right-hand
sides. The cost per multigrid iteration is then most important. To
illustrate these costs, we solve the test case with the spherical
boundary described in section 4.1 in 3D on a 5123 uniformly re-
fined grid. We consider block sizes of 83, 163 and 323. A smaller
block size increases the adaptivity of the mesh, and it will reduce
the total volume of grid blocks that intersect the boundary. On the
other hand, a smaller block size means that more blocks are re-
quired, leading to extra communication costs.

Table 1 gives the time per FMG cycle in seconds for the various
cases. Note that the parallel scaling is not ideal. The reason for this
is that computations in a geometric multigrid method are relatively
cheap, so that the speed with which data can be accessed from and
written to memory is often the limiting factor.

5. Conclusions

We have presented a method to include irregular domain
boundaries in a geometric multigrid solver. The method was de-
veloped for quadtree/octree grids with adaptive refinement, using
a cell-centered discretization, and it supports Dirichlet-type bound-
ary conditions. The location of boundary intersections is automati-
cally determined from a level set function, which is to be provided
as input. For grid blocks near the interface, custom operator sten-
cils are stored. However, the computational cost of handling these
custom blocks is comparable to that of regular blocks away from
boundaries, and in both cases, point-wise multigrid smoothers are
employed. We have illustrated the numerical convergence of the
method by considering spherical boundaries in the unit square
and unit cube. Furthermore, the robustness and computational ef-
ficiency of the method were examined with several test cases with
sharp boundaries.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

J. Teunissen and F. Schiavello Computer Physics Communications 286 (2023) 108665
References

[1] C.C. Douglas, G. Haase, U. Langer, A Tutorial on Elliptic PDE Solvers and Their
Parallelization, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2003.

[2] A. Gholami, D. Malhotra, H. Sundar, G. Biros, SIAM J. Sci. Comput. 38 (3) (2016)
C280–C306, https://doi .org /10 .1137 /15m1010798.

[3] W. Hackbusch, Multi-grid Methods and Applications, Springer Series in Com-
putational Mathematics, 1985.

[4] U. Trottenberg, C. Oosterlee, A. Schuller, Multigrid, Elsevier Science, 2000.
[5] A. Brandt, O.E. Livne, Multigrid Techniques, Society for Industrial & Applied

Mathematics (SIAM), 2011.
[6] K. Stuben, J. Comput. Appl. Math. (2001) 29.
[7] J.W.L. Wan, X.-D. Liu, SIAM J. Sci. Comput. 25 (6) (2004) 1982–2003, https://

doi .org /10 .1137 /S1064827503428540.
[8] T. Guillet, R. Teyssier, J. Comput. Phys. 230 (12) (2011) 4756–4771, https://doi .

org /10 .1016 /j .jcp .2011.02 .044.
[9] M. Theillard, C.H. Rycroft, F. Gibou, J. Sci. Comput. 55 (1) (2013) 1–15, https://

doi .org /10 .1007 /s10915 -012 -9619 -2.
[10] L. Botto, Comput. Phys. Commun. 184 (3) (2013) 1033–1044, https://doi .org /10 .

1016 /j .cpc .2012 .11.008.
[11] Y. Lee, H. Thompson, P. Gaskell, Comput. Fluids 36 (5) (2007) 838–855, https://

doi .org /10 .1016 /j .compfluid .2006 .08 .006.
[12] J. Teunissen, U. Ebert, Comput. Phys. Commun. 233 (2018) 156–166, https://

doi .org /10 .1016 /j .cpc .2018 .06 .018.
[13] D. Weber, J. Mueller-Roemer, A. Stork, D. Fellner, Comput. Graph. Forum 34 (2)

(2015) 481–491, https://doi .org /10 .1111 /cgf .12577.
[14] J. Teunissen, R. Keppens, Comput. Phys. Commun. 245 (2019) 106866, https://

doi .org /10 .1016 /j .cpc .2019 .106866.
[15] S. Osher, J.A. Sethian, J. Comput. Phys. 79 (1) (1988) 12–49, https://doi .org /10 .

1016 /0021 -9991(88)90002 -2.

[16] J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science, vol. 3, Cambridge University Press, 1999.

[17] S. Chen, B. Merriman, S. Osher, P. Smereka, J. Comput. Phys. 135 (1) (1997)
8–29, https://doi .org /10 .1006 /jcph .1997.5721.

[18] F. Gibou, R.P. Fedkiw, L.-T. Cheng, M. Kang, J. Comput. Phys. 176 (1) (2002)
205–227, https://doi .org /10 .1006 /jcph .2001.6977.

[19] H. Udaykumar, R. Mittal, W. Shyy, J. Comput. Phys. 153 (2) (1999) 535–574,
https://doi .org /10 .1006 /jcph .1999 .6294.

[20] R.D. Falgout, U.M. Yang, in: Proceedings of the International Conference on
Computational Science-Part III, ICCS ’02, Springer-Verlag, London, UK, 2002,
pp. 632–641.

[21] S.F. Ashby, R.D. Falgout, Nucl. Sci. Eng. 124 (1) (1996) 145–159, https://doi .org /
10 .13182 /NSE96 -A24230.

[22] R.D. Falgout, J.E. Jones, in: M. Griebel, D.E. Keyes, R.M. Nieminen, D. Roose,
T. Schlick, E. Dick, K. Riemslagh, J. Vierendeels (Eds.), Multigrid Methods VI,
vol. 14, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 101–107.

