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Abstract—Traffic problems continue to deteriorate because of the increasing population in urban areas that rely on many modes of
transportation, the transportation infrastructure has achieved considerable strides in the last several decades. This has led to an
increase in congestion control difficulties, which directly affect citizens through air pollution, fuel consumption, traffic law breaches,
noise pollution, accidents, and loss of time. Traffic prediction is an essential aspect of an intelligent transportation system in smart cities
because it helps reduce traffic congestion. This article aims to design and enforce a traffic prediction scheme that is efficient and
accurate in forecasting traffic flow. Available traffic flow prediction methods are still unsuitable for real-world applications. This fact
motivated us to work on a traffic flow forecasting issue using Vision Transformers (VTs). In this work, VTs were used in conjunction with
Convolutional neural networks (CNNs) to predict traffic congestion in urban spaces on a city-wide scale. In our proposed architecture, a
traffic image is fed to the CNN, which generates feature maps. These feature maps are then fed to the VT, which employs the dual
techniques of tokenization and projection. Tokenization is used to convert features into tokens containing Vision information, which are
then sent to projection, where they are transformed into feature maps and ultimately delivered to LSTM. The experimental results
demonstrate that the vision transformer prediction method based on Spatio-temporal characteristics is an excellent way of predicting
traffic flow, particularly during anomalous traffic situations. The proposed technology surpasses traditional methods in terms of
precision, accuracy and recall and aids in energy conservation. Through rerouting, the proposed work will benefit travellers and reduce
fuel use.

Index Terms—Vision Transformers, Deep Learning, Intelligent Transportation System, Long-Short-Term-Memory (LSTM), Traffic
Congestion prediction.
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1 INTRODUCTION

D EVELOPMENT, urbanization, and private travel [1]
have all had a direct effect on the growth of cities,

construction, and the environment, which has led to more
traffic. Also, travel times get longer and traffic patterns get
worse, which can lead to traffic accidents [2], [3], [4]. As
a consequence, traffic management studies are very signif-
icant in science. Congestion could be lessened by making
transportation infrastructure more expensive or by putting
in place practical traffic solutions, like letting people know
ahead of time how bad the traffic will be at an upcoming
location. The better estimates of traffic speed [5] and volume
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[6] based on time series are more useful than trend analysis,
which looks for traffic networks that are always backed up
[7], [8], [9], [10]. Among them, prediction of traffic jams
make it easier for drivers to choose better routes and for
traffic managers to respond more quickly to changes in the
transportation network. Table 1 represents the Nomencla-
ture used in this paper.

TABLE 1
Nomenclature

Acronym Definition
LSTM Long Short Term Memory
CNN Convolutional Neural Networks
VT Vision Transformer
ANN Artificial Neural Networks
NN Neural Networks
GPS Global Positioning System
SVM Support Vector Machine
PSO Particle swarm optimization
CEC Constant Error Carousel
BPTT Back Propagation Through Time
RTRL Real Time Recurrent Learning

iGPT Image Generative Pre-trained Trans-
former

DeiT Data-efficient image Transformers
CSFD Congestion State Fuzzy Division
TFP Traffic Flow Prediction

Identification of congestion in the traffic is gaining re-
search interest day by day because traffic congestion could
cause wastage of fuel and reduce transportation perfor-
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mance and a lot of pollutants will be released into the envi-
ronment. Detecting congestion could lead the researchers
to develop a template for forecasting congestion in the
traffic and also provide a casual decision on the route taken
by the vehicle users with which networks associated with
roads and public transportation will be enhanced. A lot
of proactive strategies are developed for controlling the
traffic and for vehicle users live route supervision will be
delivered.

Early models are based on predicting only speed, length,
and traffic flow on a single route, group of roads, or a
restricted road network. Road network capability constrains
these initiatives; both commuters and traffic authorities
have some issues. Data from one fixed sensor mounted on
each road or multiple vehicles operating on each route is
used. Since installation, service, and maintenance are costly,
and third-party access is difficult, this data is difficult to
obtain. Recently, real-time traffic information provided by
the Web services such as Bing Map [11], Google Traffic
[12], Baidu Map [13] and Seoul Transportation Activity and
Information Service (TOPIS) [14] has become available in the
public. These services are not well-known, but are public,
readily available, and provide traffic information for almost
all cities. The only problem is the curse of dimensionality
because the issue of prediction is a study of time series,
which require several inputs.

To address these common issues, the LSTM recurrent
neural network has demonstrated considerable success in
the areas of identification [15], time series prediction and
translation [16], [17]. LSTM, on the other hand, can be diffi-
cult to use and slow to process due to its two-dimensional
input and output sequences. Convolutional Neural Net-
works (CNN) have also established a reputation in spatial
learning, most notably in image comprehension, segmen-
tation, and object detection. However, due to characteristics
such as local networking, weight sharing, and pooling, CNN
has difficulty processing high-resolution multidimensional
data. Meanwhile, [18], [19] employs a convolutional encoder
to convert the input image to a low-resolution spatial image
and a convolutional decoder to restore the latent represen-
tation to its original size.

