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ABSTRACT 

In recent years, there have been increasing efforts to link phenology models with seasonal 
climate predictions in so-called Decision Support Systems (DSS) to tailor crop management 
strategies. However, temporal discrepancies between phenology models with temperature data 
gathered on a daily basis and seasonal forecasting systems providing predictability on monthly 
scales have limited their use. In this work, we present a novel methodology to use monthly 
average temperature data in phenology models. Briefly stated, we modelled the timing of the 
appearance of specific grapevine phenological phases using monthly average temperatures. 
To do so, we computed the cumulative thermal time (Sf) and the number of effective days 
per month (effd). The effd is the number of days in a month on which temperatures would be 
above the minimum value for development (Tb). The calculation of effd is obtained from a 
normal probability distribution function derived from historical weather records. We tested the 
methodology on four experimental plots located in different European countries with contrasting 
weather conditions and for four different grapevine cultivars. The root mean square deviation 
(RMSD) ranged from 4 to 7 days for all the phenological phases considered, at all the different 
sites, and for all the cultivars. Furthermore, the bias of observed vs predicted comparisons was 
not significantly different when using either monthly mean or daily temperature values to model 
phenology. This new methodology, therefore, provides an easy and robust way to incorporate 
monthly temperature data into grapevine phenology models.
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INTRODUCTION 

“Phenological development is the most important attribute of 
crop adaptation” (Sadras et al., 2009). Knowing the phenology 
of a plant helps to understand the climatic limitations 
and yield potential of a crop (Jones and Davis, 2000;  
Ritchie and Nesmith, 1991). Moreover, from a crop 
management perspective, knowledge of plant phenology 
helps to plan field tasks like pesticide applications, pruning 
or irrigation based on plant water demands (Jones and Davis, 
2000). It is not, therefore, surprising that historically 
speaking, there has been huge interest in modelling plant 
phenology (Chuine et al., 2013; Wang, 1960).

In addition, phenological modelling is a very useful tool 
for studying the response of plant development to climate 
variability. It is well known that plant development is almost 
proportional to temperature (Ritchie and Nesmith, 1991).  
In grapevines, several approaches have been proposed to 
model phenology based on the calculation of thermal time 
(Parker et al., 2013; Parker et al., 2011). Thermal time 
computes the time of the year when a phenological phase 
takes place based on the total accumulated temperature 
above a threshold. The thresholds refer to a temperature 
below which development ceases, the base temperature (Tb) 
(Parker et al., 2011; Ritchie and Nesmith, 1991).

The main advances in phenology modelling took place 
in the last part of the 20th century (Chuine et al., 2013). 
Interest was stimulated by increasing concerns about global 
warming (Chuine et al., 2013). Nowadays, the negative 
effects of global warming are more evident than ever. For 
instance, some of the premium wine regions in Europe 
have already passed their optimum temperature for growing  
(Jones et al., 2005), and this trend is expected to continue 
in the future. IPCC projections present a global scenario 
in which temperatures will probably rise by more than the 
projected 1.5 oC (RCP4.5, RCP6.0, and RCP8.5) threshold by 
the end of the present century. This will also be accompanied 
by an increase in the frequency of extreme weather events 
(IPCC, 2014; IPCC, 2018). These changes have created a 
high degree of uncertainty in crop management as yields and 
berry quality may be compromised (Jones and Davis, 2000; 
Jones et al., 2005). Faced with such uncertainty, the thermal 
time approach has been introduced, in combination with 
weather forecasting, to predict short-term phenology. 

Over longer time scales, seasonal predictions have been 
highlighted as a potential planning tool for the agriculture 
sector (Hansen et al., 2011) and phenology in particular 
(Ceglar and Toreti, 2021). Seasonal predictions are forecasts 
of climate conditions for periods ranging from one month to 
one year into the future. These forecasts are possible due to the 
existence of slowly evolving systems (such as oceans, snow 
cover, arctic ice, etc.) that interact with the atmosphere and 
favour certain states as opposed to others (see Hansen et al. 
(2011) or Doblas-Reyes et al. (2013)). Within this framework, 
the capacity to use seasonal forecasts to anticipate 
temperature behaviour several months into the future could 
potentially place phenological predictions at the forefront of 