[23] S. Nijdam, J. Teunissen, U. Ebert, Plasma Sources Sci. Technol. 29 (10) (2020)
103001, https://doi .org /10 .1088 /1361 -6595 /abaa05.

[24] A. Luque, V. Ratushnaya, U. Ebert, J. Phys. D, Appl. Phys. 41 (23) (2008) 234005,
https://doi .org /10 .1088 /0022 -3727 /41 /23 /234005.

[25] S. Celestin, Z. Bonaventura, B. Zeghondy, A. Bourdon, P. Ségur, J. Phys. D, Appl.
Phys. 42 (6) (2009) 065203, https://doi .org /10 .1088 /0022 -3727 /42 /6 /065203.

[26] V. Kolobov, R. Arslanbekov, J. Comput. Phys. 231 (3) (2012) 839–869, https://
doi .org /10 .1016 /j .jcp .2011.05 .036.

[27] R. Marskar, J. Comput. Phys. 388 (2019) 624–654, https://doi .org /10 .1016 /j .jcp .
2019 .03 .036.

[28] A.P. Jovanovic, M.N. Stankov, D. Loffhagen, M.M. Becker, IEEE Trans. Plasma Sci.
49 (11) (2021) 3710–3718, https://doi .org /10 .1109 /TPS .2021.3120507.
8

http://refhub.elsevier.com/S0010-4655(23)00010-3/bibAF3B892023FEDCD7DAF115384CDA2AE2s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibAF3B892023FEDCD7DAF115384CDA2AE2s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibAF3B892023FEDCD7DAF115384CDA2AE2s1
https://doi.org/10.1137/15m1010798
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibA2B96F8D7049558D603EAB46BA06D899s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibA2B96F8D7049558D603EAB46BA06D899s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibD1ACE31E0D2753B296764A99EE52C152s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bib40627DB10243FBA343B64084B7526AFFs1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bib40627DB10243FBA343B64084B7526AFFs1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bib23F59B3D5B5E667A299FA0D1BC3BC8ECs1
https://doi.org/10.1137/S1064827503428540
https://doi.org/10.1137/S1064827503428540
https://doi.org/10.1016/j.jcp.2011.02.044
https://doi.org/10.1016/j.jcp.2011.02.044
https://doi.org/10.1007/s10915-012-9619-2
https://doi.org/10.1007/s10915-012-9619-2
https://doi.org/10.1016/j.cpc.2012.11.008
https://doi.org/10.1016/j.cpc.2012.11.008
https://doi.org/10.1016/j.compfluid.2006.08.006
https://doi.org/10.1016/j.compfluid.2006.08.006
https://doi.org/10.1016/j.cpc.2018.06.018
https://doi.org/10.1016/j.cpc.2018.06.018
https://doi.org/10.1111/cgf.12577
https://doi.org/10.1016/j.cpc.2019.106866
https://doi.org/10.1016/j.cpc.2019.106866
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibA0D0CA7FBEBC7976EF38817D32460120s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibA0D0CA7FBEBC7976EF38817D32460120s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibA0D0CA7FBEBC7976EF38817D32460120s1
https://doi.org/10.1006/jcph.1997.5721
https://doi.org/10.1006/jcph.2001.6977
https://doi.org/10.1006/jcph.1999.6294
http://refhub.elsevier.com/S0010-4655(23)00010-3/bib05951FDE37EDE0C59FDE05E0AD1AB664s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bib05951FDE37EDE0C59FDE05E0AD1AB664s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bib05951FDE37EDE0C59FDE05E0AD1AB664s1
https://doi.org/10.13182/NSE96-A24230
https://doi.org/10.13182/NSE96-A24230
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibFA55298E84605EA2ACFE282692D4FDE2s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibFA55298E84605EA2ACFE282692D4FDE2s1
http://refhub.elsevier.com/S0010-4655(23)00010-3/bibFA55298E84605EA2ACFE282692D4FDE2s1
https://doi.org/10.1088/1361-6595/abaa05
https://doi.org/10.1088/0022-3727/41/23/234005
https://doi.org/10.1088/0022-3727/42/6/065203
https://doi.org/10.1016/j.jcp.2011.05.036
https://doi.org/10.1016/j.jcp.2011.05.036
https://doi.org/10.1016/j.jcp.2019.03.036
https://doi.org/10.1016/j.jcp.2019.03.036
https://doi.org/10.1109/TPS.2021.3120507

	Geometric multigrid method for solving Poisson’s equation on octree grids with irregular boundaries
	1 Introduction
	2 Multigrid method without irregular boundaries
	2.1 Mesh
	2.2 Geometric multigrid method

	3 Implementation of boundaries
	3.1 Level set function
	3.2 Distance computation
	3.3 Discretization of Laplacian with boundaries
	3.4 Prolongation
	3.5 Coarse grid solver
	3.6 Implementation aspects
	3.6.1 Boundary detection
	3.6.2 Storing stencils and boundary information
	3.6.3 Unresolved LSF roots on coarse grids

	4 Numerical experiments
	4.1 Convergence tests on sphere
	4.2 Sharp boundaries
	4.3 Application example
	4.4 Computational cost

	5 Conclusions
	Declaration of competing interest
	Data availability
	References