Computer vision stores vision as pixels. Pixel arrays,
illegal deep learning processors for computer vision, inter-
pret convolutions. Even if this convention produced good
vision models, there are still drawbacks. a) Because each
pixel is unique, picture categorization models should prior-
itize the foreground. Segmentation models should prioritize
pedestrians above the sky, terrain, trees, etc. Convolutions
treat all image patches equally, regardless of importance.
Compute and represent become less valuable. b) Not all
pictures show ideas. All natural images have low-level
characteristics like corners and edges, thus utilizing low-
level convolutional filters. It would be inefficient to employ
high-level filters on all photos with high-level attributes,
like ear shape. Photos of flowers, cars, sea creatures, and
other objects don’t reveal dog features. Rarely used filters
take a lot of computing power. Convolutions don’t link far-
flung notions. Each completely convolutional filter works in
a tiny area, yet semantic ideas interact over great distances.
Previously, connecting ideas required larger kernels, deeper
models, or additional procedures like dilated convolutions,

global pooling, and non-local attention layers. But within
the context of pixel convolution, these solutions at best help
alleviate the problem by adding model and computational
complexity to make up for convolution’s faults.

To fix the real problem with the pixel-convolution
paradigm, we introduce the Vision Transformer (VT), shown
in Figure 1. This is a new way to represent and process high-
level concepts in images. Our first thought is that it is fine to
explain high-level ideas in an image with just a few words
(or Vision tokens). Later in the network, we stop using
the fixed-pixel-array representation and instead use spatial
attention to turn the feature map into a small set of semantic
tokens. To record interactions between tokens, we send these
tokens to a self-attention module called a ”transformer.”
This module is often used in natural language processing
[19]. The computed Vision tokens can be used directly for
image-level prediction tasks, or they can be re-projected in
time to the function map for pixel-level prediction tasks.

1.1 Research Gap

When compared to Deep Learning techniques ANN fails
to explore the most complex and deeper architectures and
deep learning techniques can attain much better perfor-
mances than the typical methods. Still, deep learning is
mainly focusing on the forecast congestion prediction on
a simple section of road. Some of the researchers used deep
learning techniques to estimate and forecast traffic conges-
tion in the whole transportation network. Most of the time
these techniques will not consider spatial correlation but
manage to consider temporal correlations at one location.

To overcome this problem, in this article a method is
proposed which is based on an image that represents traffic
in terms of an image and utilizes deep learning mechanisms
like CNN to extract Spatio-temporal features from the im-
age. A CNN is an effective means of extracting features from
the image when compared to ANNs. CNN has the following
characteristics while features are getting extracted

1) The output neurons of CNN’s convolutional layers
are locally connected, which means they are con-
nected to neighbouring input neurons.

2) CNN introduces a new layer known as the pooling
layer, which selects important features from its re-
ceptive zone and reduces the parameters.

3) Normally, completely connected layers are only
used at the end of the process.

The contributions of this paper can be summarized as
follows:

1) Using the proposed image-based approach and the
deep learning architecture of CNNs, spatial depen-
dencies, and network traffic’s temporal evolutions
are considered and implemented at the same time
in predicting traffic-related problems.

2) Spatio-temporal characteristics of network traffic
can be extracted automatically with high estimation
accuracy when using a CNN.

3) CNN’s utilization in the proposed system will help
it to be used in the prediction of traffic speed in
large-scale problems.
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Fig. 1. Overall Framework of the Proposed Architecture

4) A Vision Transformer (VT) is used along with LSTM
NN to predict traffic in smart cities.

The gap can be summarized as, CNN’s convolutional
layer output neurons being locally connected, which implies
they are coupled to neighbouring input neurons. CNN intro-
duces the pooling layer, which selects essential information
from its receptive zone and decreases the parameters. Typi-
cally, completely connected layers are used only at the end
of the process.

The contributions are summarized as the proposed
image-based technique and the deep learning architecture
of CNNs are used to consider and implement network traf-
fic’s temporal evolutions and spatial dependencies in traffic
prediction issues at the same time. When using a CNN, the
spatiotemporal properties of network traffic can be retrieved
automatically with high estimation accuracy. Because it uses
convolutional and pooling layers, the suggested method
can be used to predict the speed of traffic on a large scale
while still being easy to train. In smart cities, a Vision
Transformer (VT) is utilized in conjunction with LSTM NN
to anticipate traffic. It is reducing pollutant emissions; It is
reducing traffic congestion so that people’s quality of life is
not jeopardized.

The remaining paper is framed as follows: Section 2 will
present a survey of recent work from the literature. Then in
Section 3 Materials and Methodology, we specify common
techniques and approaches used to predict traffic, and in
Section 4, we present results and related discussions. Finally,
in Section 5, we conclude with final thoughts and proposals
for directions that future work with our proposed system
might take.

2 RELATED WORK

In this section, we review various methods and techniques
present in the literature that have contributed to predicting
congestion in urban traffic.

In [20], the researcher proposed a technique for esti-
mating the congestion in urban traffic using EMA with
weights. Then [21] considered GPS location information and
estimated the current traffic status using Spatio-temporal
information. In [22], the researcher predicted the state of
traffic by using information from GPS-equipped vehicle
logs, averaging vehicle velocities and related information.