efforts to mitigate the negative effects of climate change in 
agriculture. Examples of the use of seasonal forecasts include 
adjusting sowing dates or predicting the appearance of pests 
and diseases and can be found in the existing literature  
(Hansen and Indeje, 2004; Régnière  and  Bolstad, 1994; 
Sporleder et al., 2008). In the case of grapevines, Santos 
et al. (2020) used seasonal forecasts to estimate yields in 
the Douro Region of Portugal. However, to the best of 
our knowledge, and as also highlighted by Santos et al. 
(2020), there has been no published information about the 
use of seasonal forecasts to predict grapevine phenology. 
Probably, the lack of adoption of seasonal forecasts to model 
phenology has been due to both the intrinsic uncertainty 
of this information, highly dependent on region, variable 
and season (Weisheimer  and Palmer, 2014), as well as the 
temporal mismatch between the predictability provided 
by seasonal forecasts and the data required by grapevine 
phenology models. Although seasonal forecast systems 
can provide daily data, predictability on seasonal scales is 
centred on monthly to multi-month scales, so the sign is 
displayed in these aggregations (Doblas-Reyes et al., 2013).  
However, seasonal forecasting systems suffer uncertainties 
and biases in their predictions; these need to be corrected 
before they can be used (Doblas-Reyes et al., 2006).  
The existence of this temporal gap between phenology 
models, which requires daily or sub-daily temperature data, 
and seasonal forecasts presents a hurdle to providing seasonal 
phenology forecasts that can be used as a decision-making 
tool for grapevine management. 

The objective of the present paper is to compare the 
performance of a phenology model when using either 
daily average temperatures or to use a novel methodology 
to digest monthly average temperatures. The robustness 
of the proposed approach is tested using a multiple-year 
phenological dataset collected from four grapevine cultivars 
grown in four different areas of Europe. 

MATERIALS AND METHODS 

1. Phenology forecasts
To test the performance of the methodology proposed, we used 
the Spring Warming (SW) model (Hunter and Lechowicz, 
1992). The SW model has been widely used in grapevines 
(Costa et al., 2019; Parker et al., 2011; Zapata et al., 2017). 
The model calculates the accumulated thermal time (Sf, ºC 
d) for a given period as the sum of the development rate  

) computed from daily average temperatures ( ).  
The model requires three parameters: base temperature (Tb), 
thermal time or forcing units required to reach a phenology 
stage (F*), and starting date to accumulate temperature (t0).

(1) 𝑅𝑅𝑓𝑓(𝑇𝑇𝑎𝑎̅̅̅) = {
0                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎̅̅̅ ≤ 𝑇𝑇𝑏𝑏
𝑇𝑇𝑎𝑎̅̅̅ − 𝑇𝑇𝑏𝑏       𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎̅̅̅ > 𝑇𝑇𝑏𝑏} 

 

𝑆𝑆𝑓𝑓 = ∑ 𝑅𝑅𝑓𝑓(𝑇𝑇𝑎𝑎̅̅̅)
𝑦𝑦

𝑡𝑡0

≥ 𝐹𝐹∗ 

 

𝑅𝑅𝑓𝑓(𝑇𝑇𝑚𝑚̅̅̅̅ ) = {
 𝑇𝑇𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚̅̅̅̅ ≤ 𝑇𝑇𝑏𝑏

(𝑇𝑇𝑚𝑚̅̅̅̅ − 𝑇𝑇𝑏𝑏) 𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚̅̅̅̅ > 𝑇𝑇𝑏𝑏} 

 

𝑆𝑆𝑓𝑓 = ∑ 𝑅𝑅𝑓𝑓(𝑇𝑇𝑚𝑚̅̅̅̅ )
𝑛𝑛

𝑚𝑚=1
≥ 𝐹𝐹∗ 

 
𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 = 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [1 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑚𝑚̅̅̅̅ , 𝜎𝜎𝑇𝑇𝑚𝑚 , 𝑇𝑇𝑏𝑏)] 
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑(𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 

 

𝑑𝑑 = 1 − ∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖 − 𝑂̅𝑂| + |𝑂𝑂𝑖𝑖 − 𝑂̅𝑂|)2𝑛𝑛
𝑖𝑖=1

 

 
 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑛𝑛(𝑜𝑜𝑜𝑜𝑜𝑜̅̅ ̅̅ ̅ − 𝑝𝑝𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅)2

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

 
 

𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝛽𝛽 − 1)2 ∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅)2𝑖𝑖=1
𝑛𝑛