Additionally, an improved strategy was introduced in [23]
that utilized both time-fluctuating and space-changing data
to anticipate metropolitan traffic states dependent on a
versatile cubic surface traffic stream model. In this work
[24], the researcher introduced a precise answer for forecast-
ing traffic states by removing the Spatio-temporal average
speed from an enormous number of GPS test vehicles. This
technique depended on a bend-fitting and vehicle-following
system. To improve the exactness of such assessments, re-
searchers in [25] determined the mean speed at the street
area level from multi-source traffic information and used
this to gauge traffic states. In [26], researchers proposed a
weighted means of dealing with gauge traffic state, utilizing
GPS information by expanding loads of ongoing speed data.

In [27], the author introduced a cross-breed learning
system that could suitably join assessment consequences of
interstate traffic thickness states from numerous perceptible
traffic stream models. Meanwhile, the researchers in this
work [28] proposed dealing with gauge blood vessel travel
time states by counting Bayesian and Expectation Maximi-
sation calculations utilizing GPS test information. The previ-
ously mentioned techniques assessed traffic states by utiliz-
ing one explicit boundary like normal speed, travel time, or
traffic density. Nonetheless, the vulnerability and intricacy
of traffic states have not been adequately addressed by any
of these techniques, even the authors in [29], who assessed
traffic clog states utilizing a versatile neuro-fuzzy derivation
framework.

In another work [30], the author introduced a grid-
lock assessment framework from video information utiliz-
ing physically tuned fuzzy rationale. Nonetheless, vehicle
volume and speed were utilized in this strategy without
considering the street space data. Elsewhere [31], the author
delivered a tracking-based strategy utilizing Pareto’s ideal
choice hypothesis and extensive fuzzy judgment to appraise
the traffic state. In [32], the author investigated the benefits
of fuzzy deduction frameworks to assess the degree of street
gridlock utilizing traffic density and speed data.

A fusion of SVM and the genetic algorithm was used
in [33] to predict congestion in urban traffic. Elsewhere, the
Genetic Algorithm was used for parameters optimization,
and a support vector machine (SVM) was used to predict
traffic based on online learning methodologies. Similarly,
the author in [34] proposed a hybrid mechanism using SVM
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for prediction and PSO to optimize parameters. Then in
[35], the author proposed a traffic prediction mechanism
using the Support Vector Regression technique to forecast
traffic movement in smart cities using Spatio-temporal in-
formation. In [36], the author proposed a support vector
Regression approach for traffic congestion forecasting by
utilizing a kernel called Gaussian Radial Basis Function,
which uses the fusion of simulated annealing and Genetic
Algorithm for optimizing the input parameters. In [37],
the author proposed a PSO algorithm based on Chaotic
Cloud to optimize input parameters; here, too, the fusion
of Gaussian Loss function and Support Vector Regression is
used for the prediction of traffic in smart cities. Associated
works present in the literature are shown in Table 2.

Despite the variety of methods or techniques present in
the literature dealing with traffic prediction or forecasting
traffic congestion, none have considered the full capacity
of this phenomenon or the Spatio-temporal data of roads
themselves. Also, almost all the techniques take only one
metric to estimate the system’s performance, which is a
pitfall when we do not find systematic methods that will
address stability, instantaneity, and Accuracy simultane-
ously. To address these issues, we present a novel technique
for estimating and forecasting traffic congestion: one that
considers all three metrics in its estimation of the system’s
performance.

The majority of previous research on predicting traf-
fic conditions has concentrated on projecting future traffic
flows at a certain site or travel times on a given road seg-
ment. Influenced by variables including inhabitants’ move-
ment, climate, and traffic control, the urban road traffic flow
fluctuates continuously. Simultaneously, urban function de-
sign, geographical considerations, and social activities influ-
ence the traffic flow in different places and at different times
along the same road. It possesses distinct spatiotemporal
properties. Additionally, almost all the techniques have
taken only one metric to estimate the performance of the
system and there is a pitfall that we don’t find systematic
methods that will address stability, instantaneity, and ac-
curacy simultaneously. To address this, we present a novel
technique to estimate and forecast traffic congestion and
consider all three metrics for the performance estimation
of the system. Table 2 summarizes the related works.

3 MATERIALS AND METHODS

3.1 Feature Extraction Using CNN
CNN has exhibited substantial image-understanding learn-
ing capacity because of its unique image-feature extraction
methods. CNN differs from conventional deep learning
designs in two ways: (a) instead of connecting output neu-
rons to all input neurons, output neurons are selectively
connected to adjacent input neurons. Because each layer
captures different aspects of the issue to be forecasted, they
can eliminate image features efficiently [48]. With these
two characteristics, CNN is upgraded to fit the sense of
transportation. initially, The model’s input images have one
lane, which is evaluated by traffic speed, and pixel values
range from 0-maximum traffic speed. Three channels will
classify photos. Normalize model inputs to prevent training
issues from model weights. Second, outputs vary. The model

TABLE 2
Associated Works in the Literature

Ref. Approaches Used Limitations

[38]

Fusion of SVM and
chaos wavelet analysis
is used for the kernel
selection for the Traffic
congestion forecasting

Choice of appropriate kernel
function for the practical prob-
lem; how to optimize parame-
ters efficiently and effectively

[39]

Confirmed that ap-
propriate selection of
Support Vector Re-
gression will improve
the traffic congestion
prediction accuracy

SVMs generally high perfor-
mance may suggest SVR is
likewise appropriate. How-
ever, SVRs depend on good pa-
rameter selection (PS).