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

 
 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ (𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖)2𝑖𝑖=1
𝑛𝑛

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

(2) 

𝑅𝑅𝑓𝑓(𝑇𝑇𝑎𝑎̅̅̅) = {
0                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎̅̅̅ ≤ 𝑇𝑇𝑏𝑏
𝑇𝑇𝑎𝑎̅̅̅ − 𝑇𝑇𝑏𝑏       𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎̅̅̅ > 𝑇𝑇𝑏𝑏} 

 

𝑆𝑆𝑓𝑓 = ∑ 𝑅𝑅𝑓𝑓(𝑇𝑇𝑎𝑎̅̅̅)
𝑦𝑦

𝑡𝑡0

≥ 𝐹𝐹∗ 

 

𝑅𝑅𝑓𝑓(𝑇𝑇𝑚𝑚̅̅̅̅ ) = {
 𝑇𝑇𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚̅̅̅̅ ≤ 𝑇𝑇𝑏𝑏

(𝑇𝑇𝑚𝑚̅̅̅̅ − 𝑇𝑇𝑏𝑏) 𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚̅̅̅̅ > 𝑇𝑇𝑏𝑏} 

 

𝑆𝑆𝑓𝑓 = ∑ 𝑅𝑅𝑓𝑓(𝑇𝑇𝑚𝑚̅̅̅̅ )
𝑛𝑛

𝑚𝑚=1
≥ 𝐹𝐹∗ 

 
𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 = 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [1 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑚𝑚̅̅̅̅ , 𝜎𝜎𝑇𝑇𝑚𝑚 , 𝑇𝑇𝑏𝑏)] 
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑(𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 

 

𝑑𝑑 = 1 − ∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖 − 𝑂̅𝑂| + |𝑂𝑂𝑖𝑖 − 𝑂̅𝑂|)2𝑛𝑛
𝑖𝑖=1

 

 
 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑛𝑛(𝑜𝑜𝑜𝑜𝑜𝑜̅̅ ̅̅ ̅ − 𝑝𝑝𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅)2

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

 
 

𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝛽𝛽 − 1)2 ∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅)2𝑖𝑖=1
𝑛𝑛

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

 
 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ (𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖)2𝑖𝑖=1
𝑛𝑛

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

where y is the date when the target phenological event occurs.
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2. Estimation of phenology forecast from 
monthly mean temperatures
As previously indicated, the thermal time model requires 
daily values of mean air temperature to compute  

), but the objective of our research is to model phenology 
using average monthly temperatures ( ). To address this, 
we propose the monthly downscaling approach (DMA). 
The DMA calculates the Sf  from the rate of development 
computed from  and the number of effective days per 
month (effd). We define the effd as the number of days in a 
particular month that had a daily temperature above Tb. 

(3) 

(4) 

where n is the number of months, m is the starting month and 
) is the rate of development of the mth month using a 

monthly mean temperature. The effd was calculated as follows: 
first, we used historical weather records to obtain the standard 
deviation of the monthly temperature distributions (σTm). 
Then, we computed the cumulative distribution function 
(cdf) for each month, from , σTm and Tb. The effd was obtained 
by multiplying the number of days of that month (ndays) by  
1 minus cdf. 

(5) 

𝑅𝑅𝑓𝑓(𝑇𝑇𝑎𝑎̅̅̅) = {
0                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎̅̅̅ ≤ 𝑇𝑇𝑏𝑏
𝑇𝑇𝑎𝑎̅̅̅ − 𝑇𝑇𝑏𝑏       𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎̅̅̅ > 𝑇𝑇𝑏𝑏} 

 

𝑆𝑆𝑓𝑓 = ∑ 𝑅𝑅𝑓𝑓(𝑇𝑇𝑎𝑎̅̅̅)
𝑦𝑦

𝑡𝑡0

≥ 𝐹𝐹∗ 

 

𝑅𝑅𝑓𝑓(𝑇𝑇𝑚𝑚̅̅̅̅ ) = {
 𝑇𝑇𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚̅̅̅̅ ≤ 𝑇𝑇𝑏𝑏

(𝑇𝑇𝑚𝑚̅̅̅̅ − 𝑇𝑇𝑏𝑏) 𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚̅̅̅̅ > 𝑇𝑇𝑏𝑏} 

 

𝑆𝑆𝑓𝑓 = ∑ 𝑅𝑅𝑓𝑓(𝑇𝑇𝑚𝑚̅̅̅̅ )
𝑛𝑛

𝑚𝑚=1
≥ 𝐹𝐹∗ 

 
𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 = 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [1 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑚𝑚̅̅̅̅ , 𝜎𝜎𝑇𝑇𝑚𝑚 , 𝑇𝑇𝑏𝑏)] 
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑(𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 

 

𝑑𝑑 = 1 − ∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖 − 𝑂̅𝑂| + |𝑂𝑂𝑖𝑖 − 𝑂̅𝑂|)2𝑛𝑛
𝑖𝑖=1

 

 
 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑛𝑛(𝑜𝑜𝑜𝑜𝑜𝑜̅̅ ̅̅ ̅ − 𝑝𝑝𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅)2

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)2𝑖𝑖=1𝑛𝑛
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3. Site description
The analysis was performed at four experimental plots located 
in three different countries. The experimental plots were: 
Vilariça (Portugal), Raïmat (Spain), La Orden (Spain), and 
Mirabella Eclano (Italy) (Figure 1). The model was validated 
for the following four cultivars of Vitis vinifera L.: ‘Touriga 
Nacional’, ‘Tempranillo’, ‘Aglianico’, and ‘Chardonnay’.  
At each experimental plot, the phenology was recorded every 
week. The phenology was tracked according to the scale 
proposed by Baggiolini (1952) for bud break, bloom, fruit 
set, and veraison. Weather data were retrieved from nearby 

weather stations; these either belonged to the winery itself or 
were public. At each site, the plants were managed according 
to standard local winery practices. Table 1 summarises the 
information obtained at the different sites.

4. Calibration of the SW model
We carried out a specific calibration of the SW model for 
each cultivar and site. For each phenological phase and year, 
we calculated Sf from Equation 1 by computing ) from 
t0 until the recorded date of the phenological phase in the 
corresponding year. The F* for the corresponding phenology 
phase was calculated by averaging all the Sf. Tb was from 
Moncur et al. (1989), who set a Tb of 3.5 ºC for bud break 
and 7.1 ºC for the rest of the phenological phases. The t0 was 
set for January 1st. The F*  values obtained from the SW 
calibration process were the used in the DMA approach.

5. Statistical analysis of model performance
We explored the performance of the DMA by computing 
the root mean square deviation (RMSD). The RMSD 
(Equation 6) represents the mean deviation of the predicted 
values (P) to the observed ones (O) (Kobayashi and Salam, 
2000). 
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6. Testing the model compatibility
We computed the phenology using both the SW model  
( ) and the DMA ( ). In both models, we applied the 
F* values derived from the SW calibration (Section  4). 
Temperature values were obtained from the selected weather 
stations at each location. The  were calculated by averaging 

 for the corresponding month. A regression analysis 
was performed comparing phenology forecasts from the 
SW model and from the DMA. In the regression analysis, we 
tested for slope = 1 and intercept = 0. If the null hypothesis 
for the slope is rejected, the DMA will have no consistency 
with the SW model. If the null hypothesis for the intercept 

FIGURE 1. Location of the study sites. 
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is rejected, then the DMA is biased. Finally, if both null 
hypotheses are not rejected, the bias observed is due to the 
unexplained variance (Piñeiro et al., 2008). The significance 
level for the test was 0.05. Moreover, we evaluated DMA’s 
performance using the Willmot index of agreement (d) and 
Theil’s partial inequality coefficients (Ubias, Uslope, and Uerror) 
(Piñeiro et al., 2008; Willmott, 1984). The d evaluates the 
model’s performance based on a ranking that varies from 0 
(no agreement) to 1 (perfect fit), using both predicted (P) 
and observed (O) values (Equation 7). For the purpose of the 
performance test, P values corresponded to the phenology 
forecasts from the DMA and O values from the SW model.