[40]
Used SVR for the traf-
fic congestion predic-
tion

Selection of kernel function is
a pivotal factor that also deter-
mines the performance of SVR

[41]

Particle filter
technique is used for
the traffic congestion
prediction

The advantage of particle filter,
in which each particle has a
prediction value and an asso-
ciated weight, cannot predict
traffic state reliability informa-
tion.

[42]

Artificial neural net-
works are used for
traffic congestion pre-
diction

Fails to predict methodological
applications to urban arterials
with more significant conges-
tion levels; also fails to account
for the effects of traffic signals.

[43]

A multivariate spatial-
temporal auto regres-
sive Model is pro-
posed for the predic-
tion of congestion and
speed of the vehicles

The System slows down in
heavy volumes and at high-
speed modes

[44]

Fusion of Genetic Al-
gorithm and Fuzzy
rule-based hierarchi-
cal approach is pro-
posed for traffic con-
gestion prediction

Due to its automatic selection
and ranking algorithm there is
a possibility that lots of fea-
tures with weight might be left
out.

[45]

Learning based Sta-
tistical algorithms are
used for the forecast of
congestion in the traf-
fic

Assessment of the statistical
learning techniques for the pre-
diction of traffic congestion is
not performed

[46],
[47]

Support vector
machine-based least
squares approach is
used for the prediction
of traffic in the urban
areas and large-scale
taxi traces are also
used.

This method doesn’t indicate
the correlation among differ-
ent road segments or the influ-
ence that certain road segments
have on others.

predicts traffic speeds on all road segments, while the clas-
sification model provides a labelled image. Third, abstract
qualities are ambiguous. In transportation, abstract features
produced from convolutional and pooling layers imply road
speed connections. Abstract image characteristics for train-
ing may be shallow picture edges or deep object outlines.
Abstract properties are useful for prediction queries. Fourth,
model outputs affect training goals. Intelligent transporta-
tion outputs are continuous traffic rates, thus cost functions
should be too. Image categorization uses cross-entropy cost
functions. Fig. 2 shows the CNN framework for transporta-
tion: traffic function extraction, model input, and feature
map.

From a transportation network, the images created with
Spatio-temporal characteristics are the first model input. Let
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F and P, respectively, be the lengths of input and output
time intervals. In this case, the model feedback can be
represented by the Equation 1:

Xj = [mi,mi + 1,mi + p− 1], i ∈ [1, N − P − F + 1], (1)

where mj is a column vector that defines, in a
transportation network, the speed of the traffic within
the one-time unit, where N represents the length of time
intervals, and i represents the sample index.

Second, the CNN model’s central component is the re-
trieving traffic attributes, which is a blend of convolutional
and pooling layers. The term pool denotes the pooling
method, and the depth of CNN is denoted by the L.xj

l

represents input lth layer and 0jl represents the output of lth

layer and (W j
l ,bjl ) represents parameters of lth, considering

the various convolutional filters in the convolutional layer, j
is the channel index. cl is the number of convolutional filters
in the lth layer. The first convolutional and pooling layers’
output can be written as in Equation 2.

0j1 = pool
(
σ
(
W j

1x
j
1 + bj1

))
, j ∈ [1, c1] (2)

The Action function is referred to as σ, which will
be addressed in the following section. The output of the
convolutional and pooling layers in lth(l ̸= 1,l=1L) can be
written as in Equation 3.

0jl = pool

(
σ
( cl−1∑

k=1

(
W j

l x
j
l + bjl

)))
, j ∈ [1, cl] (3)

The following are the characteristics of traffic function
extraction: (a) Pooling and convolution are performed in
two dimensions. This component will learn the Spatio-
temporal connections of road parts; (b) Unlike the layers
in Fig. 2 with only four convolutions or pooling filters, in
the application number of layers is set to 100 seconds, since
a CNN can learn hundreds of features; and (c) by using
these layers CNN will convert the input model into deep
features. In the prediction model, traffic function extraction
output is fused with the features learned by the model into
a vector containing final features that are high-level of the
transportation network provided as input to the model. The
dense vector is represented as in Equation 4.

0flattenL = flatten([01L, o
2
Lo

j
L])

′j = cL, (4)

where L is the CNN deepness and flatten is the process
mentioned above of fusing. Finally, a completely connected

layer converts the vector into model outputs. As a conse-
quence, the model output can be written as in Equation 5.

ŷ = Wfo
flatten
L + bf

= wf (flatten(pool
(
σ

( cl−1∑
k=1

(
W j

Lx
k
L + bjL

)))
)) + bf ,

(5)

where Wf and bf are completely connected layer param-
eters. The predicted network-wide traffic rates are denoted
by ŷ.

It is necessary to remember that an activation mechanism
triggers each layer before going on to the explicit layers. Be-
low are listed some of the advantages of using the activation
function: (a) the output of the activation function is limited
to a scaled dataset that is used for training the model;
and (b) the other layers are combined with the activation
function to simulate complex nonlinear processes, allowing
the CNN to handle the complexities of an Intelligent trans-
portation network. The Relu function, which is used in this
analysis, is defined as represented in Equation 6.

g1(x) =

{
χ ifx > 0

0 Otherwise
(6)

Each output neuron is related to every input neuron in a
traditional feedforward neural network, and the network
is entirely connected, while convolutional layers are not.
Over its input layer, then, the CNN applies convolutional
filters to achieve local connections, through which local
input neurons are linked to the output neurons. The var-
ious number of filters are added to the input, with the
effects being combined in each layer. Hundreds of filters
can extract hundreds of traffic features and One filter can
remove one traffic feature from the input layer. Create high-
level features of the traffic are created by traffic features
merging. Now to create a more abstract range of traffic
features and higher-level features combine the features of
traffic extracted. This method validates the CNN’s com-
positionality, ensuring that each filter generates high-level
features from low-level features using a local path. When
the convolutional filter W γ

l is added to the data, the effect is
as represented in equation 7.

yconv =
m∑
e=1

n∑
f=1

(
(WY

l )efdef

)
, (7)

where m and n are the filter’s two dimensions, def is
the input matrix’s data value at positions e and f, (WY

l )ef is
the convolutional filter’s coefficient at positions e and f, and
yconv is the performance.

Since they only collect critical numbers from a single
area, pooling layers are built to downsample and accumu-
late results. The pooling layers ensure that CNN is locally
invariant, ensuring that regardless of feature transitions,
rotations, or sizes, the CNN will still derive the same feature
from the input [49]. Based on the above, pooling layers will
minimize CNN’s network size and classify the most popular
input layer functionality. The pooling layer can be written
as in equation 8, using the full operation as an example in
Equation 8.
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ypool = max(def ), e ∈ [1 . . . p], f ∈ [1 . . . q], (8)

where ypool is the pooling output, where p and q are
two dimensions of pooling window size, and def is the data
value of the input matrix at positions e and f , respectively.

3D input is given to the model, where each dimension
will give you information like input time interval, count of
the road sections in Network 1, and another dimension will
represent that the input picture has one channel.

3.2 LSTM
3.2.1 Standard LSTM
A memory block is considered, the most basic unit of the
LSTM network hidden layers. A memory block is consisting
of at least one memory cell and a couple of gating units that
are adaptive and send input to all cells and output to all the
cells in the memory block. A constant error carousel is at
the core of every memory cell which is a self-connected,
recurrent and linear unit and the activation of this core
is called as state of the cell. This constant error carousel
is responsible for addressing the error vanishing problem
and it maintains error backflow consistently. The constant
error carousel is protected from backward-flowing from the
output gates and forward-flowing activation from the input
gates. Noise will never enter the cell even when the gates
are in a closed state. The memory block is shown in Fig. 3.
By considering three inputs from sources and cell current
state, cell state, Sc is updated. Cell input is netc,netin are
input to the input gates and netout is the input to the output
gates, standard LSTM is shown in Fig. 3.

Fig. 3. Standard LSTM

Discrete-time steps f = 1, 2, . . . are considered, A single
stage includes upgrading all units (forward pass) and cal-
culating all weights with error signals. Input gate activation
yin and activation at the output gate is yout are computed
as represented in Equations 9 and 10.

netoutj (t) =
∑
m

woutjmym(t− 1)

youtj (t) = foutj
(
netoutj (t)

)
(9)

netinj
(t) =

∑
m

winjmym(t− 1)

yinj (t) = finj

(
netinj (t)

)
. (10)

Throughout this article, j refers to memory blocks; v
refers to memory cells in block j and cvi represents the jth

memory block, and vth cell;wIm is the link load from unit m
to unit l. Index m spans the entire source units, as defined
by the blueprint of the network. For gates, f is a logistic
sigmoid with a range of [0, 1]. Net feedback to the cell itself
is compressed by g, a set of [−2, 2] centered logistic sigmoid
functions. Input that is gated and squashed is applied to
the preceding stage state sc(f − 1)(f > 0) to determine the
memory cell inside state sc(t) as represented in Equation 11:

netciU (f) =
∑
m

wciUmym(f − 1)

sciU (f) = sciU (f − 1) + yinj (f)g
(
netciU (f)

)
(11)

With sci0 (0) = 0. By squeezing the interior state sc with
the help of function h of output which is squashed, the cell
output yc is determined and then multiplied by the output
gate activation yout is represented in Equation 12.

yci
U

(f) = youtj (f)h
(
sciU (f)

)
. (12)

The centered sigmoid is h within range [−1, 1]. Finally,
assume that the coefficients for the k output units are a
layered network topology with a normal input layer, a
hidden layer consisting of memory blocks, and a standard
output layer as represented in Equation 13.

netk(t) =
∑
m

wkmym(t− 1), yk(t) = fk
(
netk(t)

)
, (13)

where m extends to all components that serve the pro-
duction units, the logistic sigmoid or scale [0; 1], is used
again as the squashing function fk. Except for Equation 11,
both equations refer to extended LSTM with forget gates.

3.2.2 Limitations of standard LSTM

LSTM stores data through random time delays and back-
dates error indications. LSTM’s strengths can also bring
problems. Cell states sc tend to stretch linearly across a time
sequence. If we provide a constant input stream, cell states
will extend forever, saturating the output squashing func-
tion at h. The problem’s origin suggests that cell states can
be reset often, such as at the start of fresh input sequences.
Saturation causes the derivative of h to vanish, eliminating
incoming errors and causing the cell’s output to match the
activation of the output gate, rendering the cell unusable as
a memory.