(7) 

𝑅𝑅𝑓𝑓(𝑇𝑇𝑎𝑎̅̅̅) = {
0                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎̅̅̅ ≤ 𝑇𝑇𝑏𝑏
𝑇𝑇𝑎𝑎̅̅̅ − 𝑇𝑇𝑏𝑏       𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎̅̅̅ > 𝑇𝑇𝑏𝑏} 

 

𝑆𝑆𝑓𝑓 = ∑ 𝑅𝑅𝑓𝑓(𝑇𝑇𝑎𝑎̅̅̅)
𝑦𝑦

𝑡𝑡0

≥ 𝐹𝐹∗ 

 

𝑅𝑅𝑓𝑓(𝑇𝑇𝑚𝑚̅̅̅̅ ) = {
 𝑇𝑇𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚̅̅̅̅ ≤ 𝑇𝑇𝑏𝑏

(𝑇𝑇𝑚𝑚̅̅̅̅ − 𝑇𝑇𝑏𝑏) 𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑                   𝑖𝑖𝑖𝑖 𝑇𝑇𝑚𝑚̅̅̅̅ > 𝑇𝑇𝑏𝑏} 

 

𝑆𝑆𝑓𝑓 = ∑ 𝑅𝑅𝑓𝑓(𝑇𝑇𝑚𝑚̅̅̅̅ )
𝑛𝑛

𝑚𝑚=1
≥ 𝐹𝐹∗ 

 
𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 = 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 [1 − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑚𝑚̅̅̅̅ , 𝜎𝜎𝑇𝑇𝑚𝑚 , 𝑇𝑇𝑏𝑏)] 
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑(𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 

 

𝑑𝑑 = 1 − ∑ (𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (|𝑃𝑃𝑖𝑖 − 𝑂̅𝑂| + |𝑂𝑂𝑖𝑖 − 𝑂̅𝑂|)2𝑛𝑛
𝑖𝑖=1

 

 
 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑛𝑛(𝑜𝑜𝑜𝑜𝑜𝑜̅̅ ̅̅ ̅ − 𝑝𝑝𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅)2

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

 
 

𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝛽𝛽 − 1)2 ∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝̅̅ ̅̅ ̅)2𝑖𝑖=1
𝑛𝑛

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

 
 

𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = ∑ (𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖)2𝑖𝑖=1
𝑛𝑛

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)2𝑖𝑖=1𝑛𝑛
 

Theil’s partial inequality coefficients separate the total 
prediction error into three different proportions to assess the 
performance of the regression. These proportions are: the 
bias of  the prediction (Ubias); the slope of the fitted model 
against the identity line (Uslope), and the unexplained variance 
(Uerror) (Paruelo et al., 1998).
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where n is the number of values, obs and pre are the observed 
and predicted values,  and  are the averages of 
the observed and predicted values, and est are the values 
estimated from the fitted regression model. 

The compatibility of SW and the DMA was also tested 
by applying a two-sample t-test to the residuals of each 
calibrated model (Kalpić et al., 2011). These residuals 
were obtained from comparisons between the observations 
and predictions (from SW or DMA) at the different sites.  
The analysis was also applied to the four cultivars. 
Considering that the number of phenological records was 
rather limited (see Table 1), testing was conducted on a 
cultivar-wise basis. Our objective was to demonstrate that the 
two approaches, SW and DMA, were compatible. With this 
aim, the null hypothesis (H0) was that the mean difference of 
residuals between the two models would be 0 (or compatible 
with 0). Conversely, the alternative hypothesis (Ha) was that 
the DMA and SW would significantly differ from 0 and, 
consequently, would not be compatible.

7. Sensitivity analysis of the model
We performed an analysis to explore the effect of the number 
of years for the historical records on the calculation of effd 
(Figure 6). The analysis focused on the sites with the largest 
data set, Raïmat, Vilariça and Mirabela Eclano. At each site, 
we changed the number of years to compute effd, starting with 
three years and subsequently increasing the number of years 
by two. For each number of years, we forecast the period of 
phenological records (Table 1) 100 times. In each forecast, 
the combination of years for effd calculation was changed. 
For instance, in Raïmat, when the number of years for effd 
calculation was three, the phenology was predicted from 
[(1997, 2005, 2004); (1999, 2010, 2000);…; (2002, 2011, 
2014)].

RESULTS 

1. Climatic characteristics of the sites studied
Figure  2 presents the frequent temperature distribution 
obtained from historical weather records (Table  1).  
They all show bi-modal behaviour, with a primary probability 
maximum at around 11  ºC and a secondary maximum at 
around 21  ºC. The amplitude of these maximums and the 
frequencies of the extreme values are site-dependent. La 
Orden was the least extreme of the four, with its highest 
probabilities corresponding to the central temperature range. 
Vilariça, on the other hand, had the warmest extremes and 
was the site where bi-modal behaviour was least prominent. 
Raïmat was the coldest of the four sites, with its highest 
probabilities being in the lower temperature range. Finally, 
Mirabella Eclano was similar to La Orden but slightly cooler. 
These very different characteristics made the sites interesting 
to explore the functionality of the proposed approach under 
different temperature accumulation regimes.