Long Short-Term Memory Neural Network is proposed
to forecast traffic congestion. [50] suggested this to alleviate
time series delays. This system’s features make it useful
for predicting urban traffic congestion and intelligent trans-
portation. This system will have an input layer-1, a recur-
rent hidden layer-1, and an output layer-1. The memory
block is used as the LSTM NN’s hidden layer [51]. The
memory block consists of self-connected memory cells and
memorizes the temporal state. It also has gating units that
regulate the flow of information into the block; the gates are
multiplicative and adaptive.
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Also, the memory block has one input and one output
gate. Memory cells have an occasionally self-associated di-
rect unit-Constant Error Carousel (CEC), whose operation
determines cell state. The CEC opens and closes multiplying
doors. LSTM NN can prevent disappearing errors by keep-
ing organizational errors stable. A fail-to-remember door
was added to the memory block to prevent an unbounded
inward cell while managing persistent time arrangement.
This approach allows memory squares to reset without
external aid when data is outdated. Replaces CEC weight
with fail-to-remember door activation. The above system is
depicted in Fig. 4.

Fig. 4. architecture of LSTM Neural Network

Input for the above said model is given as x =
(x1, x2, . . . , xT ) ,and the sequence of output is depicted
as y = (y1, y2, . . . , yT ) , period of prediction is depicted
with T. In the traffic congestion scenario, the past data is
represented with x. The main motive of LSTM NN is to
forecast the traffic congestion in the coming step based on
the past data without telling the number of steps to be
tracked back. To apply this approach, the predictions will
be calculated with the equations specified from Equation 14
to Equation 19.

it = σ
(
Wixxt +Wimmt1 +Wicct1 + bi

)
(14)

fc = σ
(
Wfxxc +Wfmmc1 +Wfccc1 + bf

)
(15)

cc = fcRejectcc1+icRejectg
(
Wcxxc+Wcmmc1+bc

)
(16)

0t = σ
(
Woxxt +W0mmt1 +Wocct + b0) (17)

mc = 0cRejecth(cc) (18)

yc = Wymmt + by, (19)

where Reject signifies product of two vectors with scalar
values, and σ (·) denotes the standard logistics Sigmoid
function defined in Equation 20:

σ(x) =
1(

1 + eχ
) (20)

The memory block is laid out in a dished box and
comprises an information entryway, a yield door, and a fail-
to-remember door, where the yields of three entryways are

separately addressed as ir ,0r ,fr . For each memory block cell
activation vectors are denoted as cr and mr . W is the weight
matrix and b is the bias vector both are used for building
a connection between the output, input, and memory block
g(·) is a centered logistic sigmoid function with range [−2, 2]
as represented in Equation 21.

g(x) =
4

1 + eχ
− 2, (21)

where h(·)is a centered logistic sigmoid function with
range [-1,1] as represented in Equation 22.

h(x) =
2

1 + eχ
− 1 (22)

Preparing LSTM NN depends on shortened Back Prop-
agation Through Time (BPTT) and a changed rendition of
Real-Time Recurrent Learning (RTRL) utilizing the angle
plummet enhancement strategy [52]. The basic target work
is to limit the number of square mistakes. Blunders are
shortened when they show up at a memory cell yield, and
afterward, they enter the memory cell’s direct CEC, where
mistakes can stream back everlastingly, and making mis-
takes stream outside the cell will in general rot dramatically
[53]. This clarifies the motivation behind why LSTM NN
has the capacity of handling discretionary delays for time
arrangements with long reliance. Because of the broad nu-
merical determinations, the point-by-point execution steps
are not canvassed in this part. Fascinating readers may
allude to [54] for more data.

3.3 Vision Transformer

In this segment, we survey the uses of transformer-
based models in PC vision, including picture arrangement,
high/mid-level vision, low-level vision, and video prepa-
ration. We likewise momentarily sum up the utilization of
the self-consideration instrument and model pressure tech-
niques for a proficient transformer.The works that purely
use transformer for image classification include iGPT [55],
VT [56], and DeiT [57].

The Vision Transformer is shown in Fig. 5. An input
image is considered and the input image is given as input
to the CNN which will generate several high-level features
then a feature map will be given as input to the transformer
which is responsible for creating an association between
the Vision token which are generated by the process called
Tokenization. Finally, these associated Vision tokens are
used directly for forecasting or again generate a feature map
for forecasting at the pixel level. Vision Transformer will be
consisting of three components; they are tokenization and
transformer and projections. Tokenization is responsible for
creating tokens consisting of Vision information and the
transformer’s role is to create a semantic association be-
tween these tokens [19]. Finally, a projection unit is respon-
sible for generating an augmented feature map. Comparable
standards can be found in [58], [59], [60] however with one
basic distinction: Previous techniques use many semantic
ideas, though our VT utilizes as not many as 16 Vision
tokens to accomplish predominant execution.
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Feature
Map Xin

Feature
Map Xout

Tokenization

Tokens
Tin

Tokens
Tout

Projection

Visual
Transformers 

Fig. 5. Vision Transformers

3.3.1 Tokenization
A module called Tokenization is introduced which will take
feature maps as input and generate tokens with Vision
information. Typically feature map which is fed as input
will be represented as X ∈ RHW×C and tokens with Vision
information will be represented as T ∈ RL×C such that,
< < HW. We propose a repeated tokenization process on
earlier phase tokens with Vision information. The idea here
is to present layer tokens that will be generated by taking
supervision from the early stage tokens Tin, because of
this concept only this tokenization process is considered
a recurring or repeated tokenization process. Typically we
define in Equation 23.

WR = TinWT→R

T = SOFTMAXHW

(
XWR

)T
X, (23)

where WT→R ∈ RC×C . Along these lines, the VT can
gradually refine the arrangement of Vision tokens, moulded
on previously-processed ideas. Practically speaking, we ap-
ply tokenization with intermittent nature beginning from
the subsequent VT, since it requires tokens from a past VT.
Fig. 6 Will represent tokenization process.

Feature
Map  Spatial

Attention 
Visual 

Tokens

Pre Visual 

Tokens

CONV 2D

Fig. 6. Tokenization Process in a recurrent manner

3.3.2 Transformer
After tokenization, we at that point need to display associa-
tions between these Vision tokens. In [58], [59], [60] to create
association convolutions based on graphs are utilized. Sta-
ble/consistent weights are used while creating association
which means that each token while association is bound to
some semantic concept. We implement transformers, whose

design is based on input weights represented in Equations
24 and 25. We utilize a standard transformer with minor
changes.

T
′

out = Tin + SOFTMAXL((TinK)(TinQ)T )Tin (24)

Tout = T
′

out + σ(T
′

outF1)F2, (25)

where Tin,T
′

out,Tout ∈ RL×C are the tokens with Vi-
sion information Different from graph convolution, in a
transformer, weights between tokens are input based and
computed as a key query product: (TinK) (TinQ)T ∈ RL×L.
The transformer structure is shown in Fig. 7.

Fig. 7. Transformer Structure

3.3.3 Projections

Numerous vision errands require pixel-level subtleties, yet
such subtleties are not safeguarded in Vision tokens. Conse-
quently, we meld the transformer’s yield with the element
guide to refine the element guide’s pixel-array portrayal as
in Equation 26.

Xout = Xin + SOFTMAXL

((
XinWQ

)(
TWK

)T)
T

(26)

Where Xin,Xout ∈ RHW×C the information and yield are
include map.

(
XinWQ

)
∈ RHW×C is the question registered

from the information include map Xin.
(
XinWQ

)
p
∈ RC

encodes the data pixel-p requires from the tokens with
Vision.

Performance Analysis of the proposed model in compar-
ison with state of art techniques in terms of Recall is shown
in Fig. 9.
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Fig. 8. Performance Analysis concerning Accuracy

Fig. 9. Performance Analysis concerning Recall

3.4 Prediction of traffic flow:

By figuring out how bad traffic is, we hope to lower travel
costs and stop it from getting worse. To reach this goal,
a method for predicting congestion is used. This method
includes predicting traffic flow and fuzzy division of the
congestion state. Because of this, we run trials based on
these two things.

In this part, we look at how well linear and RBF kernel
functions work. When we look at how well these kernel
functions work, we don’t use any optimization techniques.
As we did in the last section, we divide one day into
five parts so we can get a more accurate picture of the
results. The same indices are used for accuracy before morn-
ing peak (accbefmor), during morning peak (accmor),
between morning peak and evening peak (accbetmoev),
during evening peak (acceve), and after evening peak
(accafteve). Table 3 shows the results of the congestion
state forecast for different times. From Figures 10 and 11 and
Table 3, we can see that linear and RBF kernels have about

the same overall accuracy. This means that they can both
be used to deal with congestion in the real world. The linear
kernel also does better than the RBF kernel during the morn-
ing, evening, and after-evening peak times. It means that
each kernel has its advantages when it comes to predicting
congestion states. Because of this, we use the multi-kernel
function to improve the accuracy of our predictions.

TABLE 3
Congestion State Prediction Performance of Kernel functions in

different periods

Metrics Linear RBF
accuracy 77.55% 77.55%

acc befmor 69.87% 71.06%
acc mor 78.04% 72.45%

acc betmoev 73.06% 76.54%
acc eve 86.66% 82.91%

acc afteve 87.45% 86.27%

4 RESULTS AND DISCUSSION

In this section, we first experiment and evaluate the per-
formance of the proposed traffic congestion prediction tech-
nique.

By forecasting the congestion present in the traffic in
urban areas, we target to reduce the cost required for travel
and avoid congestion creating situations from spreading fur-
ther. To achieve this traffic congestion forecasting technique
is implemented and used, which comprises the flow of the
traffic forecast and the fuzzy splitting of the congestion
state. This way experimentation is performed by keeping
these 2 aspects in mind they are speed forecasting in the
traffic and volume of the traffic results are discovered in
this experimentation.

4.1 Performance indexes
From CSFD and TFP, performance indexes are considered
and these concepts are explained in the following sections.

4.2 Traffic flow prediction indexes
Equations 27 to 30 show the accuracy indexes of the pre-
diction and it is made up of root mean square error, mean
square error, mean relative absolute error, and mean abso-
lute error.