Figure  3 presents the average  distribution throughout the 
year and the maximum and minimum values registered. 
As expected from Figure  2, Raïmat and Mirabella Eclano 
present the coolest climate and Vilariça the hottest.  
La Orden had the lowest variability in , presenting an 
average difference between the maximum and minimum 

 of 7.4  ºC. This difference contrasts with the 11.9  ºC in 
Vilariça or the 12.5 ºC in Mirabela Eclano. The mean  is 
above Tb before bud break at all the sites, with Raïmat having 
the closest average  to Tb before bud break. 

Country Location Geographical coordinates Cultivar Period of phenological 
records

Period of historical 
weather records

Spain Raïmat 41.65 N 0.51 E Tempranillo, Chardonnay 2017–2020 1997–2017

Spain La Orden 38.51 N 6.41 W Tempranillo 2005–2017 1998–2005

Portugal Vilariça 41.24 N 7.11 W Touriga Nacional 2017–2020 1985–2017

Italy Mirabella Eclano 41.06 N 14.98 E Aglianico 2017–2020 1978–2017

TABLE 1. Location, cultivars, years of phenological records, and period of historical weather records used in the 
analysis.
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2. Calibration results
Table  2 reports the results of the calibration procedure 
performed at the different sites. ‘Chardonnay’ presented the 
lowest F* values at bud break, whereas ‘Aglianico’ had the 
highest. We obtained different F* values in the two sites for 
‘Tempranillo’. La Orden had a higher F* than Raïmat in all 
the phenology phases except for veraison. When we summed 

the F* for all the phenology phases, the largest value was for 
Aglianico and the lowest for Chardonnay (Table 2).

3. Model performance at different locations
The DMA performed well for all the cultivars and locations 
(Figure  4). The RMSDs were between 4 and 6  days and 
depended on the cultivar and location (Figure 4). However, 
the model’s performance changed from year to year and for 

FIGURE 2. The probability distribution for the average daily temperature at the four experimental sites.

FIGURE 3. The daily evolution of average, minimum, and maximum mean air temperatures at the four study sites 
from the historical records is presented in Table 1. Horizontal lines indicate the base temperature (Tb) used before bud 
break (solid) and after bud break (dashed).
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the different phenology events (Figure 4). For instance, in La 
Orden, the RMSDs ranged from 3.3 to 8.4 days. In 2017, in 
La Orden, we observed an unusual deviation of the prediction 
at fruitset and veraison (21 and 17 days difference from the 
observation). However, the same bias was observed when we 
used the SW model instead of the DMA.

4. Model comparison and compatibility 
analysis
Figure  5 presents a regression analysis comparing the SW 
model with the DMA. All the data are close to the identity 
line (dashed line in the figure), and no significant deviations 
or outliers were observed (Figure  5, statistic indexes).  

The statistical regression analysis confirms the null hypothesis 
(p-Intercept and p-Slope  >  0.05). The DMA predicts 
phenology with the same variance as the SW model. Most of 
the observed variance can be attributed to unexplained errors 
(Uerror  =  0.78). Furthermore, all the RMSD comparisons 
for the different phenological stages were very similar. 
Modelling phenology with the DMA provided slightly better 
results than the SW model, except for bud break (Table 3). 
When using the DMA, the highest RMSD was obtained at 
bud break, whereas with the SW model, the highest RMSD 
was at veraison. The lowest RMSDs were observed at bloom 
in both models.