MAE =
1

N

N∑
t=1

|Predict(t)−Real(t)| (27)

MRAE =
1

N

N∑
t=1

|predict(t)−Real(t)|
Real(t)

(28)

MSE =

√√√√ 1

N

N∑
t=1

(
predict(t)−Real(t)

)2
(29)

MSRE =

√√√√ 1

N

N∑
t=1

(
predict(t)−Real(t)

Real(t)

)2

(30)

where Predict denotes the predicted value and Real denotes
the real value.
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To evaluate the proposed method, performance metrics
such as Accuracy, Precision and Recall were used and rep-
resented in Equations 31 to 33.

Accuracy =
Detected Results

Total no.of iterations
(31)

Precision =
True Positive

True Positive+True Negative
(32)

Recall =
True Negative

True Positive+True Negative
(33)

Fig. 10. Performance Analysis concerning Precision

The real-time performance indexes include the time for
training model (trtime) and traffic flow prediction (pretime).
The stability performance indexes are related to the process
of the punish coefficient selection and the prediction accu-
racy.

4.3 Congestion state division indexes
Here, the Accuracy achieved by the model is given by the
state of congestion predicted divided by the state of con-
gestion in reality. The performance of the proposed model
regarding traffic volume forecast and an average speed
forecast is given below in Tables 4, 5, and 6, which reveal the
performance of our proposed model as compared to others
available in the literature.

TABLE 4
Performance of the Proposed Model

Metrics Traffic Volume
Prediction

Average Speed
prediction

maerr 0.5219 0.1475
marerr 21.8798 4.8637
mserr 30.2642 6.7025
msrerr 1.3565 0.2253
trtime 0.1112s 0.0821s
pretime 0.0330s 0.0085s

The comparison between various models from the liter-
ature and our proposed model is shown in Table 6. Perfor-
mance Analysis of the proposed model in comparison with

TABLE 5
Performance of the Proposed Model about Traffic Congestion

forecasting

Metrics Proposed
Model GASV MRL

PSOSV MR

Accuracy 0.87 0.6725 0.7422
Instantaneity 0.621s 6.094s 0.701s
Stability Yes No No

Fig. 11. Estimation of Traffic Congestion during a Week

Fig. 12. Comparison between the real congestion and predicted con-
gestion state

other techniques in terms of Accuracy is shown in Fig. 8.
Performance Analysis of the proposed model in comparison
with state of art techniques in terms of Precision is shown
in Fig. 10.

4.4 Congestion Estimation
Even though the parameters for traffic flow have been
collected, it is clear that traffic congestion can’t be described
correctly. This is because different roads have different sizes
and can hold different amounts of traffic. Google Earth,
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TABLE 6
Comparision between state-of-art work and the proposed model in

terms of accuracy, recall and precision

Prediction
Model Accuracy Recall Precision

PredNet 0.86 0.85 0.86
ConvLSTM 0.82 0.78 0.80
AutoEncoder 0.75 0.71 0.74
Proposed
Model 0.87 0.94 0.96

the length and number of lanes on a section of road, and
the amount of traffic can all be used to figure out the
traffic density. There are eight lanes in the 1.127-square-
kilometre test area. Road saturation can also be figured out
by how much and how much traffic there is. The traffic
capacity comes from the Indian National highway capacity
manual, which says that a multi-lane highway with a speed
limit of 80 km/h can hold up to 1800 pcu/h of traffic per
lane. In other words, the road under study can handle a
maximum of 150 pcu/5 min/lane. Then, in our suggested
method, the congested states are split up by road satura-
tion, traffic density, and average traffic speed. As a result,
Wa = [0.43, 0.27, 0.3] and Wb = [0.23, 0.17, 0.6] are given
to the weight sets. Figure 11 and 12 depicts our method’s
traffic congestion estimation over a week (from Monday to
Sunday). Fig. 11 depicts an estimation of the congestion
of traffic in an urban area during a week. On commuter
roads, weekday traffic is often significantly higher than
weekend travel. (Weekend traffic is heavier in regions where
recreation, tourism, or shopping predominate.) Figure 11
illustrates this variation dramatically for Detroit freeways.
It also indicates that there is some variation between week-
days: Thursdays and Fridays are often the busiest days
during this period. We have considered Fig. 12 shows the
comparison between the predicted congestion state and the
real-time congestion. In addition, our suggested method
accurately predicts morning peak, evening peak, and after-
evening peak traffic congestion.

5 CONCLUSION

In this research, a novel approach is proposed for the
estimation and forecast of congestion in urban traffic. In
this approach CNN are used where the image is given
as input and low-level features are extracted and they
will be further converted into high-level features and the
fully connected layer used for the prediction is removed
from CNN to overcome the problems with CNN and the
feature map is given as input to the Vision Transformers,
which will convert input feature map into the tokens with
Vision information and these tokens are given as input
to the transformer which is responsible for creating the
association between the tokens and then these tokens with
the association are further projected into feature map and
this feature map is given as input to LSTM NN which
is responsible for the prediction of traffic congestion. This
approach is capable to overcome the problems with CNN
and also delivers enhanced performance when compared
to the state-of-art literature. In the future, various feature
selection algorithms can be utilized in this approach which

might enhance the performance of this technique and the
computational efficiency in traffic congestion forecasting.
This work has limitations, such as its inability to predict the
speed of the vehicles after the congestion is reduced. Once
congestion is reduced to limit CO2 emission vehicles will go
at extremely high speeds which is not safe for travellers. So
this system fails to predict what is the possible speed of the
vehicles which will limit CO2 emission and simultaneously
provide safety.
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