Location Cultivar
F* (GDD, ºC d)

Bud break Bloom Fruitset Veraison

Raïmat Tempranillo 345 425 525 1443

Raïmat Chardonnay 274 436 530 1489

Vilariça Touriga Nacional 499 428 525 1648

La Orden Tempranillo 514 434 636 1430

Mirabella Eclano Aglianico 534 478 718 1954

TABLE 2. Forcing units (F*) for the different phenological phases and grapevine cultivars. Values used for the base 
temperature (Tb) were 3.5 °C for the period from January 1st to bud break and 7.1 °C thereafter. Forcing units were 
obtained from daily air temperature records and used in the daily and monthly approaches.
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FIGURE 4. Observed vs Predicted bud break, bloom, fruit set, and veraison in Raïmat, La Orden, Vilariça, and 
Mirabella Eclano. Predicted DOY refers to values computed using the downscaling approach (DMA).
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The significance level established for testing the model’s 
compatibility was 0.05 (5  %) (Fisher and Yates, 1938).  
Since the test is two-sided, as the difference can be either 
positive or negative, the pval needed to reject the H0 is 0.025. 
Thus, the next step was to compute the different parameters 
of the test, the standard error, degrees of freedom, mean 
residual value, the t-statistic, and the pval corresponding to 
this statistic. Table 4 summarises these outcomes separately 
for each cultivar. Although the mean residuals were higher 
for the DMA, we could not reject the H0 for any of the models 
because the pval was always above the level of significance 
(0.025). Consequently, both models were compatible for all 
of the situations studied.

We conducted a sensitivity analysis to test the effect of 
varying the number of years of historical weather records on 
the models’ performance. We decided to exclude La Orden 
from the analysis because the number of years was  low.  

However, we found no differences in RMSD when we 
compared the predictions with the observations (Figure 6). 
Changing the number of years of the historical records from 
3 to more than 30 (Mirabella Eclano) produced a slight 
fluctuation in the RMSD but no apparent trend. 

DISCUSSION

We present a novel approach to incorporate monthly mean 
air temperatures into phenology models, opening the way for 
more straightforward use of seasonal forecasts in the prediction 
of grapevine phenology and its implementation into DSSs. 
Several examples of the use of seasonal forecasts to schedule 
agronomic tasks can already be found in the literature. For 
instance, seasonal precipitation forecasts can be used to 
optimise the date at which maize is sown (Hansen and Indeje, 
2004). The incorporation of temperature and precipitation 

    
1 

 1 

Statistic 
Index Value 

Intercept -2.32 
p-Intercept 0.97 

Slope 1.00 
p-Slope 0.46 

Ubias 0.18 
Uerror 0.78 
Uslope 0 

R2 0.99 
d 0.99 

 

FIGURE 5. Comparison of the predicted phenology phases using the SW model or the DMA for all the sites and 
periods of phenological records (Table 2). The table presents the statistical indexes for the regression (red solid line): 
the slope and intercept, the Wilmott index (d) and the R2 value. The null hypothesis assumes that both models agree 
and there is no bias, if p > 0.05 for the intercept and the slope. The dashed line corresponds to the identity line. In 
both models (SW or DMA), we used the forcing units reported in Table 2. 

Phenological phase
RMSD (days)

SW DMA

Bud break 5.4 6.7

Bloom 5.0 4.4

Fruit set 6.0 6.0

Veraison 6.4 5.9

TABLE 3. Root-mean-square deviation (RMSD) of predicted versus observed dates of key phenological stages for 
predictions based on the spring warming model (SW) or the downscaling monthly approach (DMA). The analysis 
includes all the cultivars and sites.
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forecasts into pest and disease models can be used to tailor 
crop protection strategies (Régnière and Bolstad, 1994; 
Sporleder et al., 2008). In the case of grapevines, seasonal 
weather forecasts have proven to be useful for estimating 
wine production in the Douro region (Santos et al., 2020). 
However, the use of seasonal data to forecast grapevine 
phenology is still lacking (Santos et al., 2020). One of the 
complexities in the use of seasonal predictions to forecast 
phenology is that it relies on conserving the monthly signal 
when introducing daily data into phenological models.  
We have presented a downscaling approach that will conserve 
the signal as well as any hypothetical bias correction that 
may need to be applied to monthly data.

The two phenological models, based on  and , 
achieved similar results. Indeed, the residual comparison 
of the two approaches using real observations showed that 

they could not be regarded as being incompatible at the 
5 % confidence level (Table 4). This means that we can use 
both approaches to compute phenological stages and expect 
to obtain similar performances (similar RMSDs) for different 
grape varieties and across different phenological stages and 
sites (Table 3). The regression analysis confirms this result 
(Figure 5). The statistical indexes for slope and intercept and 
Theil’s test confirmed that the bias observed in Figure 5 was 
a consequence of unexplained variance and not related to 
poor performance of the DMA (Piñeiro et al., 2008). It is 
important to bear in mind that we used the same F* and Tb in 
both approaches. The F* was derived from inverse modelling 
of the SW model using . According to the results in Figure 5 
and Table  4, it is possible to directly use the DMA from 
available F* without any further calibration. The usability of 
the DMA might not be restricted to just DSSs, as it can be 

Site

Statistical test

Mean residual 
(days)

Standard error of the difference 
between the means of the two 

samples*
t-statistic pval

SW DMA

Raïmat (Chardonnay) 0.50 3.06 1.99 -1.29 0.21

Raïmat (Tempranillo) 0.69 2.94 1.78 -1.26 0.22

Mirabella Eclano 1.00 2.93 2.13 -0.91 0.37

La Orden 0.77 1.36 1.41 -0.42 0.68

Vilariça 0.73 2.00 1.79 -0.71 0.49

TABLE 4. Results of the t-test were carried out for the comparison of the distributions of the residuals obtained with the 
two models. The table shows the mean parameters for t-testing the compatibility of the model through mean residual 
comparison using the SW model and the DMA.

*The standard error of the two samples was computed as 2D Graph 2
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FIGURE 6. Effect of the number of years of historical weather on effd calculations. The lines represent the RMSDs 
after comparing observed and predicted phenology.
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a useful alternative when missing data are large enough to 
prevent any interpolation and gaps are distributed in a way 
that will not affect the monthly mean value. 

The use of a statistical approach to perform a site-specific 
calibration requires a larger dataset than the ones available 
at the study sites (Chuine et al., 2013). However, our main 
goal was not to test the accuracy of the DMA but to compare 
it with a well-established model for grapevine phenology 
forecasting. To overcome data limitations, we decided to 
use a Tb from the literature. The Tb selected was proposed by 
Moncur et al. (1989). To the best of our knowledge, this is the 
only work that has used an experimental approach to directly 
obtain Tb from the linear regression between temperature 
and phase duration for a wide range of grapevine varieties.  
The use of a proper Tb through a site-specific calibration 
would certainly improve DMA performance. 

Equation  3 presents the general calculation approach. 
However, in only two cases was  below Tb , Raïmat 2017 and 
2019.We acknowledge that this is a limited number of cases, 
and there is a need to explore more situations in which  is 
below Tb. Especially at sites with cooler climates than the ones 
used in the present study. Perhaps, at cooler sites with sudden 
temperature changes, the model will tend to underestimate 
Sf during the winter season. The magnitude of the bias in 
phenology forecasting associated with Sf underestimation 
will depend on the Tb selected (Parker et al., 2011).  
However, our study sites provided a good representation 
of temperate dry-summer growing regions according to the 
Köppen-Geiger climate classification (Peel et al., 2007).  
At other sites with similar climates, the model should perform 
as well as at the study sites. 

The methodology proposed in the present paper is based on 
probability distribution functions for monthly temperatures 
obtained from meteorological records. Climate change can 
alter monthly temperature distributions, but we think that the 
rate of change will be slow enough not to compromise the 
DMA performance. The updated definition of ‘present-day’ 
climate provided by the World Meteorological Organization 
(WMO, 2017) is formally represented by the meteorological 
statistics of the period 1991-2020 (Hulme, 2020). In two of 
the four sites studied (Raïmat and La Orden), the historical 
weather records are within the ‘present-day’ definition 
(Table  2). Interestingly, the RMSDs remained in the same 
range in the other two sites (Mirabella Eclano and Vilariça). 
We found no significant trends in the monthly average 
temperature in the historical weather records presented 
in Table 2. Possibly, alteration in monthly temperature 
distribution occurs at a lower rate than the frequency of 
extremes. Figure  6 supports this hypothesis. We found no 
differences in model performance when varying the number 
of years used for effd calculations. However, we recommend 
keeping the historical weather records for effd calculations 
within the ‘present-day’ definition by the WMO to track 
climate change alterations of monthly mean temperatures. 

CONCLUSIONS

We have presented a downscaling monthly approach (DMA) 
to replace  by  with further modification in F*. The DMA, 
tested at different study sites and varieties, was able to 
forecast various phenology phases with an adequate level of 
error. The DMA was also able to maintain the same bias as 
the reference spring warming model (SW). Therefore, one 
could use the DMA and expect the same prediction accuracy 
as the SW model. The next step will be to examine the utility 
of the present methodology when seasonal forecasts are used. 
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